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Abstract 

 

Production Analysis of Oil Production from Unconventional Reservoirs 
Using Bottom Hole Pressures Entirely in the Laplace Space  

 

Natalie-Nguyen La, MSE 

The University of Texas at Austin, 2015 

 
Supervisor: Larry W. Lake 

 

Laplace transforms are a powerful mathematical tool to solve many problems that 

describe fluid flow in unconventional reservoirs. However, for the solutions to be useful 

in applications, for instance history matching, they must be converted from the Laplace 

space into the real-time domain. A common practice is to numerically invert the 

transformed Laplace solution. However, we find substantial benefits if the data sets are 

handled entirely in the Laplace domain, and fitted to models presented in Laplace space 

rather than in the time domain.   

The data set used in this work is oil production rate and bottom hole pressure 

(BHP) from a liquid-rich shale play in North America, which we study to understand the 

decline of production from a tight formation produced by a fractured horizontal well. 

Since the BHP is relatively constant in the long run, a constant BHP solution is 

appropriate to analyze inflow performance analysis for most wells. However in some 

cases, as a result of operational changes to some wells, mainly periodic shut-ins, the 
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production rate experiences isolated pressure build-ups. Both the production rate and 

BHP are transformed into the Laplace domain and accounted for in the model.  Ours is 

the first analysis that combines rate and BHP entirely in the Laplace domain. There is no 

need for a Laplace transform inversion. 

Two models whose Laplace solutions are readily available are studied side-by-

side, a single-compartment model versus a dual-compartment model. We fit the 

transformed production data of hundreds of wells to the Laplace models. The algorithm 

to transform data is fairly simple and computationally inexpensive. Since Laplace 

transformation smoothes the data, the fits are consistently good.  Both models yield 

realistic and similar estimates of ultimate recovery. In most cases the effect of the second 

compartment in the dual-compartment model can be ignored, i.e., neglecting the fracture-

well interaction. The single-compartment model seems adequate for modeling 

unconventional reservoirs performance. 

The knowledge of the reservoir model parameters provides estimation of the 

drainage volume and forecast future production. One of the main advantages of this novel 

history matching method is its ability to eliminating noise from data scatter without 

losing important information. As a result, we can match data more easily. Moreover, real-

time solutions to many fluid flow problems in porous media often cannot be obtained 

analytically but rather via numerical computation. Our current method eliminates the 

need of inverting to real-time solutions. Additionally, these solutions often assume simple 

closed forms in Laplace domain even for very complex geometry (higher number of 

compartments), facilitating the task of history matching. 
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Chapter 1: Introduction 

Shale formations were traditionally viewed as source rocks and seals, not 

reservoir rocks.  But at the beginning of the 21st century, shales started to be considered 

as low-porosity and low-permeability (tight) reservoirs. According to Xu (2011), 

hydraulic fracturing of a shale formations is necessary to stimulate and produce from 

these unconventional reservoirs economically. Fractured reservoirs have been the object 

of intensive research in the geologic as well as the engineering fields since the 80’s 

(Aguilera, 1986). 

To make investment decisions on these unconventional plays, reservoir engineers 

must use accurate models to forecast production and estimate reserves. Two classes of 

analytical models have been developed for forecasting or analyzing production from oil 

and gas reservoirs with embedded hydraulic fractures (Xu, 2011). The first class involves 

empirical models that are developed based on the decline curve equations presented by 

Arps (1945). According to Ogunyomi (2014b), most empirical decline curve methods 

have two limitations; the model parameters are not functions of reservoir parameters and 

they may yield unrealistic values of expected ultimate recovery.  

The second class requires closed-form mathematical solutions to governing 

equations that are obtained through solutions to material balances. However, the real-time 

solutions of the second models often exist in cumbersome forms that require numerical 

approximations. This thesis presents more simplified analytic well models of the second 

class that involve transient solutions presented in the Laplace transform domain.  
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Laplace transforms are a powerful mathematical tool that allows petroleum 

engineers to obtain solutions to various complex problems that describe the solution of 

transient flow problems in porous media (Furman, 2003). As a common practice, in 

history matching, the solutions are converted from the Laplace space into real-time 

domain and then fitted with the history to find the model parameters. However, we find 

substantial benefits if the data sets are handled in the Laplace domain, while fitted to 

models presented in the Laplace space. Why go through all the troubles finding a real-

time solution for a history matching problem when the exact solution in the Laplace 

space exists and is at one’s disposal?  

In petroleum engineering, field data such as pressure and production rate are 

measured as discrete data.  In this thesis, the method described by Onur and Reynolds 

(1988) is employed to transform the production data into Laplace space. The transformed 

data are fitted to the Laplace models, and the model parameters then provide estimation 

of the expected ultimate recovery from these unconventional reservoirs.  

This novel method allows one to analyze production data with virtually any model 

that describes the physics behind flow in porous media, without going through the 

challenges to achieve closed-form inversions. Solving differential equations using the 

Laplace transforms is not new; however, the ability to extracting information from the 

model in Laplace space is novel. One of the main advantages of this method is its ability 

to eliminating noise from data scatter without losing important information, because of 

the integral nature of the Laplace transforms.  
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Chapter 2: Analytical Models 

2.1 SINGLE COMPARTMENT MODEL- CONSTANT WELL FLOWING PRESSURE 

First we consider is a simplest, linear flow model that prototypes a multi-stage 

fractured horizontal well for single-phase oil in oil-bearing shale reservoirs. It is therefore 

appropriate to assume a constant-viscosity and slightly-compressible fluid model. The 

single compartment system consists of evenly-spaced, transverse hydro-fractures in a 

rock matrix. The rock matrix has constant properties such as porosity, fluid saturation, 

and absolute permeability. The geometry of the flow model is represented by Figure 1. 

The following assumptions are made:  

(1) Equally spaced, rectangular planar fractures in a large, rectangular prism rock 

matrix 

(2) No flow outside of the reservoir boundaries 

(3) Fluid in the matrix  flows linearly in the y-direction towards the fractures 

(4) Permeability in the fractures is so high that there is almost no resistance to 

flow and fluid from the fractures flows with ease towards the wellbore 

(5) The centered, fully perforated horizontal well is producing hydrocarbon at a 

constant bottom hole pressure that is larger the bubble point pressure 
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Figure 1:  Schematic of the single compartment model 

2.1.2 Matrix Equation 

The control volume of the system of interest is bounded in the x-direction by the 

two parallel fractures, and in the y-direction by the entire length of the fractures. For the 

defined control volume, the principle of conservation of mass states that as:  

Rate of mass IN – Rate of mass OUT = Rate of mass ACCUMULATED  (2.1) 

Oil, the only flowing phase, flows linearly in the y-direction from the reservoir 

matrix to the fracture faces as the contribution of the radial flow to the fracture tip is 

negligible, and flow from the reservoir rock directly to the wellbore is in the x-direction 

is insignificant due to ultra-low matrix permeability. Accounting for these factors and 

taking the limits as y' approaches 0, and as time t approaches 0, we obtain the following 

simplified partial differential equation: 
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( ) ( )o o o ou S
y t

U I Uw w
�  

w w
  (2.2) 

where oU , oS are the oil density, oil saturation respectively, and I   is the porosity of the 

reservoir matrix. We need to couple Darcy’s law with the mass balance equation to 

obtain the pressure equation. The superficial velocity of the flowing oil, ou , is given by:  

 o
o

k Pu
yP

w
 �

w
  (2.3) 

where oP is the oil viscosity, and k  is the absolute permeability of the reservoir matrix. 

Assuming constant oil saturation, matrix porosity and absolute permeability, by 

substituting Equation (2.3) into the mass balance equation, we get the pressure diffusivity 

equation as follows: 

1 o
o

o o

k P PS
y y P t

UI
P U

§ ·§ · ww w w
 ¨ ¸¨ ¸w w w w© ¹ © ¹

 (2.4) 

Under relatively constant reservoir temperature, we recognize that 1 o

o T
P
U

U
§ ·w
¨ ¸w© ¹

is 

the isothermal compressibility of oil. Hence, the pressure diffusivity equation can be 

simplified as: 

2

2
o o oS cP P

y k t
IPw w

 
w w

 (2.5) 

To be more precise, since the pressure equation above describes pressure in the 

matrix, subscript m  for “matrix” is added, and since oil is the only flowing phase, the 

subscript o  for “oil” is dropped for simplification. Total compressibility is calculated by 
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the formula:
1

Np

t i i f
i

c S c c
 

 �¦  where Np is total number of fluid phases, S and c

correspond to saturation and compressibility of phase i respectively. Since the rock 

formation is considered incompressible hence 0rc   the total compressibility can be 

calculated by t o oc S c . Let mD be the diffusivity coefficient defined by

> @
2

m
t m

k length
c time

D
IP
§ ·

  ¨ ¸
© ¹

, then Equation (2.5) can be rewritten as: 

2

2

1m m

m

P P
y tD

w w
 

w w
 (2.6) 

 A second-order partial differential equation is typically defined by an initial 

condition and two boundary conditions. Initially, pressure is uniform throughout the 

domain, and equals to the initial pressure iP of the reservoir: 

( ,0)m iP y P  (2.7) 

 The boundary conditions imposed on the system at the fracture faces are constant 

average pressure fP , hence giving rise to the following Dirichlet boundary conditions: 

( , )

( , )
m f

m f

P d t P

P d t P

�  

�  
  (2.8) 

If the dimensionless variables are defined as follows: 
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then the initial-value problem can be simplified to: 

2

2

( ,0) 0
( 1, ) 0
( 1, ) 0

Dm Dm

D D

Dm D

Dm D

Dm D

P P
y t

P y
P t
P t

w w
 ° w w°°  ®

° �  °
° �  ¯

 (2.10) 

Using the method of Laplace Transform to solve the above partial differential 

equation, one can arrive at the analytical pressure solution in Laplace space: 

cosh( )2ˆ ( , )
cosh( )

D D
Dm D D

D D

y s
P y s

s s
  (2.11) 

where Ds  is the dimensionless Laplace variable that corresponds to the dimensionless 

time variable Dt , correlated to the dimensional Laplace variable by 
2

D
m

d ss
D

 . As a 

convention in this work, Laplace Transformation functions are denoted with hats to 

distinguish with real-time functions. Next, taking the first-order derivative of D̂mP with 

respect to Dy to obtain the dimensionless pressure gradient as: 

 
ˆ sinh( )2

cosh( )
D DDm

D D D

y sP
y s s

w
 

w
  (2.12) 
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Substituting Darcy’s law that gives the fluid flow rate through a porous medium 

as a function of the pressure gradient, we obtain the following equation: 

2

2 ( , )( ) f m

Ly

A k P y tq t
yP  r

w
 �

w
 (2.13) 

The Laplace Transform of the Darcy’s equation above gives the Laplace 

volumetric flow rate as:  

2

       

ˆ2 ( , )ˆ( )

4 ( )
tan h

f m

Ly

f m i f

mm

A k P y sq s
y

A k P P sd
s

P

DP D

 r

w
 �

w

§ ·�
 ¨ ¸¨ ¸

© ¹

 (2.14) 

        fA is the hydraulic fractures fluid contact area, calculated by the relation

2f f fA x h where fx is the fracture half-length, and fh is the fracture thickness, also the 

pay zone, assuming that the fracture fully penetrates the reservoir. Note that the unit of 

ˆ( )q s is 3length , which is consistent with the dimensional analysis in Appendix A.4.  

  For each pair of hydraulic fractures, the Laplace rate- Equation (2.14), a short-

term for the Laplace Transform of the volumetric rate solution, can be inverted 

analytically into the time domain as: 

2 2

2
(2 1)

1

8 ( )
( )

m

e

n t
f m i f y

ne

A k P P
q t e

y

S D

P

� �f

 

�
 ¦  (2.15) 

If there are 1N �  parallel hydraulic fractures that position back to back in the 

direction perpendicular horizontal well, then there are 1N �  pairs of hydraulic fractures. 
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Using the principle of space superposition, the total volumetric flow rate is the sum of the 

individual flow rate in each pair of hydraulic fractures: 

2 2

2
(2 1)

1

8( 1) ( )
( )

m

e

n t
f m i f y

T
ne

N A k P P
q t e

y

S D

P

� �f

 

� �
 ¦  (2.16) 

We recast the Laplace rate and the real-time rate solutions in terms of the lumped 

model parameters to decrease the number of unknown variables, thus facilitating the task 

of history matching. Let the following variables be: 

> @

> @

34( 1) ( )

2

f m i f

m

e

m

N A k P P LE
time

yF time

P D

D

� �
  

  
 (2.17) 

then our simple lumped-parameter model in either domain becomes: 

� �ˆ ( ) tanhT
Eq s F s
s

  (2.18) 

2 2

2
(2 1)
4

1

2( )
n t

F
T

n

Eq t e
F

S� �f

 

 ¦  (2.19) 

The cumulative oil production after an elapsed time t  on production is expressed, in 

terms of the lumped model parameters, as:  

2 2

2
(2 1)
4

2 2
10

8 1( ) ( ) 1
(2 1)

n tt
F

T
n

EFQ t q d e
n

S

W W
S

� �f

 

§ ·
  �¨ ¸

¨ ¸� © ¹
¦³  (2.20) 

On one hand, the real-time analytical solution of the single compartment model 

involves an infinite series of exponential functions. Since the traditional history matching 

method requires simple algebraic expressions as reservoir model, the infinite series 



 10 

solution is not a candidate for application. Therefore, one would need an extra step which 

is to numerically approximate the summation expression in Equation (2.19). On the other 

hand, the Laplace solution of the same model has a much simpler form, making the 

fitting of the analytical model to the observed data possible. 

2.1.3 An Estimate to the Ultimate Recovery 

In this section, we use the theorems involving the limits of the Laplace Transform 

studied in Appendix B to find the estimated ultimate recovery ( EUR ) or alternatively, the 

ultimate recoverable resources (URR ). The relation between the volumetric rate and the 

cumulative produced volume is given by: 

0

( ) ( )
t

Np t q t dt ³  (2.21) 

The EUR can be approximated by the limit of the cumulative production as time 

approaches infinity: 

lim ( )
t

EUR Np t
of

  (2.22) 

Combining Equations (2.21) & (2.22) with the knowledge of the late-time 

behavior of the Laplace Transform inversion and the Laplace Transform of an integral, 

i.e., Equations (A.3) & (A.8) , we arrive at the following relation: 

0
ˆlim ( ) lim * ( ) (0)

t s
EUR Np t s Np s Np

of o
  �

0
ˆlim ( )

s
q s

o
ª º  ¬ ¼  (2.23) 

which establishes that the ultimate recovery can be approximated by the limit of the 

Laplace rate solution as s  approaches zero, assuming that there is no initial production. 
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The newly derived relation is then applied to our single-compartment model with 

constant flowing well pressure, Equation (2.18), to obtain an explicit expression for the

EUR : 

2( 1) ( )f m i f

m

N A dk P P
EUR

PD
� �

  (2.24) 

Substituting and rearranging the terms, we obtain that the equation derived above 

is equivalent to > @( 1) ( )f e t o i fm
EUR A N y c S P PI � � , where the right side is consistent 

with the classic definition of the drainage volume. In terms of the lumped model 

parameters, EUR can be expressed as .E F . This is a useful method to obtain the 

estimated recovery based on the production data and model’s fitting parameters. The 

more data available, the closer this estimate to the true ultimate recovery of the reservoir. 

2.1.4 Model Validation 

Next, to validate the physical existence of the single compartment model, we are 

going to reconstruct the fractured tight reservoir through numerical simulation then 

compare the simulation results with the derived equation for the model. The data 

produces in this work was generated by CMG simulator from Computer Modeling Group 

Inc. A 101x1x1 grid system is utilized in the simulator with 0.5x'  ft, 1000y'  ft, and 

10z'  ft. The 101st grid, acting as the fracture, contains a vertical well flowing at 

constant bottom hole pressure of 2000 psi. The grid has a small porosity of 10-5 and a 

high permeability of 107 md to ensure constant pressure condition across the fracture. It 

was found by comparing with the model’s real-time analytical solution that the maximum 
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time-step size of 0.05 day is required to give accurate results. Data specific to the model 

is shown in Table 1. Schematics of the reservoir simulation model, with color code 

attributed to permeability, are shown in Figure 2 and 3. 

Reservoir grid configuration 101 x 1 x 1 

Reservoir size 50.5 ft u 1000 ft u 10 ft 

Initial reservoir pressure 5000 psia 

Bottom hole pressure 2000 psia 

Matrix permeability 10-1 md 

Matrix porosity 6.5x10-2 

Fracture width 0.5 ft 

Oil viscosity 2 cp 

Oil saturation 1.0 

Total compressibility 3.7x10-5 psi-1 

Table 1: Reservoir specifications for the validation of the single compartment model 
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Figure 2.  The xy cross-section view of the reservoir. 

  

Figure 3:  The three dimensional view of the reservoir 
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Figure 4: Comparison between the solutions to the single compartment model and 
simulation results 

The comparison between the simulation results and the real-time analytical 

solution is shown in Figure 4. We expect to see all the physical meanings underlying in 

our model by data produce by CMG, such as: 

x A linear flow period with a one-half slope follows, which represents the transient 

flow from the reservoir matrix to the fracture. This flow regime often is the major 

contribution during the life of the well 
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x When flow reaches the external boundary of the reservoir matrix, an exponential 

decline, also known as the pseudo-steady state flow, is observed (Walsh and 

Lake, 2003) 

It can be observed from Figure 4 that the numerical and analytical results are 

similar and carry all the flowing regimes. They both exhibit the production signature of 

the fractured tight reservoirs including the matrix transient linear response initially, and 

the matrix boundary-dominated flow at later time. 

2.2 SINGLE COMPARTMENT MODEL- VARIABLE WELL FLOWING PRESSURE 

Oil production wells are intended to be operated at constant bottom hole pressure 

(BHP) because of the wellhead pressure imposed by constant choke size. Therefore, in 

most cases, a constant flowing well pressure solution is appropriate to analyze inflow 

performance analysis (Guo, 2007). The underlying assumption is that the BHP 

instantaneously drops from the reservoir initial pressure to the constant value determined 

by the production operations. However, in reality, the BHP often varies during the 

operational life of the well depending on the shut-in schedule of the production engineers. 

Furthermore, it would take some time for the pressure to attend equilibrium either when 

the well, first at initial pressure iP ,  is opened and produced or when the well flowing 

pressure’s adjustment occurs Therefore, we wish to extend our simple model to consider 

variable wfP . Three main assumptions are made 

(1) The data that reflect the behavior of the well flowing pressure with respect to 

time is available. 
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(2) Because of the high fracture permeability which facilitates flow in the 

fracture, pressure in the fracture fP propagates quickly to be almost equal to 

the wellbore pressure wfP ; hence, the changes made to the producing well’s 

flowing pressure translate quickly to the same changes to fracture’s pressure.  

(3) When production resumes once shut in, well flowing pressure is assumed to 

have built up to reservoir initial pressure (well pressure often reads 0 during 

shut in). 

Most of the derivations in section 2.1.2 remain valid, except for the Dirichlet 

boundary conditions, which are time-dependent and expressed by: 

( , ) ( )

( , ) ( )
m f

m f

P d t P t
P d t P t

�  

�  
  (2.25) 

Using the method of Laplace Transform to solve the above partial differential 

equation, one can arrive at the analytical volumetric rate solution in Laplace space as: 

� �4 ˆˆ( ) ( ) tanh
2

f m e
i wf

mm

A k y sq s P sP s
s DP D

§ ·
 � ¨ ¸¨ ¸

© ¹
 (2.26) 

where ˆ ( )wfP s is the Laplace Transform of the well flowing pressure. If wfP is a constant 

value then ˆ ( )wf wfP s P s , and Equation (2.26) is converted to the constant BHP solution. 

We may compute the transform of the pressure data using the numerical algorithm 

presented in a later chapter, and substitute that into equation (2.26). 

Using the Laplace Transform of time derivative and convolution, the Laplace rate 

can be inverted analytically into time space as: 
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Since there are 1N �  pairs of hydraulic fractures, the total volumetric flow rate 

can be expressed in terms of the individual flow rate in each pair of hydraulic fractures 

as: 
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We recast the Laplace as well as time solutions as a lumped-parameter model to 

facilitate the task of history matching. Let the following variables be: 

> @
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N A k LK
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yF time

P D
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�
  

  
 (2.29) 

then our simple lumped-parameter solution to the model in either domain becomes: 

� �* ˆˆ ( ) ( ) tanhi
T wf

K Pq s K sP s F s
s

§ · �¨ ¸
© ¹

 (2.30a) 
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The integral in the last equation can be approximated with a finite sum. Using the 

midpoint approximation to the integral, and let
2 2

2
(2 1)
4

1
( )

n t
F

n
x t e

S� �f

 

 ¦ , Equation (2.30) 

becomes 
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where k   is the number of data points available for the BHP, and (0)wf iP P .  

2.3 DUAL COMPARTMENT MODEL 

2.3.1 Introduction 

This section considers fluid transport in an idealized system consisting of slabs of 

saturated rock-matrix separated by equally spaced, planar fractures (Barker 1980). Since 

the production data of interest is collected from oil-bearing shale reservoirs, it is 

appropriate to assume a constant-viscosity and constant-compressibility fluid model. The 

dual compartment system consists of a bounded rectangular reservoir with matrix blocks 

draining into adjoining fractures and subsequently to a horizontal well in the center 

(Bello, 2009). The fracture volume is significant and flow in the fractures contributes to 

the overall flow characteristics, differentiating this model from the single compartment 

model. The two porous media, fracture and matrix, have different but relatively constant 

properties such as porosity, and absolute permeability. The geometry of the flow model is 

presented in Figure 5 with the following assumptions (Barker 1980):  

(1) Identical slabs of matrix material separated by equally spaced, planar fractures 

(2) There is no pressure gradient across the fractures 

(3) Fluid in the matrix blocks flows dominantly in the y-direction towards 

fractures, and fluid from the fractures flows in the x-direction towards the 

wellbore 
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(4) The centered, fully perforated horizontal well is producing hydrocarbon at 

constant bottom-hole pressure 

 

 

Figure 5: A schematic of the double compartment model 

2.3.2 Matrix Equation 

The one-dimensional, linear diffusion pressure equation in the matrix, derived in 

great details from the mass balance equation in section 3.1, is summarized as: 

2

2

1
D

w w
 

w w
m m

m

P P
y t

 (2.32) 

where mD  is the diffusivity coefficient of matrix, defined by m
t m

k
c

D
IP
§ ·

 ¨ ¸
© ¹

. 

Initially, the pressure in the matrix is constant everywhere, and equals to the 

initial pressure iP of the reservoir: 
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( ,0)m iP y P  (2.33) 

The boundary conditions imposed on the partial differential equation assume no-

flow boundary in the y-direction away from the fracture, while keeping the pressure at 

the fracture and matrix interface constant. This pressure fP  is also the pressure 

everywhere in the fracture as fracture permeability is high. 

(0, ) 0

( , )
2

w
 

w

 

m

m D f

P t
y

LP t P
 (2.34) 

The following dimensionless variables are defined as: 
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The storativity ratio of the fracture, denotedZ , is defined as: 
> @

> @ > @
t f

t tm f

c

c c

I
Z

I I
 

�
, 

and the interporosity flow parameter, denotedO , as: 
2

212 f m

f

x k
L k

O  . The initial-value 

problem of the matrix equation is rewritten as: 
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 (2.36) 

Next, we are going to integrate the solution to the above partial differential 

problem of the matrix flow to the diffusivity equation for the fracture flow, which is 

presented in the next section, to arrive at the final solution for the dual compartment 

model.  

2.3.3 Fracture Equation 

The one-dimensional, linear diffusion pressure equation for flow from the fracture 

into the wellbore is written as: 

2

2

2

1 2
D  

w w w
 �

w w w
f f m m

Lf f y

P P k P
x t k L y

 (2.37)       

where fD  is the diffusivity coefficient of the fracture, defined as f
t f

k
c

D
IP
§ ·

 ¨ ¸
© ¹

. The 

additional term on the right-hand side is the source term, which describes the fluid flow 

from the matrix into the fracture at their interfaces. 

Initially, the pressure in the fracture is the same everywhere, and equals to the 

initial pressure iP of the reservoir: 

( ,0)  f iP x P  (2.38) 
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The boundary conditions imposed on the partial differential equation assume no-

flow boundary in the x-direction, far away from the wellbore, while fixing pressure at the 

sand face to equal the constant bottom hole pressure: 

(0, ) 0

( , )

w
 

w
 

f

f f D wf

P
t

x
P x t P

 (2.39) 

If the dimensionless variables are defined as in (2.35) then the initial-value 

problem of fracture equation is rewritten as: 
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Using the method of Laplace Transform to solve systems of Equations (2.36) and 

(2.40), one can arrive at the analytical pressure solution in Laplace space: 

cosh( ( ))1ˆ
cosh( ( ))

 D D
Df

D D D

y s f s
P

s s f s
 (2.41) 

where 3(1 )(1 )( ) tanh
3

ZO ZZ
O
��

 � D
D

D

sf s
s

 

and Ds is the dimensionless Laplace variable that corresponds to the dimensionless time 

variable Dt , defined as 
2

D Z
 f

D
f

x s
s . 
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Substituting Darcy’s law that gives the fluid flow rate through a porous medium 

as a function of the pressure gradient, we obtain the following equation for the flow rate 

into one hydraulic fracture as: 

2

2
( ) r f f

f
Ly

A k P
q t

xP
 

w
 �

w
 (2.42) 

where rA is the y-z cross-sectional area of the fracture, and is calculated by the relation 

r fA y h .   

The Laplace Transform of the Darcy’s equation above gives the Laplace 

volumetric flow rate as:  
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 (2.43) 

If there are N parallel hydraulic fractures that position back to back in the 

direction perpendicular horizontal well, then using the principle of space superposition, 

the total volumetric flow rate is the sum of the individual flow rate in each hydraulic 

fracture: 

2 ( ) ( )ˆ ( ) tanh( ( ))r f f i wf D
fT D D

f D

NA x k P P f sq s s f s
sPD Z

�
  (2.44) 

Unit of ˆ ( )fq s or ˆ ( )fTq s is 3length , which is consistent with the dimensional 

analysis. The analytical inversion of the above Laplace rate solution is complicated, and 
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requires numerical approximation. The Laplace solution to any number of compartments 

exists in similar form as Equation (2.44), and the more compartments being modeled, the 

more nested the solution becomes. 

 The two models proposed in this thesis are one of the simplest models of the 

reservoir engineering problems; however both real-time solutions require cumbersome 

mathematical estimation for history matching applications. Now let us take a step back, 

since our study focuses on extracting important reservoir characteristics from the solution 

in the Laplace space, the agonizing step of inverting the Laplace solution step is no 

longer essential.  

Next, we recast the Laplace as well as the real-time solutions in terms of the 

model lumped parameters to reduce the number of unknown, thus facilitating the task of 

history matching. Let the following variables be: 
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then our simple lumped-parameter model in Laplace domain becomes: 

3/21 (1 ) 3(1 ) (1 ) 3(1 )ˆ ( ) tanh tanh tanh
3 3fT

cs cs csq s a cs
cs cs
Z O Z Z O Z ZZ

O O

§ ·� � � �§ · ¨ ¸ � �¨ ¸ ¨ ¸© ¹ © ¹

(2.46) 

The solution to the cumulative volume in the Laplace space can be expressed in 

terms of the Laplace rate as: 

ˆ ( )ˆ ( ) fT
T

q s
Q s

s
   (2.47) 
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A problem with using the solution presented in (2.46) is that it cannot be inverted 

back into the real-time space to obtain a closed-form analytical solution (Ogunyomi, 

2014b). Hence, the Gaver-Stehfest algorithm for numerical inversion of the Laplace 

Transform, presented in appendix B, is employed to evaluate the function ( )fTq t and 

( )TQ t  

2.3.4 An Estimate of the Ultimate Recovery 

In this section, we are going to apply the relation derived in Equation (2.23) to the 

dual compartment model to obtain an explicit expression for the EUR : 

( )r f f i wf

f

NA x k P P
EUR

PD Z
�

  (2.48) 

In terms of the model parameters, EUR can be expressed as EUR a . This is a 

useful method to obtain the estimated recovery based on the production data and model’s 

fitting parameters. The more data available, the closer this estimate to the true ultimate 

recovery of the reservoir. 

2.3.5 Model Validation 

Next, we are going to validate the dual compartment model through numerical 

simulation. A 101u1u1 grid system is used in the simulator with 1x'  ft, 100y'  ft, 

and 100z'  ft. The first 50 grids carry the matrix properties, and the next 50 grids 

constitute the stimulated reservoir volume (SRV). The 101st grid, acting as the fracture, 

contains the well at constant bottom hole pressure of 2000 psi, and is assigned a small 

porosity of 10-7 and a high permeability of 107 md to ensure constant pressure condition 
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across the fracture. It was found by comparing with the analytical solution that the 

maximum time-step size of 0.05 day is required to give accurate results. Data specific to 

the model is shown in Table 2. Schematics of the reservoir simulation model, with color 

code attributed to permeability, are shown in Figure 6 and 7. 

Reservoir grid configuration 101 u 1 xu1 

Grid size 1 u 100 ft u 100 ft 

Reservoir size 101 ft. u 100 ft u 100 ft 

Initial reservoir pressure 5000 psia 

Bottom-hole pressure 2000 psia 

Matrix permeability 8x10-4 md 

Matrix porosity 10-5 

SRV permeability 102 md 

SRV porosity 10-5 

Fracture width 1 ft 

Oil viscosity 2 cp 

Oil saturation 1.0 

Total compressibility 3.7x10-5 psi-1 

Table 2: Reservoir specifications for the validation of the dual compartment model 



 27 

 

Figure 6: The xy cross-section view of the reservoir 
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Figure 7: The three-dimensional view of the reservoir 
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Figure 8: Comparison between the solutions to the double compartment model and 
simulation results 

The results from the numerical simulation is shown in Figure 8. It can be 

observed from this figure that the numerical and analytical results show a fairly good 

match. As expected from the dual compartment model, both plots display two timescales. 

The physical meaning of this characteristic can be explained as follows (Ogunyomi, 

2014b): 

x At the start of production, flow is predominantly linear with a one-half slope, 

which represents transient flow from the SRV 

x When flow reaches the SRV boundary, an exponential decline follows 
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x Another linear flow period with a one-half slope picks up, which represent 

transient flow from the reservoir matrix to the fracture. This flow regime often is 

the major contribution during the life of the well 

x When flow reaches the external boundary of the reservoir matrix, another 

exponential decline, also known as the pseudo-steady state flow, is observed 

(Walsh and Lake, 2003) 

 The second timescale, which includes the matrix transient then matrix boundary-

dominated flows, shows better fit than the first timescale. The plateau period observed in 

the first timescale of the simulation data is as a result of the combination of wellbore 

storage and fracture skin, a factor which the dual compartment model does not account 

for (Stewart, 2011), however can be easily be integrated when needed.  
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Chapter 3: Numerical Laplace Transform of Discrete Data 

The Laplace Transform, named after the French mathematician Pierre-Simon 

Laplace, is a method for solving problems that arise in several areas of mathematical 

analysis. Of particular importance is its ability to solve partial differential equations, 

which continually emerge in engineering problems in general and the problem of fluid-

flow in permeable media in particular (Bellman, 1984). 

The Laplace Transform of a function ( )f t , for all real non-negative values of t , is 

defined by: 

0

 { ( )} ( ) ( )
t

st

t

f t F s e f t dt
 f

�

 

  ³  (3.1) 

where t  is the time variable with unit of time, and s  is the complex frequency variable 

with unit of inverse of time, i.e., time-1. The Laplace Transform is a mapping from points 

in the time domain to points in the frequency domain. For the operation of the Laplace 

transformation to make sense, the image of ( )f t , denoted ( )F s , requires that the 

improper integral on the right side must converge. The variables of interest in reservoir 

engineering are often flow rate and pressure, and they generally display declining 

behavior in the infinite time range and thus constitute suitable functions ( )f t .  

The novel idea behind this work is handling data and model fitting in the Laplace 

space to obtain useful reservoir parameters that can be applied to validate the fit in the 

real-time domain or to estimate the drainage volume; hence most of this chapter focuses 

on introducing and optimizing the mathematical tools that revolve around this work.  
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Data obtained from the field exist in the time domain. The available tool that 

enables the conversion of such data to the Laplace space is a critical requirement for the 

success of our method. Fortunately, Onur and Reynolds (1998) proposed algorithms to 

accurately transformed sampled data into Laplace space. Because of the nature of the 

Laplace Transform, which requires knowledge of the function over a semi-infinite time 

interval from 0 to infinity, a complete algorithm to compute the Laplace Transform of 

sampled data is comprised of three parts: early-time interpolation, discrete-data 

interpolation, and late-time extrapolation (Onur 1998). The Laplace Transform of 

sampled data, represented by some underlying function ( )f t  , is thus calculated by 

1

10

ˆ ( ) ( ) ( ) ( )
N

N

tt
st st st

t t

f s f t e dt f t e dt f t e dt
f

� � � � �³ ³ ³   (3.2) 

Let 21 3 , ,I I I  be the intervals from left to right respectively, then 1I  represents the 

early-time interpolation, 2I  the discrete-data interpolation, and 3I  the late-time 

extrapolation. To accommodate the noise of the sampled data, the representative function 

could be piecewise linear, piecewise quadratic, or log-linear. Different functions have 

different complexities that require special care while handling. The following sections 

serve as guidelines for transforming data that display the behaviors similar to as 

described below.  

3.1 EARLY-TIME INTERPOLATION 

A log-linear functional representation provides accurate early-time interpolation 

of data (Onur, 1998).  Let ( )f t tED then the first interval can be written as: 
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where the gamma function, denoted ( )t* , is defined as: 1

0

( ) t xt x e dx
f

� �*  ³ , and the 

incomplete gamma function, denoted ( , )t u* , as: 1( , ) t x

u

t u x e
f

� �*  ³ for 0t ! . The 

coefficients α and β of the early-time interpolation, determined from the first few data 

points, are given by the formulas: 2 1

2 1

ln( / )
ln( / t )

f f
t

E  ; 1

1

f
t ED  , where if  for 1,2,...,i N 

denotes the ith data point in the sample. 

3.2 DISCRETE-DATA INTERPOLATION 

Piecewise-linear functional representation is widely used in discrete-data 

interpolation because of to its simplicity. Suppose that each pair of data points can be 

represented by a linear function, i.e., ( ) ( )i i if t f m t t � �   for the interval 1i it t t �� � where 
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im is the slope of the linear interpolation, given by 1
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, then the integral 2I  can 

be written as: 
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    For more accuracy, high-order, piecewise-quadratic functions may be used to 

interpolate between subintervals. Suppose that each subinterval 2 1 2 1i it t t� �� �  can be 

represented by a piecewise Lagrange quadratic function, i.e.,

2 1 2 1 2 2 2 1 2 1( ) i i i i i if t f L f L f L� � � � � � , where kL  is the second degree Lagrange interpolating 

polynomial, given by � �
� �

1

1,

k
i

k
i k i k k i

t t
L

t t

�

 � z

�
 

�� (Burden 2011), then the interval 2I  can be 

expressed as: 
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where M must be an odd number, given by     # 1
2
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3.3 LATE-TIME EXTRAPOLATION 

To obtain an accurate late-time extrapolation, we require some knowledge of the 

functional behavior of the data as time goes to infinity. Here, we are interested in 

extrapolating the producing rate of a well, which often display an exponential decline 

type of behavior at late time during which the effect of the flow boundary is felt. Hence, 

suppose that ( ) tf t e JN �  where 1

1

ln( )N N

N N

f f
t t

J �
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 and 
N

N
t

f
e JN �  then the last interval 3I

, can be written as: 
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3.4 A COMPLETE ALGORITHM 

Generally, combinations of different functional representations can give different 

algorithms to transform data into the Laplace domain. The works presented in this thesis 

are done using an algorithm that is formulated based on a log-linear early-time 

interpolation, a piecewise-linear discrete data-interpolation, and an exponential late-time 

extrapolation. It is thus formulated as: 
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(3.7) where the interpolating/extrapolating coefficients are defined in the section 3.2. 

3.5 TEST FUNCTION 

When fitting data, not only the best fit but also the uniqueness of the fit must be 

determined to understand the confidence one can have in the estimates (Hines et al, 

2014). This section validates the accuracy of the numerical transform of data into the 
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Laplace space and the uniqueness of the estimated model parameters. The uniqueness of 

the fit is met if modification of the starting points and the upper/lower bounds results in 

insignificant changes in the best-fit model parameters. Two test functions that correspond 

to the solutions of the two models developed in this thesis are studied. The method is 

robust if the Laplace transformation of the discrete data generated from the function ( )f t  

using the algorithm provided in section 3.4 results in data in the Laplace domain that 

match the Laplace Transform of ( )f t , denoted ( )F s . 

3.5.1 Test function #1 

The first test function involves the solution to the constant flowing pressure 

(BHP) single compartment linear flow model derived in section 2.1. Thus, test function 

#1 has the following forms in the Laplace and the time domains, respectively:  

� �
2 2

2
(2 1)
4

1

( ) tanh

2( )
n t

B

n

AF s B s
s

Af t e
B

S� �f

 

 

 

¦
  (3.8) 

where A and B are arbitrarily chosen to be 1.000 and 1.000 respectively. The variables s  

and t  are assumed dimensionless in this particular example. Figure 9 presents the log-log 

graph of ( )f t  versus t .  
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Figure 9: Function ( )f t  evaluated over a large range of variable t  

In Figure 10, the forward Laplace Transform of the function ( )f t , in other words

( )F s , and the numerical Laplace Transform of the data generated from the original 

function ( )f t  are plotted against the variable s of the Laplace domain. 
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Figure 10: The comparison between ( )F s  and the numerical Laplace transform of the 
data that is generated from ( )f t  

The two curves display good fit in the Laplace domain, establishing that the 

algorithm for the numerical Laplace Transformation of sample data is valid for our single 

compartment model. However, since our work focuses on the application of history 

matching, we would like to confirm that the model parameters obtained from the curve 

fitting exercise are unique and match the true/given parameters. Using the curve fitting 

tool available in Matlab, we match the numerical Laplace Transform of the data to the 
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model � �tanhA B s
s

, and the results of the parameters with 95% confidence level and 

1.000 in coefficient of determination are as follows: 

  0.9982 
  1.001 

A
B

 
 

 (3.9) 

The model parameters A  and B match closely to the true parameters with the 

relative percentage error of 0.18% and 0.10%, respectively. Therefore, we can finally 

establish that the algorithm to transform discrete data in Laplace space and the 

uniqueness of the solutions to the single compartment model are appropriate for use in 

this study. 

3.5.2 Test function #2 

The second test function involves the solution to the dual compartment linear flow 

model derived in section 2.3 Thus, the test function #2 has the following form in the 

Laplace domain:  

3/21 D(1 ) 3(1 ) (1 ) 3(1 )( ) tanh tanh tanh
3 3

B B B Cs D B Cs B CsG s A Bs
Cs Cs D D

§ ·� � � �§ · ¨ ¸ � �¨ ¸ ¨ ¸© ¹ © ¹
(3.10) where 1.000 04, 1.000 03, 1.000 02,  and 1.000 05A e B e C e D e �  �  �  � . 

Since there is no analytical expression of ( )g t , the inverted function of ( )G s , one has to 

obtain ( )g t via numerical inversion methods, one such as the Gaver-Stehfest algorithm 

which is studied in detail in Appendix C. Figure 11 presents the log-log graph of ( )g t  

versus t .  
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Figure 11: Function ( )g t  evaluated numerically through the Gaver-Stehfest’s 
inversion of its Laplace Transform ( )G s  

Figure 11 displays the two-timescale that we expect to observe from a dual 

compartment linear flow. As the underlying physics depicts a complex real-time 

behavior, developing a best-fit line for the function ( )g t  is not an easy task. However, in 

the Laplace domain, function ( )G s  displays a more smoothing behavior that again 

confirms the superiority of our method of history matching in this alternative space. 

Figure 12 plots the function ( )G s and the numerical Laplace Transform of the data 

generated from the original function ( )g t  are plotted against the variable s of the Laplace 

domain. 
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Figure 12: The comparison between ( )G s  and the numerical Laplace transform of the 
data that is generated from ( )g t  

The two curves display good fit in the Laplace domain, establishing that the 

algorithm for the numerical Laplace Transformation of sample data is valid for the dual 

compartment model. However, since our work focuses on the application of history 

matching, we would like to confirm that the model parameters obtained from the best-fit 

in the Laplace space are unique and match the given parameters.  Using the curve fitting 

tool available in Matlab, we match the numerical Laplace Transform of the data to the 

model:
3/21 D(1 ) 3(1 ) (1 ) 3(1 )tanh tanh tanh

3 3
B B B Cs D B Cs B CsA Bs

Cs Cs D D

§ ·� � � �§ · ¨ ¸� �¨ ¸ ¨ ¸© ¹ © ¹
. 
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We find that there are no unique solutions to the problem. However, if we reduce the 

number of unknown variables down to three, then the solutions are unique. For instance, 

if we fix the value of A to be1.000 04e� , then we obtain a unique fit with 95% 

confidence level and 0.9999 in coefficient of determination with the following 

parameters: 

   9.946 04
  1 .039 02
   9.994 06

B e
C e
D e

 �
 �
 �

 (3.11) 

The variables B ,C , and D  match closely to the true parameters with the relative 

percentage error of 0.54%, 3.9% and 0.06%, respectively. Similarly, if the value of any 

one of the four original variables is fixed, we obtain the results of the other three 

parameters with similarly high values of R-squared and low value of relative error. 

Therefore, we can finally establish that both the algorithm to transform discrete data in 

the Laplace space and the dual compartment model (with one less unknown parameter) 

are appropriate for use in this study. 
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Chapter 4: Applications 

4.1 A NEW METHOD OF HISTORY MATCHING 

Whereas the previous chapters equip us with mathematical background and tools, 

the current chapter focuses on the interesting applications that this thesis lays the 

groundwork for- history matching in a domain different from the time domain to obtain 

useful reservoir parameters.   

 Since the novel history matching method happens in the Laplace space, one 

needs to first acquire a Laplace model, a function of s that contains unknown parameters. 

This step is simple enough since most differential equations governing the reservoir flow 

can be solved by the Laplace Transform method. In the conventional method, obtaining 

an analytical model often presents complication since the analytical solution in the time 

domain is not always available.  

The data of reservoir engineering problems, specifically flow rate and pressure are 

recorded in real time, hence the second step involves transforming data into the Laplace 

domain. This comprises one of the most important steps. Since the data before the first 

data point and that after the last data point are often missing, it requires that we have an 

accurate knowledge of the functional representation of the early-time and late-time 

extrapolation. Otherwise, we could encounter troubles fitting the transformed data with 

the model. Since our variable of interest is now the Laplace variable s , we also need to 

determine the range of s of interest. As s is the inversion of time, as a rule of thumb, s  is 

chosen to be in the range of 
max min

1 1,
t t

§ ·
¨ ¸
© ¹

 but the situation may vary from case to case. 
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The third step is history matching the transformed data with the model in Laplace 

domain through which we can obtain the fitting parameters. These lumped parameters are 

functions of reservoir properties and well configurations. As the parameters are lumped 

together, prior knowledge of some of the individual parameters must be known in other 

to seek for other individual parameters. Most importantly, we can obtain an approximate 

to the estimated ultimate recovery from the lumped parameters, as discussed in the 

previous chapter. 

The last step is to double check the results of the history matching. If we stop at 

the last step, readers may question if a best fit in the Laplace domain guarantees the same 

in the time domain. We assure you that it does by providing a plot that compares data and 

model in the time space- what readers often would like to see. Now, the model in the time 

domain can be obtained via analytical Laplace transformation or numerical methods, one 

such as the Gaver-Stehfest algorithm.  The original data is then plotted in conjunction 

with the model in the time domain. If the history matching job is good enough, we could 

use the real-time model for forecasting. We will explore several examples in the coming 

sections. 

4.2 INTRODUCTION TO THE DATA SET 

The data used in this study comes from a liquid-rich shale play in North America. 

This data set contains data from 104 wells of varying completion properties. Geologic 

data such as initial reservoir pressure and reservoir depth are given. Oil production rates, 

water production rates, and tubing head pressures are recorded on a daily basis. A 

production period begins when the well starts producing or returns to production once 
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shut in, and ends when the well shuts in the next time. A well often undergoes more than 

one production periods. Four main observations and assumptions are made as follows: 

(1) The amount of water produced from these wells is relatively low and constant, 

making the assumption of oil being the only flowing phase appropriate.  

(2) According to Ogunyomi (2014), production data from most fractured-

horizontal wells in gas and liquid-rich unconventional reservoirs plot as 

straight lines with a one half-slope on a log-log plot of rate versus time. This 

half-slope line characterizes the transient flow from the reservoir matrix to the 

fracture. Figure 11 shows a typical rate plot of a well chosen at random, and it 

bears similar production signature.  

(3) A shut in period is often identified as a period of time in which the producing 

rates and the tubing head pressures remain consistently zero for more than two 

days. A well may experience more than one periodic shut-in. 

(4) We can calculate the well flowing pressure from the tubing head pressure data 

assuming constant hydraulic gradient. 

(5) Pressure is relatively constant except for when production starts or resumes 

after well shut-in. 

4.3 SINGLE VERSUS DUAL COMPARTMENT MODELS- CONSTANT FLOWING PRESSURE 

This section consists of two history matching exercises using two models: the 

single compartment and the dual compartment models on the same well (UT ID 79) both 

schemes assuming constant BHP. Two history match cases are shown in detail below: 
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4.3.1 Single Compartment Model 

First of all, we would like to obtain a visual of the well’s general production 

behavior. Figure 13 presents the distribution of the production rate and tubing-head 

pressures of that well over time. No gas is produced during the entire production period, 

indicating that the BHP is well above the bubble point pressure. 

 

Figure 13: Produced oil rate and tubing-head pressure of the well UT-ID 79 

It appears that there is only one production period from beginning to end, and 

there is not a scheduled shut-in during the production course of the well. We observe that 

tubing-head pressure drops quickly in the beginning then stays relatively constant at 
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around 200 psi. The production rate data are transformed into the Laplace domain and 

fitted to the constant BHP Laplace model, as shown below in Figure 14.  

 

Figure 14: Transformed oil rate data of well UT-ID 79 fitted to the constant BHP single 
compartment model in Laplace domain. 

The transformed oil rate data in the Laplace space displays a smooth curve even 

though the original data in the time domain shows significant scatter. Therefore, the step 

of smoothing out the data to cancel noise is eliminated, and that is one of the advantages 

of this method. As mentioned earlier, fitting in the Laplace space with a Laplace model is 

superior to the traditional method as it gives a good, and unique fit. The coefficient of 

determination is at 0.9927. The model parameters obtained are as follows: 
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  (3.12) 

With these model parameters, the best-fit is now complete. Next, we would like to 

verify the fit and turn it into something useful. We could justify the results by applying 

the estimated parameters to the analytical or numerical real-time model and comparing 

the computed results to the original data. An analytical inversion of the Laplace solution 

exists for the single compartment model. First, the volumetric oil rate is tested as Figure 6 

plots the original produced oil rate together with the real-time model. 

 

Figure 15: Original production data of well UT-ID 79 compared to the constant BHP 
single compartment model for rate in the time domain 
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As shown in Figure 15, the constant BHP single compartment model fits the 

production rate nicely in the time domain. The large deviation of the data from the model 

at around 2000 to 3000 hours into production, can be explained due to the unstable well 

flowing pressure as observed in Figure 13, which violates the model assumption of 

constant pressure. If computed at a later time, the real-time model allows one to forecast 

the future production rate, thus becoming an excellent tool when making engineering or 

management decision. 

A second way of validating the results is to apply the same estimated parameters 

to the equation of cumulative volume as derived in (2.20). Figure 16 plots the original 

cumulative produced oil data together with in comparison to the real-time model.  
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Figure 16: Cumulative production data of well UT-ID 79 is compared to the results of 
the constant BHP single compartment model for cumulative volume in the 
time domain 

As shown in Figure 16, the current model fits the cumulative production data 

nicely in the time domain. Provided that there is no major change in the production 

operations, we can determine the production life of the well by equating the expression of 

the cumulative volume as found in Equation (2.20) to the estimated total drainage volume 

calculated via the model parameters.  
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4.3.2 Dual Compartment Model 

We now apply the dual compartment model to the previously studied data set 

from well UT ID 79. The production rate data are transformed into Laplace domain and 

fitted to the dual compartment model in Laplace.  

 

Figure 17: Transformed oil rate data of well UT-ID 79 fitted to the dual compartment 
model in Laplace domain 

As shown in Figure 17, the dual compartment model gives a better fit compared 

to the single compartment to the production data in Laplace domain, i.e. the coefficient of 

determination is at 0.9996 which is slightly higher than the value 0.9927 in the single 

compartment case. The best-fit provides us the following four parameters: 
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Interestingly, in this case, without even constraining the value of any of the four 

variables, we are able to obtain unique solutions, hence assuring the accuracy of the 

model parameters. Since the real-time solution for rate cannot be inverted analytically 

from Laplace rate solution, the Gaver-Stehfest algorithm is employed to obtain the 

numerical inversion of the Laplace rate. The production rate data is then compared to the 

numerical approximation of the model obtained via the Gaver-Stehfest method for 14N  

, shown in Figure 18. 
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Figure 18: Original production rate of well UT-ID 79 compared to results from the dual 
compartment model in the time domain. 

As shown in Figure 18, the dual compartment model fits comparably well to the 

produced oil rate as the single compartment model, however comes with slightly higher 

computational cost than the latter.  

Additionally, we may also validate the estimated parameters based on the 

cumulative oil volume. Again, the numerical approximation of the real-time cumulative 

volume can computed via the Gaver-Stehfest algorithm for 14N  . Figure 19 plots the 

original cumulative produced oil data in comparison to the model for cumulative volume 

as found in Equation (2.47). 
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Figure 19: Cumulative oil production data of well UT-ID 79 compared to the results of 
the dual compartment model in the time domain 

As expected, the dual compartment model fits the cumulative produced oil data 

excellently. Since an analytical form of the solutions to this model does not exist in the 

time domain, finding the production life of the well is not as straightforward as with the 

single compartment model but is still possible with some numerical methods. 

The objectives of section 4.3 are two fold. The first is to validate the effectiveness 

of the novel method of history matching. The two exercises above prove that this method 

is not only simple but also effective in history matching flow data in fractured tight 

formations. The advantages of this method over the traditional procedure of history 
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matching in the time domain is its ability to model the reservoir flow using different 

compatible physics models as well as multiple compartment models. And regardless of 

the models we use, the method proves to work well with exceptional accuracy. The 

second objective is to understand the relationship between the computational power, the 

accuracy and the number of unknown variables. Clearly, increasing the number of 

unknown parameters by increasing number of compartments in the model hinders the 

computational speed while matching however compensates for insignificant accuracy 

improvement. In depth analysis of the two models is further discussed in section 4.5 

4.4 CONSTANT VERSUS VARIABLE WELL FLOWING PRESSURE SINGLE COMPARTMENT 

MODELS 

Within this section, we perform history matching exercises using the single 

compartment model, as we just find that single compartment is adequate to handle our 

data set, with two different assumptions: constant, and variable BHP. With the traditional 

method, incorporating the variability of the BHP to the best fit of the produced oil rate 

data in the time domain is almost impossible since the model itself would entail 

numerical approximation of an integral involving the BHP. The novel history matching 

method in the Laplace domain allows one to extract meaningful reservoir parameters 

from the analytical closed-form solution in the Laplace space which includes simple 

expression of the Laplace transform of the BHP, as derived in Equation (2.26).  

4.4.1 Constant BHP Single Compartment Model 

In this section, we apply the constant BHP single compartment model to a 

different well in the data set, namely UT-ID 290. The plot of the production rate and the 
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tubing head pressure is shown in Figure 20 to help readers with understanding this 

particular well behavior.  

 

Figure 20: Variation of oil rate and the tubing-head pressure of well UT-ID 290 
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Figure 21: Variation of the cumulative oil volume produced from well UT-ID 290 

Figures 20 and 21 clearly display two production periods. In the initial period, oil 

is assumed to flow freely for approximately 2000 hours. The second peak takes place 

after about 2000 hours into production after a period of shut-in during which the well’s 

tubing-head pressure and production rate remains zero for several days. During this time, 

reservoir pressure builds up until production resumes. This second production period 

observes relatively constant tubing head pressure because of operational control. In the 

Laplace domain, Equation (2.30a) is used once to model the transformed rate data, and to 

obtain the model reservoir parameters. However, to display the match in the time domain, 

different versions of Equation (2.30b) are used to model different production periods: we 
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must shift the time of the next production period back by the time corresponding to the 

point of shut-in. 

In the first scenario, the transformed production rate data is fitted to the constant 

BHP single compartment model in the Laplace domain. The obtained model parameters 

are as follows: 
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Using analytical real-time model is presented in equation plus the principle of 

time superposition, the original production data is then fitted with the constant BHP 

single compartment model in the time domain, shown in Figure 22. 
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Figure 22: Comparison of fits of original production data of well UT-ID 290 using the 
constant BHP, single compartment model in the time domain. 

Figure 22 shows a fairly good fit of the constant BHP single compartment model 

to the production rate data. The model under-predicts the actual produced oil rate after 

around 6000-7000 hours of production as a result of the adjustment (lowering) of the 

tubing head pressure. Therefore, the model lacks the flexibility to handle fluctuations in 

the well flowing pressure.  

4.4.2 Variable BHP Single Compartment Model 

In the second scenario, we apply the variable BHP single compartment model to 

the same well (UT-ID 290). This model takes into the account the variable data of BHP 
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using the principle of time superposition. Assuming that there is a constant pressure 

difference between the tubing-head pressure and the BHP due to the pressure head of 

fluids in the wellbore, we can estimate the distribution of BHP over time. We also 

assume, though not necessarily accurate that during the shut-in period and right when 

production resumes, BHP equals the initial reservoir pressure.  

In this scenario, both production data and estimated BHP data are transformed 

into the Laplace domain. The obtained model parameters are as follows: 

3
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Using analytical real-time model is presented in equation plus the principle of 

time superposition, the original production data is then fitted with the variable BHP 

single compartment model in the time domain, shown in Figure 23. 
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Figure 23: Comparison between original production data of well UT-ID 290 and the 
fitted variable BHP, single compartment model in the time domain. 

As shown in Figure 23, the variable BHP single compartment model gives a better 

fit to the production data than the constant BHP single compartment model, however 

comes with a much higher computational cost due to the complexity of the numerical 

approximation of convolution. The overestimation of the producing rate at the beginning 

of each production period is the result of unreliable estimation of the reservoir pressure: 

the pressure at time 0t   and the reservoir pressure after the shut-in period are assumed 

to equal the initial pressure reported in the data.  
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4.5 ANALYSIS 

4.5.1 Single versus Dual Compartment Models 

Two models whose Laplace solutions are readily available are studied side-by-

side for well UT-ID 79, a single compartment (flow from matrix to a stimulated reservoir 

volume) model versus a dual compartment (matrix to a stimulated reservoir volume to a 

wellbore) model. One of the immediate applications of fitting the production data to the 

models is to determine the reservoir parameters. Since both models stand on the same 

physic, the ultimate recovery estimated using either the single or the dual compartment 

models should be consistent. The drainage volume can be computed from the single 

compartment model parameters, as derived in equation. This value can be calculated as

3. 19,646 singleEUR E F m  . In the dual compartment model, the drainage volume is 

conveniently one of the model parameters, a , as shown in equation 2.2.4; therefore

319 6  , 50doubleEUR m .The drainage volume estimated from both models are similar, 

proving their robustness.  

Other than the drainage volume, the two models deliver results of different 

reservoir parameters due to the different assumptions: the single focuses on the matrix (as 

the volume of the fracture is insignificant), while the dual provides knowledge on the 

combination of fracture and matrix properties. To ensure solutions uniqueness, as 

discussed in (), the single compartment model is recommended to obtain the matrix 

properties, and then to calculate the estimated ultimate recovery. The dual compartment 

model, if constrained by the drainage volume estimated from the single model, would 
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provide better accuracy and uniqueness to the fracture/matrix reservoir parameters. 

Ultimately, what we want to achieve is estimating the ultimate recovery; hence the single 

compartment model is good enough to perform the task with given its simplicity and 

computational efficiency.  

Theoretically, the early production rate from the fractured wells should display a 

one half-slope line on a log-log plot, which corresponds to the early fracture transient 

flow; however, this period is too short to be discernable, and is often unaccounted for in a 

daily recorded data. Following this fracture-flow period, production rate displays another 

straight line with a one half-slope on a log-log plot, which refers the predominant matrix 

transient flow. The reservoir matrix boundary is reached at the end of the transient flow 

after which production rates decline exponentially. The single compartment model is 

designed to characterize matrix transient flow then boundary-dominated flow regimes 

which sometimes last almost as long as the economic life of the well, hence is adequate 

to analyze flow performance in these wells. 

The variables mk and d represent the characteristic microscopic and macroscopic 

length scale of the matrix, respectively. If we define the matrix time constant as

2
m mdW D  where � �m m t mk cD IP , then mW characterizes flow in the matrix and 

indicates how quickly the parallel fractures communicate to each other. This value can be 

obtained through the single compartment model parameters: 2
m FW  . In fractured tight 

reservoir, we expect a high value of the matrix time constant because of the ultra-low 

matrix permeability in the denominator. For well UT-ID 79, the matrix time constant is 
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calculated to be: 30,6  60m hrW  . Similarly, fk and fx represent the characteristic 

microscopic and macroscopic length scale of the fracture, respectively. If we define the 

fracture time constant as 2
f f fxW D  where � �f f t f

k cD IP , then fW characterizes 

fracture flow and indicates how quickly the tips of each transverse fracture communicate 

to each other. This value can be computed through the dual compartment model 

parameters: .f cW Z and in this particular example, 1.  6f hrW  which is five orders 

smaller than mW . Justifiably, since the fracture permeability is much larger than the 

reservoir matrix permeability, it takes much shorter time for the fracture tips to interact. 

4.5.2 Constant versus Variable Well Flowing Pressure Single Compartment Models 

Two scenarios of the single compartment model with different assumptions on the 

BHP, one with constant BHP and the other with variable BHP, whose Laplace solutions 

are readily available are studied side-by-side for well UT-ID 290. We find that the matrix 

time constant mW , a derivate of the parameter F , is constant in both scenarios and equals

20,967 hr , indicating the robustness of the model. 

The variable BHP single compartment is a more accurate model since it 

incorporates the real-time change of the tubing head pressure, enabling it to predict 

precise drawdown pressure. However, the variable BHP model comes with a 

computational cost due to the complexity of the convolution’s numerical approximation. 

Furthermore, finding the estimated ultimate recovery with the constant BHP model is 

straightforward: 3. 7,660 EUR E F m  . It is a little bit trickier for the variable BHP 
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model since � �. i wf t
EUR K F P P

of
 �  where the initial pressure iP  is given to be

7,088 psi  , and wf t
P

of
is approximated by the last value of the bottom hole pressure , 

which is recorded at 3,810 psi . Hence, the estimated ultimate recovery is computed to be

38,421 m  . Based on the plot of the cumulative volume of oil produced shown in figure 

(), the last value of cumulative produced oil is 37,803 m  , which exceeds the estimated 

drainage volume from the constant BHP model. Again, the variable BHP model proves to 

be more reliable in terms of providing accurate reservoir characteristics.  
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Chapter 5: Conclusions and Future Work  

This chapter summarizes the conclusions of this thesis and presents 

recommendations for future works. This thesis focuses on deriving simple models that 

describe flow in fractured shale oil reservoirs. Previous attempts of using the empirical 

models that are developed based on the decline curve equation presented by Arps 

occasionally do not yield realistic estimated ultimate recovery and physical model 

parameters (Ogunyomi, 2014b). Thus we would like to develop analytical models based 

on the solutions to material balances.  

Two analytical models are proposed: the single compartment and the dual 

compartment. The main difference between the two models is that the pore volume of the 

fractures in the single compartment model is assumed insignificant and pressure drop in 

fracture flow is neglected. Next, the models are employed for the purposes of history 

matching, reservoir characterization and production forecast. The typical approach to this 

reservoir engineering problem often requires one to arrive at a real-time, closed-form 

solution of the models; however, because of the complicated physics of most flow 

problems, that task becomes quite challenging.  

Laplace transformation is one of the powerful methods to solve the differential 

equations of the flow problems because of its simplicity and flexibility to couple with 

almost all of the boundary conditions that exist in petroleum engineering. However the 

analytical inversion of the solutions from Laplace space to real time is complicated and 

often times unavailable, i.e., the dual compartment model. An alternative is to numerical 
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invert the Laplace solutions, however such numerical solutions have no insight in 

constructing meaningful models.   

The novelty of this thesis involves proving that history matching of data to flow 

models in the Laplace space is beneficial, especially for tight fractured formations, as 

shown in our investigation. Two main results are observed: 

(1) Both models objectively characterize the behavior of the theoretical data 

(from numerical simulation) as well as the field data (from the liquid-rich 

shale play in North America) while yielding realistic values of the 

expected ultimate recovery. The dual compartment model aims at 

depicting two timescales; one identifies early fracture flow, the other 

features matrix flow. However in reality, it is difficult to capture the full 

behavior with the field data; even if it exists, the fracture flow is too short-

lived and the data is too scattered to be distinguishable while fitting. 

Fortunately, the single compartment model is proven to be effective for 

most field applications as its performance is as good as the dual 

compartment model.  

(2) Since the solutions to differential equations are presented in the Laplace 

space, modeling of complicated flow problems become feasible, for 

instance, modeling multi-compartmental flow, and variable reservoir 

conditions etc. Particularly in this work, we had shown that fitting data to 

the dual compartment model is possible without a real-time analytical 

inversion. Additionally, we are able to model variable bottom hole 
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pressure without introducing inaccuracies introduced by numerical 

integration of convolution. 

(3) Comparison with the models in the Laplace space requires an algorithm to 

transform data from the time domain to the Laplace domain. In this work, the 

method proposed by Onur and Reynolds (1988) proves to be accurate and 

effective in handling the transformation of discrete data. The algebraic curve-

fitting procedure in the Laplace domain is shown in detail in this thesis. The 

smoothing nature of the Laplace transform enables one to eliminate data noise, 

reduce the computing time while objectively guaranteeing a best-fit. 

This thesis work proves the effectiveness of handling data and obtaining 

useful parameters from data fitting in the Laplace space for engineering applications. The 

development of a reservoir simulation using a finite difference method that relies on 

discretizing the Laplace solution to the material balance equation on a grid is a frontier 

for the next generation of engineers. The new reservoir simulation tool eliminates the 

time dependency of the pressure equation, and thus the time discretization. As a result, 

timestep size does not compromise stability and accuracy unlike with the conventional 

reservoir simulation.  
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Appendices 

APPENDIX A: SELECTED PROPERTIES OF THE LAPLACE TRANSFORM 

This section of the thesis reviews some of the interesting properties of the Laplace 

Transform that readers might find useful to understand the derivations in this thesis.  

A.1 Laplace Transform of a Time Derivative 

Laplace transformation can be applied for any order of time derivative; however 

for the scope of this study, we are only interested in the first-order derivative. Let ( )f t  

and its first derivative  '( )f t  be continuous for all real positive values of t, and of 

exponential order then: 

ˆ{ '( )} s { ( )} (0) s (s) (0) �  �f t f t f f f   (A.1) 

To prove this, we start with the definition of Laplace transform then perform 

integration by parts: 
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A.2 Laplace Transform of an Integral 

Let ( )f t be a piecewise continuous function of exponential order s0 on any finite 

interval in the range of real non-negative values of t. If '( )f t  is at least piecewise 

continuous on all real positive values of t then: 

0

ˆ ( )( )
t f sf d

s
W W

½ °  ® ¾
°¯ ¿

³  for 0s s!  (A.3) 

We prove it by using integration by parts again:  
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The first term in the racket in the last equation goes to zero as the exponential 

term goes to zero faster than ( )f W .  



 72 

A.3 Superposition and Convolution 

The principle of superposition is one of the most powerful tools in writing 

solutions to complex reservoir fluid flow problems without explicitly solving the 

differential equation involved. Mathematically, superposition states that any sum of 

individual solutions of a linear differential equation of any order is also a solution of the 

equation (Mian, 1992).  

The diffusivity equation, a second-order differential equation, has been widely 

used in petroleum engineering to describe the fluid flow in porous media. The principle 

of superposition is valid since the diffusivity equation can be linearized because of the 

assumptions of small, constant fluid compressibility and small pressure gradient. 

Particularly, during a drawdown test, a well will be produced at different steady rates in 

different periods. The resulting pressure response of the well is the sum of the response 

from that well due to the original rate throughout the test and the responses from the 

superposed wells producing at the differential rates with respect to the original rate, from 

the time of rate switch until the end of the test (Satter, 2007). Mathematically speaking, 

superposition involves the operations of sum.  

In this section, we will use the concept of superposition to understand 

convolution. Convolution can be regarded as the integral form of superposition. Let ( )f t  

and ( )g t  be continuous or piece-wise continuous function of t , then the convolution 

integral of  ( )f t  and ( )g t  is also a function of t and is defined by the following relation: 

0

( ) ( )* ( ) ( ) ( )
t

t f t g t f t g d\ W W W  �³  (A.5) 
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where * is the convolution product, ( )t\ is the convolution of ( )f t  and ( )f t , ( )g t is the 

unit impulse response or the influence function, and ( )f t is the forcing function. For the 

purpose of reservoir engineering, for instance, ( )f t is the known input of production rate, 

( )g t  is the reservoir model, then the desired output ( )t\ is the pressure response. In that 

sense, convolution replaces the summation in superposition by an integral (Kuchuk 

2010).  

In Laplace domain, the integral convolution becomes a multiplication: 

ˆ ˆ{ ( )} { ( )* ( )} ( ) ( )t f t g t f s g s\     (A.6) 

where ˆ ( )f s and ˆ( )g s are the Laplace Transform of ( )f t and ( )g t respectively. It is often 

much easier to perform the convolution in the Laplace domain than when inverting back 

to the time domain. The application of the Laplace of the convolution integral will be 

examined closely in Chapter 3 of this thesis. 

A.4 Dimensional Analysis  

Laplace Transformation is the mapping of a function from the time domain to the 

frequency domain. For the exponential function 
tse�

 to exist, ts  must be dimensionless; 

therefore s carries the unit of the inverse of time. Since the Laplace Transform of the 

function ( )f t  involves the integration of ( )f t itself with respect to time, the Laplace 

Transform of the function ( )f t has the dimension of ( )f t  multiplied by time. The 

derivative of function ( )f t  has the dimension of ( )f t divided by time, thus the Laplace 

Transform of '( )f t should have the dimension of ( )f t . Similarly, the integral of ( )f t  has 
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the dimension of ( )f t multiplying by time, hence the Laplace Transform of the integral

³ ( )f t dt should have the dimension of ( )f t multiplying by the square of time. In 

conclusion, since the Laplace transform involves integration of an input function with 

respect to time, the unit of the resulting transform is that of the input function multiplying 

by time. 

A.5 Limits of the Laplace Transform Inversion 

Our works strongly involve the Laplace Transform, and it becomes increasingly 

important to study its limit. As it turns out, the theorems involving the long-time limit of 

the Laplace Transform become powerful tools in determining the original oil in place. 

The early-time and late-time behaviors are studied below: 

A.5.1 Early-Time Behavior of the Laplace Transform Inversion 

Let ( )f t  be a function of t then the early-time behavior of ( )f t can be 

determined through its Laplace Transform’s limit as s approaches infinity (Archer, 2000): 

0
lim ( ) li { ( )}m
t s

tt s ff
o of

   (A.7) 

A.5.2 Late-Time Behavior of Laplace Transform Inversion  

This is also known as the Final Value Theorem in mathematical analysis. Let ( )f t  

be a function of t then the late-time behavior of ( )f t can be determined through its 

Laplace Transform’s limit as s approaches zero (Archer): 

0
lim ( ) lim { ( )}
t s

ff t s t
of o

   (A.8) 
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We should always check for unit consistency. The right side of the equation 

involves the product of s, of unit of time-1, and { ( )}f t , of unit of ( )f t -time. This is 

consistent with the units of the left side. 
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APPENDIX B: LIMITS OF THE MODIFIED BESSEL FUNCTIONS  

In this thesis, we are not only concerned with modelling linear flow of fluid in 

hydraulically fractured, tight formation reservoirs, but we also attempt to model radial 

flow into the wellbore. The analytical solution to the radial diffusivity equation involves 

Bessel functions. We can find many approximate solutions to this problem in the 

literature, each often for a certain flow regime. We want to construct a simple solution 

that models not only infinite acting flow, but also boundary-dominated flow around the 

wellbore.  First of all, it is important to study the limits of the Bessel functions before 

delving into the derivation of the model in Appendix C. 

The upper limits of the modified Bessel functions of the first kind of order zero 

and one are given by: 

0 1lim ( ) lim ( )
2

x

x x

eI x I x
xSof of

  (B.1) 

The upper limits of the modified Bessel functions of the second kind of order zero 

and one are given by: 

0 1lim ( ) lim ( )
2
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x x
K x K x e
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The lower limits of the modified Bessel functions of the first kind of order zero 

and one are given by: 
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The lower limits of the modified Bessel functions of the second kind of order zero 

and one are given by: 
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APPENDIX C: THE GAVER-STEHFEST ALGORITHM FOR NUMERICAL INVERSION OF THE 

LAPLACE TRANSFORM 

Laplace transformation is a useful tool that helps us solve any differential 

equation by transforming the equation and its initial or boundary values from the time 

domain into the Laplace domain. After solving the problem in the Laplace domain, we 

seek the inverse of the Laplace solution, thus solving the original initial value problem. 

The inverse Laplace Transform, also known as the real-time solution, can be found 

through analytical integration for the simple cases.  

However, solving the differential equations that model fluid flow in porous media 

can be cumbersome, and arriving at a closed-form expression of the solutions can be 

rather challenging. Therefore, many researchers chose to direct their focus on numerical 

methods for solving more complex problems. There are several numerical algorithms for 

the inversion of the Laplace Transform in literature, and each method has its own 

applications and suitable types of functions. In the context of reservoir engineering, 

models are often only known in the Laplace domain for s , the Laplace argument, being a 

real number ( Josso and Larsen, 2012). Therefore, the main criteria in selecting a 

numerical inversion algorithm are the inability to express models in the complex plane, 

and the stability as well as the accuracy. The Gaver-Stehfest method, which was 

developed in the late 1960’s satisfies these criteria, therefore is one of the most widely 

used in reservoir engineering (Josso and Larsen, 2012). For these same reasons, we are 

going to employ the Gaver-Stehfest algorithm in this thesis.  
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C.1 The Gaver-Stehfest Algorithm 

As mentioned earlier, for the Laplace solutions of most engineering problems to 

be useful in mathematical analysis, they must be inverted to the real-time domain via 

analytical inversion or numerical methods. The analytical inversion of most solutions is 

impossible due to their mathematical complexity. The Gaver-Stehfest algorithm provides 

a formula to numerically invert the Laplace Transform (Stehfest 1970). Assume that 

( ) : (0, )f t Rf is a locally integrable function such that its Laplace Transform 

0

 ( ) ( )stF s e f t dt
f

� ³  is finite for all  0s ! and that ( )f t  has no discontinuities or rapid 

oscillations, then ( )f t can be approximated by a sequence of functions of its forward 

Laplace Transform using the formula (Kuznetsov 2013): 

ln 21
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n s
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f t s K F ns
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where the Laplace variable s  is related to time t  by the relation ln 2s
t
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coefficients are given by the following formulas 
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where N , the number of expansion terms, is an even integer (Chang 1989). The 

accuracy of the numerical inversion can be improved by increasing the value of N . 

However, the number of significant figures that the computational machine is able to hold 
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sets the upper limit of N for maximum accuracy (Moench et al. 1981). Moench and 

Otaga was able to obtain accurate results by using 18N   for double precision. Table 4 

lists the coefficients for the Gaver-Stehfest algorithm up to 18N  . N
iK  denotes the 

Gaver-Stehfest coefficient of the thi  term in the N  terms- expansion ( )i Nd
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  2
iK  

 4
iK  

 6
iK  

 8
iK  

 10
iK  

 12
iK  

 14
iK  

 16
iK  

 18
iK  

1
NK  

  2  -2   1  -3.333333E-01   8.333333E-02  -1.6666666E-02   2.77777777777E-03  -3.968253968253968E-04   4.960317460317460E-05 

2
NK  

 -2   26  -49   4.833333E+01  -3.208333E+01   1.6016666E+01  -6.40277777777E+00   2.133730158730159E+00  -6.095734126984128E-01 

3
NK  

 ---  -48   366  -9.060000E+02   1.279000E+03  -1.2470000E+03   9.24050000000E+02  -5.510166666666667E+02   2.745940476190476E+02 

4
NK  

 ---   24  -858   5.464666E+03  -1.562366E+04   2.7554333E+04  -3.45979277777E+04   3.350016111111111E+04  -2.630695674603174E+04 

5
NK  

 ---  ---   810  -1.437666E+04   8.424416E+04  -2.6328083E+05   5.40321111111E+05  -8.126651111111111E+05   9.572572013888889E+05 

6
NK  

 ---  ---  -270   1.873000E+04  -2.369575E+05   1.3241387E+06  -4.39834636666E+06   1.007618376666667E+07  -1.735869484583333E+07 

7
NK  

 ---  ---  ---  -1.194666E+04   3.759116E+05  -3.8917055E+06   2.10875917777E+07  -7.324138297777778E+07   1.824212226472222E+08 

8
NK  

 ---  ---  ---   2.986666E+03  -3.400716E+05   7.0532863E+06  -6.39449130444E+07   3.390596320730159E+08  -1.218533288309127E+09 

9
NK  

 ---  ---  ---  ---   1.640625E+05  -8.0053365E+06   1.27597579550E+08  -1.052539536278571E+09   5.491680025283035E+09 

10
NK  

 ---  ---  ---  ---  -3.281250E+04   5.5528305E+06  -1.70137188083E+08   2.259013328583333E+09  -1.736213111520684E+10 

11
NK  

 ---  ---  ---  ---  ---  -2.1555072E+06   1.50327467033E+08  -3.399701984433333E+09   3.945509690352738E+10 

12
NK  

 ---  ---  ---  ---  ---   3.5925120E+05  -8.45921615000E+07   3.582450461700000E+09  -6.526651698517500E+10 
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13
NK  

 ---  ---  ---  ---  ---  ---   2.74788847666E+07  -2.591494081366667E+09   7.873006832822083E+10 

14
NK  

 ---  ---  ---  ---  ---  ---  -3.92555496666E+06   1.227049828766667E+09  -6.855644419612083E+10 

15
NK  

 ---  ---  ---  ---  ---  ---  ---  -3.427345554285714E+08   4.198434347505357E+10 

16
NK  

 ---  ---  ---  ---  ---  ---  ---   4.284181942857143E+07  -1.716093471183929E+10 

17
NK  

 ---  ---  ---  ---  ---  ---  ---  ---   4.204550039102679E+09 

18
NK  

 ---  ---  ---  ---  ---  ---  ---  ---  -4.671722265669643E+08 

Table 3: Coefficients for the Gaver-Stehfest algorithm 



 83 

 
One of the advantages of the Gaver-Stehfest algorithm is that one is able to obtain 

a simple, closed-form approximate solution by using a small value of N . The extent of 

the accuracy of such solution depends on the smoothness of the function of interest. With 

table 4, users simply expand the sum of Equation (C.1) and plug in the appropriate 

coefficients. 

C.2 Test Function 

The purpose of this section is to check the validity of the Gaver-Stehfest 

algorithm and to decide the value of N  to use for maximum accuracy of the numerical 

inversion, at least for the computer in use. The test function involves the dimensionless 

solution to the constant BHP single compartment linear flow model derived in section 

2.1. Thus, it has the following forms in the Laplace and the time domains, respectively:  

� �
2 2(2 1)

4

1

1( ) tanh

( ) 2
n t

n

F s s
s

f t e
S� �f

 

 

 

¦
 (C.3) 

Function ( )f t is continuous and non-oscillatory on the interval (0, )f , hence 

satisfying the Gaver-Stehfest’s functional requirement. Figure 24 depicts the comparison 

between the original function ( )f t and the numerical inversion of the Laplace transform 

( )F s  calculated for various values of N .  
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Figure 24: Original test function compared to the numerical inversion of   computed for 
several values of time.   

Since the numerically inverted solutions calculated for various values of N  give 

good fits to the original function, we can conclude that the Gaver-Stehfest algorithm is 

valid for the single compartment model. The double compartment model is an extension 

of the latter: each timescale behaves as a single compartment; therefore we may assume 

that the Gaver-Stehfest algorithm has the capability to accurately depict the numerical 

inversion of the Laplace solution of the double compartment model. For each value of N

, the time it takes to execute the numerical inversion and the corresponding coefficient of 

determination, denoted 2R , are recorded and listed in Table 4. For a least number of N , 
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i.e., 2N  , the numerical Laplace inversion is least accurate, however is able to give a 

fair approximation of the original function. 2R values are recorded with a precision of ten 

decimal digits. 

N   Time (sec) 2R  

2 0.067 0.9998328680 

8 0.179 0.9999999039 

14 0.357 1.0000000000 

18 0.535 0.9999999999 

22 0.732 0.9999687901 

Table 4: Recorded time and 2R  for runs with different values of N  

We are able to obtain accurate results with 14N   for our computational 

machine. Evidently, the more expansion terms in the approximation, the more accurate 

the approximation is, and the longer it takes to compute. However, increasing of N

above 14 yields a lower value of 2R  because N exceeds of the number of decimal digits 

of precision, i.e., double precision is 16 (Kuhlman 2012).    
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APPENDIX D: A SEMI-ANALYTICAL SOLUTION TO THE RADIAL DIFFUSIVITY EQUATION 

In this section, we are going to consider radial flow toward the wellbore. The 

fundamental theory on this type of flow is composed of the solutions of the equation:  

2

2

1 1P P P
r r r tD

w w w
�  

w w w
 (D.1) 

Two sets of solutions of this equation are developed, one for “the constant 

terminal pressure case” and the other for “the constant terminal rate case” (Everdingen 

1949). Each case is then subdivided into either finite or infinite reservoir system. In this 

appendix, we consider finding an analytical solution to the problem of radial flow with 

constant terminal pressure in a finite reservoir. But first of all, it is important to present 

the previously published analytical solution of this radial diffusivity equation. Matthews 

and Russell (1967) considered a vertical well controlled at a constant bottom hole 

pressure in a bounded reservoir, and have presented the following solution: 
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where 0J , 1J , 0Y , 1Y are the Bessel functions of the first kind of order zero then one, Bessel 

functions of the second kind of order zero then one, respectively, and nD are the roots of 

the equation: 

1 1 1 1( ) ( ) ( ) ( ) 0n n n nJ R Y J Y RD D D D�   (D.3) 
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As we can see, the well-known analytical solution of the radial diffusivity 

equation involves functions of roots of more equations, hence is very complicated. To 

convert this solution into a tool accessible to engineering and applications, it is necessary 

to resort to numerical approximation. Different flow regimes would employ different 

assumptions to lead to appropriate mathematical approximations to the solutions. Peters 

(2012) compiled a comprehensive list of these solutions, among them are pressure 

solutions at the wellbore for late transient flow and pseudo steady state flow.  

In this section considers finding an analytical solution to the problem of radial 

flow with constant terminal pressure in a finite reservoir. Our ideal system also consists 

of a single vertical well located at the center of that cylindrical, homogeneous an 

isotropic reservoir. The radial diffusivity equation to be solved is given by: 

2

2

1 tcP P P
r r r k t

IPw w w
�  

w w w
 (D.4) 

A second-order partial differential equation is typically defined by an initial 

condition and two boundary conditions. We specify that pressure is initially uniform 

throughout the whole reservoir. Such initial condition is described by the equation: 

( ,0) iP r P  (D.5) 

We then require the boundary conditions for the internal boundary as well as the 

external boundary. In our particular problem, we specify constant bottom hole pressure as 

the internal boundary. This gives rise to the following Dirichlet boundary condition: 

wfP P at wr r  (D.6) 
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As we can see, Equation (D.6) applies to a well with a finite wellbore radius.  

For our bounded reservoir, there is no flow across the external boundary. This 

gives rise to the following Neumann boundary condition: 

0P
r

w
 

w
at er r  (D.7) 

The full analytical solution of the above initial-boundary value problem is also the 

solution to the radial diffusivity equation for the late transient flow period followed by 

the pseudo steady state flow period. If the dimensionless variables are defined as follows: 
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then the dimensionless form of the initial-value problem becomes: 
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Using Laplace Transform as method of solving the partial differential equation, 

the dimensionless pressure solution in Laplace domain is given by:  
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where Ds  is the dimensionless Laplace variable and is related to s  by the relation: 

2
t w

D
c rs s
k

IP
 .We then obtain the dimensionless volumetric rate solution in the Laplace 

domain by evaluating the first-order spatial derivative of the Laplace pressure at the 

wellbore, i.e., 
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Appendix B presents the numerical approximation of the modified Bessel 

functions. We will approximate the modified Bessel functions in Equation (D.11) with 

their lower limits The Bessel functions’ limit as the Laplace variable goes to zero 

corresponds to their late time behavior. An approximation to the dimensionless 

volumetric rate is thus given by: 
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Figure 25 depicts the comparison between the exact Laplace solution, Equation 

(D.11), and its approximation, Equation (D.12), each calculated for several values of R . 
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Figure 25: The exact Laplace solutions compared to its Laplace approximations 

Figure shows that the approximate Laplace solution that we intend to use to 

replace the exact Laplace solution (which involves Bessel functions) is accurate enough 

with coefficients of determination of 0.9938, 0.9958,and 0.9957  for 1 3R E , 1 4E  and 

1 5E  respectively. However, in order for Equation (D.12) to be useful in our engineering 

applications, we need to invert it from the Laplace domain back to the time domain.. 

Next, we employ the Gaver-Stehfest algorithm for numerical inversion of the Laplace 

Transform, which was introduced in Appendix C, to obtain a closed-form and simple 

enough solution in the time space. The real-time solution can be written as: 
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The simplest form, but also the least accurate approximation, can be obtained with 

the least number of terms, i.e., 2N  . Using the Gaver-Stehfest coefficients for 2N   

listed in Table 5, one can arrive at the approximated time solution of the dimensionless 

volumetric rate as: 
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Similar expressions but with more expansion terms can be obtained via similar 

methods. Based on Equation (D.14), the behavior of the dimensionless rate versus the 

dimensionless time is governed by R , the ratio of reservoir radius to wellbore radius. The 

dimensional rate, expressed in terms of its non-dimensional form, can be written as: 

q = 2 kh(Pi  Pwf )
 

qD (D.15) 

Substituting Dq by (D.14) and Dt  by (D.8) into Equation (D.15), we obtain the 

expression of the approximated volumetric rate at 2N   as:  
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Next, to validate the proposed semi-analytical radial flow model, we reconstruct a 

vertical well centered in a cylindrical reservoir through numerical simulation then 

compare the simulation results with the derived equation for the model. The data 

produces in this work was generated by CMG simulator from Computer Modeling Group 

Inc. The cylindrical drainage area is divided into eleven concentric cylinder with 

increasing radius from the block containing the vertical well until the reservoir boundary. 

The reservoir model parameters are shown in Table 5. The schematics of the reservoir 

simulation model are shown in Figures 26 and 27.  

Reservoir radius 1500 ft 

Wellbore radius 0.25 ft 

Reservoir thickness 15.2 ft 

Initial reservoir pressure 3626 psi 

Bottom hole pressure 1450 psi 

Porosity 0.065 

Permeability 10 md 

Table 5: Reservoir model specification for the validation of the radial flow model 
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Figure 26: The circular cross section in the z plane of the cylindrical reservoir 
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Figure 27: The three-dimensional view of the cylindrical reservoir 

Figure 28 depicts the comparison between the simulation results and the semi-

analytical models calculated at several values of N   
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Figure 28: Comparison between the Gaver-Stehfest solutions calculated at several 
values of time  with the simulation results 

The simulation results and our model display similar flow characteristics 

including the radial transient flow regime followed by the pseudo-steady state flow when 

the effect of the circular reservoir boundary is felt. The Gaver-Stehfest solution 

calculated for 14N   should provide the most accurate approximation possible of the 

model true solution, whereas that for 2N   is the least accurate however offers the  form 

of a semi-analytical solution. Indeed, as shown in Figure 25, the numerical solution 

computed at 14N   proves to fit the simulation data excellently. On the other hand, the 

semi-analytical solution at 2N  does not agree with the part of the simulation data that 



 96 

corresponds to the reservoir boundary-dominated flow. The lowest value of expansion 

terms that provides an acceptable fit is 6N  . Depending on the reservoir characteristics, 

the number of expansion terms that allows us to obtain an approximation close enough to 

the accurate solution varies from case to case. 
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Nomenclature 

ey  : Distance between two parallel fractures 

d  : Half-distance between two parallel fractures 

h  : Fracture thickness or pay zone, assuming a fully penetrated fracture 

fx  : Fracture half-length 

fW   : Fracture time constant 

mW   : Matrix time constant 

U   : Density 

u   : Darcy velocity 

oS   : Oil saturation 

oc   : Oil compressibility 

� �t mc   : Matrix total compressibility 

 , mI I   : Matrix porosity 

mk   : Matrix permeability 

mP   : Pressure in the matrix 

mD   : Matrix diffusivity coefficient  

iP   : Initial reservoir pressure 

fP   : Average pressure in the fracture 

DmP   : Dimensionless pressure in the matrix 
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D̂mP   : Laplace transform of the dimensionless pressure in the matrix 

Dy   : Dimensionless distance in the y-direction 

Dt   : Dimensionless time 

t   : Time variable 

Ds   : Dimensionless Laplace variable 

s   : Laplace variable 

fA   : x-y cross sectional area of the fracture  

q̂   : Laplace of the flow rate into one pair of fractures 

q   : Flow rate into one pair of fractures 

Tq   : Total flow rate into 1N �  pairs of fractures 

TQ   : Total cumulative produced volume 

E   : Parameter #1 of the single compartment model 

F   : Parameter #2 of the single compartment model 

EUR   : Expected ultimate recovery 

L   : Distance between two fracture faces 

fy   : Thickness of the fracture 

wfP   : Well flowing pressure 

fP   : Pressure in the fracture 

DfP   : Dimensionless pressure in the fracture 
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D̂fP   : Laplace transform of dimensionless pressure in the fracture 

Dx   : Dimensionless distance in the x-direction 

� �t f
c   : Fracture total compressibility 

fI   : Fracture porosity 

fk   : Fracture permeability 

fD   : Fracture diffusivity coefficient  

Z   : Storativity ratio of the fracture and parameter #1 of the dual compartment model  

O   : Interporosity flow parameter and parameter #2 of the dual compartment model 

fq   : Flow rate into one fracture 

fTq   : Total flow rate into N  fractures 

ˆ fq   : Laplace transform of the flow rate into one fracture 

ˆ fTq   : Laplace transform of the total flow rate into N  fractures 

rA   :  y-z cross sectional area of the fracture 

a   : Parameter #3 of the dual compartment model 

c   : Parameter #4 of the dual compartment model 
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