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Abstract 

 

Implementation of Verification Methodologies 

 

Sharukh Shahajahan Shaikh, MSE 

The University of Texas at Austin, 2018 

 

Supervisor:  Jacob A. Abraham 

 

The increasing complexity of design elevates the importance of verification. This 

report explores different verification methodologies. The second chapter emphasizes the 

importance of testability and establishes the synthesis and DFT insertion flow using an SoC 

with ARM-Amber core as an example. Also, formal equivalence check is performed 

between the golden model, that is, RTL against its netlist. The third chapter delineates the 

design and formal verification of an Arbiter with APB slave configuration port. The design 

is extensively verified by writing SystemVerilog properties and we learn that the 

verification is only as good as the properties. Fourth chapter further explores formal 

verification with a different approach. The implemented x86 execution unit is formally 

verified by developing the its reference model and writing simple equality assertion checks. 

This approach exploits both, completeness of formal as well as includes the UVM reference 

model which reduces the long list of properties required for formal. The last chapter 

provides an approach to identify the critical registers in design. The critical flops in the 

design as a subset of all the registers which may have the most effect on the control flow 

of a module. This finds application in selecting the relevant auto-generated properties. 
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Chapter 1: Introduction 

A consequence of increasing size of Integrated Circuits (ICs) is the explosive 

growth in the complexity of verification, which has been the main bottleneck in the IC 

design cycle. More than 70% of development time is now required for verification [1], and 

this portion is still growing. Therefore, effective verification methodologies and techniques 

are essential. 

The report explores different verification methodologies. The next chapter 

emphasizes the importance of testability and establishes the synthesis and DFT insertion 

flow. The techniques to fix DFT violations are discussed and formal equivalence check is 

performed between the RTL and the synthesized netlist. The design example used is an 

SoC with the ARM-Amber core [9], which is synthesized with DFT insertion using 

Cadence RTL Compiler and equivalence checking is performed using Cadence Conformal 

LEC. 

The third chapter discusses the architecture of a developed DUT, an Arbiter with 

the APB slave configuration port and its formal verification by writing SystemVerilog 

assertions, assumptions, and cover properties. The design is extensively verified, and we 

learn that the verification is only as exhaustive as the properties specified. The formal 

verification has been performed with Cadence Jaspergold and the properties are proven to 

an infinite bound. 

Following this, the fourth chapter builds on the exploration of formal verification 

with an alternate approach. The detailed microarchitecture of a performance-optimized 

implementation of an x86 execution unit is discussed and the design is formally verified 

by developing a reference model and writing simple equality assertion checks. The 

reference model, which is similar to the scoreboard in UVM, reduces the long list of 
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properties required by conventional formal verification. We are not restricted by the 

constraint that verification is as exhaustive as the set of properties we write in formal 

verification. Also, we need not worry about the coverage like in UVM, where it is not 

possible to cover all the test patterns via random test pattern generation. Such verification 

techniques can be exploited for DUTs such as execution units, decoders, floating point 

processors, DSP engines etc., for which it is simple to develop a reference model and the 

design is mostly combinational. Also, there is an additional advantage if the reference 

model and the DUT are designed by different designers or they are designed using different 

implementation styles, such as, Structural DUT vs Behavioral scoreboard or behavioral 

DUT vs RTL generated by High Level Synthesis (HLS). 

The last chapter provides an approach to identify the critical registers in a design 

which have maximum impact on its control flow. The criticality value ‘C’ computed based 

on the several features is associated with each register in the design. The higher the value 

of ‘C’, the more crucial is the register. To find the criticality of the flops, feature extraction 

is first performed on the extracted timing paths of several designs and then a simple 

Artificial Neural Network (ANN) is employed to train and test on the data set [25]. 

Identifying critical registers finds application in fault tolerance.  
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Chapter 2: DFT insertion and Logic equivalence checking 

INTRODUCTION 

The testability of the design is of major concern to industry, and the DFT techniques 

provide support to test the fabricated chip comprehensively for quality and coverage [2]. 

The RTL of the digital block is generally described in the Hardware Description Language 

(HDL) such as Verilog. Once the design is verified with various verification 

methodologies, it is synthesized to netlist by synthesis tools which transform it for 

optimizing logic, area, power or adding DFT structures. Further, the physical design tool 

may significantly modify the netlist and through every step the behavior of the original 

RTL must be intact, and this is ensured by logic equivalence checking (LEC). In reality, it 

is a common practice to make manual edits to the netlist for minor changes known as 

Engineering Change Order [26], abbreviated as ECO. Therefore, it is a crucial verification 

step to perform logical equivalence checking of the netlist termed as a revised model with 

the original RTL of the design termed as the golden reference model.  

In this section, an example SoC, the ARM-Amber core is synthesized using 

Cadence RTL Compiler tool with DFT insertion and LEC is performed with Cadence 

Conformal LEC tool between the synthesized netlist and the RTL. 
 

SYNTHESIS WITH DFT INSERTION 

 

Design setup 

 

The process of scan insertion replaces the normal flops with special scan flops 

which allow us to observe and control the state of the design through the dedicated test 
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ports. With the scan structure support, the Automatic Test Pattern Generator (ATPG) tool 

such as Cadence Encounter test can generate compact tests for better fault coverage during 

scan simulation tests. 

1. For synthesis setup in Cadence RTL compiler (RC) [3], we need to specify the 

target library paths and read the libraries to be used in synthesis. 

set_attribute lib_search_path Tcl_list 

set_attribute library library_list 

2. After this, the HDL files of the SoC with ARM-Amber core are read, and the design 

is elaborated in RC. During this step, an RTL sanity check is performed for its 

feasibility to be synthesized. 

set_attribute hdl_search_path Tcl_list 

read_hdl hdl_files ... 

elaborate ... 

3. After elaboration, the timing constraints need to be read; these provide the 

input/output delays, clock period, false paths, functional modes etc. in Synopsys 

Design Constraint (SDC) format. 
 

DFT Rule Checker setup 

 

After specifying the design constraints, we need to setup the tool to run the DFT 

rule checker [4].  

1. Select the scan style as shown below. The muxed scan style is the most popular 

option and it requires a scan enable pin as the mux select and the scan-in and scan-

out ports as shown in the Figure 1. 

set_attribute dft_scan_style muxed_scan 
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Figure 1: Muxed scan style [4] 

2. To control the testable logic in the design, the test-mode signals are constrained 

during scan as below. 

define_dft test_mode [-name test_signal] -active {low | high} 

For instance, to make the muxed clock signal controllable, the input ‘TM’ is defined 

as an active high test-mode control signal, so that primary input clock ‘clk’ is 

propagated to the flops instead of divided clock as shown in the Figure 2. 

define_dft test_mode -active high TM 
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Figure 2: Controllable muxed clock 

3. In the case of clock gating, during scan the ‘testmode’ signal needs to be active 

high, so that, ‘gclk’ is controllable. This ensures ‘clk2’ is passed to flops ‘r2’ and 

‘r3’ as shown in the Figure 3. 

define_dft test_mode -active high testmode 

 

Figure 3: Controllable gated clock 

4. All the test clocks in design need to be specified along with their period and phase 

relation. 

define_dft test_clock -period <>... 

5. The RTL elaboration will transform RTL to generic logic which may have “don’t 

care” logic which will hinder the DFT rule checker when analyzing the DFT 
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structure, hence, logic optimization is performed with the following synthesis 

options.  

synthesize -to_generic 

synthesize -to_mapped 

Run DFT Rule Checker 

The check verifies the feasibility of scan insertion by identifying uncontrollable 

clocks and resets. The flops that fail the check will not be part of scan chain and their 

scannable status can be reported. Also, at this stage, DFT rule violations can be reported. 

 

check_dft_rules 

report dft_registers 

report dft_violations 
 

Fix DFT Violations 

We need to fix the reported DFT clock rule violations and asynchronous set and 

reset violations in the design. For instance, the reset/set pins of the flops A to D in the 

Figure 4 are not controllable as the reset is internally generated [4]. These violations can 

be fixed as shown below by the insertion of the three separate test points as shown in the 

Figure 5. The signal TM is scan mode signal which is set to the value ‘1’ during scan 

testing. 

define_dft test_mode -name TM1 -active high TM 

fix_dft_violations -async_set -async_reset -test_control TM1 
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Figure 4: Circuit with asynchronous reset violations 

 

Figure 5: Circuit with fixed asynchronous reset violations 

In the design, for optimizing the dynamic power, clock gating is auto-inserted by 

the synthesis tool, and uncontrollable clock gates may lead to the DFT rule violations. The 

following commands fixes these violations by inserting the appropriate test points as shown 

in Figures 6 and 7. The signal TM is scan mode signal which is set to the value ‘1’ during 

scan testing.  
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define_dft test_mode -name tm -active high TM 

fix_dft_violations -clock -test_control tm -test_clock_pin clk2 

 

Figure 6: Circuit with clock gate violation 

 

Figure 7: Circuit with fixed clock gate violation 

DFT Configuration and scan structure setup 

The details of the scan structure, such as, the number of scan chains, associated test 

ports, nature of chains and their scan chain lengths are specified [4]. 

1. To set the minimum number of scan chains: 

set_attribute dft_min_number_of_scan_chains integer top_design 

2. To set the maximum number of scan chains: 

set_attribute dft_max_length_of_scan_chains integer top_design 

3. If the posedge and negedge flops can be mixed in the same scan chains: 
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set_attribute dft_mix_clock_edges_in_scan_chains {true | false} top_design 

4. On defining the scan chains, the DFT engine will connect the scan flops to the 

specific test in and out ports. If the number of scan chains defined is lower than the 

global minimum number of chains, then the ports are auto-cretaed to accommodate 

the other chains. 

define_dft scan_chain [-name name]-sdi s_in][-sdo s_out][-create_ports] 

5. The DFT setup and the scan chains can be reported as below: 

report dft_chains 

report dft_setup 

6. Once the scan configuration is complete, the scan chains can be connected, and the 

final netlist can be dumped with write hdl command. 

connect_scan_chains [-auto_create_chains] 

LOGIC EQUIVALENCE CHECKING 

The netlist of the DFT inserted SoC with amber core serves as the revised design 

and the RTL as the golden model. Conformal has two modes of operation SETUP and 

LEC, meant for environment setup and running equivalence check respectively [5]. The 

flow is elaborate below. 

Setup phase 

The libraries used for the synthesis of the design, the golden design (RTL) and the 

revised design (Netlist) are read. 

SETUP> read library -both -liberty $lib_files 

SETUP> read design -verilog … -golden 

SETUP> read design -verilog … -revised 
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After the libraries and the designs are read, we need to write the design constraints 

to exclude macro blocks such as RAM, analog modules etc, and constrain input ports or 

internal nets [6]. 

1. Black boxing a macro is common, and though the internal logic is not analyzed the 

connections to the black box are still verified. This step is crucial because input 

pins of the black box are compare points, but the outputs of the black box are fan-

ins to the next logic cones. 

 Command to black box before reading design: 

SETUP> ADD NOTRANSLATE MODULE 

 Command to black box unresolved modules with no RTL or library definition: 

SETUP> SET UNDEFINED CELL -black_box 

 Command to black box after reading the design, useful in hierarchical 

comparison: 

SETUP> ADD BLACK BOX 

2. Pin Constraints: The test signals added during DFT insertion need to be constrained 

to make the RTL and netlist equivalent, since the RTL will not have scan logic or 

synthesis inserted clock gates as shown in Figure 8. 

SETUP> add pin constraints 0 SCAN_EN -revised 

 

Figure 8: Pin constraints 
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The synthesis tool performs logic optimization by constant propagation. The 

command SET FLATTEN MODEL specifies conditions for circuit flattening.   

1. For instance, to convert a flop or latch (D-pin is set to 0/1) to 0/1 use 

SETUP> set flatten model -seq_constant 

 

Figure 9: Flattening model for constant propagation 

2. Also, the uninitialized flops such as those which feed themselves are assumed ‘x’; 

we need to set the flatting model to take care of such cases. 

SETUP> set flatten model -seq_constant_x_to 0 

3. The clock gating introduced by the synthesis tool for dynamic power optimization 

may cause problems while performing equivalence check. This can be resolved by 

setting appropriate analysis options which remodel the revised model clock gates 

to golden model flop data pin muxing logic, as shown in the Figure 10. 

SETUP> set flatten model -gated_clock 

 

Figure 10: Flattening model for clock gate analysis 
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LEC phase 

After the SETUP phase is complete, LEC Mode is entered with the command ‘SET 

SYSTEM MODE LEC’, upon which the key points are auto-mapped with name-first default 

mapping method in which signals with same names are mapped in the golden and revised 

designs.  Conformal can compare all mapped points [5, 6]. The comparison indicates if any 

point is non-equivalent. Compared points are primary outputs, flip-flops, latches and black 

boxes. The compare points can also be manually mapped and then compared to obtain the 

results. 

LEC > add mapped points 

LEC > add compare points -all 

LEC > compare 

RESULTS 

The DFT insertion is performed during the synthesis of the SoC with amber core in 

RC [9]. The Synopsys Design Constraints (SDC) [7, 8] and the Tcl synthesis script are 

given in the Appendix A and B. 

The design has four mixed clock edge, muxed-style scan chains of length 685 with 

four test input and output ports, ‘test_si[3:0]’ and ‘test_so[3:0]’ respectively. The test-

mode pin ‘scan_mode’ and scan clock gate enable pin ‘scan_cg_en’ help fix the DFT rule 

violations. The scan chains have one scan clock ‘scan_clk’ and a scan shift enable 

‘scan_enable’ to support struck at fault testing. 

The logic equivalence check is performed in Cadence Conformal LEC with the 

script in the Appendix C. The golden and revised models are proven to be equivalent by 

choosing appropriate black boxing, pin constraints and analysis options. Figure 11 shows 

the results of LEC. 
 



 14 

============================================================= 
Compared points      PO     DFF    BBOX      Total    
-------------------------------------------------------------------------------- 
Equivalent           59     5759   17        5835     
============================================================= 
Compare results of instance/output/pin equivalences and/or sequential merge       
============================================================= 
Compared points      DFF       Total    
-------------------------------------------------------------------------------- 
Equivalent           75        75       
============================================================= 
Num of compare points = 5835 
Num of diff points    = 0 
Num of abort points   = 0 
Num of unknown points = 0 

Figure 11: Formal equivalence check result 
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Chapter 3: Formal Verification of configurable arbiter with APB slave 

INTRODUCTION 

Formal verification is the collection of techniques which use static analysis based 

on mathematical transformations to check the correctness of hardware, as opposed to 

dynamic verification such as simulation. It mathematically proves the correctness of a 

design with respect to a mathematical formal specification. 

Many problems can be attacked using decision methods with limited human 

intervention, such as Boolean equivalence checking, temporal logic model checking and 

Symbolic trajectory evaluation [10]. This probably accounts for the relative success of 

formal verification in hardware.  

Formal verification is potentially very fast because it does not have to evaluate 

every possible state to demonstrate that a given piece of logic meets a set of properties 

under all conditions. In this section, the RTL for the configurable arbiter with an APB slave 

is developed, and is verified formally by writing assumptions, assertions and cover 

properties for a design under test. The formal verification tool to be used is Cadence 

Jaspergold. 

DUT DESIGN DESCRIPTION 

The Design Under Test (DUT) is a 4-way arbiter with an APB slave interface. As 

depicted in the architecture section, the module arbiter_top instantiates apb_slave and 

arbiter. The APB slave interface provides registers for debug and configuration of the 

arbiter which implements different arbitration schemes. 
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APB slave interface 

The APB is part of the AMBA 3 protocol family [11]. It provides a low-cost 

interface that is optimized for minimal power consumption and reduced interface 

complexity. All signal transitions are only related to the rising edge of the clock to enable 

the integration of APB peripherals easily into any design flow. 

Write transfer 

Figure 12 shows a basic write transfer with no wait states [11]. The write transfer 

starts with the address, write data, write signal and select signal all changing after the rising 

edge of the clock. The first clock cycle of the transfer is called the Setup phase. After the 

following clock edge, the enable signal is asserted, PENABLE, and this indicates that the 

Access phase is taking place. The address, data and control signals all remain valid 

throughout the Access phase. The transfer completes at the end of this cycle. The enable 

signal, PENABLE, is deasserted at the end of the transfer. The select signal, PSEL, also 

goes LOW. 

 

Figure 12: APB write transfer [11] 
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Read transfer 

Figure 13 shows a read transfer. The timing of the address, write, select, and enable 

signals are as described in Write transfers [11]. The slave must provide the data before the 

end of the read transfer. 

 

 

Figure 13: APB read transfer [11] 

APB register description 

The APB registers are presented as the output ports ‘APB_BYPASS’, 

‘APB_REQ[3:0]’ and ‘APB_ARB_TYPE[2:0]’ of the top module ‘arbiter_top’. Hence, the 

register write value (PWDATA) must be reflected at the corresponding output port after 

the write operation is complete. Also, after the read operation is complete, any register read 

value (PRDATA) must be same as the value on the corresponding port. 
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APB bypass register 

Register Address: 8’h10 

 

7 6 5 4 3 2 1 0 

Reserved APB_BYPASS 

 

Bit Field Description 

7:1 Reserved - 

0 APB_BYPASS 

Selects which request is fed to the arbiter. 

When 0: REQ 

When 1: APB_REQ 

Reset value: 1’b0 

Legal values: 1’b0 or 1’b1 

Table 1: APB bypass register details 
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APB request register 

Register Address: 8’h14 

 

7 6 5 4 3 2 1 0 

Reserved APB_REQ 

 

Bit Field Description 

7:4 Reserved - 

3:0 APB_REQ 

When APB_BYPASS =1, APB_REQ is chosen as 

the request input to the arbiter. 

Reset value: 4’b0000 

Legal values: Range 4’b0000 to 4’b1111 

Table 2: APB request register details 
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APB arbitration type register 

Register Address: 8’h1C 

 

7 6 5 4 3 2 1 0 

Reserved APB_ARB_TYPE 

 

Bit Field Description 

7:3 Reserved - 

2:0 APB_ARB_TYPE Selects the type of arbitration scheme. 

3’b000: Priority ‘P0’: req[0] > req[1] > req[2] > req[3] 

3’b001: Priority ‘P1’: req[1] > req[0] > req[2] > req[3] 

3’b010: Priority ‘P2’: req[2] > req[0] > req[1] > req[3] 

3’b011: Priority ‘P3’: req[3] > req[0] > req[1] > req[2] 

3’b100: Priority ‘Prr’: Round robin arbitration scheme 

3’b101: Priority ‘Prand’: Random arbitration scheme 

3’b110 and 3’b111: Invalid 

Reset value: 3’b100 

Legal values: Range 3’b000 to 3’b111 

Table 3: APB arbitration type register details 
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Arbiter 

The arbiter module receives the requests and issues the grants in the next clock 

cycle. It has six arbitration schemes which can be configured by APB_ARB_TYPE as 

shown the section APB arbitration type register. Following is the detailed description. 

1. Four fixed priority arbitration schemes  

P0: req[0] > req[1] > req[2] > req[3] 

P1: req[1] > req[0] > req[2] > req[3] 

P2: req[2] > req[0] > req[1] > req[3] 

P3: req[3] > req[0] > req[1] > req[2] 

2. Round robin arbitration scheme: Prr 

The scheduling is round robin, where the grants are given in a round robin manner 

(0 – 1 – 2 – 3 – 0 ...) when there is a contention. The order of grants will always 

follow a round robin cycle and can skip ports in round robin order (only if they are 

not requesting) to grant a port which is requesting. Consider a case where in cycle 

i, Port 1 was granted. Then, in cycle i+1, Port 2 will be granted if Port 2 requests 

(independent of any other port requesting). However, if Port 2 is not requesting, 

then the arbiter will look at Port 3 (and grant it if it requests) and so on continue to 

Port 0 and then Port 1. 

3. Random arbitration scheme: Prand 

The grant is issued on a random basis. This is achieved by prioritizing the requests 

depending on the current value of the state of the PN sequence generator. The PN 

sequence {S1,S2,S3} is shown in the Table 4.   
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Table 4: Pseudorandom sequence 

  

Clock S1 S2 S3 

0 1 0 0 

1 1 1 0 

2 1 1 1 

3 0 1 1 

4 1 0 1 

5 0 1 0 

6 0 0 1 

7 1 0 0 

--- --- --- --- 
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DUT PORT DESCRIPTION 

 

Signal Direction Width Description 

PCLK IN 1 
Clock. The rising edge of PCLK times all 

transfers on the APB. 

PRESETn IN 1 
Reset. The APB asynchronous reset signal is 

active LOW. 

PADDR IN 8 Address. This is the APB address bus. 

PSEL IN 1 

Select. The APB bridge unit generates this 

signal to each peripheral bus slave. It indicates 

that the slave device is selected and that a data 

transfer is required. There is a PSEL signal for 

each slave. 

PENABLE IN 1 
Enable. This signal indicates the second and 

subsequent cycles of an APB transfer. 

PWRITE IN 1 

Direction. This signal indicates an APB write 

access when HIGH and an APB read access 

when LOW. 

PWDATA IN 8 

Write data. This bus is driven by the peripheral 

bus bridge unit during write cycles when 

PWRITE is HIGH. 

PREADY OUT 1 
Ready. The slave uses this signal to extend an 

APB transfer. 

PRDATA OUT 8 
Read Data. The selected slave drives this bus 

during read cycles when PWRITE is LOW. 
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Table 5 continued. 

APB_BYPAS

S 
OUT 1 

APB register output. Selects which request is 

fed to the arbiter. 

When 0: REQ 

When 1: APB_REQ 

APB_REQ OUT 4 

APB register output. When APB_BYPASS =1, 

APB_REQ is chosen as the request input to the 

arbiter. 

APB_ARB_T

YPE 
OUT 3 

APB register output. Selects the type of 

arbitration scheme. 

3’b000: P0: req[0] > req[1] > req[2] > req[3] 

3’b001: P1: req[1] > req[0] > req[2] > req[3] 

3’b010: P2: req[2] > req[0] > req[1] > req[3] 

3’b011: P3: req[3] > req[0] > req[1] > req[2] 

3’b100: Prr: Round robin arbitration scheme 

3’b101: Prand: Random arbitration scheme 

3’b110 and 3’b111: Invalid 

REQ IN 4 
Request port. When APB_BYPASS =0, REQ is 

chosen as the request input to the arbiter. 

GNT OUT 4 Grant port. 

Table 5: Arbiter DUT port description 
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DUT ARCHITECTURE 

 

 

Figure 14: Arbiter DUT microarchitecture 

PROPERTIES 

The DUT is verified with set of assertions, assumptions and coverage properties 

[12, 13, 14]. Assertions will be written as properties to the check for correctness of the 

system behavior. An “Assume” statement specifies a property as an assumption for the 

verification environment. To ensure functional coverage, certain cover properties must be 

written for the design. 
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APB interface properties 

Assumptions 

1. APB read/write are single transfers and are padded with IDLE phase, that is, once 

initiated they are always completed with the following sequence only: IDLE (PSEL 

=0 & PENABLE =0) => PHASE1 (PSEL=1 & PENABLE =0) => PHASE2 

(PSEL=1 & PENABLE =1) => IDLE (PSEL =0 & PENABLE =0). 

2. PADDR, PWDATA and PWRITE are stable and defined during the transfers. 

3. PADDR must take only the legal address values given in the APB register 

description. 

4. For a given PADDR, PWDATA can only take legal write values as given in the 

APB register description. For instance, if PADDR = 8’h10, PWDATA can only be 

8’h00 or 8’h01. 

Assertions 

1. Check if APB write operation is correct for all registers. 

2. Check if APB read operation is correct for all registers. 

3. Check if reset values of the registers are correct. 

Coverage 

1. APB read operation happens at least once. 

2. APB write operation happens at least once. 
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Arbiter properties 

Assumptions 

Input requests on any port should be held high until they are granted. The arbiter 

does not keep a history of requests. For correct operation, a port should make a request and 

then keep it high till it has been granted. 

Assertions 

1. All grants are mutually exclusive, and a grant is not issued unless the request is 

asserted. These are safety properties to ensure that no two grants are given in the 

same cycle. 

2. Check for priority order for scheme P0, P1, P2 and P3. 

3. For priority schemes Prr and Prand, check for liveness properties to ensure that no 

port is starved for a grant. That is, for these arbitration schemes, every request 

should be granted within 5 and 8 clock cycles respectively. 

Coverage 

1. Each request to go high at least once. 

2. All schemes are covered. 
 

RESULTS 

 The RTL for Arbiter with APB slave is developed in Verilog HDL. The 

DUT is formally verified by writing SystemVerilog properties from the previous section. 

The design properties listed in Appendix D. For the specified properties, the results of the 

verification prove the correctness of the design as shown in the Table 6 and Figure 15. The 
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formal verification has been performed with Cadence Jaspergold [15] with the help of its 

visualization tools [16]. 
 

Property name Result Bound 

arbiter_top.u_arbiter.u_arb_props.a_gnt_onehot proven Infinite 

arbiter_top.u_arbiter.u_arb_props.assert_pri_0_gnt0 proven Infinite 

arbiter_top.u_arbiter.u_arb_props.assert_pri_0_gnt1 proven Infinite 

arbiter_top.u_arbiter.u_arb_props.assert_pri_0_gnt2 proven Infinite 

arbiter_top.u_arbiter.u_arb_props.assert_pri_0_gnt3 proven Infinite 

arbiter_top.u_arbiter.u_arb_props.assert_pri_1_gnt0 proven Infinite 

arbiter_top.u_arbiter.u_arb_props.assert_pri_1_gnt1 proven Infinite 

arbiter_top.u_arbiter.u_arb_props.assert_pri_1_gnt2 proven Infinite 

arbiter_top.u_arbiter.u_arb_props.assert_pri_1_gnt3 proven Infinite 

arbiter_top.u_arbiter.u_arb_props.assert_pri_2_gnt0 proven Infinite 

arbiter_top.u_arbiter.u_arb_props.assert_pri_2_gnt1 proven Infinite 

arbiter_top.u_arbiter.u_arb_props.assert_pri_2_gnt2 proven Infinite 

arbiter_top.u_arbiter.u_arb_props.assert_pri_2_gnt3 proven Infinite 

arbiter_top.u_arbiter.u_arb_props.assert_pri_3_gnt0 proven Infinite 

arbiter_top.u_arbiter.u_arb_props.assert_pri_3_gnt1 proven Infinite 

arbiter_top.u_arbiter.u_arb_props.assert_pri_3_gnt2 proven Infinite 

arbiter_top.u_arbiter.u_arb_props.assert_pri_3_gnt3 proven Infinite 

arbiter_top.u_arbiter.u_arb_props.gen[0].assert_gnt_within5_req_rr proven Infinite 

arbiter_top.u_arbiter.u_arb_props.gen[0].assert_gnt_within5_req_rand proven Infinite 

arbiter_top.u_arbiter.u_arb_props.gen[0].assert_no_req_no_gnt proven Infinite 

arbiter_top.u_arbiter.u_arb_props.gen[0].cover_req covered 1 
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Table 6 continued. 

arbiter_top.u_arbiter.u_arb_props.gen[0].cover_gnt covered 2 

arbiter_top.u_arbiter.u_arb_props.gen[1].assert_gnt_within5_req_rr proven Infinite 

arbiter_top.u_arbiter.u_arb_props.gen[1].assert_gnt_within5_req_rand proven Infinite 

arbiter_top.u_arbiter.u_arb_props.gen[1].assert_no_req_no_gnt proven Infinite 

arbiter_top.u_arbiter.u_arb_props.gen[1].cover_req covered 1 

arbiter_top.u_arbiter.u_arb_props.gen[1].cover_gnt covered 2 

arbiter_top.u_arbiter.u_arb_props.gen[2].assert_gnt_within5_req_rr proven Infinite 

arbiter_top.u_arbiter.u_arb_props.gen[2].assert_gnt_within5_req_rand proven Infinite 

arbiter_top.u_arbiter.u_arb_props.gen[2].assert_no_req_no_gnt proven Infinite 

arbiter_top.u_arbiter.u_arb_props.gen[2].cover_req covered 1 

arbiter_top.u_arbiter.u_arb_props.gen[2].cover_gnt covered 2 

arbiter_top.u_arbiter.u_arb_props.gen[3].assert_gnt_within5_req_rr proven Infinite 

arbiter_top.u_arbiter.u_arb_props.gen[3].assert_gnt_within5_req_rand proven Infinite 

arbiter_top.u_arbiter.u_arb_props.gen[3].assert_no_req_no_gnt proven Infinite 

arbiter_top.u_arbiter.u_arb_props.gen[3].cover_req covered 1 

arbiter_top.u_arbiter.u_arb_props.gen[3].cover_gnt covered 2 

arbiter_top.u_apb_props.assert_APB_BYPASS_REG_VALID proven Infinite 

arbiter_top.u_apb_props.assert_APB_REQ_REG_VALID proven Infinite 

arbiter_top.u_apb_props.assert_APB_BYPASS_WR_chk proven Infinite 

arbiter_top.u_apb_props.assert_APB_REQ_WR_chk proven Infinite 

arbiter_top.u_apb_props.assert_APB_ARB_TYPE_WR_chk proven Infinite 

arbiter_top.u_apb_props.assert_APB_BYPASS_RD_chk proven Infinite 

arbiter_top.u_apb_props.assert_APB_REQ_RD_chk proven Infinite 
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Table 6 continued. 

arbiter_top.u_apb_props.assert_APB_ARB_TYPE_RD_chk proven Infinite 

arbiter_top.u_apb_props.assert_BYPASS_reset_chk proven Infinite 

arbiter_top.u_apb_props.assert_REQ_reset_chk proven Infinite 

arbiter_top.u_apb_props.assert_ARB_TYPE_reset_chk proven Infinite 

arbiter_top.u_apb_props.cover_APB_BYPASS covered 3 

arbiter_top.u_apb_props.cover_APB_WRITE covered 2 

arbiter_top.u_apb_props.cover_APB_READ covered 2 

Table 6: Formal Verification result for Arbiter with APB salve 

============================================================== 
SUMMARY 
============================================================== 
 Properties Considered : 102 
       assertions      : 41 
        - proven       : 41 (100%) 
        - marked_proven: 0 (0%) 
        - cex          : 0 (0%) 
        - ar_cex       : 0 (0%) 
        - undetermined : 0 (0%) 
        - unprocessed  : 0 (0%) 
        - error        : 0 (0%) 
       covers          : 61 
        - unreachable  : 0 (0%) 
        - covered      : 61 (100%) 
        - ar_covered   : 0 (0%) 
        - undetermined : 0 (0%) 
        - unprocessed  : 0 (0%) 
        - error        : 0 (0%) 

Figure 15: Formal verification result for Arbiter with APB slave 
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Chapter 4: Design and Verification of x86 Execution unit 

INTRODUCTION 

This chapter describes the design and verification of an implementation of an x86 

execution stage. The last chapter discussed the formal verification of the arbiter with APB 

slave by writing SystemVerilog properties as per the design specification document. 

Hence, the verification is as exhaustive as the properties. In this chapter, we will formally 

verify the DUT by writing a reference behavioral model of the design similar to the 

scoreboard used in UVM and writing simple assertions to check for the equivalence 

between the model and the DUT outputs. 

Contrary to Universal Verification methodology or UVM, formal verification does 

not require a verification environment [17]. To perform this verification task, UVM 

environment will need a sequencer, driver, monitor and scoreboard. Also, robust 

verification will need exhaustive coverage properties. In formal verification we can 

completely verify the DUT by simple assertions comparing its outputs with the reference 

model.  

Such verification technique can be exploited for the DUTs such as execution units, 

decoders, floating point processors, DSP engines etc. for which it is simple to develop a 

scoreboard. For such DUTs, it is cumbersome to write a long list of properties for each 

operation mode required by conventional formal verification. Also, in our approach, we 

have additional advantage if the reference model and the DUT are designed by different 

designers or they are designed using different implementation styles (Structural DUT vs 

Behavioral scoreboard like in our case).  
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PROCESSOR OVERVIEW 

The Intel Arhitecture, IA-32, is a CISC architecture [18]. Any task running on IA-

32 has 32-bit address space. The following resources make up the basic execution 

environment for an IA-32 processor [20]. 

Stack 

The stack is located in the memory to support procedure or subroutine calls and the 

passing of parameters between them. Also, stack management resources are included in 

the execution environment.  

Basic program execution registers 

 The eight general-purpose registers, the six segment registers, the EFLAGS 

register, and the EIP (instruction pointer) register comprise a basic execution environment 

[19]. As shown in Figure 16, these registers can be grouped as follows. 

General-purpose registers 

The eight 32-bit general-purpose registers EAX, EBX, ECX, EDX, ESI, EDI, EBP, and 

ESP are provided for holding the following items: 

1. EAX—Accumulator for operands and results data. 

2. EBX—Pointer to data in the DS segment. 

3. ECX—Counter for string and loop operations. 

4. EDX—I/O pointer. 

5. ESI—Pointer to data in the segment pointed to by the DS register; source pointer 

for string operations. 

6. EDI—Pointer to data (or destination) in the segment pointed to by the ES register; 

destination pointer for string operations. 
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7. ESP—Stack pointer (in the SS segment). 

8. EBP—Pointer to data on the stack (in the SS segment). 

 

 

Figure 16: IA-32 programming model [18] 

As shown in figure above, the lower 16 bits of the general-purpose registers map 

directly to the register set found in the 8086 and Intel 286 processors and can be referenced 

with the names AX, BX, CX, DX, BP, SP, SI, and DI. Each of the lower two bytes of the 
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EAX, EBX, ECX, and EDX registers can be referenced by the names AH, BH, CH, and 

DH (high bytes) and AL, BL, CL, and DL (low bytes). 

Segment registers 

The segment registers (CS, DS, SS, ES, FS, and GS) hold 16-bit segment selectors. 

A segment selector is a special pointer that identifies a segment in memory. To access a 

particular segment in memory, the segment selector for that segment must be present in the 

appropriate segment register. 

EFLAGS (program status and control) register 

The EFLAGS register report on the status of the program being executed.  The 

status flags (bits 0, 2, 4, 6, 7, and 11) of the EFLAGS register indicate the results of 

arithmetic instructions, such as the ADD, SUB, INC, DEC, CMP etc. instructions. The 

functions of the status flags are as follows [18]. 

1. CF (bit 0) Carry flag: Set if an arithmetic operation generates a carry or a borrow 

out of the most-significant bit of the result; cleared otherwise. This flag indicates 

an overflow condition for unsigned-integer arithmetic. It is also used in multiple-

precision arithmetic. 

2. PF (bit 2) Parity flag: Set if the least-significant byte of the result contains an even 

number of 1 bits; cleared otherwise. 

3. AF (bit 4) Adjust flag. Set if an arithmetic operation generates a carry or a borrow 

out of bit 3 of the result; cleared otherwise. This flag is used in binary coded decimal 

(BCD) arithmetic. 

4. ZF (bit 6) Zero flag: Set if the result is zero; cleared otherwise. 
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5. SF (bit 7) Sign flag: Set equal to the most-significant bit of the result, which is the 

sign bit of a signed integer. (0 indicates a positive value and 1 indicates a negative 

value.) 

6. OF (bit 11) Overflow flag: Set if the integer result is too large a positive number or 

too small a negative number (excluding the sign-bit) to fit in the destination 

operand; cleared otherwise. This flag indicates an overflow condition for signed-

integer (two’s complement) arithmetic. 

7. DF (bit 10) Direction flag: Controls the string instructions. Setting the DF flag 

causes the string instructions to auto-decrement. Clearing the DF flag causes the 

string instructions to auto-increment. The STD and CLD instructions set and clear 

the DF flag, respectively. 

EIP (instruction pointer) register 

The EIP register contains a 32-bit pointer to the next instruction to be executed. The 

instruction pointer (EIP) register contains the offset in the current code segment for the 

next instruction to be executed.  

MMX registers 

The eight MMX registers support execution of single-instruction, multiple-data 

(SIMD) operations on 64-bit packed byte, word, and doubleword integers.  

EXECUTION STAGE ARCHITECTURE 

The x86 execution unit supports several operations listed in the Table 7. It is 

implemented in structural Verilog using accurate timing models provided by Cascade 

Design Automation Corporation. The execution stage functionality is split among three 

ALUs as shown in the Figures 17, 18 and 19. The first is dedicated for Single Instruction 
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Single Data (SISD) instructions such as ADD, AND, OR etc. The second performs 

supporting operations such as pointer increment or decrement for PUSH, POP etc. The last 

ALU is dedicated for Single Instruction Multiple Data (SIMD) instructions such as 

PADDD, PSHUFW etc. Structural Verilog is chosen as implementation style to have great 

degree of control over the critical path design. For instance, in the second ALU, the 

operation ESP_INC_IMM is in last stage of muxing as it adds 3 operands ESP, imm8 and 

data size while the operation ESP_INC or ESP_DEC occur in the early stage of muxing as 

they just add two operands ESP and data size. 

The design of the ALUs is performance driven. The 2-operand adders used are 

conditional sum adders and the 3-operand adders used are Wallace tree adders as these are 

the fastest adders [21]. 
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Figure 17: x86 Execute stage ALU 1 architecture 

 

Figure 18: x86 Execute stage ALU 2 architecture 

 

Figure 19: x86 Execute stage ALU 3 architecture 
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ALU opcode Supported Instruction Operation 

ALU1 
OR8 
OR16 
OR32 

OR AL,imm8 
OR AX,imm16 
OR EAX,imm32 
OR r/m16,r16 
OR r/m32,r32 
OR r/m8,r8 
OR r16,r/m16 
OR r32,r/m32 
OR r8,r/m8 

RES ← SR1 OR SR2; 
 
FLAGS: The OF and CF flags are cleared; 
the SF, ZF, and PF flags are set according to 
the result. The state of the AF flag is 
undefined. 

AND8 
AND16 
AND32 

AND AL,imm8 
AND AX,imm16 
AND EAX,imm32 
AND r/m16,r16 
AND r/m32,r32 
AND r/m8,r8 
AND r16,r/m16 
AND r32,r/m32 
AND r8,r/m8 

RES ← SR1 AND SR2; 
 
FLAGS: The OF and CF flags are cleared; 
the SF, ZF, and PF flags are set according to 
the result. The state of the AF flag is 
undefined. 

SAL8 
SAL16 
SAL32 

SAL r/m16,1 
SAL r/m32,1 
SAL r/m16,CL 
SAL r/m32,CL 
SAL r/m16,imm8 
SAL r/m32,imm8 
SAL r/m8,1 
SAL r/m8,CL 
SAL r/m8,imm8 

DEST ← SR1; 
COUNT ← SR2; 
tempCOUNT ← (COUNT AND 1FH); 
WHILE (tempCOUNT ≠ 0) 
DO 
CF ← MSB(DEST); 
DEST ← DEST ∗ 2; 
tempCOUNT ← tempCOUNT – 1; 
OD; 
 
FLAGS: (* Determine overflow for the 
various instructions *) 
IF (COUNT and 1FH) = 1 
OF ← MSB(DEST) XOR CF; 
ELSE IF (COUNT AND 1FH) = 0 
All flags remain unchanged; 
ELSE (* COUNT neither 1 or 0 *) 
OF ← undefined; 
FI; 
RES ← DEST; 
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Table 7 continued. 
SAR8 
SAR16 
SAR32 

SAR r/m16,1 
SAR r/m32,1 
SAR r/m16,CL 
SAR r/m32,CL 
SAR r/m16,imm8 
SAR r/m32,imm8 
SAR r/m8,1 
SAR r/m8,CL 
SAR r/m8,imm8 

DEST ← SR1; 
COUNT ← SR2; 
tempCOUNT ← (COUNT AND 1FH); 
WHILE (tempCOUNT ≠ 0) 
DO 
CF ← LSB(DEST); 
DEST ← DEST / 2 (*Signed divide, 
rounding toward negative infinity*); 
tempCOUNT ← tempCOUNT – 1; 
OD; 
FLAGS: (* Determine overflow for the 
various instructions *) 
IF (COUNT and 1FH) = 1 
THEN 
OF ← 0; 
FI; 
ELSE IF (COUNT AND 1FH) = 0 
THEN 
All flags remain unchanged; 
ELSE (* COUNT neither 1 or 0 *) 
OF ← undefined; 
FI; 
RES ← DEST; 

PASS_SR1 MOV, POP, PUSH, 
XCHG, CMOVC, 
CALL, JMP 

RES ← SR1 

PASS_SR2 MOV, POP, PUSH, 
XCHG, CMOVC, 
CALL, JMP 

RES ← SR2 

PASS_SR1_TO
_EFLAGS 

IRET FLAGS = SR1 

NOT8 
NOT16 
NOT32 

NOT r/m16 
NOT r/m32 
NOT r/m8 

RES ← NOT SR1; 

INC8 
INC16 
INC32 

INC r/m16 
INC r/m32 
INC r/m8 
INC r16 
INC r32 
 
 
 

RES ← SR1 + 1; 
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Table 7 continued. 
ADD8 
ADD16 
ADD32 

ADD AL,imm8 
ADD AX,imm16 
ADD EAX,imm32 
ADD r/m16,imm16 
ADD r/m32,imm32 
ADD r/m16,imm8 
ADD r/m32,imm8 
ADD r/m16,r16 
ADD r/m32,r32 
ADD r/m8,imm8 
ADD r/m8,r8 
ADD r16,r/m16 
ADD r32,r/m32 
ADD r8,r/m8 

Operation 
RES ← SR1 + SR2; 
 
FLAGS: The OF, SF, ZF, AF, CF, and PF 
flags are set according to the result. 

CMPS_PTR_C
HANGE_SR1 

CMPS m16,m16 
CMPS m32,m32 
CMPS m8,m8 

SR1 ← (E)SI 
IF (byte comparison) 
THEN IF DF = 0 
THEN 
(E)SI ← (E)SI + 1; 
ELSE 
(E)SI ← (E)SI – 1; 
FI; 
ELSE IF (word comparison) 
THEN IF DF = 0 
(E)SI ← (E)SI + 2; 
ELSE 
(E)SI ← (E)SI – 2; 
FI; 
ELSE (* doubleword comparison*) 
THEN IF DF = 0 
(E)SI ← (E)SI + 4; 
ELSE 
(E)SI ← (E)SI – 4; 
FI; 
FI; 
RES ← (E)SI 

CMP_PASS_S
R1_8 
CMP_PASS_S
R1_16 
CMP_PASS_S
R1_32 

CMPXCHG r/m16,r16 
CMPXCHG r/m32,r32 
CMPXCHG r/m8,r8 

Compare (EAX,AX or AL) with SR1 
(r/m32, r/m16 or r/m8).  
 
Set FLAGS based on this compare. 
 
Pass SR1 to RES. 
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Table 7 continued. 
DAA DAA old_AL ← AL; 

old_CF ← CF; 
CF ← 0; 
IF (((AL AND 0FH) > 9) OR AF = 1) 
THEN 
AL ← AL + 6; 
CF ← old_CF OR (Carry from AL ← AL + 
6); 
AF ← 1; 
ELSE 
AF ← 0; 
FI; 
IF ((old_AL > 99H) OR (old_CF = 1)) 
THEN 
AL ← AL + 60H; 
CF ← 1; 
ELSE 
CF ← 0; 
FI; 
RES ←AL; 

ALU2 
PASS_SR1 XCHG RES ←SR1; 
PASS_SR2 CMPXCHG RES ←SR2; 
CMPS_PTR_C
HANGE_SR2 

 SR2 ← (E)DI 
IF (byte comparison) 
THEN IF DF = 0 THEN 
(E)DI ← (E)DI + 1; 
ELSE (E)DI ← (E)DI – 1; FI; 
ELSE IF (word comparison) 
THEN IF DF = 0 
(E)DI ← (E)DI + 2; 
ELSE 
(E)DI ← (E)DI – 2; 
FI; 
ELSE (* doubleword comparison*) 
THEN IF DF = 0 
(E)DI ← (E)DI + 4; 
ELSE 
(E)DI ← (E)DI – 4; 
FI; 
FI; 
RES ← (E)DI 
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Table 7 continued. 
ESP_DEC CALL, PUSH IF StackAddrSize = 32 

THEN 
IF OperandSize = 32 
THEN 
ESP ← ESP − 4; 
ELSE (* OperandSize = 16*) 
ESP ← ESP − 2; 
FI; 
ELSE (* StackAddrSize = 16*) 
IF OperandSize = 16 
THEN 
SP ← SP − 2; 
ELSE (* OperandSize = 32*) 
SP ← SP − 4; 
FI; 
FI; 
RES ← (E)SP 

ESP_INC POP, RET IF StackAddrSize = 32 
THEN 
IF OperandSize = 32 
THEN 
ESP ← ESP + 4; 
ELSE (* OperandSize = 16*) 
ESP ← ESP + 2; 
FI; 
ELSE (* StackAddrSize = 16* ) 
IF OperandSize = 16 
THEN 
SP ← SP + 2; 
ELSE (* OperandSize = 32 *) 
SP ← SP + 4; 
FI; 
FI;  
RES ← (E)SP 

ESP_INC_IMM RET imm16 THEN IF StackAddressSize=32  
THEN 
ESP ← ESP + SR2; 
ELSE (* StackAddressSize=16 *) 
SP ← SP + SR2;  
FI; 
RES ← (E)SP 
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Table 7: x86 Execution stage functionality [19] 

Table 7 continued. 
ALU3 

PADDD PADDD mm, 
mm/m64 

RES[31..0] ← mm1[31..0] + mm2[31..0]; 
RES[63..32] ← mm1[63..32] + 
mm2[63..32]; 

PADDSW PADDSW mm, 
mm/m64 

RES[15..0] ← 
SaturateToSignedWord(mm1[15..0] + 
mm2[15..0] ); 
* repeat operation for 2nd and 7th words *; 
RES[63..48] ← 
SaturateToSignedWord(mm1[63..48] + 
mm2[63..48] ); 

PADDW PADDW mm, 
mm/m64 

RES[15..0] ← mm1[15..0] + mm2[15..0]; 
* repeat add operation for 2nd and 3th word 
*; 
RES[63..48] ← mm1[63..48] + 
mm2[63..48]; 

PSHUFW PSHUFHW xmm1, 
xmm2/m128, imm8 

Shuffle the words in mm2/m64 based on the 
encoding in imm8 and store the result in 
mm1. 
SRC ← mm1; 
ORDER ← SR2; 
RES[15-0] ← (SRC >> (ORDER[1-0] ∗ 16) 
)[15-0] 
RES[31-16] ← (SRC >> (ORDER[3-2] ∗ 
16) )[15-0] 
RES[47-32] ← (SRC >> (ORDER[5-4] ∗ 
16) )[15-0] 
RES[63-48] ← (SRC >> (ORDER[7-6] ∗ 
16) )[15-0] 

PASS_MM1 CALL, RET RES ← mm1; 
PASS_MM2 MOVQ RES ← mm2; 
ECX_DEC CMPS m16,m16 

CMPS m32,m32 
CMPS m8,m8 

IF AddressSize = 16 
THEN 
use CX for CountReg; 
ELSE (* AddressSize = 32 *) 
use ECX for CountReg; 
FI; 
CountReg ← CountReg – 1; 
RES ← CountReg; 



 44 

RESULTS 

This verification methodology exploits the strengths of both UVM and formal 

verification. We are not restricted by the constraint that verification is as good as the set of 

properties we write in formal. Also, we need not worry about the coverage like in UVM, 

where it is not possible to cover all the test patterns via random test pattern generation. The 

reference model is developed for the x86 execution stage and equality check assertions are 

written to check the DUT outputs against that of reference model. The DUT is completely 

verified and the results are tabulated in Table 8. The formal verification has been performed 

with Cadence Jaspergold [15] with the help of its visualization tools [16]. 

 

Property name Result Bound 

alu1_top.u_alu1_props.assert_alu_res1_chk proven Infinite 

alu1_top.u_alu1_props.assert_alu1_flags_chk proven Infinite 

alu1_top.u_alu1_props.assert_cmps_flags_chk proven Infinite 

alu1_top.u_alu1_props.assert_df_val_ex_chk proven Infinite 

alu1_top.u_alu1_props.assert_ld_flag_cf_chk proven Infinite 

alu1_top.u_alu1_props.assert_ld_flag_pf_chk proven Infinite 

alu1_top.u_alu1_props.assert_ld_flag_af_chk proven Infinite 

alu1_top.u_alu1_props.assert_ld_flag_zf_chk proven Infinite 

alu1_top.u_alu1_props.assert_ld_flag_sf_chk proven Infinite 

alu2_top.u_alu2_props.assert_alu_res2_chk proven Infinite 

alu3_top.u_alu3_props.assert_alu_res3_chk proven Infinite 

Table 8: x86 execution unit formal verification result 
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The major bugs found are listed below. The design bugs are in corner cases which 

are hard to debug with simulation-based verification methods like UVM when the 

functionality is as diverse as the processor execution unit. 

1. In opcode SAL8,16 & 32, the OF flags was assigned LSB of SR1 when the shift 

amount SR2 was zero or one. The bug is fixed to keep OF flag unchanged when 

SR2 is zero. 

2. In DAA operation, the value of AF must go to zero after the end of the operation, 

but its value was being retained when AL[3:0] < 9. 

3. In the case of stack instructions PUSH or POP, the ESP_DEC operation added 

16’FFFF to ESP register instead of 32’FFFF_FFFF, which produced an incorrect 

value in the upper 16 bits of the ALU result. 

4. AF must be the carry of the first nibble in add operation and borrow of the first 

nibble in case of a compare operation. The latter was setting AF flag incorrectly as 

a carry instead of a borrow. 
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Chapter 5: Identification of critical registers 

INTRODUCTION 

This chapter is in support of the thesis “Automatic generation of coverage directives 

targeting signal relationships by statically analyzing RTL” [22], which focuses on writing 

SystemVerilog cover properties by analyzing RTL written in Verilog HDL.  The coverage 

problem has been an issue in simulation-based verification. The coverage properties are 

required to track the progress and justify completeness design verification. The approach 

[22] discusses statically analyzing the RTL and automatically generating coverage 

properties which target the ambiguity in signal relationships derived from the RTL, 

avoiding state-explosion and focus on the control flow of the design. These SystemVerilog 

properties can be integrated with any simulator to provide coverage goals. However, it can 

be argued that all possible properties may turn out to be a huge number, therefore this 

chapter discusses on how to identify the critical flops in the design as a subset of all the 

registers which may have the most effect on the control flow of a module. 

In the design, certain flops store the history of the module, that is, their value 

depends directly on their previous value where as for other flops, their value is freshly 

computed each clock cycle. We can refer the latter as data registers and the former as state 

registers. It is possible that data registers can depend on history of the module, but the 

relation indirect and is through the state registers. The criticality ‘C’ will be the value 

associated with each register in the design based on several criteria discussed further. The 

value ‘C’ of the state registers outweighs that of data registers, that is, state registers will 

be associated with greater ‘C’ value. 

Also, identifying critical design flops has applications in fault tolerance. Alpha 

particle-induced soft errors, or simply soft errors, refer to transient errors in device caused 
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by alpha particles emitted by traces of radioactive elements such as thorium and uranium 

present in the packaging materials of the device [23].  These alpha particles manage to 

penetrate the die and generate a high density of holes and electrons in its substrate, which 

creates an imbalance in the device's electrical potential distribution that causes stored data 

to be corrupted in flops, memory devices etc. We can make the top X% of the critical flops 

fault tolerant with the fault tolerant flip-flop design [24]. 

METHODOLOGY 

To find the criticality of the flops, several designs are considered. First feature 

extraction is performed and then a simple Artificial Neural Network (ANN) is employed 

to trained and test on the data set. 

Feature extraction 

Feature extraction is the process of selecting a subset of relevant features for use in 

model construction [27]. It aids the mission to create an accurate predictive model choosing 

features that will provide as good or better accuracy whilst requiring less data. Cadence 

RTL compiler (RC) is used to extract the timing paths in the design. The tool can perform 

generic synthesis and provide the input to register, register to register and register to output 

timing paths. The script that extracts the timing paths is given in Appendix E. 

The timing paths are then processed to obtain 6 features listed below for each 

register ‘r’ in the design. 

1. Register length Len(r) 

2. Number of inputs ports directly effecting the register #In(r) 

3. Number of output ports directly effected by the register #Out(r) 

4. Number of other registers effecting the register ‘r’ #Rin(r) 
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5. Number of other registers effected by register ‘r’ Rout(r) 

6. If self-loop exists Loop(r).  

The results of the feature extraction for MMU is shown in the Table 9 and the state 

registers in the design are labelled. 

 

Register ‘r’ Len(r) #In(r) #Out(r) #Rin(r) #Rout(r) Loop(r) Label 

cache_line_rd_buff 256 2 2 1 0 0 0 

u_count_reg 3 2 1 1 3 1 1 

u_dc_evict_addr_reg 32 3 0 2 1 1 0 

u_dc_evict_data_buff 128 3 1 2 0 1 0 

u_dc_evict_flag_reg 1 2 0 2 2 1 1 

u_dc_evict_gated_reg 1 2 0 1 3 0 0 

u_io_m_data_i_reg 32 2 1 1 0 1 0 

u_mmu_fsm/curr_st_reg 3 7 8 2 7 1 1 

u_temp_addr_reg 32 7 1 4 0 1 0 

Table 9: Feature extraction of x86 MMU module 

ANN training and testing  

An Artificial Neural Network is a network of simple elements called neurons, 

which receive input, change their internal state (activation) according to that input, and 

produce output depending on the input and activation [28]. The network forms by 

connecting the output of certain neurons to the input of other neurons forming a weighted 

directed graph. The weights as well as the functions that compute the activation can be 
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modified by a process called learning which is governed by a learning rule which is the 

back propagation algorithm [25].  

The ANN has 6 input neurons corresponding to 6 features extracted, 25 hidden 

neurons for learning the features and 1 output neuron for evaluating criticality ‘C’ as shown 

in the Figure 20. The ANN is trained with design set 1 through 6 and tested with designs 

set 7 through 11 from the Table 10. 

 

 

Figure 20: ANN structure (Input-Hidden-Output layers) 
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Sl.no. Design Flops 

1 Amber core write back stage 44 

2 Synchronous serial protocol 134 

3 Sequence detectors 9 

4 APB to wishbone bridge 84 

5 I2C protocol 159 

6 JTAG TAP interface 70 

7 Arbiter with APB slave config 

port 
32 

8 X86 Memory Management 

Unit(MMU) 
488 

9 X86 Direct Memory Access 

unit(DMA) 
213 

10 Interrupt and exception handler 85 

11 X86 SoC Wishbone arbiter 3 

Table 10: ANN training and testing design data set 

RESULTS 

The detection of critical registers in a design finds application in automatic 

coverage generation and fault tolerance. Tables 11 and 12 show the results of testing on 

MMU and DMA modules, respectively. It can be observed that current state register of 

MMU and DMA FSMs have highest criticality ‘C’ of 1.65 and 1.27 respectively. The short 
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registers that self-loop and that effect higher number of outputs (#Out) and feed to higher 

number of flops (#Rout) have greater ‘C’. 

The accuracy of training and testing is approximately 99%. The rare incorrect 

classification is due the short data registers that self-loop, but the ‘C’ value of such registers 

is lower than the state registers. However, by varying the classification threshold we can 

eliminate such cases. 

 

Register ‘r’ Len #In #Out #Rin #Rout Loop C 

u_mmu_fsm/curr_st_reg 3 7 8 2 7 1 1.6487 

u_dc_evict_flag_reg 1 2 0 2 2 1 1.028921 

u_count_reg 3 2 1 1 3 1 0.965714 

u_dc_evict_data_buff 128 3 1 2 0 1 0.715656 

cache_line_rd_buff 256 2 2 1 0 0 0.346443 

u_dc_evict_addr_reg 32 3 0 2 1 1 0.079015 

u_io_m_data_i_reg 32 2 1 1 0 1 0.066598 

u_dc_evict_gated_reg 1 2 0 1 3 0 0.011166 

u_temp_addr_reg 32 7 1 4 0 1 -0.13233 

Table 11: Criticality of MMU registers 
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Register ‘r’ Len #In #Out #Rin #Rout Loop C 

u_dma_master_if/ 

u_dma_master_controller/ 

u_dma_master_controller_fsm/ 

curr_st_reg 

3 4 4 4 3 1 1.267571 

u_dma_master_if/ 

end_offset_reg 
2 1 1 2 0 1 0.912753 

u_dma_master_if/ 

transfer_size 
2 1 1 2 0 1 0.912753 

u_dma_master_if/ 

start_offset_reg 
2 1 1 3 0 1 0.884843 

u_dma_slave_if/ 

init_transfer_reg 
32 5 1 0 7 1 0.16873 

u_dma_master_if/ 

u_dma_master_controller/ 

m_addr 

32 2 1 3 0 1 0.049332 

u_dma_slave_if/ 

mem_addr_reg 
32 5 1 0 2 1 0.027637 

u_dma_master_if/ 

init_trans_reg 
1 1 0 1 6 0 0.022498 

u_dma_slave_if/disk_addr_reg 32 5 1 0 0 1 -0.02342 

u_dma_slave_if/ 

transfer_size_reg 
32 5 1 0 0 1 -0.02342 
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Table 12 contined. 

u_dma_master_if/ 

u_dma_master_controller/ 

init_trans_reg 

1 1 1 2 3 0 -0.05561 

u_dma_master_if/ 

u_dma_master_controller/ 

d_addr 

10 2 1 2 0 1 -0.09613 

u_dma_master_if/ 

u_dma_master_controller/ 

num_transfers 

16 2 0 3 1 1 -0.19043 

u_dma_master_if/ 

num_transfers_reg 
16 1 1 2 2 1 -0.38327 

Table 12: Criticality of DMA registers 
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Chapter 6: Conclusions 

This report explores different verification methodologies. In the second chapter, 

synthesis and DFT insertion was performed on an SoC with the ARM-Amber core using 

Cadence RC and the DFT violations were fixed. To ensure that the original functionality 

is intact, formal equivalence check was performed between the RTL and the netlist. For 

future work, the ATPG tool can be used to perform scan simulations using the generated 

test patterns.  

In the third chapter, the RTL for an Arbiter with an APB slave configuration port 

was developed in Verilog HDL and the design was extensively verified by writing 

SystemVerilog properties using Cadence Jaspergold. We observed that the verification is 

only as good as the properties specified. The fourth chapter discussed formal verification 

with a different approach. The HDL for a performance optimized x86 execution unit was 

developed and formally verified by developing its reference model in behavioral Verilog 

and writing simple equality assertion checks. This approach reduced the long list of 

properties required for the conventional formal methods discussed in the third chapter. 

The last chapter provided an approach to identify the critical registers in a design. 

Feature extraction was performed, and a simple ANN was used for computing the 

criticality ‘C’. The accuracy of training and testing is approximately 99%. The rare 

incorrect classification is due to the short data registers that self-loop, but the ‘C’ value of 

such registers is lower than that of the state registers. This finds application in selecting the 

relevant auto-generated properties and in fault tolerance. 
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Appendices 

Appendix A: Synopsys design constraints for SoC with amber core 

 
#  clock creation 
create_clock -period 80 -waveform "0 40" [get_ports brd_clk_p] -name BRD_CLK_P 
create_clock -period 400 -waveform "0 200" [get_ports mtx_clk_pad_i] -name mtx_clk 
create_clock -period 400 -waveform "0 200" [get_ports mrx_clk_pad_i] -name mrx_clk 
 
# generated clocks 
create_generated_clock -name sys_clk -source [get_ports brd_clk_p] -divide_by 1 
[get_pins u_clocks_resets/sys_clk_buff/Y] 
create_generated_clock -name sys_clk_slow -source [get_ports brd_clk_p] -divide_by 4 
[get_pins u_clocks_resets/sys_clk_slow_buff/Y] 

 
# clock uncertainty 
set_clock_uncertainty -setup 0.03 [get_clocks sys_clk] 
set_clock_uncertainty -hold 0.03 [get_clocks sys_clk] 
set_clock_uncertainty -setup 0.1 [get_clocks mtx_clk] 
set_clock_uncertainty -hold 0.1 [get_clocks mtx_clk] 
set_clock_uncertainty -setup 0.1 [get_clocks mrx_clk] 
set_clock_uncertainty -hold 0.1 [get_clocks mrx_clk] 

 
# input & output delay 
set in_ports [remove_from_collection [all_inputs] [get_ports *_clk_*]] 
 
set_input_delay -max 0.1 -clock [get_clocks sys_clk] $in_ports 
set_input_delay -min 0.1 -clock [get_clocks sys_clk] $in_ports 
set_input_delay -max 0.1 -clock [get_clocks mtx_clk] $in_ports 
set_input_delay -min 0.1 -clock [get_clocks mtx_clk] $in_ports 
set_input_delay -max 0.1 -clock [get_clocks mrx_clk] $in_ports 
set_input_delay -min 0.1 -clock [get_clocks mrx_clk] $in_ports 

 
set_output_delay -max 0.1 -clock sys_clk [all_outputs] 
set_output_delay -max 0.1 -clock mtx_clk [all_outputs] 
set_output_delay -max 0.1 -clock mrx_clk [all_outputs] 
 
# flase path 
set_false_path -from [get_ports brd_rst] 

 
# set input transition 
set_input_transition 0.02 [all_inputs] 
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# output load 
set_load 1.5 [all_outputs] 

 
# case analysis statements 
set_case_analysis 0 scan_mode 
set_case_analysis 0 scan_cg_en 
set_case_analysis 0 scan_en 
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Appendix B: Script for synthesis with DFT insertion 

 
set current_design system 
set WDIR . 
set TOP ${WDIR}/.. 
source  ${TOP}/common/common.tcl 
 
#------------------------------------------------------------------------------------------------------- 
# LIBRARY SETUP 
#------------------------------------------------------------------------------------------------------- 
 
set corner ss0p95vn40c 
set lib_dir $DESIGN_REF_LIB_PATH 
set std_library [list saed32hvt_${corner}.lib saed32rvt_${corner}.lib 
saed32lvt_${corner}.lib saed32sram_${corner}.lib] 
 
set lib_path [list $lib_dir/stdcell_hvt/db_nldm \ 
                $lib_dir/stdcell_rvt/db_nldm \ 
                $lib_dir/stdcell_lvt/db_nldm \ 
                $lib_dir/sram/db_nldm] 
 
set_attribute lib_search_path $lib_path 
set_attribute library $std_library 
#------------------------------------------------------------------------------------------------------- 
# RTL SETUP 
#------------------------------------------------------------------------------------------------------- 
 
set verilog_path    "../../verilog" 
set rtl_search_path [list ${verilog_path} \ 
                     ${verilog_path}/system \ 
                     ${verilog_path}/tb \ 
                     ${verilog_path}/lib \ 
                     ${verilog_path}/ethmac \ 
                     ${verilog_path}/amber25] 
                      
set_attribute hdl_search_path $rtl_search_path 
source ${TOP}/common/rtl.list 
set myFiles $RTL_LIST 
read_hdl ${myFiles} 
elaborate ${current_design} 
read_sdc ${TOP}/common/constraints.sdc 
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check_design -unresolved 
report timing -lint 
 
set_attribute dft_scan_style muxed_scan 
define_dft test_mode -active high scan_mode 
define_dft test_clock scan_clk 
 
define_dft shift_enable -active high scan_en 
define_dft test_mode -active high scan_cg_en 
set_attribute lp_insert_clock_gating true / 
 
report dft_setup 
check_dft_rules 
 
# Synthesize the design to the generic library 
synthesize -to_generic 
 
# Synthesize the design to the target library 
synthesize -to_mapped 
 
report dft_setup 
check_dft_rules 
 
fix_dft_violations -test_control scan_cg_en -clock 
 
set_attr dft_min_number_of_scan_chains 4 /designs/${current_design} 
set_attr dft_mix_clock_edges_in_scan_chains true /designs/${current_design} 
 
define_dft scan_chain -name chain1 -create_ports -sdi test_si[0] -sdo test_so[0] 
define_dft scan_chain -name chain2 -create_ports -sdi test_si[1] -sdo test_so[1] 
define_dft scan_chain -name chain3 -create_ports -sdi test_si[2] -sdo test_so[2] 
define_dft scan_chain -name chain4 -create_ports -sdi test_si[3] -sdo test_so[3] 
 
connect_scan_chains -auto_create_chains -preview 
connect_scan_chains -auto_create_chains 
 
write_hdl -m > ${current_design}_cg_scan_netlist.v 
write_scandef > ${current_design}_cg_scandef.v 
report dft_setup > ${current_design}_dft_setup 
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Appendix C: Script for Logic equivalence checking  

set_log_file lec_cg_scan.log -replace 
set_undefined_cell black_box -noascend -both 
 
set WDIR [pwd] 
set TOP ${WDIR}/.. 
 
read_library -Both -Replace  -sensitive  -Statetable  -Liberty   \ 
/usr/local/packages/synopsys_2015/SAED32_EDK/lib/stdcell_hvt/db_nldm/saed32hvt_ss
0p95vn40c.lib \ 
/usr/local/packages/synopsys_2015/SAED32_EDK/lib/stdcell_rvt/db_nldm/saed32rvt_ss
0p95vn40c.lib \ 
/usr/local/packages/synopsys_2015/SAED32_EDK/lib/stdcell_lvt/db_nldm/saed32lvt_ss
0p95vn40c.lib 
 
set verilog_path    "../../verilog" 
set rtl_search_path [list ${verilog_path} \ 
                     ${verilog_path}/system \ 
                     ${verilog_path}/tb \ 
                     ${verilog_path}/lib \ 
                     ${verilog_path}/ethmac \ 
                     ${verilog_path}/amber25] 
 
add_search_path $rtl_search_path -design -golden 
 
source ${TOP}/common/rtl.list 
set my_verilog_files $RTL_LIST 
  
read_design $my_verilog_files -Verilog -Golden   -sensitive   -root system -
continuousassignment Bidirectional   -nokeep_unreach   -nosupply  
 
read_design ./system_cg_scan_netlist.v -Verilog -Revised   -sensitive   -root system -
continuousassignment Bidirectional   -nokeep_unreach   -nosupply 
 
vpxmode 
set flatten model -seq_constant -seq_constant_x_to 0 
set flatten model -gated_clock 
tclmode 
 
add_pin_constraint 0 scan_cg_en -Revised 
add_pin_constraint 0 scan_en -Revised 
add_pin_constraint 0 scan_mode -both 
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set_analyze_option -auto 
 
set_system_mode lec 
 
add_mapped_points u_boot_mem_wrapper/u_boot_mem/myram1 
u_boot_mem_wrapper_u_boot_mem/myram1 -noinvert 
add_mapped_points u_boot_mem_wrapper/u_boot_mem/myram2 
u_boot_mem_wrapper_u_boot_mem/myram2 -noinvert 
add_mapped_points u_boot_mem_wrapper/u_boot_mem/myram3 
u_boot_mem_wrapper_u_boot_mem/myram3 -noinvert 
add_mapped_points u_boot_mem_wrapper/u_boot_mem/myram4 
u_boot_mem_wrapper_u_boot_mem/myram4 -noinvert 
add_mapped_points u_boot_mem_wrapper/u_boot_mem/myram5 
u_boot_mem_wrapper_u_boot_mem/myram5 -noinvert 
add_mapped_points u_boot_mem_wrapper/u_boot_mem/myram6 
u_boot_mem_wrapper_u_boot_mem/myram6 -noinvert 
add_mapped_points u_boot_mem_wrapper/u_boot_mem/myram7 
u_boot_mem_wrapper_u_boot_mem/myram7 -noinvert 
 
add_compared_points -all 
compare  
 
puts "No of compare points = [get_compare_points -count]" 
puts "No of diff points    = [get_compare_points -NONequivalent -count]" 
puts "No of abort points   = [get_compare_points -abort -count]" 
puts "No of unknown points = [get_compare_points -unknown -count]" 
  



 61 

Appendix D: Formal verification properties of Arbiter with APB slave 

//Formal Property Verification 
// 
//Modules - apb_props, arb_props and Wrapper 
//SystemVerilog Properties for the module - arbiter_top 
 
module apb_props( 
// APB interface 
input        PCLK, 
input        PRESETn, 
input        PWRITE, 
input        PSEL, 
input        PENABLE, 
input  [7:0] PADDR, 
input  [7:0] PWDATA, 
 
input  [7:0] PRDATA, 
input        PREADY, 
// APB registers 
input        APB_BYPASS, 
input  [3:0] APB_REQ, 
input  [2:0] APB_ARB_TYPE, 
// Arbiter ports 
input  [3:0] REQ, 
input  [3:0] GNT 
); 
 
//Write your properties here - assertions, cover properties and assume properties 
 
// Reset values of the registers 
localparam RST_VAL_BYPASS_REG   = 8'h00; 
localparam RST_VAL_REQ_REG      = 8'h00; 
localparam RST_VAL_ARB_TYPE_REG = 8'h04; 
 
// Address values of the registers 
localparam ADDR_BYPASS_REG   = 8'h10; 
localparam ADDR_REQ_REG      = 8'h14; 
localparam ADDR_ARB_TYPE_REG = 8'h1C; 
 
// APB assumptions 
sequence APB_IDLE; 
    !PSEL; 
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endsequence 
 
// psel without PENABLE (first clock of cycle) 
sequence APB_PHASE_1; 
    PSEL && !PENABLE; 
endsequence 
 
// psel with PENABLE (second clock of cycle) 
sequence APB_PHASE_2; 
    PSEL && PENABLE; 
endsequence 
 
// A complete bus cycle 
sequence APB_CYCLE; 
    APB_IDLE ##1 APB_PHASE_1 ##1 APB_PHASE_2 ##1 APB_IDLE; 
endsequence 
 
property APB_CYCLES_ARE_COMPLETE; 
    // Once a cycle has started, it must complete 
    @(posedge PCLK) (APB_IDLE |-> APB_CYCLE); 
endproperty 
 
property APB_WRITE_AND_ADDR_STABLE; 
    // PWRITE and PADDR must be stable throughout the cycle 
    @(posedge PCLK) (PSEL |-> $stable({PWRITE, PADDR})); 
endproperty 
 
property APB_WRITE_AND_ADDR_VALID; 
    // PWRITE and PADDR must be valid throughout the cycle (no X, Z) 
    @(posedge PCLK) (PSEL |-> ((^{PWRITE, PADDR}) !== 1'bx)); 
endproperty 
 
property APB_WRITE_DATA_STABLE; 
    // PWDATA must be stable throughout a write cycle 
    @(posedge PCLK) ((PSEL && PWRITE) |-> $stable(PWDATA)); 
endproperty 
 
property APB_NO_PENABLE_OUTSIDE_CYCLE2; 
    // If we see PENABLE, it must be in the second clock of a cycle, 
    // and it must then go away 
    @(posedge PCLK) (PENABLE |-> $stable(PSEL) ##1 (!PENABLE)); 
endproperty   
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property APB_PADDR_RESTRICTED; 
    // PADDR can be ADDR_BYPASS_REG = 8'h10 or ADDR_REQ_REG = 8'h14 or 
ADDR_ARB_TYPE_REG = 8'h1C; 
    @(posedge PCLK) PSEL |-> (PADDR == 8'h10) || (PADDR == 8'h14) || (PADDR == 
8'h1C); 
endproperty 
 
property APB_PWDATA_BYPASS_RESTRICTED; 
    // PWDATA can be 8'h00 or 8'h01 when PADDR = ADDR_BYPASS_REG 
    @(posedge PCLK) PSEL && PWRITE && (PADDR == 8'h10) |-> (PWDATA == 
8'h00) || (PWDATA == 8'h01); 
endproperty 
 
property APB_PWDATA_REQ_RESTRICTED; 
    // PWDATA must be < 8'd16 when PADDR = ADDR_REQ_REG 
    @(posedge PCLK) PSEL && PWRITE && (PADDR == 8'h14) |-> (PWDATA <= 
8'd15) && (PWDATA >= 8'd0); 
endproperty 
 
property APB_PWDATA_ARB_TYPE_RESTRICTED; 
    // PWDATA must be < 8'd6 when PADDR = ADDR_ARB_TYPE_REG 
    @(posedge PCLK) PSEL && PWRITE && (PADDR == 8'h1C) |-> (PWDATA <= 
8'd05) && (PWDATA >= 8'd0); 
endproperty 
 
assume_APB_WRITE_DATA_STABLE : assume 
property(APB_WRITE_DATA_STABLE); 
assume_APB_WRITE_AND_ADDR_VALID : assume 
property(APB_WRITE_AND_ADDR_VALID); 
assume_APB_WRITE_AND_ADDR_STABLE : assume 
property(APB_WRITE_AND_ADDR_STABLE); 
assume_APB_CYCLES_ARE_COMPLETE : assume 
property(APB_CYCLES_ARE_COMPLETE); 
assume_APB_NO_PENABLE_OUTSIDE_CYCLE2 : assume 
property(APB_NO_PENABLE_OUTSIDE_CYCLE2); 
assume_APB_PADDR_RESTRICTED : assume 
property(APB_PADDR_RESTRICTED); 
assume_APB_PWDATA_BYPASS_RESTRICTED : assume 
property(APB_PWDATA_BYPASS_RESTRICTED); 
assume_APB_PWDATA_REQ_RESTRICTED : assume 
property(APB_PWDATA_REQ_RESTRICTED); 
assume_APB_PWDATA_ARB_TYPE_RESTRICTED : assume 
property(APB_PWDATA_ARB_TYPE_RESTRICTED); 
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// APB register write validity check 
 
property APB_BYPASS_REG_VALID; 
    // ARB_BYPASS register output can be 0 or 1 at any time 
    @(posedge PCLK) (APB_BYPASS == 8'd0) || (APB_BYPASS == 8'd1); 
endproperty 
 
property APB_REQ_REG_VALID; 
    // APB_REQ register output must be < 8'd16 at any time 
    @(posedge PCLK) (APB_REQ <= 8'd15) && (APB_REQ >= 8'd0); 
endproperty 
 
property APB_ARB_TYPE_REG_VALID; 
    // ARB_TYPE register output must be < 8'd6 at any time 
    @(posedge PCLK) (APB_ARB_TYPE <= 8'd05) && (APB_ARB_TYPE >= 8'd0); 
endproperty 
 
assert_APB_BYPASS_REG_VALID : assert property(APB_BYPASS_REG_VALID); 
assert_APB_REQ_REG_VALID : assert property(APB_REQ_REG_VALID); 
assert_APB_ARB_TYPE_REG_VALID : assert 
property(APB_ARB_TYPE_REG_VALID); 
 
// APB write check 
 
reg [7:0] pwdata_del; 
always @(posedge PCLK) begin 
  pwdata_del    <= PWDATA; 
end 
 
assert_APB_BYPASS_WR_chk : assert property(@(posedge PCLK) (PREADY && 
PWRITE && (PADDR == 8'h10)) |=> (APB_BYPASS == pwdata_del[0])); 
assert_APB_REQ_WR_chk : assert property(@(posedge PCLK) (PREADY && 
PWRITE && (PADDR == 8'h14)) |=> (APB_REQ == pwdata_del[3:0])); 
assert_APB_ARB_TYPE_WR_chk : assert property(@(posedge PCLK) (PREADY && 
PWRITE && (PADDR == 8'h1C)) |=> (APB_ARB_TYPE == pwdata_del[2:0])); 
 
// APB read check 
 
assert_APB_BYPASS_RD_chk : assert property(@(posedge PCLK) (PREADY && 
~PWRITE && (PADDR == 8'h10)) |-> ($past(APB_BYPASS) == PRDATA)); 
assert_APB_REQ_RD_chk : assert property(@(posedge PCLK) (PREADY && 
~PWRITE && (PADDR == 8'h14)) |-> ($past(APB_REQ) == PRDATA)); 
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assert_APB_ARB_TYPE_RD_chk : assert property(@(posedge PCLK) (PREADY && 
~PWRITE && (PADDR == 8'h1C)) |-> ($past(APB_ARB_TYPE) == PRDATA)); 
 
// APB registers reset check 
assert_BYPASS_reset_chk: assert property (@(posedge PCLK) $rose(PRESETn) |-> 
(APB_BYPASS == 8'd0) ); 
assert_REQ_reset_chk: assert property (@(posedge PCLK) $rose(PRESETn) |->  
(APB_REQ == 8'd0)); 
assert_ARB_TYPE_reset_chk: assert property (@(posedge PCLK) $rose(PRESETn) |->  
(APB_ARB_TYPE == 8'd4)); 
 
// APB registers cover properties 
cover_APB_BYPASS: cover property(@(posedge PCLK) $rose(APB_BYPASS)); 
cover_APB_WRITE: cover property(@(posedge PCLK) $rose(PREADY & PWRITE)); 
cover_APB_READ: cover property(@(posedge PCLK) $rose(PREADY & ~PWRITE)); 
 
endmodule 
 
module arb_props ( 
  clk, 
  rst_n, 
  req, 
  arb_type, 
  gnt 
  ); 
 
input        clk; 
input        rst_n; 
input  [3:0] req; 
input  [2:0] arb_type; 
 
input  [3:0] gnt; 
 
// Arbiter properties 
 
a_gnt_onehot : assert property (@(posedge clk) disable iff (~rst_n) $onehot0(gnt));  
 
// Priority scheme when APB_ARB_TYPE = 3'b000 
assert_pri_0_gnt0 : assert property (@(posedge clk) disable iff (~rst_n) (gnt[0] && 
$past(arb_type == 3'd0)) |-> $past(req[0])); 
assert_pri_0_gnt1 : assert property (@(posedge clk) disable iff (~rst_n) (gnt[1] && 
$past(arb_type == 3'd0)) |-> $past(req[1] & ~req[0])); 
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assert_pri_0_gnt2 : assert property (@(posedge clk) disable iff (~rst_n) (gnt[2] && 
$past(arb_type == 3'd0)) |-> $past(req[2] & ~req[1] & ~req[0])); 
assert_pri_0_gnt3 : assert property (@(posedge clk) disable iff (~rst_n) (gnt[3] && 
$past(arb_type == 3'd0)) |-> $past(req[3] & ~req[2] & ~req[1] & ~req[0])); 
 
// Priority scheme when APB_ARB_TYPE = 3'b001 
assert_pri_1_gnt0 : assert property (@(posedge clk) disable iff (~rst_n) (gnt[0] && 
$past(arb_type == 3'd1)) |-> $past(req[0] & ~req[1])); 
assert_pri_1_gnt1 : assert property (@(posedge clk) disable iff (~rst_n) (gnt[1] && 
$past(arb_type == 3'd1)) |-> $past(req[1])); 
assert_pri_1_gnt2 : assert property (@(posedge clk) disable iff (~rst_n) (gnt[2] && 
$past(arb_type == 3'd1)) |-> $past(req[2] & ~req[1] & ~req[0])); 
assert_pri_1_gnt3 : assert property (@(posedge clk) disable iff (~rst_n) (gnt[3] && 
$past(arb_type == 3'd1)) |-> $past(req[3] & ~req[2] & ~req[1] & ~req[0])); 
 
// Priority scheme when APB_ARB_TYPE = 3'b010 
assert_pri_2_gnt0 : assert property (@(posedge clk) disable iff (~rst_n) (gnt[0] && 
$past(arb_type == 3'd2)) |-> $past(req[0] & ~req[2])); 
assert_pri_2_gnt1 : assert property (@(posedge clk) disable iff (~rst_n) (gnt[1] && 
$past(arb_type == 3'd2)) |-> $past(req[1] & ~req[2] & ~req[0])); 
assert_pri_2_gnt2 : assert property (@(posedge clk) disable iff (~rst_n) (gnt[2] && 
$past(arb_type == 3'd2)) |-> $past(req[2])); 
assert_pri_2_gnt3 : assert property (@(posedge clk) disable iff (~rst_n) (gnt[3] && 
$past(arb_type == 3'd2)) |-> $past(req[3] & ~req[2] & ~req[1] & ~req[0])); 
 
// Priority scheme when APB_ARB_TYPE = 3'b010 
assert_pri_3_gnt0 : assert property (@(posedge clk) disable iff (~rst_n) (gnt[0] && 
$past(arb_type == 3'd3)) |-> $past(req[0] & ~req[3])); 
assert_pri_3_gnt1 : assert property (@(posedge clk) disable iff (~rst_n) (gnt[1] && 
$past(arb_type == 3'd3)) |-> $past(req[1] & ~req[3] & ~req[0])); 
assert_pri_3_gnt2 : assert property (@(posedge clk) disable iff (~rst_n) (gnt[2] && 
$past(arb_type == 3'd3)) |-> $past(req[2] & ~req[3] & ~req[0] & ~req[1])); 
assert_pri_3_gnt3 : assert property (@(posedge clk) disable iff (~rst_n) (gnt[3] && 
$past(arb_type == 3'd3)) |-> $past(req[3])); 
 
  generate for (genvar i=0; i<=3; i++)  
    begin: gen 
           assert_gnt_within5_req_rr : assert property( @(posedge clk) disable iff(arb_type 
!= 3'b100) $rose(req[i]) |-> ##[1:4] $rose(gnt[i])); 
          assert_gnt_within5_req_rand : assert property( @(posedge clk) disable iff(arb_type 
!= 3'b101) $rose(req[i]) |-> ##[1:7] $rose(gnt[i])); 
 
      property p_req_until_gnt; 
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        @(posedge clk) req[i] |-> req[i][*1:$] ##0 gnt[i];      
      endproperty : p_req_until_gnt 
      assume_req_until_gnt: assume property (p_req_until_gnt); 
 
      property p_no_req_no_gnt; 
        @(posedge clk) $past(req[i]==1'b0) |-> (gnt[i]==1'b0); 
      endproperty : p_no_req_no_gnt 
      assert_no_req_no_gnt: assert property (p_no_req_no_gnt); 
 
      cover_req: cover property(@(posedge clk) disable iff (~rst_n) $rose(req[i]));  
      cover_gnt: cover property(@(posedge clk) disable iff (~rst_n) $rose(gnt[i])); 
    end 
  endgenerate 
endmodule 
 
module Wrapper; 
//Binding the properties module with the arbiter module to instantiate the properties 
bind arbiter_top apb_props u_apb_props ( 
  .PCLK(PCLK),  
  .PRESETn(PRESETn),  
  .PADDR(PADDR),  
  .PWRITE(PWRITE),  
  .PSEL(PSEL),  
  .PENABLE(PENABLE),  
  .PWDATA(PWDATA),  
  .PRDATA(PRDATA),  
  .PREADY(PREADY), 
  .APB_BYPASS(APB_BYPASS), 
  .APB_REQ(APB_REQ), 
  .APB_ARB_TYPE(APB_ARB_TYPE), 
  .REQ(REQ), 
  .GNT(GNT) 
); 
bind arbiter arb_props u_arb_props ( 
  .clk(clk), 
  .rst_n(rst_n), 
  .req(req), 
  .arb_type(arb_type), 
  .gnt(gnt) 
  ); 
endmodule 
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Appendix E: RTL Compiler Tcl script to extract timing paths 

 
set_attribute hdl_search_path {./} #Set RTL path 
set_attribute lib_search_path {./} #Set library path 
set_attribute library [list *.lib] #List libraries 
set current_design design_name 
set myFiles [list *.v] 
read_hdl ${myFiles} #Read RTL files 
elaborate ${current_design} #Elaborate design 
read_sdc ./constraints.sdc #Read timing constraints 
check_design -unresolved #Check lint 
report timing -lint 
synthesize -to_mapped #Synthesize design 
 
report timing -from [all_inputs] -to [all_registers] -worst N > in_to_reg.rpt 
report timing -from [all_registers] -to [all_outputs] -worst N > reg_to_out.rpt 
report timing -from [all_registers] -to [all_registers] -worst N > reg_to_reg.rpt 
 
puts [all_outputs] 
puts [all_registers] 
puts [all_inputs]   
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