
Copyright

by

Soyeon Ahn

2018

The Dissertation Committee for Soyeon Ahn
certifies that this is the approved version of the following dissertation:

Computational Methods for Understanding Genetic

Variations from Next Generation Sequencing Data

Committee:

Haris Vikalo, Supervisor

Gustavo de Veciana

Sriram Vishwanath

David Soloveichik

Cagri Savran

Computational Methods for Understanding Genetic

Variations from Next Generation Sequencing Data

by

Soyeon Ahn,

DISSERTATION

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

THE UNIVERSITY OF TEXAS AT AUSTIN

May 2018

Dedicated to family for their endless encouragement and belief in me

Acknowledgments

First of all, I would like to express my gratitude to advisor, Prof. Haris

Viaklo, for his continuous encouragement, advice, endless patience and gen-

erosity throughout the course of my PhD. As well as giving me a lot of academic

skills, he has constantly guided me on the right path to develop and fill my

weaknesses and tried to raise my potential. Being a graduate student of him

is one of the greatest luck in my life. Without him, this dissertation could not

have been done.

I would like to thank the members of my dissertation committees, Prof.

Gustavo de Veciana, Prof. Sriram Vishwanath, Prof. David Soloveichik and

Prof. Cagri Savran for their valuable time, insightful comments and thought-

provoking questions that broadened my perspective of thinking on research

topics and problems. In addition, I also thank the ECE administrative staffs,

Melanie Gullick, Andrew Kieschnick, Melody Singleton, Apipol Piman and

Karen Little for always making them available and giving me help whenever I

needed on various issues.

To my excellent collaborators and lab mates, Ziqi ke, Somsubhra Barik,

Natalia Arzeno-Gonzlez, Abolfazl Hashemi, Shreepriya Das, Xiaohu Shen,

thank you for stimulating discussions on research and contributing to my learn-

ing. To my friends in WNCG and AKPC, thank you for being with me and

v

enriching my life at Austin.

Last but not least, I give the greatest gratitudes to my family. Thank

Mom and Dad for your unconditional love, consistent support and encourage-

ment, and belief in me. Thank Sunyoung for being my sister. I cannot wait

to become an aunt. Finally, to my husband, Wonkyum, I cannot express my

gratitude enough for putting up with me, sharing all the joy and frustration

that I’ve experienced during my PhD and being my biggest supporter. For all

this work, give glory to God.

vi

Computational Methods for Understanding Genetic

Variations from Next Generation Sequencing Data

Publication No.

Soyeon Ahn, Ph.D.

The University of Texas at Austin, 2018

Supervisor: Haris Vikalo

Studies of human genetic variation reveal critical information about

genetic and complex diseases such as cancer, diabetes and heart disease, ulti-

mately leading towards improvements in health and quality of life. Moreover,

understanding genetic variations in viral population is of utmost importance

to virologists and helps in search for vaccines. Next-generation sequencing

technology is capable of acquiring massive amounts of data that can provide

insight into the structure of diverse sets of genomic sequences. However, recon-

structing heterogeneous sequences is computationally challenging due to the

large dimension of the problem and limitations of the sequencing technology.

This dissertation is focused on algorithms and analysis for two prob-

lems in which we seek to characterize genetic variations: (1) haplotype recon-

struction for a single individual, so-called single individual haplotyping (SIH)

or haplotype assembly problem, and (2) reconstruction of viral population, the

vii

so-called quasispecies reconstruction (QSR) problem. For the SIH problem, we

have developed a method that relies on a probabilistic model of the data and

employs the sequential Monte Carlo (SMC) algorithm to jointly determine

type of variation (i.e., perform genotype calling) and assemble haplotypes.

For the QSR problem, we have developed two algorithms. The first algo-

rithm combines agglomerative hierarchical clustering and Bayesian inference

to reconstruct quasispecies characterized by low diversity. The second algo-

rithm utilizes tensor factorization framework with successive data removal to

reconstruct quasispecies characterized by highly uneven frequencies of its com-

ponents. Both algorithms outperform existing methods in both benchmarking

tests and real data.

viii

Table of Contents

Acknowledgments v

Abstract vii

List of Tables xii

List of Figures xiii

Chapter 1. Introduction 1

1.1 Motivation and Contributions 3

1.2 Organization . 6

Chapter 2. Haplotype assembly and its Analysis 8

2.1 Background and Related Works 8

2.2 ParticleHap: Joint haplotype assembly and genotype calling al-
gorithm . 13

2.2.1 Problem formulation . 14

2.2.2 ParticleHap algorithm 15

2.2.3 Complexity analysis of ParticleHap 22

2.2.4 Performance analysis of ParticleHap 23

2.2.5 Postprocessing . 25

2.3 Results and discussion . 25

2.3.1 1000 Genome Project data 26

2.3.2 Simulated data . 29

2.4 Summary . 33

ix

Chapter 3. aBayesQR: A Bayesian method for reconstruction
of viral populations characterized by low diversity 34

3.1 Background and Related Works 34

3.2 Method . 38

3.2.1 Super-reads construction via agglomerative clustering . 38

3.2.2 ML reconstruction of quasispecies from super-reads . . . 42

3.3 Results and Discussion . 50

3.3.1 Performance comparison on simulated data 50

3.3.2 Performance comparison on real HIV data 60

3.4 Summary and Further Work 63

Chapter 4. Viral quasispecies reconstruction via tensor factor-
ization with successive read removal 65

4.1 Background and Related Works 65

4.2 Method . 67

4.2.1 Problem formulation . 67

4.2.2 Structured tensor factorization using alternating mini-
mization . 69

4.2.3 Successive reconstruction of viral sequences 71

4.2.4 Determining the number of strains 74

4.2.5 Estimating insertions 75

4.3 Results and Discussion . 79

4.3.1 Performance comparison on simulated data 79

4.3.2 Evaluating identification of deletion 85

4.3.3 Performance comparison on gene-wise reconstruction of
real HIV-1 data . 87

4.3.4 Assembly of HIV-1 gag-pol genomes 89

4.3.5 Assembly of the Zika virus strains 90

4.4 Conclusion . 91

Chapter 5. Conclusion and future directions 93

Appendices 96

x

Appendix A. Guideline for choosing parameter η 97

A.1 Guideline for choosing parameter η 97

Appendix B. Proof of Convergence 101

B.1 Proof of Convergence of the Alternating Minimization with Ma-
jority Voting . 101

Appendix C. Additional results from Chapter 4 103

C.1 Comparing speed of tensor factorization that relies on majority
voting with the one that relies on gradient descent 103

C.2 Comparing accuracy of viral quasispecies reconstruction based
on single-pass tensor factorization (AltHap) with the one that
employs multiple tensor factorizations and read removal (TenSQR)104

C.3 Performance of recovering insertions 104

C.4 Additional results including error bars 106

Bibliography 109

Vita 123

xi

List of Tables

2.1 The performance comparison on a CEU NA12878 data set se-
quenced using the 454 platform in the 1000 Genomes Project. 27

2.2 The performance comparison on a simulated data set for ge =
0.04. 31

2.3 The performance comparison on a simulated data set for ge =
0.08. 32

3.1 Performance comparison of different methods for varied diver-
sities (div) on simulated data. 54

3.2 Performance comparison of different methods for varied error
rates (err) on simulated data. 56

3.3 Performance comparison of different methods for varied cover-
ages (cov) on simulated data. 58

3.4 Running time comparisons (sec). 59

3.5 Performance comparisons of aBayesQR, ShoRAH and Predic-
tHap on a real HIV-1 5-virus-mix data set. 61

4.1 Performance of estimating deletion. 85

4.2 Performance comparisons of TenSQR, aBayesQR and Predic-
tHap on a real HIV-1 5-virus-mix data. 88

A.1 Performances comparison of aBayesQR with different parameter
η for varied diversities div on simulated data. 100

C.1 Runtime comparison of majority voting and gradient descent. 103

C.2 Performance of recovering insertions. 106

xii

List of Figures

2.1 Procedure of propagating particles in deterministic sequential
Monte Carlo. Each of K particles at step t − 1 is propagated
to L possible states at step t. Among K ×L possible particles,
only K particles with the highest weight are selected. 17

2.2 Information about heterozygous sites provided by paired-end
reads and organized in the observation matrix X. Erroneous
base characters are highlighted in red font. 19

3.1 Procedure of sequential Bayesian inference in step t 44

4.1 An illustration of the tensor factorization representation of the
viral quasispecies assembly problem. 69

4.2 Performance comparison of TenSQR, aBayesQR, ShoRAH, Vi-
QuaS and PredictHaplo in terms of Recall, Precision, Predicted
Proportion (PredProp), Reconstruction Rate (ReconRate) and
JSD on the simulated data with ε = 2× 10−3 for a mixture of
(a) 5 viral strains and (b) 10 viral strains. (For the plots that
include error bars, please see the corresponding Figure C.2 in
Appendix C.) . 81

4.3 Performance comparison of TenSQR, aBayesQR, ShoRAH, Vi-
QuaS and PredictHaplo in terms of Recall, Precision, Predicted
Proportion (PredProp), Reconstruction Rate (ReconRate) and
JSD on the simulated data with ε = 7× 10−3 for a mixture of
(a) 5 viral strains and (b) 10 viral strains. (For the plots that
include error bars, please see the corresponding Figure C.3 in
Appendix C.) . 82

C.1 Performance comparison of TenSQR and AltHap in terms of
Recall, Precision, Reconstruction Rate (ReconRate) and JSD
on the simulated data with ε = 2×10−4 for a mixture of 5 viral
strains. 105

C.2 Performance comparison of TenSQR, aBayesQR, ShoRAH, Vi-
QuaS and PredictHaplo in terms of Recall, Precision, Predicted
Proportion (PredProp), Reconstruction Rate (ReconRate) and
JSD on the simulated data with ε = 2× 10−3 for a mixture of
(a) 5 viral strains and (b) 10 viral strains. 107

xiii

C.3 Performance comparison of TenSQR, aBayesQR, ShoRAH, Vi-
QuaS and PredictHaplo in terms of Recall, Precision, Predicted
Proportion (PredProp), Reconstruction Rate (ReconRate) and
JSD on the simulated data with ε = 7× 10−3 for a mixture of
(a) 5 viral strains and (b) 10 viral strains. 108

xiv

Chapter 1

Introduction

Genetic variations predispose individuals to hereditary diseases, play

important role in the development of complex diseases, and impact drug

metabolism. In diploid organisms, genomes are organized into pairs of chro-

mosomes, one inherited from each of the parents. Single Nucleotide Polymor-

phism (SNP), the most common form of genetic variations, refers to an event

where the bases (A,C,G,T) in a specific position of the chromosomes in a pair

differ from each other. For humans, SNPs occur on average once in 300 bases

[45]. The position where the chromosomes in a pair have the same base is

called a homozygous site; otherwise, it is called a heterozygous site. The full

information about the DNA variations in the genome of an individual is given

by haplotypes, the ordered lists of single nucleotide polymorphisms (SNPs) lo-

cated on chromosomes. Haplotype information has been of great importance

for studies of human diseases and effectiveness of drugs [33], which motivated

considerable efforts towards developing methods for haplotype identification

and analysis.

In recent years, inferring haplotype information has been enabled by

next-generation sequencing technologies, where a genome is sampled by a large

1

collection of pairs of short reads whose relative positions are determined by

mapping to a reference genome. The goal of haplotype assembly is to re-

construct haplotype sequences from the collection of reads randomly sampled

from two chromosomes of an individual genome. However, haplotype assembly

is a challenging problem due to the limited information about the SNP sites

provided by short reads and inherent randomness of the sequencing process.

While the information of haplotype, i.e., an ordered collection of DNA

sequence variations, is invaluable for studies of the genetics of common dis-

eases, a number of potentially life-threatening infectious diseases are caused

by RNA viruses, including human immunodeficiency virus (HIV), hepatitis C

virus (HCV), influenza, Ebola and Zika. The RNA viruses are characterized

by high mutation rates that lead to new viral strains by means of point muta-

tions, insertions and deletions. The resulting population of closely related yet

non-identical viral genomes is known as a viral quasispecies [41]. Genetic het-

erogeneity of such viral populations enables the virus to adapt and proliferate

in dynamically changing environments, e.g. over the course of an infection [15].

Therefore, determining the genetic structure of viral quasispecies is of impor-

tance for effective antiviral vaccine designs and the development of therapeutic

treatments for viral diseases.

Quasispecies Spectrum Reconstruction (QSR) aims to reconstruct an

a priori unknown number of viral sequences in a quasispecies and estimate

their relative frequencies. To this end, QSR methods typically employ the fol-

lowing steps: (1) clustering together sequencing reads that originate from the

2

same strain; (2) reconstructing the strains using the clustered reads; and (3)

determining relative frequencies of the reconstructed strains based on the cor-

responding cluster sizes [13]. High-throughput sequencing (HTS) technologies

have in principle enabled unprecedented studies of quasispecies populations.

However, their precise reconstruction remains difficult due to the presence of

sequencing errors and limited length of HTS reads. The QSR problem is par-

ticularly challenging when the frequencies of strains in a viral population are

highly imbalanced, i.e., the quasispecies contains both strains having high and

those having low abundances, and is further exacerbated if the genetic dis-

tances between strains are relatively small. In those settings, performance of

clustering-based QSR methods suffers from erroneous attribution of the reads

that have originated from rare strains to nearby (in terms of genetic distance)

highly abundant strains; such errors lead to failures to discover strains of low

abundancy [56] and thus may hinder the discovery of effective drug treatments

[69, 42].

Driven by the importance of precise characterization of genetic varia-

tions in medical genomics and its potentials for improving human health, the

goal of this dissertation is to study two problems: haplotype assembly and qua-

sispecies reconstruction. We focus on developing statistical and computational

algorithms that take into account the intrinsic features of those problems.

1.1 Motivation and Contributions

A. Haplotype assembly algorithm and analysis

3

Affordable high-throughput DNA sequencing technologies enable rou-

tine acquisition of data needed for the assembly of single individual haplotypes.

However, state-of-the-art high-throughput sequencing platforms generate data

that is erroneous, which induces uncertainty in the SNP and genotype call-

ing procedures and, ultimately, adversely affect the accuracy of haplotyping.

When inferring haplotype phase information, the vast majority of the existing

techniques for haplotype assembly assume that the genotype information is

correct. This motivates the development of methods capable of joint genotype

calling and haplotype assembly.

We present a haplotype assembly algorithm, ParticleHap [4], that relies

on a probabilistic description of the sequencing data to jointly infer genotypes

and assemble the most likely haplotypes. Our method employs a deterministic

sequential Monte Carlo algorithm that associates single nucleotide polymor-

phisms with haplotypes by exhaustively exploring all possible extensions of

the partial haplotypes. The algorithm relies on genotype likelihoods rather

than on often erroneously called genotypes, thus ensuring a more accurate

assembly of the haplotypes. The achievable performance of the algorithm is

analyzed. Results on both the 1000 Genomes Project experimental data as

well as simulation studies demonstrate that the proposed approach enables

highly accurate solutions to the haplotype assembly problem while being com-

putationally efficient and scalable, generally outperforming existing methods

in terms of both accuracy and speed.

B. Algorithms for quasispecies reconstruction

4

RNA viruses replicate with high mutation rates, creating closely related

viral populations. The heterogeneous virus populations, referred to as viral

quasispecies, rapidly adapt to environmental changes thus adversely affecting

efficiency of antiviral drugs and vaccines. Therefore, studying the underly-

ing genetic heterogeneity of viral populations plays a significant role in the

development of effective therapeutic treatments. Recent high-throughput se-

quencing technologies have provided invaluable opportunity for uncovering the

structure of quasispecies populations. However, sequencing errors and limited

read lengths render the problem of reconstructing the strains and estimat-

ing their spectrum challenging. The problem is particularly challenging when

the strains in a population are highly similar, i.e., the sequences are charac-

terized by low mutual genetic distances, and further exacerbated if some of

those strains are relatively rare due to generally non-uniform frequencies of

the strains; this is the setting where state-of-the-art methods struggle.

Motivated by those challenges, we present two algorithms that focus

on reconstruction of viral population characterized by low diversity and im-

balanced frequencies of strains. The first viral quasispecies reconstruction

algorithm, aBayesQR [5], employs a maximum-likelihood framework to infer

individual sequences in a mixture from high-throughput sequencing data. The

search for the most likely quasispecies is conducted on long contigs that our

method constructs from the set of short reads via agglomerative hierarchical

clustering; operating on contigs rather than short reads enables identification

of close strains in a population and provides computational tractability of the

5

Bayesian method. Results on both simulated and real HIV-1 data demonstrate

that the proposed algorithm generally outperforms state-of-the-art methods;

aBayesQR particularly stands out when reconstructing a set of closely related

viral strains (e.g., quasispecies characterized by low diversity).

The second algorithm, TenSQR, utilizes tensor factorization framework

to analyze high-throughput sequencing data and reconstruct viral quasispecies

characterized by highly uneven frequencies of its components. Fundamentally,

TenSQR performs clustering with successive data removal to infer strains in

a quasispecies in order from the most to the least abundant one; every time

a strain is inferred, sequencing reads generated from that strain are removed

from the dataset. The proposed successive strain reconstruction and data

removal enables discovery of rare strains in a population and facilitates detec-

tion of deletions in such strains. Results on simulated datasets demonstrate

that TenSQR can reconstruct full-length strains having widely different abun-

dances, generally outperforming state-of-the-art methods at diversities 1-10%

and detecting long deletions even in rare strains. A study on a real HIV-1

dataset demonstrates that TenSQR outperforms competing methods in exper-

imental settings as well. Finally, we apply TenSQR to analyze a Zika virus

sample and reconstruct the full-length strains it contains.

1.2 Organization

The rest of the dissertation is organized as follows. Chapter 2 presents

an algorithm for haplotype assembly and analysis of achievable performance.

6

Chapter 3 presents an algorithm to reconstruct viral quasispecies character-

ized by low diversity using agglomerative hierarchical clustering and Bayesian

inference. Chapter 4 presents another algorithm for reconstruction of viral

quasispecies when the frequencies of strains in a quasispecies are highly imbal-

anced. Chapter 5 summarizes the ideas of this dissertation and suggest future

research directions fueled by the work presented in previous chapters.

7

Chapter 2

Haplotype assembly and its Analysis

2.1 Background and Related Works

Increased affordability of high-throughput DNA sequencing has enabled

studies of genetic variations and of the effects they have on health and medi-

cal treatments. In diploid organisms, such as humans, chromosomes come in

pairs. The chromosomes in a pair of autosomes are homologous, i.e., they have

similar composition and carry the same type of information but are not iden-

tical. The most common type of DNA sequence variation is a single nucleotide

polymorphism (SNP), where a single base in the genome differs between in-

dividuals or paired chromosomes. Each of those variants is referred to as an

allele; a SNP has at least two different alleles. If the two alleles at a SNP site

are same, the SNP site is homozygous; if they are different, it is heterozygous.

SNP calling is concerned with identification of the locations and types of such

alleles, and is followed by genotype calling to decide the genotypes associated

with the locations of the detected SNPs. Accurate SNP and genotype calling

are challenging due to uncertainties caused by base calling and read alignment

errors. The low-to-medium coverages typical of large-scale sequencing projects

are often associated with erroneous SNP and genotype calling [54]. As an il-

lustration, in the low-coverage (2−6×) 1000 Genomes Project pilot, the geno-

8

type accuracy at heterozygous sites was 90% for the lowest allele frequencies

(minor allele frequency (MAF)< 3%), 95% for the intermediate frequencies

(MAF 50%), and 70 − 80% for the highest frequency variants (MAF> 97%)

[20].

SNP and genotype calling do not assign alleles to specific chromosomes

in the pairs. Such detailed information is provided by haplotypes, ordered col-

lections of SNPs on the chromosomes. Haplotypes have been of fundamental

importance for the studies of human diseases and effectiveness of drugs [33].

The International Haplotype Map Project’s pursuit of developing a haplotype

map of the human genome reflects the significance of acquiring and under-

standing haplotype information [21]. Haplotype inference typically refers to

the task of reconstructing haplotypes from the genotype samples of a popula-

tion. Haplotype assembly, or single individual haplotyping, aims to reconstruct

single individual haplotypes from high-throughput sequencing data. Since the

SNP sites are assumed to be bi-allelic (i.e., each SNP site contains one of only

two possible nucleotides), the alleles are labelled as 0 and 1 and the haplotypes

are represented by binary sequences. Therefore, haplotype assembly is often

cast as the problem of phasing two binary sequences from their short samples

(i.e., reads) that are represented by ternary strings (where the third symbol

denotes missing information). Majority of the existing haplotype assembly

algorithms rely on this formulation of the problem [67].

Several haplotype assembly criteria and algorithms to optimize them

were considered in [38, 48]. The minimum error correction (MEC) criterion,

9

in particular, has received a considerable amount of attention and has been

broadly used in practice. Most of the haplotype assembly problem formulations

have been shown to be NP-hard [38, 48, 19], which has motivated numerous

computationally efficient heuristic solutions [67]. FastHare, proposed in [1],

was an early heuristic method that was followed by several approximate tech-

niques in [43, 17]. In [81, 74], the use of clustering approaches for splitting

reads into two sets, each associated with one chromosome in a pair, was pro-

posed. In addition to the approximate methods, several algorithms that search

for the exact solution to the MEC formulation of the problem were developed,

including the branch-and-bound technique in [73]. However, as argued in [30],

the exact algorithms are often infeasible in practice; the approach in [10] based

on the Markov Chain Monte Carlo (MCMC) method, HASH, also incurs high

computational cost while being more accurate than heuristics. As a follow-up

to HASH, [9] presented a significantly faster heuristic algorithm, HapCUT,

suffering only a minor loss of accuracy. To minimize the MEC score, HapCUT

iteratively computes the max-cut in a graph that represents the assembly

problem. In [26], another max-cut based heuristic, ReFHap, was proposed;

ReFHap relies on a different graph structure to achieve higher speed while

maintaining accuracy similar to that of HapCUT. Other methods include a

dynamic programming solution in [32]; a method that solves an appropriate

integer linear program [18]; and several other heuristics including [22], H-BOP

[77], HMEC [12], and HapCompass [2, 3].

A probabilistic framework for haplotype assembly was first introduced

10

in [45]. There, in order to deal with inherently random errors in sequenc-

ing data, the probability that a site in the fragments is incorrectly sequenced

is defined for each of the four nucleotide bases. The most likely haplotype

phases between SNP sites are determined using joint posteriori probabilities

whose calculation is limited to two or three adjacent SNPs due to the in-

tensive computational cost that grows exponentially in the number of SNP

sites. The locally estimated haplotype segments are linked if the correspond-

ing confidence levels exceed a certain threshold. In the follow-up work [75],

reconstruction of longer haplotype segments using the Gibbs sampling proce-

dure was enabled. However, this iterative approach still first assembles short

haplotype segments that are then connected, and requires runtimes infeasi-

ble for block lengths typically encountered in practice. More recently, [52]

proposed a new probabilistic mixture model, MixSIH, which leads to a more

efficient computation of the haplotype likelihoods than those in [45, 75]. How-

ever, MixSIH is still about 10-fold slower than either HapCUT [9] or ReFHap

[26] while having comparable accuracy, and the model there is restricted to

the bi-allelic representation.

Increasing the number of reads covering each SNP position, so-called

sequencing coverage, enables improving the accuracy of haplotype assembly.

However, this also increases the sequencing cost and decreases the speed of

haplotype assembly. Recently, [68] studied the problem from an information-

theoretic perspective, presenting lower bounds of the number of reads required

for near-perfect haplotype assembly. Furthermore, [37] derived optimal bounds

11

for near-perfect reconstruction by connecting the haplotype assembly problem

with that of decoding convolutional codes.

It is worth pointing out that most of the existing algorithms for haplo-

type assembly allow no more than two alleles at a SNP site and only deal with

the errors caused by substitutions between those two alleles. In practice, when

sequencing errors lead to reads that report more than two alleles at a SNP site,

either all of the tri- or tetra-allelic sites are discarded [43, 9] or the alleles that

do not match the reference (or its alternative) are thrown away [2, 3]. The for-

mer drastically reduces not only the number of SNP sites to be reconstructed

but also the chance of reliable full haplotype reconstruction (due to reducing

the length of already short reads). The main drawback to the latter is that

by fully trusting genotype information provided by SNP/genotype calling, the

true haplotypes may be incorrectly reconstructed when the genotype calling

is erroneous (i.e., when alleles corresponding to an incorrect genotype are pre-

served while the alleles corresponding to the true genotype are discarded).

In this chapter, we present a novel method that relies on a probabilistic

model of the data to incorporate genotype calling in the haplotype assembly

procedure [4]1. Unlike [45, 75], the proposed method infers both the most

likely genotypes and haplotype phases by examining the complete set of SNP

loci in a computationally efficient manner. To this end, we employ the se-

1This work has been published as [Soyeon Ahn and Haris Vikalo. Joint haplotype as-
sembly and genotype calling via sequential monte carlo algorithm. BMC bioinformatics,
16(1):223, 2015]. The author of this dissertation is the primary contributor.

12

quential Monte Carlo (SMC) algorithm (i.e., a particle filter). Particle filters

are capable of sequentially estimating the posterior density of unknown vari-

ables by representing them with a set of particles and associated weights [7].

When the solution space is discrete and finite, a deterministic form of SMC

can be derived [29, 61]; this has been exploited for solving various problems

in genomics [46, 47]. Noting that the set of possible haplotype pairs is dis-

crete and finite, we develop a modified deterministic sequential Monte Carlo

(DSMC) method for solving the haplotype assembly problem. Our algorithm,

ParticleHap, relies on the 2nd-order Markov model of the haploype sequence

to search for the most likely association of the SNPs to haplotypes. Phasing of

the SNPs is done sequentially: the posteriori probability of a partial haplotype

comprising n SNPs is calculated using the read information about the SNP

in the nth position of the haplotype sequence and the posteriori probability of

the previously inferred (n− 1)-bases long partial haplotype. By working with

SNP calls rather than their binary representations (the latter is typically used

by state-of-the-art haplotype assembly algorithms), ParticleHap can reliably

infer the most likely genotypes. The performance analysis of ParticleHap is

followed. Our extensive computational studies demonstrate that the proposed

scheme is more accurate and computationally more efficient than state-of-the-

art methods in [9, 26].

2.2 ParticleHap: Joint haplotype assembly and geno-
type calling algorithm

13

2.2.1 Problem formulation

In our model and the subsequently proposed haplotype assembly algo-

rithm, we focus on the SNP sites where two or more alleles are observed. The

sites with only one observed allele are declared homozygous and not used for

the assembly. Assume there are m paired-end short reads covering n remain-

ing SNP sites. Such data can be represented by an m × n matrix where the

rows contain information provided by the reads while the columns correspond

to the SNP sites.

By adopting the notation used in [45, 75], let X with elements Xij =

xij, xij ∈ B, be the matrix of potentially erroneous observations, while Y with

entries Yij = yij, yij ∈ A, denote the corresponding error-free data matrix,

1 ≤ i ≤ m, 1 ≤ j ≤ n, A = {A,C,G,T} and B = {A,C,G,T,−}. Here −

denotes a gap, i.e., a site not covered by a read or an ambiguous base-call.

Let a 2 × n matrix S with entries Skj = skj, skj ∈ A, k ∈ {1, 2}, denote the

true haplotype pair, and let us collect the indicators of the origin of the reads,

fi ∈ {0, 1}, 1 ≤ i ≤ m, into a vector F. With this notation, the true bases

relate to the true haplotypes as Yij = Sfi,j, where 1 ≤ i ≤ m, 1 ≤ j ≤ n.

We assume that the composition probabilities Pr(Skj = s), s ∈ A, at each

SNP position are mutually independent and constant across haplotypes. The

measurement model is given by Pr(Xij = xij|Yij = yij), yij ∈ A, xij ∈ B. A

sequencing error occurs when the true base Yij = yij is misread as Xij = xij,

xij 6= yij. Note that the posteriori probability p(S|X) can be computed from

14

p(S,X) and p(X) =
∑
S

p(S,X) using the Bayes’ rule, where

p(S,X) =

(
1

2

)m n∏
j=1

p(S1j)
n∏
j=1

p(S2j)

×
m∏
i=1

[
n∏
j=1

p(Xij | S1j) +
n∏
j=1

p(Xij|S2j)

]
.

We assume that each read is generated from one of the two haplotypes with

probability 1
2
, i.e., Pr(fi = 0) = Pr(fi = 1) = 1

2
.

2.2.2 ParticleHap algorithm

Following the adopted notation, the goal of haplotype assembly is to

determine matrix S from the observation matrix X. A Bayesian approach

to solving this problem involves maximization of the posteriori distribution

p(S|X). Let S·j and X·j denote the jth column vectors of S and X, respec-

tively, and let us define S1:t = {S·1, S·2, · · · , S·t} and X1:t = {X·1, X·2, · · · , X·t}.

Recursive Bayesian estimation (i.e., Bayesian filtering) is concerned with recur-

sively finding the conditional probability density function p(S1:t|X1:t). Having

obtained the estimate p̂(S1:t|X1:t), we can determine the most likely S1:t. How-

ever, finding an analytical form of this probability density function is often

infeasible, as is the case for the haplotype assembly problem.

Sequential Monte Carlo (SMC), often referred to as particle filtering

[7], describes p(S1:t|X1:t) using a set of discrete points (particles) and their

corresponding weights. SMC can be interpreted as the dynamical system

which, in the context of haplotype assembly, comprises the initial state model

15

p(S·1), state transitions model p(S·t|S·t−1) and measurement model p(X·t|S·t).

The distribution p(S1:t|X1:t) can be propagated using an importance sampling

technique where samples from a proposal density q(S1:t|X1:t) are generated and

appropriately weighted. Having drawn K samples {S(1)
·t , S

(2)
·t , · · · , S

(K)
·t } from

q(S1:t|X1:t) and assigned them weights w
(k)
t , p(S1:t|X1:t) can be approximated

by

p̂(S1:t|X1:t) =
1

Wt

K∑
k=1

w
(k)
t δ(S1:t − S

(k)
1:t), w

(k)
t =

p(S1:t|X1:t)

q(S1:t|X1:t)
, (2.1)

where Wt =
K∑
k=1

w
(k)
t and δ(·) is an indicator function, i.e., δ(s − s0) = 1 for

s = s0 and δ(s− s0) = 0 otherwise. The weight w
(k)
t can be further derived as

[7]

w
(k)
t ∝ w

(k)
t−1p(X·t | S

(k)
·t−1)

∝ w
(k)
t−1

L∑
l=1

p(X·t | S·t = sl)p(S·t = sl | S(k)
·t−1).

In the traditional SMC, the set {(S(k)
1:t , w

(k)
t), k = 1, · · · , K} is recursively gen-

erated from the previous set of properly weighted samples {(S(k)
1:t−1, w

(k)
t−1), k =

1, · · · , K} by using the optimal proposal distribution q(S·t|S(k)
1:t−1,X1:t) =

p(S·t|S(k)
1:t−1,X1:t),

q(S·t = sl|S(k)
1:t−1,X1:t) ∝ p(X·t|S·t = sl)p(S·t = sl|S(k)

·t−1).

In contrast to the conventional SMC, the deterministic sequential Monte

Carlo (DSMC, [29, 61]) explores all possible states in each step of the recur-

sive procedure. In particular, each particle at step t − 1, S
(k)
·t−1, k = 1, · · · , K,

16

Figure 2.1: Procedure of propagating particles in deterministic sequential
Monte Carlo. Each of K particles at step t − 1 is propagated to L possi-
ble states at step t. Among K × L possible particles, only K particles with
the highest weight are selected.

is propagated to L possible states at step t instead of being propagated to

a single particle, where L denotes the number of possible extensions of the

partially reconstructed haplotype sequence in our haplotype assembly prob-

lem. Maintaining and further propagating all such particles would inevitably

increase their number exponentially; to remedy this problem, in each step only

K particles with the highest weights among KL possible particles are selected.

Then, given a set {(S(k)
1:t−1, w

(k)
t−1), k = 1, . . . , K} that does not contain dupli-

cate paths, (2.1) and Bayes’ theorem lead to an approximation of the posterior

distribution of S1:t

p̂DSMC(S1:t|X1:t) =
1

WDSMC
t

K∑
k=1

L∑
l=1

w
(k,l)
t δ(S1:t − [S

(k)
1:t−1 sl]),

where WDSMC
t =

∑
k,i

w
(k,l)
t and [S

(k)
1:t−1, sl] is obtained by appending the state sl

to S
(k)
1:t−1. Each weight w

(k,l)
t is calculated as

w
(k,l)
t ∝ w

(k)
t−1p(X·t|S·t = sl)p(S·t = sl|S(k)

·t−1). (2.2)

17

The procedure is continued until obtaining S
(k)
1:n = (S

(k)
1:n−1, S

(k)
·n) and its corre-

sponding weights. Figure 2.1 illustrates the procedure of propagating particles

in the DSMC. Each of K particles at step t − 1 is propagated to L possible

states at step t. Among K × L possible particles, only K particles with the

highest weight are selected.

The conditional distribution p(X·t|S·t = sl) in the DSMC weight up-

dates (2.2) reflects dependence of X·t on the current state S·t only, and does

not include the phase information between nearby SNP sites (note that it does

enable detection of the most likely genotypes at the tth site). To incorporate

the phasing information, we extend the representation of the particle trajec-

tories to the 2nd-order Markov model. In particular, we modify (2.2) so that

the weight updates in our ParticleHap depend on the history of the state and

the observation at t− 1 as well as on the current state,

w
(k,l)
t ∝ w

(k)
t−1p(X·t|S·t = sl, S

(k)
·t−1, X·t−1)p(S·t = sl|S(k)

·t−1, X·t−1), (2.3)

where sl = (sl1 , sl2), l = 1, . . . , L. In particular, at step t, ParticleHap exam-

ines potential extensions of the partially reconstructed haplotype by adding a

single SNP site, which requires no more than 12 likelihood calculations – one

for each possible heterozygous pair (sl1 , sl2) at site t, with 12 such pairs when

there are 4 different bases in the tth column of X.

While the conditioning on S
(k)
·t−1 and X·t−1 in p(X·t|S·t = sl, S

(k)
·t−1, X·t−1)

in (2.3) introduced phase information between SNPs in positions t − 1 and

t, there remains a major challenge for reconstruction of unknown haplotype

18

Figure 2.2: Information about heterozygous sites provided by paired-end reads
and organized in the observation matrix X. Erroneous base characters are
highlighted in red font.

due to gaps in the data matrix X. Even with the previously described 2nd-

order Markov model of particle trajectories, phase information between two

consecutive SNP sites cannot be retrieved using a read that is not covering both

of those sites. For example, in Figure 2.2, column t+ 2 contains 5 informative

entries (i.e., entries which are not −). However, 2 of them belong to the

reads which do not cover the SNP in the position t + 1, i.e., are immediately

preceded by −, and thus do not contribute to the phase information if the

weights are computed according to (2.3). To this end, we modify (2.3) so that

the information spread across gaps within paired-end reads can be utilized for

generating particle trajectories. In particular, let us introduce a new variable

19

Post = {posti, i = 1, · · · ,m, posti ∈ {0, 1, 2, · · · , t}}, where posti is the nearest

informative (non-gap) position in the ith row left of the column t; note that

post+1
i = posti if Xi,t+1 = −. Also, note that post−1

i = 0 implies that there are

no informative positions in the ith row left of the column t (i.e., Xij = − for

all j ≤ t− 1). With this notation, we rephrase (2.3) as

w
(k,l)
t ∝ w

(k)
t−1pθ(X·t|S·t = sl, S

(k)

·Post−1 , X·Post−1)

× pθ(S·t = sl|S(k)

·Post−1 , X·Post−1). (2.4)

The measurement model in (2.4) assumes that the ith read is randomly gen-

erated from one of the two haplotypes, i.e.,

p(X·t|S·t = sl, S
(k)

·Post−1 , X·Post−1) =
m∏

i=1,xit 6=−

p(Xi,t|S·t = sl, S
(k)

·post−1
i

, Xi,post−1
i

),

where

pθ(Xi,t|S·t = sl, S
(k)

·post−1
i

, Xi,post−1
i

)

=


p(xit|sl1), if Xi,post−1

i
= S

(k)

1,post−1
i

,

p(xit|sl2), if Xi,post−1
i

= S
(k)

2,post−1
i

p(xit|sl1)+p(xit|sl2)

2
, otherwise.

(2.5)

When computing p(S·t = sl|S(k)

·Post−1 , X·Post−1), we assume that there is no cor-

relation between the consecutive SNPs. Therefore, the state transition distri-

bution is formed using composition probabilities, e.g., p(S·t = sl|S(k)

·Post−1 , X·Post−1)

= Pr(S1t = sl1)Pr(S2t = sl2). Note that, in principle, side information such

as genotype frequencies or the patterns of linkage disequilibrium (LD) can be

incorporated in state transition probabilities.

20

Going back to the example illustrated in Figure 2.2, the modification

of the weights shown in (2.4) now allows ParticleHap to retrieve phase infor-

mation at position t+2 from the reads (highlighted in orange) that have a gap

in position t+ 1 but cover some SNPs in the positions left of the (t+ 1)st one.

This often has a beneficial effect on the switch error rate, defined as the ratio

of the number of SNP positions where the two chromosomes of a resulting

haplotype phase must be switched in order to reconstruct the true phase. As

an illustration, consider column t in the observation matrix shown in Figure

2.2. Since none of the reads that cover SNPs at column t provide any phasing

information, the partially reconstructed haplotype pair would equally likely

be extended by either (C,G) or (G,C) which might lead to the switch error

at the position t. This ambiguity is resolved at position t + 2 from the reads

i1 = 4 and i2 = 13 (highlighted in orange), which do not cover sites t+1, t nor

t − 1, but do cover sites 4 and 1, respectively: ParticleHap relying on those

reads in (2.4)-(2.5) will assign larger weight to the particle propagated along

the correct state path.

To initialize the algorithm at t = 1 from k possible SNPs, all possi-

ble assignments are considered as S
(k)
·1 , k = 1, . . . , K, with the corresponding

weights w
(l)
1 , l = 1, . . . , L, computed as w

(l)
1 ∝ p(X·1|S(l)

·1 = sl). From t = 2,

all possible extensions of the (t − 1)-long haplotype are considered, and the

extensions having non-zero weights are used to generate particles until K such

particles are created. Once the set of K particles is formed, the subsequently

generated particles are included in the set if their weight is greater than the

21

weight of at least one particle that is already in the set; the latter then needs

to be excluded from the set so that its cardinality remains K.

The ParticleHap algorithm is formalized below.

Step 1 (Initialization): For the first SNP position, compute w
(l)
1 ∝ p(X·1|S(l)

·1 =

sl), l = 1, . . . , L. Normalize w
(l)
1 and store the corresponding possible haplo-

type pairs in S
(k)
·1 , k = 1, 2, · · · , K.

Step 2 (Run iterations for 2 ≤ t ≤ n): For each step t, t = 2, . . . , n, enumerate

all possible extensions of the existing particles S
(k)
·t−1, thus generating S

(k,l)
·t =

[S
(k)
·t−1, sl], l = 1, · · · , L. For all l, compute the weights w

(k,l)
t using (2.4).

Step 3 (Particle selection): Select and store K particles {S(k)
·t , k = 1, · · · , K}

with the highest importance weights {w(k)
t , k = 1, . . . , K} from the set {S(k,l)

·t ,

w
(k,l)
t , k = 1, . . . , K, l = 1, . . . , L}. Normalize the weights of the selected parti-

cles. Go back to Step 2 and repeat until t = n.

Step 4 (Haplotype reconstruction): At t = n, assemble the entire haplotype

sequence by selecting the particle with the largest weight.

2.2.3 Complexity analysis of ParticleHap

Since ParticleHap searches for the most likely haplotypes by sequen-

tially extending the partially reconstructed candidate haplotypes one position

at a time, it is computationally very efficient and has complexity that scales

linearly with the haplotype length, O(n). On average, the amount of calcula-

tions needed for haplotype assembly with ParticleHap is nKLaCa, where Ca

22

denotes the average number of bases covering heterozygous sites and La de-

notes the average number of possible extensions of the partially reconstructed

haplotype at a heterozygous SNP site. It is worth pointing out that while

there are in principle 12 possible SNP pairs of (sl1 , sl2) at one site, the 3rd or

4th most frequently reported nucleotides are never selected as potential SNPs’

genotypes based on the likelihood calculations. Therefore, ParticleHap can be

implemented even more efficiently by retaining the two (or three in the case of

ties) most frequently observed nucleotides at each site while the others, which

are considered errors, are replaced by −; this step can significantly reduce

the amount of likelihood calculations without compromising the accuracy of

computing the most likely genotype.

2.2.4 Performance analysis of ParticleHap

We evaluate the performance of ParticleHap by deriving an expression

for the probability of error. Let cj be the number of observed entries in the

jth column of X, X·j. ParticleHap assigns SNPs to haplotypes sequentially,

one at a time, depending on the history of the state as well as observations.

Thus, the haplotyping error occurring at any given SNP position can prop-

agate to the following sites, which leads to position dependent haplotyping

error probabilities. Let EŜ·j be the event that ParticleHap falsely estimates

the state (haplotype phase) at the jth SNP position. Then, the probability

that ParticleHap recovers haplotype sequences of length n with errors at Ne

SNP positions follows a Poisson binomial distribution with parameters n and

23

P(EŜ·j).

Pe(Ne = d) =
∑
D∈Ed

∏
i∈D

P(EŜ·i)
∏
j∈Dc

(1−P(EŜ·j)), (2.6)

where Ed is the set of all subsets of d integers selected from {1, · · · , n}. There-

fore, the probability that ParticleHap assembles haplotype sequences with er-

rors at less than Ne SNP positions is
Ne∑
d=0

Pe(d).

Let Ecj denote the event where an estimate of the jth state from (2.5)

is wrong. Then, EŜ·j happens when Ecj occurs in more than half of the reads

covering the jth SNP position. Thus, assuming the independence of the events

Ecj , P(EŜ·j) is approximated as

P(EŜ·j) ≈
cj∑

j=b
cj
2
c+1

(cj
j

)
P(Ecj)

j(1−P(Ecj))
cj−j +

1

2

(
cj
cj
2

)
e

cj
2 (1− e)

cj
2 mod(cj, 2)

where e denotes sequencing error rate. As implied by (2.5), the event Ecj

depends on the information from both the observation and partially inferred

haplotype. Thus, Ecj occurs when the information from one of them is false.

Let Eχ denote the event where the observation is erroneous. Then, Eχ occurs

when either an observed entry in X·j or the corresponding informative entry

in the same row left of the jth column (e.g., Xi,posj−1
i

in (2.5)) is erroneous due

to a sequencing error. Note that if both are erroneously flipped, Ec
χ happens.

Therefore,

P(Ecj) = P(Eχ|Ec
Ŝ·j−1

)P(Ec
Ŝ·j−1

) + P(Ec
χ|EŜ·j−1

)P(EŜ·j−1
)

(a)
≈ 2e(1− e)(1−P(EŜ·j−1

)) + ((1− e)2 + e2)P(EŜ·j−1
).

where (a) comes from the fact that Ŝ·j−1 depends on Xi,posj−1
i

. Note that,

following the derivations, the probability of error of ParticleHap in (2.6) mostly

24

depends on the coverage at each site cj, j = 1, · · · , n, and sequencing error rate

e.

2.2.5 Postprocessing

We can further improve the accuracy of assembled haplotypes by pool-

ing the information obtained from multiple runs of ParticleHap whose perfor-

mance may be affected by the choice of the starting position. In particular,

we also run the algorithm in the opposite direction, e.g., perform sequential

Monte Carlo reconstruction of the most likely haplotype starting from the site

t = n and terminating the algorithm at the site t = 1. For the sites where

the haplotype pairs reconstructed by the two runs of ParticleHap differ from

each other, we compare the likelihoods of the solutions (i.e., we compare the

weights in (2.4)) and choose the one with larger likelihood. In case the sites

are consecutive, we compare MEC scores for the two cases and choose the one

with smaller MEC.

2.3 Results and discussion

We implemented ParticleHap in C and compared its performance with

the publicly available implementations of HapCUT [9] and ReFHap [26]. All

three methods are run on a Linux OS desktop with 3.06GHz CPU and 8Gb

RAM (Intel Core i7 880 processor). Both real and simulated data are used for

the experiments, as described in the remainder of this section.

25

2.3.1 1000 Genome Project data

We first study the performance of ParticleHap on 454 sequencing data

of CEU NA12878 genome (1000 Genomes Pilot Project [20]). The short-read

data aligned with respect to a reference genome as well as variant and genotype

calls for the individual are provided. The data contains a total of 2.58 million

reads covering 1.65 million variants on 22 chromosomes. Due to the short

lengths of reads and limited insert sizes, the data is split into a number of

disconnected blocks. We use ParticleHap to reconstruct each such block.

To evaluate the performance of haplotype assembly, we adopt three

measures: the number of phased SNPs (nPhased), the minimum error correc-

tion (MEC) score, and running time (Time). In particular, nPhased is the

number of SNPs phased by a haplotype assembler; MEC score is the smallest

number of entries in the data matrix which need to be changed so that the

sequencing information is consistent with an error-free haplotype pair (we re-

port the total MEC score evaluated as the sum of the MEC scores obtained for

each haplotype block); and, Time is the runtime of an algorithm in seconds,

measured for each algorithm on the same processor.

We choose a different number of particles K for each block. Specifically,

the longer the block length n, the larger the number of particles (12 for n ≤ 12,

n
2

for 12 < n < 100, and 50 for n ≥ 100). We assume that the bases in

the sequence are equally likely, i.e., the composition probabilities of the 4

nucleotides are equal, 0.25. Note that we assume the error rate e = 0.01,

which is consistent with the typical sequencing accuracy of the 454 platform.

26

Table 2.1: The performance comparison on a CEU NA12878 data set se-
quenced using the 454 platform in the 1000 Genomes Project.

ParticleHap HapCUT ReFHap
chr nPhased MEC Time(s) nPhased MEC Time(s) nPhased MEC Time(s)
1 66661 2045 1.07 66616 2293 28.03 66490 2111 5.79
2 78002 2742 1.11 77970 2857 35.71 77853 2698 7.78
3 66217 2111 3.96 66178 2349 29.50 66071 2203 6.20
4 69939 2386 3.94 69901 2591 37.16 69786 2410 9.01
5 63723 1971 4.75 63693 2156 28.06 63605 2044 6.00
6 69750 3312 5.25 69706 3544 58.60 69580 3318 13.39
7 54330 1867 3.31 54302 2059 27.23 54202 1908 7.19
8 56406 1700 3.89 56382 1828 25.87 56281 1690 5.60
9 42244 1335 2.15 42230 1472 20.02 42157 1365 4.52
10 50022 1618 2.73 49998 1814 23.44 49900 1662 5.22
11 46141 1411 2.72 46124 1569 21.66 46051 1467 4.89
12 43333 1467 2.32 43315 1581 20.00 43251 1495 3.92
13 36952 1286 0.68 36937 1398 18.80 36872 1311 7.10
14 30349 887 0.38 30334 982 13.25 30293 916 2.90
15 26626 975 0.88 26614 1055 11.46 26567 968 2.60
16 31675 1156 0.87 31662 1257 14.84 31612 1185 3.98
17 21054 1206 0.59 21048 1223 11.19 21010 1172 5.35
18 28784 851 0.37 28769 936 11.94 28717 855 2.67
19 17018 653 0.25 17006 761 8.35 16961 687 4.25
20 21679 737 0.43 21673 790 9.50 21635 735 2.84
21 14737 485 0.41 14736 525 6.82 14714 500 2.09
22 12929 388 0.28 12925 433 5.38 12891 395 1.74

A comparison of the number of phased SNPs(nPhased), the MEC
scores(MEC) and running time(Time) for different haplotype assembly

algorithms, ParticleHap, HapCUT and ReFHap, on all of 22 chromosomes.
Then, the sequencing error probabilities Pr(Xij = xij|Skj = slk) = e/3 if

xij 6= slk and are equal to 1− e otherwise.

Table 2.1 shows that ParticleHap can assemble more haplotypes with

higher accuracy and better computational efficiency than HapCUT and ReFHap

(the lower the MEC score, the better the performance). Clearly, more SNP

sites are phased by ParticleHap than by either HapCUT or ReFHap (please

27

see columns 2, 5 and 8). This can be attributed to the fact that ParticleHap

processes reads containing actual base calls (i.e., the reads represented by A,

C, G, T and −, rather than the same reads being represented by their binary

post-genotype calling counterparts), thus allowing more than two nucleotides

at a site, while HapCUT and ReFHap discard some information in the process

due to relying on the simplified representation of the reads (via the ternary

alphabet with elements 0, 1 and −). It turns out that roughly 1.2 − 1.5% of

the heterozygous positions in the dataset are either tri- or tetra-allelic SNP

sites.

As can be seen from columns 3, 6 and 9, ParticleHap outperforms

HapCUT and ReFHap by consistently achieving lower MEC scores on most

of the chromosomes. Note that the MEC scores are calculated only for the

haplotype pairs phased by an algorithm; thus, the lower MEC of ReFHap

does not necessarily imply that it achieves better performance since it may

actually be phasing a smaller number of SNP sites. ParticleHap simultaneously

provides longer lengths of phased haplotypes as well as lower MEC scores,

demonstrating the high accuracy of the proposed algorithm (note that the

total number of reads and allele calls involved in the MEC calculation of

ParticleHap is larger than those for HapCUT and ReFHap). This can be

partly attributed to the fact that ParticleHap works with genotype likelihoods

and allows thorough examination of tri- or tetra-allele SNP sites, which leads

to improved genotype accuracy in situations where there are potential errors

in “hard” genotype calls used by the competing methods.

28

It is also worth pointing out that ParticleHap is designed to sequen-

tially find the maximum-likelihood solution to the haplotype assembly problem

rather than to optimize the MEC criterion while HapCUT uses MEC as its

optimization objective (the MEC score is only used to correct potential errors

in ParticleHap’s post-processing step); therefore, the superior MEC perfor-

mance of ParticleHap demonstrates the robustness of the approach. Finally,

as reported in columns 4, 7 and 10, ParticleHap assembles haplotypes sig-

nificantly faster than either HapCUT or ReFHap. In particular, ParticleHap

can complete haplotype assembly for each of the 22 chromosomes within 6

seconds, while HapCUT and ReFHap require 59 and 14 seconds for the same

task, respectively.

2.3.2 Simulated data

We further test the performance of our proposed method on the sim-

ulated data set. In particular, we examine how the genotype calling errors

affect the performance of haplotype assembly. The data are generated using

a similar strategy to the one in [30] except that a genotype calling error is

included in our simulation data. We generate a pair of phased heterozygous

SNP sequences of length n, which have genotype calling errors with probabil-

ity ge. The parameter ge is judiciously chosen as 0.04 and 0.08 in order to

emulate practical scenarios reported in [54] (there, the genotype call accuracy

for high call rates was up to 96% with the use of LD information, from 78%

and 87% with the use of single sample and multiple individuals, respectively,

29

for the 62 CEU individuals). The true haplotype sequences are generated by

emulating genotyping errors; each base in the erroneous heterozygous SNP

sequences is flipped to one of the other three nucleotides with equal probabil-

ity, ge/3. To generate the observation data matrix, instead of sampling (with

reads) from true haplotype sequences c times as in [30], we sample true hap-

lotype sequences c
2

times and sequences containing genotype calling errors c
2

times. Each replicate is randomly partitioned into non-overlapping fragments

of length between 3 and 7 (the lengths typical of benchmarking data sets in

[30]). In order to simulate paired-end (or mate-pair) sequences, we randomly

merge some of the generated fragments (fragments whose SNPs are in the first

half of haplotype sequence are merged with those whose SNPs in the last half

of sequence; as a result, half of the fragments in the dataset are paired-end

sequences). Once the fragments are arranged in a SNP matrix, we emulate

sequencing errors by randomly flipping a base to one of the other three nu-

cleotides with equal probability. The probability that each base is flipped is

0.03 and 0.01 for ge = 0.04 and ge = 0.08, respectively, and thus the total

error rate for the entries in the SNP matrix is e = 0.05. To explore the per-

formance of the algorithm over a broad range of experimental parameters, we

generate datasets with different SNP lengths (n = 100, 200 and 300) and vary

the coverage rate (c = 4, 6, 8 and 10) for each genotype calling error rate

(ge = 0.04 and ge = 0.08). For each of the 24 combinations of the parameters,

the experiment is repeated 100 times and the results averaged over the 100

instances are reported for each case.

30

Table 2.2: The performance comparison on a simulated data set for ge = 0.04.

ParticleHap HapCUT ReFHap
n c ImpGeAc ReconRate Time(s) ReconRate Time(s) ReconRate Time(s)

100 4 0.6254 0.9785 0.02 0.9598 0.66 0.9497 0.11
6 0.6252 0.9794 0.02 0.9570 0.84 0.9481 0.25
8 0.5977 0.9792 0.03 0.9590 1.01 0.9524 0.56
10 0.5737 0.9780 0.03 0.9582 1.17 0.9517 1.23

200 4 0.5935 0.9779 0.07 0.9594 1.78 0.9499 0.26
6 0.5977 0.9783 0.08 0.9597 2.26 0.9518 0.88
8 0.5840 0.9757 0.09 0.9596 2.71 0.9524 2.56
10 0.5758 0.9777 0.11 0.9593 3.13 0.9528 5.80

300 4 0.6013 0.9715 0.17 0.9591 3.39 0.9493 0.53
6 0.5848 0.9720 0.20 0.9596 4.34 0.9511 2.12
8 0.5842 0.9695 0.22 0.9598 5.14 0.9525 6.35
10 0.5671 0.9703 0.24 0.9599 5.90 0.9537 14.68

A comparison of reconstruction rate(ReconRate) and running time(Time) for
different haplotype assembly algorithms, ParticleHap, HapCUT and
ReFHap, on the simulated data for ge = 0.04. For ParticleHap, the

improvement rates of genotyping accuracy (ImpGeAc) are also reported.

We quantify the ability of an algorithm to reconstruct a haplotype by

means of the reconstruction rate [30] defined as

R = 1− min(D(h1, ĥ1) +D(h2, ĥ2), D(h1, ĥ2) +D(h2, ĥ1))

2l
,

where (h1, h2) is the pair of true haplotypes, (ĥ1, ĥ2) is the pair of recon-

structed haplotypes, D(hi, ĥj) =
n∑
k=1

d(hi[k], ĥj[k]) is the generalized Hamming

distance between hi and ĥj, and d(hi[k], ĥj[k]) = 0 if hi[k] = ĥj[k] and is 1

otherwise. Running time (Time(s)) for each algorithm is evaluated along with

the reconstruction rate (ReconRate). In addition, we report the rate at which

ParticleHap infers true genotypes for the locations where genotype calling er-

rors are induced, i.e., the improvement rate of genotyping accuracy (labeled

as ImpGeAc).

31

Table 2.3: The performance comparison on a simulated data set for ge = 0.08.

ParticleHap HapCUT ReFHap
n c ImpGeAc ReconRate Time(s) ReconRate Time(s) ReconRate Time(s)

100 4 0.6211 0.9618 0.02 0.9193 0.66 0.9009 0.11
6 0.5941 0.9610 0.02 0.9184 0.86 0.8997 0.25
8 0.5970 0.9585 0.03 0.9184 1.04 0.9017 0.56
10 0.5845 0.9572 0.03 0.9193 1.19 0.9041 1.26

200 4 0.6262 0.9615 0.08 0.9186 1.80 0.8979 0.27
6 0.5938 0.9418 0.09 0.9198 2.30 0.9021 0.89
8 0.6050 0.9389 0.10 0.9193 2.75 0.9019 2.53
10 0.5997 0.9438 0.12 0.9193 3.16 0.9039 5.84

300 4 0.6245 0.9432 0.18 0.9197 3.43 0.8995 0.53
6 0.6069 0.9397 0.21 0.9198 4.49 0.9009 2.11
8 0.6058 0.9315 0.23 0.9186 5.54 0.9009 6.29
10 0.5792 0.9192 0.27 0.9187 6.37 0.9029 15.00

A comparison of reconstruction rate(ReconRate) and running time(Time) for
different haplotype assembly algorithms, ParticleHap, HapCUT and
ReFHap, on the simulated data for ge = 0.08. For ParticleHap, the

improvement rates of genotyping accuracy (ImpGeAc) are also reported.

Tables 2.2 and 2.3 compare the results of ParticleHap, HapCUT and

ReFHap for ge = 0.04 and ge = 0.08, respectively. As can be seen in those ta-

bles, ParticleHap assembles haplotypes with the reconstruction rates of 97.85%

and 95.68% when the data is affected by the genotype calling error rates of

4% and 8%, respectively. This highly accurate performance is achieved in part

due to ParticleHap’s ability to improve genotyping accuracy in mis-called (or

uncertain) sites by more than 50% in all the considered scenarios as shown in

column 3 in Tables 2.2 and 2.3. (i.e, ParticleHap can improve the genotype

accuracy of 96% and 92% to 98% and 96% in Table 2.2 and 2.3, respectively.)

It is worth pointing out that, in these simulations, we assumed equal prior

probabilities of all genotypes. Imposing more judicious choices of priors may

32

lead to further improvement of genotyping accuracy. On another note, the

corresponding reconstruction rates of HapCUT and ReFHap do not exceed

96% and 92%, respectively. Evidently, incorporation of genotyping in the hap-

lotype assembly procedure allows pushing the limits of the achievable accu-

racy of haplotype assembly. Note that ParticleHap is consistently much faster

than HapCUT and ReFHap in all the considered scenarios. As expected, the

running time of ParticleHap increases with both the haplotype length and

sequencing coverage.

2.4 Summary

We presented a novel deterministic sequential Monte Carlo (i.e., particle

filtering) algorithm for solving the haplotype assembly problem. ParticleHap

sequentially infers the haplotype sequence, one SNP site at a time, by ex-

haustively searching for the most likely extension of the partially assembled

haplotype in each step, examining both the possible genotypes and phase.

We tested the performance of ParticleHap on 1000 Genomes Project data,

showing that it achieves better minimum error correction scores and phases

more heterozygous sites than two of the most accurate existing methods while

being significantly more computationally efficient. The results of testing Par-

ticleHap on the simulated dataset also demonstrate that the proposed method

can reconstruct haplotypes with higher accuracy and efficiency than those of

competing techniques over a wide range of the haplotype assembly problem

parameters.

33

Chapter 3

aBayesQR: A Bayesian method for

reconstruction of viral populations

characterized by low diversity

3.1 Background and Related Works

A number of potentially life-threatening infectious diseases are caused

by RNA viruses, including human immunodeficiency virus (HIV), hepatitis C

virus (HCV), influenza and Ebola. RNA viruses have a relatively high mu-

tation rate due to both their error-prone replication process and the lack of

sophisticated repair mechanisms [24]. Consequently, they rapidly evolve and

exist as a set of non-identical but closely related genetic variants, known as

a viral quasispecies. Viral populations can readily adapt to dynamic environ-

ments and develop resistance to antiviral drugs and vaccines, which makes the

design of effective and long-lasting treatments for RNA viral diseases exceed-

ingly difficult [41]. Determining the structure of viral populations helps the

understanding of viral diseases and provides guidance in the development of

effective medical therapeutics.

Quasispecies spectrum reconstruction (QSR) aims to assemble individ-

ual haplotype sequences in a population and estimate their prevalence using

sequencing reads generated from a sample containing a set of viral variants.

34

High-throughput next-generation sequencing (NGS) technologies have enabled

affordable acquisition of data needed to assemble quasispecies. However, rela-

tively short length of the NGS reads and the presence of errors in sequencing

data render the QSR problem difficult. The QSR problem is particularly

challenging when the strains in a viral population are highly similar, i.e., the

sequences are characterized by low mutual genetic distances, and further ex-

acerbated if some of those strains are relatively rare [56].

Several software tools for solving the QSR problem by analyzing NGS

data have been developed in recent years. ShoRAH [78], the earliest pub-

licly available such software, was developed by combining a path cover based

approach and probabilistic clustering in [28] and [79], respectively, and ap-

plied to analysis of HIV data [80]. Read-graph approach was the basis for

ViSpA [8], developed as a variant of the network flow method proposed in

[76]. [58], proposed a combinatorial method for QSR and the resulting soft-

ware, QuRe, was provided by [59]. An approach that resulted in the software

package PredictHaplo [57] relied on a Dirichlet Process mixture model and was

developed specifically targeting HIV population reconstruction; QuasiRecomb

[72] is based on a hidden Markov model that explicitly models recombina-

tion events. In [66], a benchmarking study that compares the performance of

several publicly available quasispecies reconstruction softwares was presented.

The study demonstrated that none of the tested methods could reconstruct

populations characterized by low pairwise distance between the haplotype se-

quences. Following this study other softwares, including HaploClique [71],

35

based on max-clique enumeration of a read alignment graph, and VGA [50],

a graph-coloring based heuristic method, were developed. Most recently, a

reference-assisted de novo assembly pipeline, ViQuaS, was proposed in [35].

ViQuaS extends an existing algorithm, QuRe [58], and outperforms various

other techniques on a wide range of dataset. However, performance of these

more recent methods deteriorates dramatically in the scenarios where the ge-

netic diversity of a population is low [56].

Both [56] and [66] have pointed out that the existing methods for viral

quasispecies reconstruction struggle in the scenarios where the populations are

characterized by low diversity. This, in part, is due to the presence of rela-

tively long genetic regions that are common to pairs of closely related viral

sequences; clearly, this makes distinguishing different strains challenging. The

problem becomes even more difficult when the frequency of one (or more) of the

close strains is low; in such settings small genetic distances may be confused

for sequencing errors and hence remain undetected. Such failures to detect

may have serious consequences in antiviral treatment studies since undetected

strains cannot be properly targeted for drug and vaccine design. It has been

shown that even the viral strains existing at low frequencies can cause a drug

treatment failure due to their resistance to the drug [42, 69]. Therefore, com-

plete recovery of the composition of viral populations is of critical importance

for effective antiviral therapies.

In this chapter, we present a novel QSR algorithm, aBayesQR (combin-

ing agglomerative hierarchical clustering and Bayesian inference), that over-

36

comes limitations of the existing methods and reliably reconstructs quasis-

pecies characterized by low diversity [5]1. The algorithm performs reconstruc-

tion of a quasispecies from next-generation sequencing (NGS) data in two

stages. In the first stage, conflict-free short reads are hierarchically merged and

assembled into longer sequences (contigs) which we refer to as super-reads. In

the second stage, likelihoods of the probable quasispecies are computed using

the assembled super-reads (rather than using the original set of short reads),

and the most likely set of viral strains is selected. Note that the super-reads

synthesized in the first stage of aBayesQR allow us to distinguish between

closely related strains which share long genetic regions as well as reduce the

search space and enable computational tractability of the Bayesian inference

conducted in the second stage. The second stage of aBayesQR involves sequen-

tial pruning of the solution space; in particular, the likely set of partial viral

strains comprising n single nucleotide variants (SNVs) is generated by extend-

ing previously inferred partial viral strains having n−1 SNVs. The number of

sequences in a set (i.e., the size of a viral population) is dynamically updated

at each step by evaluating quality of the set of partially reconstructed viral

strains, and ultimately precisely inferred at the end of the search process. The

relative frequencies of each strain are determined by counting the numbers of

reads unambiguously associated with each of the reconstructed strains. Our

1This work has been published as [Soyeon Ahn and Haris Vikalo. abayesqr: A bayesian
method for reconstruction of viral populations characterized by low diversity. In In-
ternational Conference on Research in Computational Molecular Biology, pages 353-369.
Springer, 2017]. The author of this dissertation is the primary contributor.

37

tests on both simulated and experimental data demonstrate superior perfor-

mance compared to state-of-the-art methods for quasispecies reconstruction.

In particular, it is shown that unlike the competing methods, aBayesQR is

capable of detecting and reliably reconstructing viral haplotypes having very

small mutual genetic distances.

3.2 Method

Our algorithm for inferring spectrum of a viral population consists of

the following two steps: (1) constructing super-reads by hierarchically cluster-

ing aligned paired-end reads, (2) inferring the most likely quasispecies from

the set of super-reads and estimating the frequencies of the strains in the

quasispecies.

3.2.1 Super-reads construction via agglomerative clustering

In the first stage of aBayesQR, paired-end reads uniquely mapped to

a reference genome are grouped into super-reads via agglomerative hierarchi-

cal clustering. This is facilitated by a weighted graph G = (V,E) which is

constructed and recursively updated as the clustering proceeds. In particular,

each vertex of G is associated with a cluster collecting reads that originated

from a single strain in a quasispecies; we denote the set of reads in the ith clus-

ter (i.e., the cluster associated with the ith vertex) as Vi = {vji , j = 1, · · · , |Vi|}.

Let sri denote a consensus sequence (i.e., a super-read) constructed from the

reads in Vi. The ith and jth vertex of G are connected by an edge eij ∈ E if

38

all the reads in Vi and Vj (or, equivalently, sri and srj) are conflict-free and

an overlap criterion, specified later in this section, is satisfied. The weight wij

of the edge eij is a measure of similarity between Vi and Vj at each step, the

algorithm merges a pair of vertices connected by the edge having the largest

weight to form a new vertex and agglomerates the corresponding clusters.

The alleles at homozygous sites, common to all the components of a

quasispecies, are not utilized in the reconstruction procedure. Instead, we

separate reads having originated from different strains by clustering them us-

ing heterogeneous sites with reliable SNV information. An SNV informa-

tion is considered reliable if the relative abundance of the allele is above a

pre-determined threshold, as in [23]; alleles whose abundance is below the

threshold are treated as sequencing errors and disregarded in the process of

clustering. For convenience, let us denote the set of pre-processed paired-

end reads by R = {ri, i = 1, · · · , |R|}. The agglomerative clustering is ini-

tialized with |R| clusters, one for each read; in other words, we start with

V1 = r1, · · · , V|R| = r|R|, implying that |V| =
|V|∑
i=1

|Vi| = |R|, and proceed

by sequentially merging judiciously chosen pairs of vertices (i.e., agglomer-

ating the corresponding clusters). Intuitively, it is meaningful to reduce the

number of vertices in the graph by merging those associated with conflict-

free consensus sequences that have a large overlap. To formalize this, let

Li = {l1, · · · , l|Li|} denote an index set of the SNV positions covered by sri,

let Li∩j = {l1, · · · , l|Li∩j |} be the index set of SNV positions covered by both

sri and srj, and let Li∪j = {l1, · · · , l|Li∪j |} be the index set of SNV positions

39

covered by either sri or srj. Then the pairs of vertices (i, j) that we consider

as candidates for merging and thus connect by an edge are those satisfying

either

|Li∩j| ≥ θ · |Li∪j| or |Li∩j| = min(|Li|, |Lj|),

where the 2nd condition promotes merger of short super-reads, and the choice of

θ is discussed below. To quantify uncertainty inherent to a clustering solution

due to existence of non-overlapping positions among the reads in each cluster,

we define a position-specific confidence score

scorei[l] =
cri[l]− cr[l]

1− cr[l]

where l denotes the position, cr[·] is the overall coverage rate, and cri[·] de-

notes cluster-specific coverage rate for Vi (i.e., cri[l] is the fraction of reads in

Vi = {vji , j = 1, · · · , |Vi|} covering position l). On the one hand, this score is

penalized at a site where the fraction of cluster members (short reads) covering

the site is low; the score is negative if the cluster-specific coverage rate is below

the global coverage rate which implies uncertainty of the clustering decision.

On the other hand, positive scores indicate high confidence in the decision to

group the reads into the same cluster. Note that the highest possible score of

1 at position l is achieved when all the reads in a cluster cover the lth position.

Using the confidence scores, we define the weight wij assigned to an edge eij

to quantify similarity between Vi and Vj as

wij =
1

|Li∪j|
∑
l∈Li∪j

scorei∪j[l].

40

Algorithm 1: Agglomerative clustering for super-reads construction

Input: Set of reads aligned to the reference genome
Output: Set of super-reads and the corresponding confidence scores
for θ > 0 do

Build a weighted graph G = (V,E)
while E 6= ∅ do

Merge two clusters connected with the largest weight
Update G = (V,E) and weights using partial maximum array

end while
θ = θ − 0.1

end for

Given the weights wij, we can now specify the clustering procedure. In

each step, the pair of vertices connected by the edge with maximum weight is

merged; the newly constructed vertex inherits edges from the merged vertices

and the weights on those edges are re-evaluated. A new (longer) consensus

sequence is constructed by combining the two super-reads associated with the

merged vertices; recall that there are no conflicts between the super-reads

being merged. If after such an update step no edges connect the new vertex

with the rest of the graph (because no inherited edges satisfy the connectivity

condition), θ is decreased and the above process is repeated. We initially set

θ to 0.9 and gradually decrease it by 0.1 while θ > 0. The above procedure

is repeated until no pairs of vertices satisfy the connectivity condition. By

that point, a set of long consensus sequences (the final super-reads) has been

formed from the clusters of reads associated with the nodes of the final graph.

While the complexity of agglomerative clustering is, in general, O(N3) whereN

denotes the input data size [64], it has been shown that its time complexity can

41

be reduced to O(N2) with accuracy equal to that of the brute-force method by

using the partial maximum array technique [36]. We exploit this to efficiently

construct super-reads. The algorithm for super-read construction is formalized

as Algorithm 1.

3.2.2 ML reconstruction of quasispecies from super-reads

Here we describe how to reconstruct the most likely set of strains in

a viral quasispecies using super-reads from Section 3.2.1 and their confidence

scores. While in principle the method outlined in this section could be ap-

plied directly to the short reads provided by a sequencing platform, such an

approach would in general not only be computationally prohibitive due to a

very large number of short reads but also limit the ability of the algorithm

to distinguish strains with small mutual genetic distances due to having long

conserved regions. Relying on a relatively small number of long super-reads

constructed from short reads circumvents both of these problems and makes

the reconstruction more accurate and practically feasible. Note that sequenc-

ing errors may undesirably prevent clusters of reads from being merged with

other clusters due to a violation of conflict-free requirement; consequently, a

set of short reads in a small cluster is likely to have a disproportionate amount

of sequencing errors. For this reason, we ignore clusters with very small mem-

berships (in particular, those containing fewer than 0.001 · |R| reads), which

limits the detection of strains to those constituting more than 0.1% of the

quasispecies.

42

Let C = {Cm,m = 1, · · · ,M} denote the collection of clusters that re-

main after deleting clusters having only few reads; moreover, for convenience

let us re-label the reads in Cm as cjm, i.e, Cm = {cjm, j = 1, · · · , |Cm|} where

cjm ∈ R. We organize the super-reads obtained by Algorithm 1 in Section 3.2.1

into the rows of an M × N matrix S = {smn,m = 1, · · · ,M, n = 1, · · · , N}

with entries smn ∈ {A,C,G,T,−} where − denotes a site not covered by a

super-read and N denotes the total number of SNV sites in the strains of a

quasispecies. A nucleotides in the (m,n) position of S is assigned confidence

scorem[n] defined in Section 3.2.1; the scores for the entire matrix are normal-

ized so that they fall between 0 and 1 in order to use them in our Bayesian

approach to assembly. Let εmn be the probability that smn was estimated

erroneously due to either a sequencing error in reads on the nth SNV posi-

tion or the uncertainty induced by reads not covering the nth SNV position.

Note that negative scores indicates low confidence resulting from insufficient

cluster-specific coverage rate while positive scores imply relatively confident

information. In order to map scorem[n] ∈ (−∞, 1] to the set [0, 1], we set

εmn = 1 − escorem[n] for scorem[n] < ln(1 − ε), where ε denotes the error rate

of a sequencing platform. Otherwise, we set εmn = ε.

Let Q = {qk, k = 1, · · · , K} denote the set of K strains of a viral quasis-

pecies. The goal in the second stage of our method is to determine Q from the

super-reads matrix S using a probabilistic framework. An exhaustive search

over the entire solution space is computationally intractable even for small

S; instead, we reconstruct the set of K viral strains sequentially, extending

43

partially estimated strains one SNV position at each step. Since maintaining

and extending all possible partial strains inevitably increases their number ex-

ponentially, unlikely sets of candidate strains are pruned in each step. Each

step consists of three basic parts: (a) extension of the partially reconstructed

strains, (b) selection of probable sets comprising K strains chosen among those

generated in step (a), and (c) evaluation of the quality of the selected sets of

strains and an update of K. The sequential Bayesian inference procedure in

step t is illustrated in Figure 3.1.

Figure 3.1: Procedure of sequential Bayesian inference in step t

44

Extending partially reconstructed strains. Let F1:t-1 = {f i1:t-1, i =

1, · · · , |F1:t-1|} be the collection of partially reconstructed strains covering the

first t − 1 SNV sites and let Bt = {bjt , j = 1, · · · , |Bt|} be the lists of dis-

tinct bases in the tth column of S, where bit ∈ {A,C,G,T} and 2 ≤ |Bt| ≤ 4.

Then, all the possible extensions of f i1:t−1 to the SNV site t can be enumer-

ated as {[f i1:t-1, b
1
t], · · · , [f i1:t-1, b

|Bt|
t]}. Let Si1:t-1 = {sic′1:t-1, c

′ = 1, · · · , |Si1:t-1|} be

the collection of super-reads covering some of the first t SNV sites which are

consistent with f i1:t-1 (ignoring “−” in s
ic′
1:t-1) where {ic′} denote indices of rows

of S that are placed in Si1:t-1, and let Sit = {sict , c = 1, · · · , |Sit |} denote the

collection of nucleotides (sict ∈ {A,C,G,T}, not “−”) observed at the tth SNV

site of the super-reads in Si1:t-1 where {ic} denote the indices of rows in S that

contribute to Sit . Given Si1:t-1, S
i
t and f i1:t-1, the probability of bjt being the true

extension of f i1:t-1 is given by

P (Sit |b
j
t , S

i
1:t-1, f

i
1:t-1) =

|Si
t |∏

c=1

P (sict |b
j
t),

P (sict |b
j
t) =

{
1− εict, if bjt = sict ,
εict
|Bt| , otherwise.

We extend f i1:t-1 to [f i1:t-1, b
j
t] ∈ F1:t-1,t by appending the bjt ∈ Bt which satisfies

P (Si
t |b

j
t ,S

i
1:t-1,f

i
1:t-1)

1
|Si

t|∑
Bt

P (Si
t |b

j
t ,S

i
1:t-1,f

i
1:t-1)

1
|Si

t|
≥ δ0, where the exponent ensures proper normalization

and is needed since the number of super-reads, |Si1:t-1|, varies for each {f i1:t-1, i =

1, · · · , |F1:t-1|}. For f i1:t-1 which has no matched super-reads, i.e., |Si1:i-1| = 0,

we keep all of |Bt| possible extensions of f i-11:t . By collecting probable extensions

45

for each f i1:t-1 ∈ F1:t-1, we obtain the set of partial strains stretching over the

first t SNV sites, F1:t-1,t. This procedure is formalized as function ExtendFrag.

function ExtendFrag(F1:t-1, t, δ0): Extend F1:t-1 to F1:t-1,t

Input: F1:t-1, t, δ0

Output: F1:t-1,t

for f i1:t-1 ∈ F1:t-1 do

for bjt ∈ Bt do

if
P (Si

t |b
j
t ,S

i
1:t-1,f

i
1:t-1)

1
|Si

t|∑
Bt

P (Si
t |b

j
t ,S

i
1:t-1,f

i
1:t-1)

1
|Si

t|
≥ δ0 then

F1:t-1,t ← F1:t-1,t ∪ {[f i1:t-1, b
j
t]}

end if
end for

end for

Inferring likely sets of K partial strains. Having generated the

probable partial strains F1:t-1,t, we denote the set of all its possible subsets of K

strains (i.e., the quasispecies population candidates) as Q1:t-1,t = {Qi
1:t-1,t, i =

1, · · · ,
(|F1:t-1,t|

K

)
} where Qi

1:t-1,t = {qikn, k = 1, · · · , K, n = 1, · · · , t} and qikn ∈

F1:t-1,t. The log-likelihoods of Qi
1:t-1,t can be expressed as

lnP (S|Qi
1:t-1,t) =

M∑
m=1

lnP (sm·|Qi
1:t-1,t),

P (sm·|Qi
1:t-1,t) =

1

K

(
K∑
k=1

(t∏
n=1

P (smn|qikn)

))
,

where sm· denotes the mth row vector of the matrix of super-reads S and

P (smn|qikn) =

{
1− εmn, if qikn = smn,
εmn

|Bn| , if qikn 6= smn for smn 6= −.

46

function InferQuasi(F1:t-1,t, K, δ1): Infer likely sets of K strains Q1:t

from F1:t-1,t

Input: F1:t-1,t, K, δ1

Output: Q1:t

Enumerate Q1:t-1,t from F1:t-1,t and K
for Qi

1:t-1,t ∈ Q1:t-1,t do
if P (S|Qi

1:t-1,t) > δ1 ·Qmax
1:t then

Q1:t ← Q1:t ∪ {Qi
1:t-1,t}

end if
end for

Let Qmax
1:t = max

Qi
1:t-1,t∈Q1:t-1,t

P (S|Qi
1:t-1,t). Among the

(|F1:t-1,t|
K

)
sets in Q1:t-1,t, we

keep only those that satisfy P (S|Qi
1:t-1,t) > δ1 ·Qmax

1:t while the others are dis-

carded; let us denote the collection of candidate sets that pass this test as Q1:t.

For practical feasibility of the scheme, the collection of partially reconstructed

strains F1:t-1,t is trimmed by excluding from it all the strains that are not part

of at least one of the sets in Q1:t; we denote the resulting collection of partial

strains by F1:t ∈ F1:t-1,t and use it when extending the strains onto the t+ 1

SNV site. The described procedure is formalized as function InferQuasi.

Determining the number of strains K in a quasispecies. In this

step, we assess appropriateness of K used in the inference of Q1:t and update

it if necessary. To this end, we rely on the minimum error correction (MEC)

score which has previously been broadly used as a criterion in the design of

methods for haplotype assembly [39, 49]. In the context of polyploid haplo-

type assembly, the MEC score is defined as the smallest number of nucleotides

that needs to be changed in data (i.e., in observed reads) so that the corrected

reads are consistent with having originated from K haplotypes. Let HDt(·, ·)

47

denote the Hamming distance between two sequences counted over the ob-

served nucleotides in the first t SNV positions.2 Then the MEC score of the

most likely set Qmax
1:t of K viral strains evaluated on the first t SNVs is

MECt(K) =
M∑
m=1

min
k∈{1,··· ,K}

|Cm|∑
j=1

HDt(c
j
m, q

max
k·),

where qmaxk· is the kth row vector of Qmax
1:t . Let Nt be the total number of

nucleotides observed in the first t SNV positions of all the reads of the dataset.

Note that the smaller the MEC scores, the higher the accuracy of a clustering.

If MECt(K)/Nt < 2ε, we use the same value K in the next step where the

likely set of viral strains stretching over the first t+1 SNV positions is inferred.

Otherwise, we increase K by 1, repeat the estimation of Q1:t, and evaluate the

improvement rate of MEC score as

MECimpr(K) =
MECt(K)−MECt(K + 1)

MECt(K)
.

The reason for selecting K based on the MEC improvement rate (MECimpr)

is that the MEC score drops significantly once K matches the actual number of

clusters; our scheme attempts to detect that change in order to infer population

size. If MECimpr(K) > η, where η denotes a pre-specified threshold, the

number of species is updated as K ← min{K + n, |F1:t-1,t|} where n is the

smallest integer number such that MECimpr(K+n) < η. If MECimpr(K) <

η, we update the number of species as K ← max{K − n, 2} where n is the

2If either of the two sequences has a gap “−” in a position, that position is ignored in
the computation of the aforementioned Hamming distance.

48

Algorithm 2: Sequential Bayesian Inference for quasispecies reconstruction

Input: Set of super-reads and the corresponding confidence scores
Output: Set of K strains of a viral quasispecies
Initial K ← 2, F1:1 ← B1

for t ∈ {2, · · · , N} do
F1:t-1,t = ExtendFrag(F1:t-1, t, δ0)
Q1:t = InferQuasi(F1:t-1,t, K, δ1)
K∗ ← K, Q∗1:t ← Q1:t

if MECt(K)/Nt ≥ 2ε and K < |F1:t-1,t| do
Q1:t = InferQuasi(F1:t-1,t, K+1, δ1)
if MECimpr(K) < η do

while MECimpr(K) < η and K > 2
Q∗1:t ← Q1:t, K

∗ ← K, K ← K − 1
Q1:t = InferQuasi(F1:t-1,t, K, δ1)

end while
else do

while MECimpr(K) ≥ η and K < |F1:t-1,t|
Q∗1:t ← Q1:t, K

∗ ← K
Q1:t = InferQuasi(F1:t-1,t, K+1, δ1)

end while
end if

end if
K ← K∗, Q1:t ← Q∗1:t

Get F1:t by pruning F1:t-1,t based on Q1:t

end for
Reconstruct full-length quasispecies Q from Qmax

1:N ∈ Q1:t and R
Estimate frequencies of each strain qk ∈ Q based on HD(sri, qk) and |Ci|

smallest integer such that MECimpr(K − n) ≥ η. The choice of threshold

η is discussed in the Appendix A. The updated value of K is used for the

inference of Q1:t+1. Note that the probable set of viral strains, Q1:t, is stored

for each K to avoid performing redundant MECimpr(·) calculations.

Once we obtain the most likely set of K viral sequences covering N

49

SNVs, Qmax
1:N , the full-length K quasispecies strains are reconstructed by in-

serting the consensus nucleotides observed in R into the non-SNV sites. We

estimate relative frequencies pk, 1 ≤ k ≤ K, of quasispecies strains based on

the Hamming distance between super-reads and the reconstructed sequences.

In particular, for each super-read sri we determine the nearest assembled strain

qj where j = arg min
k∈{1,··· ,K}

HD(sri, qk) and the number of reads involved in con-

structing the super-read sri is counted towards pj. The entire scheme proposed

in this section is summarized as Algorithm 2.

3.3 Results and Discussion

3.3.1 Performance comparison on simulated data

To evaluate performance of the proposed method for quasispecies re-

construction, we use metrics Recall, Precision, Predicted Proportion, and Re-

construction Rate. Recall is defined as the ratio of the number of correctly

reconstructed strains to the total number of true strains in the quasispecies,

i.e., Recall = TP
TP+FN

, while Precision is defined as the fraction of correctly

reconstructed strains among all the assembled sequences, i.e., Precision =

TP
TP+FP

. Noting that Precision usually reports high scores when the number

of strains is underestimated while penalizing overestimation of the population

size, we also report the ratio of the number of reconstructed sequences to the

true population size, Predicted Proportion. The closer Predicted Proportion to

1, the more accurate the number of reconstructed strains. Moreover, to assess

50

the degree of reconstruction accuracy, we define

Reconstruction Rate =
1

K

K∑
k=1

(
1− HD(qk, q̂k)

G

)
,

where G is the length of a genome, K is the number of strains in a quasispecies

and qk and q̂k denote the kth true strain and its nearest sequence among the K

estimated ones, respectively. To assess the accuracy of estimated frequencies,

we use Jensen-Shannon divergence (JSD) which quantifies similarity between

two distributions. Given a true distribution P and its approximation Q, the

Kullback-Leibler (KL) divergence

D(P ||Q) =
n∑
i=1

P (i)log
P (i)

Q(i)

is undefined when Q(i) = 0. JSD, a symmetrized and smoothed version of the

KL divergence, circumvents this problem by defining similarity of P and Q as

JSD(P ||Q) =
1

2
D(P ||M) +

1

2
D(Q||M),

where M is defined as M = 1
2
(P +Q).

We compare our algorithm with publicly available ShoRAH [78], Pre-

dictHaplo [57], and ViQuaS [35]. Since ViQuaS is an extension of the algorithm

in [58, 59], and was shown to have superior performance compared to its pre-

decessor, we omit the comparison with the software QuRe in [58, 59]. It is

worth pointing out that for the synthetic data sets we study, ShoRAH could

not reconstruct strains in the regions where the simulated sequencing coverage

is relatively low compared to the average, resulting in reconstruction of strains

51

that are shorter than the true length G. To facilitate a fair comparison with

ShoRAH, we aligned its reconstructed strains to the reference genome and

completed missing sites with bases from the reference. ViQuaS, on the other

hand, tends to reconstruct many more strains than actually present; thus we

followed ViQuaS’s authors recommendation and retained only those having

frequencies greater than fmin when calculating Precision. Finally, not all of

the synthetic data sets could be processed with PredictHaplo, preventing us

from reporting its performance in some of the scenarios.

We generated synthetic datasets by emulating high-throughput sequenc-

ing of a viral population consisting of a number of closely related viral genomes

having length of 1300bp; this particular length was chosen to coincide with the

longest region of the HIV pol gene. Quasispecies sequences are generated by

introducing independent mutations at uniformly random locations along the

length of a randomly generated reference genome so as to obtain a predefined

level of diversity (div%), i.e., a predefined average Hamming distance between

quasispecies strains. Simulating Illumina’s MiSeq data, 2×250bp-long paired-

end reads are sampled uniformly from each viral strain with a mean coverage

of cov× per strain. Inserts of the paired-end reads are on average 150bp

long with standard deviation of 30. In our benchmarking tests, we focus on

exploring the effects of diversity (div%) on the accuracy of the quasispecies

reconstruction. Two sets of viral populations are considered: (1) a mix of 5

viral strains with abundance levels 50%, 30%, 15%, 4% and 1%; and (2) a mix

of 10 strains with abundance levels 36%, 24%, 16%, 8%, 5.5%, 4%, 3%, 2%, 1%

52

and 0.5%. Note that the abundances are chosen to approximately follow ge-

ometric distribution and that the populations include low abundant strains.

For each combination of the parameters, 100 data sets were generated and the

reported results were obtained by averaging over those data instances. For

PredictHaplo, which did not produce results in each instance, the averaged

results are reported if more than 50 instances were successfully processed.

In all of the following experiments, potential SNVs are called if their

abundance is higher than 1%, which is set relatively high to avoid false positives

(FPs); FPs prevent reads to be merged with existing clusters in Section 3.2.1.

We execute the function ExtendFrag with parameter δ0 = 0.1. Parameter δ1

in function InferQuasi is initially set to 0.001, but adaptively increases if the

number of combinations of partially reconstructed strains exceeds 10000; this

is done to limit the number of likelihood calculations performed in each run

of InferQuasi . The recommended value of η, a threshold used to determine

population size K based on MECimpr(·), is discussed in Appendix A.

We compare performances of aBayesQR, ShoRAH, ViQuaS and Pre-

dictHap when applied to the reconstruction of a quasispecies spectrum with

diversity levels varying between 1% and 5% (i.e., div ∈ {1%, 2%, 3%, 4%, 5%}).

To test the ability of different methods to reconstruct quasispecies with low

diversity, we assume low sequencing error rate of err = 0.1% (median mis-

match error rates for 454 Life Sciences and Illumina platforms are 0.1% and

0.12%, respectively [6]). Coverage per strain cov× is set to 500×, implying

total coverage of 2500× and 5000× for the 5-strain and 10-strain population,

53

Table 3.1: Performance comparison of different methods for varied diversities
(div) on simulated data.

5 strains 10 strains
div(%) 1 2 3 4 5 1 2 3 4 5

aBayesQR 0.7080 0.7120 0.6840 0.6560 0.6320 0.5810 0.6380 0.6080 0.5860 0.5550
ShoRAH 0.1920 0.1600 0.1300 0.1060 0.0780 0.0150 0.0380 0.0740 0.0640 0.0930
ViQuaS 0.3700 0.5240 0.6040 0.6360 0.5960 0.0980 0.1700 0.3730 0.4720 0.5050R

ec
al

l

PredictHaplo - - - 0.6918 0.6808 - - 0.1021 0.1550 0.2010
aBayesQR 0.7113 0.7130 0.6826 0.6447 0.6319 0.6210 0.6881 0.6610 0.6373 0.6140
ShoRAH 0.1062 0.1418 0.1240 0.1078 0.0790 0.0050 0.0170 0.0498 0.0506 0.0824
ViQuaS 0.1960 0.3206 0.4559 0.4982 0.5298 0.0485 0.1079 0.2973 0.4690 0.5596

P
re

ci
si

on

PredictHaplo - - - 0.9373 0.8822 - - 0.4509 0.6000 0.6833
aBayesQR 1.0180 1.0120 1.0120 1.0360 1.0140 0.9680 0.9440 0.9240 0.9240 0.9100
ShoRAH 1.9660 1.2200 1.0780 1.0000 1.0180 3.2000 2.9100 1.6710 1.3520 1.1860
ViQuaS 2.1100 1.7220 1.4080 1.3340 1.2180 2.0860 1.8580 1.5450 1.2320 1.0730

P
re

d
P

ro
p

PredictHaplo - - - 0.7388 0.7737 - - 0.1947 0.2430 0.2890
aBayesQR 0.9990 0.9982 0.9971 0.9961 0.9953 0.9975 0.9967 0.9952 0.9942 0.9924
ShoRAH 0.9948 0.9903 0.9891 0.9851 0.9827 0.9941 0.9900 0.9899 0.9897 0.9911
ViQuaS 0.9963 0.9949 0.9917 0.9936 0.9897 0.9944 0.9910 0.9899 0.9881 0.9858

R
ec

on
R

at
e

PredictHaplo - - - 0.9906 0.9896 - - 0.9850 0.9797 0.9747
aBayesQR 0.0022 0.0008 0.0008 0.0014 0.0008 0.0043 0.0026 0.0023 0.0023 0.0025
ShoRAH 0.0762 0.0174 0.0047 0.0009 0.0012 0.1390 0.1110 0.0422 0.0238 0.0109
ViQuaS 0.0651 0.0255 0.0222 0.0097 0.0180 0.0993 0.0747 0.0495 0.0469 0.0454J

S
D

PredictHaplo - - - 0.1020 0.1036 - - 0.1971 0.1636 0.1312

Performance comparison of aBayesQR, ShoRAH, ViQuaS and PredictHaplo
in terms of Recall, Precision, Predicted Proportion (PredProp),

Reconstruction Rate (ReconRate) and JSD on the simulated data with
err = 0.1% and cov = 500× vs. div for a mixture of 5 and 10 viral strains.
Averaged PredictHaplo results are reported if it provides answers for more
than 50% of data sets. Boldface values indicate the best performance for

each div(%).

respectively; strains having frequencies 0.23% or higher in the 5-strain case

and those with frequencies 0.46% or higher in the 10-strain case are covered

with probability 0.99 [28].

Table 3.1 demonstrates that the proposed aBayesQR algorithm outper-

forms existing schemes. In terms of Recall and Precision, aBayesQR exhibits

exceptionally good performance compared to competing methods when recon-

54

structing quasispecies strains with diversity div < 4%. The performance of

ViQuaS deteriorates at low diversities in terms of most of the criteria (i.e.,

Recall, Precision, Predicted Proportion and JSD). PredictHaplo could not

perform reconstruction in most of the low diversity instances yet it overall

achieves the highest Precision because it typically underestimates the number

of strains as shown by Predicted Proportion (e.g., estimating only 2-3 out of 10

strains), which is in agreement with the results reported by a previous study

[66]. Among all methods, ShoRAH has the lowest performance in terms of

Recall and Precision. As indicated by Predicted Proportion, aBayesQR is the

most accurate method in terms of estimating the population size although it

often misses a strain with the lowest frequency when applied to reconstruction

of a quasispecies consisting of 10 strains. ViQuaS and ShoRAH typically over-

estimates the number of strains especially at low diversity levels. aBayesQR

is the best method in terms of Reconstruction Rate at all levels of diversity.

In terms of frequency estimation, aBayesQR overall outperforms all the other

methods whereas PredictHaplo shows the highest JSD due to its drawback of

underestimating the number of strains. Note that both ViQuaS and ShoRAH

exhibit significantly increased (i.e., deteriorated) JSD at low diversity levels.

This fact, along with the low Recall and Precision scores they have in low

diversity settings, indicates that state-of-the-art methods experience major

difficulties when attempting to reconstruct viral quasispecies in those settings,

as also observed in [28, 66] and [35].

In the second set of experiments, we study the effects that sequencing

55

Table 3.2: Performance comparison of different methods for varied error rates
(err) on simulated data.

5 strains 10 strains
err(%) 0.1 0.2 0.3 0.4 0.5 0.1 0.2 0.3 0.4 0.5

aBayesQR 0.6840 0.5920 0.5840 0.5400 0.4840 0.6080 0.5150 0.4620 0.4200 0.3570
ShoRAH 0.1300 0.1420 0.1280 0.1300 0.1060 0.0740 0.0490 0.0570 0.0850 0.0880
ViQuaS 0.6040 0.5300 0.4740 0.4160 0.3540 0.3730 0.2890 0.2200 0.1960 0.1590R

ec
al

l

PredictHaplo - - - - - 0.1021 0.1031 0.1072 0.1000 0.1194
aBayesQR 0.6826 0.5954 0.6105 0.5565 0.4958 0.6610 0.5852 0.5377 0.5031 0.4311
ShoRAH 0.1240 0.1425 0.1274 0.1260 0.1057 0.0498 0.0318 0.0370 0.0516 0.0547
ViQuaS 0.4559 0.3505 0.2757 0.2067 0.1453 0.2973 0.1889 0.1437 0.1126 0.0634

P
re

ci
si

on

PredictHaplo - - - - - 0.4509 0.4287 0.4502 0.4325 0.4787
aBayesQR 1.0120 1.0340 0.9940 1.0000 1.0140 0.9240 0.8930 0.8780 0.8660 0.8650
ShoRAH 1.0780 1.0160 1.0360 1.0580 1.0520 1.6710 1.7460 1.7690 1.8500 1.7950
ViQuaS 1.4080 1.6860 1.9700 2.3420 2.8280 1.5450 1.8430 1.9540 2.1550 2.5680

P
re

d
P

ro
p

PredictHaplo - - - - - 0.1947 0.2000 0.2000 0.1970 0.2082
aBayesQR 0.9971 0.9963 0.9957 0.9950 0.9937 0.9952 0.9941 0.9937 0.9925 0.9917
ShoRAH 0.9891 0.9884 0.9884 0.9879 0.9867 0.9899 0.9891 0.9891 0.9889 0.9887
ViQuaS 0.9917 0.9923 0.9912 0.9829 0.9805 0.9899 0.9886 0.9879 0.9865 0.9860

R
ec

on
R

at
e

PredictHaplo - - - - - 0.9850 0.9850 0.9848 0.9854 0.9848
aBayesQR 0.0008 0.0018 0.0027 0.0028 0.0045 0.0023 0.0035 0.0041 0.0055 0.0060
ShoRAH 0.0047 0.0029 0.0038 0.0066 0.0041 0.0422 0.0499 0.0493 0.0522 0.0529
ViQuaS 0.0222 0.0294 0.0384 0.0487 0.0703 0.0495 0.0574 0.0652 0.0696 0.0862J

S
D

PredictHaplo - - - - - 0.1971 0.2024 0.1861 0.1973 0.1908

Performance comparison of aBayesQR, ShoRAH, ViQuaS and PredictHaplo
in terms of Recall, Precision, Predicted Proportion (PredProp),

Reconstruction Rate (ReconRate) and JSD on the simulated data with
div = 3% and cov = 500× vs. err for a mixture of 5 and 10 viral strains.

Averaged PredictHaplo results are reported if it provides answers for more
than 50% of data sets. Boldface value indicate the best performance for each

err(%)

errors have on the performance of aBayesQR, ShoRAH, ViQuaS and Pre-

dictHaplo. In particular, the sequencing error is varied from 0.1% to 0.5%

(specifically, err ∈ {0.1%, 0.2%, 0.3%, 0.4%, 0.5%}), reflecting the range of er-

rors observed in the current and anticipated in future NSG technologies (e.g.,

the error rates of Illumina’s Miseq have been reported to be below 0.4% in

56

[62] and as high as 0.49 in [63]). We set div to be 3%3 and set cov to be 500×

which is the same as in the first experiment in Section 3.3.1.

As seen in Table 3.2, aBayesQR outperforms ShoRAH, ViQuaS and

PredictHaplo over the considered range of err achieving the best scores over-

all for all 5 metrics. As expected, the performances of all methods deteriorate

as err increases. Since PredictHaplo failed to generate results in most of the

instances of the reconstruction problem involving a mixture of 5 strains, its

results are not reported. For the problem involving a mixture with 10 strains,

PredictHaplo did run successfully in most of the instances but significantly un-

derdetermined the number of strains; on average, its Predicted Proportion is

around 0.2 (while its Precision, as argued earlier in the chapter, is somewhat

misleadingly good). ViQuaS overestimates the number of strains in all in-

stances; we observe that as err increases, ViQuaS generates increasingly more

false negative viral strains which adversely affects Precision and JSD. Even

though ShoRAH exhibits the lowest perfect reconstruction scores, it achieves

better performance than ViQuaS in terms of frequency estimation and the

number of reconstructed strains (i.e., Predicted Proportion and JSD) when

applied to reconstruction of mixtures with 5 strains. For a mixture of 10

strains, however, ShoRAH overestimated the number of strains, which also

leads to higher JSD scores.

In the last set of experiments, we test the performance of the proposed

3This matches typical variations in the HIV pol gene which range between 3% and 5%
[28].

57

Table 3.3: Performance comparison of different methods for varied coverages
(cov) on simulated data.

5 strains 10 strains
cov(×) 250 500 750 250 500 750

aBayesQR 0.4440 0.5840 0.5920 0.4450 0.4620 0.4450
ShoRAH 0.1820 0.1280 0.0900 0.0590 0.0570 0.3220
ViQuaS 0.4220 0.4740 0.4840 0.1970 0.2200 0.2580R

ec
al

l

PredictHaplo - - - 0.1070 0.1072 0.1094
aBayesQR 0.4231 0.6105 0.6393 0.5131 0.5377 0.5195
ShoRAH 0.1831 0.1274 0.0979 0.0544 0.0370 0.2136
ViQuaS 0.2291 0.2757 0.3256 0.0965 0.1437 0.1900

P
re

ci
si

on

PredictHaplo - - - 0.4558 0.4502 0.4635
aBayesQR 1.0920 0.9940 0.9400 0.8840 0.8780 0.8800
ShoRAH 1.0140 1.0360 1.0660 1.1200 1.7690 1.6440
ViQuaS 1.9240 1.9700 1.6820 2.2940 1.9540 1.7180

P
re

d
P

ro
p

PredictHaplo - - - 0.2030 0.2000 0.2031
aBayesQR 0.9941 0.9957 0.9959 0.9939 0.9937 0.9930
ShoRAH 0.9906 0.9884 0.9854 0.9874 0.9891 0.9926
ViQuaS 0.9905 0.9912 0.9918 0.9861 0.9879 0.9881

R
ec

on
R

at
e

PredictHaplo - - - 0.9854 0.9848 0.9854
aBayesQR 0.0040 0.0027 0.0026 0.0041 0.0041 0.0049
ShoRAH 0.0021 0.0038 0.0100 0.0051 0.0493 0.0330
ViQuaS 0.0454 0.0384 0.0318 0.0839 0.0652 0.0555J

S
D

PredictHaplo - - - 0.1946 0.1861 0.1930

Performance comparison of aBayesQR, ShoRAH, ViQuaS and PredictHaplo
in terms of Recall, Precision, Predicted Proportion (PredProp),

Reconstruction Rate (ReconRate) and JSD on the simulated data with
div = 3% and err = 0.3% vs. cov for a mixture of 5 and 10 viral strains.

Averaged PredictHaplo results are reported if it provides answers for more
than 50% of data sets. Boldface value indicate the best performance for each

cov(×).

algorithm at different coverages cov ∈ {250×, 500×, 750×} while fixing the

other parameters – specifically, diversity is set to 3%, which is the same as

in the second experiment in Table 3.2, and sequencing error rate is set to

0.3%, which emulates the error rates of Illumina’s Miseq (< 0.4% [62]). Per-

58

Table 3.4: Running time comparisons (sec).

5 strains 10 strains
cov(×) 250 500 750 250 500 750

aBayesQR 96 113 236 451 739 1606
ShoRAH 559 2005 5265 2716 11473 22923
ViQuaS 93 337 718 360 1300 13350

PredictHaplo - - - 93 143 187

Running time comparisons of aBayesQR, ShoRAH, ViQuaS and
PredictHaplo on the simulated data with cov ∈ {250×, 500×, 750×}, div=3%

and err=0.3%, measured on a Linux OS desktop with 3.06GHz CPU and
8Gb RAM (Intel Core i7 880 processor). PredictHaplo results are shown if it

provides answers for more than 50% of data sets.

formance of four algorithms as a function of coverage is compared in Table

3.3, demonstrating superiority of aBayesQR in all five metrics of interest.

Runtimes of each of the algorithms applied to this test set as a function

of cov are shown in Table 3.4; note that this characterization of speed (i.e.,

complexity vs. cov) is the most meaningful one to study since the coverage is

a main factor affecting the runtime of performing a reconstruction task. The

speed is measured on a Linux OS desktop with 3.06GHz CPU and 8GbRAM

(Intel Core i7 880 processor). When it completes the task and provides a

solution, PredictHaplo is the most efficient among all schemes; however, this

method fails to provide answers in most of instances on a mixture of 5 strains.

Among the remaining 3 algorithms, our aBayesQR demonstrates the best time

efficiency for cov ≥ 500 while ShoRAH is the slowest one. ViQuaS is relatively

fast at the low coverage cov = 250 but its time complexity appears to grow

exponentially as cov increases, especially in the setting with a mixture of 10

59

viral strains.

3.3.2 Performance comparison on real HIV data

To further test the performance of our proposed method, we employ

it for the analysis of the HIV 5-virus-mix dataset published in [23]. Specif-

ically, we apply our algorithm to reconstruct an in vitro generated quasis-

pecies population consisting of 5 known HIV-1 strains: HIV-1HXB2, HIV-189.6,

HIV-1JR−CSF , HIV-1NL4−3 and HIV-1Y U2. Compared to the simulated data

set, relative frequencies of the 5 HIV-1 strains are more evenly distributed

(about 10% − 30%) and the pairwise distances between strains are higher

(2.61% − 8.45%) [23]. We use the 2 × 250bp-long paired-end reads provided

by Illumina’s MiSeq Benchtop Sequencer. The reads are aligned to the HIV-

1HXB2 reference genome; the reads shorter than 150nt and those having bases

with quality scores less than a PHRED threshold of 60 are discarded. We

compare the performance of our method applied to gene-wise quasispecies

reconstruction of the above described HIV data with that of the competing

techniques. Since the current version of ViQuaS software does not support

specifying genomic regions, we could not use it in this experiment. When run-

ning aBayesQR, we set the parameter η to 0.09 (the setting recommended in

Appendix A). Other parameters are set to the same values as the ones used

in Section 3.3.1.

We evaluate and report the Predicted Proportion (i.e., the fraction of

correctly estimated strains as defined in Section 3.3.1) and Reconstruction Rate

60

T
ab

le
3.

5:
P

er
fo

rm
an

ce
co

m
p
ar

is
on

s
of

aB
ay

es
Q

R
,

S
h
oR

A
H

an
d

P
re

d
ic

tH
ap

on
a

re
al

H
IV

-1
5-

v
ir

u
s-

m
ix

d
at

a
se

t.
p
17

p
24

p
2
-p
6

P
R

R
T

R
N
as
e

in
t

v
if

v
p
r

v
p
u

gp
12

0
g
p
41

n
ef

P
re
d
P
ro
p

1
1

1
1

1
1

1
1

1.
2

1
0
.8

0
.8

1
.2

R
R
(F

) H
X
B
2

10
0(
16

.3
)
99

.4
(2
1.
1)

1
0
0(
22

.2
)
10

0(
12

.5
)

98
.5
(2
4.
3)

10
0(
1
6.
1)

99
.9
(9
.7
)

10
0(
9.
2)

10
0
(1
6.
4)

9
9.
6
(1
7
)

9
8(
3
0
.3
)

0
(0
)

9
5
.8
(1
1
.4
)

R
R
(F

) 8
9
.6

10
0(
27

.1
)

98
.7
(1
7)

1
00

(1
7.
3)

10
0(
17

.3
)

98
.6
(1
8.
1)

10
0(
19

.7
)

1
00

(2
2
.2
)

10
0(
2
0.
6)

1
00

(1
6
.3
)

92
(1
0
.4
)

9
6
.5
(2
0.
2
)
9
8.
9(
23

.7
)

9
5
.5
(1
6
.4
)

R
R
(F

) J
R
-C

S
F
10

0(
31

.3
)
99

.6
(2
4.
6)

1
0
0(
25

.8
)
10

0(
29

.9
)

99
(2
1.
5)

10
0(
22

.1
)

1
00

(2
0
.8
)

10
0(
3
2.
7)

1
0
0(
27

)
98

.8
(2
6
.7
)

9
7
.7
(2
1.
4
)
9
9.
1(
29

.7
)

9
8
.2
(2
1
.1
)

R
R
(F

) N
L
4
-3

10
0(
12

.9
)
10

0(
21

.6
)
1
0
0(
25

.6
)
10

0(
20

.1
)

98
.9
(1
7.
7)

10
0
(3
0)

10
0(
39

.5
)
9
9.
8(
28

.5
)
1
0
0
(2
3
.2
)

1
00

(4
1
.3
)

96
.3
(2
8
)

9
8
.8
(3
6
.6
)

1
0
0
(3
1
.8
)

aBayesQR

R
R
(F

) Y
U
2

10
0(
12

.4
)
99

.7
(1
5.
8)

1
00

(9
.2
)

10
0
(2
0.
3)

99
.2

(1
8.
5)

10
0(
12

.2
)

99
.5
(7
.9
)

99
.7
(9
)

1
0
0(
17

.1
)

10
0
(4
.6
)

0
(0
)

9
8
.6
(1
0.
1)

9
9
.2
(1
4
)

P
re
d
P
ro
p

13
16

.4
13

.8
8.
8

21
.8

11
.8

13
.6

1
2.
8

7
.8

4
23

.8
19

.8
1
7
.4

R
R
(F

) H
X
B
2

10
0(
9.
41

)
96

.7
(6
.3
)

1
00

(6
.2
)

10
0(
7.
8)

98
.2
(5
.8
)

10
0(
8.
9)

97
.5
(9
.2
)

10
0(
5.
9)

10
0
(8
)

1
0
0(
8.
2)

9
7.
7
(1
5
.7
)

9
8.
4(
4.
6)

98
.2
(1
4
)

R
R
(F

) 8
9
.6

10
0(
8.
97

)
99

.7
(1
0.
7)

1
0
0(
15

.8
)
10

0(
14

.5
)

98
.6
(4
.6
)

10
0(
1
1.
3)

98
.9
(1
1
.1
)
99

.8
(1
2.
5)

10
0
(6
.2
)

9
3
.6
(1
4.
6)

96
.1
(9
)

9
8
.6
(8
.4
)

9
8.
9
(9
.7
)

R
R
(F

) J
R
-C

S
F
10

0(
26

.2
)
10

0(
13

.6
)
1
0
0(
10

.7
)
10

0(
10

.2
)

99
.8
(7
.2
)

96
.4
(7
.3
)

99
(7
.6
)

1
00

(1
4
.5
)
1
0
0(
16

.9
)

98
(2
0
.1
4
)

9
6
.9
(9
.8
)

9
6
.3
(6
.6
)

94
.7
(4
.3
)

R
R
(F

) N
L
4
-3

10
0(
9.
4)

99
.1
(5
.2
)

9
7.
3(
7.
3)

10
0(
7.
8)

98
.9
(4
.4
)

99
.2
(1
4
.8
)

99
.3
(4
.8
)

9
9.
3(
7.
3)

10
0
(2
2.
9
)

1
0
0(
20

.2
)

96
.1
(4
.4
)

98
.5
(4
.8
)

98
.6
(1

7
.1
)

ShoRAH

R
R
(F

) Y
U
2

94
.2
(6
.1
)

99
(5
.5
)

10
0(
8)

98
.3
(8
.1
)

98
(7
.2
)

94
.5
(9
.2
)

98
.6
(6
)

95
(6
.6
)

9
3
.2
(7
.6
)

90
.8
(7
.9
)

9
7
(4
.7
)

95
.4
(7
.1
)

9
7
.9
(5
.1
)

P
re
d
P
ro
p

1
0.
6

1
1

1
0.
8

0
.8

0.
8

1
0.
8

0
.8

0
.8

0
.8

R
R
(F

) H
X
B
2

10
0(
17

.8
)

0(
0)

10
0
(1
8.
7)

10
0(
15

.2
)

10
0(
12

.2
)

98
.9
(2
5.
4)

1
00

(1
2
.1
)

1
00

(1
7.
7)

10
0
(1
0
.2
)
9
3.
17

(1
0
.8
)

0(
0
)

0
(0
)

0
(0
)

R
R
(F

) 8
9
.6

10
0(
19

.9
)
10

0(
46

.4
)
1
0
0(
21

.7
)
10

0(
22

.2
)

10
0(
19

.4
)

10
0(
1
8.
2)

9
9.
8(
27

.6
)
10

0(
2
0.
9)

1
00

(2
2
.1
)

0(
0)

9
7.
8(
20

.7
)
10

0
(2
6.
7
)
9
8
.8
7
(2
0
.7
)

R
R
(F

) J
R
-C

S
F
10

0(
31

.9
)
10

0(
21

.8
)
1
0
0(
30

.3
)
10

0(
26

.9
)

10
0(
23

.4
)

10
0(
2
3.
2)

10
0(
22

.3
)

10
0(
2
4.
9)

1
0
0(
23

.7
)

10
0
(3
4.
1)

9
9
.7
(4
2.
7)

1
00

(2
8
.9
)

10
0
(2
3
.2
)

R
R
(F

) N
L
4
-3

10
0(
17

)
99

.1
(3
1.
8)

10
0(
16

.4
)
10

0(
20

.9
)

10
0(
30

.2
)

10
0(
33

.2
)

10
0(
38

.1
)

1
00

(3
6
.6
)
1
00

(3
5
.5
)

1
0
0(
47

.1
)

1
00

(2
8
.6
)

10
0
(3
2.
7
)

1
0
0
(3
9
.3
)

PredictHaplo

R
R
(F

) Y
U
2

10
0(
13

.4
)

0(
0)

10
0
(1
2.
9)

10
0(
14

.8
)

10
0(
14

.7
)

0
(0
)

0(
0
)

0(
0)

1
0
0
(8
.5
)

1
00

(7
.9
)

9
8
.6
(7
.9
)

10
0
(1
1.
7)

1
0
0
(1
6
.9
)

P
re
d
ic
te
d
P
ro
po
rt
io
n
(P

re
d
P
ro
p
),
R
ec
o
n
st
ru
ct
io
n
R
a
te

(R
R
)
an

d
in
fe
rr
ed

fr
eq
u
en

ci
es

(F
)
fo
r
aB

ay
es
Q
R
,

S
h
oR

A
H

an
d
P
re
d
ic
tH

ap
lo

ap
p
li
ed

to
re
co
n
st
ru
ct
io
n
of

H
IV

-1
H
X
B
2
,
H
IV

-1
8
9
.6
,
H
IV

-1
J
R
-C

S
F
,
H
IV

-1
N
L
4
-3
an

d
H
IV

-1
Y
U
2
fo
r
al
l
13

g
en

es
o
f
th
e
H
IV

-1
d
at
as
et

(n
ot
e:

fr
eq
u
en

ci
es

ar
e
re
p
or
te
d
in

p
ar
en
th
es
is
,
b
ot
h
R
R

an
d
F
ar
e

ex
p
re
ss
ed

in
p
er
ce
n
ta
ge
s)
.

61

in Table 3.5. On this real HIV-1 data set which (as pointed above) has differ-

ent properties than the simulated data set in Section 3.3.1, aBayesQR is the

most accurate among the considered methods in terms of Predicted Propor-

tion. PredictHaplo underestimates the population size and reconstructs three

or four strains in the 8 considered genes and ShoRAH greatly overestimates

the population size for all 13 genes of the HIV-1 data set (e.g., it reconstructs

119 strains in gp120), which is consistent with our simulation results as well as

with the results in [66]. aBayesQR and PredictHaplo are tied for the number of

genes where all the strains are perfectly reconstructed (5 each); for the remain-

ing genes, PredictHaplo provides a larger number of perfectly reconstructed

strains. However, it is worth pointing out that PredictHaplo, designed for

identification of HIV haplotypes, missed at least one strain in each of the re-

maining 8 genes while aBayesQR reconstructed most of the strains on all but

two genes, gp120 and gp41. ShoRAH did not perfectly reconstruct any of the

13 genes, which is consistent with the simulation results. Moreover, overes-

timating the number of strains negatively affects the accuracy of ShoRAH’s

frequency estimation; for instance, the sum of frequencies corresponding to

the most abundant 5 strains does not exceed 50% in 9 out 13 genes (71% is

the largest such sum, on vpu).

To complement the gene-wise quasispecies reconstruction study with

that of a global reconstruction, we consider the HIV-1 gap-pol region span-

ning 4307bp. To efficiently process 355241 paired-end reads that remain after

applying a quality filter, we organize the region into a sequence of windows

62

of length 400bp where the consecutive windows overlap by 150bp and run

aBayesQR on those windows. The entire region is assembled by connecting

strains in the consecutive windows while testing consistency in the overlap-

ping intervals. The number of strains retrieved in the global reconstruction

is decided by majority voting of the number of strains obtained in each win-

dow. The frequencies are estimated by counting reads nearest (in terms of

Hamming distance) to each of the reconstructed strains. Following this proce-

dure, both aBayesQR and PredictHaplo could reconstruct all 5 HIV-1 strains

in the gap-pol region correctly, i.e., they both achieved Reconstruction rate of

100 for all 5 strains and Predicted Proportion of 1. The frequencies estimated

by aBayesQR are 15.21%, 19.34%, 25.56%, 27.61% and 12.27% while those

estimated by PredictHap are 13.21%, 13.56%, 25.67%, 19.69% and 27.86%.

ShoRAH highly overestimated the number of strains and reported Predicted

Proportion of 41.8; its five most abundant strains estimated are reported to

have frequencies 8.51%, 5.04%, 3.41%, 3.24% and 3.09%.

3.4 Summary and Further Work

In this chapter, we presented a novel maximum-likelihood based ap-

proximate algorithm for reconstructing viral quasispecies from high-throughput

sequencing data. aBayesQR assembles paired-end short reads into longer frag-

ments based on similarity of the read overlaps and the uncertainty level of

non-overlapping regions. The probable sets of partially reconstructed strains

are inductively searched and a subset of those strains is extended to efficiently

63

deduce the most likely set of strains in a quasisepcies. Detection of the popu-

lation size is embedded into the algorithm and is empirically shown to be very

accurate; the number of strains is dynamically adjusted based on the reliability

of the partially assembled quasispecies in each extension step. Performance of

the developed method is tested on both synthetic datasets and a real HIV-1

dataset. In both settings, the new algorithm outperforms existing techniques

in terms of accuracy of the quasispecies size estimation, perfect reconstruc-

tion of strains, proportion of correct bases in each reconstructed strain and

the estimation of their abundance. A particularly high accuracy is observed

in estimating the population size (i.e., the number of strains) and their rel-

ative abundance. Tests on synthetic datasets demonstrates that aBayesQR

is capable of reconstructing quasispecies at low diversity, showing superior

performance in those settings compared to state-of-the-art algorithms. Fur-

thermore, the study on a real HIV-1 dataset demonstrates that our proposed

algorithm outperforms or has performance comparable to that of the existing

methods in the general setting of viral quasispecies reconstruction.

64

Chapter 4

Viral quasispecies reconstruction via tensor

factorization with successive read removal

4.1 Background and Related Works

The sequential Bayesian inference method, aBayesQR, described in

Chapter 3 focused on reconstruction of quasispecies characterized by low di-

versity. While aBayesQR is indeed more accurate than competing methods

in low diversity (≤ 5%) settings, reconstructing quasispecies characterized by

both low diversity and highly uneven strain frequencies remains a challenge.

In this chapter, we present a reconstruction method that takes a step

towards overcoming limitations of existing techniques and is capable of ac-

curately assembling quasispecies characterized by a wide range of strain fre-

quencies.1 The method, referred to as TenSQR (Tensor factorization with

Successive removal for Quasispecies Reconstruction), represents sequencing

data by means of a structured sparse binary tensor. Factorization of such

objects, both matrices and tensors, was previously used to enable haplotype

assembly of diploid [14] and polyploid [31] genomes. Note that the abundances

1This work will appear as [Soyoen Ahn, Ziqi Ke and Haris Vikalo. Viral quasispecies
reconstruction via tensor factorization with successive removal. Bioinformatics, 2018 ISMB
Special Issue, 2018]. The author of this dissertation is the primary contributor.

65

of reads generated by sequencing diploid or polyploid haplotypes are near uni-

form – minor variations in those abundances are primarily due to imperfections

of the sample preparation and sequencing steps. Matrix and tensor factoriza-

tion schemes in [14] and [31] make an explicit assumption that the haplotype

frequencies are equal. However, this assumption is clearly violated in the QSR

problem. It therefore comes as no surprise that when matrix or tensor factor-

ization is directly applied to reconstruct a heterogeneous mixture of sequences

characterized by highly uneven frequencies (by means of forming imbalanced

clusters, each collecting reads having originated from one sequence), dominant

sequences (large clusters) are typically recovered correctly while the rare se-

quences (small clusters) are often either missed or reconstructed erroneously

[16]. To address this concern, TenSQR successively infers strains in a quasis-

pecies by repeatedly performing the following two steps. In the first step, the

sparse tensor is factorized and its missing entries are inferred by alternatingly

optimizing the factors; this step is completed by identifying and reconstructing

the most abundant strain. In the second step, all the reads deemed to have

originated from the reconstructed (the most abundant) strain are removed

from the dataset and hence from the originally formed tensor; the number of

such reads is indicative of the reconstructed strain’s frequency. Then, the first

step is performed anew on the reduced dataset to reconstruct the 2nd most

abundant strain and so on. These two steps are repeated until all the strains

are reconstructed. Since the proposed scheme revisits tensor factorization

multiple times, computational complexity of that step becomes a concern. To

66

mitigate it, we exploit the special structure of the problem and propose a novel

majority-voting based efficient alternating minimization scheme for sparse bi-

nary tensor factorization. We show that the convergence of the successive

strain reconstruction and data removal procedure is guaranteed, and that the

proposed scheme allows detection of deletions in the reconstructed strains.

Finally, the developed framework is augmented by an additional pipeline de-

signed to detect insertions that may be present in some of the reconstructed

strains. Our tests on simulated data demonstrate that, unlike the competing

methods, the proposed tensor factorization framework for successive strain in-

ference supports reliable discovery and accurate reconstruction of rare strains

existing in highly imbalanced populations even when the population diversity

is low. In particular, TenSQR compares favorably to state-of-the-art methods

at diversities 1-10%, and detects deletions in strains with low abundance. Per-

formance of TenSQR on a real HIV-1 dataset demonstrates TenSQR’s ability

to reliably reconstruct quasispecies in more general settings. Furthermore, we

employ our method to reconstruct full-length strains in a Zika virus sample.

4.2 Method

4.2.1 Problem formulation

Let Q = {qi, i = 1, · · · , k} denote the set of k viral quasispecies strains

that differ from each other at a number of variant sites, and let R = {rj, j =

1, · · · ,m} denote the set of reads generated by sequencing the strains in Q;

relative ordering of the reads is determined by aligning them to a reference

67

genome. Homozygous sites (i.e., the sites containing alleles common to all

strains) are not utilized by our tensor model; instead, viral haplotypes are

reconstructed using heterozygous sites that have abundance of alleles above

a predetermined threshold (i.e., sites that are with high confidence declared

to be variants). Note that the homozygous sites are later used to assemble

full-length viral strains, as detailed in Section 4.2.3.

Let us organize the data (i.e., information about the variant sites pro-

vided by the paired-end reads) in an m × n read fragment matrix F′, where

the rows correspond to reads and columns correspond to variant positions in

the sequences. A convenient numerical representation of F′ is obtained by

denoting nucleotides with 4-dimensional standard unit vectors e
(4)
i , 1 ≤ i ≤ 4,

with 0s in all positions except the ith one that has value 1 (e.g., e
(4)
1 = [1 0 0 0],

e
(4)
2 = [0 1 0 0] and so on). This leads to a representation of the read fragment

matrix F′ by means of a binary tensors F whose fibers represent nucleotides

and horizontal slices correspond to reads. F can be thought of as being ob-

tained by sparsely sampling an underlying tensor T whose fibers are standard

unit vectors e
(4)
i ; sampling is potentially erroneous due to sequencing errors.

To arrive at a tensor factorization formulation of the problem, it is useful to

point out that T can be thought of as being obtained by multiplying a read

membership indicator matrix M and a binary tensor H that encodes the true

viral haplotype information – namely, fibers of H are standard unit vectors

e
(4)
i representing alleles while each lateral slice of H is one of the k viral hap-

lotypes that need to be reconstructed. Moreover, the indicator matrix M has

68

Figure 4.1: An illustration of the tensor factorization representation of the
viral quasispecies assembly problem.

for rows the standard unit vectors e
(k)
i , 1 ≤ i ≤ k, with 0s in all positions

except the ith one that has value 1. If, for example, the jth row of M is e
(k)
l ,

then that indicates the jth read was obtained by “sampling” (i.e., via shotgun

sequencing) the lth viral haplotype. Figure 4.1 illustrates the representation

of T by means of a product of M and H.

We formulate the task of reconstructing the set of viral haplotype se-

quences H from the observed reads F as a collection of k−1 tensor factorization

problems; following each factorization, sequencing reads associated with the

most dominant assembled strain are removed from F and the factorization is

performed anew until all the reads remaining in F are of the same origin (i.e.,

come from the same viral haplotype). The tensor factorization procedure is

formalized in the next section.

4.2.2 Structured tensor factorization using alternating minimiza-
tion

Let F ∈ {0, 1}m×4n and H ∈ {0, 1}4n×k be the mode-1 unfoldings of

tensors F and H, respectively. The QSR problem can be cast as the optimiza-

69

tion

min
M,H

1

2
‖PΩ(F−MH>)‖2

F , (4.1)

where Ω denotes the set of informative entries of F (i.e., positions of the infor-

mation provided by the set of reads), PΩ is the projection operator (formalizing

the sampling of virus strains by reads) and ‖ · ‖F denotes the Frobenius norm

of its argument. This is a computationally challenging optimization problem

that can be approximately solved by means of alternating minimization, i.e.,

alternately solving (4.1) for either M or H while keeping the other one fixed

[34]. In particular, given the current estimates Mt and Ht, we alternately

update

Mt+1 = arg min
M∈{0,1}m×k

1

2

∑
‖PΩ(F−MH>t)‖2

F (4.2)

and

Ht+1 = arg min
H∈{0,1}4n×k

1

2

∑
‖PΩ(F−Mt+1H

>)‖2
F (4.3)

until a termination criterion is met. Note that one can impose structural

constraints on M to find it efficiently [14]. In particular, M can be found by

examining for each read all possible haplotype associations and selecting the

one that minimizes the number of base changes needed to be consistent with

the observed information in F (i.e., minimizing the so-called minimum error

correction (MEC) score, first proposed in [49]). Therefore, the complexity of

finding M given H is O(mk), where m is the number of reads and k denotes

the number of viral haplotypes. Now, optimization (4.3) can be performed

via, e.g., gradient descent as previously done in [14, 31]; however, we instead

exploit the discrete nature of the problem to solve (4.3) much more efficiently.

70

In particular, we employ the majority voting rule to form consensus sequences

among reads that belong to the same cluster, i.e. originate from the same

viral haplotype. While the complexity of finding H given M is O(mn) for

both the majority voting and gradient descent schemes, the former solves

(4.3) directly while the latter only takes a step towards the solution. As

a result, the convergence of the proposed alternating minimization scheme

that employs majority voting to solve (4.3) is significantly faster than that of

the scheme relying on gradient descent (please see Appendix C for numerical

results illustrating this point). Moreover, we show that the convergence of

the proposed alternating minimization procedure is guaranteed (the proof is

provided in Appendix B).

4.2.3 Successive reconstruction of viral sequences

The alternating minimization procedure described in Section 4.2.2 is

expected to work well in settings where the abundances of different haplo-

types are uniform (i.e., equal) and the ploidy is low [14, 31]. However, when

the frequencies of components in the mixture are uneven, the described frame-

work is capable of correctly reconstructing dominant sequences but struggles

to assemble sequences having low abundances, as pointed out in [16]. The

reason for such behavior is that (4.1) emphasizes accurate recovery of domi-

nant haplotypes which significantly contribute to the overall MEC score while

neglecting rare ones whose contribution to the MEC score is relatively small.

To address this concern, we propose an iterative scheme where upon per-

71

forming optimization (4.1), the most abundant viral strain is identified and

reconstructed from H; following this reconstruction, all the reads assessed to

have originated from the reconstructed strain are removed from the dataset

(and thus from F). Optimization (4.1) is repeated on the reduced F to recover

the 2nd most abundant strain and the procedure continues until all strains are

reconstructed.

Let ml be the number of rows having unit vectors e
(k)
l , 1 ≤ l ≤ k, in

M. The most dominant haplotype can be identified as the wth lateral slice

of H, Hw::, satisfying w = arg maxlml. While each row of M is essentially

an indicator of the origin of the corresponding read, membership information

obtained via optimization (4.1) could be erroneous when the strains in a mix-

ture have non-uniform frequencies. In fact, reads originating from a rare strain

are likely to be assigned to a more abundant one, especially when those two

strains are highly similar (i.e., in the low diversity setting). Motivated by this

observation, we re-examine the reads in F to identify those originating from

the reconstructed viral haplotype using statistical tests described next.

Assume that the sequencing errors are independent and identically dis-

tributed across all variant sites for all reads, and that they happen with prob-

ability ε. Let ni denote the number of informative sites of the ith row in F′,

f ′i·, and let di be the number of mismatches between f ′i· and the recovered

haplotype (i.e., the most abundant haplotype reconstructed in the current it-

eration) counted over the observed nucleotides of f ′i·. The probability pi(x)

that x or more sequencing errors occur in the ith fragment is given by the

72

binomial distribution

pi(x) = P(Xi ≥ x) =

ni∑
z=x

(
ni
z

)
εz(1− ε)ni−z.

We first construct a significance test to infer if the aforementioned mismatch

has been induced by mutations present in some of the informative sites. In

particular, if pi(di) is smaller than or equal to a pre-specified p-value α, we

declare that not all of the di mismatches are sequencing errors, implying at

least one of them is due to mutation, and therefore the ith read remains in F.

Otherwise, for a read such that pi(di) > α, we further examine its origin by

considering the probability pi that di sequencing errors occurs in the ith read,

pi =

(
ni
di

)
εdi(1− ε)ni−di .

The reads which satisfy pi > δi are assessed to have originated from the most

dominant strain and thus eliminated from F. The threshold δi is defined as

δi =
∏n

j=1 pXi[j], where Xi[j] is the nucleotide observed at position j of the ith

read in F′ and pXi[j] denotes the probability of observing nucleotide Xi[j] at

position j; the latter probability is obtained as the empirical allele frequency

distribution at position j. Note that if the mismatches between a read and

the recovered sequence are due to mutations rather than sequencing errors,

it is less likely that the read originated from the recovered haplotype and

thus a higher threshold is used. To provide strong evidence against the null

hypothesis of di sequencing errors, we set the p-value α to a small number; in

particular, we set α = 10−5.

73

Finally, to reconstruct full-length strains qi, we reinsert homozygous

alleles into the reads and form a consensus sequence for each cluster. Abun-

dances of the reconstructed strains are estimated by counting the number of

reads in each cluster.

The performance comparison between TenSQR and the single-pass ten-

sor factorization (i.e., AltHap [31]), an approach that does not employ succes-

sive data cancelation) can be found in Appendix C.

4.2.4 Determining the number of strains

The scheme outlined in this section requires that the number of strains

(i.e., clusters) k be specified prior to performing tensor factorization and suc-

cessive cancelation. To determine k, we consider the improvement rate of the

MEC score defined as [5]

MECimpr(k) =
MEC(k)−MEC(k + 1)

MEC(k)
. (4.4)

Recall that the MEC score counts the minimum number of nucleotides that

need to be changed in the observed reads so that the modified reads are con-

sistent with having originated from the reconstructed sequences; smaller MEC

score indicates higher accuracy of clustering. As we increase k, the MEC

score decreases monotonically; however, once k has reached the actual num-

ber of clusters, its further increase leads to only small improvements of the

MEC score. Therefore, we approach the problem of detecting the number

of strains by identifying k for which the MEC improvement rate (MECimpr)

74

saturates. To detect this point, we compare the MEC improvement rate with

a predefined threshold; while one can search for k by increasing it in steps

of 1 until the MEC improvement rate saturates, we, for efficiency, update

candidate k by relying on the so-called half-interval search. In particular,

starting from an initial k0, the number of clusters is updated as kτ ← 2kτ−1

until MECimpr(kτ) ≤ η; at this point the number of clusters starts to de-

crease as kτ+1 ← b(kτ + max{1, ki})/2c where {i ∈ {1, · · · , τ − 1} : ki ≤ kτ}.

Once MECimpr(kτ) > η, the number of clusters increases again as kτ+1 ←

b(kτ + min ki)/2c where {i ∈ {1, · · · , τ − 1} : ki > kτ}. If kτ = kτ−1, the

search procedure stops by assigning kτ+1 ← kτ +1 which is our estimate of the

number of strains. The recommended choice of the threshold η is discussed

in [5] where it has been demonstrated that the performance of estimating the

number of strains via MEC improvement rate is robust with respect to the

choice of the threshold. The described procedure will find the true number of

strains starting from an arbitrary k0; the closer k0 is to the true number of

strains, the fewer iterations will be needed. The proposed TenSQR method is

formalized as Algorithm 1.

4.2.5 Estimating insertions

Strains of a quasispecies may also contain insertions as compared to a

reference genome. In this section we propose a pipeline to detect and recon-

struct insertions by processing paired-end reads that were previously filtered

out due to inability to match them confidently with the reference genome;

75

Algorithm 1: Tensor factorization with successive removal

Input: Set of reads R aligned to the reference genome
Output: Full length quasispecies Q and frequencies of k strains in Q
Preprocessing: From R, get mode-1 unfolding F of fragment tensor F

Initial τ ← 0 , MECflag ← 0
while τ = 0 or kτ 6= kτ−1 do

for k ∈ {kτ , kτ + 1} do
Qk ← ∅
F← mode-1 unfolding F of fragment tensor F

while F 6= ∅ or k ≥ 1 do

Initialize H0 ← V Σ
1
2 where UΣV > = SVDk(PΩ(F))

Repeat
Mt+1 = arg minM

1
2

∑
‖PΩ(F−MH>t)‖2

F

Ht+1 = arg minH
1
2

∑
‖PΩ(F−Mt+1H

>)‖2
F

Until termination criterion is met
Identify Hw:: s.t. w = arg maxlml

Remove fi s.t pi > δi or di = 0 from F
Reconstruct Qk ← [Qk; qh] and estimate frequency of qh
k ← k − 1

end while
Calculate MEC(k)

end for
if MECimpr(kτ) ≤ η do

kτ+1 ← b(kτ + max{1, ki})/2c, {i ∈ {1, · · · , τ -1} : ki ≤ kτ}
MECflag ← 1

else do
if MECflag = 0 Do

kτ+1 ← 2kτ
else do

kτ+1 ← b(kτ + min ki)/2c, {i ∈ {1, · · · , τ -1} : ki > kτ}
end if

end if
τ ← τ + 1

end while
k ← kτ + 1
Q← Qk

76

therefore, those reads have not been used in tensor factorization. The idea

is that some of the discarded reads that have high base-calling quality scores

might have not been matched successfully to the reference because they origi-

nate from a region that was inserted into one of the strains of the quasispecies.

The three major steps of the proposed procedure are the following:

1. Infer the origin of the filtered-out paired-end reads having high base-

calling quality scores.

Let us denote two sequences in a paired-end read as (rh, rl) where the

first one is a read having high mapping score and the other one a read which is

not mapped or is only partially aligned to the reference (i.e., has a low mapping

score) due to an insertion. In order to infer the origin of the paired-end read

(rh, rl), we align the mapped read rh to the position identified by the alignment

software and count the number of mismatches between the read rh and each of

k reconstructed strains. The strain qI having the smallest Hamming distance

to the paired-end read is inferred as the origin of the paired-end read (rh, rl)

and thus contains an insertion.

2. Alignment of rl

Having identified strain qI as the origin of the paired-end read (rh, rl),

we next attempt to find the most likely position of rl relative to qI . To this

end, we examine subsequences that consist of the first and last l nucleotides

of rl and compare them to every l-nucleotides long subsequence of qI . Note

that we assume l < Lrl , where Lrl denotes the length of read rl. To identify

77

the best placement of rl along qI , we measure alignment scores for 2(Lg − l)

windows, where Lg is the length of qI , and choose the one with the largest

score. More specifically, the alignment score is updated for each window at

each position of 1 ≤ i ≤ l; scorei+1 ← scorei+Nmatch if the ith nucleotide of the

l-nucleotides long subsequences is matched with one in qI , otherwise the score is

updated as scorei+1 ← scorei−(Nmismatch+1)2 where Nmatch and Nmismatch are

the number of consecutive matches and mismatches, respectively; the scoring

function penalizes consecutive mismatches while favoring consecutive matches

to form a reliable estimate of the placement for rl.

Given a relative position of rl along qI , we infer the inserted position

(i.e., the position at which rl starts to differ from qI due to insertions) by relying

on the same scoring function used to determine the best alignment position.

In particular, the score is computed for each position from 1 to LrI for reads

whose l-nucleotides-long prefix maps to qI and from LrI to i for those whose

l-nucleotides-long suffix maps to qI ; then the position at which insertion starts

is estimated as I + 1, where I = arg maxi scorei. For computational efficiency,

the updates of scorei are terminated once scorei < 0.

3. Recover inserted sequences

Given the alignment and the position at which the insertion starts,

recovery of the insertion is readily performed by constructing two consensus

sequences – one built using the collection of reads whose l-nucleotides-long

prefix maps to qI and the other whose l-nucleotides-long suffix maps to qI .

78

Finally, the two consensus sequences are aligned and merged to recover the

entire insertion.

Preliminary results demonstrating its performance can be found in Ap-

pendix C.

4.3 Results and Discussion

4.3.1 Performance comparison on simulated data

We first test the performance of TenSQR on the synthetic data gener-

ated by emulating high-throughput sequencing of quasispecies samples. Viral

strains in a quasispecies are generated by introducing independent mutations

at uniformly random locations of a randomly generated reference genome of

length 1300bp (this is a typical length of a gene in the pol region of the HIV-1

genome). 2 × 250bp-long Illumina’s MiSeq reads with inserts that have av-

erage length and standard deviation 150bp and 30bp, respectively, uniformly

sample the mixture of viral strains at a coverage rate of 500× per strain. The

reads are aligned to a reference using BWA-MEM algorithm with the default

settings [44]; reads shorter than 100bp or having mapping quality score lower

than 40 are filtered out. Simulated data is categorized into 40 different sets,

each consisting of 50 samples, according to diversity (div%), sequencing error

rate (ε) and the number of strains in a quasispecies (and hence frequencies

of the strains). Diversity, defined as the average Hamming distance between

different strains in a quasispecies, varies from 1% to 10%. Sequencing error

rate is set to ε = 7× 10−3 and ε = 2× 10−3, the typical error rates in MiSeq

79

datasets before and after quality trimming with error correction, respectively

[65]. For each configuration of parameters we consider two mixture sets, each

consisting of 5 and 10 viral strains. Frequencies of strains are chosen to ap-

proximately follow geometric distribution so as to emulate uneven populations

which include strains with low abundance; relative strain frequencies for the

5-strain mix are (0.5, 0.3, 0.15, 0.04, 0.01) while those for the 10-strain mix

are (0.36, 0.24, 0.16, 0.08, 0.055, 0.04, 0.03, 0.02, 0.01, 0.005). Therefore, the to-

tal coverage for the 5-strain and 10-strain population are 2500× and 5000×,

respectively, implying that strains having relative frequencies 0.0023 or higher

in the 5-strain case and those with relative frequencies 0.0046 or higher in the

10-strain case are covered by sequencing reads with probability 0.99 [28].

We compare the performance of TenSQR on the generated datasets with

publicly available softwares PredictHaplo [57], ShoRAH [78], ViQuaS [35], and

aBayesQR [5], in terms of Recall, Precision, Predicted Proportion, Reconstruc-

tion Rate and Jensen-Shannon divergence (JSD). To assess the ability of the

compared methods to reconstruct viral strains perfectly (without errors), Re-

call is defined as the fraction of the reconstructed strains that match the true

strains in a quasispecies, i.e., Recall = TP
TP+FN

while Precision reports the

fraction of true sequences among the reconstructed strains, i.e., Precision =

TP
TP+FP

. We further report Predicted Proportion, defined as the ratio of the

estimated and the true population size, thus measuring accuracy of the meth-

ods’ population size prediction. Note that the proximity of the value of this

metric to 1 indicates accuracy of the population size estimate. To assess the

80

1 2 3 4 5 6 7 8 9 10

R
e
c
a
ll

0

0.2

0.4

0.6

0.8

1

5 strains (50, 30, 15, 4, 1)%

TenSQR PredictHaplo ShoRAH aBayesQR ViQuaS

1 2 3 4 5 6 7 8 9 10

P
re

c
is

io
n

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7 8 9 10

P
re

d
P

ro
p

0.5

1

1.5

2

2.5

3

1 2 3 4 5 6 7 8 9 10

R
e
c
o
n
R

a
te

0.96

0.97

0.98

0.99

1

Diversity(%)
1 2 3 4 5 6 7 8 9 10

J
S

D

0

0.05

0.1

0.15

1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

10 strains (36,24,16,8,5.5,4,3,2,1,0.5)%

1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7 8 9 10
0.5

1

1.5

2

2.5

3

1 2 3 4 5 6 7 8 9 10
0.96

0.97

0.98

0.99

1

Diversity(%)
1 2 3 4 5 6 7 8 9 10

0

0.05

0.1

0.15

Figure 4.2: Performance comparison of TenSQR, aBayesQR, ShoRAH, Vi-
QuaS and PredictHaplo in terms of Recall, Precision, Predicted Proportion
(PredProp), Reconstruction Rate (ReconRate) and JSD on the simulated data
with ε = 2× 10−3 for a mixture of (a) 5 viral strains and (b) 10 viral strains.
(For the plots that include error bars, please see the corresponding Figure C.2
in Appendix C.)

81

1 2 3 4 5 6 7 8 9 10

R
e
c
a
ll

0

0.2

0.4

0.6

0.8

1

5 strains (50, 30, 15, 4, 1)%

TenSQR PredictHaplo ShoRAH aBayesQR ViQuaS

1 2 3 4 5 6 7 8 9 10

P
re

c
is

io
n

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7 8 9 10

P
re

d
P

ro
p

1

2

3

4

5

6

1 2 3 4 5 6 7 8 9 10

R
e
c
o
n
R

a
te

0.95

0.96

0.97

0.98

0.99

1

Diversity(%)
1 2 3 4 5 6 7 8 9 10

J
S

D

0

0.05

0.1

0.15

0.2

1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

10 strains (36,24,16,8,5.5,4,3,2,1,0.5)%

1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

1 2 3 4 5 6 7 8 9 10
0.95

0.96

0.97

0.98

0.99

1

Diversity(%)
1 2 3 4 5 6 7 8 9 10

0

0.05

0.1

0.15

0.2

Figure 4.3: Performance comparison of TenSQR, aBayesQR, ShoRAH, Vi-
QuaS and PredictHaplo in terms of Recall, Precision, Predicted Proportion
(PredProp), Reconstruction Rate (ReconRate) and JSD on the simulated data
with ε = 7× 10−3 for a mixture of (a) 5 viral strains and (b) 10 viral strains.
(For the plots that include error bars, please see the corresponding Figure C.3
in Appendix C.)

82

degree of accuracy of each reconstructed strain, we use

Reconstruction Rate =
1

k

k∑
i=1

(
1− HD(qi, q̂i)

G

)
,

where G denotes the length of a reference genome, k is the number of strains in

a quasispecies, and qi and q̂i denote the ith true strain and its nearest sequence

among the k reconstructed ones, respectively. Finally, JSD measures accu-

racy of the estimated frequencies of the reconstructed strains, i.e., quantifies

similarity between two inferred distributions. Formally, JSD between a true

distribution P and its approximation Q is defined as

JSD(P ||Q) =
1

2
D(P ||M) +

1

2
D(Q||M),

where D(·||·) denotes Kullback-Leibler (KL) divergence, M is defined as M =

1
2
(P +Q), and the KL divergence is found as

D(P ||Q) =
n∑
i=1

P (i)log
P (i)

Q(i)
.

Figure 4.2 and Figure 4.3 compares the values of these five metrics

computed for each of the considered reconstruction methods; the metrics are

evaluated by averaging over 50 instances for each combination of the param-

eters and error rate ε = 2 × 10−4 and ε = 7 × 10−4, respectively. Note that

PredictHaplo does not execute on all instances of the generated datasets and

hence we report its performance only when all 50 instances are successfully

processed. As can be seen in Figure 4.2 and Figure 4.3, TenSQR outperforms

the competing schemes. In particular, TenSQR performs the best at all lev-

els of diversity in terms of both Recall and Reconstruction Rate. In terms

83

of Predicted Proportion and JSD, at div > 2% TenSQR achieves superior or

comparable performance to aBayesQR, which is designed to particularly excel

at reconstructing low diversity populations. Note that while Recall quantifies

the fraction of perfectly reconstructed viral strains, purpose of Reconstruction

Rate is to assess quality of reconstruction when the assembled viral strains are

allowed to have errors in some positions. Therefore, the fact TenSQR’s Recall

and Reconstruction Rate are close to 1 indicates that the proposed scheme

is capable of reconstructing rare sequences (i.e., with low abundance) present

in viral mixtures characterized by a wide range of strain frequencies. Predic-

tHaplo underestimates the number of strains and reconstructs only those that

have relative frequencies≥ 15%, which explains its high Precision at div ≥ 5%.

ViQuaS overestimates the population size at all levels of diversity, achieving

the highest scores in Predicted Proportion; note that the only strains used in

calculating ViQuaS performance metrics are those that ViQuaS estimated as

having frequencies greater than fmin, as recommended by [35]. The strains re-

constructed by ShoRAH are consistently shorter than the true strains, which

appears to be due to the existence of low coverage regions in the synthetic data

sets. ShoRAH completes missing sites on the reconstructed strains using bases

from the reference genome, which partially explains why ShoRAH underper-

forms in terms of Recall, Precision and Reconstruction Rate. In conclusion, low

Predicted Proportion of PredictHaplo and weak performance of other methods

in terms of Recall and Reconstruction Rate indicate that existing techniques

experience major difficulties when attempting to detect and reconstruct rare

84

Table 4.1: Performance of estimating deletion.

div%
ldel fmin% 1 2 3 4 5 6 7 8 9 10

1 0.08(0.80) 0(0.88) 0(1.02) 0(2.16) 0(2.64) 0(2.20) 0(2.52) 0(3.38) 0(4.76) 0(4.08)
100 2 0.02(1.18) 0(1.26) 0(1.70) 0(1.42) 0(2.66) 0(1.58) 0(2.78) 0(3.14) 0(2.72) 0(4.22)

5 0.06(1.64) 0(1.72) 0(2.12) 0(1.94) 0(1.86) 0(2.20) 0(2.22) 0(2.94) 0(3.24) 0(3.70)
10 0.08(2.18) 0(2.62) 0(2.20) 0(1.90) 0(2.42) 0(1.92) 0(2.00) 0(3.34) 0(3.00) 0(2.50)

1 0.16(1.33) 0(1.38) 0(1.20) 0(1.78) 0(2.46) 0(3.02) 0(2.28) 0(4.02) 0(5.56) 0(4.56)
200 2 0.14(1.26) 0(1.20) 0(1.94) 0(1.74) 0(1.78) 0(2.34) 0(1.98) 0(3.58) 0(3.94) 0(4.36)

5 0.14(2.86) 0(1.67) 0(1.90) 0(2.10) 0(2.20) 0(1.96) 0(2.54) 0(3.16) 0(3.48) 0(4.98)
10 0.16(2.31) 0(2.20) 0(2.06) 0(2.30) 0(1.70) 0(2.10) 0(2.18) 0(2.98) 0(2.54) 0(2.96)

1 0.34(1.00) 0(1.62) 0(1.38) 0(2.24) 0(2.04) 0(3.32) 0(2.52) 0(4.56) 0(5.14) 0(5.00)
300 2 0.24(2.00) 0.06(1.64) 0(1.78) 0(1.70) 0(2.02) 0(2.24) 0(2.28) 0(3.74) 0(5.08) 0(3.92)

5 0.30(2.66) 0.02(2.12) 0(1.92) 0.02(1.65) 0(2.04) 0(2.52) 0(2.88) 0(2.84) 0(2.58) 0(3.60)
10 0.36(2.72) 0(2.60) 0(2.62) 0(2.10) 0(2.28 0(2.64) 0(2.94) 0(2.58) 0(3.10) 0(3.64)

Performance of TenSQR of estimating deletion in terms of False Negative
rate of detecting deletions and Deviation of estimated deletion length (in

parenthesis) on the simulated data with ε = 2× 10−3 and cov = 500× for a
mixture of 2 strains, depending on diversity(div) and frequency of the low

abundant strain (fmin) which includes a deletion of length (ldel) 100bp, 200bp
and 300bp.

strains.

4.3.2 Evaluating identification of deletion

Following the comparison of performance of TenSQR to state-of-the-

art methods, we next evaluate how accurate is TenSQR at estimating long

deletions. In particular, we investigate TenSQR’s ability to detect a fixed-

length deletion in a strain over a range of strain frequencies and diversity levels.

To this end, we generate sets of quasispecies consisting of two strains where the

length of the abundant strain is 1300bp and deletions of sizes ldel = 100, 200,

and 300bp are placed into the strain of the lower abundance. We generated 40

benchmark sets of reads emulating sequencing of a mixture of two viral strains

85

with diversity ranging from 1% to 10% and the lower of two frequencies taking

values in {1, 2, 5, and 10%}; parameters of the sequencing platform are as

same as those in Section 4.3.1, i.e., the coverage rate is 500× per strain and the

sequencing error rate is set to ε = 2×10−3. 50 instances are generated for each

of the total 120 data sets. In this study, the performance of detecting deletions

is characterized by means of the false negative rate evaluated over 50 instances

of the experiment, and the deviations of the estimated length of deletions from

the true length calculated by averaging the deviations over the 50 instances.

Since the competing QSR methods considered in Section 4.3.1 are unable to

detect deletions, we only show the performance of TenSQR. Note that while

HaploClique [71] can predict long deletions, the overlap assembly approach

recovers many contigs shorter than true strains instead of reconstructing full-

length strains, and thus was not included in the benchmarking results. As

evident from the results in Table 4.1, TenSQR is capable of detecting long

deletions existing in the viral strains whose frequencies are as low as 1%. The

performance of detecting long deletions is exceptional when the viral mixture is

not particularly characterized by low diversity (div = 1%); in this setting, the

performance under the short sequencing reads (2 × 250) tends to deteriorate

as the length of deletions increases.

Remark: The proposed approach to detecting deletions is tested on a

mixture of only two strains for the sake of clarity, so as to allow investigation

of the interplay between diversity, strain frequency, and deletion length. The

method is, however, applicable to more general settings that involve multiple

86

strains and/or multiple deleted regions (omitted for brevity).

4.3.3 Performance comparison on gene-wise reconstruction of real
HIV-1 data

We further test the performance of TenSQR on the real HIV dataset

made publicly available by [23]. An in vitro generated quasispecies popula-

tion consists of 5 known HIV-1 strains (HIV-1HXB2, HIV-189.6, HIV-1JR−CSF ,

HIV-1NL4−3 and HIV-1Y U2) with pairwise distances between 2.61%−8.45% and

relative frequencies between 10% and 30% [23]. Paired-end sequencing reads

of length 2 × 250bp generated by Illumina’s MiSeq Benchtop Sequencer are

aligned to the HIV-1HXB2 reference genome. Following [23], to ensure reliable

results, reads shorter than 150bp and having quality scores of mapping lower

than 60 are discarded. We apply TenSQR to gene-wise reconstruction of the

HIV population and compare its performance to that of aBayesQR [5] and Pre-

dictHaplo [57], shown to be the most competitive softwares in the benchmark-

ing studies in Section 4.3.1. Predicted Proportion, defined in Section 4.3.1 as

the ratio of the estimated and the true population size, is evaluated by setting

the parameter needed to detect the number of strains in a mixture to η = 0.09,

as recommended by [5]. Since the ground truth information specifying the 5

HIV strains is available (http://bmda.cs.unibas.ch/HivHaploTyper/), we eval-

uate Reconstruction Rate for each recovered individual strain, along with the

inferred strain frequencies. Note that the strains in the HIV-1 dataset are more

evenly distributed than those in the simulated quasispecies in Section 4.3.1.

The results reported in Table 4.2 show that TenSQR reconstructs all of the

87

T
ab

le
4.

2:
P

er
fo

rm
an

ce
co

m
p
ar

is
on

s
of

T
en

S
Q

R
,

aB
ay

es
Q

R
an

d
P

re
d
ic

tH
ap

on
a

re
al

H
IV

-1
5-

v
ir

u
s-

m
ix

d
at

a.
p
17

p
24

p
2
-p
6

P
R

R
T

R
N
as
e

in
t

v
if

v
p
r

v
p
u

gp
12

0
g
p
41

n
ef

P
re
d
P
ro
p

1
1.
6

1
1

1.
4

1
1

1
1

1
.6

2.
2

1
.2

0
.8

R
R

H
X
B
2

10
0(
18

.7
)
98

.9
(1
3.
1)

1
0
0(
17

.4
)

10
0(
9.
9)

99
.2
(1
2.
1)

10
0(
9
.2
)

10
0(
8.
1)

1
00

(9
.6
)

1
0
0(
7
.2
)

9
2
.8
(5
.9
)

9
6
.0
(1
8)

9
9
.0
(1
1.
5)

0
(0
)

R
R

8
9
.6

10
0(
18

.4
)
10

0(
19

.6
)
1
0
0(
20

.1
)
10

0
(1
7.
2)

98
.0
(1
3.
5)

10
0(
17

.2
)

1
00

(1
6
.7
)

1
00

(2
5
)

10
0
(1
9.
3)

9
4.
0
(1
5)

9
7.
2(
10

.3
)
10

0
(2
7.
8
)

95
.7
(2
6
)

R
R

J
R
-C

S
F

10
0(
33

.8
)

10
0(
33

)
10

0(
33

.6
)
10

0(
21

.7
)

10
0(
20

.7
)

1
00

(2
4
.6
)

10
0
(2
3.
3)

10
0(
20

.5
)
10

0
(2
0.
3)

1
0
0(
31

.4
)

9
8.
3(
33

.5
)
9
7
.7
(1
8
.8
)

9
9
.8
(1
9
)

R
R

N
L
4
-3

10
0(
17

)
99

.3
(1
9.
7)

10
0(
17

.2
)
10

0(
21

.4
)

99
.5
(2
6.
7)

1
00

(3
7
.7
)

10
0(
4
1.
2)

1
00

(3
8
.4
)
10

0
(4
6.
2
)

1
0
0(
38

.8
)

99
.8
(9
.2
)

99
.5
(2
3
.2
)

9
9
.7
(4
2
.7
)

TenSQR

R
R

Y
U
2

10
0(
12

.1
)
99

.3
(1
4.
6)

1
00

(7
.7
)

99
.7
(2
9.
8)

99
.7
(1
4.
5)

10
0
(1
1.
4)

10
0(
10

.7
)

10
0
(6
.5
)

1
00

(7
.1
)

1
0
0(
4.
1)

9
4.
9(
10

.5
)
1
00

(1
0
.2
)

9
8
.6
(1
2
.3
)

P
re
d
P
ro
p

1
1

1
1

1
1

1
1

1.
2

1
0
.8

0
.8

1
.2

R
R
(F

) H
X
B
2

10
0(
16

.3
)
99

.4
(2
1.
1)

1
0
0(
22

.2
)
10

0(
12

.5
)

98
.5
(2
4.
3)

10
0(
1
6.
1)

99
.9
(9
.7
)

10
0(
9.
2)

10
0
(1
6.
4)

9
9.
6
(1
7
)

9
8(
3
0
.3
)

0
(0
)

9
5
.8
(1
1
.4
)

R
R
(F

) 8
9
.6

10
0(
27

.1
)

98
.7
(1
7)

1
00

(1
7.
3)

10
0(
17

.3
)

98
.6
(1
8.
1)

10
0(
19

.7
)

1
00

(2
2
.2
)

10
0(
2
0.
6)

1
00

(1
6
.3
)

92
(1
0
.4
)

9
6
.5
(2
0.
2
)
9
8.
9(
23

.7
)

9
5
.5
(1
6
.4
)

R
R
(F

) J
R
-C

S
F
10

0(
31

.3
)
99

.6
(2
4.
6)

1
0
0(
25

.8
)
10

0(
29

.9
)

99
(2
1.
5)

10
0(
22

.1
)

1
00

(2
0
.8
)

10
0(
3
2.
7)

1
0
0(
27

)
98

.8
(2
6
.7
)

9
7
.7
(2
1.
4
)
9
9.
1(
29

.7
)

9
8
.2
(2
1
.1
)

R
R
(F

) N
L
4
-3

10
0(
12

.9
)
10

0(
21

.6
)
1
0
0(
25

.6
)
10

0(
20

.1
)

98
.9
(1
7.
7)

10
0
(3
0)

10
0(
39

.5
)
9
9.
8(
28

.5
)
1
0
0
(2
3
.2
)

1
00

(4
1
.3
)

96
.3
(2
8
)

9
8
.8
(3
6
.6
)

1
0
0
(3
1
.8
)

aBayesQR

R
R
(F

) Y
U
2

10
0(
12

.4
)
99

.7
(1
5.
8)

1
00

(9
.2
)

10
0
(2
0.
3)

99
.2

(1
8.
5)

10
0(
12

.2
)

99
.5
(7
.9
)

99
.7
(9
)

1
0
0(
17

.1
)

10
0
(4
.6
)

0
(0
)

9
8
.6
(1
0.
1)

9
9
.2
(1
4
)

P
re
d
P
ro
p

1
0.
6

1
1

1
0.
8

0
.8

0.
8

1
0.
8

0
.8

0
.8

0
.8

R
R
(F

) H
X
B
2

10
0(
17

.8
)

0(
0)

10
0
(1
8.
7)

10
0(
15

.2
)

10
0(
12

.2
)

98
.9
(2
5.
4)

1
00

(1
2
.1
)

1
00

(1
7.
7)

10
0
(1
0
.2
)
9
3.
17

(1
0
.8
)

0(
0
)

0
(0
)

0
(0
)

R
R
(F

) 8
9
.6

10
0(
19

.9
)
10

0(
46

.4
)
1
0
0(
21

.7
)
10

0(
22

.2
)

10
0(
19

.4
)

10
0(
1
8.
2)

9
9.
8(
27

.6
)
10

0(
2
0.
9)

1
00

(2
2
.1
)

0(
0)

9
7.
8(
20

.7
)
10

0
(2
6.
7
)
9
8
.8
7
(2
0
.7
)

R
R
(F

) J
R
-C

S
F
10

0(
31

.9
)
10

0(
21

.8
)
1
0
0(
30

.3
)
10

0(
26

.9
)

10
0(
23

.4
)

10
0(
2
3.
2)

10
0(
22

.3
)

10
0(
2
4.
9)

1
0
0(
23

.7
)

10
0
(3
4.
1)

9
9
.7
(4
2.
7)

1
00

(2
8
.9
)

10
0
(2
3
.2
)

R
R
(F

) N
L
4
-3

10
0(
17

)
99

.1
(3
1.
8)

10
0(
16

.4
)
10

0(
20

.9
)

10
0(
30

.2
)

10
0(
33

.2
)

10
0(
38

.1
)

1
00

(3
6
.6
)
1
00

(3
5
.5
)

1
0
0(
47

.1
)

1
00

(2
8
.6
)

10
0
(3
2.
7
)

1
0
0
(3
9
.3
)

PredictHaplo

R
R
(F

) Y
U
2

10
0(
13

.4
)

0(
0)

10
0
(1
2.
9)

10
0(
14

.8
)

10
0(
14

.7
)

0
(0
)

0(
0
)

0(
0)

1
0
0
(8
.5
)

1
00

(7
.9
)

9
8
.6
(7
.9
)

10
0
(1
1.
7)

1
0
0
(1
6
.9
)

P
re
d
ic
te
d
P
ro
p
o
rt
io
n
(P

re
d
P
ro
p
)
an

d
R
ec
on

st
ru
ct
io
n
R
at
e
(R

R
(%

))
fo
r
T
en

S
Q
R
,
aB

ay
es
Q
R

an
d
P
re
d
ic
tH

ap
lo

a
p
p
li
ed

to
re
co
n
st
ru
ct
io
n
o
f
H
IV

-1
H
X
B
2,

H
IV

-1
89

.6
,
H
IV

-1
J
R
-C

S
F
,
H
IV

-1
N
L
4-
3
an

d
H
IV

-1
Y
U
2
fo
r
al
l
13

ge
n
es

o
f
th
e
H
IV

-1
d
a
ta
se
t.

V
a
lu
es

in
th
e
ge
n
es

w
h
er
e
al
l
th
e
st
ra
in
s
ar
e
p
er
fe
ct
ly

re
co
n
st
ru
ct
ed

w
it
h
ou

t
er
ro
rs

ar
e

d
en

ot
ed

as
b
ol
d
fa
ce
.
F
re
q
u
en

ci
es

ar
e
re
p
or
te
d
in

p
ar
en
th
es
is
.

88

5 HIV-1 strains correctly in 6 genes while the other considered methods ac-

complish the same in 5 genes. Consistent with the results in Section 4.3.1,

PredictHaplo, designed for identification of HIV haplotypes, underestimates

the number of strains by reconstructing three or four strains in the 8 genes.

4.3.4 Assembly of HIV-1 gag-pol genomes

We further use TenSQR to reconstruct the HIV population on the

4036bp long gag-pol region. Reconstruction of longer regions of viral quasis-

pecies requires higher sequencing coverage than that needed for shorter ones.

Therefore, for a reliable reconstruction of a viral population spanning long

genome region, we fragment the long region into overlapping blocks, perform

reconstruction of the blocks independently, and merge the results to retrieve

the full region of interest. Specifically, we split the HIV gag-pol region into a

set of blocks of length 500bp, where the consecutive blocks overlap by 250bp.

We run TenSQR to perform reconstruction of the viral strains in each of the

18 blocks independently, and merge the results in the consecutive blocks while

testing consistency of the strains in the overlapping intervals. In particular,

if there are mismatches between the reconstructed strains in the overlapping

regions of consecutive blocks, we resolve them by performing majority vot-

ing using reads that are covering the mismatched positions. The number of

strains retrieved by the global reconstruction procedure is decided via major-

ity voting over the number of strains reconstructed in each block. Following

this procedure on the 355241 paired-end reads that remain after applying a

89

quality filter, TenSQR perfectly reconstructed all 5 HIV-1 strains, achieving

Reconstruction Rate of 100 for all 5 strains and Predicted Proportion of 1.

Since the pairwise distances between the 5 HIV-1 strains are relatively high,

we estimated frequencies of the viral strains by simply counting the num-

ber of reads assigned to the same strain according to the Hamming distance

between the reads and the reconstructed strains. The resulting frequencies

are 15.21%, 19.34%, 25.56%, 27.61% and 12.27%, which is consistent with the

result obtained by aBayesQR ([5]).

4.3.5 Assembly of the Zika virus strains

We apply TenSQR to reconstruct full-length genome of an Asian-lineage

Zika virus (ZIKV) sample (accession SRR3332513) that is obtained from a rhe-

sus macaque (animal 393422) on the 4th day of infection [25]. 2× 300bp reads

(∼ 30000× coverage) are generated from the sample by the Illumina’s MiSeq

platform and aligned to the ZIKV reference genome (Genbank KU681081.3)

of length 10807 bp using the BWA-MEM algorithm with the default settings

[44]. The reads shorter than 100bp and those having mapping quality scores

smaller than 40 are discarded. For reliable reconstruction of the full-length

genome, we follow the strategy outlined in Section 4.3.4; the full region is split

into a sequence of blocks of length 2500bp where the consecutive windows

overlap by 500bp. We run TenSQR on those blocks and assemble the entire

region by connecting reconstructed strains in the consecutive blocks. Relative

strain frequencies are estimated using an expectation-maximization algorithm

90

described in ([28]). Applying the described procedure to 565979 paired-end

reads that pass the quality filter, TenSQR reconstructed 2 full-length viral se-

quences with relative abundances 74% and 26% that diverge from each other

by 0.47% within regions between 200 and 5550bp. Among all the compet-

ing methods considered in Section 4.3.1, PredictHaplo is the only one that

completed reconstruction within 48 hours. PredictHaplo, which typically un-

derestimates the number of strains – especially in quasispecies characterized by

low diversity [5] – reconstructed only one strain which matches the dominant

strain reconstructed by TenSQR.

4.4 Conclusion

In this chapter we presented a novel tensor factorization based algo-

rithm for the reconstruction of viral quasispecies from high-throughput se-

quencing data. In particular, sequencing data is represented by a sparse bi-

nary tensor and the viral strains in a quasispecies are reconstructed in an

iterative manner; at each iteration, the most abundant sequence among those

obtained by factorizing the tensor is selected and data originated from the

most abundant sequence is removed from the tensor. Benchmarking tests on

synthetic datasets demonstrate that the proposed scheme, referred to as Ten-

SQR, is capable of reconstructing quasispecies characterized by imbalanced

frequencies of strains, detecting and recovering low abundant strains more re-

liably than state-of-the-art algorithms. Further studies on a real HIV-1 and

Zika dataset demonstrate that TenSQR outperforms existing methods in more

91

general settings and is applicable to quasispecies reconstruction from virus-

infected patient samples.

92

Chapter 5

Conclusion and future directions

This dissertation seeks to develop algorithms and provide analysis for

two problems that have significant impact on medical genomics: haplotype

assembly and viral quasispecies reconstruction.

For the haplotype assembly problem, we developed a deterministic se-

quential Monte Carlo (i.e., particle filtering) algorithm, ParticleHap, which

sequentially infers the haplotype sequence, one SNP site at a time, by ex-

haustively searching for the most likely extension of the partially assembled

haplotype in each step, examining both the possible genotypes and phase.

We have tested the performance of the developed algorithm on both 1000

Genomes Project data and synthetic datasets, showing its high accuracy and

efficiency over a wide range of the haplotype assembly problem parameters.

The algorithm performance has been discussed.

The main goal of ParticleHap is accurate haplotype assembly rather

than genotype calling. However, methods that can improve accuracy of geno-

type calling can be incorporated in the proposed algorithm. For example,

the prior information about allele and genotype frequencies or linkage disequi-

librium patterns can be incorporated in the proposed algorithm, which may

93

further improve the accuracy of genotype calling and thus of haplotype as-

sembly. In conclusion, the proposed method provides a framework for joint

genotyping and haplotyping that leads to accurate haplotype assembly.

For the viral quasispecies reconstruction problem, we have developed

two algorithms that overcomes limitations of existing methods and reliably

reconstructs quasispecies with a broad range of compositions, including those

characterized by low diversity as well as uneven frequencies of its components.

The first algorithm, aBayesQR, is a maximum-likelihood based approximate

algorithm designed to reconstruct a mixture of closely related viral strains

while the second algorithm, TenSQR, is a successive tensor factorization based

algorithm focusing on recovery of rare strains in a viral population and detec-

tion of long deletions in those rare strains. Performance of the developed

methods has been tested on both synthetic datasets emulating a wide range

of experimental parameters and a real HIV-1 dataset, demonstrating the ca-

pability of reconstructing quasispecies at low diversity and at a wide range of

frequencies of strains.

The presented quasispecies methods can be extended and applied to

the problem of estimating the population size and the degree of variation

among the constituent species in related fields such as immunogenetics. On

a related note, bacterial populations are characterized by having relatively

lower mutation rates than viral and thus typically have fewer segregating sites

on the sequences in a population. The ability of our methods to perform

highly accurate reconstruction in such settings should be further investigated.

94

The possible direction of future research will also include the development of

an improved methodology that permits accurate recovery of long insertions

potentially present in rare viral strains.

Softwares implemented for each algorithm are available as follows:

ParticleHap: https://sites.google.com/site/asynoeun/particlehap.

aBayesQR: https://github.com/SoyeonA/aBayesQR.

TenSQR: https://github.com/SoYeonA/TenSQR.

95

Appendices

96

Appendix A

Guideline for choosing parameter η

A.1 Guideline for choosing parameter η

Here we discuss the choice of parameter η, a threshold used for assessing

value of the metric MECimpr in the process of determining the number of

sequences K in a quasispecies. Let Q = {qk, k = 1, · · · , K} denote a viral

population consisting of K strains. The set of reads of length L, R = {ri, i =

1, · · · , |R|}, is generated by a sequencing platform having error rate ε and

aligned to the reference genome of length G. The MEC score characterizing

accuracy of the assembly of strains in Q from reads in R is calculated as

MEC(K) =
M∑
m=1

min
k∈{1,··· ,K}

|R|∑
j=1

HD(ri, qk).

Assume that the sequencing errors are independent and identically distributed

across all reads. When the quasispecies recovery is perfect, i.e., when all of the

K strains are reconstructed correctly and the relative frequencies of strains are

estimated accurately, the MEC score is |R|Lε. If a strain with the smallest

frequency (fmin) is not recognized as a distinct mixture component while the

other K − 1 sequences are correctly reconstructed, the incorrect clustering

of |R|fmin reads generated from the rarest quasispecies component induces

an extra contribution to the MEC score. The MEC score obtained following

97

perfect reconstruction of K − 1 strains and misclassification of the Kth strain

is

MEC(K − 1) = |R|Lε+ |R|Lfmind(1− 15

16
ε),

where d is the average diversity rate. The MEC improvement rate achieved

by increasing the number of viral strains from K − 1 to K (and thus reducing

the MEC score thanks to a correct clustering of the rarest strain) is

MECimpr(K − 1) =
MEC(K − 1)−MEC(K)

MEC(K − 1)

=
fmind(1− 15

16
(1− ε))

fmind(1− 15
16

(1− ε)) + ε

≡ η1.

While η1 is a potential choice for the threshold, it is beneficial to soften it and

allow that MECimpr(·) takes on values slightly below it. To this end, let

us also consider the scenario where in addition to the perfect recovery of K

strains, an extra strain is erroneously inferred by misclassifying reads that in

fact should have been placed in the cluster associated with the most abundant

strain (i.e., the one having frequency fmax). This reduces evaluated MEC score

to an unrealistically low value given by

MEC(K + 1) = |R|Lε− |R|Lfmax
ε2

3
.

98

Improvement of the MEC score due to having an extra (unnecessary) cluster

can be expressed as

MECimpr(K) =
MEC(K)−MEC(K + 1)

MEC(K)

=
ε

3
fmax

≡ η2

We note that for typical parameter values, η1� η2; we choose the threshold

η by taking a weighted geometric mean of η1 and η2,

η = (ηw1
1 ηw2

2)
1

w1+w2 .

To avoid overestimation of the number of strains, we choose w1 to be larger

than w2. In our experiments, the ratio r = w1/w2 was set to 5. We find

that the results are fairly robust with respect to the choice of parameter η as

demonstrated in Table A.1.

99

Table A.1: Performances comparison of aBayesQR with different parameter η
for varied diversities div on simulated data.

5 strains 10 strains
div(%) 1 2 3 4 5 1 2 3 4 5

0.8η 0.7020 0.7080 0.6840 0.6560 0.6320 0.5800 0.6390 0.6060 0.5810 0.5550
0.9η 0.7060 0.7120 0.6840 0.6560 0.6300 0.5800 0.6390 0.6080 0.5850 0.5550
η 0.7080 0.7120 0.6840 0.6560 0.6320 0.5810 0.6380 0.6080 0.5860 0.5550

1.1η 0.7080 0.7120 0.6840 0.6560 0.6300 0.5780 0.6390 0.6100 0.5850 0.5580R
ec

al
l

1.2η 0.7060 0.7120 0.6840 0.6560 0.6340 0.5780 0.6370 0.6100 0.5850 0.5590
0.8η 0.7019 0.7069 0.6811 0.6397 0.6265 0.6186 0.6874 0.6553 0.6273 0.6094
0.9η 0.7083 0.7130 0.6811 0.6427 0.6301 0.6190 0.6892 0.6602 0.6325 0.6110
η 0.7113 0.7130 0.6826 0.6447 0.6319 0.6210 0.6881 0.6610 0.6373 0.6140

1.1η 0.7113 0.7144 0.6826 0.6470 0.6301 0.6177 0.6892 0.6637 0.6379 0.6238

P
re

ci
si

on

1.2η 0.7089 0.7144 0.6841 0.6448 0.6410 0.6181 0.6889 0.6660 0.6398 0.6265
0.8η 1.0260 1.0160 1.0140 1.0400 1.0240 0.9720 0.9470 0.9300 0.9310 0.9180
0.9η 1.0200 1.0120 1.0140 1.0380 1.0160 0.9710 0.9440 0.9250 0.9290 0.9140
η 1.0180 1.0120 1.0120 1.0360 1.0140 0.9680 0.9440 0.9240 0.9240 0.9100

1.1η 1.0180 1.0100 1.0120 1.0320 1.0160 0.9690 0.9440 0.9230 0.9210 0.9020

P
re

d
P

ro
p

1.2η 1.0200 1.0100 1.0100 1.0340 1.0060 0.9680 0.9410 0.9200 0.9180 0.8990
0.8η 0.9990 0.9980 0.9971 0.9962 0.9954 0.9975 0.9967 0.9952 0.9941 0.9924
0.9η 0.9990 0.9982 0.9971 0.9962 0.9953 0.9975 0.9967 0.9952 0.9943 0.9924
η 0.9990 0.9982 0.9971 0.9961 0.9953 0.9975 0.9967 0.9952 0.9942 0.9924

1.1η 0.9990 0.9982 0.9971 0.9961 0.9953 0.5951 0.6621 0.6350 0.6094 0.5879

R
ec

on
R

at
e

1.2η 0.9990 0.9982 0.9971 0.9961 0.9951 0.9975 0.9967 0.9952 0.9942 0.9922
0.8η 0.0022 0.0016 0.0009 0.0010 0.0007 0.0043 0.0025 0.0021 0.0021 0.0023
0.9η 0.0022 0.0008 0.0009 0.0014 0.0008 0.0043 0.0026 0.0022 0.0021 0.0024
η 0.0022 0.0008 0.0008 0.0014 0.0008 0.0043 0.0026 0.0023 0.0023 0.0025

1.1η 0.0022 0.0008 0.0008 0.0014 0.0008 0.0043 0.0026 0.0023 0.0023 0.0030J
S

D

1.2η 0.0022 0.0008 0.0008 0.0015 0.0010 0.0043 0.0026 0.0024 0.0024 0.0030

Performances of aBayesQR as a function of diversity with parameter η varied
around the recommended value from −20% to +20%; shown are Recall,

Precision, Predicted Proportion (PredProp), Reconstruction Rate
(ReconRate) and JSD. The data is generated synthetically, relevant

parameters are err = 0.1% and cov = 500×, simulated is a mixture of 5 and
10 viral strains.

100

Appendix B

Proof of Convergence

B.1 Proof of Convergence of the Alternating Minimiza-
tion with Majority Voting

Recall the objective function of the optimization problem,

f(M,H) = min
M,H

1

2
‖PΩ(F−MH>)‖2

F .

Given the current estimate Mt and Ht, we alternately update

Mt+1 = arg min
M∈{0,1}m×k

1

2

∑
‖PΩ(F−MH>t)‖2

F

and

Ht+1 = arg min
H∈{0,1}4n×k

1

2

∑
‖PΩ(F−Mt+1H

>)‖2
F .

Having fixed Ht, Mt+1 is updated by examining for each read all the

possible viral haplotype associations and selecting the one that minimizes the

number of base changes needed to make reads consistent with the observed

information in F, which implies that

f(Mt+1,Ht)− f(Mt,Ht) ≤ 0. (B.1)

101

Now let us divide F into k sub-matrices Fi, 1 ≤ i ≤ k, each representing

the collection of reads assigned to the ith haplotype in Mt+1, and rewrite

f(Mt+1,Ht) as

f(Mt+1,Ht) =
1

2

k∑
i=1

n∑
j=1

‖PΩFi(·,j)
(Fi(·, j)−Mi

t+1Ht(j, ·)>)‖2
F ,

where F(i)(·, j) denotes the jth column of F(i), Mi
t+1 has for rows the standard

unit vectors ei, and Ht(j, ·) is the jth row of Ht at the tth iteration. Since Ht+1

is updated by forming consensus sequences using reads in each sub-matrix

clustered by Mt+1, we obtain

f(Mt+1,Ht+1)− f(Mt+1,Ht)

=
1

2

k∑
i=1

n∑
j=1

‖PΩFi(·,j)
(Fi(·, j)−Mi

t+1Ht+1(j, ·)>)‖2
F

− 1

2

k∑
i=1

n∑
j=1

‖PΩFi(·,j)
(Fi(·, j)−Mi

t+1Ht(j, ·)>)‖2
F

=
1

2

k∑
i=1

n∑
j=1

((N −NHt+1(j,i))− (N −NHt(j,i)))

=
1

2

k∑
i=1

n∑
j=1

(NHt(j,i) −NHt+1(j,i)) ≤ 0

(B.2)

where N denotes the total number of the observed nucleotides in Fi(·, j) and

N
H

(j,i)
t

is the number of nucleotides corresponding to H
(j,i)
t . The combination of

expressions (B.1) and (B.1) shows that the proposed alternating minimization

procedure is guaranteed to converge.

102

Appendix C

Additional results from Chapter 4

C.1 Comparing speed of tensor factorization that re-
lies on majority voting with the one that relies on
gradient descent

Table C.1: Runtime comparison of majority voting and gradient descent.

div%
k method 1 2 3 4 5 6 7 8 9 10

5 MV 1.00 1.50 1.83 2.64 3.63 3.51 4.17 4.49 4.59 5.95
GD 31.84 42.40 39.60 78.60 66.04 105.55 93.87 112.49 116.83 202.12

10 MV 3.93 8.75 13.13 19.62 24.96 25.03 28.73 33.51 38.32 36.20
GD 233.88 321.14 320.79 374.16 426.62 535.04 513.29 752.01 604.85 678.27

Running time comparisons (sec) of majority voting (MV) and gradient
descent (GD) for tensor factorization on the simulated data with ε = 2× 10−4

and cov = 500× for a mixture of 5 and 10 strains vs diversity (div), measured
on a Linux OS servers with Intel Xeon Phi 7250 (1.4GHz) and 96GB RAM.

We compare runtimes of majority voting and gradient descent applied

to solving equation (3) in Section 4.2.2 of the main paper. The dataset is the

same as the one used in Section 3.1: mixtures of 5 and 10 strains are sequenced

with error rate ε = 2×10−4 and coverage cov = 500×. The speed is measured

on a Linux OS server with Intel Xeon Phi 7250 (1.4GHz) and 96GB RAM. As

evident from the Table C.1, tensor factorization implemented with majority

voting is much more time-efficient than the gradient-descent based approach

103

for all strain diversity levels.

C.2 Comparing accuracy of viral quasispecies recon-
struction based on single-pass tensor factorization
(AltHap) with the one that employs multiple ten-
sor factorizations and read removal (TenSQR)

We compare the performance of TenSQR and AltHap [31] on the sim-

ulated dataset consisting of 5 viral strains whose synthesis is described in Sec-

tion 4.3.1. We measure the performances of two schemes in terms of Recall,

Precision, Predicted Proportion (PredProp), Reconstruction Rate (ReconRate)

and JSD. Since AltHap requires the number of haplotypes a priori, we do not

report Predicted Proportion. As shown in Figure C.1, TenSQR significantly

outperforms AltHap. This, of course, is expected: AltHap is designed for re-

construction of sequence communities characterized by uniform abundances –

an assumption violated in viral quasispecies.

C.3 Performance of recovering insertions

To study insertions recovery, we generated data that emulate the same

sequencing platform considered in Sections 4.3.1 and Section 4.3.2 of the pa-

per. Sets of quasispecies consisting of two strains where the length of the

abundant strain is 1300bp while the other strain (present at frequencies fmin

of 5 and 10%) includes insertions of length lins = 100 and 200bp. 50 instances

are generated for each of 40 benchmark sets of sequencing reads. Strains in

104

1 2 3 4 5 6 7 8 9 10

R
e
c
a
ll

0

0.2

0.4

0.6

0.8

1

5 strains (50, 30, 15, 4, 1)%

TenSQR AltHap

1 2 3 4 5 6 7 8 9 10

P
re

c
is

io
n

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7 8 9 10

R
e
c
o
n
R

a
te

0.95

0.96

0.97

0.98

0.99

1

Diversity(%)
1 2 3 4 5 6 7 8 9 10

J
S

D

0

0.01

0.02

0.03

0.04

0.05

Figure C.1: Performance comparison of TenSQR and AltHap in terms of Re-
call, Precision, Reconstruction Rate (ReconRate) and JSD on the simulated
data with ε = 2× 10−4 for a mixture of 5 viral strains.

the quasispecies have diversity that varies from 1% to 10%; sequencing is per-

formed at the coverage of 500× per strain and is affected by sequencing errors

105

Table C.2: Performance of recovering insertions.

div%
lins fmin% 1 2 3 4 5 6 7 8 9 10

100 5 0.28 0.12 0.08 0.06 0.12 0.10 0.02 0.10 0.04 0.18
(0.95) (0.98) (0.99) (0.99) (0.99) (0.99) (0.99) (0.99) (0.99) (0.99)

10 0.14 0.08 0.10 0.04 0.04 0.04 0.04 0.02 0.02 0
(0.98) (0.99) (0.99) (0.97) (0.98) (0.98) (0.99) (0.99) (0.98) (0.99)

200 5 0.18 0.20 0.14 0.06 0.12 0.06 0.12 0.04 0.14 0.08
(0.99) (0.99) (0.99) (0.99) (0.99) (0.99) (0.99) (0.99) (0.99) (0.99)

10 0.12 0.10 0.02 0.06 0 0.06 0.04 0.02 0.02 0
(1) (1) (0.99) (1) (1) (0.99) (0.99) (0.99) (0.99) (0.99)

Performance of insertions recovery in terms of the ratio of False Negative and
Reconstruction Rate of insertion (in parentheses) averaged over 50 instances
on the simulated dataset with ε = 2× 10−4 and cov = 500× for a mixture of

2 strains, as a function of the diversity(div) and the frequency of the low
abundant strain (fmin) which contains an insertion of the length (lins) 100bp

and 200bp.

incurring with probability ε = 2 × 10−4. Performance of insertion detection

is evaluated by means of the false negative rate of the detected insertions and

the reconstruction rate of the inserted sequences. Table C.2 reports the results

of recovering insertions in viral strains. As indicated by the reconstructed rate

shown in parentheses, once insertions in the strains are detected, our approach

is able to accurately reconstruct the inserted sequences.

C.4 Additional results including error bars

106

1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

R
e
c
a
ll

5 strains (50, 30, 15, 4, 1)%

TenSQR PredictHaplo ShoRAH aBayesQR ViQuaS

1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

P
re

c
is

io
n

1 2 3 4 5 6 7 8 9 10

1

2

3

4

P
re

d
P

ro
p

1 2 3 4 5 6 7 8 9 10
0.95

0.96

0.97

0.98

0.99

1

R
e
c
o
n
R

a
te

1 2 3 4 5 6 7 8 9 10

Diversity(%)

0

0.05

0.1

0.15

0.2

J
S

D

1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

10 strains (36,24,16,8,5.5,4,3,2,1,0.5)%

1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7 8 9 10

1

2

3

4

1 2 3 4 5 6 7 8 9 10
0.94

0.96

0.98

1

1 2 3 4 5 6 7 8 9 10

Diversity(%)

0

0.05

0.1

0.15

0.2

Figure C.2: Performance comparison of TenSQR, aBayesQR, ShoRAH, Vi-
QuaS and PredictHaplo in terms of Recall, Precision, Predicted Proportion
(PredProp), Reconstruction Rate (ReconRate) and JSD on the simulated data
with ε = 2× 10−3 for a mixture of (a) 5 viral strains and (b) 10 viral strains.

107

1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

R
e
c
a
ll

5 strains (50, 30, 15, 4, 1)%

TenSQR PredictHaplo ShoRAH aBayesQR ViQuaS

1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

P
re

c
is

io
n

1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

P
re

d
P

ro
p

1 2 3 4 5 6 7 8 9 10
0.94

0.96

0.98

1

R
e
c
o
n
R

a
te

1 2 3 4 5 6 7 8 9 10

Diversity(%)

0

0.05

0.1

0.15

0.2

J
S

D

1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

10 strains (36,24,16,8,5.5,4,3,2,1,0.5)%

1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

1 2 3 4 5 6 7 8 9 10
0.92

0.94

0.96

0.98

1

1 2 3 4 5 6 7 8 9 10

Diversity(%)

0

0.05

0.1

0.15

0.2

Figure C.3: Performance comparison of TenSQR, aBayesQR, ShoRAH, Vi-
QuaS and PredictHaplo in terms of Recall, Precision, Predicted Proportion
(PredProp), Reconstruction Rate (ReconRate) and JSD on the simulated data
with ε = 7× 10−3 for a mixture of (a) 5 viral strains and (b) 10 viral strains.

108

Bibliography

[1] M Sozio A Panconesi. Fast hare: A fast heuristic for single individual snp

haplotype reconstruction. Algorithms in Bioinformatics, pages 266–277,

2004.

[2] Derek Aguiar and Sorin Istrail. Hapcompass: a fast cycle basis algo-

rithm for accurate haplotype assembly of sequence data. J Comput Biol,

19(6):577–90, Jun 2012.

[3] Derek Aguiar and Sorin Istrail. Haplotype assembly in polyploid genomes

and identical by descent shared tracts. Bioinformatics, 29(13):i352–60,

Jul 2013.

[4] Soyeon Ahn and Haris Vikalo. Joint haplotype assembly and geno-

type calling via sequential monte carlo algorithm. BMC bioinformatics,

16(1):223, 2015.

[5] Soyeon Ahn and Haris Vikalo. abayesqr: A bayesian method for recon-

struction of viral populations characterized by low diversity. In Interna-

tional Conference on Research in Computational Molecular Biology, pages

353–369. Springer, 2017.

[6] John Archer, Greg Baillie, Simon J Watson, Paul Kellam, Andrew Ram-

baut, and David L Robertson. Analysis of high-depth sequence data

109

for studying viral diversity: a comparison of next generation sequencing

platforms using segminator ii. BMC bioinformatics, 13(1):47, 2012.

[7] M.S. Arulampalam, S. Maskell, N. Gordon, and T. Clapp. A tutorial on

particle filters for online nonlinear/non-gaussian bayesian tracking. EEE

Transaction on signal processing, 50:174 – 188, 2002.

[8] Irina Astrovskaya, Bassam Tork, Serghei Mangul, Kelly Westbrooks, Ion

Măndoiu, Peter Balfe, and Alex Zelikovsky. Inferring viral quasispecies

spectra from 454 pyrosequencing reads. BMC bioinformatics, 12(6):1,

2011.

[9] Vikas Bansal and Vineet Bafna. Hapcut: an efficient and accurate algo-

rithm for the haplotype assembly problem. Bioinformatics, 24(16):i153–

9, Aug 2008.

[10] Vikas Bansal, Aaron L Halpern, Nelson Axelrod, and Vineet Bafna. An

mcmc algorithm for haplotype assembly from whole-genome sequence

data. Genome Res, 18(8):1336–46, Aug 2008.

[11] Markus Bauer, Gunnar W Klau, and Knut Reinert. Accurate multi-

ple sequence-structure alignment of RNA sequences using combinatorial

optimization. BMC Bioinformatics, 8:271, 2007.

[12] MS Bayzid, MM Alam, A Mueen, and MS Rahman. Hmec: A heuris-

tic algorithm for individual haplotyping with minimum error correction.

ISRN Bioinformatics, 2013.

110

[13] Niko Beerenwinkel, Huldrych F Günthard, Volker Roth, and Karin J Met-

zner. Challenges and opportunities in estimating viral genetic diversity

from next-generation sequencing data. Frontiers in microbiology, 3, 2012.

[14] Changxiao Cai, Sujay Sanghavi, and Haris Vikalo. Structured low-rank

matrix factorization for haplotype assembly. IEEE Journal of Selected

Topics in Signal Processing, 10(4):647–657, 2016.

[15] Serena A Carroll, Jonathan S Towner, Tara K Sealy, Laura K McMul-

lan, Marina L Khristova, Felicity J Burt, Robert Swanepoel, Pierre E

Rollin, and Stuart T Nichol. Molecular evolution of viruses of the fam-

ily filoviridae based on 97 whole-genome sequences. Journal of virology,

87(5):2608–2616, 2013.

[16] Mark J Chaisson, Sudipto Mukherjee, Sreeram Kannan, and Evan E Eich-

ler. Resolving multicopy duplications de novo using polyploid phasing.

In International Conference on Research in Computational Molecular Bi-

ology, pages 117–133. Springer, 2017.

[17] Z Chen, B Fu, R Schweller, and B Yang. Linear time probabilistic

algorithms for the singular haplotype reconstruction problem from snp

fragments. Journal of Computational Biology, 15:535–546, 2008.

[18] Zhi-Zhong Chen, Fei Deng, and Lusheng Wang. Exact algorithms for

haplotype assembly from whole-genome sequence data. Bioinformatics,

29(16):1938–45, Aug 2013.

111

[19] R Cilibrasi, L Van Iersel, S Kelk, and J Tromp. On the complexity

of several haplotyping problems. Algorithms in Bioinformatics, pages

128–139, 2005.

[20] 1000 Genomes Project Consortium. A map of human genome variation

from population-scale sequencing. Nature, 467(7319):1061–73, Oct 2010.

[21] The International HapMap Consortium. The international HapMap

project, 2003.

[22] Fei Deng, Wenjuan Cui, and Lusheng Wang. A highly accurate heuristic

algorithm for the haplotype assembly problem. BMC Genomics, 14 Suppl

2:S2, 2013.

[23] Francesca Di Giallonardo, Armin Töpfer, Melanie Rey, Sandhya Prab-

hakaran, Yannick Duport, Christine Leemann, Stefan Schmutz, Notta-

nia K Campbell, Beda Joos, Maria Rita Lecca, et al. Full-length haplo-

type reconstruction to infer the structure of heterogeneous virus popula-

tions. Nucleic acids research, 42(14):e115–e115, 2014.

[24] EA Duarte, IS Novella, SC Weaver, E Domingo, S Wain-Hobson, DK Clarke,

A Moya, SF Elena, JC De La Torre, and JJ Holland. Rna virus quasis-

pecies: significance for viral disease and epidemiology. Infectious agents

and disease, 3(4):201–214, 1994.

[25] Dawn M Dudley, Matthew T Aliota, Emma L Mohr, Andrea M Weiler,

Gabrielle Lehrer-Brey, Kim L Weisgrau, Mariel S Mohns, Meghan E Breit-

112

bach, Mustafa N Rasheed, Christina M Newman, et al. A rhesus macaque

model of asian-lineage zika virus infection. Nature communications, 7,

2016.

[26] J Duitama, T Huebsch, G McEwen, Eun-Kyung Suk, and Margret R.

Hoehe. Refhap: a reliable and fast algorithm for single individual hap-

lotyping. Proceedings of the First ACM International Conference on

Bioinformatics and Computational Biology, pages 160–169, 2010.

[27] Jorge Duitama, Gayle K McEwen, Thomas Huebsch, Stefanie Palczewski,

Sabrina Schulz, Kevin Verstrepen, Eun-Kyung Suk, and Margret R Hoehe.

Fosmid-based whole genome haplotyping of a hapmap trio child: evalu-

ation of single individual haplotyping techniques. Nucleic Acids Res,

40(5):2041–53, Mar 2012.

[28] Nicholas Eriksson, Lior Pachter, Yumi Mitsuya, Soo-Yon Rhee, Chunlin

Wang, Baback Gharizadeh, Mostafa Ronaghi, Robert W Shafer, and Niko

Beerenwinkel. Viral population estimation using pyrosequencing. PLoS

Comput Biol, 4(5):e1000074, 2008.

[29] P. Fearnhead. Sequential monte carlo methods in filter theory. Ph.D.

dissertation, University of Oxford, Oxford, U.K., 1998.

[30] Filippo Geraci. A comparison of several algorithms for the single individ-

ual snp haplotyping reconstruction problem. Bioinformatics, 26(18):2217–

25, Sep 2010.

113

[31] Abolfazl Hashemi, Banghua Zhu, and Haris Vikalo. Sparse tensor de-

composition for haplotype assembly of diploids and polyploids. bioRxiv,

page 130930, 2017.

[32] Dan He, Arthur Choi, Knot Pipatsrisawat, Adnan Darwiche, and Eleazar

Eskin. Optimal algorithms for haplotype assembly from whole-genome

sequence data. Bioinformatics, 26(12):i183–90, Jun 2010.

[33] Margret R. Hoehe, Karla Kopke, Birgit Wendel, Klaus Rohde, Christina

Flachmeier, Kenneth K. Kidd, Wade H. Berrettini, and George M. Church.

Sequence variability and candidate gene analysis in complex disease: as-

sociation of aµ opioid receptor gene variation with substance dependence.

Human Molecular Genetics, 9(19):2895–2908, 2000.

[34] Prateek Jain, Praneeth Netrapalli, and Sujay Sanghavi. Low-rank matrix

completion using alternating minimization. In Proceedings of the forty-

fifth annual ACM symposium on Theory of computing, pages 665–674.

ACM, 2013.

[35] Duleepa Jayasundara, Isaam Saeed, Suhinthan Maheswararajah, BC Chang,

S-L Tang, and Saman K Halgamuge. Viquas: an improved reconstruc-

tion pipeline for viral quasispecies spectra generated by next-generation

sequencing. Bioinformatics, page btu754, 2014.

[36] Sung Young Jung and Taek-Soo Kim. An agglomerative hierarchical

clustering using partial maximum array and incremental similarity com-

114

putation method. In Data Mining, 2001. ICDM 2001, Proceedings IEEE

International Conference on, pages 265–272. IEEE, 2001.

[37] Govinda M Kamath, Eren Şaşoğlu, and David Tse. Optimal haplotype

assembly from high-throughput mate-pair reads. In 2015 IEEE Interna-

tional Symposium on Information Theory (ISIT), pages 914–918. IEEE,

2015.

[38] G Lancia, V Bafna, S Istrail, R Lippert, and R Schwartz. Snps prob-

lems, complexity, and algorithms. Proceeding in European Symposium on

Algorithms, pages 182–193., 2001.

[39] Giuseppe Lancia, Vineet Bafna, Sorin Istrail, Ross Lippert, and Russell

Schwartz. Snps problems, complexity, and algorithms. In Algorithms—

ESA 2001, pages 182–193. Springer, 2001.

[40] Eric S Lander and Michael S Waterman. Genomic mapping by finger-

printing random clones: a mathematical analysis. Genomics, 2(3):231–

239, 1988.

[41] Adam S Lauring and Raul Andino. Quasispecies theory and the behavior

of rna viruses. PLoS Pathogens, 6(7), 2010.

[42] Thuy Le, Jennifer Chiarella, Birgitte B Simen, Bozena Hanczaruk, Michael

Egholm, Marie L Landry, Kevin Dieckhaus, Marc I Rosen, and Michael J

Kozal. Low-abundance hiv drug-resistant viral variants in treatment-

115

experienced persons correlate with historical antiretroviral use. PloS

one, 4(6):e6079, 2009.

[43] S Levy, G Sutton, PC Ng, L Feuk, and AL Halpern. The diploid genome

sequence of an individual human. PLoS biology, 2007.

[44] Heng Li and Richard Durbin. Fast and accurate short read alignment

with burrows–wheeler transform. Bioinformatics, 25(14):1754–1760, 2009.

[45] Lei M. Li, Jong Hyun Kim, and Michael S. Waterman. Haplotype re-

construction from snp alignment. Journal of Computational Biology,

11:505–516, 2004.

[46] Kuo-ching Liang and Xiaodong Wang. A deterministic sequential monte

carlo method for haplotype inference. Selected Topics in Signal Process-

ing, IEEE Journal of, 2(3):322–331, 2008.

[47] Kuo-Ching Liang, Xiaodong Wang, and Dimitris Anastassiou. A profile-

based deterministic sequential monte carlo algorithm for motif discovery.

Bioinformatics, 24(1):46–55, 2008.

[48] R Lippert, R Schwartz, and G Lancia. Algorithmic strategies for the

single nucleotide polymorphism haplotype assembly problem. Briefing in

Biioinformatics, 3:23–31, 2002.

[49] Ross Lippert, Russell Schwartz, Giuseppe Lancia, and Sorin Istrail. Al-

gorithmic strategies for the single nucleotide polymorphism haplotype as-

sembly problem. Briefings in bioinformatics, 3(1):23–31, 2002.

116

[50] Serghei Mangul, Nicholas C Wu, Nicholas Mancuso, Alex Zelikovsky, Ren

Sun, and Eleazar Eskin. Accurate viral population assembly from ultra-

deep sequencing data. Bioinformatics, 30(12):i329–i337, 2014.

[51] Miguel Angel Mart́ınez, Gloria Martrus, Elena Capel, Mariona Parera,

Sandra Franco, and Maria Nevot. Quasispecies dynamics of rna viruses.

In Viruses: Essential Agents of Life, pages 21–42. Springer, 2012.

[52] Hirotaka Matsumoto and Hisanori Kiryu. Mixsih: a mixture model for

single individual haplotyping. BMC Genomics, 14 Suppl 2:S5, 2013.

[53] Abolfazl S Motahari, Guy Bresler, and NC David. Information theory

of dna shotgun sequencing. IEEE Transactions on Information Theory,

59(10):6273–6289, 2013.

[54] Rasmus Nielsen, Joshua S Paul, Anders Albrechtsen, and Yun S Song.

Genotype and snp calling from next-generation sequencing data. Nat

Rev Genet, 12(6):443–51, Jun 2011.

[55] Wan-Ting Poh, Eryu Xia, Kwanrutai Chin-inmanu, Lai-Ping Wong, An-

thony Youzhi Cheng, Prida Malasit, Prapat Suriyaphol, Yik-Ying Teo,

and Rick Twee-Hee Ong. Viral quasispecies inference from 454 pyrose-

quencing. BMC bioinformatics, 14(1):1, 2013.

[56] Susana Posada-Cespedes, David Seifert, and Niko Beerenwinkel. Re-

cent advances in inferring viral diversity from high-throughput sequencing

data. Virus Research, 2016.

117

[57] Sandhya Prabhakaran, Melanie Rey, Osvaldo Zagordi, Niko Beerenwinkel,

and Volker Roth. Hiv haplotype inference using a propagating dirichlet

process mixture model. IEEE/ACM Transactions on Computational Bi-

ology and Bioinformatics (TCBB), 11(1):182–191, 2014.

[58] Mattia CF Prosperi, Luciano Prosperi, Alessandro Bruselles, Isabella

Abbate, Gabriella Rozera, Donatella Vincenti, Maria Carmela Solmone,

Maria Rosaria Capobianchi, and Giovanni Ulivi. Combinatorial analy-

sis and algorithms for quasispecies reconstruction using next-generation

sequencing. BMC bioinformatics, 12(1):1, 2011.

[59] Mattia CF Prosperi and Marco Salemi. Qure: software for viral qua-

sispecies reconstruction from next-generation sequencing data. Bioinfor-

matics, 28(1):132–133, 2012.

[60] Sergio Pulido-Tamayo, Aminael Sánchez-Rodŕıguez, Toon Swings, Bram

Van den Bergh, Akanksha Dubey, Hans Steenackers, Jan Michiels, Jan

Fostier, and Kathleen Marchal. Frequency-based haplotype reconstruc-

tion from deep sequencing data of bacterial populations. Nucleic acids

research, 43(16):e105–e105, 2015.

[61] E. Punskaya. Sequential monte carlo methods for digital communication.

Ph.D. dissertation, University of Cambridge, Cambridge, U.K., 2003.

[62] Michael A Quail, Miriam Smith, Paul Coupland, Thomas D Otto, Si-

mon R Harris, Thomas R Connor, Anna Bertoni, Harold P Swerdlow, and

118

Yong Gu. A tale of three next generation sequencing platforms: com-

parison of ion torrent, pacific biosciences and illumina miseq sequencers.

BMC genomics, 13(1):1, 2012.

[63] Michael G Ross, Carsten Russ, Maura Costello, Andrew Hollinger, Niall J

Lennon, Ryan Hegarty, Chad Nusbaum, and David B Jaffe. Character-

izing and measuring bias in sequence data. Genome Biol, 14(5):R51,

2013.

[64] K Sasirekha and P Baby. Agglomerative hierarchical clustering algorithm–

a review. International Journal of Scientific and Research Publications,

3(3), 2013.

[65] Melanie Schirmer, Rosalinda D’Amore, Umer Z Ijaz, Neil Hall, and Christo-

pher Quince. Illumina error profiles: resolving fine-scale variation in

metagenomic sequencing data. BMC bioinformatics, 17(1):125, 2016.

[66] Melanie Schirmer, William T Sloan, and Christopher Quince. Bench-

marking of viral haplotype reconstruction programmes: an overview of

the capacities and limitations of currently available programmes. Brief-

ings in bioinformatics, page bbs081, 2012.

[67] Russell Schwartz. Theory and algorithms for the haplotype assembly

problem. Communications in Information and Systems, 10:23–38, 2010.

[68] Hongbo Si, Haris Vikalo, and Sriram Vishwanath. Haplotype assembly:

An information theoretic view. In Information Theory Workshop (ITW),

119

2014 IEEE, pages 182–186. IEEE, 2014.

[69] Birgitte B Simen, Jan Fredrik Simons, Katherine Huppler Hullsiek, Richard M

Novak, Rodger D MacArthur, John D Baxter, Chunli Huang, Christine

Lubeski, Gregory S Turenchalk, Michael S Braverman, et al. Low-

abundance drug-resistant viral variants in chronically hiv-infected, an-

tiretroviral treatment–naive patients significantly impact treatment out-

comes. Journal of Infectious Diseases, 199(5):693–701, 2009.

[70] Pavel Skums, Nicholas Mancuso, Alexander Artyomenko, Bassam Tork,

Ion Mandoiu, Yury Khudyakov, and Alex Zelikovsky. Reconstruction

of viral population structure from next-generation sequencing data using

multicommodity flows. BMC bioinformatics, 14(Suppl 9):S2, 2013.

[71] Armin Töpfer, Tobias Marschall, Rowena A Bull, Fabio Luciani, Alexan-

der Schönhuth, and Niko Beerenwinkel. Viral quasispecies assembly via

maximal clique enumeration. PLoS Comput Biol, 10(3):e1003515, 2014.

[72] Armin Töpfer, Osvaldo Zagordi, Sandhya Prabhakaran, Volker Roth,

Eran Halperin, and Niko Beerenwinkel. Probabilistic inference of vi-

ral quasispecies subject to recombination. Journal of Computational

Biology, 20(2):113–123, 2013.

[73] Rui Sheng Wang, Ling Yun Wu, Zhen Ping Li, and Xiang Sun Zhang.

Haplotype reconstruction from snp fragments by minimum error correc-

tion. Bioinformatics, 21:2456–2462, 2005.

120

[74] Ying Wang, Enmin Feng, and Ruisheng Wang. A clustering algorithm

based on two distance functions for mec model. Computational Biology

and Chemistry, 31:148–150, 2007.

[75] Jong Hyun Kim Michael S. Waterman and Lei M. Li. Diploid genome

reconstruction of ciona intestinalis and comparative analysis with ciona

savignyi. Genome Research, 24:1101–1110, 2007.

[76] Kelly Westbrooks, Irina Astrovskaya, David Campo, Yury Khudyakov,

Piotr Berman, and Alex Zelikovsky. Hcv quasispecies assembly using

network flows. In Bioinformatics Research and Applications, pages 159–

170. Springer, 2008.

[77] Minzhu Xie, Jianxin Wang, and Tao Jiang. A fast and accurate algorithm

for single individual haplotyping. BMC Syst Biol, 6 Suppl 2:S8, 2012.

[78] Osvaldo Zagordi, Arnab Bhattacharya, Nicholas Eriksson, and Niko Beeren-

winkel. Shorah: estimating the genetic diversity of a mixed sample from

next-generation sequencing data. BMC bioinformatics, 12(1):119, 2011.

[79] Osvaldo Zagordi, Lukas Geyrhofer, Volker Roth, and Niko Beerenwinkel.

Deep sequencing of a genetically heterogeneous sample: local haplotype

reconstruction and read error correction. Journal of computational biol-

ogy, 17(3):417–428, 2010.

[80] Osvaldo Zagordi, Rolf Klein, Martin Däumer, and Niko Beerenwinkel.

121

Error correction of next-generation sequencing data and reliable estima-

tion of hiv quasispecies. Nucleic acids research, 38(21):7400–7409, 2010.

[81] Yu Ying Zhao, Ling Yun Wu, Ji Hong Zhang, Rui Sheng Wang, and

Xiang Sun Zhang. Haplotype assembly from aligned weighted snp frag-

ments. Computational Biology and Chemistry, pages 281–287, 2005.

122

Vita

Soyeon Ahn received the B.S. degree in Electrical Engineering from

Korea University, South Korea, in 2008 and the M.Eng. degree in Electrical

Engineering from Korea Advance Institute of Science and Technology(KAIST),

South Korea, in 2010. She worked as a system engineer at Samsung Thales,

South Korea, between 2010 and 2011. She is currently pursuing the Ph.D.

degree in Electrical and Computer Engineering from the University of Texas

at Austin. She was the recipient of the honors scholarship at Korea Univer-

sity, (2003-2006), science and engineering scholarship(2004), national science

fellowship (2007), the national fellowship for graduate students at KAIST

(2008-2009), and the MCD fellowship from the Cockrell School of Engineer-

ing at the University of Texas at Austin (2012-2013). Her research interests

include bioinformatics, machine learning, and statistical signal processing.

Permanent address: 9905 Chukar Circle
Austin, Texas 78758

This dissertation was typeset with LATEX† by the author.

†LATEX is a document preparation system developed by Leslie Lamport as a special
version of Donald Knuth’s TEX Program.

123

