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ABSTRACT

We construct axisymmetric Schwarzschild models to measure the mass profile of the Local Group dwarf galaxy
Fornax. These models require no assumptions to be made about the orbital anisotropy of the stars, as is the case
for commonly used Jeans models. We test a variety of parameterizations of dark matter density profiles and find
cored models with uniform density ρc = (1.6 ± 0.1) × 10−2 M� pc−3 fit significantly better than the cuspy halos
predicted by cold dark matter simulations. We also construct models with an intermediate-mass black hole, but are
unable to make a detection. We place a 1σ upper limit on the mass of a potential intermediate-mass black hole at
M• � 3.2 × 104 M�.
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1. INTRODUCTION

Low-mass galaxies provide a unique testing ground for pre-
dictions of the cold dark matter (CDM) paradigm for structure
formation, since they generally have a lower fraction of baryons
than massive galaxies. These galaxies allow for a more direct
measurement of the underlying dark matter potential, as the
complicated effects of baryons on the dark matter are less pro-
nounced. A particularly testable prediction of CDM is that all
galaxies share a universal dark matter density profile, character-
ized by a cuspy inner power law ρ ∝ r−α , where α = 1 (Navarro
et al. 1996b, hereafter NFW). Many authors have investigated
low-mass spirals and found, in contrast to the predictions of
CDM, dark matter density profiles with a flat inner core of
slope α = 0 (Burkert 1995; Persic et al. 1996; de Blok et al.
2001; Blais-Ouellette et al. 2001; Simon et al. 2005). This has
launched the debate known as the core/cusp controversy.

A number of other studies have investigated the mass content
of dwarf spheroidal galaxies (dSphs). Gilmore et al. (2007) give
a comprehensive review of recent attempts to constrain the inner
slope of their dark matter profiles with Jeans modeling (Jeans
1919; Binney & Tremaine 1987, chap. 4). When significant,
cored profiles are preferred for all dSphs modeled (Gilmore
et al. 2007, and references therein).

These results, however, are subject to a major caveat of
Jeans modeling: it is complicated by the effect of stellar
velocity anisotropy. Models fit to the line-of-sight component
of the velocity dispersion, but anisotropy can severely affect the
modeling of enclosed mass. Therefore, additional assumptions
must be made. The studies presented in Gilmore et al. (2007)
assume spherical symmetry and isotropy. Evans et al. (2009)
show that a weakness of Jeans modeling is that given these
assumptions combined with the cored light profiles observed in
dSphs, the Jeans equations do not allow solutions with anything
other than a cored dark matter profile.

Walker et al. (2009b) construct more sophisticated models
and attempt to parameterize and fit for the anisotropy. As a
result, preference for cored profiles becomes model dependent.
They therefore are unable to put significant constraints on the
slope of the dark matter profile. This highlights the main problem

with Jeans modeling—it is highly dependent on the assumptions
made.

Distribution function models are more general than Jeans
models, and progress has been made applying them to a number
of dSph systems (Kleyna et al. 2002; Wu 2007; Amorisco
& Evans 2011). Nevertheless, these models still make strong
assumptions such as spherical symmetry or isotropy, and models
that do fit for anisotropy do so without using the information
about the stellar orbits contained in the line-of-sight velocity
distributions (LOSVDs).

We employ a fundamentally different modeling technique,
known as Schwarzschild modeling, that allows us to use this
information to self-consistently calculate both the enclosed mass
and orbital anisotropy. Schwarzschild modeling is a mature
industry, but one that has seldom been applied to the study
of dSph galaxies (see Valluri et al. 2005).

In addition to being well suited for measuring dark matter
profiles, Schwarzschild modeling has often been used to search
for black holes at the centers of galaxies. Another unresolved
issue relevant to the study of dSphs is whether they host an
intermediate-mass black hole (IMBH). In a hierarchical merging
scenario, smaller galaxies are thought to be the building blocks
of larger galaxies. It is thought that all massive galaxies host
a supermassive black hole (SMBH) at their center; therefore
it is logical to believe that their building blocks host smaller
IMBHs. Evidence for these IMBHs is scarce, however, and
dynamical detections are even scarcer. The closest and lowest
mass example of a dynamical measurement is an upper limit
on the Local Group dSph NGC 205 of M• � 2.2 × 104 M�
(Valluri et al. 2005). Black holes in this mass range can provide
constraints on theories of black hole growth and formation.
The two most prominent competing theories of nuclear black
hole formation are direct collapse of primordial gas (Umemura
et al. 1993; Eisenstein & Loeb 1995; Begelman et al. 2006) or
accretion onto and mergers of seed black holes resulting from
the collapse of the first stars (Volonteri & Perna 2005).

In this paper, we present axisymmetric, three-integral
Schwarzschild models in an effort to determine the inner slope
of the dark matter density profile as well as the orbit structure of
the Fornax dSph. We also investigate the possibility of a central
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IMBH. We assume a distance of 135 kpc to Fornax (Bersier
2000).

2. DATA

To construct dynamical models, we require a stellar light
profile as well as stellar kinematics in the form of LOSVDs. We
use published data for both the photometry and kinematics, and
describe the steps taken to convert these data into useful input
for our models.

2.1. Stellar Density

To determine the stellar density, we use a number density
profile from Coleman et al. (2005) extending to 4590′′. We
linearly extrapolate the profile out to 6000′′—a physical radius
of 3.9 kpc at our assumed distance. We also extrapolate the
profile inward at constant density from 90′′ to 1′′.

To convert to a more familiar surface brightness profile
we apply an arbitrary zero-point shift in log space, adjusting
this number so that the integrated profile returns a luminosity
consistent with the value listed in Mateo (1998). Adopting an
ellipticity of e = 0.3 (Mateo 1998), we deproject under the
assumption that surfaces of constant luminosity are coaxial
spheroids (Gebhardt et al. 1996), and for an assumed inclination
of i = 90◦.

2.2. Stellar Kinematics

We derive LOSVDs from individual stellar velocities pub-
lished in Walker et al. (2009a). The data contain heliocentric ra-
dial velocities and uncertainties with a membership probability
for 2633 Fornax stars. Most of these are single-epoch observa-
tions; however some are multi-epoch. Stars that have more than
one observation are averaged, weighted by their uncertainties.
After making a cut in membership probability at 90%, we are
left with 2244 stars. Although a significant number of stars ob-
served may be in binary or multiple systems, simulations have
shown that such systems are unlikely to affect measured dis-
persions (Hargreaves et al. 1996; Olszewski et al. 1996; Mateo
1998).

We adopt a position angle P.A. = 41◦ (Walker et al. 2006).
We assume symmetry with respect to both the major and minor
axes and fold the data along each axis. To preserve any possible
rotation, we switch the sign of the velocity whenever a star is
flipped about the minor axis.

The transverse motion of Fornax contributes a non-negligible
line-of-sight velocity to stars, particularly those at large galac-
tocentric radius. Using the equations in Appendix A of
Walker et al. (2008), we correct for this effect. We
adopt values for the proper motion of (μα,μδ) =
(47.6,−36.0) mas century−1 (Piatek et al. 2007) and assume
the heliocentric radial velocity of Fornax is 53.3 km s−1 (Piatek
et al. 2002).

We divide our meridional grid into 20 radial bins, equally
spaced in approximately log r from 1′′ to 5000′′. There are
five angular bins spaced equally in sin θ over 90◦ from the
major axis to the minor axis (Gebhardt et al. 2000; Siopis et al.
2009). From the positions of the folded stellar velocity data,
we determine the best binning scheme so that each grid cell
contains at least 25 stars from which to recover the LOSVD.
Our first bin with enough stars to meet this criterion is centered
at 47′′and the last bin is centered at 2500′′. We therefore have
two-dimensional kinematics coverage over the radial range
47′′–2500′′ (30 pc–1.6 kpc). At small radii the number density

of stars with velocity measurements is low; thus our central
LOSVDs have higher uncertainty compared to those at larger
radii.

Within each grid cell, we calculate the LOSVD from discrete
stellar velocities by using an adaptive kernel density estimate
adapted from Silverman (1986) and explained in Gebhardt
et al. (1996). We estimate the 1σ uncertainties in the LOSVDs
through bootstrap resamplings of the data (Gebhardt et al.
1996; Gebhardt & Thomas 2009). The bootstrap generates a
new sample from the data itself by randomly picking N data
points, where N is the total number of stars in a given bin,
allowing the same point to be chosen more than once. We
then estimate the LOSVD from that realization and repeat the
procedure 300 times. The 68% confidence band on the LOSVDs
corresponds to the 68% range of the realizations. We compare
the velocity dispersion as measured by the LOSVDs with the
biweight scale (i.e., a robust estimate of the standard deviation;
see Beers et al. 1990) of the individual velocities and note good
agreement.

Figure 1 plots the LOSVDs of four bins. Rather than param-
eterizing these LOSVDs with Gauss–Hermite moments, our
models instead fit directly to the LOSVDs to constrain the kine-
matics of the galaxy. However, we do fit Gauss–Hermite mo-
ments for plotting purposes only. These data are presented in
Figure 2 for stars that have been grouped into bins near the major
axis (blue) and minor axis (red). Near the center of the galaxy
the density of stars with kinematics is sparse, so we therefore
group stars into annular bins covering all angles (green). We
estimate the 1σ uncertainties of the Gauss–Hermite moments
by fitting to each of the 300 realizations calculated during the
bootstrap discussed above. The error bars plotted contain 68%
of the 300 realizations.

3. DYNAMICAL MODELS

The modeling code we use is described in detail in
Gebhardt et al. (2003), Thomas et al. (2004, 2005), and Siopis
et al. (2009) and is based on the technique of orbit superpo-
sition (Schwarzschild 1979). Similar axisymmetric codes are
described in Rix et al. (1997), van der Marel et al. (1998),
Cretton et al. (1999), and Valluri et al. (2004), while van den
Bosch et al. (2008) present a fully triaxial Schwarzschild code.
Our code begins by choosing a trial potential that is a combi-
nation of the stellar density, dark matter density, and possibly
a central black hole. We then launch ∼15,000 orbits carefully
chosen to uniformly sample the isolating integrals of motion.
In an axisymmetric potential, orbits are restricted by three iso-
lating integrals of motion, E, Lz, and the non-classical “third
integral” I3. As it is not possible to calculate I3 a priori, we
use a carefully designed scheme to systematically sample I3 for
each pair of E and Lz (Thomas et al. 2004; Siopis et al. 2009).
Orbits are integrated for many dynamical times and each or-
bit is given a weight wi . We find the combination of wi that
best reproduces the observed LOSVDs and light profile via a
χ2 minimization subject to the constraint of maximum entropy
(Siopis et al. 2009).

We run models by varying three parameters—the stellar
M/LV and two parameters specifying the dark matter density
profile. Some models are also run with a central black hole
whose mass is varied in addition to the other three model
parameters. Each model is assigned a value of χ2 and we identify
the best-fitting model as that with the lowest χ2. We determine
the 68% confidence range on parameters by identifying the
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(a) (b)

(c) (d)

Figure 1. Line-of-sight velocity distributions of four bins. Open circles with error bars are the data. Overplotted are the model values for the best-fitting cored model
(red) and NFW model (blue). Bins are located at (a) R = 297′′, θ = 18◦; (b) R = 550′′, θ = 18◦; (c) R = 1008′′, θ = 45◦; and (d) R = 2484′′, θ = 45◦. Quoted χ2

values are unreduced.

(A color version of this figure is available in the online journal.)

portion of their marginalized χ2 curves that lie within Δχ2 = 1
of the overall minimum.

3.1. Model Assumptions

Our trial potential is determined by solving Poisson’s equa-
tion for an assumed trial density distribution. On our two-
dimensional polar grid, this takes the form

ρ(r, θ ) = M

L
ν(r, θ ) + ρDM(r), (1)

where M/L is the stellar mass-to-light ratio, assumed constant
with radius, and ν(r, θ ) is the unprojected luminosity density.
The assumed dark matter profile ρDM(r) is discussed below. For
simplicity, we assume Fornax is edge-on in all our models.

3.2. Dark Matter Density Profiles

We parameterize the dark matter halo density with a number
of spherical density profiles. We use NFW halos:

ρDM(r) = 200

3

A(c)ρcrit

(r/rs)(1 + r/rs)2
, (2)

where

A(c) = c3

ln(1 + c) − c/(1 + c)

and ρcrit is the present critical density for a closed universe. The
two parameters we fit for are the concentration c and scale
radius rs. We also use halos derived from the logarithmic
potential:

ρDM(r) = V 2
c

4πG

3r2
c + r2

(
r2
c + r2

)2 . (3)

Figure 2. Gauss–Hermite moments for stars near the major axis (blue), minor
axis (red), and averaged over all angles (green). Solid lines correspond to the
best-fit model with a cored dark matter halo, dashed lines are for the best-fit
model with an NFW halo.

(A color version of this figure is available in the online journal.)

These models feature a flat central core of density ρc =
3V 2

c /4πGr2
c for r � rc and an r−2 profile for r > rc. We

fit for Vc and rc, the asymptotic circular speed at r = ∞ and
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Table 1
Best-fit Model Parameters

DM Profile χ2 M
LV

c rs ρc M• Nmodel

(kpc) (M� pc−3) (M�)

NFW 239.8 1.3 ± 0.6 4.1 ± 0.26 11.7 ± 1.4 . . . . . . 3124
Log 162.6 1.5 ± 0.5 . . . . . . 1.6 ± 0.1 × 10−2 . . . 4319
Log 162.6 1.6 ± 0.2 . . . . . . 1.6 ± 0.1 × 10−2 �3.2 × 104 3423

Notes. Best-fit parameters for NFW and cored logarithmic dark matter halos. χ2 is unreduced and the number of degrees
of freedom is the same for each model. Model parameters and 1σ uncertainties are quoted. Nmodel lists the number of
models that run for the corresponding parameterization.

core radius, respectively. We run over 10,000 models with only
three distinct parameterizations: NFW halos, and logarithmic
models with and without an IMBH.

4. RESULTS

We find significant evidence for cored logarithmic dark matter
density profiles. These models are preferred at the Δχ2 = 77
level when compared to models with an NFW halo, a highly
significant result. Perhaps more convincingly, the values for the
concentration preferred by our models are around c = 4. Only
relatively recently formed structures like galaxy clusters are
expected to have concentrations this low (NFW).

Table 1 summarizes the results of our models, while Figures 1
and 2 illustrate the preference for cored models over models
with an NFW halo in fitting to the kinematics. We stress again
that LOSVDs like those plotted in Figure 1 are the kinematic
constraints and not the Gauss–Hermite moments of Figure 2.

While we fit for Vc and rc in the cored models, these
parameters are strongly degenerate. Our model grid extends
to 3.3 kpc; thus any model with rc > 3.3 kpc has a uniform
density ρc = 3V 2

c /4πGr2
c over the entire range of our model.

Furthermore, we have no velocity information from stars past
R � 1.6 kpc and therefore cannot constrain the kinematics in
the outer parts of the galaxy. Thus, for models with rc � 1.6 kpc,
ρc is now the only parameter that differentiates between models.
As ρc is dependent on both Vc and rc, the latter two parameters
are completely degenerate.

Figure 3 illustrates this effect. Plotted are the χ2 curves
for each model parameter. Lines of the same color indicate a
common parameterization of the mass profile (e.g., cored +
IMBH). While the χ2 for both Vc and rc asymptote to large
values, ρc is tightly constrained. Note that the behavior of rc
for logarithmic profiles with an IMBH (green line) is a result of
incomplete parameter sampling. With a more densely sampled
parameter space, the χ2 curve for rc for cored models with an
IMBH would likely asymptote to large rc in a similar fashion as
models without an IMBH (red curve).

The addition of a central black hole to the mass profile
does not make a noticeable difference to the overall χ2 for
most values of M•. We therefore place a 1σ upper limit on
M• � 3.2 × 104 M�.

We plot the mass profile for our best-fit model in Figure 4
(solid black line with surrounding 68% confidence region). This
is a cored logarithmic dark matter profile without a central black
hole. The mass profile of our best-fit dark halo is plotted as the
dashed line, and the stellar mass profile is plotted in red. The
contribution of dark matter to the total mass increases with
radius as the local dynamical mass-to-light ratio rises from
approximately ∼2 to greater than 100 in the outermost bin of
our model.

4.1. Orbit Structure

We construct a distribution function for the galaxy from the
set of orbital weights wi resulting from the χ2 minimization of
our best-fit model. To explore the orbit structure, we determine
the internal (unprojected) moments of the distribution function
in spherical coordinates. Streaming motions in the r and θθθ
directions are assumed to be zero. In this coordinate system,
cross terms of the velocity dispersion tensor are zero.

Figure 5 plots the anisotropy in the diagonal components
of the dispersion tensor. While some panels show an average
value near unity, there are regions in every panel where the
ratio plotted is different from one. Additionally, we define
the tangential velocity dispersion σt ≡

√
(1/2)(〈v2

φ〉 + σ 2
θ ),

where 〈v2
φ〉 is the second moment 〈v2

φ〉 = σ 2
φ + V 2

φ and
V 2

φ is the mean rotation velocity. With this definition, we
plot the ratio σr/σt in the bottom panels of Figure 5 to
investigate whether orbits are radially or tangentially biased.
From these plots, it is clear that the common assumptions of
Jeans modeling—constant or zero anisotropy—are unrealistic.
We find that at most radii in the galaxy, orbits are radially
biased. The uncertainty in the anisotropy is largest at small
radii, as evidenced by the size of the 68% confidence regions in
Figure 5. This is likely due to the sparsity of kinematics in the
inner part of the galaxy (there are limits to how closely target
fibers can be spaced in multi-fiber spectroscopy).

In a recent paper, Kazantzidis et al. (2011) simulated the
effects of tidal stirring on a number of dSph progenitors around
a Milky Way sized halo. They found radial anisotropy in all
of the final remnants, and our models are consistent with these
findings.

5. DISCUSSION

5.1. Cores and Cusps

Our analysis shows that for the Fornax dwarf an NFW dark
matter halo with inner slope α = 1 is rejected with high
confidence. We have kinematics from 30 pc to 1.6 kpc, and
over this range the models prefer an α = 0 uniform density
core with ρc = 1.6 × 10−2 M� pc−3. We do not attempt to fit
for models with an intermediate value of the slope 0 � α � 1.
Further investigation is necessary before we can conclude that
the best-fitting dark matter profile is the logarithmic model. The
steep α = 1 cusp of the NFW profile is, however, robustly
ruled out.

The models, in general, seem to prefer less mass in the areas
over which we have kinematic constraints. In NFW models,
the concentration c sets the normalization (or y-intercept) of
the density profile. Because c cannot be lowered below an
astrophysically reasonable limit, NFW models enclose more
mass than cored models. This difference is reflected in the χ2
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Figure 3. χ2 curves for all parameterizations of the mass profile. NFW halos (blue) are parameterized by concentration c and scale radius rs. Logarithmic halos with
an IMBH (green) and without an IMBH (red) are specified by Vc and rc, respectively. We also plot core density ρc = 3V 2

c /4πGr2
c as it is the controlling parameter

over the radial range of our models. We fit for stellar M/LV in all models (upper left panel). NFW models have much higher χ2 and are scaled down by 75 to fit on
the same axis. Black hole mass for logarithmic halos with an IMBH (green) is plotted in the upper right panel. Note that the apparent minimum in rc for logarithmic
halos with an IMBH is due to incomplete parameter sampling.

(A color version of this figure is available in the online journal.)

difference between cored and NFW models, as the kinematics
are best fitted by models with less mass. Figure 2 hints at this as
the best-fit NFW model (dashed line) typically has higher values
for σ than either the data or best-fitting cored model (solid line).

Several groups have approached the core/cusp issue in dSphs
by taking advantage of the fact that some dSphs host multiple
populations of tracer stars that are chemically and dynamically
distinct. By fitting models to each component, the underlying
dark matter profile can be modeled more accurately. Amorisco &
Evans (2012) fit two-component distribution function models to
Sculptor, while Walker & Peñarrubia (2011) apply a convenient
mass estimator (discussed below) to each stellar component
in Sculptor and Fornax. It is believed that this mass estimator
is unaffected by orbital anisotropy; thus their method yields a
robust determination of the dynamical mass at two locations in
the galaxy—allowing for the slope of the dark matter profile to
be measured. Each of these studies finds models with a cored
dark matter halo preferable to the predicted cuspy NFW profile.

It must be noted, however, that we are not observing the pris-
tine initial dark matter distribution in this galaxy. Rather, it has
likely been modified by complex baryonic processes over the
lifetime of the galaxy. These processes may include adiabatic

compression (Blumenthal et al. 1986), halo rebounding follow-
ing baryonic mass loss from supernovae (Navarro et al. 1996a),
or possibly dynamical friction acting on clumps of baryons
(El-Zant et al. 2001; but see also Jardel & Sellwood 2009). Al-
though we chose this galaxy because these effects were likely
to be small, they are nevertheless not well understood and our
result must be taken in that context.

5.2. Central IMBH

We are unable to place a significant constraint on the mass of a
central IMBH. Figure 3 (upper right) shows the marginalized χ2

curve against IMBH mass for cored dark matter density profiles.
The curve asymptotes to low values of IMBH; thus we are only
capable of placing an upper limit on the mass of any potential
IMBH. Furthermore, our best-fit cored model with and without
an IMBH has the same χ2. We therefore impose a 1σ upper limit
on M• � 3.2 × 104 M�. It is unfortunate that we are not able
to place a lower limit on M• because measurements of black
holes in the range M• � 104 M� place direct constraints on
SMBH formation mechanisms (Van Wassenhove et al. 2010).
Our models, however, do robustly rule out a black hole of larger
mass.
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Figure 4. Total enclosed mass for our best-fit model (black line with surrounding
confidence region). Red line is the enclosed stellar mass. Dashed line is our best-
fit dark matter halo.

(A color version of this figure is available in the online journal.)

In massive galaxies it is thought that the radius of influence,
Rinf ∼ GM•/σ 2, must be resolved in order to detect and
precisely measure a black hole (Gebhardt et al. 2003; Kormendy

2004; Ferrarese & Ford 2005; Gültekin et al. 2009). Using
our upper limit on M• we can calculate the maximum radius
of influence of a potential black hole. Estimating the central
velocity dispersion at σ ∼ 10 km s−1 gives an upper limit for
Rinf � 14 pc. Our kinematics start at R = 26 pc, so it is not
surprising that the minimum black hole mass we were able to
detect has Rinf close to 26 pc. To detect smaller black holes, we
require kinematics of stars closer to the center of the galaxy.

We are able to detect the dynamical influence of a black hole
with a similar mass as Valluri et al. (2005) detect in NGC 205, but
with kinematics of much lower resolution. Our innermost model
bin is centered around 30 pc whereas they use high-resolution
kinematics from the Hubble Space Telescope to resolve spatial
scales less than 1 pc. The advantage we have is that the central
velocity dispersion is much smaller in Fornax, which makes Rinf
larger for fixed M•. NGC 205 is also more than five times as
distant as Fornax.

5.3. Mass Estimators

Several authors have come up with convenient estimators of
total mass within a given radius for Local Group dSphs. Strigari
et al. (2008) use the mass enclosed within 300 pc, while Walker
et al. (2009b) and Wolf et al. (2010) find a similar expression
for the mass contained within the projected and unprojected
half-light radii, respectively. These estimators bear striking
resemblance to a result obtained by Cappellari et al. (2006)
derived from integral field kinematics of massive elliptical
galaxies, and they all hint at an easy way to determine dynamical
masses without expensive modeling. They are believed to be
insensitive to velocity anisotropy based on the derivation in Wolf

Figure 5. Anisotropy in various components of the velocity dispersion tensor. Shaded regions correspond to the 68% confidence regions; solid lines plot the best-fit
model. Left- and right-hand panels plot stars near the major and minor axes, respectively.

(A color version of this figure is available in the online journal.)
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et al. (2010), and we compare their estimates to our models as a
check on this.

For the mass contained within 300 pc we measure M300 =
3.5+0.77

−0.11×106 M�, roughly a factor of three smaller than Strigari
et al. (2008) who measure M300 = 1.14+0.09

−0.12 × 107 M� using
Jeans models with parameterized anisotropy.

The Cappellari et al. (2006), Walker et al. (2009b), and Wolf
et al. (2010) mass estimators are all of the form

M(rest) = k
〈
σ 2

LOS

〉
Re, (4)

where rest is the radius at which the estimator is valid. For
Cappellari et al. (2006) and Walker et al. (2009b) rest = Re

(the projected half-light radius), while for Wolf et al. (2010)
rest = re (the unprojected half-light radius). Other than the
projected/unprojected difference, each estimator differs only
by the value of the constant k. In order to more fairly compare
between these estimators and our models, we use the values
for the luminosity-weighted line-of-sight velocity dispersion
〈σ 2

LOS〉 = 11.3+1.0
−1.8 kms−1, projected half-light radius Re =

689 pc, and unprojected half-light radius re = 900 pc that we
calculate from the data used in our models.

Our best-fitting model has M(Re) = 3.9+0.46
−0.11 × 107 M� and

M(re) = 5.8+1.0
−0.2 × 107 M�. With each group’s value for k

and our kinematics, the mass estimates are M(Re) ≈ 5.1+1.0
−1.5 ×

107 M� (Walker et al. 2009b), M(re) ≈ 8.1+1.6
−2.4 ×107 M� (Wolf

et al. 2010), and M(Re) ≈ 1.0+0.3
−0.2 × 108 M� (Cappellari et al.

2006). Our model is broadly consistent with both the Walker
et al. (2009b) and Wolf et al. (2010) estimators.

The evidence that mass estimators are anisotropy independent
comes largely from comparison to spherical Jeans models
(except Cappellari et al. 2006). The weakness of these models
is that the anisotropy must be parameterized and is restricted to
be a function of radius only. Our models are not subject to these
constraints since the anisotropy is calculated non-parametrically
and is free to vary with position angle. We suggest that the best
way to prove the accuracy of mass estimators is to compare
with models that can self-consistently calculate both mass and
anisotropy for realistic potentials.

For bright elliptical galaxies, Cappellari et al. (2006) and
Thomas et al. (2011) have done just that. In these cases,
the mass estimates are checked against masses derived from
axisymmetric Schwarzschild modeling and good agreement
is found. Ours is the first study to perform a similar test
with dSphs, and there is no reason to assume that suc-
cess with bright ellipticals guarantees accuracy in the dSph
regime. The results from our comparison above are nevertheless
reassuring.

5.4. Tidal Effects

The principle of orbit superposition, and hence our entire
modeling procedure, relies on the assumption that the galaxy is
bound and in a steady state. The amount of tidal stripping in
Fornax due to the effect of its orbit through the Milky Way’s
halo is not well known. For reasonable values of Fornax total
mass m, Milky Way mass M, and Galactocentric radius R0,
the tidal radius of Fornax is rt ∼ (m/3M)1/3R0 ∼ 13.5 kpc.
This estimate of rt is sufficiently larger than our model grid
that we would not expect tidal effects to be important over the
radial range of our models. If Fornax is on an eccentric orbit
about the Milky Way, however, the above equation for rt is not
valid and estimation of the tidal radius is not as straightforward.

Fortunately, studies investigating its transverse motion suggest
the orbit of Fornax is roughly circular (Piatek et al. 2007; Walker
et al. 2008).
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