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Development of high-speed imaging techniques 

for C. elegans nervous system studies 

 

Ki Hyun Kim, Ph.D. 

The University of Texas at Austin, 2016 

 

Supervisor:  Adela Ben-Yakar 

 

We report high-speed imaging techniques for C. elegans nervous systems studies. 

We introduce C. elegans, the main model organism in this dissertation, and 

neuroscientific and biomedical studies using C. elegans involving calcium imaging, nerve 

regeneration, and drug screening. We review technologies including confocal microscopy 

and microfluidic devices used in the neuroscientific and biomedical studies 

We discuss development of a high-speed laser scanning confocal microscope 

capable of flexible control of imaging conditions, fast imaging speed, and large field-of-

view. We provides the design principles used in the development of the confocal 

microscope including the optical, electrical, and software implementation, and the details 

of the confocal microscope we built based on the design principles. We present the 

performance characterization of the confocal microscope, then a few sample images 

obtained with the confocal microscope. 

We present development of time-lapse volumetric confocal imaging of whole 

animal C. elegans Ca2+ dynamics. We provide the design of the time-lapse volumetric 

confocal imaging system including a microfluidic device to accommodate the whole 

animal within the field-of-view of the imaging system. We examine the feasibility of the 

volumetric confocal imaging of a whole animal, and demonstrate imaging of the whole 
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animal C. elegans neurons’ response to NaCl within a 630 × 150 × 25 μm3 volume at 2 Hz 

rate. 

We report a high-throughput automated imaging platform for C. elegans nerve 

regeneration study. We describe the design of the automated imaging platform and the 

automation flow, and characterizes the performance of the platform. The imaging platform 

can obtain high-resolution 3D confocal images of 20 animals in 10 minutes. We show 

sample images of C. elegans anterior lateral microtubule nerve regeneration examples 

acquired via the automated imaging platform. 

We demonstrate a planar laser activated neuronal scanning platform (PLANS), a 

high-throughput animal examination system for drug screening. We explain the 

construction of PLANS involving the optics, the microfluidic device, and the electronics. 

The PLANS system can scan an animal in less than 5 ms with a spatial sampling resolution 

of 3 μm FWHM. We show sample scanning results of a Huntington’s disease model of C. 

elegans. 

We summarize the studies discussed in this dissertation, and suggest relevant future 

research to follow up on the studies. 
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Chapter 1: Introduction 

One topic of importance in neuroscience is functional mapping of neurons using 

Ca2+ imaging. Ca2+ signals are essential for intracellular and neuronal communication such 

as synaptic transmission, mandatory for complex processes such as learning and 

memorizing, and involved in birth and death of neurons [1]–[4]. Hence, monitoring Ca2+ 

enables direct investigations of neuronal activities [5]. The development of Ca2+ imaging 

has been driven by parallel advancement of calcium indicators and imaging technologies. 

The latest Ca2+ imaging technology is capable of in vivo real-time monitoring of Ca2+ 

signals in localized regions or targeted neurons of model organisms, yet, whole-brain and 

whole-animal Ca2+ imaging remains challenging. 

Another topic of huge interest in neuroscience is neurodegenerative diseases. 

Neurodegenerative diseases including Huntington’s, and Alzheimer’s diseases are the most 

common causes of life-quality-threatening dementia [6], [7], and the number of patients 

suffering neurodegenerative diseases has been increasing as the life expectancy prolongs. 

For instance, 5.1 million American people over 65 years old are affected by Alzheimer’s 

disease in 2015, and the number is projected to reach 13.5 million by 2050, while the total 

costs of care for these patients are estimated to be $1.1 trillion in 2050 [8]. Comprehension 

of the molecular mechanisms administering nerve degeneration and regeneration will 

accelerate development of remedies and drugs to cure the diseases, however, the 

mechanisms are substantially unidentified. Hence, a good model organism for in vivo study 

of those mechanisms is essential. 

Caenorhabditis elegans (C. elegans), a tiny worm, is a versatile neuroscience 

model organism suitable for researching both neurodegenerative diseases and functional 

mapping of all neurons in the whole animal. Based on C. elegans, a variety of 

neurodegenerative disease models have been invented [9] as well as a huge inventory of 
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fluorescent strains and calcium indicators for C. elegans are available through 

Caenorhabditis Genetics Center (CGC, NIH Office of Research Infrastructure Programs 

(P40 OD010440)). The high reproduction rate and the short generation period of C. elegans 

allow high-throughput disease studies, and the small size and the simple physiological 

neural structure of C. elegans suggest a possibility of in vivo real-time whole-animal Ca2+ 

imaging.  

Realization of both the high-throughput disease studies and the in vivo real-time 

whole-animal Ca2+ imaging require novel C. elegans imaging modalities facilitating a fast 

imaging speed, a large field-of-view, a high resolution, and optical sectioning. We present 

high-speed imaging techniques we have developed for optical in vivo inspection of C. 

elegans. 

 

1.1. DISSERTATION OVERVIEW 

The primary objective of this dissertation is to report high-speed imaging 

techniques for C. elegans nervous system studies. 

Chapter 2 provides background knowledge to assist readers to comprehend the 

subjects of the following chapters. Chapter 2 shortly introduces C. elegans, the main 

model organism in this dissertation, and neuroscientific and biomedical studies using C. 

elegans involving calcium imaging, nerve regeneration, and drug screening. Subsequently, 

Chapter 2 briefly explores technologies including confocal microscopy and microfluidic 

devices, which are used in the neuroscientific and biomedical studies. 

Chapter 3 thoroughly discusses development of a high-speed laser scanning 

confocal microscope. Chapter 3 provides the design principles used in the development of 

the confocal microscope including the optical, electrical, and software implementation, and 

the details of the confocal microscope we built based on the design principles. Chapter 3 
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also presents the performance characterization of the confocal microscope, then a few 

sample images obtained with the confocal microscope. 

Chapter 4 presents development of time-lapse volumetric confocal imaging of 

whole animal C. elegans Ca2+ dynamics using the confocal microscope in Chapter 3. 

Chapter 4 provides the design of the time-lapse volumetric confocal imaging system 

including a microfluidic device to accommodate the whole animal within the field-of-view 

of the imaging system.  Chapter 4 examines the feasibility of the volumetric confocal 

imaging of a whole animal, and demonstrates an example experiment to observe whole 

animal C. elegans neurons’ response to NaCl including the experimental procedures. 

Chapter 5 reports a high-throughput automated imaging platform for C. elegans 

nerve regeneration study. Chapter 5 describes the design of the automated imaging 

platform and the automation flow, and characterizes the performance of the platform. 

Chapter 5 shows sample images of C. elegans anterior lateral microtubule (ALM) nerve 

regeneration examples acquired through the automated imaging platform. 

Chapter 6 presents a planar laser activated neuronal scanning platform (PLANS), 

a high-throughput animal examination system for drug screening. Chapter 6 explains the 

construction of PLANS involving the optics, the microfluidic device, and the electronics. 

Chapter 6 shows sample scanning results of a Huntington’s disease model of C. elegans. 

Chapter 7, the last chapter of this dissertation, summarizes the studies discussed in 

the previous chapters, and suggests relevant future research to follow up on the studies in 

this dissertation. 

 

  



 4 

Chapter 2:  Background 

 

2.1. C. ELEGANS AS A MODEL ORGANISM 

Caenorhabditis elegans (C. elegans, Fig. 2.1), a soil nematode, has desirable 

characteristics as a model organism for biology and neuroscience studies. C. elegans is 

easy to culture in the laboratory environment. C. elegans permits large population studies 

because it grows very rapidly, has a short generation time of 3 days, reproduces abundantly, 

and is a hermaphrodite. C. elegans enables observation of neuronal processes in living 

animals with the use of in vivo fluorescent markers due to its transparent body. C. elegans 

is a simple multicellular animal with 959 somatic cells comprising various organs and 

tissues including muscles, a reproductive system, and a nervous system of 302 neurons 

[10]–[13]. C. elegans is also the very first multicellular organism whose genome is fully 

sequenced [12], and whole structural neuronal circuitry is mapped [14] 

C. elegans homologues have been identified for 60 – 80% of human genes [12], 

[15]–[18], and counterparts for human disease-related genes are found in C. elegans [12], 

[13]. For these advantages, C. elegans have been used as diseases models to study a variety 

of complex human diseases such as diabetes [19], and aging [19]–[21]. C. elegans models 

for neurodegeneration such as Alzheimer’s disease [22]–[25], Parkinson’s disease [26], 

[27], and Huntington’s disease [28], [29] were reported. In addition, neuronal regeneration 

[30] and muscular dystrophy [31] were also researched using C. elegans models.  
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Figure 2.1: Wide-field images of Caenorhabditis elegans. (a) Bright-field image of C. 

elegans showing the internal structure of the animal (Credit: The Harman Lab at Kansas 

State University) (b) Wide-field fluorescent image of a C. elegans with a GFP strain. 

Courtesy of [32]. 

 

2.2. CONFOCAL MICROSCOPY 

Confocal microscopy has been one of the standard optical imaging techniques to 

investigate fluorescent specimens for biomedical applications since the introduction of the 

first commercial confocal microscope [33], [34] due to its significant strengths compared 

to the conventional wide-field microscopy. Confocal microscopy provides a superior 

imaging resolution by a factor of up to 1.4 with the confocal pinhole size adjustment. 

Confocal microscopy optimizes the signal-to-noise ratio (SNR) of images by rejecting out-

of-focus signals including background noise from scattered light. Most importantly, 

confocal microscopy generates optically sectioned images capable of 3D reconstruction of 

the specimen [35]–[37]. 
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The optical principle of the confocal microscopy is illustrated in Fig. 2.2. One of 

the most efficient ways to understand the optical principle of confocal microscopy is to 

compare the optical principle of confocal microscopy (Fig. 2.2b) to that of the wide-field 

microscopy (Fig. 2.2a). In wide-field microscopy, the light from the object is projected 

onto the image plane through the lens. Not only does in-focus light from the object reach 

the image plane, but out-of-focus light from the object and the surroundings also arrives 

the image plane. Hence, the detector placed on the image plane collects both in-focus and 

out-of-focus light, and produces low signal-to-noise images blurred by the out-of-focus 

light as shown in Fig. 2.2a. This blurring by the out-of-focus light deteriorates when the 

objective is inside a dense region filled with other objects. 

 

 

Figure 2.2: Principle of confocal microscopy. (a) Imaging principle of wide-field 

microscopy. (b) Imaging principle of confocal microscopy. Fluorescent images for wide-

field and confocal microscopy comparison are in courtesy of [38]. The green line is in-

focus light, and the yellow and purple lines are out-of-focus light. 
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On the contrary, almost only the in-focus light is detected by the detector in 

confocal microscopy. Even though both the in-focus and out-of-focus light travels up to 

the image plane, the confocal pinhole allow most of the in-focus light and a negligible 

amount of the out-of-focus light to pass as shown in Fig. 2.2b. Thus, the detector placed 

on the image plane collects mostly the in-focus light, and produces high SNR images free 

of blurring by the out-of-focus light (Fig. 2.2b). Additionally, the in-focus light originates 

only from the object focal plane, and the image that consists only of the in-focus light 

contains information only about the object focal plane. Hence, confocal microscopy 

achieves optical sectioning which allows for construction of 3D images.  

 

2.3. C. ELEGANS CALCIUM (CA2+) IMAGING 

Ca2+ imaging is a well-established method for neuronal activity observation since 

calcium is an essential intracellular messenger in neurons [5], [39], [40]. C. elegans is one 

of the versatile model organisms for Ca2+ imaging since the advantages of C. elegans as a 

model organism for neuroscience also apply to Ca2+ imaging. Activities of C. elegans’ 

chemosensory neurons [41]–[44], motor neurons [45]–[49], thermosensory neurons [50], 

and olfactory neurons [51] were characterized with diverse stimulus in varied conditions 

through Ca2+ imaging. 

In C. elegans Ca2+ imaging, wide-field microscopy with a CCD or CMOS camera 

has been the most common imaging method [42], [45]–[47], [51]. Wide-field microscopy 

is a feasible imaging method for monitoring a single neuron or a few targeted neurons. 

However, wide-field microscopy is not capable of resolving individual neurons inside the 

head region of C. elegans encoded with pan-neuronal strains. The C. elegans head region 

is densely packed with a majority of tiny C. elegans neurons, thus, the wide-field 

microscopy images suffer severely from out-of-focus fluorescent signals of densely packed 
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neurons. This challenge necessitates novel imaging methods capable of producing 

optically-sectioned high-resolution volumetric images at rates higher than the neurons’ 

Ca2+ response frequency. 

Various approaches to achieve high-speed high-resolution volumetric imaging 

were reported. Light-sheet microscopy was used to observe activity of all neurons in the 

zebrafish brain at 0.8 VPS [52]. Spinning disk confocal microscopy [53] and the wide-field 

temporal focusing technique [44] were used to track all neurons in the C. elegans brain at 

5 VPS. Light-field microscopy was used to monitor all of the neurons in the whole C. 

elegans [43]. Swept confocally-aligned planar excitation (SCAPE) microscopy was 

invented to image freely moving Drosophila larvae at 10 VPS [54]. These high-speed 

volumetric imaging methods provide either a small FOV with a high-resolution, or a large 

FOV with a low resolution. For example, the light-field microscopy [43] provides a FOV 

large enough to cover the whole body of a bent C. elegans yet cannot resolve individual 

neurons due to its poor imaging resolution. A high-speed high-resolution volumetric 

imaging method with a large FOV is necessary to perform Ca2+ imaging of the whole C. 

elegans, however, no method capable of Ca2+ imaging of the whole C. elegans  with an 

adequate imaging resolution to capture C. elegans neurons’ nuclei has been reported. 

 

2.4. NERVE REGENERATION STUDIES OF C. ELEGANS USING LASER AXOTOMY 

C. elegans was proven to be a feasible model for injured nerve regeneration studies 

combined with the femtosecond laser surgery technique in 2004 [30]. However, the laser 

surgery on C. elegans axons was conducted on agar plates with no automation, and the 

regeneration of the severed axons was also manually observed on agar plates while the 

animal was chemically anesthetized. This labor-intensive and time-consuming process was 

addressed by development of automated laser axotomy techniques combined with lab-on-
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a-chip microfluidic devices. The automated laser axotomy techniques accomplished 

precise and repeatable laser surgery supported by stable immobilization of animals without 

the use of anesthetics [55]–[57]. Though those automated laser axotomy techniques 

significantly expedited the C. elegans axotomy process, the examination of axon 

regeneration was still carried out on agar plates with anesthetics applied to the animal, thus, 

the manual examination of nerve regeneration remained the major bottleneck of the nerve 

regeneration research. 

 

 

Figure 2.3: C. elegans nerve regeneration study. Confocal fluorescent images of ALM and 

PLM axons labelled with GFP immediately after and 24 hours after a femtosecond laser 

surgery.  

 

To address the bottleneck of the manual examination, we developed a high-

throughput automated confocal imaging platform. Our high-throughput imaging platform 

consists of a high-speed confocal microscope, and a microfluidic device for multiple 

animal parallel trapping in desirable orientations for effective imaging. Our imaging 

platform takes very high-resolution 3D confocal images of regenerated axons of 20 animals 

in 10 minutes. The high-resolution 3D confocal images allow more accurate evaluation of 

axon reconnection and regeneration, and the short imaging time prevents the image SNR 
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drop due to the autofluorescent emission from animals stressed induced by the physical 

immobilization pressure. 

 

2.5. DRUG SCREENING WITH C. ELEGANS 

The existence of plentiful C. elegans disease models and the aforementioned 

advantages as a model organism make C. elegans an excellent tool for whole-organism 

high-throughput drug screening (HTS) [9]. Advantages in using C. elegans for HTS are: 

the possibility of modeling sophisticated human diseases which are challenging to 

duplicate in unicellular models, a large collection of scorable phenotypes, the higher 

chances of discovering drugs more effective in humans due to the use of the whole 

multicellular organism, and the support of time-proven genetic tools and resources [13], 

[58], [59].  

Conventionally, chemical compounds have been tested on C. elegans on agar plates 

[10]. This agar plate method consumes a large amount of chemicals, is labor intensive and 

time consuming, and not applicable for HTS. The first large-volume C. elegans drug 

screening using a Complex Object Parametric Analyzer and Sorter (COPASTM BIOSORT, 

Union Biometrica) was reported in 2006 [60] though this method still relied on agar plates 

for screening, and the phenotypes were manually scored. Between 2006 and 2009, several 

liquid-based and agar-plate-free screen methods were developed yet they still depended on 

manual inspection and assessment [61]–[63]. Recently, multi-well plate based [64], [65] 

and microfluidic device based [60], [66]–[68] drug and chemical compound screening 

methods were demonstrated. These methods incorporated automated animal delivery, and 

image acquisition and analysis, hence, significantly reduced the amount of labor and time 

for assessment. However, these methods are still not compatible with screening for 

hundreds of thousands of drugs because they use slow-speed snap-shot imaging of the 
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nervous system, sometimes only partially, with limited resolution. This shortcoming 

suggests a need for new technologies to achieve ultrafast whole animal scanning. 

Our PLANS system scans the whole nervous system of living C. elegans rapidly 

enough for chemical compound screening. Our PLANS system provides a scanning rate of 

100’s of animals per second, comparable to the performance of commercial biosorters [69], 

while characterizing the nervous system at a cellular resolution. Our PLANS method will 

allow us to examine up to one million distinct chemical compounds per year for their 

effectiveness in preventing or delaying the degeneration of identified neurons through 

aging and disease.  

 

2.6. MICROFLUIDIC DEVICES 

Microfluidics has been extensively adopted as a versatile platform for chemical and 

biological studies due to its significant strengths since the introduction of the polymer-

based soft-lithography and microfluidic devices made out of polydimethylsiloxane 

(PDMS) [70]. Microfluidic devices allow experiments to use lesser amounts of chemicals, 

specimens, and space compared to the conventional methods. Microfluidic devices also 

enable automation, and high-throughput experiments. In addition, PDMS is transparent, 

biocompatible, and gas-permeable, hence, is highly favorable for biological studies [71], 

[72]. Thus, PDMS-based microfluidic devices can simulate in vivo microenvironments for 

cells, tissues, and even living organisms [73]. 

Microfluidics has been considerably contributing to biology and neuroscience 

studies using C. elegans as a model organism. Microfluidics is remarkably functional in 

precisely controlling and manipulating C. elegans whose small size hampers handling of 

C. elegans [74], [75]. The most troublesome task in C. elegans experiments is to 

immobilize the animal. In conventional C. elegans experiments on petri dishes, or agar 
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plates, C. elegans is usually chemically anesthetized, or glued to the substrates for thorough 

inspection and manipulation [76]. The toxicity and influence of the anesthetics and glue to 

the animal is difficult to determine, hence, the use of anesthetics and glue may disturb the 

integrity of experiments [46]. On the contrary, microfluidic devices are capable of in vivo 

C. elegans immobilization without using chemicals [46], [55], [57], [77]–[83]. Two 

example microfluidic devices are shown in Fig. 2.4. In addition, microfluidic devices can 

deliver test chemicals to the target animal in a finely controlled and automated manner, and 

can manage a large population of animals either in parallel or in series on top of the 

aforementioned advantages of microfluidic devices in the previous paragraph. 

We developed a microfluidic device to immobilize a single C. elegans in predefined 

geometry, and to apply various chemical stimuli to the immobilized C. elegans for our 

high-speed functional volumetric imaging platform (Chapter 4), a microfluidic device to 

immobilize multiple C. elegans in parallel for our high-throughput automated confocal 

imaging platform (Chapter 5), and a microfluidic device to transport and scan C. elegans 

in series for our PLANS system (Chapter 6). 

 

 

Figure 2.4: Microfluidic devices for single C. elegans immobilization. Courtesy of [55] 

(left) and [57](right).  
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Chapter 3:  High-speed laser scanning confocal microscope 

 

3.1. INTRODUCTION 

Most mirror scanning confocal microscopes including state-of-the-art commercial 

products generate a single image at 1 – 4 FPS [84] due to the movement velocity limit of 

the galvanometric scanners in the confocal microscopes. This 1 – 4 FPS rate could be too 

slow for 3D volume stack imaging and real-time in vivo applications where rapid dynamics 

need to be captured. Common scanning methods to increase the imaging rate are the disk 

scanning [85], [86], the acousto-optic deflector (AOD) scanning [87], the polygon mirror 

scanning [88], [89], and the resonant galvanometric mirror scanning [90]–[93].  

The disk scanning method achieves very high imaging rates, typically 200 FPS. 

However, 1% transmission of excitation and emission light through the disk disallows 

observation of weak fluorescent specimens. The weak fluorescent signal can be 

compensated with a longer exposure, however, that nullifies the imaging speed advantage 

of the disk scanning method. In addition, the rather large pinhole size, the crosstalk among 

pinholes on the disk, and the back-reflection of the excitation light by the disk deteriorate 

the imaging resolution, and the image SNR of the disk scanning confocal microscope. AOD 

scanning is impractical for confocal microscopy. The wavelength-dependent nature of 

AOD prohibits the de-scanning of fluorescent emission from the specimen, and demands 

complicated and costly optical compensation in the system. The polygon mirror scanning 

generates unstable and deformed images due to the vibration from the high-velocity 

rotation of the heavy polygon mirror, and the mirror surface variation of different polygon 

facets.  

The resonant galvanometric mirror scanning provides 16 kHz bi-directional line 

scanning rate while following the conventional galvanometric mirror’s scanning principle. 
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Thus, the resonant scanning can be easily integrated into the well-established 

galvanometric mirror scanning system. The only drawback of the resonant mirror scanning 

is the image stretching due to the sinusoidal scanning velocity attribute [92], [93], yet, the 

image stretching can be easily corrected with simple computation [92]–[94].  

The previously reported resonant scanning confocal microscopes share one 

common limit in imaging. Those confocal microscopes can generate only up to 512 pixels 

per line, hence, 512 × 512 pixels per image, which limits the FOV of the confocal 

microscope due to the Nyquist criterion. This limit stems from the low data acquisition rate 

of the frame grabber they used, and the synchronization and control method based only on 

electronic hardware. We developed a hardware and software hybrid control and 

synchronization system, and used a high-speed digitizer to realize flexible control of our 

confocal microscope, and a huge number of pixels per image up to 7,000 × 7,000 pixels. 

This high-speed laser scanning confocal microscope functions as the core imaging method 

for the systems in Chapter 4 and Chapter 5. 

 

3.2. DESIGN OF THE CONFOCAL MICROSCOPE 

 

3.2.1. Overall system 

Our resonant scanning confocal microscope is a complex optical imaging system 

comprised with optical, electrical, and mechanical components as shown in Fig. 3.1. Those 

components are largely separated into two categories: (1) Optical setup and (2) Electrical 

setup. The optical setup consists of lenses, mirrors, scanners, a laser, optical fibers, 

detectors, stages, and mechanical mounts to hold the components in the optical setup. The 

electrical setup includes stage controllers, scanner drivers, a custom electronic circuit, a 
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transimpedance pre-amplifier (pre-amp), and a computer equipped with a high-speed 

digitizer, a multifunction data acquisition card (MDAQ), and software to control the high-

speed digitizer, and MDAQ. The optical setup excites the fluorophores in the specimen, 

collects the emitted photons from the fluorophores, and converts the photons into electrical 

signals via the detectors. Then, the electrical setup controls the scanners and the stages to 

enable efficient specimen excitation and photon collection, receives, and converts the 

electrical signals from the detectors into digital signals to save, and display. The subsequent 

chapters explain these processes in detail. 

 

3.2.2. Optical system 

The optical setup of our resonant laser scanning confocal microscope is illustrated 

in Fig. 3.2. We use the continuous wave (CW) diode laser with a 488 nm wavelength 

(Spectra Physics, Cyan 488) as the excitation light source to efficiently excite the green 

fluorescent protein (GFP) in the specimen. The single-mode optical fiber (Thorlabs, P1-

460B-FC-5) delivers the CW laser to the confocal microscope. 

The use of the optical fiber has two advantages. Firstly, the single-mode optical 

fiber prevents degradation of imaging resolution by filtering out multi-mode components 

in the laser. The multi-mode components in the laser enlarges the laser spot size on the 

focal plane hence degrades the imaging resolution of the microscope. Secondly, the optical 

fiber protects the confocal microscope from deviation of the CW laser output angle. 

Without the optical fiber delivery of the CW laser, the deviation of the CW laser output 

angle affects the laser beam propagation along the confocal microscope’s optical path thus 

causes microscope malfunction. On the contrary, with the optical fiber delivery, the 

deviation of the CW laser output angle has no effect on the laser beam propagation along 
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the microscope’s optical path, because the laser beam output of the optical fiber is 

unaffected by the CW laser output angle deviation.  

 

 

Figure 3.1: Schematics of the overall laser scanning confocal microscope. Optics, 

electronics, and software. The optics consist of lenses, mirrors, scanning mirrors, a light 

source (laser), a detector, and opto-mechanical components. The electronics consist of a 

transimpedance pre-amplifier, a motorized and piezo stage controller, scanning mirror 

controllers, and a computer equipped with a high-speed digitizer, a multifunction data 

acquisition card (DAQ), and software to control the digitizer and the DAQ. 

 

The CW laser beam from the optical fiber output is collimated to be 4 mm in 

diameter by an aspherical collimation lens (Thorlabs, C560TME-A, f = 13.86 mm). The 

collimated laser beam is reflected by the dichroic mirror (Thorlabs, MD499), then, scanned 

by the XY scanner. The XY scanner is comprised of the resonant mirror (Cambridge 
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Technology, CRS 8 kHz) for the X scanner as the fast axis, and the galvanometric mirror 

(Cambridge Technology, 6215H) for the Y scanner as the slow axis. The resonant mirror 

has a clear aperture diameter of 4 mm that decides the collimated CW laser beam diameter. 

The scanned laser beam is relayed and expanded 3.3 times to be 13.2 mm in 

diameter by the scan lens (Thorlabs,  AC508-075-A, f = 75 mm) and tube lens (Thorlabs, 

AC508-250-A, f = 250 mm) pair. The enlarged laser beam is focused onto the specimen 

by the objective, and excites the fluorophores inside the specimen mounted on the 

motorized stage. Both of the scan lens and the tube lens are achromatic doublet lenses of 2 

inch in diameter. The use of the achromatic lenses minimizes the chromatic aberration by 

two dissimilar wavelengths of the 488 nm excitation laser and the 500 – 520 nm GFP 

emission. If the chromatic aberration is not minimized, either the excitation efficiency, the 

efficiency of emission collection, or both drop, hence, the overall imaging performance of 

the confocal microscope degrades. The use of the 2 inch lenses is essential to utilize the 

full tilting angle of the XY scanner thus to maximize the field-of-view (FOV) of the 

confocal microscope. The 3.3x laser beam expansion to 13.2 mm ensures the laser beam 

slightly overfills the back aperture of the objective. Overfilling of the back aperture of the 

objective assures the laser beam uses the full numerical aperture (NA) of the objective, thus 

forms the smallest focal spot down to the diffraction limit. If the back aperture of the 

objective is underfilled, the laser beam experiences an effective NA lower than the full NA 

of the objective, hence forms a focal volume larger than the diffraction limited volume size 

both laterally and axially. A larger focal volume downgrades the imaging resolution since 

the excitation focal volume size determines the unit excited volume in the specimen. 

The excited fluorophores within the excitation focal volume emit fluorescent 

photons isotropically. A portion of the emitted fluorescent photos are collected by the 

objective. The collected photons travel backwards through the optical propagation path of 
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the excitation laser beam from the objective to the scan lens. After the scan lens, the 

scanning mirrors send fluorescent photons back to the dichroic mirror on the exact position 

where the excitation laser beam has been reflected. This process of delivering the 

fluorescent photons to the initial position of the excitation laser beam is called ‘de-

scanning.’ Having reached the dichroic mirror, the fluorescent photons pass through the 

dichroic mirror, then, are focused onto the confocal pinhole (Thorlabs, P15S, 15 μm 

diameter) by the pinhole lens (Thorlabs, AC254-75-A, f = 75 mm). The confocal pinhole 

allows only the in-focus fluorescent photons from the excitation focal volume to pass while 

blocking the out-of-focus photons from the vicinity of the excitation focal volume and 

unwanted noise light from the surroundings of the confocal microscope. The size of the 

confocal pinhole is decided to be approximately 1 Airy Unit (AU) for various objectives to 

achieve optimal SNR. For a 488 nm laser, 1 AU of a 40x 1.3NA oil objective and a 20x 

0.95 NA water immersion objective are 18.3 μm and 12.5 μm, respectively. Lastly, the in-

focus fluorescent photons propagate into the photomultiplier tube (PMT, Hamamatsu, 

H10770PA-40)  

The PMT detects the in-focus fluorescent photons, and converts the detected 

photons into an electric current. The PMT also amplifies the electric current by several 

orders of magnitude. The amplified electrical current travels to the high-speed 

transimpedance amplifier (pre-amp, Femto, DHPCA-100) that converts and amplifies the 

electric current into a voltage signal. The voltage signal from the pre-amp is delivered to 

the high-speed data digitizer (AlazarTech, ATS9462) where the voltage signal is sampled 

into 16-bit digital data. The sampled data is processed and reconstructed into 2D images 

by our custom software written with LabVIEW (National Instruments, 2013, 64bit). The 

2D images are display on the display, and saved in the storage device when necessary. 
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Figure 3.2: The optical setup of the laser scanning confocal microscope. The laser scanning 

confocal microscope and the wide-field microscope. OF: Optical fiber output, COL: 

Collimation lens, DM: Dichroic mirror, RM: Resonant scanning mirror (fast axis), GM: 

Galvanometric scanning mirror (slow axis), SL: Scan lens, TL: Tube lens, OBJ: Objective, 

SAM: Specimen, STA: Motorized stage with stepper motors and a piezo module, PL: 

Pinhole lens, PIN: Pinhole, CL: Collection lens, PMT: Photomultiplier tube, CAM: Camera, 

M: Mirror. SL, TL, and M are of 2 inch optics. 

 

Our laser scanning confocal microscope is also capable of wide-field microscopy. 

A mirror mounted on a motorized translational stage, a tube lens, and a camera are added 

to construct a wide-field microscope. When the mirror is placed between the tube lens and 

the objective, the confocal microscope operates as a wide-field microscope. The capability 
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of wide-field microscopy is essential for the following reasons. Firstly, placing a specimen 

in the field-of-view of the confocal microscope is practically impossible without wide-field 

microscopy. Until the specimen is correctly positioned within the field-of-view and on the 

focal plane, the confocal microscope shows nothing due to the optical sectioning of the 

confocal microscope. Secondly, the wide-field microscopy provides useful additional 

information about the specimen such as the structure while the confocal microscope shows 

fluorescent images.  

One of the most crucial elements in building a point scanning microscope is the 

design of the scanning system. Among various eligible scanning system designs, our 

confocal microscope uses an optical scanning system design that consists of scanning 

mirrors, a scan lens, a tube lens, and an infinity-corrected objective as shown in Fig. 3.3. 

For simplicity, Fig 3.3 illustrates only one axis of the scanning system since the scanning 

mechanism is identical for both axes except they are orthogonal in direction. The scan lens 

and the tube lens together convert the deflection angle (θ), at which the scanning mirror 

pivots the excitation laser beam, into the incident angle where the excitation laser beam 

enters the back aperture of the objective. Additionally, the scan lens and the tube lens 

constitutes a Keplerian beam expander to expand and collimate the excitation beam since 

the infinity-corrected objective requires a collimated excitation laser beam, and the back 

aperture of the objective must be overfilled to achieve the best imaging resolution the 

objective can potentially provide. 
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Figure 3.3: Scanning optics design. fs ≡ the focal length of the scan lens, ft ≡ the focal 

length of the tube lens, fobj ≡ the focal length of the objective, d ≡ the beam diameter at the 

scanning mirror, D ≡ the beam diameter at the back aperture of the objective, θ ≡ the 

maximum deflection angle of the excitation laser beam with respect to the optical axis, θobj 

≡ the maximum incident angle of the excitation laser beam on the objective back aperture, 

x ≡ the half field-of-view, Ls ≡ the distance between the scanning mirror and the scan lens, 

Lst ≡ the distance between the scan lens and the tube lens, Ltobj ≡ the distance between the 

tube lens and the back aperture of the objective. 

 

From now, the optical scanning system used in our confocal microscope is 

mathematically described. The related variables are 

 

fs ≡ Focal length of the scan lens (mm) 

ft  ≡ Focal length of the tube lens (mm) 

fobj  ≡ Focal length of the objective (mm) 

Ls  ≡ Distance between the center of the scanning mirror and the scan lens (mm) 

Lst  ≡ Distance between the scan lens and the tube lens (mm) 

Ltobj  ≡ Distance between the tube lens and the objective (mm) 

d  ≡ Diameter of the excitation beam on the scanning mirror (mm) 



 22 

D  ≡ Diameter of the back aperture of the objective (mm) 

Dcol  ≡ Diameter of the collimated excitation laser beam (mm) 

θ ≡ Max. deflection angle of the excitation beam with respect to the optical axis 

θobj ≡ Max. incident angle of the excitation beam on the objective back aperture 

x ≡ Half field-of-view (2x ≡ Full field-of-view) 

 

The scan lens and the tube lens must construct a Keplerian beam expander to 

expand and collimate the excitation laser beam. Hence, the distance between the scan lens 

and the tube lens must be equal to the addition of the focal lengths of the two lenses. 
 

 Lst fs ft   (3.1) 
 

The center of the scanning mirror clear aperture should be imaged onto the center 

of the objective back aperture. Assuming that the center of the excitation laser bean is well 

aligned onto the center of the scanning mirror, imaging the center of the scanning mirror 

onto the center of the objective back apertures ensures the center of the excitation laser 

beam enters the center of the objective back aperture regardless of the scanning mirror 

tilting angle. This imaging requirement is mathematically described by 
 

 

22fs fs
Ls fs Ltobj

ft ft

 
    

 
 (3.2) 

 

Analyzing Eqn. (3.2), Ls solely depends on Ltobj since fs and ft are constants once 

the scan lens and the tube lens are selected. Additionally, Lst is a constant as well by Eqn. 

(3.1). Hence, the scan lens and the tube lens should be mounted on translational stages for 

precise alignment when building the confocal microscope. Eqn. (3.2) is easily derived by 

the ABCD ray tracing method.  
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As mentioned before, the excitation laser beam must fill or slightly overfill the 

objective back aperture to use the entire NA of the objective and the best imaging resolution 

the confocal microscope can potentially achieve. Mathematically speaking,  
 

 Dcol D  (3.3) 
 

Back apertures of typical microscope objectives are approximately 10 to 12 mm in 

diameter. On the contrary, clear apertures of typical scanning mirrors are 3 to 6 mm in 

diameter. Assuming the excitation laser beam fills the clear aperture of the scanning mirror, 

the required magnification, M, is given by 
 

 2 to 4M D d   (3.4) 
 

The clear aperture of the fast axis scanning mirror used in our confocal microscope 

is 4.7 mm in diameter. However, we design the excitation laser beam diameter incident on 

the fast axis scanning mirror to be 4 mm, because it should be smaller than the clear 

aperture of the scanning mirror to prevent a laser power loss and any laser beam scattering 

and diffraction, which may cause a laboratory hazard. 

The Keplerian beam expander, or the telescope, consists of the scan lens and the 

tube lens must accomplish the required magnification, M, governed by Eqn. (3.4). Hence, 

the magnification by the scan lens and the tube lens, Mts is given by 
 

 
ft

Mts M
fs

   (3.5) 
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Though Mts must be either equal to or higher than M, Mts must not be exceedingly 

large because Mts increase reduces the field-of-view for a given deflection angle, θ. The 

half field-of-view, x, is given by 
 

    tan tanx fobj obj fobj Mts      (3.6) 

 

As shown in Eqn. (3.6), a larger Mts results in a smaller θobj due to the angular 

demagnification by the telescope, then consequently reduces the field-of-view. Thus, the 

focal lengths of the scan lens and the tube lens must be carefully selected considering the 

trade-off between the size of the expanded excitation laser beam and the field-of-view of 

the confocal microscope. We choose a 2-inch achromatic doublet with a 75 mm focal 

length for the scan lens (Thorlabs, AC508-075-A, fs = 75 mm). The clear aperture diameter 

of 2 inch is critical to take advantage of the full deflection angle provided by the scanning 

mirrors, then to accomplish the largest field-of-view with the given scanning mirrors, and 

optics. The chromatic aberration correction is essential to minimize the optical path length 

difference between the excitation laser beam and the fluorescent photons, then diminish 

the chromatic aberration. Since the excitation laser beam diameter on the scanning mirror 

is 3.8 mm, Mts has to be at least 3.15 to fill the objective back aperture of 12 mm in 

diameter. By Eqn. (3.5), the focal length of the tube lens must be over 235 mm (ft > 235 

mm). We choose a 2-inch achromatic doublet with a 250 mm focal length for the tube lens 

(Thorlabs, AC508-250-A, ft = 250 mm). This tube lens with a rather long focal length 

restricts objective options for the confocal microscope. 

The standard focal lengths of the tube lenses vary according to the objective 

manufacturer. Zeiss, Olympus, and Nikon objectives use tube lenses of 165 mm, 180 mm, 

and 200 mm focal lengths, respectively. Olympus, and Nikon objectives allow use of non-



 25 

standard tube lenses while Zeiss objectives must be paired with the Zeiss proprietary tube 

lens, because Olympus, and Nikon objectives achieve all aberration corrections within the 

objectives while Zeiss objectives achieve correction of chromatic aberration via the Zeiss 

proprietary tube lens. As a result, our laser scanning confocal microscope uses only 

Olympus, and Nikon microscope objectives.  

Using Eqn. (3.1) – (3.6), we characterize the optical scanning system of our 

confocal microscope. The focal lengths of the scan and the tube lenses are already given 

above, and make Mst = 3.33. We choose 200 mm for the distance between the tube lens 

and the objective (Ltobj = 200 mm) so that the space between the tube lens and the objective 

can accommodate the motorized translational stage to mount a mirror for the wide-field 

microscope. Setting Ltobj slightly less than ft increases Ls hence gives an extra room to 

install an opto-mechanical component such as an iris to assist the alignment process in 

building the confocal microscope. Eqn. (3.2) computes the distance between the scanning 

mirror and the scan lens is 79.5 mm (Ls = 79.5 mm). The maximum deflection angle of the 

resonant mirror (θ) is ±7.5º referring to the manufacturer’s specification. Knowing all the 

variables required to calculate the field-of-view, the full field-of-view (FOV) is given by 
 

  
200

mm 2 0.039 2 tanFOV Cobj fobj
Mobj Mst

 
       

 
 (3.7) 

 

where Cobj is an objective coefficient, Mobj is the magnification of an objective when 

combined with the objective’s standard tube lens, and the 200 is the standard focal length 

of the tube lens for Nikon objectives. Cobj is 0.9 for Olympus objectives, and 1.0 for Nikon 

objectives. The full field-of-views estimated by Eqn. (3.7) are 390 μm for a Nikon 40x 

1.3NA oil immersion objective, and 700 μm for an Olympus 20x 0.95NA water immersion 

objective. 
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The design principle for the other scanning axis is identical to the design process 

described in the previous paragraphs. Designing a two-dimensional scanning system needs 

to meet a couple of conditions more than designing a one-dimensional scanning system. 

However, those conditions are minor and easily fulfilled when the separation between the 

two scanning mirrors (Ssm) is significantly smaller than the focal length of the scan length 

(fs >> Ssm). In our confocal microscope, Ssm ≒ 7 mm, while fs = 75 mm.  Hence, the two-

dimensional scanning system works properly assuming building the two-dimensional 

scanning system is equivalent to combining two one-dimensional scanning systems. Tsai 

et al. discuss the conditions in designing a two-dimensional scanning system more in-depth 

in [95]. Additionally, [95], and  [96] provide quality consultation on designing and building 

a laser scanning microscope, which can be applied to both confocal and multi-photon 

microscopes.  

 

3.2.3. Electrical system 

 

The electrical system of our confocal microscope accomplishes the fastest scanning 

speed that the resonant scanning mirror can potentially achieve, and provides flexible 

control of scanning to meet requirements for various scanning applications. The electrical 

system of our confocal microscope consists of the resonant scanning mirror driver 

(Cambridge Technology, CRS 8 kHz driver board), the galvanometric scanning mirror 

driver (Cambridge Technology, MicroMax 671215HHJ-1FHP), the motorized stage 

controller (Thorlabs, BSC203), the piezo module controller (Thorlabs, MDT693A), and 

the custom electrical circuit, and the multifunction data acquisition card (MDAQ, National 

Instruments, NI PCIe-6353), the high-speed digitizer (HSDG, AlazarTech, ATS9462), and 

the custom-built computer that contains the MDAQ, the HSDG, and the custom confocal 
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software written by LabVIEW (National Instruments, 2013). The connections and the 

signal flow directions among the electrical system components are shown in Fig. 3.4a. The 

core function of the electrical system of our confocal microscope is to control and 

synchronize the optical, mechanical and electrical components in the confocal microscope. 

The control and synchronization achieved by three major components (the control 

and synchronization unit): the MDAQ, the custom electrical circuit, and the custom 

confocal software. The control and synchronization unit requires two input signals, and 

generates two internal signals and five output signals. The two input signals are the 

resonant mirror reference clock signal (Rclk), and the user input for the scanning condition 

(Uin). The internal signals are the line trigger signal (Ltrig), and the waveforms (Wfm) for 

the output signals that MDAQ generates. The outputs are the enhanced resonant mirror 

reference clock signal (Rclk’), the resonant mirror scanning angle control signal (Rsig), the 

frame trigger signal (Ftrig), the galvanometric mirror control signal (Gsig), and the 

motorized and piezo stage control signal (Ssig). The custom electronic circuit of our 

controller receives Rclk, enhances Rclk into Rclk’, converts Rclk’ into Ltrig, and relays 

Rclk’ and Ltrig to MDAQ. The custom confocal software generates Wfm based on Uin, and 

transmits Wfm to MDAQ. Receiving Rclk’, Ltrig, and Wfm, MDAQ generates Rsig, Ftrig, 

Gsig, and Ssig. 
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Figure 3.4: The schematics of control and synchronization electronics of the laser scanning 

confocal microscope. Gsig: Galvanometric mirror control signal, Rsig: Resonant mirror 

control signal, Ltrig: Line trigger signal, Rclk: Resonant mirror timing signal, Rclk’: 

Refined resonant mirror timing signal, Ftrig: Frame trigger signal, Ssig: Stage control 

signal, Wfm: waveforms of control and synchronization signals.  

 

Multifunction data acquisition card (MDAQ) 

The multifunction data acquisition card (MDAQ) is the core component of the 

control and synchronization unit. The MDAQ generates the output electrical signals using 

the signal waveforms, Wfm in Fig. 3.4, provided by the custom software, and the electrical 

signals, Rclk’ and Ltrig, from the custom electrical circuit. The MDAQ uses Rclk’ as the 

start trigger. The MDAQ begins generating the output electrical signals only when MDAQ 

detects the rise signal transition from off-state to on-state in Rclk’. MDAQ uses Ltrig as 

the reference timing clock for signal generation. 

The MDAQ enables flexible control and synchronization of the confocal 

microscope. The MDAQ is a versatile device that works as a data acquisition device and a 

function generator simultaneously. The MDAQ accepts both analog and digital signal 

inputs, and generate analog and digital signal outputs concurrently. In addition, the 
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operations of the MDAQ is fully software-programmable. Hence, the MDAQ can interact 

with various devices altogether through both analog and digital channels. Previous laser 

scanning microscopy systems reported in academic journals employed entirely hardware-

based control and synchronization systems [84], [88], [92], [97]–[101]. The entirely 

hardware-based systems tend to be less adaptable and modifiable in their operations, thus 

the previous scanning microscopy systems could image under the restricted configurations 

pre-defined by the designs of the hardware-based systems. Additionally, updating the 

configurations and adding new functions often require designing and building new 

hardware-based systems. In contrast, our control and synchronization system using the 

MDAQ can adopt additional functions and improvements simply by updating the MDAQ 

software. The MDAQ also has spare analog and digital inputs and outputs for possible 

additions of new devices to the systems.  

 

Custom electrical circuit 

The custom electrical circuit enhances Rclk into Rclk’, and generates Ltrig by 

processing Rclk’. The enhancement makes Rclk’ a reliable, robust, and clean standard TTL 

digital signal by filtering the undesirable noise, regulating the maximum and minimum 

voltages, suppressing the unwanted minor signal fluctuation in Rclk, and supplying more 

current to the signal. We use multiple non-inverting buffer logic gates in parallel to 

accomplish the enhancement as shown in Fig 3.5a. Our method to enhance Rclk into Rclk’ 

is one method out of many other feasible methods to enhance Rclk. 

The custom electrical circuit generates Ltrig through the frequency doubler 

electrical circuit shown in Fig 3.5a. The frequency doubler generates a short square pulse 

when the Rclk’ shows a state transition either from off-state to on-state (rise) or from off-

state to on-state (fall) as illustrated in Fig 3.5b. The train of the short square pulses 
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comprises Ltrig. We build the frequency doubler electrical circuit with multiple non-

inverting buffer logic gates, multiple capacitors, and one XOR logic gate. The non-

inverting buffer logic gates and the capacitors introduce a delay to Rclk’. The original Rclk 

without the delay and the Rclk’ with the delay are sent to the two input terminals of the 

XOR logic gate. The output of the XOR gate results in Ltrig. Our design of the frequency 

doubler is one design to realize the frequency doubler among many other possible designs.  

 

Scanning mirror drivers 

The resonant scanning mirror driver controls only the tilting amplitude of the 

resonant scanning mirror based on the Rsig provided by the MDAQ. Simultaneously, the 

resonant scanning mirror driver provides Rclk to indicate the beginning of one tilting period 

of the resonant scanning mirror. However, the resonant scanning mirror driver cannot fix 

the resonant scanning mirror at a tilting position since the resonant scanning mirror must 

continuously move. The galvanometric scanning mirror driver controls the tilt position of 

the galvanometric scanning mirror based on Gsig given by the MDAQ. Unlike the resonant 

scanning mirror driver, the galvanometric scanning mirror driver can fix the galvanometric 

scanning mirror at a tilting position upon the order of Gsig. Both the resonant and 

galvanometric scanning mirror drivers demand heat sinks and fans for thorough cooling. 

When the scanning mirror drivers are not properly cooled, the scanning mirror drivers 

malfunction, and cannot provide appropriate laser beam scanning for imaging. The 

galvanometric scanning mirror driver is especially more susceptible to heat than the 

resonant scanning mirror driver is. 

 

Stage controller 
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The stage controller drives both the motorized XYZ stage and the z-axis piezo stage 

obeying the Ssig from MDAQ. The stage controller operates the motorized XYZ stage for 

all movements in the x-axis and the y-axis, and over 100 μm movements in the z-axis, and 

commands the piezo stage for z-axis movements shorter than 100 μm, especially for high-

resolution z-stack imaging, and high-speed time-lapse volumetric imaging since the piezo 

stage is far superior in precision and responsiveness to the motorized stage. The stage 

controllers also receives commands directly from the custom confocal computer when 

appropriate. 

 

High-speed digitizer 

The high-speed digitizer acquires and samples the specimen’s fluorescent photon 

intensity information given in the form of an electrical signal from the preamp. The high-

speed digitizer is capable of a sampling rate up to 180 mega samples per second (MS/s), 

which our confocal microscope uses. The high-speed digitizer uses Rclk’ and Ftrig as 

trigger signals to synchronize the high-speed digitizer’s data sampling with the laser beam 

specimen scanning in the optical system. The high-speed digitizer uses a sampling bit depth 

of 16 bit. Hence, our confocal microscope can provide images with pixel intensity precision 

higher than imaging systems using cameras, and data acquisition methods with bit depths 

less than 16 bit. 

The high-speed digitizer is capable of continual data acquisition and sampling 

uninterrupted by the data transfer between the high-speed digitizer memory and the 

computer memory. This uninterrupted continual data acquisition and sampling is crucial in 

achieving a fast imaging speed. The data acquired and sampled by the high-speed digitizer 

is temporarily stored on the high-speed digitizer memory, and the data must be transferred 

to the computer memory to be either stored or processed by the computer before the high-
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speed digitizer memory is overflown by new incoming data. Certain high-speed digitizers 

or data acquisition cards have to halt data acquisition and sampling while they transfer data 

from their memory to the computer memory. That data acquisition and sampling halt 

significantly decreases the imaging speed of a scanning microscopy system, moreover, the 

duration of the halt is proportional to the amount of data that needs to be transferred. Hence, 

the uninterrupted continuous data acquisition and sampling is critical in achieving a fast 

imaging speed by preventing a possible time waste. 

 

Custom confocal software 

The custom confocal software (confocal software) written by LabVIEW (National 

Instruments) is the main interface for microscope users to interact with the confocal 

microscope. Upon receiving Uin, The confocal software written by LabVIEW computes 

and creates the waveforms (Wfm) of the electrical signals that MDAQ generates based on 

the user input (Uin) for the imaging condition. The Wfm that the confocal software creates 

are Rsig, Ftrig, Gsig, and Ssig. The following sub-chapter, 3.2.4. Control signal 

generation, explains the principles of the waveform computation for Rsig, Ftrig, Gsig, and 

Ssig in detail. The confocal software can control the MDAQ, the stage controllers, and the 

high-speed digitizer independently outside the confocal imaging operations when users 

need them for non-imaging purposes such as aligning the optical system, and calibrating 

the control and synchronization signals. 

Additionally, the confocal software processes raw data sampled by the high-speed 

digitizer into human-recognizable two-dimensional (2D) images. The confocal software 

saves both the raw data and the 2D images upon user requests. The confocal software 

displays the 2D images, and also performs modest real-time image processing to assist 

users with convenient image viewing such as setting an appropriate intensity look-up table, 
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or adjusting the dynamic range window of pixel intensity. Lastly, the confocal software is 

written to be prepared for any additional modification for future applications involving the 

confocal microscope as a substantial advantage in developing a piece of custom software. 

Thus, the confocal microscope is a basis for the studies in Chapter 4 and Chapter 5. 

 

Custom confocal computer 

The custom confocal computer (confocal computer) houses the MDAQ, the high-

speed digitizer, and the confocal software. The confocal computer incorporates an Intel 

core i7-4790 (3.6 GHz) CPU, 32 GB DDR3 memory, and a 500 GB solid-state drive (SSD), 

and a 1 TB SSD. The Intel CPU, the most powerful CPU with the most cores at the time 

of purchase, enables prompt and efficient data processing for the confocal software 

designed to benefit from multicore processors. The 32 GB memory provides plenty of 

buffer memory space where the confocal software safely keep unprocessed or unsaved data 

even under unexpected delays in data processing and saving, and abrupt lags caused by 

random processes in the operating system. The 32 GB memory also enables image 

processing and numerical analysis tools to handle a large amount of image data at once 

when image data needs extensive post-processing or data analysis. 

The SSDs enable the confocal software to continuously and stably save data from 

the high-speed digitizer in real time. The high-speed digitizer acquires data at 180 MS/s 

rate, thus generates 360 MB of new data every second because one sample is 2 bytes (16 

bit). In order to save data at 360 MB/s, the data transfer speed between the computer 

memory and the storage device, and the writing speed of the storage device must be faster 

than 360 MB/s. If the data transfer and writing speed is slower than 360 MB/s, the high-

speed digitizer must cease data acquisition when the computer memory is completely full 

of data to save, or the confocal software malfunctions due to an error caused by the data 
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overflow in the high-speed digitizer memory. The state-of-the-art mechanical hard disk 

drives (HDDs) demonstrate a data transfer speed and writing speed of 200 MB/s at best as 

a single drive bottlenecked by the HDD spindle motor speed, hence cannot achieve the 

minimum required speed of 360 MB/s. Multiple HDDs can achieve a data transfer and 

writing speed higher than 360 MB/s when they are striped in parallel on a RAID (redundant 

array of independent disks) system. However, the multi-HDD striping on RAID is greatly 

costly, and more cumbersome to manage and maintain compared to a single HDD system. 

On the contrary, the recent consumer-level SSDs using the SATA interface easily 

provide a data transfer and writing speed of 500 MB/s on average as a single drive, and are 

substantially more economical than building a multi-HDD RAID system. Particular state-

of-the-art SSDs using the PCIe interface deliver a data transfer and writing speed of 2,000 

MB/s. If our confocal microscope is upgraded to be a multicolor system, the upgraded 

confocal microscope will generate image data at minimum 720 MB/s, inevitably, only 

SSDs will be able to transfer and write data at such high speed. Additionally, SSDs are 

more reliable as a data storage device than mechanical HDDs since SSDs have no 

mechanical components such as spindle motors that are a common cause of HDD failure 

due to mechanical degradation over time. The 1 TB SSD in the confocal computer is 

dedicated only to data saving for the confocal software to further stabilize the data transfer, 

while the other 500 GB SSD contains and runs the operating system, the confocal software, 

and miscellaneous data. 
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Figure 3.5: Signal refiner and frequency doubler circuit. (a) Frequency doubler logic 

circuit. (b) Ltrig generation by XOR gate. 

 

3.2.4. Control and synchronization signals 

This subchapter presents the descriptions and the waveform generation principles 

of the control and synchronization signals shown in Fig. 3.4. The confocal software 

computes, then creates the control and synchronization signal waveforms (Wfm) using the 

user input (Uin) for the MDAQ to generate the control and synchronization signals for the 

confocal microscope. The Uin contains imaging parameters given by users of the confocal 

microscope. While the confocal software computes Uin, the confocal software also 

calculates additional imaging parameters essential to create Wfm. The imaging parameters 

are as follows: 

 

FOV_X ≡ Field-of-view in x-axis (horizontal field-of-view) (μm) 

FOV_Y ≡ Field-of-view in y-axis (vertical field-of-view) (μm) 

FOV_Z ≡ Field-of-view in z-axis (imaging depth) (μm) 
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OBJ_NA ≡ Numerical aperture of the objective 

OBJ_M ≡ Magnification of the objective 

OBJ_IM ≡ Refractive index of the imaging medium of the objective 

OBJ_TF ≡ Standard focal length of the tube lens for the objective 

OBJ_WL ≡ Wavelength of the excitation light source (μm) 

OBJ ≡ Collection of OBJ_NA, OBJ_M, OBJ_IM, OBJ_B, and OBJ_WL 

NV_X ≡ Number of voxels in x-axis 

NV_Y ≡ Number of voxels in y-axis 

NV_Z ≡ Number of voxels in z-axis (number of imaging planes) 

VOX_X ≡ X dimension of the voxel (μm) 

VOX_Y ≡ Y dimension of the voxel (μm) 

VOX_Z ≡ Z dimension of the voxel (μm) 

VOX ≡ Voxel volume size, VOX_X × VOX_Y × VOX_Z (μm × μm × μm) 

 

FOV_X, FOV_Y, FOV_Z, NV_Z, OBJ, NV_Y, and VOX must be given by Uin 

though the confocal software provides theoretically estimated values for NV_X, NV_Y, 

and VOX to assist users. Then, all of those imaging parameters participate in creating 

waveforms of the control and synchronization signals. 

The confocal software first calculate NV_X, NV_Y, and VOX upon receiving Uin. 

The calculation and generation flow of the imaging parameters, and the control and 

synchronization signal waveforms is illustrated in Fig. 3.6.  
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Figure 3.6: Calculation and creation flow of the imaging parameters, and the control and 

synchronization signal waveforms. The yellow boxes are the imaging parameters given by 

Uin, the orange boxes intermediate imaging parameters calculated by the confocal software, 

and the green boxes Wfm. The arrows indicate the flow of parameter and Wfm calculation. 

 

Voxel volume size (VOX) 

The confocal software requires users to provide values for the imaging voxel 

volume size (VOX). At the same time, the confocal software calculates the VOX 

theoretically ideal for the microscope objective used for imaging to help users decide 

values for VOX. The VOX must be either equal to or less than half of the imaging 

resolution determined by OBJ_NA, OBJ_WL, and OBJ_IM [102], [103]. VOX is 

mathematically given by 
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Number of voxels in x-axis, and y-axis (NV_X, NV_Y) 

Similar to VOX, the confocal software also requires users to decide NV_Y and 

NV_Z though the confocal software shows theoretically optimal values for NV_Y and 

NV_Z to properly sample the field-of-view in y-axis based on OBJ, and FOV_Y obeying 

the Nyquist criterion. NV_Y and NV_Z that the confocal software automatically estimates 

are given by 
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If users choose NV_Y and NV_Z values dissimilar to the values suggested by the 

confocal software, then instead of Eqn. (3.8) and (3.9), VOX_Y and VOX_Z are given by 
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VOX_Y VOX_X
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The confocal software always appoints VOX_X to the same value as VOX_Y in 

order to keep the voxel aspect ratio one-to-one. Otherwise, the confocal microscope will 

produce wrongly scaled images. Once both VOX_Y, and VOX_Z are ready, the confocal 

software calculates NV_X, which is described as 

 

 
FOV_X

NV_X
VOX_X

 
  
 

 (3.14) 

 

NV_X, NV_Y, and NV_Z have to natural numbers, and NV_Y especially has to be 

an even natural numbers because one period of the resonant mirror’s tilting creates two 

lines in an image frame. After the necessary imaging parameters are ready, the confocal 

software proceeds to create waveforms (Wfm) for the control and synchronization signals. 

The waveforms of the control and synchronization signals are plotted in Fig. 3.7. 

 

Resonant mirror reference clock signal (Rclk) 

The resonant mirror reference clock signal (Rclk) notifies the beginning of each 

tilting cycle of the resonant mirror. Rclk is the electrical voltage signal provided by the 

resonant mirror driver electronics. Rclk mostly follows the TTL (transistor-transistor logic) 

digital signal standard where the voltage between 0 V and 0.8 V represents the off-state 

and the voltage between 2 V and 5 V represents the on-state. The one period of Rclk is 

126.4 μs, and the duty cycle is 50 %, which means 50% of one period is in the on-state, 

and the other 50% of one period is in the off-state. The on-state and the off-state represent 

the scanning directions opposite to each other. The quality of Rclk could be poorer than the 

expected standard due to the quality of the resonant mirror driver electronics or electrical 
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noise from the surroundings, hence, enhancing Rclk via an electrical circuit is preferable to 

achieve a stable operation.  

 

 

Figure 3.7: Plots of control and synchronization signals. (a) Rclk’, Ltrig, and Gsig for 8 

lines of a frame. (b) Ltirg, Gsig, and Ftrig. One full frame (10 lines) and a portion of a 

frame (3 lines). (c) Gsig, Ftrig, and Ssig. One full volume (10 frames) and a portion of a 

volume (3 frames). (d) Gsig, Ftrig, and Ssig. 2.5 planes. Each plane consists of 6 averaged 

frames. The fly-back phase of Ltrig is shorted to 2 for simplicity. 

 

Enhanced resonant mirror reference clock signal (Rclk’) 

The enhanced resonant mirror reference clock signal (Rclk’) is the electrical signal 

generated by the custom electronic circuit by enhancing Rclk as shown in Fig. 3.5. Rclk’ 

strictly follows the TTL digital signal standard, thus, delivers reliability superior to that of 
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Rclk while Rclk’ delivers the same function as Rclk does. However, Rclk’ may manifest 

tens of nanoseconds of time delay to Rclk introduced by the custom electrical circuit. The 

delay can be compensated by adjusting the phase delay controller for Rclk on the resonant 

mirror driver. 

 

Line trigger signal (Ltrig) 

The line trigger signal (Ltrig) notifies the beginning of each line scanning, and also 

indicates the timing for the galvanometric mirror to move. Ltrig is also the base timing unit 

for the control and synchronization signals. The lengths of the control and synchronization 

signals are described in the length of Ltrig’s period. Ltrig is generated by the custom 

electronic circuit by processing Rclk’ as shown in Fig. 3.5. Ltrig obeys the TTL digital 

signal standard, however the duty cycle of Ltrig is significantly less than 50 % though the 

minute duty cycle does not interfere with Ltrig’s function. If necessary, Ltrig’s duty cycle 

can be increased by applying a longer time delay between the two inputs of the XOR gate 

in Fig 3.5b. Ltrig’s one period is 63.2 us, which is half of Rclk’s one period. Ltrig works 

as the reference timing clock for the frame trigger signal (Ftrig), the galvanometric mirror 

control signal (Gsig), and the stage control signal (Ssig) when the MDAQ generates the 

control and synchronization signals. 

 

Resonant mirror scanning angle control signal (Rsig) 

The resonant mirror scanning angle control signal (Rsig) decides the scanning angle 

of the resonant mirror. The scanning angle of the resonant mirror is linearly proportional 

to the voltage of Rsig, which is a constant rather than a waveform. The voltage of Rsig is 

determined mainly by FOV_X, and the full field-of-view that the combination of the 

confocal microscope and the installed microscope objective can provide (Eqn. (3.7)). Thus, 
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Rsig is proportional to FOV_X and OBJ_M, and inversely proportional to OBJ_TF. Rsig 

accepts a voltage between 0 V and 5 V, and Rsig of 5 V sets the resonant mirror’s tilting 

angle its maximum. Therefore, Rsig is given by 

 

 
 

 
,

FOV_X FOV_X
5 5  V

2 OBJ_TF OBJ_M 39MAX x

Rsig
FOV

   
 

 (3.15) 

 

where OBJ_TF is 200 mm, and 180 mm for Nikon, and Olympus microscope objectives, 

respectively. Rsig has to be higher than 1 V because Rsig lower than 1 V results in a 

malfunction of the resonant mirror driver. Thus, FOV_X must be higher than 10 % of the 

full field-of-view. 

 

Galvanometric mirror control signal (Gsig) 

The galvanometric mirror control signal (Gsig) administers the tilting angle of the 

galvanometric mirror. Gsig is a sawtooth waveform whose voltage ranges from negative 

to positive values. The positive voltage turns the galvanometric mirror clockwise, and the 

negative voltage counter-clockwise. The amplitude of Gsig is linearly proportional to 

FOV_Y. One period of Gsig consists of two phases: the imaging phase, and the fly-back 

phase. During the imaging phase, the galvanometric mirror discretely alters its deflection 

angle to shift the scanning excitation laser line along the y-axis of the field-of-view. During 

the fly-back phase, the galvanometric mirror returns to its initial deflection angle at the 

beginning of one period. The discrete increment of the galvanometric mirror’s deflection 

angle is determined by FOV_Y, NV_Y, and the full field-of-view in y-axis. The full field-

of-view in y-axis is slightly wider than that in x-axis because the maximum deflection angle 

of the galvanometric mirror is 20 º, which is larger than the resonant mirror’s maximum 

deflection angle of 15 º.  
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One period of Ltrig is NV_Y + 12 long. The length of the imaging phase is NV_Y, 

and the length of the fly-back phase is 12. The length of the fly-back phase is based on the 

required time for the galvanometric mirror to return. The galvanometric mirror can make a 

one full round trip within 1 ms referring to the specification of the galvanometric mirror. 

Since the return process is equivalent to half of one full round trip, the fly-back phase is 

estimated to take 0.5 ms, which approximately equals the time necessary to scan 8 lines. 

Having considered an error buffer, and a vibration settling time, the length of the fly-back 

phase is chosen to be 12. Hence, taking into account the aforementioned conditions, the 

one unit period of Gsig is given by 
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 (3.16) 

 

where n is a natural number equal or larger than 1, and FOVMAX,y is equal to FOVMAX,x in 

Eqn. (3.15) except 39 in FOVMAX,x is replaced with 52 due to the maximum deflection angle 

of the galvanometric mirror larger than that of the resonant mirror. The relationship 

between Ltrig and Gsig is illustrated in Fig. 3.7a and Fig. 3.7b. Every Ltrig raises n by 1, 

hence, updates Gsig. n begins at 1, increases by 1, and returns to 1, after the end of one 

period, NV_Y + 12. In the example shown in Fig. 3.7b, the period of Gsig is 12, 10 for the 

imaging phase, and 2 for the fly-back phase being shortened for simplicity.  

 

Frame trigger signal (Ftrig) 

The frame trigger signal (Ftrig) determines the beginning of each frame acquisition. 

Ftrig signals the high-speed digitizer of when the data acquisition of a new frame has to 
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commence. Ftrig obeys the TTL digital signal standards. The length of one period of Ftrig 

is identical to that of Gsig since one period of both Ftrig and Gsig is the required time to 

complete imaging the field-of-view once. The duty cycle of FT is set 10 % though the duty 

cycle can be any value between 5 % and 50 %.  
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where n is the same natural number in Eqn. (3.16). DC is the duty cycle between 0.05 and 

0.5. An example of Ftrig is shown Fig. 3.7b where the period of Ftrig is 12 equal to that 

of Gsig, and the on-state of Ftrig is 2 Ltrig’s periods long. Lastly, when Ftrig is converted 

to an electrical signal by MDAQ, and delivered to the high-speed digitizer, the beginning 

of one period of Ftrig must reach the high-speed digitizer earlier than that of Ltrig since 

the high-speed digitizer recognizes Ltrig only after the high-speed digitizer receives the 

on-state from Ftrig. Delaying Ltrig by a couple of microseconds assures Ftrig arrives the 

high-speed digitizer earlier than Ltrig. 

 

Stage control signal (Ssig) 

The stage control signal (Ssig) contains signals for both the motorized XYZ stage 

and the piezo stage dedicated to specimen’s z-axis movement. The confocal software 

creates a waveform only for the piezo stage by default because the z-axis movement 

requires synchronized automation for efficient 3D imaging. Movements in x-axis and y-

axis are necessary often only at the beginning of an imaging session to locate the specimen. 

The confocal software also creates two types of Ssig waveforms for averaged and non-

averaged imaging operations. The averaged imaging obtains high SNR and resolution 
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images, and the non-averaged imaging acquires time-lapse images for monitoring 

specimens’ dynamics. 

Ssig is a sawtooth waveform whose amplitude is linearly proportional to the moving 

range (FOV_Z) given by Uin. Ssig updates its value for every Ftrig on-state transition, and 

the length of Ssig’s one period is NV_Z × (NV_Y + 12) since the stage must stay at a z-

position at least for imaging of a frame.  One period of Ssig also consists of two phases, 

the imaging phase, and the fly-back phase though the fly-back phase of Ssig is almost 

negligible compared to that of Gsig.  The discrete increment of Ssig is VOX_Z = 

FOV_Z/NV_Z. Hence, Ssig for imaging is given by 
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where FOV_Z/8 is a coefficient for the stage controller input, and k is the number of frames 

to average for each plane. k is 1 for non-averaged imaging. Examples of Ssig for non-

averaged imaging and averaged imaging are illustrated in Fig. 3.7c and Fig. 3.7d, 

respectively. In the example in Fig. 3.7c, NV_Z is 10, and the fly-back phase is exaggerated 

to be 2 Ftrig periods long for illustration purposes, however, the fly-back phase is 

approximately 40 Ltrig periods (2.5 ms) long in actual operations. In the example in Fig. 

3.7d, 6 frames are averaged to form an image for a plane, hence Ssig remains the same 

value for 6 Ftrig periods. 
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3.2.5. Custom confocal software 

The custom confocal software manages the electrical components to control the 

optomechanical components, and to acquire data. The confocal software processes 

acquired data into correct human-recognizable 2D images. The confocal software also 

provides the interface for users to interact with the confocal microscope. The confocal 

software consists primarily of two parts: (1) imaging software for data acquisition, saving, 

and display, and (2) processing software for image construction and correction. The 

confocal software is separated in those two parts to maximize the efficiency of the software 

since conducting data acquisition, image construction and correction, saving, and 

displaying altogether requires a great deal of computing power, thus, may cause data flow 

congestion, and process interruption resulting in software errors, especially data acquisition 

errors. Hence, the image processing and correction function is divided from the rest of the 

confocal software because the image construction and correction demands the most 

computing power. Lastly, the confocal software is written in LabVIEW (National 

Instruments) for LabVIEW’s strength in straight-forward implementation of the graphical 

user interface (GUI), and LabVIEW’s complete support for National Instruments’ device, 

MDAQ, however, the confocal software can be written in any other programming 

languages. 

The structure of the confocal imaging software is shown in Fig. 3.8. The imaging 

software comprises three main threads: (1) the imaging thread, (2) the mirror and stage 

control thread, and (3) the main control thread. The functions of the three threads are mostly 

independent from one another yet they can still communicate though the main control 

thread administers the other threads’ operations. 
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Imaging thread 

The imaging thread of the confocal imaging software consists of three sub-threads: 

(i) the data acquisition thread, (ii) the image processing thread, and (iii) image saving and 

display thread. The data acquisition thread manages the high-speed digitizer for data 

acquisition. The data acquisition thread configures the high-speed digitizer according to 

the imaging condition (Uin) given by users, and collects and temporarily stores data in the 

onboard memory of the high-speed digitizer. Subsequently, the data acquisition thread 

transfers the collected data temporarily stored in the onboard memory to the image 

processing thread (DF1 in Fig. 3.8a). In this process, the data in the onboard memory is 

also conveyed to the main memory of the confocal computer (DF1 in Fig. 3.8b). The high-

speed digitizer uses the PCIe 4× interface to communicate with the main memory (DDR3, 

PC-8500). The PCIe 4× interface can theoretically transfer data at 3.6 GB/s rate, and the 

main memory can theoretically transfer data at 8.5 GB/s. Hence, the data transfer rate 

between the onboard memory of the high-speed digitizer and the main memory of the 

confocal computer is sufficient to handle the data acquisition rate of 360 MB/s by the high-

speed digitizer.  

The image processing thread of the imaging thread transforms the data delivered 

from the data acquisition thread into 2D images which human eyes easily recognize. The 

data from the data acquisition thread are 1D arrays of 16 bit unsigned integers. These 1D 

arrays provides no direct information of specimens’ features. Thus, those 1D arrays needs 

to be converted into human-eye identifiable 2D images. However, the image processing 

thread conducts only simplified and abridged image construction because the thorough 

image construction and correction demands a great amount of computing power and time, 

thus may cause the buffer overflow error in the imaging thread. Another function of the 

image processing thread is to correct the pixel shift offset between the odd lines and the 
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even lines due to a minute difference in the number of pixels between the odd and the even 

lines. This pixel shift offset correction is discussed in detail later. Lastly, the image 

processing thread passes both the 1D array data and the constructed 2D data onto the image 

saving and display thread. 

The image saving and display thread saves image data and displays images 

processed by the image processing thread. The image saving function of the thread saves 

the 1D array data with no applied processing in the storage device, the SSD, in our confocal 

computer. Saving the unprocessed 1D array is more preferable than saving the processed 

2D images since the unprocessed 1D arrays can be reprocessed repeatedly in case any error 

is found in the processing algorithm, or a more accurate processing method is developed. 

In the course of 1D array data saving, the data travels from the main memory of the 

computer to the storage device in the computer as shown as DF2 in Fig. 3.8b. As explained 

in 3.2.3. Electrical system, the data transfer rate between the main memory and the storage 

device (500 MB/s) must be higher than the data acquisition rate in the data acquisition 

thread (360 MB/s). 

The image display function shows the constructed 2D images from the image 

processing thread on the display device such as a LCD monitor. The image display function 

also enlarges, or reduces the displaying image size upon users’ requests for convenient 

viewing. The image display function also enables users to define a region-of-interest (ROI) 

on the image display, and shows the image of the ROI separately. Additionally, the image 

display function applies various lookup tables and intensity dynamic windows upon users’ 

requests to assist users’ visual inspection of the constructed images. 

The three sub-threads of the imaging threads execute in parallel. The data transfers 

among the threads are pipelined with sufficient buffer memory so that the whole pipelined 

multi-threading is protected from data transfer congestion and buffer overflow errors.  
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Figure 3.8: The structure of the confocal imaging software and the image data flow in the 

software and the computer. (a) The confocal imaging software structure. Imaging and data 

acquisition process and control process. (b) The image data flow from the high-speed 

digitizer to the computer storage.    

 

Mirror and stage control thread 

The mirror and stage control thread is in charge of the control and synchronization 

of the scanning mirrors and the motorized and piezo stages. The mirror and stage control 

thread creates the control and synchronization signal waveforms described in 3.2.4. 

Control and synchronization, generates the control and synchronization signals through 

the MDAQ. The stage control function of the thread also commands the motorized and 

piezo stages independent of the control and synchronization signals upon users’ requests. 

The mirror and stage control thread is prepared for custom control and synchronization 
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signal sequences designed for specific imaging applications such as automated sequential 

imaging of multiple specimens. 

 

Main control thread 

The main control thread administers the whole confocal software including the 

aforementioned imaging, and mirror and stage control threads. The main control thread 

initializes the confocal software by preparing the devices used by the confocal software, 

setting the control parameters and variables to their default values, and clearing up the 

buffer memory for data acquisition and image processing. The main control thread also 

directs the sub-threads of the imaging threads individually. For instance, the main control 

thread can turn off the image construction of the image processing thread, and the display 

function of the image saving and display thread while keeping the saving function on to 

concentrate the computer’s resources on stable data acquisition and image saving. 

Additionally, the main control thread is capable of executing the sub-threads of the imaging 

thread and the mirror and stage control thread in timely sequenced manners for custom 

automation applications. Lastly, the main control thread properly ends the confocal 

software by emptying the buffer memory, and releasing the devices used by the confocal 

software from the software so that other software can use them without experiencing 

glitches. 

 

Post-processing: 1D array to 2D image conversion 

Once images are stored as 1D arrays of 16 bit unsigned integers, the 1D arrays must 

be transformed into 2D images that present proper information of target specimens, and 

human eyes intuitively recognize. To correctly transform 1D arrays into 2D images, the 

formation principle of the 1D arrays must be first accurately comprehended. Figure 3.9a 



 51 

and Figure 3.9b show an example specimen simplified for efficient explanation, and the 

1D array that the confocal software generates by imaging the example specimen, 

respectively. The example specimen consists of two lines who comprise 10 pixels each. 

The first line incorporates from 0 (left) to 9 (right), and the second line from A (left) to J 

(right). When the example specimen is imaged, the excitation laser beam scans the first 

line from left to right, while the second line from right to left since the resonant mirror 

scans the beam bidirectionally. However, the data acquisition of the high-speed digitizer is 

unidirectional, hence the second line is saved in the opposite direction in the 1D array as 

shown in Fig. 3.9b. 

In addition, a small portion in the leftmost part of the second line is not saved in the 

1D array. In Fig. 3.9b, 2 pixels (A, and B) are missing, which are exaggerated as 20 % for 

convenience. The resonant mirror takes 126.4 μs to complete one round tilting, 63.2 μs for 

each direction. However, the high-speed digitizer cannot take advantage of the full 126.4 

μs for data acquisition since the high-speed digitizer requires 1 – 2 μs to rearm its trigger 

electronics, and that 1 – 2 μs is also spared for the galvanometric mirror to change its angle. 

Thus, data worth 1 – 2 μs, approximately 2 % of one line is unsaved in the 1D array though 

the missing data portion is significantly less than 1 % in terms of the field-of-view. The 

missing portion in terms of the field-of-view is discussed in the upcoming paragraphs about 

correction of image stretching due to the resonant mirror’s inconsistent tilting velocity.  

The following parameters are used in the 1D array to 2D image conversion. 

 

NHS ≡ Number of pixels per line before stretch correction. 9 in Fig. 3.9  

NH ≡ Number of pixels per line (NV_X in 3.2.4.) 

NV ≡ Number of lines per frame (NV_Y in 3.2.4.). Even number. 2 in Fig. 3.9 

N1D ≡ Number of data points in the 1D array, 18 in Fig. 3.9 
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NS ≡ Number of pixels to shift for correction, 1 in Fig. 3.9 

NZP ≡ Number of zero-padded pixels, 1 in Fig. 3.9 

 

A 1D array of unsigned integer data points saved by the confocal microscope has 

in total N1D data points, and N1D is given by N1D = (NHS - NS) × NV. The 1D array to 2D 

image conversion (1D to 2D conversion) first arranges the 1D array data points into a 2D 

array that has NV rows and (NHS - NS) columns (Fig. 3.9b to Fig. 3.9c). The data points in 

the even numbered rows in the 2D array are oriented in the direction opposite to those of 

the correct image, thus, the 1D to 2D conversion reverses the even numbered rows (Fig. 

3.9c to Fig. 3.9d). At this point, the odd numbered lines and the even numbered lines have 

the same number of data points though the even numbered lines have a small portion (NS) 

of data points that actually belong to the odd numbered lines above the even numbered 

lines (9 in Fig. 3.9d). Moreover, the data points in the even numbered lines are pushed to 

the left by 2NS, and needs to be shifted to their correct positions (Fig. 3.9d). Hence, the 1D 

to 2D conversion shifts the data points in the even numbered lines to the right by 2NS, and 

moves up to the odd numbered lines the NS data points that belong to the odd numbered 

lines, yet are in the even numbered lines (Fig. 3.9e to Fig. 3.9f).  
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Figure 3.9: The procedures of image construction from 1D array of data points. (a) 

Example target specimen. (b) – (i) in the order of the procedures. (b) 1D array of data points 

sampled from the example target specimen. (c) 2D array converted from the 1D array in 

(b). (d) Reversed even numbered line. (e) Pixel shift correction. (f) Pixel location correction. 

(g) Filling missing pixels. (h) Padding dummy pixels. (i) Completely constructed image 

after stretch correction. 

 

After the data point shifting in the even numbered lines, the even numbered lines 

have empty 2NS data points in the very left, which are missing due to the 1 – 2 μs 

discrepancy between the resonant mirror period and the data acquisition time as explained 

in the previous paragraph (Fig. 3.9f). The 1D to 2D conversion fills the empty 2NS data 

points with the data points in the exactly identical positions in the odd numbered lines (0, 
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and 1 in Fig. 3.9g). This replication method is a simple yet effective fix because (1) the 

number of the replicated data points is less than 1 % of the total number of the data points 

per line (NHS), and (2) the information given by the replicated data points is usually 

insignificant, or even negligible since the replicated data points are on the very left edge of 

the image, while most critical information and features are generally located in the center 

of the image. After filling the missing data points in the even numbered lines, the 1D to 2D 

conversion proceeds to the last stage of the 1D to 2D conversion, the image stretch 

correction. 

The image stretch occurs due to the sinusoidal angular velocity pattern of the 

resonant scanning mirror. Assuming the resonant mirror is tilting back and forth between 

one angle -θ, and the other angle θ, the resonant mirror’s angular velocity becomes zero at 

-θ instantly, then the resonant mirror resumes rotating. The resonant mirror accelerates its 

angular velocity following a cosine function. At angle 0 º, the resonant mirror’s angular 

velocity reaches its maximum. Afterwards, the resonant mirror’s angular velocity 

decreases again exactly following the cosine function. Therefore, the resonant mirror’s 

angular velocity shows exactly a cosine function from -π/2 to π/2 in terms of phase (φ). 

Transforming the angular velocity into the angular position at a given phase, the resonant 

mirror’s angular position shows a sine function. However, the high-speed digitizer acquires 

data at a fixed sampling rate. As a consequence, the image generated by the confocal 

microscope is stretched increasingly towards the edges of the image as shown in Fig. 3.10a 

and Fig. 3.10b. 
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Figure 3.10: Image stretching due to resonant mirror and stretch correction. (a) The target 

sample. (b) The stretched image taken by resonant scanning. (c) An example of a stretched 

image. (d) The image corrected from the stretched image in (c).  

 

A couple of hardware based approaches to circumvent the image stretching have 

been reported [84], [99]. However, the hardware based approaches tend to be difficult and 

complicated to design and build. On the contrary, the predictable behavior of the resonant 

mirror enables a software based correction using a pre-calculated look-up table. The look-

up table provides information for data point relocation from the stretched images to the 

corrected images. The look-up table is calculated using a correction factor. The correction 

factor (Ccf) represents the degree of stretching to be corrected for a given data point. 
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Assuming that the number of data points per line before stretch correction is NHS, the data 

point positions from -NHS/2 to NHS/2 corresponds to the phases from -π/2 to π/2 having set 

the center data point position to be 0. Then, the correction factor (Ccf) is given by 

 

 sincfC    (3.19) 

 

where φ is a phase at a given data point position. Eqn. (3.19) shows that the correction 

factor is not a constant, but a function of phase. Hence, each data point experiences a 

dissimilar degree of stretching. A through derivation of the correction factor and in-depth 

discussion of the image stretching by the resonant mirror is given in [94]. Using the 

correction factor, the image stretching by the resonant mirror’s sinusoidal angular velocity 

is corrected by 

 

 
 Stretched data point position

Corrected data point position = 
cfC

 (3.20) 

 

Once the look-up table is prepared, the look-up table needs not be updated as long 

as the number of data points per line before stretch correction (NHS) remains constant 

regardless of the imaging field-of-view, because the sinusoidal angular velocity of the 

resonant mirror always maintains regardless of its tilting angle.  

The 1D to 2D conversion first pads dummy data points to the very left end of each 

line before conducting the stretch correction (Fig. 3.9h). The addition of the dummy data 

points ensures that one line has the correct number of data points to correspond to the phase 

from -π/2 to π/2.  Otherwise, the stretch correction ends up producing distorted images. 

After the dummy data padding, the 1D to 2D conversion corrects the stretch induced by 

the resonant mirror using the look-up table generated using the correction factor. Giving 
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an example, the parameters for the 1D to 2D conversion of our confocal microscope are 

NHS = 11008, NS = 182 – 186, and NZP = 182 – 186. After a successful 1D array to 2D 

image conversion, NH ends up being 7292 for our confocal microscope. In the course of 

the 1D to 2D conversion, those NS and NZP, approximately 370, data points are converted 

to less than 30 data points in the corrected image, which is less than 0.5 % of NH. Fig. 3.10c 

and Fig. 3.10d are an example of before and after the stretch correction. The center of the 

image in Fig. 3.10c shows almost no stretching while the left and right edges of the image 

manifest significant image stretching. Additionally, the regions around the left and right 

edges of the images in both Fig. 3.10c and Fig. 3.10d contain no valuable information as 

discussed earlier. 

 

3.3. RESULTS 

 

3.3.1. Performance characterization 

Having completed designing and building our high-speed laser scanning confocal 

microscope, we characterized its performance: the imaging resolution, the field-of-view 

(FOV), and the imaging speed. We used the 40X oil immersion objective (Nikon, 40×, 1.3 

NA, oil, S Fluor) to calibration the imaging resolution by measuring the point-spread-

function (PSF) of our confocal microscope. We recorded images of 0.1 μm diameter 

fluorescent microspheres (Invitrogen, F8803) inside the agarose pad, and chose 20 

fluorescent microspheres from the images for PSF analysis. We measured and normalized 

the fluorescent intensity profiles of the fluorescent microspheres, and averaged the intensity 

profiles with the peak intensity aligned in the center. We acquired the lateral PSF of 275±11 

nm FWHM, and the axial PSF of 1.16±0.14 μm FWHM (Fig. 3.11a, b). The measured 



 58 

axial resolution is 30% larger than the expected axial resolution mainly due to the 

aberration induced by the refractive index mismatch between the oil medium and the 

agarose pad in the sample. 

We characterized the imaging FOV of our confocal microscope. The imaging FOV 

depends on two variables: the sampling duration of the high-speed digitizer, and the 

magnification, thereof focal length, of the objective. First, we calibrated the relationship 

between the maximum FOV and the sampling duration with the 40X oil immersion 

objective (Nikon, 40X, 1.3NA, S Fluor). The resonant scanning mirror takes 63.2 μs to 

scan one line. Ideally, 63.2 μs should be set as the sampling duration. However, the 

sampling duration must be set shorter than 63.2 μs due to the data acquisition trigger delay, 

and the trigger electronics’ rearming time of the high-speed digitizer. In addition, the 

resonant scanning mirror’s sinusoidal angular velocity pattern allows a shorter sampling 

duration. At the end of the resonant mirror’s one round tilting, the angular velocity of the 

resonant mirror becomes nearly zero. Hence, the image data from the last few μs of one 

round tilting may not need to be sampled. We measured the maximum FOV corresponding 

to the data sampling duration, and concluded that the maximum FOV began to level off 

after the data sampling duration of 59 μs, and any sampling duration over 60 μs gave the 

maximum FOV of 350 μm as shown in Fig. 3.11c. We have eventually chosen 60 μs as the 

data sampling duration because we have concluded that assigning a couple of microseconds 

for the high-speed digitizer to rearm its trigger electronics, and for the galvanometric mirror 

to tilt for the next line is substantially more beneficial than gaining a minutely larger FOV. 
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Figure 3.11: The performance measures of our confocal microscope. The performance 

parameters are measured with the 40x objective lens (Nikon, 1.3NA, Super Fluor). (a) The 

lateral resolution of 275±11 nm FWHM. (b) The axial resolution of 1.16±0.14 μm FWHM. 

(c) The horizontal field-of-view characterization. The field-of-view is 350 μm for 58 μs 

sampling duration, and levels. (d) The imaging speed characterization.  

 

Secondly, we measured the maximum FOV of our confocal microscope, and its 

linearity with two objectives: 40× oil objective (Nikon, 40×, 1.3 NA, S Fluor), and 20× 

water immersion objective (Olympus, 20×, 0.95 NA, XLUPLFL20XWCG-SP). We set the 

tilting angle of the resonant mirror (fast x-axis) to be its maximum value, and the data 

sampling duration to be 60 μs. We moved the microfluidic device with the features of 

known dimensions using the pre-calibrated motorized XYZ stage. We find the maximum 

field-of-view is 350 μm, and 630 μm for 40× objective, and 20× objective respectively. 
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The measured field-of-views are approximately 10 % narrower than the expected field-of-

views based on our design following the model described in 3.2.2. Other studies using the 

same resonant mirror report that the maximum tilting angle of the resonant mirror is 14 º, 

which is roughly 10 % less than the maximum tilting angle given in the specification 

provided by the resonant mirror’s manufacturer. Having considered the discrepancy 

between the actual and spec-sheet maximum tilting angles of the resonant mirror, the 

maximum FOV of out confocal microscope agrees well with our design. 

Subsequently, we measured the field-of-view with the same objectives and the same 

method while increasing the tilting angle of the resonant mirror and the galvanometric 

mirror from 0 º to 14 º by 1 º. We verified that the FOV was linearly proportional to the 

tilting angle of the resonant mirror and the galvanometric mirror. Even though in theory 

the tilting angle and the field-of-view should show the sinusoidal relationship, the small 

tilting angle allows the sinusoidal relationship to be approximated as the linear relationship. 

We evaluated the imaging speed of our confocal microscope. The time for our 

confocal microscope to image one frame is linearly proportional to the number of lines per 

frame (NH in 3.2.5). Thus, the imaging speed in frames per second (FPS) is inversely 

proportional to #line. The imaging speed of our confocal microscope follows 1/(63.2 μs × 

NH + 1 ms), where the 63.2 μs is the required time for the resonant mirror to scan one line, 

and the 1 ms inside the brackets is the fly-back time for the slow axis galvanometric mirror 

to return to its initial position at the beginning of each frame. We measured the imaging 

speed of our confocal microscope under these imaging conditions to verify the 

experimental imaging speed and the effect of the number of pixels per line on the imaging 

speed. We chose the number of lines per frame from 50 to 2000, and the number of pixels 

per line from 1000 to 10000. We embodied a timer inside our custom confocal imaging 

software written with LabVIEW to record the imaging time to take one frame. We find the 
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imaging speed is 59.5, 30.7, 20.7, and 15.6 FPS for 250, 500, 750, and 1000 lines per image 

respectively, which agrees with the expected speed based on our design (Fig. 3.11d). 

However, the imaging speed with a small number of lines per frame shows a noticeable 

discrepancy due to the fly-back time of the galvanometric mirror. Additionally, we find the 

number of pixels per line has no effect on the imaging speed since we observed the same 

imaging speed for all of the number of pixels per line we examined. 

 

3.3.2. Sample images  

We present a few sample high-resolution 3-dimensional (3D) volume images using 

our confocal microscope. The first sample 3D image we present is a high-resolution 

confocal fluorescent image of a L4-stage C. elegans head with the ZIM294 strain [44] 

shown in Fig. 3.12. Neither deconvolution nor any image filtering has been applied to the 

image. The ZIM294 strain is a nuclear localization signal green Ca2+ indicator (NLS-

GCaMP) that Ca2+ fluorescent signal is confined inside the nuclei of the neuronal cells. 

This nuclear localization of the fluorescent signal enables more precise identification of 

individual neurons. The C. elegans head is densely packed with the neurons consisting of 

nearly 40 % of all of the C. elegans neurons. We mounted and anesthetized the animal on 

an agarose pad. We used the Nikon 40× 1.3 NA S Fluor oil immersion objective to take the 

images. The volume size of the image is 150 × 50 × 40 μm3 with 3000 × 1000 × 200 voxels. 

We took 6 frames for each plane, and averaged the pixel intensity of the 6 frames to form 

a high-SNR image for the plane. The imaging of the whole volume took 80 seconds in total 

including the z-axis piezo stage moving time. The maximum intensity projection of the 3D 

rendered volume image is illustrated in Fig. 3.12a, and the maximum intensity projections 

in the XY, XZ, and YZ planes are given in Fig. 3.12b, c, d, respectively. In all of the 
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images, all neurons’ nuclei are clearly resolved as well as the divisions among the nuclei 

are distinctly present. 

 

a) 

b)

c)

d)

3D

XY

XZ

YZ

25 μm

 
Figure 3.12: Maximum intensity projection of the head of C. elegans with ZIM294 Ex 

[Punc-31::NLSGCaMP5K; Punc-122::gfp] strain. The volume size is 150 μm × 50 μm × 

40 μm, and the pixel number is 3000 × 1000 × 200. XY scale is reduced to match the z-

axis pixel size (200 nm/pixel). (a) 3D maximum intensity projection, (b) XY plane 

maximum intensity projection, (c) XZ plane maximum intensity projection, and (d) YZ 

plane maximum intensity projection. The scale bar is 25 μm. 
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The second sample image is a z-axis maximum intensity projection image of the 

early L4 stage C. elegans whole animal as shown in Fig. 3.13. Neither deconvolution nor 

any image filtering has been applied to the image. The animal is labeled with the same 

ZIM294 strain used to label the animal shown in the previous sample image (Fig. 3.12). 

We took this image to examine how many neurons’ nuclei the ZIM294 strain could label, 

and to assess how many ZIM294 labeled neurons’ in the whole animal of L4 stage C. 

elegans we could recognize and mark. We placed, straightened, and chemically 

immobilized the animal on an agarose pad. We used the Nikon 40× 1.3 NA, S Fluor oil 

immersion objective to take the images. We separated the whole animal into three sections 

of a 350 × 100 × 50 μm3 FOV with 3500 × 1000 × 333 voxels since the largest FOV the 

Nikon 40× objective can achieve in our confocal microscope is 350 μm while the length of 

the whole animal is over 700 μm. After taking images of three separate FOVs, we stitched 

the images of the three separate FOVs together to produce images of a 750 × 100 × 50 μm3 

FOV containing the whole animal. As shown in Fig. 3.13, individual neurons’ nuclei are 

effortlessly distinguishable even in the highly dense areas such as the head and tail regions. 

We managed to recognize and mark approximately 200 neurons’ nuclei from the images. 

 

The third sample image is a high-resolution 3D confocal fluorescent image of a L4-

stage C. elegans ALM axons with the SK4005: zdIs5 [Pmec-4::gfp] strain, which expresses 

GFP in the mechanosensory neurons [104] as shown in Fig. 3.14. Neither deconvolution 

nor any image filtering has been applied to the image. We recorded this image right after 

we performed a femtosecond laser surgery on the ALM axon of the animal. We mounted 

and anesthetized the animal on an agarose pad. We used the Nikon 40× 1.3 NA S Fluor oil 

immersion objective to take the images. The volume size of the image is 350 × 50 × 30 

μm3 with 3500 × 500 × 150 voxels. We took 6 frames for each plane, and averaged the 
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pixel intensity of the 6 frames to acquire a high-SNR images. The high-resolution high-

SNR 3D confocal images clearly show the C. elegans ALM and anterior ventral 

microtubule (AVM) axons as well as the ALM axon wound severed by the femtosecond 

laser surgery.  

 

 

Figure 3.13: Z-axis maximum intensity projection of the whole animal of early L4 stage 

C. elegans with ZIM294 Ex [Punc-31::NLSGCaMP5K; Punc-122::gfp] strain. The image 

size is 750 × 100 μm2, and the pixel number is 7500 × 1000. The scale bar is 100 μm. The 

head, and tail regions in the red dashed boxes are enlarged in the bottom half.  

 

3.4. CONCLUSION AND DISCUSSION 

We successfully designed, constructed, and characterized the high-speed laser 

scanning confocal microscope capable of imaging a large FOV with a great number of 

voxels. We have demonstrated our confocal microscope can image an area of 350 × 50 μm2 

(3500 × 500 pixels) at 30 Hz rate with a Nikon 40× objective. The hardware-software 

hybrid control and synchronization system of our confocal microscope achieves the fastest 

imaging speed that the resonant scanning mirror potentially can provides, and enables 

flexible control of imaging conditions.  

The scanning system including the control and synchronization system of our 

confocal microscope can easily be employed by multi-photon microscopes. The scanning 
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system multi-photon microscopes use is optically identical, and the multi-photon 

microscopes’ optical design for fluorescent photon collection is even simpler than that of 

confocal microscopes since multi-photon microscopes do not need to form a conjugate 

image plane and do not require a confocal pinhole. The major challenge in using our 

scanning system in multi-photon microscopes is the limited laser pulse repetition rate of 

ultrafast lasers. Mai Tai (Spectra Physics), a femtosecond laser which is widely used in 

two-photon microscopy achieves a pulse repetition rate of 80 MHz, one of the highest 

among commercially available ultrafast lasers. However, our scanning system requires a 

pulse repetition rate of at least 360 MHz to generate images of an acceptable SNR because 

multi-photon microscopy demands at least two pulses to generate a voxel, and our scanning 

system’s data acquisition rate is 180 MHz. One feasible approach to increase the pulse 

repetition rate of ultrafast lasers is to use multiple beam splitters and mirrors, and recent 

studies have reported pulse repetition rate multiplication by a factor of 8 and 16 [105]–

[107]. Thus, multi-photon microscopes potentially can employ our scanning system and 

achieve faster imaging speed and larger FOV combined with a high repetition rate ultrafast 

laser and the repetition rate multiplication using beam splitters. 

The upcoming plan for our confocal microscope is to upgrade our confocal 

microscope to a multicolor system. Currently our confocal microscope can image only GFP 

specimens. Considering various available strains express yellow or red fluorescent proteins 

rather than GFP, a multicolor confocal microscope is undoubtedly more versatile. The 

high-speed digitizer our confocal microscope provides two input channels, hence is 

prepared for the multicolor system upgrade. However, the addition of one more data 

acquisition channel doubles the required data transfer rate between the computer memory 

and the storage device. The 500 MB/s data transfer rate of the current storage device cannot 
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meet the data transfer rate requirement. Thus, the multi-color upgrade necessitates a new 

storage device with superior performance.  

 

 

Figure 3.14: High-resolution 3D image of L4 stage C. elegans encoded with zdIs5 (mec-

4::gfp) after ALM axon femtosecond laser surgery. (a) 3D maximum intensity projection. 

(b) XY plane maximum intensity projection. (c) XZ maximum intensity projection. (d) YZ 

maximum intensity projection. The scale bar in (b) is 50 μm. The yellow arrows in (a), (b), 

and (c) depict the femtosecond laser surgery site. 
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Chapter 4:  in vivo functional volumetric imaging of whole animal C. 

elegans Ca2+ dynamics 

 

4.1. INTRODUCTION 

The nematode Caenorhabditis elegans is an excellent model organism for a system 

level understanding of various aspects of neuroscience including neural circuits. C. elegans 

due to its stereotype cell lineage, well characterized genetics, short life cycle, and optically 

amenable body has been used intensively in biology. All of its neurons and synaptic 

connections are fully mapped anatomically using serial electron microscope sections [14]. 

Current day opto-genetic tools along with the tractable genetics allows researchers to trace 

individual neuronal cells in C. elegans under various context. These accomplishments are 

a great basis for future endeavors in functional characterization of neurons, and for 

unveiling of the wholesome picture of anatomical and functional map of all neurons in C. 

elegans. However, monitoring all C. elegans neurons simultaneously is challenging 

because C. elegans neurons are tiny, and most of them are concentrated in the head and the 

tail regions 1 mm apart. The small size of neurons, and high density in small volumes in 

the head and the tail require a submicron imaging resolution, and the 1 mm separation 

demands a large field-of-view to image the whole animal. In addition, a volumetric imaging 

speed faster than 1 Hz is necessary since the timescale of most C. elegans neurons’ Ca2+ 

dynamics is maximum 1 Hz. 

Various high-speed functional volumetric imaging methods have been recently 

reported. Light-sheet microscopy techniques with deconvolution processes were used to 

image the brain and the whole body of Zebrafish and Drosophila [52], [108]–[110]. The 

temporal focusing method and the spinning disk microscopy were used to observe the 

neuronal activities inside the brain of C. elegans [44], [111], [112]. The light-field imaging 
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and swept confocally-aligned planar excitation (SCAPE) microscopy were demonstrated 

their strength in whole animal imaging [43], [54]. A two-photon microscope using an 

ultrasound lens for fast axial scanning was reported [113]. A common issue among these 

methods is the obvious trade-off amongst the field-of-view (FOV), the resolution, and the 

speed. The methods with FOVs large enough to image whole animals show imaging 

resolutions over 1 μm full-width half-maximum (FWHM) while the methods with sub-

micron resolutions image only a small fraction of animals due to their small FOVs. When 

multiple small FOVs are used to image the whole animal, the imaging speed dramatically 

decreases due to the required additional time for translational movement. No reported 

methods is capable of functional imaging of the whole L4 stage C. elegans to date.  

We report a high-speed confocal volumetric imaging platform for monitoring Ca2+ 

response in the whole L4 stage C. elegans consisting of a high-speed laser resonant 

scanning confocal microscope, and a microfluidic device for animal immobilization and 

chemical stimulus delivery. Using this platform we successfully monitored the Ca2+ 

fluorescent signals of almost 70% of all 302 neurons inside the whole L4 stage C. elegans. 

The spatial imaging resolution of our method identifies individual neurons, and the 

temporal imaging resolution captures the Ca2+ dynamics of the neurons responding to 

chemical stimuli. Using NaCl stimulus in our stimulation chip, we found a number of 

neurons related to the animal’s response to the stimulus from the whole nervous system 

calcium recordings. Our achievement demonstrates our high-speed volumetric imaging 

platform will contribute to whole animal mapping of C. elegans nervous system. 
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4.2. EXPERIMENTS 

 

4.2.1. Overall setup 

The in vivo functional volumetric imaging system consists of two major 

components: the high-speed laser scanning confocal microscope introduced in Chapter 3, 

and a microfluidic device for animal immobilization and stimulus delivery. We used an 

Olympus 20× 0.95 NA water immersion objective (Olympus, XLUPLFL20XWCG-SP) 

with the confocal microscope to achieve a large imaging FOV and a high imaging 

resolution simultaneously. We accomplished imaging a 630 × 150 × 25 μm3 volume (2100 

× 500 × 15 voxels) at 2 Hz volume rate (30 Hz frame rate). We found the imaging 

resolutions to be 430 ± 25 nm FWHM laterally and 1.7 ± 0.2 μm FWHM axially, 

respectively having imaged 0.1 μm in diameter fluorescent beads (Invitrogen, F8803) as 

described in 3.3.1.  

 

4.2.2. Microfluidic device 

We developed a microfluidic stimulation and imaging chip to enable high-

resolution imaging of C. elegans neurons’ calcium dynamics at high speed from the whole 

nervous system (Fig. 4.1a). An individual larval stage 4 (L4) stage C. elegans animal with 

bright GCaMP fluorescence is pushed through the worm inlet (WIN) and immobilized 

inside the sinusoidally shaped trapping channel (Fig. 4.1b). The amplitude and width of 

the channel was optimized to fit in L4 stage C. elegans completely within the imaging FOV 

of 630 × 150 μm2 (Fig. 4.1c). The head of the animal faces the stimulus delivery channel. 

The microfluidic chip has three stimulus inputs connected to two buffer reservoirs (BIN) 

and one stimulus reservoir (SIN) to deliver and withdraw chemical stimulus in less than 100 

ms to and from the worm nose, respectively. 
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Figure 4.1: Microfluidic device for animal immobilization and controlled stimulation, and 

imaging resolution of the system. (a) The schematics of the microfluidic device for animal 

immobilization and stimulus application. (b) The enlarged view of the immobilization and 

stimulation area. (c) The whole animal fixing within the FOV of 630 × 150 μm2. Top: 

brigh-field image. Bottom: z-axis maximum intensity projection of fluorescent confocal 

image. (d) 430 ± 25 nm FWHM of the confocal microscope’s lateral imaging resolution. 

(e) 1.7 ± 0.2 μm FWHM of the axial imaging resolution. 

 

To reduce the effect of the pressure variance during the stimulus delivery, we ensure 

two of the three inlets are always turned on. The animal shows minimal amount of drift 

during the liquid switching under 2 psig liquid pressure. The tapered design of the channel 

prevents the animal from escaping and keeps the animal in the desired position during the 

time-lapse calcium imaging session.  

The microfluidic devices were fabricated using standard multi-layer photo-

lithography, and single-layer soft-lithography techniques [114], [115]. In brief, the photo 
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masks for photo-lithography were designed using AutoCAD (AUTODESK) and printed 

on transparencies using 50K DPI resolution laser-plotter (Fineline Imaging). A layer of 

SU8-2025 photoresist (Microchem Corp.) was spin coated on a 4 inch silicon wafer at 

4,100 rotation per minute (rpm) for 33 seconds to obtain a height of 22 μm (Layer-1). The 

first layer was exposed to UV light using a photo-mask and developed using SU8 developer 

solution. Second layer of SU8-2025 was spin coated at 2,250 rpm for 33 seconds to obtain 

a height of 45 μm (Layer-2). The second layer was exposed to UV using a photo-mask and 

developed. The SU8 mold was treated with tridecafluoro-1,1,2,2-tetrahydrooctyl-1-

trichlorosilane vapor (United Chemical Technologies) in a vacuum chamber at 40 ºC to 

reduce surface adhesion during soft-lithography process. 

To prepare the microfluidic device mold, Polydimethylsiloxane (PDMS, Dow 

Corning) was mixed in 10:1 ratio and poured on the salinized SU8 mold. The PDMS was 

cured at 70 ºC for 2 hours, peeled off from the SU8 mold, and punched for access holes at 

four outlets. The PDMS block was cleaned and bonded to a cover glass (grade 1.5, 170 mm 

thickness) using 100 W oxygen plasma. The chip was finally cured at 70 ºC for 6 hours to 

complete the bonding. 

 

4.2.3. Experimental procedures 

We first prepare a new PDMS microfluidic device. We connect metal couplers for 

liquid inputs to the microfluidic device, and fill the device with base buffer through one 

input while all exits are blocked with metal plugs for priming to remove air bubbles inside 

the device. We pick a L4 stage C. elegans with bright GFP signal in the coelomocyte cells 

under a stereoscope using a tube connected to a syringe. Once we capture an animal, we 

send the animal through the input (‘WIN’ in Fig. 4.1a) of the device with the exit (‘WOUT’ 

in Fig. 4.1a) open. We leave the animal free in the WIN chamber with 45 μm height until 
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the animal’s head goes first inside the trapping channel. Then, we push the animal inside 

the trapping channel with lateral orientation till the animal’s head reaches the tapering 

region of the trapping channel. 

Once the animal is trapped and prepared inside the microfluidic device, we mount 

the microfluidic device onto the confocal microscope and acquire high-resolution ten-

frame-average images of the whole volume to help identify all the neurons in the animal’s 

nervous system. The imaging condition we use for the high-resolution images is 4200 × 

1000 × 100 voxels for the same volume of 630 × 150 × 25 μm3. We stimulate the animal 

with the excitation laser for 2 minutes prior to the time-lapse calcium imaging to habituate 

the animal and to minimize the animal’s neurons’ response to the excitation laser during 

the time-lapse imaging.  

The time-lapse volumetric imaging of C. elegans neurons’ Ca2+ response is in total 

4 minutes long, and comprises 3 phases. In the first phase, we image the animal only with 

the buffer flow but no stimulus for 2 minutes. We use the neurons’ fluorescent intensity 

values in the first 2 minute phase to calculate the base level of the neuronal response. We 

use the base level to normalize the neurons’ responses later in neuron response analysis. In 

the second phase, we expose the animal to the chemical stimulus for 30 seconds. In the 

third phase, we stop the chemical stimulation, and image the animal again only with buffer 

flow yet no stimulus for 1.5 minutes. After we complete the time-lapse volumetric imaging, 

we repeat the same stimulation experiment but with a wide-field microscope for a shorter 

time of 2 minutes: no stimulus for 30 seconds, stimulus for 30 seconds, and no stimulus for 

1 minute. We use the wide-field microscope observation to quickly verify the animal’s 

neuronal response, and the animal’s physical integrity. 

We grow and maintain C. elegans on nematode growth medium (NGM) agar plates 

with HB101 bacteria at 20 ºC according to the standard protocol [116]. We use the 
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following C. elegans strains in this work: CX6632 Ex [sra-6p::GCaMP] and ZIM294 Ex 

[Punc-31::NLSGCaMP5K; Punc-122::gfp]. C. elegans strain CX6632 has GCaMP 

labelled in ASH neurons. ZIM294 has pan-neuronally expressed NLSGCaMP in all 

neuronal nuclei [44]. In both the strains neuronal cells can be visualized with green 

fluorescent proteins (GFP) under a fluorescence microscope. 

All chemicals for C. elegans maintenance were bought from Fisher’s Scientific and 

Sigma. Chemotaxis experiments were performed with chemotactic buffer (5 mM 

potassium phosphate, 1 mM CaCl2, 1 mM MgSO4, and 50 mM NaCl) as base value and 

+10 mM or +50 mM NaCl as a stimulus. For osmalirity experiments, we treated the animals 

with S. basal as base line and exposed them to 1M glycerol as stimulus. 

 

4.3. RESULTS 

 

4.3.1. Preliminary: feasibility of volumetric confocal imaging 

The core goal is to monitor the Ca2+ response dynamics of all of the neurons inside 

the whole C. elegans animal. The size of neurons of C. elegans is as small as a few μm, 

and the distance between two neuron cells can be less than 1 μm, thus, a submicron imaging 

resolution is required to identify all of the neurons. The length of L4 stage C. elegans ranges 

from 800 μm to 900 μm, and the thickness is approximately between 40 μm and 50 μm. 

Hence, a quite large imaging FOV is necessary. Lastly, the timescale of the Ca2+ dynamics 

of C. elegans neurons is usually a few seconds, and one second at its fastest. Hence, the 

volumetric imaging speed has to be minimum 2 volumes per second (VPS) to sample the 

Ca2+ dynamics correctly while meeting the Nyquist condition. 
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We designed a volumetric imaging experiment to assess the feasibility of our laser 

scanning confocal microscope for high-speed functional volumetric imaging of C. elegans 

Ca2+ dynamics. We chose a 20X water immersion objective (Olympus, 20X, 0.95 NA, 

water, XLUPLFL20XWCG-SP) to achieve a large FOV and an imaging resolution high 

enough to identify individual neuronal cells. We obtained the maximum FOV of 630 μm 

horizontally. The measured the imaging resolution by imaging 0.1 μm fluorescent beads, 

and found the lateral resolution to be 430±25 nm FWHM, and the axial resolution to be 

1.7±0.2 μm FWMH. We first set the FOV to be 630 x 70 μm2, and the number of pixels to 

be 4200 x 500 to examine the imaging performance such as the image quality, and the 

imaging speed. 

First, we imaged an anesthetized L4 stage C. elegans encoded with ZIM294 Ex 

[Punc-31::NLSGCaMP5K; Punc-122::gfp] strain [44]. ZIM294 strain labels all neurons in 

the animal, yet, restricts the fluorescence expression to the nuclei of the neuron cells. We 

imaged the animal at 15 different depths over the 30 μm thickness. At each depth, we first 

took a non-averaged image, then, took a 5-frame-averaged image. Subsequently, we 

compared the fluorescent intensity profiles of the two images of different averaging 

conditions at each plane. Fig. 4.2 shows the maximum intensity projections of the two non-

averaged and 5-frame-averaged images. Comparing the two images, they look almost 

visually identical to each other, especially in the ventral cord region where the neuron 

density is much lower than the head region. Since the C. elegans head region is densely 

packed with neurons, we investigated the neurons’ fluorescent intensity in a few 

particularly dense areas quantitatively. We present two investigated image samples in Fig. 

4.2b, c. Comparing the fluorescent intensity profile of the dashed yellow lines in the non-

averaged image and the 5-frame-averaged images at both 8 μm and 16 μm depth, their 

intensity profiles agree very well. The noise level of the non-averaged images is slightly 
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higher than that of the 5-frame-averaged images, however, it is low enough not to interfere 

with the neuron identification. Thus, we conclude that the image quality of the non-

averaged images are qualified for high-speed volumetric imaging. 

 

 

Figure 4.2: Comparison between non-averaged images and 5-frame-averaged images. (a) 

Maximum z-projection. (b) Selected images at 8 μm depth. (c) Fluorescence intensity plots 

of the dashed yellow lines in (b). (c) Selected images at 16 μm depth. (e) Fluorescence 

intensity plots of the dashed yellow lines in (b). In (c) and (e), the blue and red lines 

represent non-averaged and averaged images respectively. Scale bars are 100 μm in (a), 

(b), and (d). 

 

Second, we measured the imaging speed. The imaging condition we set is the FOV 

of 630 x 70 μm2, the pixel number of 4200 x 500, and the imaging depth of 30 μm with 15 

steps of a 2 μm depth increment. With the 4200 x 500 pixels, our confocal microscope take 

images at 30 FPS speed. Since the 15 planes constitute one volume (Fig. 4.3), our confocal 

microscope can image 2 volumes per second (VPS) in theory. We performed volumetric 
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imaging in the aforementioned imaging condition for 2 minutes, and counted the number 

of images our confocal microscope took to verify the imaging speed. Our confocal 

microscope took 3500 images on average 100 images short of the expected number of 

images. This discrepancy stems from the imaging speed decrease by the piezo stage 

movement, approximately 1 ms between two planes. Considering the piezo stage 

movement time, the acquired volumetric imaging speed meets the theoretical prediction. 

 

 

Figure 4.3: Preliminary volumetric images of C. elegans. The images represent 

consecutive planes of the whole animal volume at a 2 μm depth increment. The 0 μm in 

the middle image describes the center of the whole volume. The FOV is 630 x 70 μm2 

 

We accomplished the imaging speed and the imaging resolution to enable the high-

speed volumetric imaging of C. elegans Ca2+ response dynamics. However, the imaging 
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FOV covers only 3/4 of the whole L4 stage animal. In the previous imaging experiment, 

the pixel size we used was 150 nm/pixel. Considering the lateral imaging resolution of our 

confocal microscope with the 20× objective, we can increase the pixel size up to 300 

nm/pixel without sacrificing the imaging resolution severely. With the pixel size of 300 

nm/pixel, the imaging resolution will degrade to 600 nm FWHM from 430 nm FWHM, 

nonetheless, 600 nm FWHM is capable of identifying individual neurons. By increasing 

the pixel size to 300 nm/pixel, we enlarge the FOV to 630 x 150 μm2 while keeping the 

number of lines per frame still at 500 and the imaging speed the same at 2 VPS. The 

increase in the vertical FOV enables fitting the whole animal inside the FOV by bending 

the animal. To efficiently bend, fit, and immobilize the whole animal within the FOV, we 

have developed the microfluidic device shown in Fig. 4.1a. Once the microfluidic device 

has been developed, we record whole animal functional volumetric images of all of the C. 

elegans neurons responding to a chemical stimulus (+10 mM NaCl). Then, we analyze the 

neurons’ fluorescent intensity variation over time, and study the neuronal response to the 

chemical stimulus.  

 

4.3.2. C. elegans neurons’ response to +10 mM NaCl 

We here present selected L4 C. elegans neurons’ response to +10 mM NaCl from 

an in vivo functional time-lapse volumetric imaging session. After completing the time-

lapse imaging session, we first organized the acquired images plane by plane. The imaging 

session generated total 7084 images. Since the whole volume consists of 15 planes, each 

plane was given 472 images for 4 minutes. Then, we inspected the time-lapse images of 

each plane manually. During the inspection, we selected 18 neurons (1–18 in Fig. 4.4a) 

that showed noticeable brightness change, and 6 neurons (n1–n6 in Fig. 4.4a) that showed 

little brightness difference between before and after 120 second mark when + 10 mM NaCl 
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was applied to the animal. After selecting the neurons we used a MATLAB script to 

analyze the neurons’ fluorescent signal intensity because the neurons shifted about due to 

the animal’s movement throughout the imaging session. 

 

 

Figure 4.4: Selected L4 stage C. elegans neurons’ response to +10 mM NaCl. (a) z-axis 

maximum intensity projection of the whole animal immobilized inside the trapping 

microfluidic device. Total 24 selected neurons. 18 responsive neurons (1–18), and 6 

irresponsive neurons (n1–n6). Scale bar 100 μm. (b) Neuronal response plots for 24 

neurons. Total 240 seconds. +10 mM NaCl application at 120 second mark for 30 seconds 

in the grey-blue box. The black arrow scales 150 % relative change. 

 

The MATLAB script first loaded the 472 images of a plane, and defined a region 

surrounding one of the neurons we selected on the plane. The MATLAB script detected 

the highest intensity pixel within the defined region in the first image of the plane. Then, 
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the MATLAB script averaged the intensity values of the highest intensity pixel and the 8 

pixels surrounding the highest intensity pixel. The MATLAB script repeated this process 

for all 472 images, and recorded the averaged intensity values over the 472 images. 

Subsequently, the MATLAB script found the minimum value among the 472 averaged 

values, and normalized the 472 averaged values by the minimum value. The MATLAB 

script repeated the whole process for all 24 neurons shown in Fig 4.4a, and the processed 

and normalized neuron intensity profiles by the MATLAB script are given in Fig 4.4b.  

The neurons in Fig 4.4a are numbered increasingly from the head to the tail. 

Neurons 1–7, and n1–n3 are in the head, and the rest are located along the ventral cord. 

Neurons 1–18 seem to have responded to +10 mM NaCl while neuron n1–n6 do not (Fig 

4.4b). Neurons 1–5 in the head show moderate response. On the contrary, neuron 6, and 7 

in the head show significant response. Neurons 12, 15, and 18 along the ventral cord also 

show substantial response to +10 mM NaCl. Interestingly, several neurons (4, 5, 6, 8, 9, 

10, 14, and 17) noticeably reacted to the cease of +10 mM NaCl at 150 second point. 

Neurons n1, and n2 show no response to the stimulus though they are located in the vicinity 

of responsive neurons (1, and 7). Neurons n1–n3 seem constantly inactive throughout the 

experiment while neurons n4–n6 show a fair amount of activity though irresponsive to +10 

mM NaCl. 

 

4.3.3. C. elegans neurons’ activity with no stimulus 

We present behavior of 176 neurons in the whole L4 stage C. elegans animal with 

no stimulus application. We conducted an in vivo time-lapse volumetric imaging 

experiment on a L4 stage C. elegans immobilized inside the microfluidic device, and we 

replaced the +10 mM NaCl with the buffer. Unlike the previous +10 mM NaCl experiment, 



 80 

we exposed the animal to the buffer at 120 second mark. The duration of the experiment 

was still 4 minutes. 

 

 

Figure 4.5: Heatmap presentation of 176 neurons’ Ca2+ dynamics in the whole L4 stage 

C.elegans with no stimulus application. Total 176 neurons. 1–75 in the head region, 76–

160 along the body, and 161–176 in the tail region. The neuron activity observation was 

240 seconds long. The red-to-blue colored bar scales the relative fluorescent intensity 

change from -125 % (blue) to 175 % (red).  

 

After completing the in vivo time-lapse imaging experiment, we thoroughly 

analyzed the acquired images. First, we corrected the neurons shifts over time due to the 

animal’s movement using the motion correction algorithms provided by [117]–[119]. The 
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motion correction played a crucial role in neuron annotation and intensity tracing. The 

motion correction provided enhanced time-lapse images with higher SNR by reducing the 

blurring from neurons’ motions. The motion correction also affixed the positions of the 

corrected neurons so that the neuron intensity tracing could be carried out simply by 

tracking the pixel intensity in the same position and area over time.  

 

 

Figure 4.6: Heatmap presentation of correlation coefficients among 176 neurons in L4 

stage C. elegans with no stimulus application. Total 176 neurons. 1–75 in the head region, 

76–160 along the body, and 161–176 in the tail region. The correlation coefficients range 

from -0.7 (blue) to 1 (red) as shown in the color bar. 
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Having finished the motion correction of neurons, we scrutinized the time-lapse 

images, and tried to label as many neuron as we could. We ended up finding 176 neurons 

in the whole L4 stage C. elegans. 176 neurons are approximately 60 % of all neurons in C. 

elegans. After the neuron labeling, we recorded the fluorescent intensity progression of all 

176 neurons over time (Fig. 4.5). Neurons 1–75 were found in the head region, 76–160 

along the body, and 161–176 in the tail region. The fluorescent intensity plot of the 176 

neurons clearly illustrates neurons’ activities. At around 80 second mark, a number of 

neurons in the head and along the ventral cord activated, and stayed ‘on’ for almost 1 

minute. At 100 second mark, a few neurons in the head triggered on for a few seconds. We 

calculated correlation coefficients among neurons’ activities (Fig. 4.6). The correlation 

coefficients suggest that a number of neurons in the tail are highly correlated while quite a 

few neurons in the tail are anti-correlated. The correlation coefficients among the head 

neurons also suggest that a substantial number of head neurons are correlated and anti-

correlated to one another. Additionally, the neurons along the ventral cord are deemed 

linked to the head and tail neurons to an extent, however, more extensive in-depth studies 

are necessary to reach credible conclusions. 

  

4.4. CONCLUSION AND DISCUSSION 

We successfully demonstrated high-speed confocal functional volumetric imaging 

of all neurons’ activities in the whole L4 stage C. elegans at submicron single cell 

resolution. Previously announced high-speed volumetric imaging methods for C. elegans 

were capable of either high resolution or imaging the whole worm, however, never both. 

The methods capable of high resolution imaging had a limited FOV suitable for a small 

part of the animal, while the methods capable of imaging the whole animal had a low 

imaging resolution incapable of identifying individual neurons in the brain of C. elegans 
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where neurons are densely populated. Our imaging method is the first to achieve functional 

volumetric imaging of the whole L4 stage C. elegans at the submicron resolution.  

We showed our functional volumetric imaging platform combined with the 

microfluidic device is feasible for in vivo study of chemosensory neurons in whole L4 C. 

elegans. Our platform is highly suitable for applying any liquid chemical stimulus to the 

animal while observing the response of its all neurons. This significant strength of our 

platform enables chemosensory experiments on L4 stage C. elegans which were 

impossible. In addition, the imaging principle of our platform is based on the mature 

confocal microscopy technique. Hence, the adoption of our method is expected to be an 

easy task. 

Despite the aforementioned strengths, our functional volumetric imaging platform 

also implies clear challenges. Our platform needs powerful and reliable motion correction 

software. Though the microfluidic device indeed suppresses the animal’s movement, the 

animal still slides along the trapping channel especially at the very moment when the 

animal senses the stimulus. Completely eliminating a living creature’s movement is 

practically impossible.  Our imaging platform undersamples the target volume along the z-

axis. Currently, the z-step size for the in vivo volumetric imaging is 1.67 μm. Considering 

the size of C. elegans neurons’ nuclei is around 2 – 3 μm in diameter, the z-step size should 

be 1 μm or less. In addition, our volumetric imaging platform is severely susceptible to 

shot noise. Out imaging platform is built on the point scanning microscopy, and the 

exposure time per pixel is extremely short due to its fast scanning speed. As a result, the 

number of photons the detector collects is exceedingly low, thus the SNR of the images is 

also poor [120]–[122].  

A novel high-speed volumetric imaging method using a multipoint optical detector 

may address the challenges discussed in the previous paragraph. A multipoint optical 
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detector collects photons through multiple channels in parallel, thus, can extend the 

exposure time per pixel extensively for the same number of pixels. The extension of the 

exposure time leads to collection of a larger number of photons, consequently improves 

the SNR of the images. For example, a line scanning camera of 4,096 pixels can use an 

exposure time 4,000 times as long as a single point detector can to acquire 4,096 pixels. As 

a result, the 4,096 pixel image generated by the line scanning camera will show a SNR 60 

times as high as the 4,096 pixel image by the single point detector.  

A line scanning confocal microscope is a novel imaging method capable of optical 

sectioning at great imaging speed using a line scanning camera. A line scanning confocal 

microscope (LSM510, Zeiss) could acquire 512 × 512 pixel images at 120 Hz rate using a 

CCD line scanning camera in 2006 [123]. For the last 10 years, camera and sensor 

technologies have been rapidly developing, cameras’ imaging speed and sensitivity have 

been improving significantly, and state-of-the-art line scanning cameras in 2016 can obtain 

4,096 pixel lines at 200 kHz rate. Theoretically speaking, a line scanning confocal 

microscope using the 4,096 pixels/line at 200 kHz camera will be able to produce 4,096 × 

512 pixel images at 400 Hz rate while providing a SNR superior to that by a point scanning 

confocal microscope of the same performance. Additionally, the imaging resolution 

achieved by a line scanning confocal microscope is only about 20 % inferior to a point 

scanning confocal microscope. Considering all of the strengths, the line scanning confocal 

microscope will address the z-axis undersampling issue, and the poor SNR issue of using 

the point scanning confocal microscope for functional volumetric imaging while achieving 

a higher volumetric imaging rate.  
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Chapter 5:  High-throughput automated imaging platform for C. 

elegans nerve regeneration study 

 

5.1. INTRODUCTION 

We built a high-throughput automated confocal imaging platform to rapidly record 

high-resolution 3D images of regenerated axons in multiple C. elegans after laser axotomy. 

We used the high-speed laser scanning confocal microscope in Chapter 3 as the confocal 

imaging system. To accomplish high-throughput automation combined with the confocal 

microscope, we developed a microfluidic device to load and immobilize multiple animals 

in parallel, an image processing algorithm to precisely detect the locations of the 

immobilized animals, and a software program to generate an automated imaging sequence 

based on the locations determined by the algorithm. 

The microfluidic device immobilizes and aligns 20 animals in certain orientations 

in which the regenerated axons of interest are efficiently imaged in vivo. The animal 

detection algorithm correctly finds animals’ locations with a success rate over 90%. The 

sequence generation software controls our confocal microscope and the motorized stage to 

minimize the automated imaging time. Our automated imaging platform successfully 

achieves taking high-resolution 3D images of 20 regenerated C. elegans axons in 10 

minutes before the immobilized animals suffer excessive physical stress then release 

autofluorescent signals which deteriorate the signal-to-noise ratio of images. The FOV of 

the 3D images is 350 × 50 × 30 μm3 with 3500 × 500 × 150 pixels, and the imaging 

resolution is 275±11 nm FWHM laterally, and 1.16±0.14 μm FWHM axially, which is 

capable of resolving the 300 nm thickness of C. elegans axons laterally. 
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5.2. EXPERIMENTS 

 

5.2.1. Overall setup 

We built a high-throughput automated confocal imaging platform based upon our 

high-speed confocal microscope for visual inspection of C. elegans axon regrowth and 

recovery after ultrafast laser axotomy. The imaging target is the axons attached to the 

anterior lateral microtubule (ALM) cells shown in the red boxes in Fig. 5.1a, b. The 

thickness of the axons is known to be approximately 300 nm, and the laser surgery cut size 

is 1–2 μm, hence, a very high imaging resolution is essential to properly capture the fine 

features of the axons. We usually perform the ultrafast laser axon surgery 30 μm away from 

the ALM cells. In addition, the regrown axon after the laser surgery could extend longer 

than 50 μm. Thus, an imaging FOV wider than 150 μm horizontally is required to image 

the surgery area and the regrown axons adequately. We used the 40× Nikon 1.3 NA S Fluor 

oil immersion objective to meet the imaging resolution by achieving the 300 nm FWHM 

and 1.16 μm FWHM lateral and axial resolutions. We set the imaging FOV to be 350 × 50 

× 30 μm3 (3500 × 500 × 150 pixels) shown in Fig. 5.1c to comply with the imaging FOV 

requirements. The C. elegans animals used in this study are encoded with the transgenic 

line zdIs5 (mec-4::GFP). The transgenic C. elegans animals express GFP in six touch 

receptor neurons including their cell bodies and axons. 

 

5.2.2. Multi-trapping microfluidic device 

To successfully accomplish the automated confocal imaging of multiple animals, 

we added the microfluidic device for parallel immobilization of multiple animals, and 

modified the confocal microscope software for automation. We designed and fabricated 

the microfluidic device that plays a very important role in automation shown in Fig. 5.1d. 
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The microfluidic device immobilizes multiple animals in vivo in the straight trapping 

channels without using anesthetics. The trapping channels immobilize the animals in 

specific orientations that allow more efficient imaging of the ALM region. The 

predetermined distance between two consecutive trapping channels enables automated 

sample movement. The straight shape of the trapping channels helps the efficient use of 

the rectangular FOV, hence, increases the overall automated imaging process. 

 

 

Figure 5.1: High-throughput automated confocal imaging platform. (a), (b) The imaging 

target is the ALM cell and its axon in the red box. The animal is labeled with the transgenic 

line zdIs5 (mec-4::gfp) (c) The imaging volume size = 350 × 50 × 30 μm3 (3500 × 500 × 

150 pixels). The imaging speed is 30 FPS. (d) Microfluidic device for in vivo anesthetics-

free immobilization in desirable orientations. 

 

5.2.3. Automation flow 

The work flow of the high-throughput automated confocal imaging is illustrated in 

Fig. 5.2. First, we mount the microfluidic device where L4 stage C. elegans animals are 

loaded on the motorized XYZ stage, and align the orientation of the microfluidic device to 

minimize the slant of the trapping channels in the field-of-view. Then, we immobilize the 

worms inside the trapping channels of the microfluidic device by applying a pressure of 
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approximately 65 kPa, and take a fluorescence image of all of the worms immobilized 

inside the microfluidic device channels with a low magnification objective (Nikon, 4X, 

dry), and a large sensor camera (Thorlabs, 8050M-GE-TE). We send the fluorescence 

image to our custom software for imaging target location analysis. 

 

 

Figure 5.2: Flow chart of the automated confocal imaging process. The green boxes 

specifically describe the ALM detection algorithm. 

 

The analysis software first applies a smooth filter to the fluorescence image, then, 

find the highest intensity pixel in each line from the top to the bottom of the fluorescence 

image, and creates an intensity profile (Fig. 5.3c). In the intensity profile, the analysis 

software finds locations of intensity peaks which depicts the locations of the trapped worms 

and the trapping channels. While finding the intensity peaks, the analysis software ignores 

peaks showing low intensity values since intensity values below 30% of the average peak 

Load Worms
Inside Device

Start

Image Whole Device
Low Magnification

Find Target Locations
(Image Analysis)

Confocal Imaging
High NA, Magnification

First (Next) Location

Z-Stack Imaging

All Complete?

End

Yes

NoGenerate
Stage Move Sequence

Find Animals
In Traps

Extract separate traps

Detect brightest cells

Compute center position
between two ALMs



 89 

intensity is translated as unhealthy worms which are not worthy of investigation. Based on 

the intensity peak locations, the analysis software segments the fluorescence image into 

individual trap images for ALM location analysis. 

In each segmented trap image, the analysis software detects the locations of 3 

highest intensity peaks which correspond to two ALM cells and two posterior lateral 

microtubule (PLM) cells (Fig. 5.3c). The two PLM cells appear to be one peak because 

they are very close to each other. The analysis software computes the distances between 

intensity peaks, and compare the three distances. The analysis software calculates the 

center location of the two locations with the smallest distance because the smallest distance 

is the distance between two ALMs. The analysis software repeats calculating the ALM 

locations for all the segmented trap images. Up to this point, all of the calculated distances 

are expressed in terms of pixels in the image. However, the pixel size has been already 

calibrated to the moving distance of the motorized XYZ stage. Thus, based on the 

calibrated pixel size information, the analysis software generates a sequence of 

translational moving distances from one ALM location to the next for the motorized xyz 

stage (Fig. 5.3b).  

Once the moving sequence for the motorized XYZ stage is ready, we begin the 

automated confocal imaging session. We first install the 40× microscope objective (Nikon, 

40X, 1.3NA, oil immersion, S Fluor) replacing the 4× objective, then, run the automated 

confocal imaging software. The automated confocal imaging software moves the 

motorized stage to the ALM positions following the moving sequence given by the analysis 

software, and takes z-stack images (350 × 50 × 30 μm3, 3500 × 500 × 150 pixels) of the 

ALM axons. Lastly, the automated confocal imaging software completes the automated 

imaging session after the automated confocal imaging software images the last ALM axon. 
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Figure 5.3: Automated detection of ALM locations. (a) Animals trapped inside the device. 

The green is the fluorescent signal from the animals. The red inlet shows the magnified 

view of the trapped animal. The two green dots are the ALM cells. (b) The locations of 

ALM cells depicted by the red dots. The red inlet shows the magnified view of the trapped 

animal with the red location marker. (c) Maximum intensity profile along the y-axis. The 

red dots are peaks detected by the analysis software. The small bottom box shows the 

intensity profile of one animal. The green dots are the three highest peaks. 

 

5.3. RESULTS 

 

5.3.1. Automated imaging performance 

The automated confocal imaging session takes 10 minutes in total. We measured 

the automated imaging session by implementing a timer in the automated imaging 

software. Imaging one z-stack of an ALM axon takes 29 seconds. We take 6 frames for 

each plane for averaging, and the piezo stage movement for each step takes 2 ms, hence, 

29 seconds are required for imaging the ALM axon of one animal. Moving from one ALM 

location to the next ALM location takes 1 second. Thus, the whole automated confocal 

imaging session for 20 worms takes 10 minutes (29 seconds/worm × 20 worms + 20 moves 
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× 1 second/move = 600 seconds = 10 minutes). Hence, the actual imaging time agrees well 

with the expected imaging time. 

 

5.3.2. Sample images of axon regrowth and reconnection 

We present two sample images of the ALM axons, a reconnected axon in Fig. 5.4, 

and a non-reconnected axon in Fig. 5.5. The two largest images on the top are the z-axis 

maximum intensity projection of two z-stack image sets, and have the 350 μm × 50 μm 

FOV. The ALM axons are aligned perfectly straight thanks to the straight trapping 

channels. The unique design of the trapping channels also aligns the C. elegans orientation 

for the ALM axons to locate close to the walls of the trapping channel. The small red 

rectangles depict the ALM axon femtosecond laser surgery sites, and the magnified images 

of the surgery sites at different depths are shown in the large red rectangles. The maximum 

intensity projection image of the reconnected ALM axon in Fig. 5.4 shows significant 

amount of autofluorescent light around the femtosecond laser surgery site. The 

autofluorescence stems from the stress that the animal experience from the physical 

pressure for immobilization. If this animal had been imaged with a wide-field microscope, 

the overwhelming autofluorescent light might have extensively interfered with the 

inspection of the regrown axon. Looking at the depth-resolved images in Fig. 5.4, the ALM 

axon seems disconnected at depth z = 0 nm. However, the depth-resolved images at depth 

z = 800 nm and 1000 nm, the ALM axon shows profound reconnection. The successful 

reconnection is also supported by the fact that the ALM axon did not regrow extensively. 

 



 92 

 

Figure 5.4: High-resolution confocal images of the reconnected ALM axon. The top image 

is the maximum intensity projection of the whole z-stack. The yellow dotted lines represent 

the trapping channel walls. The red box depicts the femtosecond laser axon surgery site. 

The enlarged images of the surgery site is given inside the bottom red box. The axon 

reconnection is clearly shown in the images at z = 800 nm and 1000 nm planes.  

A regrown ALM axon without reconnection is illustrated in Fig. 5.5. First 

examining the maximum intensity projection image on the top, the autofluorescent light is 

even more pronounced than the reconnected axon image in Fig. 5.4. The intensity of 

autofluorescent light seems high enough to overwhelm the fluorescent light from the 

regrown axon if the regrown axon is inspected through wide-field microscopy images. 

Looking at the enlarged and depth-resolved images, the regrown axon from the right distal 

end of the original axon bends upwards ending up not reconnecting to the left distal end of 

the original axon as shown in the images at z = 600 nm, and 800 nm. 

 

5.4. CONCLUSION 

We developed the high-throughput automated confocal imaging platform for C. 

elegans nerve regeneration study. The automated imaging platform takes high-resolution 

3D images of a 350 × 50 × 30 μm3 volume in 29 seconds, and completes imaging a batch 

of 20 animals in 10 minutes. The microfluidic device of the automated imaging platform 
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enables automation because the microfluidic device effectively immobilizes animals in 

specific orientations appropriate for C. elegans ALM axon imaging, and aligns the animals 

at a regular spacing. The analysis software of the automated imaging system successfully 

detects ALM axons and their locations, and generate a specimen moving sequence for the 

automated imaging. The high-resolution confocal images are capable of differentiate 

between ALM axon reconnection and regrowth with no reconnection even when the 

autofluorescent signal from the animal’s body is substantial. 

 

 

Figure 5.5: High-resolution confocal images of the regrown ALM axon without 

reconnection. The top image is the maximum intensity projection of the whole z-stack. The 

yellow dotted lines represent the trapping channel walls. The red box depicts the laser axon 

surgery site. The enlarged images of the surgery site is given in the bottom images. The 

axon regrowth direction moves upwards between z = 400 nm and 600 nm. At z = 800 nm, 

the original axon extends to the regrown axon on the top left while not reconnecting to the 

original axon on the bottom left. 
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Chapter 6:  Planar laser activated neuronal scanning (PLANS) 

 

6.1. INTRODUCTION 

A new drug discovery demands screening of numerous drugs by applying the drugs 

to a huge number of model organisms. Hence, acceleration of a new drug discovery 

requires a novel ultrafast model organism scanning technology to reduce the time for drug 

screening. We developed a novel high-throughput opto-fluidics platform capable of 

scanning all neurons in the whole nervous system of a model organism C. elegans within 

milliseconds, which we named ‘Planar Laser Activated Neuronal Scanning’ (PLANS). 

PLANS uses a tailored light sheet to excite fluorescent protein encoded animals slice by 

slice, and records the fluorescent emission intensity. We analyze the recorded fluorescent 

intensity from the animals, and understand the status of the animals.  

Our PLANS system consists of a microfluidic device, and an optical detection 

system. The microfluidic device comprises a loading chamber, and a narrow flow channel. 

Animals stay in the loading chamber until they are sent to the narrow flow channel where 

the single animals are optically scanned while rapidly flowing. The optical detection 

system generates a tailored sheet of light to excite the fluorescent protein molecules inside 

the neurons of the animals, and record the intensity of the fluorescent emission from the 

excited fluorescent protein molecules at a sampling rate high enough to complete recording 

a large population of animals within seconds. The microfluidic platform and the optical 

detection platform function in synchronization to optimize the entire scanning process, and 

to minimize any time loss within the process. Currently, our PLANS system is capable of 

scanning a single animal in 5 ms with a spatial sampling resolution of 2 μm FWHM. 
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6.2. EXPERIMENTS 

 

6.2.1. Optical setup 

The design of PLANS is illustrated in Fig. 6.1. We use a continuous wave (CW) 

488 nm solid state laser (Spectra Physics, Cyan 488) as the excitation light source. We 

couple the laser beam into the single mode fiber (Thorlabs, P1-460B-FC-5), and collimate 

the laser beam output from the fiber end with the collimation lens (Thorlabs, C560TME-

A, f = 13.86 mm). The single mode fiber filters unwanted non-TEM0, 0 modes out of the 

CW laser, and helps with shaping sharper excitation light. Then, we focus the collimated 

laser beam in one axis with the cylindrical lens (Thorlabs, LJ1144L1-A, f = 400 mm). We 

mount the cylindrical lens on the translational stage (Thorlabs, LT1) so that we can slide 

the cylindrical lens position to adjust the laser beam shape on the specimen. The laser beam 

is focused onto the animal guiding channel in the microfluidic device by the 10× objective 

(Olympus, 10×, 0.3 NA, dry). We tailor the focused laser beam shape by finely adjusting 

the cylindrical lens location relative to the objective. Our goal shape of the laser beam is 

the thickness of 3–4 μm, and the width of 50–80 μm as shown in Fig. 6.1b. The tailored 

laser beam excites the GFP molecules of the neurons inside the animal slice exposed to the 

laser beam. The excited GFP molecules emit fluorescent photons. The fluorescent photons 

are collected by the high NA objective (Zeiss, 63×, 1.4 NA, oil immersion), and sent out 

of the objective back aperture. The fluorescent photons leaving the objective back aperture 

are gathered by the collection lens (Thorlabs, LA1131-A, f = 50 mm), and converge into 

the photomultiplier tube (PMT, Hamamatsu, H10721-110). The PMT generates an electric 

current whose amplitude is proportional to the number fluorescent photons that the PMT 

receives. The electric current from the PMT is relayed to the transimpedance amplifier 

(preamp, Stanford Research Systems, SR570) where the electric current is converted and 
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amplified to the electric voltage signal. The electric voltage signal from the preamp is 

recorded as digital data by the high-speed data acquisition card (AlazarTech, ATS9462). 

The voltage signal data is saved in the storage of the PC for further analysis. 

 

 

Figure 6.1: PLANS apparatus. (a) The overall optical setup of PLANS. The cylindrical 

lens position is adjustable for the excitation beam shape control. The blue is the excitation 

laser beam, and the green is the fluorescent emission. The dashed red box denotes the 

animal scanning region. (b) The enlarged picture of the dashed red box in (a). The thickness 

of the excitation light sheet is 3–4 μm, and the width is 50–80 μm. The C. elegans is 

traveling through the light sheet perpendicular to the light sheet. The yellow is the C. 

elegans, the green is the excited slice of C. elegans, the blue is the excitation light sheet, 

and the red is the excited neuron in the excited slice. (c) The microfluidic device for PLANS. 

The dashed red box is the scanning channel where the excitation laser beam passes through. 

The width and the depth of the scanning channel is both 40 μm. 

 

6.2.2. Microfluidic device for scanning 

We also developed the microfluidic device for PLANS shown in Fig. 6.1c. The core 

role of the microfluidic device is to guide C. elegans specimens to the tailored excitation 
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laser beam in a controlled fashion. The microfluidic device consists of two inlets, one 

outlet, valves to control the inlets and outlet, an animal chamber, and a scanning channel. 

The inlet 2 (‘In 2’ in Fig. 6.1c) is the animal entrance to the animal chamber. The animal 

chamber is where animals stay and wait to be sent to the imaging channel. The inlet 1 (‘In 

1’ in Fig. 6.1c) allows pressured water into the animal chamber. The pressured water gently 

pushes animals inside the chamber to the center of the chamber. When the animal scanning 

begins, both of the inlets and the outlet are open, then, the pressured water propel animals 

to the imaging channel. While the animals travel through the scanning channel, the animals 

are exposed to the tailored excitation laser beam, and their fluorescent photon emission is 

scanned. The scanned animals lastly leave the microfluidic device through the outlet (‘Out’ 

in Fig. 6.1c) after passing the scanning channel. 

 

6.2.3. Scanning laser sheet design 

We conducted ZEMAX software simulation of the excitation laser beam shaping 

before building the optical apparatus. We first realized the 10X objective we used in our 

apparatus in ZEMAX based on the Olympus patent as shown in Fig. 6.2a [124]. We varied 

the back aperture filling of the objective with a 488 nm laser beam with the M2 factor of 

1.1. The simulation results are shown in Fig. 6.2b, c. When the back aperture filling was 

over 10 mm, the laser beam thickness was the thinnest being less than 2 μm. All laser beam 

dimensions are in e-2 diameter hereafter unless specified otherwise. However, the beam 

divergence was the most significant that the beam thickness became larger than 10 μm 

when the beam was ±25 μm away from the focus. This expansion of 5 times is unsuitable 

for the uniform excitation of the specimen. When the back aperture filling was less than 6 

mm, the laser beam thickness was slightly thicker than 2 μm yet still thinner than 4 μm. 

Though the thickness was rather thicker than 2 μm, the divergence of the laser beam was 
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much less significant that the thickness 25 μm away from the focus was less than 7 μm. 

Hence, the expansion is smaller than 3 times. When the back aperture filling was 4 mm, 

the laser beam thickness was 3.5 μm on the focal plane, and 5.5 μm at ±25 μm distance. 

Based on these results, we concluded the back aperture filling for the thinner dimension 

should be between 4 mm and 5 mm to maintain the excitation laser beam intensity as 

uniform in over the height (40 μm) of the device scanning channel as possible. 

 

 

Figure 6.2: Excitation laser beam shape simulation using ZEMAX. (a) The 10X Olympus 

objective simulated in ZEMAX. (b) The thickness of the laser beam for various back 

aperture filling. The back aperture filling of 4 mm and 6 mm leads to the thickness close to 

the beam shape goal. (c) The width of the laser beam for various back aperture filling. The 

back aperture filling below 1 mm shows no width change over 50 μm distance. 

 

The laser beam divergence disappeared when the back aperture filling was smaller 

than 1 mm as shown in Fig. 6.2c. For all back aperture fillings between 0.12 mm and 1 
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mm, the laser beam width remained nearly the same over 50 μm distance. The back aperture 

filling only changed the laser beam width. The laser beam width was 70 μm and 85 μm 

when the back aperture filling was 0.2 mm and 0.16 mm. The laser beam width greatly 

fluctuated from 35 μm to 115 μm by a miniscule adjustment of the back aperture filling 

from 0.4 mm to 0.12 mm. Based on those simulation results, we concluded that the back 

aperture filling for the laser beam width between 50 μm and 80 μm should be between 0.3 

mm and 0.15 mm, and we needed a means to adjust the back aperture filling precisely 

because the laser beam width is sensitive to the back aperture filling. Thus, we mounted 

the cylindrical lens on the translational stage to control the laser beam size on the objective 

back aperture. 

 

6.3. RESULTS 

 

6.3.1. Scanning laser sheet characterization 

We built the optical apparatus for PLANS based on the ZEMAX simulation result 

in 6.2.3, and characterized the excitation laser beam shape. We built the optical setup in 

Fig. 6.1a. We collimated the excitation laser beam to be 4 mm e-2 diameter with the 

collimation lens. We placed a very thin layer of agarose pad mixed with a diluted 

fluorescein (FITC) solution at the location of the microfluidic device. We installed a CMOS 

camera (Allied Vision, Manta G-032C) instead of the PMT to image the excited region of 

the FITC agarose pad. We adjusted the location of the cylindrical lens to set the excitation 

laser beam width to be 80 μm. Then, we moved the FITC agarose pad along the z-axis at a 

10 μm increment, and recorded the images of the fluorescent emission from the FITC 

agarose pad (Fig. 6.3a).  
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Figure 6.3: Thickness of the excitation laser beam. (a) Images of the excitation laser beam 

at different distances from the focal plane. The number in each image denotes the distance. 

(b) Plot of the excitation laser beam thickness. The numbers at each distance is the e-2 

thickness of the laser beam at that distance. The e-2 width of the excitation laser beam is 80 

μm. 

 

We analyzed the recorded fluorescent emission images to characterize the 

excitation laser beam dimensions. We measured the pixel intensity of each of the images 

vertically, and curve-fit the intensity to the Gaussian distribution. We calculated the 4 

deviation width (4σ) from the Gaussian curve-fits to acquire the e-2 width of the excitation 

laser beam. The calculated e-2 width at different distances from the focal plane is plotted in 

Fig. 6.3b. The thickness of the excitation laser beam is 3 μm being the thinnest on the focal 

plane. The thickness of the excitation laser beam expands to 6 μm at a 30 μm distance. 

Hence, the increase in the beam thickness from the focal plane to the plane at 30 μm is 

lower than 100%. The beam profile in Fig. 6.3b agrees well with the simulation result of 

the 4mm back aperture filling in Fig. 6.2b. This 3–5.5 μm excitation laser beam thickness 

is expected to provide the spatial scanning resolution of 1.8–3.3 μm full-width half-

maximum (FWHM). 
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6.3.2. Sample animal scanning results 

Having completed the PLANS apparatus, we conducted experiments to test the 

performance of the PLANS method. We prepared a group of C. elegans genetically 

encoded with AM138 strain, and the other group with AM141 strain [125]. Both AM138 

and AM141 strain label the body-wall muscle cells with GFP. The difference between 

AM138 and AM141 is AM141 induces protein aggregation of the body-wall muscle cells, 

imitating Huntington’s disease while AM138 does not. We took images of Day 1 adult C. 

elegans encoded with AM138 and AM141 (Fig. 6.4a, b), and scanned those animals with 

our PLANS system separately to characterize the intensity profiles of the AM138 (healthy) 

and AM141 (degenerate) animals.  

The healthy animal intensity profile shows a fairly uniform fluorescent emission 

intensity level throughout the whole animal body as shown in Fig. 6.4a. The fluorescent 

emission intensity level rapidly increases from the head, reaches the intensity peak height 

depicting the animal’s nerve ring, then decreases to the level half of the intensity peak. The 

intensity level covers to the peak height, and stays around the peak height until the three-

fourth point of the whole animal. Reaching the tail region of the animal, the intensity level 

gradually drops to the no-signal level while showing a couple of spikes. Contrary to the 

healthy animals, the florescent emission intensity profile of the degenerate animals shows 

frequent fluorescent intensity spikes throughout the whole animal scanning. The intensity 

spikes originate from the aggregated protein molecules shown in Fig. 6.4b as distinctively 

bright green dots. The heights of the spikes are similar to one another hence, the fluorescent 

intensity profile shows no other distinctive features apart from the spikes. The difference 

between the healthy animal intensity profile and the degenerate animal intensity profile is 

apparent. 
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Figure 6.4: Fluorescent emission intensity profiles of healthy and unhealthy C. elegans. 

(a) The image (top) and the fluorescent intensity profile (bottom) of healthy C. elegans 

without protein aggregation. (b) The image (top) and the fluorescent intensity profile 

(bottom) of degenerate C. elegans with protein aggregation. 

 

Having completed the individual characterization of the healthy and degenerate 

animal fluorescent intensity profile, we examined the scanning discernibility of our 

PLANS system by scanning a batch of mixed healthy and degenerate animals. We loaded 

approximately 20 healthy animals and 20 degenerate animals in the microfluidic scanning 

device, and recorded the fluorescent emission from the animals while delivering the mixed-

state population through the scanning channel. We analyzed the recorded fluorescent 

emission intensity data, and categorized the intensity data into two groups: healthy and 

degenerate. We counted the numbers of the intensity profiles in the two groups and 

compared the numbers to the numbers of healthy and degenerate animals we initially 

loaded in the scanning device. We had 20 for the number of healthy animal intensity 
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profiles, and 20 for the number of degenerate animal intensity profiles, which match 

exactly the number of animals we initially loaded in the scanning device. The result 

confirms our PLANS can easily differentiate two different health-state animals with 

precision. 

We also assessed the scanning speed of our PLANS system. The animal scanning 

took 9 ms and 5 ms in Fig. 6.4a, b. Considering we applied rather a weak pressure to the 

scanning device inlet, the one-animal scanning time can be easily reduced by applying a 

higher pressure. We recorded the fluorescent emission intensity with the sampling rate of 

2 MS/s, hence, we generated nearly 20,000 and 10,000 data points for the 1 mm animal 

body length for 9 ms and 5 ms scans, respectively. Both 20,000 and 10,000 data points 

translate to sampling lengths of 20 nm and 40 nm per point. Even if the one animal scanning 

time is 1 ms, our scanning will generate 2,000 data points, and provide a sampling length 

of 200 nm, which is precise enough to resolve the scanning resolution of 1.8 μm FWHM. 

 

6.4. CONCLUSION AND DISCUSSION 

We designed, constructed, and characterized PLANS, a high-speed animal 

scanning platform for drug screening. Currently, PLANS is capable of scanning a single 

animal in 5 ms with a spatial sampling resolution of 2 μm FWHM. The scanning speed can 

be improved without sacrificing the spatial sampling resolution by optimizing the 

microfluidic device, and using a higher sampling rate for scanning.  

The next step after improving the scanning speed is to examine various C. elegans 

disease models to select suitable models for drug screening, and to evaluate chemical 

compounds’ effectiveness in preventing age-associated degeneration of specific neurons in 

the selected C. elegans disease models. While assessing the chemical compounds’ 

effectiveness, we will further improve our PLANS system.  
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Current PLANS system acquires only 1D intensity profiles of animal neurons’ 

fluorescent light emission due to the light-sheet dependent 1D scanning nature of PLANS. 

1D fluorescent intensity profiles may be sufficient to assess certain disease models, 

nonetheless, PLANS manifests its intrinsic shortcomings. The performance of PLANS is 

particularly susceptible to autofluorescent signals within the specimen’s body. The point 

detector such as the PMT used in PLANS collects all of the fluorescent light from the 

specimen slice excited by the excitation light sheet. Hence, PLANS cannot detect the target 

cell or neuron of interest if the total autofluorescent light from the excited slice dominates 

the fluorescent light from the cell or neuron of interest. Even if the autofluorescent light 

intensity does not dominate the fluorescent light from the target cell or neuron, the 

autofluorescent still worsens the SNR of PLANS. 

In addition, the accuracy of PLANS is sensitive to the orientation of the specimen. 

PLANS cannot provide adequate information when the target region of the specimen does 

not pass through the center of the excitation light sheet because the intensity of the 

excitation light sheet at the edges is significantly lower than that in the center. Thus, invent 

of a new ultrafast 2D and 3D animal scan methods is greatly desirable. The new 2D and 

3D scan methods will still have to scan a C. elegans within milliseconds while providing 

2D and 3D image information of the neurons. The new 2D and 3D scan method will 

increase the accuracy and credibility of the animal scan data, and make more readily 

available C. elegans disease models feasible for high-throughput drug screening. 
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Chapter 7:  Conclusions 

In summary, we successfully developed high-speed imaging techniques for C. 

elegans nervous system studies. We first developed a high-speed laser scanning confocal 

microscope. The confocal microscope achieves fast imaging speed, and large field-of-

views simultaneously by employing a resonant scanning mirror, and a novel hardware-

software hybrid control and synchronization system. The control and synchronization 

system also enables flexible control of imaging conditions, and effortless system update 

and modification for various applications using the confocal microscope. We thoroughly 

explain the optical, electrical, and software principles that we used to design, and build the 

confocal microscope. We characterized the imaging performance of the confocal 

microscope. We present sample high-resolution 3-dimensional confocal images of C. 

elegans encoded with green fluorescent protein strains to demonstrate the capability of the 

confocal microscope.  

We developed an in vivo functional volumetric imaging platform to study the whole 

animal C. elegans neurons’ activities. The imaging platform consists of the high speed laser 

scanning confocal microscope we constructed, and a microfluidic device for animal 

immobilization and chemical stimulus delivery. We confirmed the feasibility of using the 

high-speed confocal microscope for functional volumetric imaging of C. elegans with a 

GFP calcium indicator. We successfully imaged C. elegans neurons’ fluorescent signal in 

the whole animal with and without chemical stimulation. We managed to trace 176 

neurons’ activities in the whole animal for 4 minutes, and calculated the correlations among 

the neurons. The correlation information suggests convincing connections among neurons. 

We developed a high-throughput automated confocal imaging system for C. 

elegans nerve regeneration study. The automated imaging system consists of the high-

speed laser scanning confocal microscope, a microfluidic device for multiple animal 
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trapping, and automation software. The microfluidic device enables the high-throughput 

automation by simultaneously immobilizing and orienting 20 animals suitably for imaging 

the target region of interest in straight channels separated at regular spacing. The 

automation software detects the animals immobilized inside the microfluidic device, 

compute relative distances between two consecutive target regions, and generate a 

translational moving sequence for automation. The automated imaging platform completes 

acquiring high-resolution confocal images of the 20 animals in 10 minutes. The high-

resolution confocal images successfully examine the nerve regeneration and reconnection 

of C. elegans axons after ultrafast laser surgery. 

We developed the planar laser activated neuronal scanning (PLANS) system, a 

high-speed fluorescent animal scanning system for drug screening. The PLANS system 

comprises an optical setup and a microfluidic device. The optical setup excites target 

animals’ fluorescent protein molecules, collect fluorescent signals from the animals, and 

record the fluorescent signals’ intensity. The microfluidic device delivers the accurately 

defined imaging channel in strictly controlled manners. Thanks to the efficient combination 

of the optical setup and the microfluidic device, the PLANS system achieves scanning an 

animal within 5 ms with a spatial sampling resolution of 3 μm. We scanned a mixed batch 

of healthy and unhealthy animals of Huntington’s disease model, and the scanning results 

demonstrate the PLANS system does screen healthy and unhealthy model animals 

accurately. 

Our in vivo functional volumetric imaging platform and PLANS system have their 

shortcomings though they successfully accomplish their development purposes. The 

efficiency of the volumetric imaging platform is limited by its z-axis undersampling, and 

its poor SNR due to shot noise.  The line scanning confocal microscope is a convincing 

candidate to solve the z-axis undersampling issue, and the poor SNR issue of the point 
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scanning confocal microscope for functional volumetric imaging. The PLANS system’s 

performance drastically depends on the properties of the screening model specimens due 

to the PLANS’ susceptibility to the specimen’s orientation, structure, and level of 

autofluorescence. A new 2D or 3D animal scanning method will resolve the weakness of 

the current PLANS system, and be compatible with more C. elegans disease models. 
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