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Development of dry powder inhaler (DPI) formulations for respiratory diseases, 

such as Tuberculosis (TB), is challenging. The major limitation of current marketed DPIs 

is low delivery efficiency. In addition, delivered dose variation is also a challenging 

problem in the development and design of DPI formulations due to the poor flowability 

and dispersibility of the powder formulation. Furthermore, antibiotic drugs used in TB or 

other respiratory infectious diseases have to be administered in a relatively large dose for 

pulmonary delivery. However, currently there is no high dose conventional lactose based 

DPI formulations available. Therefore, I propose an innovative approach to solve these 

problems through the engineering of particulate lactose by wet granulation.  

Lactose is the commonly used carrier particle for DPI formulations. Although it 

was widely believed that carrier particles with smaller diameters were preferable to 

maximize aerosolization efficiency (the ability of the drugs to be delivered to the lung), it 

was found recently that lactose carriers with large size also can improve aerosol 

performance, especially when combined with greater surface roughness and an 

appropriately designed inhaler device. 
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In the first study, after the engineered particulate lactose was manufactured, the 

relationship between the physico-chemical properties, e.g. size, of the granulated lactose 

and the DPI aerosol performance was investigated. It was concluded that poorer or 

enhanced dispersion performance is not an inherent property to the significantly large 

size of granulated lactose carriers as previously contended. Relatively large granulated 

lactose has improved flowability and increased surface roughness with increasing size 

fraction, which were properties for formulating high drug loaded DPI formulations. It 

was found that the aerosol performance of the high drug loaded DPI formulation 

depended significantly on the specific APIs and also the inhalation flow rate used in the 

cascade impactor study. DPI aerosol performance is the interplay of formulation, patient 

inhalation effort and device design. The device design was therefore modified and 

optimized to further improve the aerosol performance.  In the end, with the optimized 

device and granulated lactose as the carrier, a high drug loaded rifampicin DPI 

formulation with improved aerosol performance (fine particle fraction around 70%), 

better blending uniformity and potential low systemic toxicity was achieved.  
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Chapter 1: Introduction 

 

1.1 EXCIPIENTS IN DRY POWDER INHALERS 

 

In their broadest definition, excipients are the constituents of pharmaceutical 

dosage forms that are not the active substance.  In general they serve a wide range of 

purposes including coloring agents, antioxidants, preservatives, adjuvants, stabilizers, 

thickeners, emulsifiers, solubilizers, permeation enhancers, flavoring and aromatic 

substances as well many other enabling roles. They are even defined as broadly as the 

constituents of the outer covering of the medicinal products, e.g. gelatin capsules
1
.  But 

what is the purpose of using excipients in dry powder inhaler formulations? To answer 

this, it is useful to trace the history of modern dry powder inhalers and discuss briefly the 

mechanisms of operation of these devices and the underlying physics.  

US patent 2470296 describes perhaps the first modern commercial dry powder 

inhaler, the Abbott Aerohalor. This patent application from 1948 provides the first 

description of how drug powders and additives or excipients might influence the 

performance of an inhaler device. Specifically, fields describe his invention as being 

more accurate and had improved performance when the drug (penicillin) was mixed with 

some other ingredient that functioned as a diluent or vehicle
2, 3

. From these beginnings 

one can identify the next major advance in dry powder inhalers as the paper by Bell and 

coworkers (1971) that describes issues of powder dispersion and flow as it related to the 

Fison’s Spinhaler that was patented in 1970 
4, 5

. This landmark paper changed the way the 

aerosol scientists thought of inhalers and the influence of the work is still present in the 
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multitude of scientific works that focus on dry powder inhalers today. For the first time, it 

was suggested the addition of coarse carrier particles to the fine particles in the 

formulation in order to improve the powder flow. For example, cromolyn sodium after 

micronization was reduced to a mean aerodynamic diameter of 2.6 µm and resulted in 

poor powder flow and difficulty in emptying from the capsule. However, results were 

shown where powder flow was considerably improved when mixed with 70% w/w of 

coarse lactose in the range 30-60 µm. Another longstanding legacy introduced in the 

paper was the concept of using standard hard gelatin capsule for the dose storage. In this 

way the powder was protected against the environment unlike previous technologies such 

as the Aerohalor. This paper also illustrated that vibratory motion was necessary for 

powder aerosolization. These features are still readily observable in modern inhalers. The 

impact of powder particle size on discharge of powder from the gelatin capsule also was 

studied. For this study, eight different lactose powders sizes were tested, ranging from 4 

to 400 µm. Their results showed the best performance was obtained with a size range of 

70-100 µm.  

From these beginnings one can see the origins of today’s dry powder inhaler 

technologies from device and formulation design. We can begin to answer some of the 

central questions about excipients in dry powder inhalers: Why do we need excipients? 

Almost all commercialized DPIs and many of those in development utilize lactose as an 

excipient. Lactose as an excipient has two main functions: (1) aiding in the dilution and 

powder flow necessary for metering of the dose into capsules or blister cavities, and (2) 

aiding in particle entrainment and in particle deaggregation during airflow across the 

device improving lung deposition efficiencies. Dose metering and particle deaggregation 



3 
 
 

are two critical steps in successful powder delivery to the airways that are difficult to 

achieve. Pure micronized particles suffer from complex adhesion and cohesion forces 

resulting in aggregation. These adhesive forces are primarily van der waals in origin 
6
 and 

at the size ranges of respirable particles these forces dominate over gravitational forces 

that are responsible for much of the physical behavior of much larger sized particulate 

systems. Individually, van der waals forces are weak, but collectively there can be strong 

– analogous to Velcro™. Strong aggregation arises in micronized powders because their 

surface areas are large and the masses are very low. For example, 500 mcg dose of 

micronized fluticasone contains the total equivalent surface area as the U.S. one dollar 

bill. The mass of each particle however is in the low picogram range. Therefore a major 

challenge is to facilitate the relatively modest airflow of inhalation to overcome the high 

surface areas and associated energies that result in strong particle-particle adhesion. 

Because the particles themselves carry such a low mass, the transfer of forces to induce 

breakage of these interparticulate forces are the major limitation in dry powder inhaler 

systems.  However, as seen with the Aerohalor and the Spinhaler™, mixing the 

micronized drug with an excipient improves the balance so that deaggregation can occur 

to a sufficient extent that clinical benefit can be achieved from these and similar devices.  

Why do we use lactose as the primary excipient in DPIs? Table 1.1 is a list of 

commercially available inhalation grade lactose (Figure 1.1) on the market 
7, 8

. The 

literature does not reveal a clear picture of why lactose itself was initially chosen. Over 

the years reasons have been given that include the fact that it is less hygroscopic than 

many other polyols, it is readily available in a variety of pre-engineered morphologies, 

densities, and it is easily processed by a number of different manufacturing methods. The 
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established safety profile is obviously important today but would not have been as 

established when lactose was first chosen forty or so years ago. It seems that lactose may 

be our excipient of choice today because Bell and coworkers showed that it was 

promising as a DPI excipient. 

Despite its obvious widespread use and apparent functionality in dry powder 

inhalers, lactose does not yet solve the major challenges for DPIs today. Dose 

consistency is poor with dry powder inhalers. In general, the dose depends on the 

inhalation flow rate achieved by the patient. In addition, it is well known that 

manufacturing control and uniformity are extremely challenging with these products, 

particularly with the emergence of fixed dose combination products. The poor 

deaggregation efficiency achieved by modern DPIs is also a barrier to commercialization 

for therapeutics with either low potency or with narrow therapeutic indicies. Off-targeting 

of 60-80 percent of the drug payload is the current norm for both inhalers on the market 

and even for many of those in development. A large and growing body of literature has 

been generated on various aspects of DPI formulation design and excipient properties as 

scientists have tried to solve these issues. Lactose has been examined by looking at the 

influence of particle size 
9, 10

, surface area
11

, particle shape 
9, 12

, effects of crystallinity 
13

, 

surface adhesion forces 
14

 and surface energetics 
11

, electrostatic effects 
15, 16

, influence of 

impurities 
17

, amongst other aspects.  Table 1.2 provides a summary of the 

physicochemical properties of lactose extensively investigated and their influence on DPI 

performance. Despite the multitude of detailed investigations our understanding of DPIs 

has improved only gradually and many critical unknowns still exist. For instance the 

mechanisms of powder blend statics and dynamics (i.e. the adhesion step) are largely 
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unknown. The dispersion mechanisms (i.e. deaggregation step) has received greater 

attention but this remains speculative and importantly, few, if any, analytical methods 

have been found that provide sufficient predictive power of formulation performance and 

insights into quality of the system.  

What is needed for improving DPI quality and performance? The aerosol 

performance of DPIs is a function of the adhesive (drug-lactose) and cohesive forces 

(drug-drug). Strong adhesive forces between lactose and drug facilitate homogenous 

blending, but may result in poor drug particle dispersion from carrier surface.  On the 

other hand, strong cohesive forces, which lead to easier carrier-drug deaggregation, may 

reduce blending stability and cause product variability. What is needed are methods that 

identify the important parameters predictive of powder performance. Several 

methodologies and techniques have been applied to estimate particulate interactions, such 

as atomic force microscopy (AFM)
50, 51

, inverse gas chromatography (IGC)
52, 53

, powder 

flow indices 
44

, and newly developed blending dynamics
9
. powder flow properties with 

aerosol performance have investigated with the hope of allowing rapid selection and 

optimization of formulations. Angle of repose, Carr’s compressibility index (CI), and 

Hausner ratio (HR) are static powder flow indices of pharmaceutical solids. The angle of 

repose (a) reflects interparticulate adhesion and friction forces. As the adhesion and 

friction forces increase, the angle of repose increases with a greater resistance to flow. 

Free-flowing powders have less than 40° angle of repose; while angle of repose greater 

than 50° indicates poor flowability [54]. Dynamic powder flow measurement methods 

include dynamic angle of repose, also called rotating drum method [55], and vibrating 

spatula method [56]. In the rotating drum method, powders slowly rotate in the drum and 
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avalanches happen when angle of repose is exceeded during rotation. The dynamic angle 

of repose, Ɵ, oscillates around a mean angle. Powder rheology too has recently received 

attention and, similar to flow measurements, allow improved manufacturing and 

aerosolization performance to be quickly screened. 

All analytical methods mentioned above, although providing snapshots and insight 

into surface interactions, have been limited by tedious procedures and irreproducibility. 

While AFM scrutinizes the system on the single particle scale (microscale) and IGC 

probes the bulk powder (macroscale), methods which span these scales have not yet been 

developed. Mixing studies may be employed to screen DPI formulations, which are 

performed in blending uniformity validation routinely. These approaches remain 

empirical however, and require different scales of scrutiny in order to develop a 

mechanistic understanding of the formulation performance.    

As a result of the limitations of current lactose carriers and their innate variability 

in some manufactured products, alternative processing methodologies have been explored.  

Spray drying is most commonly used to optimize dry powder formulations, which can be 

used to process not only small molecules
54

 but also macromolecules
55, 56

. Engineered 

carriers (spray dried, recrystallized, etc.) have also been extensively studied in past 

decades 
26, 29, 57-61

. Despite these extensive efforts, few particle technology approaches 

have progressed into the clinic. Potential developmental and regulatory issues have 

slowed their advancement: regulatory burden of developing novel excipients, stability 

concerns due to presence of significant amorphous material, cost of processing, low 
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potency of powders, and large volumes of low density powders required for relevant 

dosing.  

An emerging approach to solve variability and improve performance is to eliminate 

lactose from the system. Lactose, though ubiquitous and proven, might be considered 

technology limiting for DPIs. Despite intensive investigation, few studies have shown 

lactose formulations to achieve moderate dispersion performance with flow independence. 

Moreover, as a natural product, it proved a formidable challenge to control for many DPI 

manufacturers.  However, to eliminate lactose, one must find alternatives that will 

assume it primary function: dose metering and entrainment enhancement. Selvam et al. 

developed excipient free novel powder inhaler with passive flutter induced dispersion. 

The flutter induced dispersion mechanism could achieve more efficient deaggregation 

and improved dispersion performance 
62

. 3M Drug Delivery Systems (St. Paul, MN) 

developed a novel microstructured carrier tape (MCT) inhaler (Taper®), which delivers a 

dose range of 50-1500 µg without excipients 
63

.  This device uses external energy to 

aerosolize the powder.  Respira Therapeutic’s devices are passive, and eliminate lactose 

carriers, replacing this with a much larger bead platform to dramatically change 

efficiency of aerosolization. The drug-coated bead, sufficiently large such that it is 

retained within the device maximizes the energy transfer from the patient's inhalation into 

the micronized drug powder. Respira's inhaler technologies achieve high performance 

(>80% fine particle fractions) coupled with patient inhalation independence down to 

pressure drops as low as1 kPa [35].  
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However, few technologies currently allow elimination of excipients. In addition, it 

is challenging to bring new excipients to FDA approved products. Even though high 

barriers exist, recently new excipients have been included in new products. Exubera
®

, 

contained spray dried powder composed of recombinant human insulin, and a novel 

excipient composition (sodium citrate, sodium hydroxide, mannitol and glycine)
64

.  

Mannkind, also with an insulin product, appears to have satisfied regulators that their 

novel excipient is also safe.  

To summarize, excipients (mainly lactose) have a long and interesting history in 

DPI formulations. Despite a great deal of science, lactose based formulations still retain a 

significant tendency for “art”. Many remarkably successful DPI products provide 

evidence of the function and utility of lactose. However, moving the field beyond the 

current state-of-the-art will require development of a better understanding of all 

mechanisms underlying DPI performance. This may require significant investment and, 

as a consequence of divergence of research programs, may be subjugated by unexpected 

and emerging disruptive technologies. Excipient free technologies, alternative excipients, 

or novel manufacturing processes may provide solutions to the current challenges facing 

development of DPIs.   
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1.2 TABLES 

 

Table 1.1 List of inhalation grade lactose on market
8
 

Lactose grade Description (0.5)(µm) D(0.9)(µm) 

Respitose ML001           

(DFE Pharma) 

Milled lactose monohydrate with 

broad PSD 

55 170 

Respitose ML006           

(DFE Pharma) 

Fine milled lactose monohydrate 

with narrow PSD 

17 45 

Respitose SV003            

(DFE Pharma) 

Sieved lactose monohydrate with 

narrow PSD 

60 100 

Respitose SV010             

(DFE Pharma) 

Coarse sieved lactose 

monohydrate with broad PSD 

05 175 

Lactohale 100 (Domo) Sieved lactose monohydrate with 

narrow PSD and tomahawk 

shaped particles with smooth 

surface 

25-145 200-250 

Lactohale 200 (Domo) Gently milled lactose 

monohydrate with irregular 

shaped particles 

50-100 120-160 

Lactohale 201 (Domo) Hardly milled lactose 

monohydrate with narrow PSD 

50-100 120-160 

Lactohale 300 (Domo) Micronized lactose monohydrate 

with narrow PSD 

<5 <10 

Inhalac 70 (Meggle) Sieved crystalline lactose with 

narrow PSD 

00 300 

Inhalac 120 (Meggle) Sieved crystalline lactose with 

narrow PSD 

50 200 

Inhalac 230 (Meggle) Sieved crystalline lactose with 

narrow PSD 

00 140 

Anhydrous 120 MS 

(Sheffield Pharma 

Ingredients) 

Sieved anhydrous  lactose - - 

Monohydrate 120 MS 

(Sheffield Pharma 

Ingredients) 

 

Sieved monohydrate lactose - - 
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Table 1.1 List of inhalation grade lactose on market
8
 (Continued) 

Lactose grade Description (0.5)(µm) D(0.9)(µm) 

Anhydrous 40 M        

(Sheffield Pharma 

Ingredients) 

Sieved anhydrous  lactose - - 

Monohydrate 400 M 

(Sheffield Pharma 

Ingredients) 

Sieved monohydrate lactose - - 

Monohydrate 80 M 

(Sheffield Pharma 

Ingredients) 

Sieved monohydrate lactose - - 

Monohydrate 120 M 

(Sheffield Pharma 

Ingredients) 

Sieved monohydrate lactose - - 

D(0.5), volume median diameter, the size of particle below which 50% particles lie, 

D(0.9), the size of particle below which 90% of the powders lie 
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Table 1.2 Influence of the physical properties of lactose carriers studied on aerosol 

performance  

Physical properties of 

lactose carriers 

Summary Ref 

Particle size Consensus existed that aerosol 

performance increases with decreased 

particle size. 

New discovery: large lactose carriers 

are not that bad.  

10, 17-28
 

Particle shape and 

morphology 

Lactose carriers with higher elongation 

ratio (ER) increase drug particles 

deposited into the lung. But carrier 

particles with higher ER have poorer 

flow properties. 

 

12, 13, 18, 26, 29
 

Size distribution, fine 

lactose 

Aerosol performance increases with 

increased fine lactose fraction. 

Removal of fine lactose from drug 

formulation leads to a decreased fine 

particle fraction.  

20, 24, 27, 28, 30-32
 

Particle surface roughness Surface roughness changes DPI 

performance by influencing the 

adhesion and friction forces between 

drug and lactose carriers. Conflicting 

reports exist depending on which 

dispersion mechanism predominates, 

fluid flow or mechanical impaction 
22, 

23
.  

17, 18, 24, 33-36
 

Surface energy  In vitro dispersion of the drug 

formulation is correlated with the 

surface energy interactions between 

lactose carrier and drug particles. 

Balanced surface interaction is 

required to achieve best performance.  

11, 37
 

 

Electrostatic charge 

 

Electrostatic charge affects drug 

delivery efficiency by altering powder 

adhesion.  

Affected by particle type, size, size 

distribution, amorphous content, 

inhaler, environmental humidity, 

handling and type of capsule used. 

16, 18, 38-43
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Table 1.2 Influence of the physical properties of lactose carriers studied on aerosol 

performance (Continued) 

Physical properties of 

lactose carriers 

 Summary  Ref 

   

Flow properties Powder flow property is influenced by 

particle size, size distribution, 

morphology, surface roughness, 

porosity and density.  

Powder flowability has effects on 

powder packing, emptying rate and 

dosing accuracy and consistency.  

26, 44-46
 

Polymorphism Drug particle dispersion and 

deposition from coarse carrier: α-

monohydrate>β-anhydrous>α-

anhydrous. 

For fine lactose: β-anhydrous>α-

monohydrate>α-anhydrous. 

Alpha lactose monohydrate is 

commonly used in dry powder 

formulations, especially DPIs currently 

available on the market 

13, 16, 22, 47-49
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1.3 FIGURES 

 

 

Figure 1.1 Representative Grade of Lactose 

 

 

  



14 
 
 

1.4 REFERENCES 

  

 

1. EMEA. GUIDELINE ON EXCIPIENTS IN THE DOSSIER FOR 

APPLICATION FOR MARKETING AUTHORISATION OF A MEDICINAL 

PRODUCT 2006. 

2. Fields MR, inventor; Abbott Laboratories, assignee. Inhalator. US Patent No. 

2,470,297. USA1947. 

3. Taplin GV, Cohen SH, Mahoney EE. Prevention of postoperative pulmonary 

infections; inhalation of micropowdered penicillin and streptomycin. Journal of the 

American Medical Association. 1948;138(1):4-8. Epub 1948/09/04. 

4. Bell JH, Hartley PS, Cox JS. Dry powder aerosols. I. A new powder inhalation 

device. Journal of pharmaceutical sciences. 1971;60(10):1559-64. Epub 1971/10/01. 

5. Altonnyan REC, inventor; Fisons Pharmaceuticals, assignee. Oral inhaler with 

spring biased, cam driven piercing device. US Patent No. 3, 518, 992. USA1970. 

6. Hickey AJ. Pharmaceutical inhalation aerosol powder dispersion - An 

unbalancing act. American Pharmaceutical Review. 2003;6(4):106-10. 

7. Pilcer G, Wauthoz N, Amighi K. Lactose characteristics and the generation of the 

aerosol. Advanced drug delivery reviews. 2012;64(3):233-56. Epub 2011/05/28. 



15 
 
 

8. Pilcer G, Amighi K. Formulation strategy and use of excipients in pulmonary 

drug delivery. International journal of pharmaceutics. 2010;392(1-2):1-19. Epub 

2010/03/13. 

9. Saleem I, Smyth H, Telko M. Prediction of dry powder inhaler formulation 

performance from surface energetics and blending dynamics. Drug development and 

industrial pharmacy. 2008;34(9):1002-10. Epub 2008/08/08. 

10. Guenette E, Barrett A, Kraus D, Brody R, Harding L, Magee G. Understanding 

the effect of lactose particle size on the properties of DPI formulations using 

experimental design. International journal of pharmaceutics. 2009;380(1-2):80-8. Epub 

2009/07/15. 

11. Cline D, Dalby R. Predicting the quality of powders for inhalation from surface 

energy and area. Pharmaceutical research. 2002;19(9):1274-7. Epub 2002/10/31. 

12. Kaialy W, Alhalaweh A, Velaga SP, Nokhodchi A. Effect of carrier particle shape 

on dry powder inhaler performance. International journal of pharmaceutics. 

2011;421(1):12-23. Epub 2011/09/29. 

13. Zeng XM, Martin GP, Marriott C, Pritchard J. The influence of crystallization 

conditions on the morphology of lactose intended for use as a carrier for dry powder 

aerosols. The Journal of pharmacy and pharmacology. 2000;52(6):633-43. Epub 

2000/06/30. 



16 
 
 

14. Price R, Young PM, Edge S, Staniforth JN. The influence of relative humidity on 

particulate interactions in carrier-based dry powder inhaler formulations. International 

journal of pharmaceutics. 2002;246(1-2):47-59. Epub 2002/09/25. 

15. Ali M, Mazumder MK, Martonen TB. Measurements of electrodynamic effects 

on the deposition of MDI and DPI aerosols in a replica cast of human oral-pharyngeal-

laryngeal airways. Journal of aerosol medicine and pulmonary drug delivery. 

2009;22(1):35-44. Epub 2008/09/20. 

16. Murtomaa M, Mellin V, Harjunen P, Lankinen T, Laine E, Lehto VP. Effect of 

particle morphology on the triboelectrification in dry powder inhalers. International 

journal of pharmaceutics. 2004;282(1-2):107-14. Epub 2004/09/01. 

17. de Boer AH, Hagedoorn P, Gjaltema D, Goede J, Kussendrager KD, Frijlink HW. 

Air classifier technology (ACT) in dry powder inhalation. Part 2. The effect of lactose 

carrier surface properties on the drug-to-carrier interaction in adhesive mixtures for 

inhalation. International journal of pharmaceutics. 2003;260(2):201-16. Epub 2003/07/05. 

18. Podczeck F. The relationship between physical properties of lactose monohydrate 

and the aerodynamic behaviour of adhered drug particles. International journal of 

pharmaceutics. 1998;160(1):119-30. 

19. Steckel H, Müller BW. In vitro evaluation of dry powder inhalers II: influence of 

carrier particle size and concentration on in vitro deposition. International journal of 

pharmaceutics. 1997;154(1):31-7. 



17 
 
 

20. Louey MD, Razia S, Stewart PJ. Influence of physico-chemical carrier properties 

on the in vitro aerosol deposition from interactive mixtures. International journal of 

pharmaceutics. 2003;252(1-2):87-98. Epub 2003/01/29. 

21. Dickhoff BH, de Boer AH, Lambregts D, Frijlink HW. The effect of carrier 

surface and bulk properties on drug particle detachment from crystalline lactose carrier 

particles during inhalation, as function of carrier payload and mixing time. European 

journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft 

fur Pharmazeutische Verfahrenstechnik eV. 2003;56(2):291-302. Epub 2003/09/06. 

22. Donovan MJ, Smyth HD. Influence of size and surface roughness of large lactose 

carrier particles in dry powder inhaler formulations. International journal of 

pharmaceutics. 2010;402(1-2):1-9. Epub 2010/09/08. 

23. Donovan MJ, Kim SH, Raman V, Smyth HD. Dry powder inhaler device 

influence on carrier particle performance. Journal of pharmaceutical sciences. 

2012;101(3):1097-107. 

24. Zeng XM, Martin GP, Marriott C, Pritchard J. Lactose as a carrier in dry powder 

formulations: the influence of surface characteristics on drug delivery. Journal of 

pharmaceutical sciences. 2001;90(9):1424-34. Epub 2001/12/18. 

25. Steckel H, Muller BW. In vitro evaluation of dry powder inhalers .2. Influence of 

carrier particle size and concentration on in vitro deposition. International journal of 

pharmaceutics. 1997;154(1):31-7. 



18 
 
 

26. Kaialy W, Martin GP, Larhrib H, Ticehurst MD, Kolosionek E, Nokhodchi A. 

The influence of physical properties and morphology of crystallised lactose on delivery 

of salbutamol sulphate from dry powder inhalers. Colloids and surfaces B, Biointerfaces. 

2012;89:29-39. Epub 2011/10/04. 

27. Podczeck F. Adhesion forces in interactive powder mixtures of a micronized drug 

and carrier particles of various particle size distributions. Journal of Adhesion Science 

and Technology 1998;12(12):1323-39. 

28. Adi H, Larson I, Stewart PJ. Adhesion and redistribution of salmeterol xinafoate 

particles in sugar-based mixtures for inhalation. International journal of pharmaceutics. 

2007;337(1-2):229-38. Epub 2007/02/17. 

29. Larhrib HM, G. P. Prime, D. Marriott, C. Characterisation and deposition studies 

of engineered lactose crystals with potential for use as a carrier for aerosolised 

salbutamol sulfate from dry powder inhalers. European journal of pharmaceutical 

sciences : official journal of the European Federation for Pharmaceutical Sciences. 

2003;19(4):211-21. Epub 2003/07/30. 

30. Islam N, Stewart P, Larson I, Hartley P. Lactose surface modification by 

decantation: are drug-fine lactose ratios the key to better dispersion of salmeterol 

xinafoate from lactose-interactive mixtures? Pharmaceutical research. 2004;21(3):492-9. 

Epub 2004/04/09. 



19 
 
 

31. Young PM, Chan HK, Chiou H, Edge S, Tee TH, Traini D. The influence of 

mechanical processing of dry powder inhaler carriers on drug aerosolization performance. 

Journal of pharmaceutical sciences. 2007;96(5):1331-41. Epub 2007/04/25. 

32. Guchardi R, Frei M, John E, Kaerger JS. Influence of fine lactose and magnesium 

stearate on low dose dry powder inhaler formulations. International journal of 

pharmaceutics. 2008;348(1-2):10-7. Epub 2007/08/11. 

33. Islam N, Stewart P, Larson I, Hartley P. Surface roughness contribution to the 

adhesion force distribution of salmeterol xinafoate on lactose carriers by atomic force 

microscopy. Journal of pharmaceutical sciences. 2005;94(7):1500-11. Epub 2005/06/01. 

34. Dickhoff BH, de Boer AH, Lambregts D, Frijlink HW. The interaction between 

carrier rugosity and carrier payload, and its effect on drug particle redispersion from 

adhesive mixtures during inhalation. European journal of pharmaceutics and 

biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische 

Verfahrenstechnik eV. 2005;59(1):197-205. Epub 2004/11/30. 

35. Flament MP, Leterme P, Gayot A. The influence of carrier roughness on adhesion, 

content uniformity and the in vitro deposition of terbutaline sulphate from dry powder 

inhalers. International journal of pharmaceutics. 2004;275(1-2):201-9. Epub 2004/04/15. 

36. Young PM, Cocconi D, Colombo P, Bettini R, Price R, Steele DF, et al. 

Characterization of a surface modified dry powder inhalation carrier prepared by "particle 

smoothing". The Journal of pharmacy and pharmacology. 2002;54(10):1339-44. Epub 

2002/10/25. 



20 
 
 

37. Hickey AJ, Mansour HM, Telko MJ, Xu Z, Smyth HD, Mulder T, et al. Physical 

characterization of component particles included in dry powder inhalers. I. Strategy 

review and static characteristics. Journal of pharmaceutical sciences. 2007;96(5):1282-

301. Epub 2007/04/25. 

38. Adi H, Kwok PC, Crapper J, Young PM, Traini D, Chan HK. Does electrostatic 

charge affect powder aerosolisation? Journal of pharmaceutical sciences. 

2010;99(5):2455-61. Epub 2009/11/27. 

39. Chow KT, Zhu K, Tan RB, Heng PW. Investigation of electrostatic behavior of a 

lactose carrier for dry powder inhalers. Pharmaceutical research. 2008;25(12):2822-34. 

Epub 2008/06/27. 

40. Elajnaf A, Carter P, Rowley G. Electrostatic characterisation of inhaled powders: 

effect of contact surface and relative humidity. European journal of pharmaceutical 

sciences : official journal of the European Federation for Pharmaceutical Sciences. 

2006;29(5):375-84. Epub 2006/09/06. 

41. Young PM, Price R, Tobyn MJ, Buttrum M, Dey F. Effect of humidity on 

aerosolization of micronized drugs. Drug development and industrial pharmacy. 

2003;29(9):959-66. Epub 2003/11/11. 

42. Young PM, Price R, Tobyn MJ, Buttrum M, Dey F. The influence of relative 

humidity on the cohesion properties of micronized drugs used in inhalation therapy. 

Journal of pharmaceutical sciences. 2004;93(3):753-61. Epub 2004/02/06. 



21 
 
 

43. Zeng XM, MacRitchie HB, Marriott C, Martin GP. Humidity-induced changes of 

the aerodynamic properties of dry powder aerosol formulations containing different 

carriers. International journal of pharmaceutics. 2007;333(1-2):45-55. Epub 2006/10/27. 

44. Hickey AJ, Mansour HM, Telko MJ, Xu Z, Smyth HD, Mulder T, et al. Physical 

characterization of component particles included in dry powder inhalers. II. Dynamic 

characteristics. Journal of pharmaceutical sciences. 2007;96(5):1302-19. Epub 

2007/04/25. 

45. Crowder T, Hickey A. Powder specific active dispersion for generation of 

pharmaceutical aerosols. International journal of pharmaceutics. 2006;327(1-2):65-72. 

Epub 2006/08/26. 

46. Concessio NM, VanOort MM, Knowles MR, Hickey AJ. Pharmaceutical dry 

powder aerosols: correlation of powder properties with dose delivery and implications for 

pharmacodynamic effect. Pharmaceutical research. 1999;16(6):828-34. Epub 1999/07/09. 

47. Kaialy W, Martin GP, Ticehurst MD, Momin MN, Nokhodchi A. The enhanced 

aerosol performance of salbutamol from dry powders containing engineered mannitol as 

excipient. International journal of pharmaceutics. 2010;392(1-2):178-88. Epub 

2010/04/07. 

48. Zeng XM, Martin AP, Marriott C, Pritchard J. The influence of carrier 

morphology on drug delivery by dry powder inhalers. International journal of 

pharmaceutics. 2000;200(1):93-106. Epub 2000/06/14. 



22 
 
 

49. Kawashima Y, Serigano T, Hino T, Yamamoto H, Takeuchi H. Effect of surface 

morphology of carrier lactose on dry powder inhalation property of pranlukast hydrate. 

1998;172(1–2):188. 

50. Davies MJ, Brindley A, Chen X, Doughty SW, Marlow M, Roberts CJ. A 

quantitative assessment of inhaled drug particle-pulmonary surfactant interaction by 

atomic force microscopy. Colloids and surfaces B, Biointerfaces. 2009;73(1):97-102. 

Epub 2009/06/09. 

51. Kubavat HA, Shur J, Ruecroft G, Hipkiss D, Price R. Influence of primary 

crystallisation conditions on the mechanical and interfacial properties of micronised 

budesonide for dry powder inhalation. International journal of pharmaceutics. 

2012;430(1-2):26-33. Epub 2012/03/28. 

52. Davies M, Brindley A, Chen X, Marlow M, Doughty SW, Shrubb I, et al. 

Characterization of drug particle surface energetics and young's modulus by atomic force 

microscopy and inverse gas chromatography. Pharmaceutical research. 2005;22(7):1158-

66. Epub 2005/07/20. 

53. Tong HH, Shekunov BY, York P, Chow AH. Predicting the aerosol performance 

of dry powder inhalation formulations by interparticulate interaction analysis using 

inverse gas chromatography. Journal of pharmaceutical sciences. 2006;95(1):228-33. 

Epub 2005/11/30. 



23 
 
 

54. Duret C, Wauthoz N, Sebti T, Vanderbist F, Amighi K. New inhalation-optimized 

itraconazole nanoparticle-based dry powders for the treatment of invasive pulmonary 

aspergillosis. International journal of nanomedicine. 2012;7:5475-89. Epub 2012/10/25. 

55. Tawfeek HM, Evans A, Iftikhar A, Mohammed AR, Shabir A, Somavarapu S, et 

al. Dry powder inhalation of macromolecules using novel PEG-co-polyester 

microparticle carriers. International journal of pharmaceutics. 2012. Epub 2012/11/06. 

56. Traini D, Adi H, Valet OK, Young PM. Preparation and evaluation of single and 

co-engineered combination inhalation carrier formulations for the treatment of asthma. 

Journal of pharmaceutical sciences. 2012;101(11):4267-76. Epub 2012/08/29. 

57. Schiavone H, Palakodaty S, Clark A, York P, Tzannis ST. Evaluation of SCF-

engineered particle-based lactose blends in passive dry powder inhalers. International 

journal of pharmaceutics. 2004;281(1-2):55-66. Epub 2004/08/04. 

58. Littringer EM, Mescher A, Schroettner H, Achelis L, Walzel P, Urbanetz NA. 

Spray dried mannitol carrier particles with tailored surface properties--the influence of 

carrier surface roughness and shape. European journal of pharmaceutics and 

biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische 

Verfahrenstechnik eV. 2012;82(1):194-204. Epub 2012/05/19. 

59. Beinborn NA, Lirola HL, Williams RO, 3rd. Effect of process variables on 

morphology and aerodynamic properties of voriconazole formulations produced by thin 

film freezing. International journal of pharmaceutics. 2012;429(1-2):46-57. Epub 

2012/03/22. 



24 
 
 

60. Cheow WS, Ng ML, Kho K, Hadinoto K. Spray-freeze-drying production of 

thermally sensitive polymeric nanoparticle aggregates for inhaled drug delivery: effect of 

freeze-drying adjuvants. International journal of pharmaceutics. 2011;404(1-2):289-300. 

Epub 2010/11/26. 

61. Maa YFP, S. J. Biopharmaceutical powders: particle formation and formulation 

considerations. Current pharmaceutical biotechnology. 2000;1(3):283-302. Epub 

2001/07/27. 

62. Selvam P, McNair D, Truman R, Smyth HD. A novel dry powder inhaler: Effect 

of device design on dispersion performance. International journal of pharmaceutics. 

2010;401(1-2):1-6. Epub 2010/08/12. 

63. Stephen W. Stein JKS, Mike J. Frits, James S. Stefely, cartographer Managing 

Excipient-Free DPI Delivery: An Laternative Approach with Reproducible Metering and 

Dosing2012. 

64. White S, Bennett DB, Cheu S, Conley PW, Guzek DB, Gray S, et al. EXUBERA: 

pharmaceutical development of a novel product for pulmonary delivery of insulin. 

Diabetes technology & therapeutics. 2005;7(6):896-906. Epub 2006/01/03. 

 

 

  



25 
 
 

Chapter 2: Evaluation of Granulated Lactose as a Carrier for DPI 

Formulations 1: Effect of Granule Size
1
 

 

Abstract 

The objective of this study was to investigate the effect of large granulated lactose 

carrier particle systems on aerosol performance of dry powder inhaler formulations. 

Granulated lactose carriers with average sizes ranging from 200µm to1000µm were 

prepared and subsequently fractionated into separate narrow size powders. The 

fractionated granulated lactose (GL) samples were characterized in terms of size, specific 

surface area, surface roughness, morphology, density, flowability and solid state. The in 

vitro aerosolization performance was performed on the different size fractions of GL 

samples from a commercial inhaler device (Aerolizer
®
) with a model formulation (2% 

w/w salbutamol sulphate). The cascade impaction parameters employed were 60L/min or 

90L/min with standard (aperture size: 0.6mm) or modified piercing holes (aperture size: 

1.2mm) of the inhaler loaded capsules. It was shown that the largest size fraction 

formulation (850-1000µm) had a slight improvement in the fine particle fraction (FPF) 

compared to immediately preceding size fractions, explained by a smaller adhesive force  

1
Parts of this chapter were taken from: 

1) Ping Du, Ju Du, Hugh D. C. Smyth. (2014). "Evaluation of Granulated Lactose as a Carrier for 

DPI Formulations 1: Effect of Granule Size." AAPS PharmSciTech 15(6): 1417-1428. 

Ping Du is the major contribution to the research and draft of the article. Ju Du and Hugh D. C. 

Smyth reviewed the manuscript and made some changes suitable for publications. 
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between drug and carrier. Compared to commercial piercing holes, enlarged piercing 

holes generated a slight decreasing trend of FPF as the lactose powder sizes increased 

from 200-250µm to 600-850µm, perhaps due to the reduced detachment force by flow 

forces. The size, surface roughness, density, flowability of lactose carrier as well as 

device design all contributed to the aerosol dispersion performance of granulated lactose 

based adhesive mixtures. It was concluded that poorer or enhanced dispersion 

performance is not an inherent property to the significantly large size of granulated 

lactose carriers as previously contended. 

 

Keywords 

DPI formulations; Granulated lactose; Carrier size; Carrier roughness; Adhesive force 
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2.1 INTRODUCTION 

 

 

Development of dry powder inhaler (DPI) formulations is generally challenging 

due to the need for good product performance and the necessity of uniformity and quality. 

The active ingredients incorporated in DPI formulations are in micronized form with an 

aerodynamic diameter less than 5 µm which enables adequate deposition in the lung. It is 

well known that the high surface area to volume ratio of the micronized drug particles 

results in strong interactive forces(1). As a result, micronized drugs are generally highly 

cohesive and exhibit poor flow, which makes downstream processing, accurate dose 

metering, and handling of the drugs problematic. Therefore, in order to facilitate adequate 

powder performance, DPI formulations are frequently formulated with larger coarse 

“carriers” to form homogenous binary or tertiary mixtures(2). These blends are then 

required to be redispersed into primary particles upon inhalation by patients via the 

inhaler device.   

α-lactose monohydrate is the most commonly used coarse carrier for DPI 

formulations due to its well-established safety profile, stable physico-chemical properties 

and compatibility with most available low molecular weight APIs(3). The particle size, 

size distribution(4), morphology, surface roughness(5), surface area, flowability(6), and 

surface energy(7) of lactose carriers all have been shown to have an influence on the DPI 

formulation performance. Amongst, the size and roughness of lactose carriers have been 

extensively investigated (2, 4, 8-10).  
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Several mechanisms are postulated to explain the effect of carrier size on the 

dispersion performance of adhesive mixtures for dry powder inhalation. Generally, to 

achieve good aerosolization performance, the detachment forces generated from the 

inspiratory flow and the interactions of the flow and formulation with the inhaler device 

should be large enough to overcome the adhesive force between API particle and the 

coarse carrier particle to efficiently redisperse the primary drug particles (11, 12). 

However, it has been determined previously that, in general, there are more surface 

asperities on the larger lactose carrier particles compared to smaller size fractions (13). 

These surface discontinuities, clefts and depressions, where drugs are not fully exposed to 

the flow stream, are proposed to prevent detachment by fluid flow mechanisms. 

Additionally, larger lactose particles may exhibit higher press-on forces (defined as the 

adhesive forces between drug and carrier particles)(14) during mixing with the 

micronized API due to larger mass and inertia force, resulting in a stronger adhesive 

force between drug and lactose carrier(15). Also, as the size of lactose carrier is increased, 

the amount of fine lactose (<32µm) present in the powder tends to decrease(16). Fine 

lactose components have been shown to increase the redispersion of APIs, explained 

mainly by “active site theory”, and “agglomeration theory”.  In the “active site theory”, 

fine lactose particles occupy the high energy surface areas of lactose carrier particle, thus 

leaving the surface with lower energy binding sites for the API to occupy. It is also 

proposed that fine lactose facilitates the formation of agglomerate mixtures, which are 

more susceptible to detachment force.  

As a result of these research findings, it was widely believed that carrier particles 

with smaller diameters were preferable to maximize aerosolization efficiency, with the 
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consensus that increasing diameters and surface roughness hinder efficient drug 

dispersion performance (4, 14, 16-20). However, it was found recently that lactose 

carriers with large size fraction can also improve aerosol performance, especially when 

combined with significantly rough surface (13). This improvement is explained by the 

switch of predominant detachment mechanism from turbulence flow to impaction force. 

Impaction force (mechanical force) arises from the abrupt momentum transfer generated 

from the collisions between coarse carriers and the inhaler device during inhalation. The 

momentum relies on particle mass, thus detachment by impaction force is proportional to 

the cube of the carrier particle size such that large particles will have strong detachment 

force(13). It was found that Aerolizer
®
 used in previous study actively promotes particle 

collisions with the inhaler wall, especially, with significantly large particle diameter(21). 

Additionally, different from carriers with flat surface, larger carriers with significantly 

rough surface would shelter drugs within asperities, and drug detachment depends more 

on impaction force(13). Therefore, the hypothesis in this research is that larger lactose 

carriers can improve DPI aerosol performance as the result of the major detachment 

mechanism switch from turbulence flow to impaction force. 

Previously, the carrier particles studied have had a particle size less than 300 µm as 

a result of the sizes limitations of commercially available lactose (22). In this study, the 

aim was to evaluate the powder and aerosol performance of lactose carrier with 

significantly large size ranging from 200 µm to 1000 µm. We manufactured granulated 

lactose, and performed the physic-chemical (e.g. solid state form, density, specific 

surface area and flowability) and impaction studies. To the author’s knowledge, for the 

first time we studied the significantly large granulated lactose carriers across a wide 
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range of narrow sieve fractions in the size range of 200-1000 µm and correlated the 

physico-chemical properties of these large granulated lactose carriers with the in vitro 

aerosol dispersion from an Aerolizer
®
 DPI.  
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2.2 EXPERIMENTAL 

 

2.2.1 Materials 

 

α-Lactose monohydrate, Pharmatose 100M, was supplied from DFE Pharma 

(Princeton, NJ, USA). Micronized salbutamol sulphate (Figure 2.1) was purchased from 

LETCO MEDICAL. Deionized water was provided by MilliQ (Millipore).  

 

2.2.2 Manufacture of lactose granules 

 

Wet granulation was used to manufacture lactose granules with large diameter from 

Pharmatose 100M (d10: 63 µm, d50: 150 µm, d90: 250 µm).  Granulation is a process to 

generate large aggregates from small primary powders to improve the flowability of the 

powders (23). Wet granulation of lactose usually employs polymeric binders that are not 

approved for inhalation (24-27). To solve this problem, the granulation process in this 

research involved merely water as the binding solvent. Briefly, a batch size of 50 g 

starting lactose was introduced into the granulator (Robot Coupe USA. Inc.) followed by 

addition of 50 mL water merely as the granulating solvent. Subsequently, the granulated 

lactose carriers were pan dried in the oven overnight at 80 °F.  
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2.2.3 Fractionation of granulated lactose carrier particles 

 

Different size fractions of lactose granules were obtained by separation of the bulk 

granulated material using a sieve tower with cut off sizes as follows: 1000 μm, 850 μm, 

600 μm, 425 μm, 300 μm, 250 μm, 212 μm, and a metal collection pan. A vibrating auto 

sieve shaker (Gilson Company Inc., OH, USA) was employed. The granulated lactose 

was poured on the top of the vibrating sieve shaker and sieved through the sieves for 30 

min. All analysis described were performed on the sieved samples. 

 

2.2.4 Particle size measurement 

 

Particle size analysis of fractionized granulated lactose was evaluated by the 

Sympatec laser diffraction (Sympatec GmbH). The theoretical specific surface area 

(based on volume, assuming an ideal spherical smooth surface of the particles) was 

calculated by the software installed in the Sympatec. The span of the samples, which is 

the width of the distribution based on the 10%, 50% and 90% quintile, was calculated 

according to Eq. 1, 

   

𝑆𝑝𝑎𝑛 =
𝑑90 − 𝑑10

𝑑50
 

(Eq. 1) 
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2.2.5 Scanning electron microscopy 

 

The scanning electron microscopy (SEM; Supra 40VP, Zeiss, Germany) was used 

to visually assess the particle size and morphology of the granulated lactose. The coating 

conditions prior to SEM for all the granulated lactose was 20nm of Pd/Pt via sputter 

coating.  

 

2.2.6 Differential scanning calorimetry 

 

Differential scanning calorimetry (DSC) of the lactose granules with different size 

fraction was conducted with modulated temperature DSC (MTDSC), Model 2920 (TA 

Instruments, New Castle, DE), which was equipped with a refrigerated cooling system. 

The flow rate of purge gas through the DSC cell was 40 mL/min. Lactose granules of 5–

10 mg were weighted in aluminum crimped pans (PerkinElmer Instruments, Norwalk, 

CT). An empty sample pan was used as the reference. Samples were heated at a ramp rate 

of 10ºC/min from 25 to 250°C with modulation temperature amplitude of 1ºC/60s for all 

granule size fractions.  

 

2.2.7 BET analysis 

 

The specific surface area of a powder could be determined by the amount of the 

monomolecular layer of adorbate gas on the surface of the solid, calculated according to 
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Brunauer, Emmett and Teller (BET) theory. The specific surface area of the lactose 

populations was determined via nitrogen adsorption with a single-point BET method 

using a Monosorb® surface area analyzer (Quantachrome, FL, USA). All BET analysis 

was performed in triplicate. Surface roughness was calculated by Eq. 2. 

Roughness =
BET specific surface area

theoretical volume specific surface area
 

 (Eq. 2) 

 

2.2.8 True, Bulk and Tapped Density 

 

True density of the granulated lactose and primary lactose was determined by 

helium pycnometry (Quantachrome, FL, USA).  

The lactose samples were filled into a 10 mL gradual cylinder and the volume was 

recorded as the bulk volume. Then the cylinder was tapped 750 times and the new 

volume was recorded (tapped volume). The bulk density, tapped density and Carr’s index 

(CI) (Eq. 3) were calculated. To measure the angle of repose, certain amount of lactose 

samples were passed through the tunnel with a fixed height relative to the base. The angle 

of repose was calculated according to Eq. 4. Carr’s index and angle of repose were both 

used as the indicators of powder flowability. The Carr index, also called Carr’s index or 

Carr’s Compressibility Index, is an indication of the compressibility and flowability of a 

powder(28). 
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𝐶𝐼 =  
𝑇𝑎𝑝𝑝𝑒𝑑 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 − 𝐵𝑢𝑙𝑘 𝐷𝑒𝑛𝑠𝑖𝑡𝑦

𝑇𝑎𝑝𝑝𝑒𝑑 𝑑𝑒𝑛𝑠𝑖𝑡𝑦
 𝑋 100 

 (Eq. 3) 

tan(𝛼) =
ℎ𝑒𝑖𝑔ℎ𝑡

0.5 𝑏𝑎𝑠𝑒
 

(Eq. 4) 

 

2.2.9 Preparation of salbutamol sulfate/granulated lactose binary blends 

 

Salbutamol sulfate (SS) and fractionated granulated lactose were mixed in a ratio of 

1:50 (w/w) to obtain a 500 mg 2% binary mixture. All formulations were blended at a 

constant speed of 46 RPM for 40 min with a Turbula
®
 orbital mixer (Glen Mills, NJ, 

USA). The granules still maintained the initial shape after completion of blending. Prior 

to any further analysis, the blended formulations were stored in the dessicator for 5 days.  

 

2.2.10 Drug uniformity test 

 

Five of randomly selected samples (20 ± 1 mg) were taken for measurement of 

salbutamol sulfate content uniformity. The coefficient of variation (CV%) was used to 

determine the blending uniformity. The test was performed three times. The potency of 

formulations was calculated by the APIs percent amount to the nominal dose.  
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2.2.11 In vitro aerosolization study 

 

About 20 (±1) mg mixture powders were filled into size 3 Vcaps HPMC capsules. 

The in vitro drug deposition of all formulations were assessed using Aerolizer
®
 inhaler 

device (Novartis, Switzerland), of which the mixtures were loaded in the capsules pierced 

with four standard holes (0.6mm) (29) at each end of the capsule, referred as Capsule40.6 

in the results and discussion part.  The impaction study was performed through a Next 

Generation Impactor (NGI; MSP Corporation, Shoreview, MN) at a volumetric flow rate 

of 60 L min
-1

, and 90 L min
-1

, corresponding to 4 kPa pressure drop and 4 L air volume 

across the device.   

Another 20 (±1) mg mixture powders of all formulations were filled into the same 

size 3 Vcaps HPMC capsules. After loading the mixtures in the capsules, one 1.2 mm 

hole instead was punctured at each end of the capsule, followed by in vitro impaction 

study with Aerolizer
®
 inhaler device (Novartis, Switzerland) through the same next 

generation cascade at a volumetric flow rate of 90 L min
-1

 only. The dispersion method is 

referred as Capsule1.2 in the results and discussion part.  

A 1% (w/v) solution of silicon oil in hexane was applied to precoat the NGI stages 

for particle re-entrainment prevention. Amounts of salbutamol sulfate deposited on the 

capsule, inhaler, mouthpiece adaptor, induction port, pre-separator and NGI stages were 

measured and quantified. The drug content was measured by the ultraviolet visible 

absorption spectroscopy (Infinite M200, TECAN) at 230 nm. The parameters used to 

evaluate salbutamol sulfate deposition performance were emitted fraction (EF) (Eq. 5), 
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fine particle fraction (FPF) (Eq. 6), respirable fraction (Figure 2.7) mass median 

aerodynamic diameter (MMAD) and geometric standard deviation (GSD). 

EF =  
emitted dose

loading dose
 

(Eq. 5) 

FPF =  
recovered dose of drug particles smaller than 5 µm

emitted dose 
 

(Eq. 6) 

RF =
recovered dose of drug particles smaller than 5 µm

loading dose 
 

(Eq.7) 

 

2.2.12 Statistics analysis 

 

Statistical significance between aerosol performance values was determined with 

one-way TTESTs between groups (* indicates P < 0.05).  
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2.3 RESULTS 

 

2.3.1 Particle Size Distribution of Lactose Granules with Different Size Fractions 

 

The particle size of GL fractions fell into the nominal sieve size range, as 

confirmed by the SEM pictures (Figure 2.2) and laser diffraction (Figure 2.3a). As 

expected, the size of GL particles increased progressively with increased aperture size of 

sieves. The volume distribution of the particles at 10% (d10%), 50% (d50%) and 90% 

(d90%) (Figure 2.3a) as well as the equivalent diameter from image analysis (Figure 2.3b) 

generally agreed with each other. Slight differences obtained using the different methods 

of analysis are due to the different mechanisms of size determination, which is explained 

in the discussion section below. The equivalent diameter of GL 650-850 µm and GL 850-

1000 µm from Image Analysis (Figure 2.3a) was more accurate than the laser diffraction 

results for these powders and was therefore used in interpretation of other results.  

Particle size distribution width (as measured by span) and the fine lactose fractions 

(fraction size less than 5µm) could also be determined from laser diffraction results 

(Figure 2.3a). The span value of all GLs was less than one, indicating relatively narrow 

size distributions for all samples. The fine lactose fraction was less than 1% for all sieved 

GL samples, indicating that sieving efficiently removed fine lactose from the granulated 

powders. This is important, as fine lactose  has been shown to significantly improve DPI 

performance and is generally present in different amounts for different size lactose 

fractions and could confound results if not sufficiently removed from the granulated 

lactose (8).   
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2.3.2 Morphology of Lactose Carrier Particles 

 

The particle morphology and surface roughness of pre-granulated lactose particles 

(commercial Pharmatose 100M) and lactose granules were visualized by SEM. As shown 

in Figure 2a, commercial Pharmatose 100M had a tomahawk shape, the typical 

morphology of alpha monohydrate lactose crystals (30). Figure 2.2b-d show the 

micrographs of lactose granules with different size fractions: b: GL 212-250 μm, c: 425-

600 μm, and d: 850-1000 μm. Unlike the commercial Pharmatose 100M, the shape of 

these lactose granules were elongated aggregates comprised of the primary lactose 

particles. Obviously the number of primary lactose particles comprising each granule was 

different for the 6 size fractions. For example, less than 10 primary lactose particles were 

observed to be contained in each GL 212-250 μm granule compared to hundreds 

observed for GL 850-1000 μm.  

 

2.3.3 Thermal Analysis 

 

Figure 2.4 is the DSC thermographs obtained for the lactose particles. There were 

two endothermic peaks (220 °C and 150 °C) observed for all granulated lactose, 

consistent with reports of commercial alpha monohydrate lactose (6). The peak at 220 °C 

is a melt endotherm; while the peak at 150 °C corresponded to the distinctive dehydration 

of crystalline hydrate water (bound water) as previously reported. The vaporization 

temperature of bound water (150 °C) is significantly greater than 100 °C, explained by 
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thermodynamically favorable H-bonding of the water molecules in the lactose crystal 

lattice (31). There was no dehydration process from unbound water, indicated by no 

endothermic peak at ~100 °C. This demonstrated that there was no excessive unbound 

water in the lactose granules as prepared. The distinct thermographs showed that all 

granulated lactose fractions had similar solid-state, and was composed with alpha 

monohydrate lactose. This is reasonable because no special solvent other than water was 

used and there was no heating process above 93.5 ºC involved in the granulation process 

(32).  

 

2.3.4 Specific Surface Area  

 

Despite different size fractions for the granulated lactose samples, all samples had 

similar specific surface area (~0.29 m
2
/g) (mean), which was similar to the specific 

surface area of the primary lactose carriers (0.30±0.06 m
2
/g) (Figure 2.5a). These 

findings are explained and discussed below.  

 

2.3.5 Density and Flowability 

 

All granulated lactose demonstrated similar true density with commercial 

pharmatose 100M (1.545 g/cm
3
, P>0.05). Thus the size of lactose granules had negligible 

effect on true density, which is expected and related to their similar solid state form 

(Figure 2.4).   

file:///I:/Manuscripts/Paper%201%20Carrier%20Size-Done/Submission/Response%20to%20review%20comments-HS-final.docx%23_ENREF_31
file:///I:/Manuscripts/Paper%201%20Carrier%20Size-Done/Submission/Response%20to%20review%20comments-HS-final.docx%23_ENREF_32


41 
 
 

The bulk and tapped densities of the lactose powders is shown in Table 2.1 

According to the results, an inverse relationship was observed between bulk/tapped 

density and lactose size. The bulk density decreased from 0.68 g/ml to 0.44 g/ml with 

increasing granule size. The tapped density decreased from 0.82 g/ml to 0.48 g/ml with 

increasing granule size.  

Carr’s Index may be used as an indicator of powder flow. According to USP <1174> 

Powder Flow, powder with Carr’s Index smaller than 16-20 % is considered to have good 

flow. Carr’s Index results for the powders in this study are listed in Table 2.1 and show 

that flowability of the lactose granules (Carr’s Index<= 16%) was good while that of the 

primary pharmatose 100M powder is only above 20%. The lactose powder and granule 

flow shown by the angle of repose was consistent with the data obtained from Carr’s 

Index.  

 

2.3.6 Aerosol Performance 

 

2.3.6.1 In Vitro Aerosolization Performance with Capsules40.6 (0.6 mm, 4 holes) at 

60L/min  

 

Firstly, the aerosol performance of the 6 DPI formulations with different granular 

lactose size fractions was evaluated by in vitro impaction study at 60L/min using 

capsules with holes created by the standard pins used in the Aerolizer
®
, that is 0.6 mm 
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hole diameter, 4 holes at each end of the capsule (abbreviated now as Capsules40.6). 

Experimental parameters for the cascade impaction studies are tabulated in Table 2.2.  

According to the results, all formulations yielded a similar aerodynamic particle 

size for the deposited SS in terms of the mass median aerodynamic diameter (MMAD) 

(1.9±0.1 µm). The geometric standard deviations (GSD) (1.7 ± 0.1) for the SS aerosols 

were also similar between formulations. There were no significant differences for the fine 

particle fractions (FPF) detected between the different formulations, except for GL 850-

1000 µm, which demonstrated higher dispersion efficiency (Table 2.2). An increasing 

trend for FPF was also noted as the size of the carrier particles increased from 425-600 

µm to 850-1000 µm. However, as the 4-pin piercing mechanism employed in the 

commercial Aerolizer
®
 produced piercing holes with 0.6 mm diameter, the emitted 

fraction (EF) of lactose carriers with larger sizes (i.e. GL 425-600 µm, GL 600-850 µm, 

and GL 850-1000 µm) was significantly reduced (Table 2.2), ranging only between 62.5% 

and 67.0%. As a result, the respirable fraction for these larger size fractions GL 425-600 

µm, GL 600-850 µm, and GL 850-1000 µm was reduced, although not significantly 

different from smaller counterparts.  

 

2.3.6.2 In Vitro Aerosolization Performance with Capsules40.6 (0.6 mm, 4 holes) at 

90L/min  

 

A greater flow rate of 90L/min was utilized under the same device and capsule 

design (Capsules40.6) for the impaction study to further investigate the detachment 
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mechanisms in the granulated carriers. Results are shown in Table 2.3. Similar trends 

were observed in this study as observed at the lower flow rates (Table 2.2), although 

different magnitudes for each parameter were obtained. At 90L/min compared to 

60L/min, decreased MMAD value (1.7 µm) and a broader GSD (1.9 ± 0.1) (Table 2.3) 

were observed. Additionally, compared to flow rate at 60L/min (FPF: 19.3%-26.7%, RF: 

12.6%-19.3%), the higher flow rate (90L/min) increased FPF (32.8%-41.6%), and RF 

(25.1%-30.4%).  

 

2.3.6.3 In Vitro Aerosolization Performance with Capsules1.2 (1.2 mm, 1 hole) 

 

In order to potentially increase EF of larger size formulations, another cascade 

impaction study at 90L/min with larger pierced holes (1.2 mm, 1 hole) was performed. 

Small holes in the capsule may result in particle deaggregation by several mechanisms 

such as shear force break up and also higher collisions of the particles with the capsule. 

For example, a previous study demonstrated more efficient powder dispersion resulting 

from forcing powder agglomerates through the capsule holes that, in turn, induced 

improved powder break-up (29). As our hypothesis for these studies centers around the 

particle collisions with the device as a deaggregation mechanism, modified piercing holes 

(1.2 mm) were used in the present study. These holes were significantly greater than the 

size of the larger carrier formulations to eliminate confounding deaggregation 

mechanisms that may have contributed to the aerosol dispersion studies presented above.  
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According to Table 2.4, using capsules with 1.2 mm pierced holes, all formulations 

had EFs around or higher than 85%. The larger piercing aperture size also reduced the 

variability of all measured parameters of the dispersion studies, especially in the powders 

with larger carrier particles (Table 2.4). As expected, the larger piercing holes employed 

resulted in a slight decrease in FPF of GL 425-600 µm, GL 600-850 µm, and GL 850-

1000 µm formulations (Table 2.3, Table 2.4), though it was not statistically significant.   

Although aerosol performance of the largest lactose formulation (i.e. GL 850-1000 

µm) decreased when larger piercing holes was used, the FPF was not significantly 

different from the smallest lactose formulations (Capsule1.2, FPF90L/min: 37.8% vs. 37.1% 

for the largest and smallest lactose formulations respectively). Meanwhile, although not 

statically significantly different, a slight decreasing trend in FPF was noticed as the 

granular lactose size was increased from 212-250 µm to 600-850 µm. 
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2.4 DISCUSSION 

 

 

It is well documented that the particle size, size distribution (4), morphology (33, 

34), surface roughness (23, 35), surface area, flowability(6), density, and surface 

energy(7) of lactose carriers all have influence on the DPI formulations. The granulated 

lactose carrier particles produced in this study had similar solid-state, flowability, surface 

area and true density, but different size, morphology, roughness and bulk/tap density.  

 

2.4.1 Particle Size Distribution 

 

Generally, the size distributions of the lactose granules from laser diffraction 

(Figure 2.3a) corresponded to the data obtained from image analysis (Figure 2.3b), with 

the exception of GL 600-850 µm and GL 850-1000µm due to measurement limit of laser 

diffraction instrument (Figure 2.3a). It is interesting to note that the particle size 

distribution of the sieved granulated lactose samples using laser diffraction and image 

analysis of SEM micrographs did not exactly match the sieve fraction value. This 

difference in the size of the sieved granules may be ascribed to their non-spherical 

elongated shape(36). The smallest cross-sectional dimensions of the particles determine 

their passage through the sieve mesh(37), whereas diameters obtained from laser 

diffraction and image analysis are different (38). 
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2.4.2 Specific Surface Area 

 

Of all granulated lactose samples with different size fractions, the specific surface 

area remained a constant value similar to the primary lactose carriers, contradictory to 

theoretical surface area of smooth spherical particles in which surface area is calculated 

to decrease progressively with increased particle size(13). The constant surface area 

observed inspite of different granule sizes is related to particle roughness (Figure 2.5a), 

and confirmed by a linear relationship (r
2
 = 0.9787) between mean diameter of lactose 

granules and roughness value (Figure 2.5b). Moreover, as a result of the constant surface 

area across the different carrier particle systems, the average drug load per unit calculated 

surface area (carrier surface payload) is therefore expected to be the same or most 

possibly slightly decrease with increasing carrier diameter (11). The slight decrease is 

explained by the distribution of the micronized drugs mainly on the surface of the lactose 

granules, instead of the both exterior and interior portions, which however also accounts 

for the calculation of the specific surface area of the lactose granules. In previous studies, 

when carriers of different sizes were compared, the findings are often confounded with 

surface area coverage of the carrier particle by the drug and therefore, according to the 

“active site theory” differences in drug adhesion may happen. In the present studies, 

therefore, we postulate that the difference in potential active sites could be very small 

between the different carrier size fractions (39).  
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2.4.3 Density and Flowability 

 

The granulated lactose density measurements had a decreasing trend with size, 

which may be explained by the increased interparticle space as granule size is increased. 

As a result, compared to smaller lactose, granulated lactose powders with large sizes may 

have a fewer number of particle-particle contact points with neighboring particles.   

Theoretically, powder flow and mean particle size is positively correlated (40). 

Interestingly, when the size of the lactose granules was increased from 200 µm to 850 µm, 

the flowability of the lactose granules did not improve significantly demonstrated by both 

Carr’s Index and Angle of Repose (Table 2.1). Additionally, in previous study the Carr’s 

Index of spray dried mannitol (90-125 µm) was around 13% (41), much lower than that  

of lactose granules (Carr’s Index: 17%) even with a larger size fraction (200-250 µm). 

The reason of the not significantly improved flow may be the mechanical interlocking 

among the rough lactose particles, which prevents powder motion (42). 

 

2.4.4 Aerosol Performance 

 

 

2.4.4.1 Adhesion forces and bulk powder properties 

 

The bulk powder properties characterized above can influence the balance between 

adhesion forces and separation forces for lactose granules based adhesive mixtures. It has 

been well studied that the size of the interactive forces between carrier particle and drug 
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particle significantly influence the redispersion efficiency of micronized drugs during 

inhalation while fixed device is used.  

During powder mixing, frictional and inertial press-on are related to the adhesion of 

drug particles on the carrier surface (14). The differences of these forces in the different 

lactose size fractions, may explain the improvement of aerosol redispersion observed 

with the coarsest fraction of granulated lactose. In our study, larger size lactose carrier 

which had lower bulk density (Table 2.1) may have a fewer number of contacts with 

neighboring particles, resulting in smaller effective surface area involved in particle-

particle collisions and thus less magnitude of triboelectrification during mixing.  

Furthermore, the flow properties as the function of lactose granule size didn’t improve 

significantly (Table 2.1). As a result, it is speculated that the frequency of impacted 

friction and inertial press-on force of granular lactose during mixing would not increase 

significantly with increasing size fractions. Additionally, although at the beginning of 

mixing process, drugs are randomly distributed over the carrier surface, they tend to 

accumulate in carrier surface irregularities (steep slopes and clefts) (18, 43). Such surface 

cavities are not necessarily “active sites” with high adhesive forces (39). The drug 

particles hidden in carrier surface discontinuities are subjected to lower or fewer press-on 

forces than drug particles that are attached to the flat exposed carrier particle surfaces 

(44). As observed in Figure 2.6, most drug particles were accumulated in the surface 

discontinuities, likely forming weak agglomerates between the primary particles. 

According to a previous study (13), intensive mixing of the drug particles with relatively 

large lactose granules would break up hard natural drug agglomerates and render holes 
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for weak drug agglomerates. The weak agglomerates also were demonstrated by the 

relatively small aerodynamic size of the dispersed drugs (Table 2.2, Table 2.3, and Table 

2.4), especially compared to the d50% of the micronized salbutamol sulfate particle size 

distribution (Figure 2.1). These weak drug agglomerates have higher inertial force in 

collision, so could be redispersed easily into primary drug particles during inhalation. 

Therefore, although the size of press-on forces generally will increase with increasing 

carrier diameter due to inertia mass, the effective surface area available for press-on 

effect decreases and consequently the effectiveness of the press-on force and the adhesive 

force decreases. Strong enough adhesive force is required such that drug preferentially 

adheres to the carrier during mixing, so as to achieve adequate blend homogeneity(45). 

So, the relatively poor blending uniformity observed with GL 850-1000 µm (Figure 2.7) 

partially supports the lower adhesive force in the larger lactose size fraction mixtures. 

Taking into account that blending uniformity is not the most efficient method, adhesive 

forces determined by more direct methods such as centrifugation and sieving would be 

investigated in the future study. The reduced adhesive forces between the carrier and drug 

may also be supported by the improved aerosol dispersion observed (Table 2.2, Table 2.3 

and Table 2.4) for GL 850-1000 µm.  

Since the granulated lactose had relatively rough surface, it is likely that press on 

forces would be reduced as these surface irregularities will shelter drug particles during 

contact between the lactose carriers. A greater quantity of drug powder would be required 

to fill the cavities on the surface of the granulated lactose before press-on forces would 

become important and limit aerosol performance. It is postulated, therefore, granulated 

lactose may be useful in making high drug loaded DPI formulations with acceptable 
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aerosol performance. In the present study 2% drug was incorporated in the blends, in 

which it was observed that the lactose carrier surface discontinuities were not fully 

occupied or saturated (Figure 2.6). Since the surface roughness of granulated lactose 

increased with increasing size fractions (Figure 2.5b), the larger lactose could be 

expected to provide a larger volume of surface pores to shelter a significantly higher 

amount of drugs from press-on forces during mixing (14). As a result, larger granulated 

lactose particles could be potential carriers for high drug loading dry powder inhalation 

formulations.   

 

2.4.4.2 Separation forces and bulk powder properties 

 

The in vitro cascade impaction aerosol dispersion studies of adhesive mixtures for 

inhalation do not solely reflect the effectiveness of the adhesion forces, but also 

incorportate the separation forces generated in the inhaler. Detachment by fluid flow 

forces and detachment by impaction/collision forces are the two major mechanisms 

involved in drug dispersion from large carrier particles (11, 12). Detachment by flow is 

preferred for carriers with relatively flat surface, such that drug particles could be 

exposed to the flow stream without obstructed path. Detachment by flow also facilitates 

the dispersion of larger drug particles, either primary drug particles or drug agglomerates, 

due to the increased drug surface area interacting with flow stream. Since the surface 

roughness of the granulated lactose increased significantly with size (Figure 2.5), 

according to the theory, the detachment force from flow stream would decrease with the 

increased granulated lactose size fractions. 
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Different from detachment by flow, detachment by impaction arises from the 

abrupt collisions between carrier particles and device walls and/or grids. Previous studies 

have hypothesized that there would be a transition from flow detachment to impaction 

detachment with larger (and significantly rough) lactose carriers. It was also shown that 

larger lactose particles with significantly rough surface exhibited greater aerosol 

performance than smaller particles (13). However, the carrier particle diameter used in 

previous studies was around or less than 300 µm, so it may be improper to extrapolate the 

improved mechanical impaction detachment force and aerosol performance for carrier 

particles larger than 300 µm as used in our study. In addition, as shown in previous study, 

even though the mechanical impaction force was still the predominant detachment force, 

the aerosol performance of the 250-300 µm granular lactose formulations was not 

significantly greater than the size fraction immediately preceding it (212-250 µm) due to 

relatively heavy mass of large carrier particles. It was speculated that mechanical 

impaction force of the granular lactose would not continuously increase with increasing 

carrier diameter/mass (13). Our observations in these studies of similar mass median 

aerodynamic diameter (MMAD) of the deposited drug (Table 2.2, 2.3 and 2.4) agreed 

with this assumption. In another study investigating the relationship between mechanical 

impaction force and particle detachment it was shown that a greater impaction force was 

needed for drug particles with decreasing diameter(46). It follows that the magnitude of 

impaction force could be similar, if similar aerodynamic diameters of deposited drugs 

were generated during inhalation of different formulations. As shown in Table 2.2, Table 

2.3, and Table 2.4, MMAD values of the deposited drugs didn’t significantly decrease 

with increasing granulated lactose size fractions under the same impaction parameters. 
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Thus, the mechanical impaction force may not significantly increase when lactose size 

increased from 212-250 µm to 850-1000 µm. However, previous study showed that the 

impaction force increases with increasing carrier size(13). Also, similar significantly low 

MMAD values were achieved under different carrier diameters compared to the value of 

d50% of micronized salbutamol sulfate (Figure 2.1), which indicates that lower 

impaction force was already enough to disperse down to primary size of the micronized 

drug particles. Thus, it is quite possible that impaction force did vary with increasing 

carrier diameter, but detachment due to mechanical impaction force didn’t increase 

significantly. 

Accordingly, for the separation force of the different lactose size fractions in this 

study, detachment by flow decreases significantly, and mechanical impaction force 

increases with increasing carrier diameter and surface roughness, but doesn’t contribute 

to the increasing detachment. As a result, the detachment forces are not as effective for 

larger and coarser granular lactose as for smaller ones, confirmed by a decrease trend of 

fine particle fraction from GL 212-250 µm to GL 600-850 µm (Table 2.4). The improved 

aerosol performance of GL 600-850 µm is explained, on the other hand, by the reduced 

adhesive force as discussed in the ‘adhesion forces and bulk powder properties’ section.  
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2.5 CONCLUSION  

 

To our knowledge, this study for the first time systemically studied the physico-

chemical properties and aerosol performance of significantly large lactose carriers (>200 

µm) across a wide range of narrow sieve fractions, In our study, the particle size of the 

lactose granules had no significant effect on solid-state, specific surface area, true density 

and flowability of the granulated lactose carriers. However, larger lactose granules had 

rougher particle surfaces and smaller bulk and tapped densities. This suggested that 

roughness, flowability, bulk and tapped density as well as the size of lactose could play a 

role together on the adhesive and removal force between drug particle and lactose particle.  

In summary, the coarser size fractions of lactose (850-1000 µm) had a slight 

improvement of in vitro deposition under both 60L/min and 90L/min with and without 

enlarged piercing holes (Table 2.2, Table 2.3 and Table 2.4) compared to the immediately 

preceding size fractions (600-850 µm).  A slight decreasing trend of FPF for the lactose 

carriers ranging from 212-250 µm to 600-850 µm was observed at 90L/min with larger 

piercing holes (1.2 mm) (Table 2.4). The surface roughness, size, bulk/tapped density as 

well as unusual powder flow are speculated to result in poor adhesion force of the largest 

and coarsest lactose granules, which could cause a slight increase of FPF. Meanwhile, 

surface roughness limits the strength of detachment by flow, which could explain a slight 

decreasing trend of FPF with size increasing from 212-250 µm to 600-850 µm with 

enlarged piercing holes, although not significantly different. Past studies, which prefer 

smaller carrier diameters, contribute the increased aerosol performance to increased 

specific surface area of smaller carriers, and increased fluid stream across drug particles 
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on flat carrier surface. However, the larger granulated carrier particles in this study 

possess different physical properties, with similar specific surface area over increasing 

size fractions and different predominate detachment mechanism, which is detachment by 

impaction force instead of fluid flow. Taken account of the different properties of the 

granulated lactose, poorer or enhanced aerosolization performance is not an inherent 

property to large size of granulated lactose carriers. The significantly large granulated 

lactose as the DPI carriers leads to a new way to investigate and optimize DPI 

formulations.   
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2.6 TABLE 

 

 

Table 2.1 Preparation of salbutamol sulphate/granulated lactose binary blends 

 

Formulation GL (mg) SBS (mg) 

GLF 212-250 µm 490  10 

GLF 250-300 µm 490 10 

GLF 300-425 µm 490 10 

GLF 425-600 µm 490 10 

GLF 600-850 µm 490 10 

GLF 850-1000 µm 490 10 
GLF: granulated lactose formulation; GL: granulated lactose; SBS: salbutamol sulphate 
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Table 2.2 True density, bulk density and tapped density (mean±SD, n=3) of granulated 

lactose carriers GL 212-250 μm, GL 250-300 μm, GL 300-425 μm and GL 425-600 μm, GL 

600-850 μm and GL 850-1000 μm .  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 Pharmatose 

100M 

GL 

212-250 µm 

GL 

250-300 µm 

GL 

300-425 µm 

GL 

425-600 µm 

GL 

600-850 µm 

GL 

850-1000 µm 

True Density (g/ml) 1.546 1.544 1.544 1.542 1.546 1.547 1.544 
Bulk Density (g/ml) 0.71   (0.02) 0.68   (0.01) 0.61   (0.01) 0.56   (0.00) 0.48±0.00 0.45±0.00 0.44±0.01 

Tapped Density 

(g/ml) 

0.94   (0.99) 0.82   (0.01) 0.71   (0.01) 0.65   (0.00) 0.58±0.00 0.53±0.03 0.48±0.01 

Carr’s    Index (%) 23.82 (1.81) 16.66 (1.78) 14.12 (1.76) 14.23 (1.02) 15.97±0.11 14.95±3.57 9.50±3.03 

Angle of Repose (°) 37.2   (1.5) 31.1   (3.0) 30.2   (1.5) 32.0   (1.5) 30.0±0.7 29.4±0.0 27.3±1.8 
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Table 2.3 In Vitro Aerosolization Performance with Capsules40.6 in Aerolizer at 60L/min. 

Emitted fraction (EF), fine particle fraction (FPF), respiratory fraction (RF), mass median 

aerodynamic diameter (MMAD) and geometric standard deviation (GSD) obtained from 

formulations containing SBS blended with granulated lactose carriers GL 212-250 μm, 

GL 250-300 μm, GL 300-425 μm, GL 425-600 μm, GL 600-850 μm and GL 850-1000 

μm  (mean±SD, n=3). 

 

 GL 

212-250 µm 

GL 

250-300 µm 

GL 

300-425 µm 

GL 

425-600 µm 

GL 

600-850 µm 

GL 

850-1000 µm 

EF (%) 87.5  (2.8) 82.3 (7.8) 71.9 (18.1) 63.3 (18.1) 62.5 (10.4) 67.0 (11.9) 
FPF (%) 21.0  (2.9) 19.2 (0.4) 20.5 (5.2) 19.9 (1.8) 20.4 (4.6) 26.7 (5.7) 

RF (%) 19.2  (2.8) 15.8 (1.5) 15.3 (6.8) 12.6 (2.4) 13.0 (4.6) 17.5 (2.6) 

MMAD (µm) 2.04(0.13) 1.90(0.04) 2.00(0.14) 1.81(0.08) 1.93(0.13) 1.93(0.10) 
GSD 1.8    (0.2) 1.7   (0.1) 1.7   (0.2) 1.7   (0.1) 1.8   (0.3) 1.7   (0.2) 

 

. 
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Table 2.4 In Vitro Aerosolization Performance with Capsules40.6 in Aerolizer at 90L/min. 

Emitted fraction (EF), fine particle fraction (FPF), respiratory fraction (RF), mass median 

aerodynamic diameter (MMAD) and geometric standard deviation (GSD) obtained from 

formulations containing SBS blended with granulated lactose carriers GL 212-250 μm, 

GL 250-300 μm, GL 300-425 μm, GL 425-600 μm, GL 600-850 μm and GL 850-1000 

μm  (mean±SD, n=3). 

 
 GL  

212-250 µm 

GL  

250-300 µm 

GL 

300-425 µm 

GL 

425-600 µm 

GL 

600-850 µm 

GL 

850-1000 µm 

EF (%) 83.2  (3.5) 83.6  (5.5) 81.1  (8.0) 76.7  (2.8) 73.2  (7.3) 69.6(11.0) 

FPF (%) 36.5  (3.1) 33.8  (5.2) 35.3  (7.0) 32.8  (3.7) 36.8  (6.0) 41.6  (5.6) 
RF (%) 30.4  (3.7) 28.5  (6.6) 29.0  (8.3) 25.1  (2.7) 27.1  (6.5) 29.3  (8.4) 

MMAD (µm) 1.69(0.03) 1.68(0.11) 1.65(0.04) 1.67(0.03) 1.58(0.03) 1.66(0.01) 

GSD 1.8    (0.1) 1.8    (0.2) 1.8    (0.2) 1.8    (0.1) 1.9    (0.0) 2.0    (0.2) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



59 
 
 

 

 

 

Table 2.5 In Vitro Aerosolization Performance with Capsules1.2 in Aerolizer at 90L/min. 

Emitted fraction (EF), fine particle fraction (FPF), respiratory fraction (RF), mass median 

aerodynamic diameter (MMAD) and geometric standard deviation (GSD) obtained from 

formulations containing SBS blended with granulated lactose carriers GL 212-250 μm,  

GL 250-300 μm, GL 300-425 μm, GL 425-600 μm, GL 600-850 μm and GL 850-1000 

μm  (mean±SD, n=3). 

 

 

 

 

 

 

 

  

 GL 

212-250 µm 

GL 

250-300 µm 

GL 

300-425 µm 

GL 

425-600 µm 

GL 

600-850 µm 

GL 

850-1000 µm 

EF (%) 89.0  (1.7) 89.2  (0.8) 89.1  (1.4) 90.0  (1.2) 88.9  (2.1) 84.6  (3.8) 

FPF (%) 37.1  (4.5) 38.2  (6.1) 34.9  (3.3) 30.7  (2.6) 31.2  (2.9) 37.8  (4.2) 

RF (%) 33.0  (4.3) 34.1  (5.2) 31.1  (2.8) 27.6  (2.6) 27.7  (2.6) 32.0  (4.5) 

MMAD (µm) 1.73(0.02) 1.68(0.04) 1.70(0.06) 1.60(0.04) 1.62(0.07) 1.64(0.06) 
GSD 1.7    (0.0) 1.7    (0.0) 1.7    (0.1) 1.7    (0.0) 1.8    (0.0) 1.8    (0.1) 
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2.7 FIGURE 

 

 

  
 

    
 

  

Figure 2.1 SEM micrographs of (a) Pharmatose 100M, (b) GL 212-250 µm granulated 

lactose, (c) GL 425-600 µm granulated lactose, (d) GL 850-1000 µm granulated lactose 

sieve fractions. Scale bars denote 200 µm 
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Figure 2.2 Particle size obtained by (a) laser diffraction (d10%, d50% and d90%) and (b) 

by image analysis SEM pictures  
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Figure 2.3 The DSC thermographs of all granulated lactose 
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Figure 2.4 (a) BET surface area and roughness for granulated lactose carriers with 

different size fractions: GL 212-250 μm, GL 250-300 μm, GL 300-425 μm and GL 425-

600 μm, GL 600-850 μm and GL 850-1000 μm; (b) and roughness of GL particles. All 

GL particles have similar specific surface area and larger GL particles have rougher 

surfaces. 
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Figure 2.5 SEM pictures of granulated lactose GL 212-250 µm blended with 2% SBS. 

Scale bar denotes 20µm 
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Figure 2.6 Blending uniformity of lactose granules based DPI formulations as function of 

the mean carrier diameter. (n = 5 x 3) 
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Chapter 3: Evaluation of granulated lactose as a carrier for DPI 

formulations 2: Effect of Drug Loading 

 

Abstract 

 

The objective of this study was to investigate the effect of drug loading on aerosol 

performance of dry powder inhaler formulations under different flow rates. Two different 

micronized APIs with different shape, and surface energy were studied. Granulated 

lactose carriers were prepared and fractionated into three discrete narrow size fractions, 

GL 212-250 µm, GL 450-600 µm and GL 850-1000 µm, which were blended with 

salbutamol sulfate or rifampicin to formulate 10% or 30% binary mixtures respectively. 

The in vitro aerosol performance was performed on the three different size fractions of 20 

mg adhesive mixtures from a commercial inhaler device (Aerolizer®) under 30 L/min 

and 90 L/min through NGI (Next Generation Impactor). Drug content was assessed via 

UV–Vis absorption spectroscopy at 230 nm or 470 nm. The selected size fractions of 

granulated lactose had increasing number of primary lactose particles and improved 

flowability with increasing granulated lactose size. There was a linear relationship (r
2
 = 

0.9787) between mean diameter of lactose granules and roughness value. All 

formulations had acceptable emitted fractions (> 70%) from impaction study. For both 

drug loading (10% and 30%), there was an inverse relationship between mass median 

aerodynamic diameters (MMAD) and size fractions. SS and Rif blended high drug loaded 

DPI formulations had quite different aerosol performance with each other, in terms of 
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granulated lactose size fraction and flow rate. Relatively large granulated lactose has 

improved flowability and increased surface roughness with increasing size fraction, 

which are promising properties for formulating high drug loaded DPI formulations. The 

aerosol performance of the high drug loaded DPI formulation heavily depends on the 

APIs and also the flow rate used in NGI study. 

 

Keywords: 

DPI formulations; Granulated lactose; Carrier size; Carrier roughness; Drug Loading 
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3.1 INTRODUCTION 

 

The dry powder inhaler (DPI) has become increasingly popular in the last decade 

by virtue of propellant-free nature, high patient compliance and improved formulation 

stability
1
.  In DPI formulation, active pharmaceutical ingredient (API) particles need to 

have aerodynamic diameters around 1-5 μm to reach therapeutic areas of the lung. 

However, particles with size smaller than 5 μm are very cohesive with extremely poor 

flowability. To facilitate powder flow, metering, dosing and downstream processing, 

large quantities of coarse carriers are commonly introduced to form binary or tertiary 

mixtures
2
. These mixtures are required to be redispersed into primary drug particles upon 

inhalation by patients. This is called aerosol or aerosolization performance. Nevertheless, 

it is challenging to develop an ideal DPI formulation, which has both good aerosol 

performance, and good blending uniformity. A balance is needed of interparticle forces 

between carrier and API particles. On one hand, adhesion force must be strong enough to 

ensure mixing homogeneity and stability during downstream powder handling, dosing, 

and transportation. On the other hand, adhesion force must be weak enough to allow 

efficient detachment of micronized API particles from the carrier surface upon 

inhalation
2
. 

As the major components of DPI mixtures, the physico-chemical properties of 

coarse carriers are key parameters in determining performance of DPI formulations
3
. α-

lactose monohydrate is the commonly used coarse carrier for DPI formulation because of 

its well-established safety profile, stable physico-chemical properties and compatibility 

with most available low molecular weight APIs
4
. It was widely believed that carrier 
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particles with smaller diameters especially with flat surface were preferable to maximize 

aerosolization efficiency
5
.  Nevertheless, it was found recently lactose carriers with large 

size fraction especially with significantly rough surface can also improve aerosol 

performance
6, 7

. This improvement is explained by the switch of predominant detachment 

mechanism from turbulence flow to impaction force
7
. It was also found that the rough 

surface of significantly large lactose could be used to shelter more drug particles from 

press-on forces much better than smooth counterparts, resulting in an improved aerosol 

performance
8
. 

A perfect blending uniformity of two types of particles is that when a group of 

particles are taken from any position in the mixture, the same proportions of each particle 

are obtained as in the whole mixture
9
. To reach acceptable blending uniformity, 

interactive or ordered mixing is commonly used in DPI formulations, which generally 

contains low drug loading (1-2%). In the ordered and interactive mixture, the fine drug 

particles (micronized drugs, <5um) adhere to the second coarser constituents (coarse 

lactose carrier). These interactive mixtures will become nearly homogenous under 

optimum mixing conditions
10

.  

Nevertheless, it is found that there is a dilemma between high aerosol performance 

and good blending uniformity for traditional DPI binary mixtures. As mentioned before, 

it is considered as a dogma in inhalation area that lactose carrier with small particle size 

especially with flat surface is preferred for a better aerosol performance. Thus large 

quantities of fine lactose particles are always added in commercial inhalation grade 

lactose for aerosol performance improvement. However, it is known that small size and 
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smooth surface of particles are detrimental to powder flow
11

, and potentially would have 

adverse effect on blending uniformity. It has been reported by Kaialy et. al that 

budesonide formulated with smaller lactose carriers exhibited higher amounts of 

budesonide delivered to the lower stages of the impactor indicating an improved DPI 

aerosol performance, while lactose particles with smaller diameter had an unfavorable 

effect on budesonide content homogeneity
12

. Additionally, the large particle size and thus 

small specific surface area of the coarser carrier particles limit the loading content of fine 

drug particles. When the drug loading is increased further than forming the monolayer of 

the available space on the carrier, multiple agglomerate systems would likely to be 

formed, leading to formulation segregation and reduced aerosol performance
13

. This is 

one potential major reason that there is no high drug loaded lactose based DPI 

formulations right now, which however is very important for tuberculosis (TB) or other 

lung infections.  

To solve the dilemma of poor blending uniformity or poor aerosol performance in 

carrier based DPI formulations, especially high drug loaded DPIs, granular lactose turns 

out a promising DPI carrier. Firstly, as discussed above, significantly large granulated 

lactose could still serve as proper DPI carriers with better aerosol performance, where 

inertia impaction is the major detachment mechanism. Secondly, small lactose is 

unfavorable in DPI blending uniformity, but when the surface of lactose carrier became 

rougher, an improvement in blending homogeneity could be observed for the DPI 

formulation powders
14

. Therefore, roughness favors blending uniformity when the 

particle size is fixed. Last but not least important, roughness not only is beneficial for 

blending uniformity but was also found important in increasing drug loading. It was 
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reported recently that porous carrier particles could improve drug loading during an 

interactive mixing process without compromising blending uniformity. For instance, 

compared to sugar beads and MCC granules, a new porous carrier not only improved the 

loading capacity to 310% to 320%, but also provided an improved content uniformity
15

. 

In previous study a positive relationship was found and established between surface 

roughness/granule cavity volumes and granular size fractions
6
, thus improved blending 

uniformity and high drug loading could be achieved by significantly larger granular 

lactose for DPI formulations.  

In this study, to investigate the influence of granular lactose on blending uniformity 

and high drug loading of dry powder formulations, three significantly large size fractions 

of granulated lactose and two types of pharmaceutical active ingredients (APIs) with 

different size, shape and density were selected. This study evaluated how different size 

fractions of granulated lactose and different APIs affect the aerosol performance as well 

as blending uniformity of the carrier based DPI formulations, over a range of flow rates.  
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3.2 EXPERIMENTAL 

 

3.2.1 Materials 

 

α-Lactose monohydrate, Pharmatose 100M, was supplied from DFE Pharma 

(Princeton, NJ, USA). Micronized salbutamol sulphate (D50: 1.88 µm) was purchased 

from LETCO MEDICAL. Deionized water was provided by MilliQ (Millipore).  

 

3.2.2 Manufacture of lactose granules  

 

Wet granulation was used to manufacture lactose granules with large diameter from 

Pharmatose 100M (d10: 63 µm, d50: 150 µm, d90: 250 µm). Granulation is a process to 

generate large aggregates from small primary powders to improve the flowability of the 

powders 
16

. Wet granulation of lactose usually employs polymeric binders that are not 

approved for inhalation 
17-20

. To solve this problem, the granulation process in this 

research involved merely water as the binding solvent. Briefly, a batch size of 500 g 

starting lactose was introduced into the granulator (Robot Coupe USA. Inc.) followed by 

addition of 100 mL water merely as the granulating solvent. Subsequently, the granulated 

lactose carriers were pan dried in the oven overnight at 75 °C.  

 

3.2.3 Fractionation of granulated lactose carrier particles 

 

Different size fractions of lactose granules were obtained by separation of the bulk 

granulated material using a sieve tower with cut off sizes as follows: 1000 μm, 850 μm, 
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600 μm, 425 μm, 300 μm, 250 μm, 212 μm, and a metal collection pan. A vibrating auto 

sieve shaker (Gilson Company Inc., OH, USA) was employed. The granulated lactose 

was poured on the top of the vibrating sieve shaker and sieved through the sieves for 30 

min. Three size fractions of granulated lactose (GL) were selected for future experiments: 

GL 212-250 µm, GL 450-600 µm and GL 850-1000 µm. All analysis described were 

performed on the sieved samples. 

 

3.2.4 Fractionation of primary lactose carrier particles 

 

A vibrating auto sieve shaker (Gilson Company Inc., OH, USA) was employed. 

Pharmatose 100M was poured on the top of the vibrating sieve shaker and sieved through 

the sieves for 30 min. Size fractions 212-250 µm of lactose was selected for future 

experiments. 

 

3.2.5 Particle size measurement 

 

Particle size analysis of fractionized granulated lactose was evaluated by the 

Sympatec laser diffraction (Sympatec GmbH). The theoretical specific surface area 

(based on volume, assuming an ideal spherical smooth surface of the particles) was 

calculated by the software installed in the Sympatec.  
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3.2.6 Scanning electron microscopy 

 

The scanning electron microscopy (SEM; Supra 40VP, Zeiss, Germany) was used 

to visually assess the particle size and morphology of the granulated lactose and adhesive 

mixtures before and after impaction. The coating conditions prior to SEM for all the 

granulated lactose was 15 nm of Pd/Pt via sputter coating.  

 

3.2.7 Inverse Gas Chromatography 

 

The surface energetics of rifampicin particles with different size distributions were 

measured using a commercially available IGC system (2000, Surface Measurement 

Systems Ltd., London, UK). Approximately around 500 mg of each rifampicin sample 

was loaded into pre-silanized IGC glass columns (300mm x 3 mm i.d.) plugged with 

glass wool at each end of the column. Prior measurement each column was purged with 

dry nitrogen at 30 ºC. The retention time of both polar probes (ethyl acetate and 

chloroform) and nonpolar probes (n-alkanes) were measured at finite dilution conditions. 

Dispersive and specific surface energy under infinite dilution conditions were 

extrapolated from the straight lines of elution time in terms of the surface coverage by 

nonpolar or polar solvents
21

. 
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3.2.8 Preparation of salbutamol sulfate or rifampicin granulated lactose binary 

blends 

Salbutamol sulfate (SS) or rifampcin and fractionated granulated lactose were 

mixed to obtain 10% and 30% binary mixtures. All formulations were blended at a 

constant speed of 46 RPM for 10 min with a Turbula
®
 orbital mixer (Glen Mills, NJ, 

USA). Prior to any further analysis, the blended formulations were stored in the 

dessicator for 5 days.  

 

3.2.9 Preparation of salbutamol sulfate and lactose binary blends 

 

Salbutamol sulfate (SS) and primary lactose with size fraction of 212-250 µm were 

mixed to obtain two 30% binary mixtures. One batch of formulation was blended at a 

constant speed of 46 RPM for 10 min and other for 60 minwith a Turbula
®
 orbital mixer 

(Glen Mills, NJ, USA). Prior to any further analysis, the blended formulations were 

stored in the dessicator for 5 days.  

 

3.2.10 Drug uniformity test 

 

Five of randomly selected samples (20 ± 1 mg) were taken for measurement of 

salbutamol sulfate and rifampicin content uniformity. The coefficient of variation (CV%) 

was used to determine the blending uniformity. The test was performed three times. The 

potency of formulations was calculated by the APIs percent amount to the nominal dose.  
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3.2.11 In vitro aerosolisation study 

 

About 20 (±1) mg mixture powders were filled into size 3 Vcaps HPMC capsules 

pierced with one enlarged holes (1.2 mm) at each end of the capsule. The in vitro 

aerosolization performance of all formulations was assessed using Aerolizer® inhaler 

device (Novartis, Switzerland) under 30, 60 and 90L/min with 4L air volume through the 

device.   

A 1% (w/v) solution of silicon oil in hexane was applied to precoat the NGI stages 

for particle re-entrainment prevention. Amounts of salbutamol sulfate or rifampicin 

deposited on the capsule, inhaler, mouthpiece adaptor, induction port, pre-separator and 

NGI stages were measured and quantified. The content of salbutamol sulfate and 

rifampicin was measured by the ultraviolet visible absorption spectroscopy (Infinite 

M200, TECAN) at 230 nm and 474 nm respectively. The parameters used to evaluate 

salbutamol sulfate and rifampicin deposition performance were emitted fraction (EF) (Eq. 

1), fine particle fraction (FPF) (Eq. 2), respirable fraction (Eq. 3) mass median 

aerodynamic diameter (MMAD) and geometric standard deviation (GSD). 

EF =  
emitted dose

loading dose
 

(Eq. 1) 

FPF =  
recovered dose of drug particles smaller than 5 µm

emitted dose 
 

(Eq. 2) 
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RF =
recovered dose of drug particles smaller than 5 µm

loading dose 
 

(Eq.3) 

 

3.2.10 Statistics Analysis 

 

Statistical significance between aerosol performance values was determined with 

one-way TTESTs between groups (* indicates P<0.05; ** indicates P<0.005). 
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3.3 RESULTS 

 

3.3.1 Laser diffraction analysis 

 

Two different APIs (salbutamol sulfate and rifampicin) with similar particle size 

distribution, but different morphology, bulk density and surface energy were chosen. As 

shown in Figure 3.1, the particle size distribution of salbutamol sulfate was comparable 

to that of rifampicin. Specifically, the X50 of salbutamol sulfate was around 4.31 μm and 

that of rifampicin was around 4.17 μm.   

 

3.3.2 SEM images of two micronized APIs 

 

Representative images of salbutamol sulfate and rifampicin are presented in Figure 

3.2. The morphology of micronized salbutamol sulfate in Figure 3.2A was flat sheets, 

with elongated rectangular shape and relatively smooth surface. Fine salbutamol sulfate 

attached on the large salbutamol sulfate particles was visible.  In contrast, micronized 

rifampicin particles were relatively spherical, with rough surface and large amounts of 

fine rifampicin particles attached.  
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3.3.3 Inverse gas chromatography 

 

Inverse gas chromatography was applied to study the cohesive and adhesive 

interactions of two different components at the molecular level. As seen in Table 3.2, 

salbutamol sulfate had higher surface energy and work of cohesion than rifampicin, 

indicating that salbutamol sulfate is more cohesive than rifampicin and tends to form 

agglomerates with strong interactions. Work of cohesion is the work needed to separate 

two cohesive particles apart. The dispersive and acid-base surface energy of salbutamol 

sulfate was 57.95 mJ/m
2
 and 4.40 mJ/m

2
, in contrast to 26.70 mJ/m

2
 and 2.92 mJ/m

2
 of 

rifampicin. Due to the higher surface energy, salbutamol sulfate had almost twice large 

work of cohesion than rifampicin.  

 

3.3.4 SEM images of binary mixtures 

 

The granulated lactose used in this study had different size fractions (GL 212-250 

μm, GL 425-600 μm, and GL 850-1000 μm). Additionally, each single lactose granule 

was composed with aggregates formed by the primary lactose. With size increasing, the 

granulated lactose composed with (Figure 3.3) increasing number of primary lactose 

particles. Because of the aggregated primary particles, there are deep valleys and large 

cavities on the surface of all grades of granulated lactose, which could be obviously 

observed from the SEM images.  
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After blending with 10% or 30% SBS, respectively, the binary mixtures of 

granulated lactose (GL 212-250 μm, GL 425-600 μm, and GL 850-1000 μm) were 

characterized by scanning electron microscopy (Figure 3.4), so as to reveal the positions 

and distributions of SBS on the surface of  lactose carriers. As shown in Figure 3.4, the 

SBS particles mostly were trapped inside the large valleys and cavities of granulated 

lactose carriers, similar to the result of granulated lactose mixed with 2% SBS in previous 

research.
6
 Previous study in our group showed that there was a linear relationship (r

2
 = 

0.9787) between mean diameter of lactose granules and roughness value.
6
  Thus, the 

three grades of lactose granules had increasing surface roughness with increasing size. 

Since granulated lactose with increasing size had increasing surface roughness, those 

granulated lactose with increasing size fractions require increasing amount of SBS to 

completely fill the deep valleys or the surface roughness at a macro level. In this study, 

with addition of 10% SBS, no obvious projections and valleys (Figure 3.4A) on the 

surface of GL 212-250 μm mixture could be found. 10% SBS was almost enough to 

cover the deep valleys and cavities on GL 212-250 μm. Nevertheless, GL 425-600 μm 

and GL 850-1000 μm after blended with 10% SBS (Figure 3.4B and Figure 3.4C) were 

still in granular shape, especially GL 850-1000 μm with deep cavity holes clearly 

observed. The cavity holes of GL 425-600 μm and GL 850-1000 μm could not be 

completely filled until SBS reached 30%. Figure 3.4D, E and F showed that with 30% 

SBS the surface of all lactose carriers (GL 212-250 μm, GL 425-600 μm, and GL 850-

1000 μm) become relatively smooth and almost all the valleys were filled to the layer 

adjacent to the surface of protuberances.  
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Nevertheless, things are a little bit different when another APIs (rifampicin, RIF) 

was used. The binary mixtures of granulated lactose (GL 212-250 μm, GL 425-600 μm, 

and GL 850-1000 μm) with 10% RIF or 30% RIF characterized by scanning electron 

microscopy were shown in Figure 3.5. Contrary to 10% SBS, even if GL 212-250 μm 

was the carriers (Figure 3.5A), original shape of granulated lactose still could be clear 

observed with 10% RIF blended. Only when the amount of RIF reached 30%, the deep 

valleys of granulated lactose (such as GL 212-250 μm and GL 425-600 μm) could be 

covered and the original morphology of granulated lactose could not be easily observed. 

However, the 30% RIF was still not sufficient to fill all the cavities on GL 850-1000 μm 

and a very large hole not covered by RIF was shown in Figure 3.5F.  

As mentioned in the above paragraph, with addition of 10% SBS the cavities of GL 

212-250 μm could not be observed any more, but with 10% RIF the original morphology 

of GL 212-250 μm still could be seen obviously. To find the reason of the different 

phenomenon, a closer inspection of the distribution of SBS and RIF on granulated lactose 

was needed. Actually, (Figure 3.6B) the majority of 10% RIF merely located inside the 

deep cavities between two primary lactose particles. Nevertheless, the 10% SBS not only 

was stored in the deep valleys of GL 212-250 μm, but also spread all over the lactose 

granule surface.  

 

3.3.5 Blending uniformity 

 

One requirement of a good DPI mixture is acceptable homogeneity (low %CV 

or %RSD) to ensure dosing consistency and consequently uniform therapeutic effect after 
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aerosol delivery. Blending uniformity of the binary mixtures varied depending upon the 

drug loading, drug types, and size of granulated lactose (Table 3.3). Firstly, increasing 

drug loading from 10% to 30% led to a worse mixing homogeneity for both SBS and RIF. 

Secondly, RIF loaded granule mixtures had a smaller %CV or %RSD and therefore a 

better blending uniformity than SBS loaded granule mixtures. Last but not the least 

important, the mixture blending uniformity depends on the multivariate interaction 

between granulated lactose size fraction and drug loading. As shown from Figure 3.7, 

granulated lactose with different size fractions presented different blending uniformity 

trend with the increase of dug loading. For instance, GL 212-250 μm had the best 

blending uniformity of the evaluated granulated lactose carriers under 10% SBS. With 

the drug loading increased from 10% to 30% SBS, the blending uniformity decreased 

significantly. Meanwhile, granulated lactose with larger size fractions, e.g. GL 425-600 

μm and GL 850-1000 μm, exhibited an improved blending uniformity with increased 

SBS loading. When the drug loading was at 30% SBS, GL 212-250 μm had the worst 

blending homogeneity among all lactose granules, with the coefficient of variation value 

as high as 16.26%.  

 

3.3.6 Aerosol performance of granulated lactose based formulations 

 

In addition to acceptable mixture homogeneity, another requirement of a good DPI 

mixture is that the binary mixtures (drug and carrier) should be easily separated into 

primary components during aerosolization. Therefore, in vitro aerosol performance of all 

mixture blends were evaluated. There are twelve formulations altogether for three grades 
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of lactose granules, two drug loading (10% and 30%) and two APIs (SBS and RIF). They 

are A) 10% SBS, GL 212-250 μm, B) 10% SBS, GL 425-600 μm, C) 10% SBS, GL 850-

1000 μm, D) 30% SBS, GL 212-250 μm, E) 30% SBS, GL 425-600 μm, F) 30% SBS, 

GL 850-1000 μm, G) 10% RIF, GL 212-250 μm, H) 10% RIF, GL 425-600 μm, I) 10% 

RIF, GL 850-1000 μm, J) 30% RIF, GL 212-250 μm, K) 30% RIF, GL 425-600 μm, and 

M) 30% RIF, GL 850-1000 μm.  

In vitro aerosol performance of the twelve formulations was evaluated under three 

flow rates: 90 L/min, 60 L/min and 30 L/min, respectively. The aerosol performance of 

these formulations was analyzed in terms of emitted fraction (EF), mass median 

aerodynamic diameter (MMAD), and fine particle fraction (FPF). As seen in Table 3.4, 

all formulations had acceptable emitted fraction (> 80%) under 90 L/min flow rate. As 

the flow rate decreased, the EF decreased accordingly, especially for granulated lactose 

mixed with 30% SBS, 10% RIF and 30% RIF. The decreased EF comes from increased 

amount of APIs trapped in the capsule and inhaler devices. Increasing size of lactose 

granules only compromised the EF under 30 L/min, particularly for GL 850-1000 μm. 

But whatever flow rate, drug loading and APIs used, the amount of formulation trapped 

in the capsule increased with increasing of lactose carrier size.  

Figure 3.9 showed that MMAD of all formulations followed similar trends with 

different flow rate and size fraction of granulated lactose. MMAD values decreased 

significantly for all formulations with increasing flow rate. For instance, from 30L/min to 

90L/min, the MMAD of SBS blended formulations decreased from 3.7 ± 0.3 μm to 1.9 ± 

0.1 μm. Compared to SBS blended formulations, RIF formulations had an overall 
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relatively high MMAD. And the MMAD of RIF formulations also had a decreasing trend 

(30L/min: 5.4 ± 0.3 μm > 60 L/min: 4.7 ± 0.4 μm > 90 L/min: 4.3 ± 0.4 μm) with 

increased flow rate. Although not as significant as the influence of flow rate, with the size 

of granulated lactose carrier enlarged, the MMAD decreased for both APIs.  

Aerosol performance of all granulated lactose based SBS formulations were flow 

rate and drug loading dependent. Clearly shown in Figure 3.10A, higher flow rate (90 

L/min) produced a higher (1.3 ± 0.1 to 3.6 ± 1.4 fold increase) fine particle fraction of 

SBS (FPF: 75.4 ± 6.10% at 90 L/min versus 59.1 ± 8.7% at 60 L/min and 21.2 ± 10.0% 

at 30 L/min). Additionally, compared to 10% SBS loading, 30% SBS generated higher 

fine particle fraction for all granulated lactose size fractions with the same flow rate 

(30L/min: 12.6 ± 2.9% vs. 29.7 ± 6.4%, 60 L/min: 51.2 ± 3.7% vs. 67.0 ± 3.0%, and 90 

L/min: 69.3 ± 3.5% vs. 81.5 ± 1.6%).  

In contrast, the fine particle fraction of RIF formulations were not very flow rate 

and drug loading dependent. Figure 3.10 B showed that only 10%RIF, GL 425-600 μm 

and 10%RIF, GL 850-1000 μm had a slight increasing FPF with increasing flow rate. 

FPF peaked at 30 L/min or 90 L/min of the other four granulated lactose based RIF 

formulations. The flow rate that produced the smallest FPF was 60 L/min. In SBS 

formulations, high drug loading (30% SBS) produced higher fine particle fraction than 

low drug loading (10% SBS) with all flow rates. Unlike SBS, high drug loading of 

rifampicin (30% RIF) only played a role in increasing FPF than low counterparts 

(10%RIF) at low flow rate, such as 30 L/min (54.0 ± 6.2% vs. 28.8 ± 8.0%).  
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Therefore, the effect of granulated lactose size on the fine particle fraction of 

aerosol formulations depends on the drugs, drug loading and flow rate. With 10% SBS 

loading, the fine particle fraction of SBS was inversely related with carrier particle size 

under all the flow rates. However, fine particle fraction of 30%SBS formulations slightly 

increased with lactose carrier size when 90L/min or 60L/min flow rate was applied. 

Under the same impaction parameters (90L/min or 60L/min), although fine particle 

fractions of 30%RIF formulations didn’t increase with increasing lactose carrier size, 

they also didn’t decrease with lactose carrier size increasing. Thus, the detrimental 

influence of large lactose carrier is not an inherent property, which actually relies on 

APIs, drug loading and flow rate.  

 

3.3.7 Aerosol performance comparison of granulated lactose and primary lactose 

based formulations under same size fractions 

The aerodynamic parameters of granulated lactose were compared to primary 

lactose under the same size fractions to study the advantage of granulated lactose in 

formulating high drug loaded DPI formulations. Blended with 30% SBS, the performance 

of primary lactose (212-250 μm) was worse than that of granulated lactose (GL 212-250 

μm). Granulated lactose (GL 212-250 μm) based formulation could be easily fluidized 

and emptied outside the inhaler device, leading to the highest EF (85.5%) than primary 

lactose (81.6% and 82.1%).  Although the FPF of primary lactose (212-250 μm) and 

granulated lactose (GL 212-250 μm) was similar, both around 80%, when they were 

blended with 30% SBS for 10 min, primary lactose (212-250 μm) had a larger standard 
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deviation (79.0±3.5%) of the fine particle fraction than granulated lactose (80.6±1.1%). 

The worse dosing uniformity from primary lactose (212-250 μm) could be improved 

under a longer blending duration, 60 min instead, but at the price of a significantly 

reduced fine particle fraction (77.0±0.8%).   
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3.4 DISCUSSION 

 

3.4.1 Laser diffraction analysis and SEM imaging of two micronized APIs 

 

According to laser diffraction data (Figure 3.1), the particle size distribution of SBS 

was comparable to RIF, with X50 both around 5 μm. Although of similar geometric 

particle size, in fact the morphology and shape of the two APIs as shown in the SEM 

images (Figure 3.2) were quite different from each other. Additionally, it is interesting to 

note that most salbutamol sulfate particles were smaller than rifampicin particles under 

SEM. The discrepancy in size between SEM and laser diffraction could be ascribed to the 

different cohesiveness of the two drugs. SBS was more cohesive than RIF particles, as 

demonstrated by a higher surface energy and work of cohesion (Table 3.2). Thus, 

cohesive SBS particles were more difficult to disperse into single particles than RIF, 

rendering SBS agglomerates instead of primary particles for laser diffraction analysis. 

Also, the particle size measured by laser diffraction was equivalent volume diameter, 

which could not efficiently differentiate particles with different shape and morphology.  

 

3.4.2 Relationship between uniformity and bulk density 

 

It was found that blending uniformity of the high drug loaded and granulated 

lactose based DPI formulations may be relevant with filling extent of granule cavities by 

micronized drugs. GL 212-250 μm had the smallest surface roughness and smallest cavity 

volume to be filled by same amount of micronized drugs. Excessive micronized drugs 



95 
 
 

may result in poor blending. Same principle could also be applied to the effect of 

different drug loading on blending homogeneity. With the drug loading amount 

increasing from 10% to 30%, the blending uniformity of correspondent DPI formulations 

became worse. As shown in Figure 3.4 and Figure 3.5, the granule cavities (e.g. GL 425-

600 μm and GL 850-1000 μm) haven’t been filled completely with 10% SBS or 10% RIF, 

but could be filled completely with 30% SBS or 30% RIF, which potentially increase the 

excessive micronized drugs outside granule cavities, the tendency of segregation and thus 

poor blending. Another evidence of the relationship between filling cavity and blending 

uniformity is the density of drugs. Table 3.3 showed that RIF formulations had relatively 

better blending uniformity than RIF formulations. The bulk density of SBS was 0.16 ± 0 

g/ml and was 0.20 ± 0.01 g/ml of RIF. Since RIF had a higher bulk density than SBS, the 

cavities of granulated lactose could not be completely filled by 10% RIF, compared to 10% 

SBS (Figure 3.5). As displayed in Figure 3.6, with same amount of micronized drugs 

added, RIF particles mostly accumulated in the deep valleys of granulated lactose, but 

same amount of SBS spread all over the valleys.   

GL 850-1000 μm was an exception. In the experiment, only around 35 particles of 

GL 850-1000 μm mixtures (~20mg) were weighed out for uniformity analysis. As result 

of small number of particles used, the uniformity test may not qualify statistical analysis.  

 

3.4.3 Aerosol performance 
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3.4.3.1 Effect of Press-on Forces on Aerosol Performance of High Drug Loaded DPI 

Formulations 

Reduced effectiveness of press-on forces with increasing lactose size fractions 

could be used to explain the improvement of aerosol redispersion observed with 30% 

SBS loaded coarsest fraction of granulated lactose at 90L/min. As studied previously, the 

frequency of impacted friction and inertial press-on force of granular lactose during 

mixing would not increase significantly with increased granule size, owing to reduced 

bulk density and not significantly improved flowability
6
. In addition, drugs, including 

both SBS and RIF, tend to accumulate in cavities of granular lactose, which serve as 

shelters to prevent effective press-on force from heavy granular lactose during mixing. 

Nevertheless, with more drugs get filled into the cavities and become contingent with the 

granular surface, the protective effect of granule cavity from press-on force will not 

continue indefinitely. Since the roughness of granular lactose increases with increasing 

size, the cavity volume required to be filled also increases. According to Figure 3.5 and 

Figure 3.6, higher amount of SBS or RIF were required to completely fill the cavities of 

granular lactose with larger size fractions (e.g. GL 850-1000 μm), demonstrated also by 

increased blending uniformity results (Table 3.3). Therefore, with increasing granular 

size, not only the effective surface area available for press-on effect decreases as 

discussed in previous research, but effective press-on force also decreases for extremely 

high drug loaded granular based formulation. Reduced effectiveness of press-on force 

potentially results in reduced adhesive forces between micronized drugs and lactose 

carrier surface. It is known that weak adhesive force favors better detachment of 

micronized drugs from carrier surface and thus an improved aerosol performance. So, the 

file:///I:/Manuscripts/Paper%203%20drug%20loading-Done/20141226%20Evaluation%20of%20granulated%20lactose%20as%20a%20carrier%20for%20DPI%20formulations%20Effect%20of%20Drug%20Loading-paper.docx%23_ENREF_6
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improved aerosol performance of 30% SBS GL 850-1000 μm (FPF: 82.8±0.7%) at 90 

L/min, compared to 30% SBS GL 425-600 μm (FPF: 81.0±2.2%) and especially 30% 

SBS GL 212-250 μm (FPF: 80.6±1.1%), could be explained to some extent by reduced 

effectiveness of press-on force. The increased aerosol performance however is not that 

significant because the increased press-on force for smaller lactose size fraction may not 

be that significant. For instance with GL 212-250 μm, when the drug loading is extremely 

large to fill completely the granule valleys, the excessive drugs could be pushed into the 

valleys to increase the press-on and adhesive forces, but could also be separated from the 

granule valley due to no more space, which is also confirmed by the reduced blending 

uniformity of 30% SBS GL 212-250 μm compared to larger lactose counterparts. The 

increased press-on force with smooth lactose surface could also be confirmed by Table 

3.5.  

As discussed above, the protective shelter effect of granule cavities from press-on 

force could be reduced by increased drug amount, so the reduced shelter effect or thus 

increased press-on force is drug loading dependent. This explained why 10% SBS GL 

850-1000 μm generally didn’t work as well as 10% SBS GL 212-250 μm. Same reason 

could also be applied to 10% RIF GL 850-1000 μm and 30% RIF GL 850-1000 μm, since 

RIF has a higher bulk density than SBS and more RIF would be required to result in 

increased press-on force for GL 212-250 μm. Additionally, adhesive force is about the 

interaction between drug particles and lactose valley surface. In the granule valleys, there 

will be large amount of drug agglomerates not directly contacted with valley surface. 

Thus, aerosol performance evaluated under high flow rate is more relevant with the 

different adhesive force.  
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3.4.3.2 Surface energy 

 

Aerosol performance of traditional lactose based dry powder inhalation 

formulations has also been predicted by interparticulate interaction analysis using inverse 

gas chromatography
22

.  Higher surface energy of micronized APIs has been correlated 

with poor aerosol performance, due to a stronger particle interaction between drug and 

lactose carrier particles, in conventional lactose DPI formulations.  In this study, SBS 

with higher surface energy than RIF led to higher SBS still attached on granulated lactose 

carriers during impaction studies and thus higher amounts of SBS trapped in the pre-

seperator (Table 3.4). Nevertheless, the higher surface energy of SBS didn’t correlate to a 

low aerosol performance anymore in the high drug loaded lactose based formulation, 

because aerosol performance herein not only is relevant with detachment of micronized 

drugs from lactose carrier but also with induction port deposition and primary drug 

particle redispersion.  

 

3.4.3.3 Rifampicin vs. Salbutamol sulfate 

 

Aerosol performance of the high drug loaded granular lactose based dry powder 

inhalation formulation is drug substance dependent. In this study the fine particle fraction 

generated from RIF based DPI formulations is much smaller than that from SBS based 

DPI formulations.  The difference came from different particle size, shape and also bulk 

density of micronized drugs used.  

file:///I:/Manuscripts/Paper%203%20drug%20loading-Done/20141226%20Evaluation%20of%20granulated%20lactose%20as%20a%20carrier%20for%20DPI%20formulations%20Effect%20of%20Drug%20Loading-paper.docx%23_ENREF_22
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Firstly, different from SBS based formulations, RIF based formulations generated a 

large amount of drugs deposited in the induction port. Micronized RIF had a higher bulk 

density, and larger particle size, than micronized SBS particles, which resulted in 

potential higher particle inertia force.  As the drug particles become larger, their response 

to change in the fluid flow is slower
23

.  Consequently, larger particles tend to hit the 

induction port neck and get trapped inside the induction port. Additionally, as shown in 

Table 3.4, the aerosol performance (fine particle fraction) of RIB based DPI formulation 

is less flow rate dependent than SBS based formulation. According to Table 4C and 4D, 

the amount of micronized RIF trapped in induction port was correlated with flow rate. A 

higher flow rate resulted in more micronized RIF trapped in induction port. A higher flow 

rate generally is known to improve fine particle fraction. Therefore, the increased 

detachment ability at a higher flow rate was counterbalanced by the increased induction 

trap micronized RIF. Secondly, there is a positive relationship between MMAD and drug 

particle size. Micronized RIF had a larger particle size and the MMAD was around 4-6 

μm. On the other hand, smaller micronized SBS had a MMAD around 2-4 μm. Thus, 

even if micronized RIF could be detached from granular lactose carrier the same extent as 

micronized SBS, there will be less micronized RIF be able to deliver to the lung.  
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3.5 CONCLUSION 

 

Relatively large granulated lactose was evaluated to produce a high drug loading 

dry powder formulations, which could generate a significant improved fraction of fine 

particles for inhalation. The aerosol performance of high drug loaded granulated lactose 

based formulation depends on the lactose size fraction, drug loading and also APIs. More 

efficient fine particle fraction (FPF) was observed with small size fractions (GL 212-250 

µm) at 10% SBS. However, when the drug loading was increased to 30%, the large size 

fraction (GL 850-1000 µm) had a better aerosol performance. The roughness of the 

granulated lactose was found to increase with increasing lactose size. Therefore, the 

driving mechanism behind these findings perhaps is because larger lactose carriers with 

relatively rougher surface could ‘shelter’ more SBS drug particles from press-on forces 

than smooth counterparts. Nevertheless, RIF based high drug loaded formulation didn’t 

follow the same rules as SBS. RIF had a less flow rate and lactose size fraction dependent 

performance than SBS, due to a different drug particle shape, and bulk density.  
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3.6 TABLES 

 

Table 3.1 Particle size distributions of the APIs (n >3) 

 

APIs X10 (μm) X50 (μm) X90 (μm) 

Salbutamol sulfate (SBS) 1.21 (0.08) 4.31 (0.24) 13.28 (2.21) 

Rifampicin (RIF) 1.09 (0.05) 4.17 (0.13) 8.63 (0.54) 
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Table 3.2 Surface energy parameters of micronized salbutamol sulfate and micronized 

rifampicin measured by inverse gas chromatography 

 γd  

(mJ/m
2
) 

γab 

(mJ/m
2
) 

γt 

(mJ/m
2
) 

Wcoh 

(Dispersive) 

Wcoh 

(Specific) 

Wcoh 

(Total) 

Salbutamol sulfate 57.95 4.40 62.35 115.91 8.80 124.70 

Rifampicin 26.70 2.92 29.62 53.40 5.85 59.25 
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Table 3.3 Content uniformity of salbutamol sulfate/rifampicin blended with different 

granulated lactose carriers 

(A) Average content in salbutamol sulfate (% w/w) for the different blends. 

Lactose Grade Drug in the blend (% w/w) CV (%) 

10% Salbutamol sulfate   

GL 212-250 μm 8.12 (0.34)  4.19 

GL 425-600 μm  7.56 (0.17) 2.30 

GL 850-1000 μm  7.13 (0.33) 4.61 

30% Salbutamol sulfate   

GL 212-250 μm 38.68 (6.29) 16.26 

GL 425-600 μm 25.53 (0.59) 2.33 

GL 850-1000 μm 26.82 (2.34) 8.70 

 

 

(B) Average content in rifampicin (% w/w) for the different blends. 

Lactose Grade Drug in the blend (% w/w) CV (%) 

10% Rifampicin   

GL 212-250 μm 6.90 (0.46) 6.61 

GL 425-600 μm  7.50 (0.10) 1.27 

GL 850-1000 μm  7.42 (0.24) 3.20 

30% Rifampicin   

GL 212-250 μm 25.46 (1.02) 4.02 

GL 425-600 μm 25.34 (0.99) 3.90 

GL 850-1000 μm 22.39 (1.17) 5.22 
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Table 3.4 Effect of APIs, drug loading, carrier size, and flow rate on the aerosolization of 

adhesive mixture dry powder formulations: (A) 10% salbutamol sulfate, (B) 30% 

salbutamol sulfate, (C) 10% rifampicin, (D) 30% rifampicin (values are means ± SD, n = 

3).   

 

(A) Cap (%) Device (%) EF (%) FPF (%) RF (%) MMAD 

(μm) 

PRE (%) Port (%) 

90 L/min, 10% SBS   

GL 212-250 μm 1.3 (0.2) 16.7 (1.4) 82.1 

(1.5) 

73.3 

(1.0) 

60.1 

(0.5) 

1.9 (0.1) 17.3 

(1.2) 

6.3 (0.3) 

GL 425-600 μm  1.7 (0.6) 16.1 (2.8) 82.2 

(3.4) 

67.9 

(2.8) 

55.9 

(4.5) 

1.8 (0.0) 22.8 

(0.8) 

5.8 (0.4) 

GL 850-1000 μm  2.0 (0.6) 11.9 (2.0) 86.1 

(1.9) 

66.9 

(2.1) 

57.6 

(1.5) 

1.7 (0.0) 23.2 

(1.7) 

7.1 (0.7) 

60 L/min, 10% 

SBS 

        

GL 212-250 μm 1.1 (0.2) 23.0 (0.7) 75.9 

(0.9) 

51.9 

(1.6) 

39.4 

(1.6) 

2.1 (0.1) 34.6 

(1.1) 

6.5 (0.4) 

GL 425-600 μm 1.0 (0.0) 20.0 (1.3) 79.0 

(1.3) 

47.0 

(1.3) 

37.1 

(0.4) 

2.0 (0.1) 42.0 

(1.8) 

5.4 (0.8) 

GL 850-1000 μm 2.2 (0.4) 17.5 (1.3) 80.3 

(1.0) 

54.7 

(2.2) 

43.9 

(1.8) 

2.0 (0.0) 37.2 

(1.4) 

5.5 (0.5) 

30 L/min, 10% 

SBS 

        

GL 212-250 μm 0.6 (0.1) 17.7 (4.6) 81.7 

(4.5) 

14.1 

(3.7) 

11.4 

(2.5) 

3.4 (0.1) 75.3 

(5.2) 

6.7 (0.7) 

GL 425-600 μm 0.5 (0.2) 12.6 (0.2) 86.8 

(0.4) 

12.1 

(3.7) 

10.5 

(3.2) 

3.6 (0.3) 77.7 

(4.6) 

5.5 (0.8) 

GL 850-1000 μm 6.6 (5.5) 18.8 (3.3) 74.6 

(8.3) 

11.7 

(1.2) 

8.7 (0.4) 3.4 (0.1) 80.5 

(2.2) 

4.6 (0.6) 
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Table 3.4 Effect of APIs, drug loading, carrier size, and flow rate on the aerosolization of 

adhesive mixture dry powder formulations: (A) 10% salbutamol sulfate, (B) 30% 

salbutamol sulfate, (C) 10% rifampicin, (D) 30% rifampicin (values are means ± SD, n = 

3).  (Continued) 

 

(B) Cap (%) Device (%) EF (%) FPF (%) RF (%) MMAD 

(μm) 

PRE (%) Port (%) 

90 L/min, 30% SBS   

GL 212-250 μm 0.9 (0.2) 13.6 (2.1) 85.5 (2.2) 80.6 

(1.1) 

68.9 

(1.0) 

2.1 (0.1) 8.7 (0.3) 7.1 (0.9) 

GL 425-600 μm  0.7 (0.2) 17.2 (0.7) 82.1 (0.5) 81.0 

(2.2) 

66.5 

(2.2) 

2.0 (0.1) 7.9 (0.8) 7.6 (1.0) 

GL 850-1000 μm  1.0 (0.2) 18.4 (1.4) 80.6 (1.6) 82.8 

(0.7) 

66.8 

(1.8) 

1.9 (0.0) 7.3 (0.1) 6.6 (0.5) 

60 L/min, 30% SBS 

GL 212-250 μm 1.1 (0.4) 28.7 (11.3) 70.2 (11.3) 66.0 

(4.2) 

46.3 

(7.6) 

2.3 (0.1) 15.6 

(1.2) 

7.5 (1.6) 

GL 425-600 μm 1.5 (0.2) 29.2 (3.5) 69.3 (3.4) 65.7 

(2.4) 

45.6 

(3.9) 

2.2 (0.0) 16.6 

(0.1) 

7.5 (0.1) 

GL 850-1000 μm 2.1 (1.2) 24.2 (6.0) 73.8 (6.4) 69.2 

(1.1) 

51.0 

(3.6) 

2.1 (0.1) 14.1 

(1.2) 

7.2 (0.1) 

30 L/min, 30% SBS 

GL 212-250 μm 0.9 (0.0) 30.9 

(4.1) 

68.2 (4.1) 35.9 

(3.0) 

24.5 

(3.3) 

4.0 (0.2) 40.3 

(0.5) 

10.7 (0.3) 

GL 425-600 μm 0.4 (0.1) 28.3 

(1.2) 

71.3 (1.3) 22.2 

(1.7) 

15.8 

(1.3) 

3.9 (0.1) 55.4 

(2.9) 

12.1 (1.6) 

GL 850-1000 μm 24.1 (17.8) 29.0 

(2.4) 

46.8 (15.8) 31.2 

(2.0) 

14.7 

(5.7) 

4.0 (0.1) 42.9 

(1.8) 

8.3 (1.8) 
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Table 3.4 Effect of APIs, drug loading, carrier size, and flow rate on the aerosolization of 

adhesive mixture dry powder formulations: (A) 10% salbutamol sulfate, (B) 30% 

salbutamol sulfate, (C) 10% rifampicin, (D) 30% rifampicin (values are means ± SD, n = 

3).  (Continued) 

 

(C) Cap (%) Device 

(%) 

EF (%) FPF (%) RF (%) MMAD 

(μm) 

PRE 

(%) 

Port (%) 

90 L/min, 10% RIF   

GL 212-250 μm 2.3 (0.6) 12.5 (0.9) 85.3 

(1.5) 

44.6 

(2.4) 

38.0 

(2.3) 

4.4 (0.2) 10.7 

(1.3) 

24.8 (1.2) 

GL 425-600 μm  2.1 (0.4) 12.1 (0.9) 85.8 

(1.2) 

41.2 

(0.9) 

35.3 

(0.9) 

3.9 (0.2) 15.3 

(0.1) 

26.7 (1.0) 

GL 850-1000 μm  2.4 (0.6) 13.0 (1.6) 84.6 

(1.6) 

43.2 

(1.6) 

36.6 

(1.9) 

3.9 (0.1) 13.9 

(2.1) 

26.4 (0.6) 

60 L/min, 10% RIF 

GL 212-250 μm 3.6 (0.1) 15.6 (1.4) 80.8 

(1.4) 

33.5 

(1.2) 

27.1 

(1.2) 

5.0 (0.4) 14.5 

(0.8) 

16.4 (0.5) 

GL 425-600 μm 3.2 (1.0) 15.1 (3.1) 81.7 

(2.5) 

31.5 

(1.5) 

25.7 

(0.4) 

4.4 (0.1) 24.5 

(2.1) 

15.0 (0.3) 

GL 850-1000 μm 3.8 (0.1) 19.9 (2.3) 76.3 

(2.3) 

33.2 

(2.0) 

25.3 

(1.5) 

4.2 (0.2) 22.6 

(4.0) 

14.1 (0.7) 

30 L/min, 10% RIF 

GL 212-250 μm 7.4 (2.2) 19.0 (5.2) 73.7 

(3.3) 

37.7 

(3.1) 

27.7 

(1.1) 

5.5 (0.4) 38.5 

(3.5) 

4.3 (0.9) 

GL 425-600 μm 4.9 (1.0) 15.4 (2.2) 79.7 

(2.4) 

25.7 

(3.8) 

20.4 

(2.4) 

5.1 (0.2) 59.7 

(5.5) 

3.4 (0.3) 

GL 850-1000 μm 10.8 

(0.3) 

19.8 (3.2) 69.4 

(2.9) 

23.0 

(6.9) 

15.8 

(4.1) 

5.2 (0.1) 62.1 

(9.3) 

3.6 (0.5) 
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Table 3.4 Effect of APIs, drug loading, carrier size, and flow rate on the aerosolization of 

adhesive mixture dry powder formulations: (A) 10% salbutamol sulfate, (B) 30% 

salbutamol sulfate, (C) 10% rifampicin, (D) 30% rifampicin (values are means ± SD, n = 

3).  (Continued) 

 

(D) Cap (%) Device 

(%) 

EF (%) FPF (%) RF (%) MMAD 

(μm) 

PRE 

(%) 

Port (%) 

90 L/min, 30% RIF   

GL 212-250 μm 0.4 (0.1) 9.3 (2.0) 90.3 (1.9) 42.8 

(4.8) 

38.6 

(4.6) 

4.9 (0.2) 6.4 (0.1) 31.8 (4.4) 

GL 425-600 μm  0.4 (0.1) 13.7 (8.2) 86.0 (8.2) 42.8 

(2.3) 

36.9 

(5.3) 

4.4 (0.2) 5.7 (0.0) 31.5 (2.0) 

GL 850-1000 

μm  

0.5 (0.1) 9.5 (0.9) 90.0 (0.9) 42.3 

(1.5) 

38.1 

(1.6) 

4.2 (0.1) 6.9 (0.9) 33.2 (0.8) 

60 L/min, 30% RIF 

GL 212-250 μm 0.6 (0.1) 17.8 (2.0) 81.6 (2.0) 37.4 

(3.4) 

30.5 

(3.5) 

4.9 (0.3) 5.6 (0.4) 17.8 (0.7) 

GL 425-600 μm 0.7 (0.3) 16.0 (0.8) 83.3 (0.5) 37.5 

(1.1) 

31.3 

(1.0) 

4.8 (0.4) 5.7 (0.5) 19.3 (3.1) 

GL 850-1000 

μm 

0.7 (0.2) 16.7 (1.5) 82.6 (1.3) 37.6 

(1.0) 

31.0 

(1.1) 

4.6 (0.2) 6.0 (0.3) 20.4 (2.1) 

30 L/min, 30% RIF 

GL 212-250 μm 1.1 (0.4) 21.2 (0.8) 77.6 (1.1) 59.2 

(0.9) 

46.0 

(1.1) 

5.6 (0.1) 6.8 (0.5) 7.4 (0.7) 

GL 425-600 μm 1.0 (0.1) 24.6 (2.0) 74.4 (1.9) 54.7 

(7.8) 

40.7 

(6.5) 

5.6 (0.1) 13.7 

(8.8) 

7.0 (0.7) 

GL 850-1000 

μm 

5.4 (5.3) 26.1 (1.6) 68.6 (5.9) 48.2 

(1.2) 

33.1 

(3.6) 

5.7 (0.1) 20.7 

(0.7) 

7.1 (0.5) 
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Table 3.5 Aerodynamic parameters between primary lactose and granulated lactose at 

same size fractions. 

 

 Time (min) EF (%) FPF (%) RF (%) MMAD 

(μm) 

PRE (%) 

90 L/min, 30% SBS 

GL 212-250 μm 10 min 85.5 (2.2) 80.6 (1.1) 68.9 (1.0) 2.1 (0.1) 8.7 (0.3) 

P 212-250 μm  10 min 81.6 (2.8) 79.0 (3.5) 64.5 (4.1) 2.0 (0.1) 10.1 (1.8) 

P 212-250 μm  60 min 82.1 (2.4) 77.0 (0.8) 63.2 (1.9) 2.1 (0.1) 11.3 (0.8) 
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3.7 FIGURES 

 

 

 

 

Figure 3.1 Particle size distribution of micronized salbutamol sulfate and micronized 

rifampicin 
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(A)   

 

(B)  

 

Figure 3.2 SEM of (A) micronized salbutamol sulfate and (B) micronized rifampicin 
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Figure 3.3 SEM micrographs of (a) Pharmatose 100M, (b) GL 212-250µm granulated 

lactose, (c) GL 425-600µm granulated lactose, (d) GL 850-1000µm granulated lactose 

sieve fractions. Scale bars denote 200µm.  
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(A)                                               (B)                                               (C) 

   

(D)                                              (E)                                                (F) 

 

Figure 3.4 SEM micrographs of micronized salbutamol sulfate (SBS) and granulated 

lactose mixtures: A) 10% SBS, GL 212-250 µm, B) 10% SBS, GL 425-600 μm, C) 10% 

SBS, GL 850-1000 μm, D) 30% SBS, GL 212-250 µm, E) 30% SBS, GL 425-600 μm, F) 

30% SBS, GL 850-1000 μm.  
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(A)                                               (B)                                               (C) 

   
(D)                                              (E)                                                (F) 

 

Figure 3.5 SEM micrographs of micronized rifampicin and granulated lactose mixtures: 

A) 10% RIF GL 212-250 µm, B) 10% RIF, GL 425-600 μm, C) 10% RIF, GL 850-1000 

μm, D) 30% RIF, GL 212-250 µm, E) 30% RIF, GL 425-600 μm, F) 30% RIF, GL 850-

1000 μm.  
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(A)  

(B)   

 

Figure 3.6 (A) 10% SBS, G100M 212-250, (B) 10% RIF, G100M 212-250 
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Figure 3.7 Content uniformity of 2%, 10% and 30% Salbutamol Sulfate and granulated 

lactose with different size fractions.  
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(A)  

 

 

(B)  

 

 

Figure 3.8 MMAD of A) SBS formulations; and B) RIF formulations under different 

flow rate and lactose granule size fractions. 
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(A)  

 

 

(B)  

 

 

Figure 3.9 Fine particle fraction (FPF) of A) SBS formulations; and B) RIF formulations 

versus flow rate. 
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(A)  

 

 

(B)  

 

Figure 3.10 Fine particle fraction (FPF) of (A) 10% salbutamol sulfate, B) 30% 

salbutamol sulfate, (C) 10% rifampicin, (D) 30% rifampicin formulations versus lactose 

granule size fractions. 
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(C)  

 

 

(D)  

 

 

Figure 3.10 Fine particle fraction (FPF) of (A) 10% salbutamol sulfate, B) 30% 

salbutamol sulfate, (C) 10% rifampicin, (D) 30% rifampicin formulations versus lactose 

granule size fractions. (Continued) 
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Figure 3.11 Aerodynamic parameters between primary lactose and granulated lactose at 

same size fractions. 
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Chapter 4: Effect of Device Design on Dispersion Performance of 

Granulated Lactose Based DPI formulations 

 

Abstract 

 

Purpose: The aim of this study was to evaluate and modify commercial dry powder 

inhalers (DPIs) Aerolizer
®
 for significantly large granulated lactose based DPI 

formulations. Methods: Granulated lactose (GL) with size fraction of 300-450 µm was 

selected to blend with micronized salbutamol sulfate (SS) to obtain a 2% binary mixtures. 

Firstly, the effect of capsule and capsule piercing size was evaluated. Three different 

capsule piercing sizes were used, A), four holes (0.6 mm): Cap4,0.6 mm, B), one piercing 

hole (1.2 mm): Cap1,1.2 mm and C), one piercing hole (1.5 mm): Cap1,1.5 mm at each end of 

the VCaps HPMC capsule. The commercial Aerolizer® was then modified in terms of 

tube length, tube width, tube geometry, inlet airway and grid size of the mesh. These 

devices were designed by Autodesk Inventor and manufactured by W M Keck Center for 

3D Innovation. The in vitro aerosol performance of all the modified inhaler devices was 

investigated through NGI (Next Generation Impactor), with flow rates corresponding to 4 

kPa pressure drop and 4 L air volume. EF (Emitted Fraction), FPF (Fine Particle Fraction) 

of the impaction studies with different modified devices were calculated and compared. 

Drug content deposited on the NGI system was assessed via UV–vis absorption 

spectroscopy at 230 nm. Results: The smallest capsule piercing (Cap4,0.6 mm) had the 

worst EF and FPF compared to larger ones (Cap1,1.2, Cap1,1.5), while Cap1,1.2 provided the 
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smallest standard deviation of the aerosol performance. The modification of the 

commercial Aerolizer geometry, except for 2/3 inner tube width and 1/3 inlet air, merely 

slightly altered the in vitro aerosol performance of the granulated lactose based 

formulation. 2/3 inner tube width had a significantly lower aerosol performance (FPF) 

compared to all the other modified devices. 1/3 inlet air, however, increased the aerosol 

performance (FPF) significantly among all the modified devices. Reduced air inlet and 

bent inhaler tube have synergy effect and could improve the aerosol performance of the 

model formulation further. Conclusion:  Modification of commercial available devices 

could potentially maximize granulated lactose based DPI formulations. 

 

Keywords 

DPI formulations; Granulated lactose; Device, Aperture Size, Device Geometry 
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4.1 INTRODUCTION 

 

Dry powder inhaler (DPI) has become extensively popular in the last decade, 

serving as an efficient vehicle to deliver therapeutic agents to the lung.
1
 This has led to a 

rapid growth in dry powder aerosol delivery systems with defined characteristics to 

produce optimal respirable particles.
2-5

 DPIs have many advantages over pMDIs and 

nebulizers. DPIs are very stable, very portable, patient friendly and easy to use. Different 

from pMDIs, DPIs avoid propellant gas and the need for coordination with inhalation and 

actuation.
6
 An ideal DPI should be cost effective, simple to use, easy to carry, accurate 

with uniform dose delivery, delivery high respirable fraction with optimal aerodynamic 

size, and low flow rate dependency.
7
 In fact, DPI is a much complex system, and the 

performance of DPI depends on many variables including the physicochemical properties 

of the powder formulation, device design and the patient’s inspiratory effort.
8, 9

 

Right now, DPIs are frequently formulated into binary mixtures of micronized 

drugs with a large population of coarse lactose carriers. As the key component of DPI 

formulations, extensive research has been performed to study the physico-chemical 

properties of lactose carriers, on the aerosolization of DPIs.
10-15

 It was agreed on by most 

literatures that lactose with small size (size around 60-90 μm with addition of fine lactose, 

smaller than 5 μm) especially with smooth surface is preferred to maximize aerosol 

performance. 
16-20

 Although lactose with small size favors aerosol performance, the 

addition of fine lactose particles is detrimental to the flowability, blending uniformity and 

dosing consistency of the whole formulation.
21

 Our lab recently found that poor 

aerosolization performance is not an inherent property to large size (>200 μm) of lactose 

file:///I:/Manuscripts/Paper%204%20Device-Done/Effects%20of%20Device%20Design-paper%2012262014.docx%23_ENREF_1
file:///I:/Manuscripts/Paper%204%20Device-Done/Effects%20of%20Device%20Design-paper%2012262014.docx%23_ENREF_2
file:///I:/Manuscripts/Paper%204%20Device-Done/Effects%20of%20Device%20Design-paper%2012262014.docx%23_ENREF_6
file:///I:/Manuscripts/Paper%204%20Device-Done/Effects%20of%20Device%20Design-paper%2012262014.docx%23_ENREF_7
file:///I:/Manuscripts/Paper%204%20Device-Done/Effects%20of%20Device%20Design-paper%2012262014.docx%23_ENREF_8
file:///I:/Manuscripts/Paper%204%20Device-Done/Effects%20of%20Device%20Design-paper%2012262014.docx%23_ENREF_9
file:///I:/Manuscripts/Paper%204%20Device-Done/Effects%20of%20Device%20Design-paper%2012262014.docx%23_ENREF_10
file:///I:/Manuscripts/Paper%204%20Device-Done/Effects%20of%20Device%20Design-paper%2012262014.docx%23_ENREF_16
file:///I:/Manuscripts/Paper%204%20Device-Done/Effects%20of%20Device%20Design-paper%2012262014.docx%23_ENREF_21
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carriers.
12, 22

 This is because of the interplay between DPI formulation and inhaler device, 

which causes the major detachment mechanism switched from flow-based detachment 

(lift and drag) for carrier particles with small size and minimal surface roughness, to 

impaction-based detachment as carrier particle size and roughness increase (inertial 

separation forces).
8, 23

 Our previous work have already developed several granulated 

lactose based DPI formulations with improved aerosol performance, without adversely 

influencing flowability and dosing consistency.
22

  

Another potential way to enhance dispersion performance is optimizing the device 

design, which is critical to the redispersion of the DPI formulations. Merely small 

modifications in Aerolizer
®
 device

 
design cause significant variation in deagglomeration 

and aerosolization.
24-28

 Nevertheless, to the best knowledge of the author, there is no 

study performed to evaluate the impact of modifications of Aerolizer
® 

device on the 

aerosol performance of granulated lactose based DPI formulations. It is hypothesized that 

the aerodynamic behavior of granulated lactose carrier particles can vary significantly 

based on the different design of the inhaler device (Aerolizer
®
). Accordingly, in this 

study, we have built on previous work and assess the effect of presence of capsule, 

capsule piercing size, device geometry, grid structure and air inlet passage on aerosol 

performance of a standard granulated lactose based formulation. The drug used in this 

study is salbutamol sulfate. Salbutamol sulfate, belonging to short acting beta receptor 

agonist, alleviates symptom of asthma and COPD by relaxing airway muscle. 

Additionally, most of previous studies evaluating different devices didn’t cater the 

pressure drop across the device to patients or USP, which however is not the standard 

method to compare different devices.
24-28

 Herein, we also consider device airflow 

file:///I:/Manuscripts/Paper%204%20Device-Done/Effects%20of%20Device%20Design-paper%2012262014.docx%23_ENREF_12
file:///I:/Manuscripts/Paper%204%20Device-Done/Effects%20of%20Device%20Design-paper%2012262014.docx%23_ENREF_22
file:///I:/Manuscripts/Paper%204%20Device-Done/Effects%20of%20Device%20Design-paper%2012262014.docx%23_ENREF_8
file:///I:/Manuscripts/Paper%204%20Device-Done/Effects%20of%20Device%20Design-paper%2012262014.docx%23_ENREF_23
file:///I:/Manuscripts/Paper%204%20Device-Done/Effects%20of%20Device%20Design-paper%2012262014.docx%23_ENREF_22
file:///I:/Manuscripts/Paper%204%20Device-Done/Effects%20of%20Device%20Design-paper%2012262014.docx%23_ENREF_24
file:///I:/Manuscripts/Paper%204%20Device-Done/Effects%20of%20Device%20Design-paper%2012262014.docx%23_ENREF_24
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resistance and pressure drop across the device. In vitro drug deposition studies of all 

different devices were all performed under 4kpa, which is the maximum inhalation effort 

that could be achieved from patients, and the flow rate applied to devices varies between 

42 and 95 L min
-1

 depending on their airflow resistance.   
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4.2 EXPERIMENTAL 

 

 

4.2.1 Materials 

 

α-Lactose monohydrate, Pharmatose 100M, was supplied from DFE Pharma 

(Princeton, NJ, USA). Micronized salbutamol sulphate was purchased from LETCO 

MEDICAL. Deionized water was provided by MilliQ (Millipore).  

 

4.2.2 Manufacture of lactose granules 

 

Wet granulation was used to manufacture lactose granules with large diameter from 

Pharmatose 100M (d10: 63 µm, d50: 150 µm, d90: 250 µm). Granulation is a process to 

generate large aggregates from small primary powders to improve the flowability of the 

powders 
29

. Wet granulation of lactose usually employs polymeric binders that are not 

approved for inhalation 
30-33

. To solve this problem, the granulation process in this 

research involved merely water as the binding solvent. Briefly, a batch size of 500 g 

starting lactose was introduced into the granulator (Robot Coupe USA. Inc.) followed by 

addition of 100 mL water merely as the granulating solvent. Subsequently, the granulated 

lactose carriers were pan dried in the oven overnight at 75 °C.  

 

file:///I:/Manuscripts/Paper%204%20Device-Done/Effects%20of%20Device%20Design-paper%2012262014.docx%23_ENREF_29
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4.2.3 Fractionation of granulated lactose carrier particles 

 

Different size fractions of lactose granules were obtained by separation of the bulk 

granulated material using a sieve tower with cut off sizes as follows: 1000 μm, 850 μm, 

600 μm, 425 μm, 300 μm, 250 μm, 212 μm, and a metal collection pan. A vibrating auto 

sieve shaker (Gilson Company Inc., OH, USA) was employed. The granulated lactose 

was poured on the top of the vibrating sieve shaker and sieved through the sieves for 30 

min. One size fractions of granulated lactose (GL) was selected for future experiments: 

GL 300-450 µm. All analysis described were performed on the sieved samples. 

 

4.2.4 Preparation of salbutamol sulfate/granulated lactose binary blends 

 

Salbutamol sulfate (SS) and fractionated granulated lactose were mixed to obtain 2% 

binary mixtures. All formulations were blended at a constant speed of 46 RPM for 10 min 

with a Turbula
®
 orbital mixer (Glen Mills, NJ, USA). Prior to any further analysis, the 

blended formulations were stored in the dessicator for 5 days.  

 

4.2.5 Drug uniformity test 

 

Five of randomly selected samples (20 ± 1 mg) were taken for measurement of 

salbutamol sulfate content uniformity. The coefficient of variation (CV%) was used to 
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determine the blending uniformity. The test was performed three times. The potency of 

formulations was calculated by the APIs percent amount to the nominal dose.  

 

4.2.6 In vitro aerosolisation study 

 

About 20 (±1) mg mixture powders were filled into size 3 Vcaps HPMC capsules 

pierced with one enlarged holes (1.2 mm) at each end of the capsule. The in vitro 

aerosolization performance of all formulations was assessed using Aerolizer® (Novartis, 

Switzerland) and different modified counterparts corresponding to 4kPa pressure drop 

and 4L air volume through the device.   

A 1% (w/v) solution of silicon oil in hexane was applied to precoat the NGI stages 

for particle re-entrainment prevention. Amounts of salbutamol sulfate deposited on the 

capsule, inhaler, mouthpiece adaptor, induction port, pre-separator and NGI stages were 

measured and quantified. The drug content was measured by the ultraviolet visible 

absorption spectroscopy (Infinite M200, TECAN) at 230 nm. The parameters used to 

evaluate salbutamol sulfate deposition performance were emitted fraction (EF) (Eq. 1), 

fine particle fraction (FPF) (Eq. 2), respirable fraction (Eq. 3) mass median aerodynamic 

diameter (MMAD) and geometric standard deviation (GSD). 

EF =  
emitted dose

loading dose
 

(Eq. 1) 
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FPF =  
recovered dose of drug particles smaller than 5 µm

emitted dose 
 

(Eq. 2) 

RF =
recovered dose of drug particles smaller than 5 µm

loading dose 
 

(Eq.3) 

 

 

4.2.7 Capsule Aperture Size Optimization with the Aerolizer 

 

The effect of capsule aperture size on the granulated lactose based dry powder 

formulations was firstly investigated using the commercial device (Aerolizer
®

) at 

90L/min, corresponding to a 4 kPa pressure drop. Aerolizer
®
 was previously used to 

evaluate the aerosolization performance of a series of granulated lactose based 

salbutamol sulphate formulations.
22

 As shown in Table 4.1, three aperture sizes 0.6 mm, 

1.2 mm and 1.5 mm were chosen to optimize the EF, FPF and MMAD. Aperture size of 

0.6 mm was pierced with the 4-pin piercing mechanism of currently available Aerolizer
®

, 

represented by PIC40.6. The other two aperture sizes were pierced by hand along the 

major axis of the capsules, with respectively a single 1.2 mm (PIC11.2) and a single 1.5 

mm piercing hole (PIC11.5) at each capsule end.  

 

file:///I:/Manuscripts/Paper%204%20Device-Done/Effects%20of%20Device%20Design-paper%2012262014.docx%23_ENREF_22
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4.2.8 Inhaler Engineering and Geometries 

 

The commercial Aerolizer® was modified in terms of tube length, tube width, tube 

geometry, inlet airway and grid size of the mesh (Figure 4.1, Figure 4.2, Figure 4.3 and 

Figure 4.4). These devices were designed by Autodesk Inventor and manufactured by W 

M Keck Center for 3D Innovation. Device resistance of all modified inhalers was 

measured by Manometer and maximum flow rate was calculated respectively based on 

4kPa pressure drop.  

 

4.2.9 Statistics Analysis 

Statistical significance between aerosol performance values was determined with 

one-way TTESTs between groups (* indicates P<0.05; ** indicates P<0.005). 
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4.3 RESULTS 

 

4.3.1 Capsule Aperture Size Optimization with the Aerolizer 

 

As explained in the method section, two additional piercing capsules (PIC11.2 and 

PIC11.5) were chosen to maximize EF originally. Original piercing capsule has four 600 

μm holes at each end of the capsule, represented by PIC40.6, while PIC11.2 and PIC11.5 

only have one piercing hole of 1.2 mm and 1.5 mm respectively at each end of the 

capsule. (Table 4.2) Increasing the capsule-end aperture led to increase in the FPF, from 

48.1% for PIC40.6  to 53.9% and 53.1% for PIC11.2 and PIC11.5 respectively. Capsule 

retention and inhaler mouthpiece retention of PIC40.6 was 7.8% and 5.3%. With the 

piercing holes increased, reduced capsule retention (PIC11.2: 3.0%, p*< 0.05; PIC11.5: 

2.3%, p**< 0.005) but increased inhaler mouthpiece retention (PIC11.2: 6.3%; PIC11.5: 

7.2%, p<0.05) were observed. As expected, EFs were statistically and significantly 

improved with PIC11.2 (85.8%) and PIC11.5 (84.5%) compared to PIC40.6 (81.9%). PIC11.2 

even had a much more significantly increased EF compared to PIC11.5. Also, a decreasing 

trend of induction port retention was correlated with increasing capsule aperture size. 

Amongst, PIC11.5 had the lowest induction port retention. Specifically, the amount of 

powder retained in the induction port was reduced from 4.7% for PIC40.6 to 4.1% and 3.7% 

for PIC11.2 and PIC11.5.  Because of the highest EF, PIC1.2 also had a higher RF (46.3%) 

than PIC11.5 (44.9%) and PIC40.6 (39.4%).  
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4.3.2 Capsule Presence Effects 

 

The optimal capsule aperture size is 1.2 mm to achieve a high FPF (53.9%) with 

minimal capsule and device retention under a 4kpa pressure drop. Based on the effects of 

different piercing holes on aerosol performance obtained from described studies, PIC11.2 

was selected for further experiments and used as the control group. When powders were 

loaded directly into the device with the presence of an empty capsule (POC), significant 

difference in the inhaler performance was observed (Table 4.3). Compared to PIC11.2, 

value of the FPF generated by POC was found reduced to 48.6% (p*<0.05) from 53.9% 

and EF increased to 89.5% from 85.8%. When powders were loaded into the device 

without capsule (PONC), the EF remained similar as PIC11.2. Although FPF from PONC 

decreased to 50.9%, it was still slightly higher than FPF (48.6%) from POC. Statistically 

increase in the amount of powders retained in device base chamber was observed for both 

POC (5.2%) and especially PONC (8.7%), compared to PIC11.2 (4.9%).  

 

4.3.3 Length of the mouthpiece 

 

When the length of the mouthpiece was varied, (Table 4.4) no statistically 

significant difference in both FPF and RF was observed for the three mouthpiece cases. 

Furthermore, there was no significant trend observed between the lengths of mouthpiece 

and the amount of powders deposited in the induction port of cascade impactor.  
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4.3.4 Geometry of the mouthpiece 

 

Three mouthpieces were designed with different geometry, bent, tapered and 

narrow inner mouthpiece cases (Figure 4.2). Horizontal position was chosen to compare 

the performance of the bent mouthpiece in this section. As shown in Table 4.5, 

mouthpiece geometry significantly influenced the device resistance and aerosol 

performance. A significant inverse relationship between device resistance and FPF 

performed under 4 kPa pressure drop was observed (R² = 0.9997). It is clear that FPF 

initially increased significantly with decreasing device resistance and then reached a 

plateau at around 0.071 (cm of H2O)
0.5

L
−1

min. The narrow inner mouthpiece with device 

resistance of 0.154 (cm of H2O)
0.5

L
−1

min had the lowest FPF of 37.8%, while the 

horizontal bent mouthpiece with small device resistance (0.067 (cm of H2O)
0.5

L
−1

min) 

had the highest FPF of around 54.8%. Additionally, as a result of the bent tube which 

prevented exit of powders from device, the EF of horizontal bent mouthpiece was 

statistically smaller than the other two cases.  

 

4.3.5 Spatial Positions of the mouthpiece 

 

Of the bent mouthpiece inhaler, there are multiple (360º rotations) spatial positions 

available for the impaction studies. The device resistance is the inherent property of the 

mouthpiece and doesn’t change with different positions, so same flow rate (96 L/min) 

was used for the study corresponding to 4 kpa pressure drop. Three representative 

rotation degrees (horizontal 0º, upward 90º, downward 270º) were selected to investigate 
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the effect of spatial positions of mouthpiece on the aerosolization performance. As shown 

in Table 4.6, the fine aerosol fraction (around 54.7%) generated didn’t change 

significantly with the bent mouthpiece rotating from 0º (horizontal) to 90º (upward), 

while the bent mouthpiece with (270º) downward position produced a significant low 

FPF (46.9%). Of the three positions of the mouthpiece, upward position had the highest 

EF (88%). Also, there was a decreasing relationship between the amounts of powders 

collected from mouthpiece with the positions of mouthpiece rotated from downside to 

upward. But increasing amount of powders deposited in the induction port was noticed 

with the same rotation order.  

 

4.3.6 Grid effect study 

 

As the voidage of the grid was increased, there was a statistically significant 

influence in the aerosol performance. Specifically, (Table 4.7) the FPF decreased from 

53.9% for the complete grid case to 50.5% for the modified grid. And the EF increased 

from 85.8% for the complete grid case to 88.4% for the modified grid. Although 

increasing the grid voidage led to a slight increase in the powders retained in the 

induction port, powder retention decreased slightly in the device mouthpiece.   

 

4.3.7 Inhaler air passage effect 

 

Reducing air inlet size significantly increased the performance of the inhaler. As 

shown in Table 4.8, the FPF and RF increased to 57.8% and 50.3% from 53.9% and 46.3% 
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respectively, when the air inlet size reduced to one third of the original device. The 

improvement of the FPF partially may come from a better deagglomeration effect, 

resulting in the inhaler with reduced air inlet size having a lower MMAD value (1.7 μm). 

But reduced air inlet resulted in a slight decrease of EF from 85.8% to 84.9%. And 

increased deposition of powders in the induction port from 4.1% to 6.2% was observed 

with the reduction of inlet air pathway.  

 

4.3.8 Synergistic effect of reduced inlet air and bent mouthpiece tube 

 

Due to the improved performance of reduced inlet air passage and bent up 

mouthpiece in terms of FPF and EF respectively, these two modified device pieces were 

selected for a combined study to further improve powder redispersion. Both the original 

device and combined pieces were tested for aerosol performance and results are presented 

in Table 4.9. The combination of two modified device pieces improved the FPF to 57.8% 

from 53.9% without decreasing EF compared to original device. Similar to the effect of 

single reduce inlet air piece, combined pieces provided a much lower MMAD value (1.7 

μm). Additionally, in the in vitro compactor studies, the cut-off diameter of the combined 

device and commercial device was 5.45 μm and 6.48 μm, respectively. Therefore, the 

FPFs listed in Table 4.9 were not compared under the same parameters. And the 

increased FPF from the combined pieces should be far more than what was listed in the 

table.  
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4.4 DISCUSSION 

 

The purpose in this study was (1) to better understand different modified device 

pieces on the detachment mechanism and performance of previously developed 

granulated lactose based DPI formulations; (2) to optimize current commercial device-

Aerolizer
® 

to further improve the aerosolization performance. 

 Currently, four mechanisms have been proposed to redisperse lactose binary drug 

mixtures to form a fine respirable aerosol: (1) Particle-capsule interaction, (2) Particle 

interaction with flow stream and shear turbulence, (3) Particle impaction with device, (4) 

Particle-particle interaction.
26, 28

 Donovan et. al. suggested that the predominant 

detachment mechanism for significantly large particles is impaction-based detachment, 

which is demonstrated by increased collision frequency of the relatively large model 

particles with inhaler mouthpiece.
23

 Du et. al. exhibited that particle-device impaction 

may be the major detachment force for significantly large granulated lactose based DPI 

formulation, but the effect of shear flow and turbulence in the redispersion also should 

not be overlooked. 
22

  

 

4.4.1 Capsule Aperture Size Optimization with the Aerolizer 

 

For the particle-capsule interaction, Coates et. al
26

, and Chew et. al
34

 demonstrated 

that capsule played a significant role in improving FPF by deagglomeration of mannitol 

powder from within the capsule and this effect depends on the size of capsule hole. A 
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significant increase in FPF of mannitol powder was observed in the order of PIC40.6 > 

PIC11.2 > POC. It is found in this study that capsule and aperture size also had a 

significant effect, but in a different way, on the overall performance of the inhaler. The 

deagglomeration didn’t increase the fine drug fraction (FPF) as discussed in Coates et. 

al’s study (Table 4.2 and Table 4.3), with the FPF of granulated lactose based DPI 

formulation in the order of PIC11.2 ≈ PIC11.5 > PONC > POC > PIC40.6 dispersion 

method. This discrepancy could be explained by different formulations used and different 

redispersion mechanism. Unlike spray dried mannitol powder agglomerates, formulation 

used in this study is significantly large aggregated lactose granules (300-450 μm) with 

micronized APIs attached on the surface. With larger capsule aperture size, e.g. PIC11.2 

and PIC11.5, intact granulated carriers could be efficiently removed from the capsules. 

The break-up mechanism through capsule holes of PIC40.6, which deagglomerated spray 

dried mannitol powders into primary drug particles to generate inhalable aerosols
26

, 

deaggregated granulated lactose mixtures into primary lactose particles still with 

micronized drugs on the surface, confirmed by a decreasing mouthpiece retention 

(PIC40.6: 5.3% < PIC11.2: 6.3% < PIC11.5: 7.2%). This decreasing retention is because that 

deaggregated primary lactose particles are less likely to be trapped by the grid mesh, 

compared to large and intact granulated lactose. Although not directly measured, it was 

assumed that lactose carrier particles flying out from capsule holes in PIC11.2 and PIC11.5 

are larger than from PIC40.6. Since the major detachment force for granulated lactose 

mixtures, inertial impaction force, is proportional to the particle diameter,
12

  FPF was 

higher with larger capsule hole size in dispersion method PIC11.2 (53.9%) and PIC11.5 

(53.1%) than with smaller capsule hole size PIC40.6 (48.1%), indicating that the break-up 

file:///I:/Manuscripts/Paper%204%20Device-Done/Effects%20of%20Device%20Design-paper%2012262014.docx%23_ENREF_26
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mechanism by forcing granulated lactose mixtures through the capsule holes prevents 

dispersing of micronized drugs from the surface of significantly large granulated lactose 

carrier surface.  

 

4.4.2 Capsule Presence Effects 

 

Without the presence of capsule (PONC), higher turbulence level (~65% more) 

could be generated,
26

 which increases the aerosol dispersion of spray dried mannitol 

powders via detachment by flow mechanism. Nevertheless, PONC with increased 

turbulence level still produced a slightly lower FPF (50.9%) than PIC11.2 (53.9%) for 

granulated lactose mixtures, which indicated that the high turbulence level was not that 

effective in generating respirable drug particles from lactose carrier surface and further 

confirmed that the major detachment mechanism of significantly large granulated lactose 

mixture is detachment by inertial collision and impaction.  

 

4.4.3 Length of the mouthpiece 

 

There are two types of particle-device interaction, particle interacted with the 

mouthpiece wall or with the inhaler mesh grid. As shown in this study (Table 4.4), the 

mouthpiece length had no significant influence on the aerosolization of granulated lactose 

carrier-based DPI formulations. Although with varied mouthpiece length, identical flow 

patterns and turbulence were generated
35

. To produce similar aerosolization performance 

as noticed, similar or identical collision force should also be generated in the inhaler 
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device with different mouthpiece length. Therefore it is speculated that the lactose 

particles mainly impacted with the lower region of the mouthpiece.  

 

4.4.4 Geometry of the mouthpiece 

 

The geometry of the mouthpiece significantly affected the device resistance and the 

aerosolization performance. Different geometry widely varied the internal diameters and 

dimension of mouthpieces, causing the device resistance ranging from 0.067 to 0.154 (cm 

of H2O)
0.5

 L
-1

 min. Higher resistance is known to generate higher turbulence level, 

leading to a higher FPF under a given air flow through devices.
36

  But as shown in our 

study (Table 4.5), when air flow rate varied based on similar pressure drop (4kpa), the 

device with high resistance didn’t perform better than smaller counterparts.
36

  

 

4.4.5 Spatial Positions of the mouthpiece 

 

Spatial positions of the bent mouthpiece significantly influenced the aerosolization 

performance of granulated lactose mixtures. On one hand, bent mouthpiece with (270º) 

downward position produced a much lower FPF (46.9%) than the other two positions 

(54.7%). The explanation for the FPF decline is the adverse effect of gravitational forces 

acting on the lactose carriers. Although high aerosol performance can be produced with 

significantly large lactose carriers, the improvement imparted by large carrier particles 

will not continue with opposite gravitational and drag forces acting upon them for the 

mouthpiece with downward position (Figure 4.5). The benefit of momentum transfer 

file:///I:/Manuscripts/Paper%204%20Device-Done/Effects%20of%20Device%20Design-paper%2012262014.docx%23_ENREF_36
file:///I:/Manuscripts/Paper%204%20Device-Done/Effects%20of%20Device%20Design-paper%2012262014.docx%23_ENREF_36


144 
 
 

from inertial collision with device will be countered by a reduced particle velocity. This 

finding further indicated the importance of inertial impaction of granulated lactose with 

device in improving aerosol performance. On the other hand, gravitational forces acted 

on the large lactose particles with (90º) upward bent mouthpiece increased the particle 

velocity and facilitated the particle emptying from inhaler with an increased EF to 88.0% 

from 86.1%. The increased particle velocity was confirmed by increased induction port 

retention from 3.7% to 4.7%, which balanced the increased impaction intensity with 

device in improving aerosol performance.   

 

4.4.6 Grid effect study 

 

An alternative way to investigate the detachment mechanism for large lactose 

particles is to study the interaction with device mesh grid. Significantly low FPF (50.5% 

vs. 53.9%) was produced with the grid voidage increased, explained by a reduced 

impaction frequency and force magnitude with device.   

 

4.4.7 Inhaler air passage effect 

 

This study showed that smaller inlet size improved the aerosol performance 

significantly. Although FPF of granulated lactose based formulation improved from 53.9% 

to 57.8%, there was significant impaction loss with modified inlet size. Smaller inlet size 

increased the particle velocity,
25

 leading to a higher induction port retention to 6.2% from 

4.1%. A higher air velocity tends to increase impaction magnitude between large lactose 
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particles with device, which resulted in increased capsule chamber, mouthpiece retention 

and thus reduced emitted fraction.  

 

4.4.8 Synergistic effect of reduced inlet air and bent mouthpiece tube 

 

Although reduced inlet size among all modified inhaler cases improved the FPF, 

adverse performance of reduced EF and improved induction port retention was produced. 

Induction port retention is associated with systemic toxicity. To reconcile the higher FPF, 

increased induction port retention and reduced EF achieved by reduced inlet, combined 

modified inhaler pieces were evaluated. Bent mouthpiece at upward position compared to 

other devices had the highest EF, and also smaller induction port retention than device 

with reduced inlet size. As expected, from the modified mouthpieces and inhaler bases, 

the optimum device is the upward bent mouthpiece with reduced inlet air.  

Limitations of the current investigation include the evaluation of a single granulated 

lactose based formulation, single size fraction of granulated lactose carrier, single drug 

loading, and single flow rate used for each modified device case. The aerosol 

performance is the interplay of formulation, device and patient inspiratory effort. The 

optimum device or combination should be different with another formulation.  
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4.4.9 Dispersion of drug particle agglomerates with modified inhalers  

 

Varying MMAD was produced with different kinds of modified inhaler pieces. 

This is explained by different turbulence levels generated through device. Impaction and 

collision force is responsible for detaching micronized drug particle agglomerates from 

the granulated lactose carrier surface. Higher velocity generates high turbulence levels, 

which facilitates redispersion of agglomerates into primary particles and improvement of 

aerosol dispersion.  
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4.5 CONCLUSION 

 

The preferred device is one device that is simple, cheap, easy to use, generates high 

turbulence at a low flow-rate to give a high and consistent FPF of the drug, but retain the 

lactose carrier only in the upper airway.
36

  Granulated lactose based DPI formulation was 

developed in previous study which had acceptable aerosol performance, good flowability, 

blending uniformity and consistent dosing. Aerolizer® as the commercial off the shelf 

device is portable, simple to use and cost effective. With the modification of capsule 

aperture, mouthpiece geometry, grid structure, inlet size and spatial position of 

mouthpiece, both aerosol performance and aerodynamic parameters were optimized with 

different levels of impaction intensity and turbulence flow generated. Also, the combined 

pieces of the modified inhalers synergistically improve the performance of the granulated 

lactose based formulation.  
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4.6 TABLES 

 

Table 4.1 Pressure drop and cut off diameter table 

 Description 

PIC40.6 Powder loaded in the size 3 capsule pierced with the 4-pin mechanism by Aerolizer® 

PIC11.2 Powder loaded in the size 3 capsule with a single 1.2 mm hole at each end 

PIC11.5 Powder loaded in the size 3 capsule with a single 1.5 mm hole at each end 

POC Powder loaded directly in the chamber with the presence of the empty capsule 

PONC Powder loaded in the size 3 capsule without the presence of the empty capsule 
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Table 4.2 Capsule-end Aperture Effects 

Description PIC40.6 PIC11.2 PIC11.5 

Capsule Aperture (mm) 0.6 1.2 1.5 

Total Number of Holes 8 2 2 

Aperture Area/Hole (cm
2
) 0.06π 0.36π 0.56π 

Total Aperture Area (cm
2
) 0.36π 0.36π 0.56π 

Device Resistance 0.071 0.071 0.071 

Air Flow Rate (Lmin
-1

) 90 90 90 

Cut off Diameter (μm) 6.48 6.48 6.48 

Emitted Fraction (%) 81.9 (4.5) 85.8 (3.6)* 84.5 (1.5) 

Capsule Retention (%) 7.8 (1.3) 3.0 (0.3)* 2.3 (0.1) ** 

Capsule Chamber Retention (%) 5.1 (2.6) 4.9 (1.7) 6.0 (1.0) 

Inhaler Mouthpiece Retention (%) 5.3 (1.1) 6.3 (2.2) 7.2 (0.4)* 

Induction Port (%) 4.7 (0.4) 4.1 (0.4) 3.7 (0.2) * 

FPF (%) 48.1 (1.1) 53.9 (0.4)** 53.1 (1.7)* 

RF (%) 39.4 (3.0) 46.3 (2.1)** 44.9 (1.5) 

MMAD(µm) 1.9 (0.3) 2.0 (0.0) 1.9 (0.1) 
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Table 4.3 Capsule Presence Effects 

Description PIC11.2 POC PONC 

Capsule Aperture (mm) 1.2 N/A N/A 

Device Resistance 0.071 0.071 0.083 

Air Flow Rate (L/min) 90 90 77 

Cut off Diameter (μm) 6.48 6.48 6.48 

Emitted Fraction (%) 85.8 (3.6) 89.5 (3.7) 85.8 (1.6) * 

Capsule retention (%) 3.0 (0.3) 0 ** 0 ** 

Inhaler Base retention (%) 4.9 (1.7) 5.2 (1.9)  8.7 (1.8) * 

Inhaler Mouthpiece retention (%) 6.3 (2.2) 5.3 (1.8) 5.5 (0.4) 

Induction Port (%) 4.1 (0.4) 4.0 (1.0) 4.1 (1.0) * 

FPF (%) 53.9 (0.4) 48.6 (3.0) * 50.9 (1.9) 

RF (%) 46.3 (2.1) 43.5 (4.4) 43.7 (1.7) 

MMAD(µm) 2.0 (0.0) 2.3 (3.0) 1.9 (0.1) 
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Table 4.4 Length of the mouthpiece 

Description Full 

Mouthpiece 

Long 

mouthpiece 

Short mouthpiece 

Capsule Aperture (mm) 1.2 1.2 1.2 

Device Resistance 0.070 0.071 0.071 

Air Flow Rate (L/min) 90 90 90 

Cut off Diameter (μm) 6.48 6.48 6.48 

Emitted Fraction (%) 85.8 (3.6) 86.0 (0.5) 86.2 (1.8) 

Capsule retention (%) 3.0 (0.3) 3.3 (0.2) 4.3 (1.2) 

Capsule chamber retention (%) 4.9 (1.7) 5.6 (0.8)  6.1 (0.5)  

Inhaler Mouthpiece retention (%) 6.3 (2.2) 5.0 (1.6) 3.4 (0.6) 

Induction Port (%) 4.1 (0.4) 4.1 (0.2) 4.6 (0.7)  

FPF (%) 53.9 (0.4)   54.6 (3.7) 55.9 (1.2) 

RF (%) 46.3 (2.1) 47.0 (3.4) 48.2 (1.2) 

MMAD(µm) 2.0 (0.0) 2.0 (0.1) 2.0 (0.1) 

 

  



152 
 
 

Table 4.5 Geometry of the mouthpiece 

Description Horizontal Bent Tapered Narrow Inner 

Capsule Aperture (mm) 1.2 1.2 1.2 

Device Resistance 0.067 0.077 0.147 

Air Flow Rate (L/min) 96 84 43 

Cut off Diameter (μm) 6.25 6.72 5.3 

Emitted Fraction (%) 86.1 (1.4) 88.6 (1.8) 88.6 (1.5) 

Capsule retention (%) 2.1 (1.9) 2.9 (0.4) 2.7 (0.3) 

Capsule chamber retention (%) 5.8 (0.7) 4.6 (0.6)  4.0 (0.3)  

Inhaler Mouthpiece retention (%) 5.9 (0.6) 3.9 (1.1) 4.7 (1.5) 

Induction Port (%) 3.7 (0.5) 6.8 (0.5) 3.8 (0.3)  

FPF (%) 54.7 (1.7)   52.9 (2.2) 37.8 (3.3) 

RF (%) 47.2 (1.4) 46.9 (2.8) 33.5 (3.1) 

MMAD(µm) 2.0 (0.1) 2.0 (0.1) 1.9 (0.1) 
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Table 4.6 Spatial Positions of the mouthpiece 

Description Horizontal Bent Downward Bent Upward Bent 

Capsule Aperture (mm) 1.2 1.2 1.2 

Device Resistance 0.067 0.067 0.067 

Air Flow Rate (L/min) 96 96 96 

Cut off Diameter (μm) 6.25 6.25 6.25 

Emitted Fraction (%) 86.1 (1.4) 87.0 (2.7) 88.0 (0.8) 

Capsule retention (%) 2.1 (1.9) 2.0 (1.7) 2.9 (0.4) 

Capsule chamber retention (%) 5.8 (0.7) 4.8 (1.3)  4.4 (0.4)  

Inhaler Mouthpiece retention (%) 5.9 (0.6) 6.2 (0.6) 4.7 (0.6) 

Induction Port (%) 3.7 (0.5) 3.2 (0.0) 4.7 (0.6)  

FPF (%) 54.7 (1.7)   46.9 (2.5) 54.7 (0.4) 

RF (%) 47.2 (1.4) 40.8 (3.0) 48.1 (0.2) 

MMAD(µm) 2.0 (0.1) 2.2 (0.1) 2.0 (0.1) 
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Table 4.7 Grid effect study 

Description Full Grid Modified Grid 

Capsule Aperture (mm) 1.2 1.2 

Device Resistance 0.071 0.058 

Air Flow Rate (L/min) 90 96 

Cut off Diameter (μm) 6.48 6.25 

Emitted Fraction (%) 85.8 (3.6) 88.4 (1.3)* 

Capsule retention (%) 3.0 (0.3) 3.2 (0.1) 

Capsule chamber retention (%) 4.9 (1.7) 4.1 (1.0)  

Inhaler Mouthpiece retention (%) 6.3 (2.2) 4.3 (0.7) 

Induction Port (%) 4.1 (0.4) 5.1 (0.4) 

FPF (%) 53.9 (0.4)   50.5 (2.5)* 

RF (%) 46.3 (2.1) 44.6 (1.6) 

MMAD(µm) 2.0 (0.0) 2.0 (0.3) 
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Table 4.8 Inhaler air passage effect 

Description Full Inlet Air Reduced Inlet 

Capsule Aperture (mm) 1.2 1.2 

Device Resistance 0.071 0.154 

Air Flow Rate (L/min) 90 42 

Cut off Diameter (μm) 6.48 5.37 

Emitted Fraction (%) 85.8 (3.6) 83.4 (2.6) 

Capsule retention (%) 3.0 (0.3) 2.9 (1.0) 

Capsule chamber retention (%) 4.9 (1.7) 6.7 (3.1)  

Inhaler Mouthpiece retention (%) 6.3 (2.2) 7.0 (0.6) 

Induction Port (%) 4.1 (0.4) 6.2 (1.2) 

FPF (%) 53.9 (0.4)  57.8 (1.3)* 

RF (%) 46.3 (2.1) 48.2 (2.2) 

MMAD(µm) 2.0 (0.0) 1.7 (0.0) 

(turbulence level) 
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Table 4.9 Synergistic effect of reduced inlet air and bent mouthpiece tube 

Description Original Device Combined Devices 

Capsule Aperture (mm) 1.2 1.2 

Device Resistance 0.071  

Air Flow Rate (L/min) 90 44 

Cut off Diameter (μm) 6.48 5.45 

Emitted Fraction (%) 85.8 (3.6) 85.5 (1.8) 

Capsule retention (%) 3.0 (0.3) 3.0 (0.8) 

Capsule chamber retention (%) 4.9 (1.7) 4.5 (0.4)  

Inhaler Mouthpiece retention (%) 6.3 (2.2) 6.9 (1.2) 

Induction Port (%) 4.1 (0.4) 4.5 (0.2) 

FPF (%) 53.9 (0.4)  57.8 (0.8)* 

RF (%) 46.3 (2.1) 49.4 (1.4) 

MMAD(µm) 2.0 (0.0) 1.7 (0.0) 
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Figure 4.1 A) Original; B) 4/3 Mouthpiece Length; C) 2/3 Mouthpiece Length 
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Figure 4.2 A) Original; B) 2/3 Inner Tube Width; C) Tapered Tube 
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Figure 4.3 A) Original; B) 1/3 Inlet size; C) Cross Grid 
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Figure 4.4 A) Bent Tube; B) Side View of Bent Tube; C) Top View of Bent Tube 
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Chapter 5: Development of a high rifampicin loaded dry powder 

inhalation formulation 

 

Abstract 

 

The aim of this research was to investigate a novel dry powder formulation of 

rifampicin (RF) that presents an improved lung deposition profile by using granulated 

lactose carrier and rifampicin particles. Rifampicin in micro (RFMS) and nano size 

(RFNS) was prepared by jet milling process. Granulated lactose was manufactured by 

wet granulation and two different size fractions were selected for further study. The 

physicochemical properties of RFMS and RFNS were characterized. Aerosol 

performance of RFMS and RFNS formulated with different lactose carriers were 

investigated with two dry powder inhalers (DPIs), a commercial Aerolizer and a modified 

Aerolizer, with a Next Geneartion Impactor (NGI). The dry powder formulation 

formulated with granulated lactose carrier had a significant improved aerosol 

performance than inhalation grade lactose. The RFNS had a smaller particle size 

distribution and a lower bulk density. This physical property of RFNS improved 

aerosolization properties than RFMS with a decreased induction port deposition. 

Induction port deposition could also be alleviated by using modified Aerozlier device. 

With this modified Aerolizer inhaler, the maximum fine particle fraction (FPF) of 70.6% 

was achieved by formulating RFNS with granulated lactose at 212-250 μm size fractions. 

The granulated lactose based high loaded RFNS dry powder formulation offers the 
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benefits of delivering a maximum potency formulation of rifampicin directly to the site of 

infected lung. 

 

 

Keywords:  

DPI formulations; Granulated lactose; Uniformity; Dissolution; Rifampicin; Drug 

Loading 
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5.1 INTRODUCTION 

 

Tuberculosis (TB), caused by Mycobacterium tuberculosis, is second only to 

HIV/AIDS as the greatest killer worldwide. Infection rate of TB is one per second and 

one third of world population is infected with TB right now. The WHO reports that, in 

2012, 8.6 million people fell ill with TB and 1.3 million died from TB
1
. Most of these 

deaths (>95%) occur in low- and middle-income countries where access barriers pose a 

significant hurdle in healthcare management
2
. Recent emergency of drug-resistant strains 

of Mycobacterium tuberculosis makes the situation even worse
3, 4

, and the increased 

death incidence from anti-drug strains is threatening the control of TB contamination.  

One possible reason for the resistance is the exposure of mycobacteria to 

suboptimal levels of one or more anti-TB drugs
5, 6

. Pulmonary tuberculosis is the most 

common form of tuberculosis
7
, with alveolar macrophages containing large numbers of 

tuberculosis bacilli
8
. Conventional therapy for respiratory tract infections, including TB, 

is oral or parenteral administration of high doses of single or combined antibiotics. While 

oral administration is the most common treatment of TB, high systemic exposure of 

antibiotics causes unwanted side-effects
9
. The lung lesions hosting large numbers of 

bacteria are poorly vascularized and fortified by thick fibrous tissue, resulting in the 

inability of antibiotic drug to achieve high enough target concentration level at these 

highly sequestered organisms. Due to the poor pulmonary distribution, only small amount 

of drugs would reach the site of infection after systemically administration.  
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Delivering drugs through inhalation directly to the lungs allows higher drug 

concentrations in the vicinity of these lesions than that by either oral or parenteral 

administration
10, 11

. For the pulmonary delivery route, Dry Powder Inhalers (DPIs) enable 

a wide range of therapeutic agents and are portable, convenient, and have the critical 

advantage of ensuring long-term drug stability and also potential for rapid delivery of 

high doses, compared to pMDIs and nebulizers. Collectively these attributes make DPI 

systems an attractive solution to several global and developing country respiratory 

diseases, including Tuberculosis (TB).  

The formulations of commercial DPIs are frequently composed of active 

ingredients and large lactose coarse carriers (50-200 μm) to form homogenous, binary, or 

tertiary mixtures. The active ingredients in DPI formulations are in micronized form, 

usually with an aerodynamic diameter around 1-5 μm, which enables adequate deposition 

in the lung. On inhalation, dry powder formulations are required to be redispersed into 

primary drug particles for patients to use. In most DPI formulation, drug particles present 

low concentration in the mixture, and a typical drug to carrier ratio is 1:67.5 (w/w)
12

. This 

is mainly because asthma and COPD drugs are potent and active in the microgram range. 

In fact, most antibiotics are low potent drugs and consequently a larger dose is commonly 

required for oral administration (e.g. 300 mg ciprofloxacin b. i. d. and 500 mg 

azithromycin q. d.)
13, 14

. Although administration of antibiotics by pulmonary delivery is 

likely to achieve therapeutic efficacy with smaller amount of drug doses compared to oral 

delivery route, traditional lactose carrier based dry powder formulation is unable to 

deliver a high enough dose and is not the ideal vehicle for antibiotics.  
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It has been reported that high drug loading compromised delivery efficiency and 

dose uniformity of drugs into the lung when using traditional lactose carrier systems
15

, 

due to limited drug loading capacity of lactose carrier. Current researches into high drug 

loaded DPI formulations have mainly focused on expensive and complex particle 

engineering techniques, such as spray drying or solvent evaporation processes
14, 16

, which 

would never be feasible for use in low income countries where therapies are needed most. 

Despite technological advancement, spray drying can often lead to processing problems
14

. 

For example, the amorphous form of microencapsulated or spray dried antibiotics, which 

often undergo recrystallization or chemical degradation, may not provide required long-

term stability
16-18

. Moreover, the number of excipients approved by FDA for pulmonary 

delivery is very restricted and scarce. Most excipients used in spray dried aerosols are 

under research only
19

 and safety issue is still a concern
16, 19, 20

. Thus, it is urgently desired 

to develop an effective delivery system with high drug loading that will slow down or 

prevent development and spread of TB. Such a delivery system should also be safe, 

economical, and suitable for industrial processing.  

An attractive way to solve the problem may be achieved by developing carrier 

system with optimized physico-chemical properties. Lactose is the frequently used carrier 

approved by FDA in commercial DPI formulation
19

, with safety profile clearly 

documented. As the major composite of dry powder formulation, the physico-chemical 

property of lactose carrier is the key to the aerosol performance, which determines the 

interaction force between drug particle and carrier particles
21

. Granulated lactose with 

significantly large particle size and rough surface was previously developed in our lab as 

the carrier for dry powder inhalation formulations, which proved to provide a better 
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blending uniformity, proper aerosol performance and also showed promise for high drug 

loading due to increased specific surface area than smooth counterparts under similar size 

fractions
22

. Additionally, granulation is a common approach adopted in industry. It is a 

process to improve the flowability of powders by generating large aggregates from small 

primary powders
23

. 

It is the goal of this research to demonstrate that granulated lactose can serve as 

improved carrier system than inhalation grade lactose for rifampicin, one of the first line 

anti-tuberculosis (TB) drugs active both in vitro and in vivo against Mycobacterium 

tuberculosis
8
. This study also describes how the physico-chemical properties of 

rifampicin, e.g. particle size, influence the aerosol performance. The aim of this study is 

to develop a cost effective lactose based high drug loaded dry powder inhalation (DPI) 

formulation that has improved aerodynamic properties as well as a good dose delivery 

uniformity. The aerodynamic properties of formulated rifampicin dry powders are 

evaluated with two dry powder inhalers (DPIs), the Aerolizer
®
 and mouthpiece modified 

Aerolizer
®
.  
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5.2 EXPERIMENTAL 

 

5.2.1 Materials 

 

α-Lactose monohydrate, Pharmatose 100M, was obtained from DFE Pharma 

(Princeton, NJ, USA). Rifampicin was purchased from LETCO MEDICAL. Deionized 

water was supplied by MilliQ (Millipore).  

 

5.2.2 Manufacture of lactose granules 

 

Lactose granules with large diameter were manufactured by wet granulation from 

Pharmatose 100M (d10: 63 µm, d50: 150 µm, d90: 250 µm). Wet granulation of lactose 

usually employs polymeric binders that are not approved by FDA for inhalation
24-27

. To 

solve this problem, the binding solvent used in the granulation process of this research 

involved merely water. Briefly, after a batch size of 500 g starting lactose was introduced 

into the granulator (Robot Coupe USA. Inc.), 100 mL water was added merely as the 

granulating solvent. Subsequently, in the oven overnight at 75 °C, the granulated lactose 

carriers were pan dried.  
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5.2.3 Fractionation of granulated lactose carrier particles 

 

A vibrating auto sieve shaker (Gilson Company Inc., OH, USA) and meshes with 

successive cut off size were employed to separate bulk granules into different size 

fractions. The granulated lactose was poured on the top of the vibrating sieve shaker and 

sieved through the sieves for 30 min. Two size fractions, GL 212-250 µm, and GL 450-

600 µm, of granulated lactose (GL) were selected for future experiments. All analysis 

described afterwards were performed on the sieved samples. 

 

5.2.4 Particle size reduction via jet milling 

 

Jet-milling is the most common milling technique that employs extreme turbulence 

force to reduce particle size. The turbulence generated from high pressure and velocities 

and the orbital nature of grinding chamber ensure intensive particle-particle and particle-

wall collisions at a high frequency and speed
28

.  In this study, rifampicin drug particles 

were reduced into micro range or nanosize range with jet mill (Glen Mills, Inc.) installed 

with a vibrating feeder. Samples with different size distributions were collected at 

chamber surface or collection bag for further analysis by laser diffraction and SEM.   
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5.2.5 BET analysis 

 

The specific surface area of jet-milled rifampicin was determined by BET analysis. 

According to Brunauer, Emmett and Teller (BET) theory, the specific surface area of 

bulk solids could be calculated by the amount of monomolecular layer of adsorbate gas 

on the surface of the solid. Before performing the surface area analysis, the processed 

rifampicin powders were firstly degassed under 80 °C for 18 hrs to remove contaminants, 

residues and moistures. Then, a single-point BET method using a Monosorb® surface 

area analyzer (Quantachrome, FL, USA) via nitrogen adsorption was applied to 

determine the specific surface area of degassed rifampicin powders. All BET analysis 

was performed in triplicate. 

 

5.2.6 Scanning electron microscopy 

 

The scanning electron microscopy (SEM; Supra 40VP, Zeiss, Germany) was used 

to visually assess the particle size and morphology of the granulated lactose and adhesive 

mixtures before and after impaction. The coating conditions prior to SEM for all the 

granulated lactose was 15 nm of Pd/Pt via sputter coating.  

 

5.2.7 X-Ray powder diffraction (XRPD) 

 

The crystallinity of the micronized rifampicin and nanosized rifampicin was 

examined with wide angle XRD. A Philips 1710 X-ray diffractometer with a copper 
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target (Cu Ka1, k = 1.54056 Å) and nickel filter (Philips Electronic Instruments Inc., 

Mahwah, NJ) was used to measure the XRD profiles. Samples were analyzed in the 2-

theta range from 10º to 50º under a step size of 0.05 2-theta degree and a dwell time of 2 

s. 

 

5.2.8 Inverse Gas Chromatography 

 

The surface energetics of rifampicin particles with different size distributions were 

measured using a commercially available IGC system (2000, Surface Measurement 

Systems Ltd., London, UK). Approximately around 500 mg of each rifampicin sample 

was loaded into pre-silanized IGC glass columns (300mm x 3 mm i.d.) plugged with 

glass wool at each end of the column. Prior measurement each column was purged with 

dry nitrogen at 30 ºC. The retention time of both polar probes (ethyl acetate and 

chloroform) and nonpolar probes (n-alkanes) were measured at finite dilution conditions. 

Dispersive and specific surface energy under infinite dilution conditions were 

extrapolated from the straight lines of elution time in terms of the surface coverage by 

nonpolar or polar solvents
29

.  

 

5.2.9 Preparation of rifampicin/granulated lactose binary blends 

 

Rifampicin (RF) and fractionated granulated lactose were mixed to obtain 30% 

binary mixtures. All formulations were blended at a constant speed of 46 RPM for 10 min 
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with a Turbula
®
 orbital mixer (Glen Mills, NJ, USA). Prior to any further analysis, the 

blended formulations were stored in the dessicator for 5 days.  

 

5.2.10 Drug uniformity test 

 

Five of randomly selected samples (20 ± 1 mg) were taken for measurement of 

rifampicin content uniformity. The coefficient of variation (CV%) was used to determine 

the blending uniformity. The test was performed three times. The potency of formulations 

was calculated by the APIs percent amount to the nominal dose.  

 

5.2.11 In vitro aerosolisation study 

 

About 50 (±1) mg mixture powders were filled into size 3 Vcaps HPMC capsules 

pierced with one enlarged holes (1.2 mm) at each end of the capsule. The in vitro 

aerosolization performance of all formulations was assessed using modified Aerolizer® 

inhaler device (bent inhaler tube coupled with narrow inlet air passage, Fig) under 

44L/min, corresponding to 4kpa pressure drop and 4L air volume.   

A 1% (w/v) solution of silicon oil in hexane was applied to precoat the NGI stages 

for particle re-entrainment prevention. Amounts of rifampicin deposited on the capsule, 

inhaler, mouthpiece adaptor, induction port, pre-separator and NGI stages were measured 

and quantified. The drug content was measured by the ultraviolet visible absorption 

spectroscopy (Infinite M200, TECAN) at 474 nm. The parameters used to evaluate 
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rifampicin deposition performance were emitted fraction (EF) (Eq. 1), fine particle 

fraction (FPF) (Eq. 2), respirable fraction (Eq. 3) mass median aerodynamic diameter 

(MMAD) and geometric standard deviation (GSD). 

EF =  
emitted dose

loading dose
 

(Eq. 1) 

FPF =  
recovered dose of drug particles smaller than 5 µm

emitted dose 
 

(Eq. 2) 

RF =
recovered dose of drug particles smaller than 5 µm

loading dose 
 

(Eq.3) 

 

5.2.12 Statistics Analysis 

 

Statistical significance of aerosol performance values was calculated with one-way 

TTESTs between groups (* indicates P<0.05; ** indicates P<0.005). 
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5.3 RESULTS 

 

5.3.1 Particle size distribution and morphology 

 

Three kinds of rifampicin with different particle size distributions are shown in Fig. 

1. The original rifampicin crystals (RF form I) (Figure 5.1A) had a rod-like and elongated 

shape. These columnar rifampicin particles possessed relatively smooth surface with 

slight surface crevices. During the applied jet milling process, the rods degraded in length 

and fractured into scattered particles. Depending on the collected positions, the degraded 

rifampicin crystals were defined as micronized rifampicin (RFMS) and nano-sized 

rifampicin (RFNS), respectively. Specifically, RFMS were collected at the chamber 

surface of jet-milling instrument and RFNS were collected from the collection bag. These 

grinded RFMS and RFNS didn’t show similarity to the external form of the original 

rifampicin particles. Apparently, RFMS and RFNS were composed with aggregated 

rifampicin particles, especially RFNS. The RFMS powders consisted with larger 

spherical particles in micron range with relatively small particles attached on the surface. 

The surface of RFMS was very rough and corrugated (Figure 5.1D) which may come 

from the intense jet milling process. In contrast, RFNS were made with spherical 

particles at nano-size range (Figure 5.1C). And the surface of RFNS was smoother than 

RFMS (Figure 5.1E), perhaps due to a smaller size.  
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5.3.2 Specific Surface Area 

 

Specific surface area, a property of bulk solids, is the total surface area of a material 

per unit of mass. Powder materials with smaller size generally have larger specific 

surface area than larger counterparts. Therefore, the nanosized rifampicin should have 

larger BET value than micronized rifampicin. As shown in Figure 5.3, the BET value for 

nanosized rifampicin was 15.15±0.62 m
2
/g and the value for micronized rifampicin was 

only 8.67±0.64 m
2
/g.  

 

5.3.3 X-Ray powder diffraction  

 

The crystalline structure of prepared rifampicin samples was analyzed using XRPD. 

According to the literature, the characteristic peaks of the RF form I exhibited at 13.65 

and 14.35 ° 2θ
30

. As shown in Figure 5.4, both RFMS and RFNS showed identical 

characteristic peaks at 13.65 and 14.35 ° 2θ, although the intensity peaks of milled 

rifampicin (RFMS and RFNS) were slightly lower than that of the pure RF form I. Also, 

the intensity peaks of RFNS were a little lower than RFMS, but not significantly different. 

Thereby, the two processed rifampicin had same polymorphic form with RF form I. 

Despite not significant, the amorphous content of the three rifampicin powders was in the 

order of: RFNS > RFMS > original rifampicin crystals.   
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5.3.4 Inverse gas chromatography 

 

Inverse gas chromatography is an objective analytical technique to measure surface 

properties of bulk solids. Based on the retention volume and elution time of a series of 

polar and non-polar organic solvent probes on the surface of the powder materials, the 

dispersive surface energy (γd) and acid-base surface energy (γab) can be determined. In 

Table 5.1, the surface energy of RFNS were slightly higher than RFMS, in terms of 

dispersive surface energy (28.27 mJ/m
2 

vs 27.41 mJ/m
2
), acid-base surface energy (8.50 

mJ/m
2
 vs 6.07 mJ/m

2
), total surface energy (36.76 mJ/m

2
 vs 33.48 mJ/m

2
) as well as the 

work of cohesion. The higher surface energy values may be contributed by the 

amorphous content on the surface of RFNS. 
31

 

 

5.3.5 Blending uniformity  

 

The blending uniformity of dry powder mixtures depends on the properties of both 

rifampicin and lactose particles. When the size fraction of granulated lactose was fixed, 

blending uniformity reduced with a decreased rifampicin particle size. The blending 

uniformity with 30% RFNS was generally larger than that with 30% RFMS. And among 

them, granulated lactose with larger size fractions had a better blending uniformity than 

smaller counterparts. Although ML006 is commercial available inhalation grade lactose, 

the blending uniformity of the two kinds of rifampicin in this study with ML006 was not 

better than granulated lactose. Nevertheless, the effect of rifampicin particle size on 

blending uniformity with ML 006 was different from granulated lactose. While 30% 
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RFMS had a better mixture homogeneity than 30% RFNS with granulated lactose, 30% 

RFMS (RSD%: 13.51%) blended with ML006 provided a much worse uniformity than 

30% RFMS (RSD%: 32.52%).  

 

5.3.6 In Vitro Aerosol Characterization 

 

5.3.6.1 Effect of device design on aerosol performance 

 

With the combined modified inhaler pieces (Figure 5.5B), the amount of 

micronized rifampicin trapped in the induction port decreased from 31.8% to 12.4% and 

FPF increased from 42.8% to 48.0%.  The downside of the combined inhaler is a higher 

loss of drugs in the device, leading to a reduced EF to 73.7% from 90.3%.  

 

5.3.6.2 Effect of rifampicin size on aerosol performance 

 

Evaluation of the formulations containing RFMS or RFNS blended with granulated 

lactose indicated RFNS had better aerosol performance than RFMS (Figure 5.5). The FPF 

of RFNS was 70.7 ± 3.9 % when formulated with GL 212-250 μm, compared with 

merely 48.0 ± 1.6 % from RFMS formulation. RFNS formulated with GL 212-250 μm 

also had a higher EF (82.6 ± 1.7 %) than RFMS equivalents (73.7 ± 1.9 %). As shown in 

Fig. 5b, both formulations had good enough flowability, to be fluidized by inhalation 

effort and exit freely out of the capsule. Actually, the improved EF of 30%RFNS+ 



183 
 
 

GL212-250μm mainly resulted from significantly decreased deposition in the device tube, 

although device chamber trapped slightly higher amount of rifampicin. Although RFNS 

detached from GL212-250μm was less than RFMS, there was less RFNS trapped in the 

induction port and along with that the overall rifampicin deposited in the stages shifted to 

lower cut off size. Specifically, the MMAD of 30%RFNS+GL212-250μm was 2.46 ± 

0.28 μm and the MMAD of 30%RFMS+GL212-250μm was 4.04 ± 0.12 μm. 

Consequently, there are two factors, fewer drugs deposited in the induction port and 

smaller MMAD, contributing to higher FPF of 30%RFNS+GL212-250μm than 

30%RFMS+GL212-250μm. RFNS and RFMS blended with ML006 as mentioned had 

similar trend with GL212-250um. The reason for high FPF and high EF of RFNS mixed 

with ML006 was also similar as above: as shown in Figure 5.6b, fewer rifampicin 

deposited in the device tube, induction port with a smaller MMAD value. Even if RFNS 

and RFMS were mixed with ML006 (Figure 5.6), the inhalation grade lactose, a similar 

trend was still observed, where RFNS (47.5 ± 2.0 %) had a higher FPF value than RFMS 

(28.2 ± 3.1 %) and the EF of RFNS and RFMS was 78.2 ± 1.6 % and 68.9 ± 5.1 %, 

respectively (Fig. 6a).  

 

5.3.6.3 Comparison of granulated lactose with traditional inhalation grade lactose 

 

Rifampicin with a smaller particle size (RFNS) was superior to rifampicin with 

larger size (RFMS) in achieving a much better aerosol performance. Thus RFNS was 

blended with different lactose carriers, GL212-250 μm and Respitose ML006, 

respectively for further study. Respitose ML006 is a typical inhalation grade lactose for 
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maximizing aerosolization performance, but the aerosol performance of 30% RFNS 

mixed with ML006 was much worse than with GL212-250 μm. Figure 5.7a showed that 

30%RFNS+GL212-250μm had both better EF (82.6 ± 1.7 % vs. 78.2 ± 1.6 %) and FPF 

(70.7 ± 3.9 % vs. 47.5 ± 2.0 %) than 30%RFMS+ML006. Reduced deposition in device 

tube resulted in increased EF. And reduced deposition in induction port and increased 

deposition in latter stages of NGI were the reasons of higher FPF.  

 

5.3.6.4 Effect of different size fractions of granulated lactose on aerosol performance 

 

Although 30%RFNS+GL212-250μm had the highest aerosol performance among 

the four evaluated formulations, the blending uniformity of 30% RFNS with GL212-

250μm was not good enough, similar to the uniformity of 30%RFNS mixed with ML006. 

According to Table 5.2, GL425-600μm was better than GL212-250μm in improving the 

blending uniformity. Thus, the aerosol performance of GL425-600μm mixed with 

30%RFNS was investigated. From Figure 5.8a, it was found that the fine particle fraction 

(FPF) generated from 30%RFNS+GL425-600μm was comparable to 30%RFNS+GL212-

250μm. Nevertheless, the emitted fraction (EF) of 30%RFNS+GL425-600μm was much 

smaller, merely 76.0 ± 4.1%, owing to higher amount of RFNS trapped in the capsule 

(Figure 5.8b).  
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5.4 DISCUSSION 

 

5.4.1 Particle size distribution and morphology 

 

Bulky micronized rifampicin (RFMS) and nano-sized rifampicin (RFNS) powders 

were both obtained by jet-milling under the same process parameters. But, RFMS and 

RFNS were collected at different positions from jet-milling instrument. RFMS was 

recovered from chamber surface, while RFNS was collected from collection bag. The 

place where milled particles deposit depends on the drag force from flow stream and 

particle weight. Theoretically, particles collected from bag (e.g. RFNS) should be smaller 

than from chamber (e.g. RFMS). All rifampicin were processed under the same 

parameters and collected from the same batch, so drug force in the jet-milling instrument 

was the same for all milled particles. The weight of milled particle is the only factor 

determining the final deposition position. Consequently, the smaller the milled particle, 

the longer distance it will travel through jet milling instrument and more possible it will 

be deposited in the collection bag.   

As displayed in Figure 5.1 and Figure 5.2, both RFMS and RFNS have achieved 

size small enough via jet milling for pulmonary delivery, and as presumed, RFNS had 

much smaller size than RFMS. Specific surface area is the total surface area of powders 

per unit of mass. Particles with small geometric size tend to have a large specific surface 

area. According to the BET data, RFNS had a significantly larger specific surface area 

than RFMS (Figure 5.3), which is consistent with the laser diffraction results of RFNS 

and RFMS.  
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Nevertheless, particle size observed from SEM and particle size distribution 

measured by Sympatec didn’t match each other very well, especially for RFNS. The size 

observed for RFNS was much smaller than what was measured from Sympatec.  This is 

because RFNS tended to form relatively strong agglomerates and could not be dispersed 

into primary particles efficiently prior Sympatec measurement. There are two reasons for 

the cohesiveness of RFNS in forming strong agglomerates. Firstly, RFNS particles had a 

relatively high surface energy (Table 5.1) as a result of more amorphous content (Figure 

5.4) generated on the surface after jet-milling. Secondly, RFNS was smaller than RFMS, 

so the weight force of RFNS is smaller than RFMS. The weight force of RFNS therefore 

contributed less than that of RFMS in breaking the RFNS particle-particle interaction, 

resulting in a higher tendency in forming agglomerates.   

 

5.4.2 Physicochemical characteristics 

 

One objective of this study is to evaluate the influence of drug size on the aerosol 

performance of DPI formulations.  To study the effect of size, it is necessary to keep 

other physicochemical properties of the two milled rifampicin particles similar. Jet-

milling used in this study is a milling process that employs extreme turbulence force from 

high pressure and air flow velocities to induce particle fracture and size reduction.
28

 

There is no solvent used in jet milling process, crystallization or significant structural 

change won’t happen. Consistent with this technique, after jet milling, both RFMS and 

RFNS still kept same characteristic peaks (13.65 and 14.35 ° 2θ) as the RF form I.  
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If enough energy is imparted during milling process, total/partial crystallinity loss, 

or local amorphous domains may be generated.
32, 33

 Therefore, although milling didn’t 

induce polymorphic conversion of rifampicin particles, the milled samples lost partial 

crystallinity or obtained amorphous domains on particle surface to some extent (Figure 

5.4), ultimately leading to slightly increase in surface energy, particularly RFNS particles 

(Figure 5.3).  

 

5.4.3 Blending uniformity 

 

Blending uniformity is the potential factor critical to dosing consistency of drug 

product, such as DPI formulations. It was found in previous research that the blending 

uniformity of drugs with granulated lactose is relevant with the filling extent of the 

granule valleys, which is determined further by drug loading and bulk density
34

. The bulk 

and tapped density of RFMS in this study was 0.20±0.01 mg/ml and 0.33±0.01 mg/ml, 

respectively. As a result of high surface electrostatic charge, RFNS had a smaller bulk 

(0.14±0.01 mg/ml) and tapped density (0.22±0.01 mg/ml).  Also, it was known before 30% 

RFMS was already enough to fill the granule valleys of the granules used in this study. 

Consequently, when 30% RFMS and 30% RFNS were loaded into granules with same 

size fraction to completely fill the volume of granule valleys, there would be much more 

excessive RFNS outside the valley and tend to separate from granules, resulting in poorer 

blending uniformity than RFMS. It is not surprisingly to notice that when ML006 is used 

as the lactose carrier, the blending uniformity, no matter mixed with 30% RFMS or 30% 
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RFNS, was very poor. The small size, cohesive nature of ML006 leads to poor flow, poor 

dispersion, and subsequently poor blending uniformity.
35

  

 

5.4.4 Dry powder formulation and the aerodynamic properties 

 

5.4.4.1 Effect of device design on aerosol performance 

 

Chapter 4 studied the effect of different high loaded APIs on granulated lactose 

based DPI formulations. It was found that 30% micronized rifampicin (RFMS) had much 

smaller aerosol performance (lower FPF) than 30% micronized salbutamol sulfate when 

both formulated with granulated lactose carrier under same size fractions. The reduced 

aerosol performance of micronized rifampicin was explained by large amount of 

deposition loss in the induction port.  Similar induction deposition phenomenon has also 

been observed with pressurized metered dose inhalers (pMDI), a propellant driven device 

which generates a high aerosol velocity and needs coordination between patients and 

device. To reduce oropharyngeal deposition and increase lung deposition of pMDI, 

distance has been placed by auxiliary spacer between the point of aerosol generation and 

the patient’s mouth
36

. The bent mouthpiece of modified inhaler acted as the spacer 

similar to the effect on pMDI, resulting in reduced deposition in the induction port and 

thus improved aerosol performance.   
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5.4.4.2 Inhalation grade lactose versus granulated lactose 

 

To reconcile the different effect of inhalation grade lactose and granulated lactose 

carrier on aerosol performance, it is proposed that significant large granulated particles 

are better than small and smooth carriers to break up and prevent formation of 

agglomerates. Two types of drug agglomerates are present in the DPI formulations: A) 

natural agglomerates in pure drugs and B) mixing drug agglomerates when drug and 

carrier particles are blended
37

. Larger carriers have the potential to break up natural drug 

agglomerates due to the greater mass and better flowability. While larger carrier particles 

with smooth surface and small specific surface area can induce mixing agglomerates and 

strong drug particle interactions, the significantly large granulated lactose with greater 

specific surface area inhibits formation of strong blending agglomerates.  
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5.5 CONCLUSION 

 

A high drug loaded (30%) rifampicin DPI formulation was developed, which is a 

simple binary mixture of significantly large granulated lactose carrier with nanosize 

rifampicin particles (RFNS). DPI is very complicated and the performance is the 

interplay of formulation, device and patient inspiratory effort. To maximize the aerosol 

performance, a previously developed combined device was used to evaluate the 

formulation in this study. The maximum FPF achieved for this formulation with modified 

Aerolizer device was 70.7%. Upon inhalation, these rifampicin aerosols could deposit 

predominately in the central and peripheral regions with a minimal amount in the 

oropharyngeal area. Additionally, the developed rifampicin formulation has better 

flowability than commercial inhalation grade lactose based rifampicin formulation.  
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5.6 TABLES 

 

Table 5.1 Surface energy parameters of RFMS and RFNS measured by inverse gas 

chromatography 

 γd  

(mJ/m
2
) 

γab 

(mJ/m
2
) 

γt 

(mJ/m
2
) 

Wcoh 

(Dispersive) 

Wcoh 

(Specific) 

Wcoh 

(Total) 

RFMS 27.41 6.07 33.48 54.82 12.13 66.95 

RFNS 28.27 8.50 36.76 56.53 16.99 73.52 
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Table 5.2 Blending uniformity of rifampicin with granulated lactose or inhalation grade 

lactose 

 ML006 GL 212-250 μm GL 425-600 μm 

30% RFMS 32.52% 4.02% 3.90% 

30% RFNS 13.51% 15.24% 9.30% 
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5.7 FIGURES 

 

           A)     B)   

           C)     D)    

E)  

 

 Figure 5. 1 Scanning electron microscopy images of (A) RF form I, (B) RFMS, and (C) 

RFNS, (D) RFMS under a higher resolution and (E) RFNS, under a higher resolution. 
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Figure 5.2 Particle size distribution of RFMS and RFNS. 
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Figure 5.3 BET surface area and density of micronized rifampicin (RFMS) and nanosized 

rifampicin (RFNS) 
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Figure 5.4 Powder X-ray diffractograms of (a) RF form I, (b) RFNS, (c) RFMS. 
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Figure 5.5 A) Original device and B) modified device with bent inhaler tube and reduced 

air inlet passage. 
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Figure 5.6 Effect of bent mouthpiece on (a) in vitro aerosol performance and (b) aerosol 

deposition of GL 212-250 μm mixed formulation on each stage of the next generation 

impactor (n=3).  
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Figure 5.7 Effect of rifampicin size on (a) in vitro aerosol performance and (b) aerosol 

deposition of GL 212-250 μm mixed formulation on each stage of the next generation 

impactor via modified inhaler (n=3) 
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Figure 5.8 Effect of rifampicin size on (a) in vitro aerosol performance and (b) aerosol 

deposition of ML006 mixed formulation on each stage of the next generation impactor 

via modified inhaler (n=3) 
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Figure 5.9 Effect of carrier lactose on (a) in vitro aerosol performance and (b) aerosol 

deposition of 30% RFNS based formulation on each stage of the next generation 

impactor via modified inhaler (n=3) 
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Figure 5.10 Effect of carrier lactose on (a) in vitro aerosol performance and (b) aerosol 

deposition of 30% RFMS based formulation on each stage of the next generation 

impactor via modified inhaler (n=3) 
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Figure 5.11 Effect of granulated lactose size on (a) in vitro aerosol performance and (b) 

aerosol deposition of 30% RFMS based formulation on each stage of the next generation 

impactor via modified inhaler (n=3) 
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APPENDIX A: In vitro models with simulated tear flow for screening 

topical ocular formulations 

 

Abstract 

 

The objective of this work was to establish an in vitro ocular clearance model to 

simulate specifically the physiological process of lacrimation and tear flow in the eye to 

enable screening for sustained release topical ophthalmic formulations. A solution 

formulation and gel-forming solution formulation, with extensive prior in vivo 

pharmacokinetic data were selected as model formulations used to assess the eye 

clearance model. Both formulations had an equivalent strength of timolol (Timolol 

Maleate Ophthalmic Solution and Timolol GFS™). The experiments were performed 

with simulated induced lacrimation and tear flow. In the study, using Transwell™ 

diffusion cells, 200 μl basolateral and 60 μl apical samples were taken and replaced with 

blank medium every 15 minutes for 3 hours. We evaluated the utility of the 

polycarbonate membrane (PC) model and a model air-liquid interfacial epithelium cell 

culture model for evaluating timolol retention, clearance and permeation. Transepithelial 

electrical resistance (TEER) values were measured before and after treatment to assess 

the integrity of the polycarbonate membrane (PC) and cell layers throughout the 

experiments. UV spectrophotometer was used to measure all the samples at a wavelength 

of 295 nm. The in vitro results of timolol elimination and diffusion had good correlation 
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with published in vivo pharmacokinetic data. The developed in vitro model shows 

potential for screening retention and absorption of topical ocular formulations. 

 

 

Keywords 

timolol; ocular drug delivery; polycarbonate membrane model; cell model; induced 

lacrimation; simulated tear flow; diffusion; elimination; precorneal residence; IVIVC 
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A.1 INTRODUCTION 

 

In 2009, the global ophthalmic pharmaceutical market size reached $14 billion 

(US).
1, 2

 It is expected that the overall market of ophthalmic therapeutics will grow 

consistently and considerably during the next decade.
2
 Eye drops, accounted for 90% of 

marketed ophthalmic formulations, is the most convenient noninvasive administration 

and patient compliance route.
3-5

 An eye drop solution is instilled to the eye to treat 

anterior segment diseases. The anterior segment diseases include, but not limited to, 

glaucoma, allergic conjunctivitis, anterior uveitis and cataract.  

Although topical instillation is very popular, the bioavailability is notoriously poor, 

typically less than 5%.
2, 6

 This is a consequence of sophisticated eye structure and 

effective eye clearance system.
7
 Of the anterior segment, the cornea layer is the main 

barrier for topically applied drugs, which comprises the epithelium, stroma and 

endothelium layers.
8
 Even though the stroma and endothelium constitute 80-90% of the 

total cornea mass and volume, the cornea epithelium is the permeation rate-limiting 

barrier of hydrophilic drugs. This is because the cornea epithelium is composed with two 

to three layers of flattened superficial cells, and wing cells, as well as a single layer of 

columnar basal cells. The superficial cells also adhere to each other via desmosomes and 

are enrcircled by tight junctions.
9
 In addition to permeation barriers, therapeutic agents 

are rapidly removed from the eye surface via lacrimation,
10

 nasolacrimal drainage, 

blinking reflex, tear turn over, tear flow (4 µl/min) and clearance from the vasculature in 

the conjunctiva.
10, 11

 Whereas, increasing the dosing frequency of eye drops to overcome 
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clearance significantly reduces patient compliance, especially to patients with glaucoma 

(REFS – see Matt). Collectively, these represent significant challenges to the clinically 

effective delivery of drugs at the appropriate therapeutic dose to the target ocular tissue 

efficiently. In response to these well known barriers, efforts have been made to overcome 

the permeability barriers and clearance mechanisms, so as to improve drug contact time, 

and thus improve ocular bioavailability of therapeutics. These approaches for topical 

delivery to anterior segment include gel or gel-forming technologies, pro-drug 

development with improved physicohemical properties for permeation enhancement, 

solubilization agents, nanoparticle technologies, and microdroplets, among others.
4
 As 

more therapeutic candidates are identified and existing drugs are reformulated, it is 

essential to have cost effective, predictive, and simple tools available to screen, op 

evaluate and these systems prior to in vivo testing.  Although animal studies and ex vivo 

studies with excised cornea tissue from animals are widely used,
12, 13

 they have well 

recognized disadvantages that include high costs, uncontrolled variability, are of different 

species, and the presence of ethical issues.
13, 14

 The success of in vitro cell models such as 

EpiOcular® and others illustrates the potential of using human cell based 3D models in 

ocular drug delivery screening.  

Several in vitro cell models consisted with cornea epithelium cells and 3D 

reconstituted human cornea equivalents have been developed (REFS). Several were 

initially developed to enable testing of the potential for eye irritation.
15

 There are also 

some cornea models or 3D cornea equivalents developed and used in drug absorption and 

metabolism studies.
13, 14, 16, 17

 Up to now, however, no in vitro models have been 

established with induced tear flow or tear dilution for the evaluation of both precorneal 
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residence and diffusion of topical ophthalmic formulations.
11

 Since the low precorneal 

residence time, caused by induced lacrimation, eye blink, tear dilution and constant tear 

flow,
10

 also prevents the absorption of ocular formulations besides the barrier of tight 

cornea, low precorneal retention should be included in the in vitro models to improve the 

model. Therefore, the objective of this study was to develop a simple in vitro screening 

tool that can be used for evaluation of precorneal residence and absorption of topical 

ocular formulations simultaneously. Our hypothesis is that modified diffusion models 

that simulate induced lacrimation, tear fluid clearance rates/volumes will allow good 

correlation with ophthalmic in vivo pharmacokinetic data.
18

 Induced lacrimation is 

commonly experienced when applying topical ocular formulations (e.g. eye drops) to the 

eyes. Generally, 60 µl is the induced lacrimation drainage volume.
10

 

To address these goals, we used a well characterized system (timolol formulations) 

to evaluate our developed in vitro membrane based screening tool. Commercially 

available timolol marketed as Timolol Maleate Ophthalmic Solution (0.5%),
19

 and 

Timolol GFS (0.5%)
20

 were used. Timolol Maleate Ophthalmic Solution is the traditional 

simple eye drop, while Timolol GFS stands for timolol maleate gel forming solution. 

Upon contact with the precorneal tear film, Timolol GFS forms a gel with increased 

precorneal contact time and improved absorption through the cornea.
21

 These Timolol 

Maleate Ophthalmic Solution and Timolol GFS have been investigated in an in vivo 

rabbit model previously.
22

 Our developed in vitro model attempted to provide simple 

methodology to allow simulation of (1) induced lacrimation as a result of drop instillation 

into the eye, (2) lacrimal drainage, (3) baseline lacrimation and tear flow, and (4) 

permeation from the apical surface.  
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A.2 EXPERIMENTAL 

 

A.2.1 Materials 

 

The two formulations evaluated in this study were Timolol Maleate Ophthalmic 

Solution (0.5%) and Timolol GFS (0.5%) (Falcon Pharmaceuticals, Ltd, Texas, USA).
19, 

20
 All other chemicals and solvents were of reagent grade. The Calu-3 Lung Epithelium 

Cells were purchased from ATCC. Polycarbonate membrane (Whatman® 

Schileicher&Schuell) used had 50 nm pore size. 12-Well Transwell® Inserts were 

(surface area, 4.7 cm
2
; pore size, 0.4 mm; Transwell Clear; Sigma, USA) purchased from 

Sigma.  

Transwell®, the permeable supports was used to provide the air-liquid interface for 

epithelial cells to differentiate to higher levels with morphology and function close to the 

in vivo counterparts.
32

 It is consisted with donor chamber and receiver chamber, from 

which the apical sample and basolateral sample are withdrawn for ‘precorneal residence’ 

and diffusion analysis.
31

 Transwell® with clear inserts was chosen to provide better cell 

visibility and allow for assessment of monolayer formation.
31

 

 

A.2.2 Polycarbonate (PC) Model 

 

The Nuclepore Track-Etch Polycarbonate Membranes (0.05 μm) (Whatman 

Scheicher&Schuell) were glued underneath the transwell inserts to mimic the artificial 
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precorneal membrane. The TEER value of the PC membrane was measured by Millipore 

(Millicell
®
ERS) to be around 20-25 Ω●cm

2
. 

 

A.2.3 Cell Culture 

 

Calu-3 Lung Epithelium Cell lines (purchased from ATCC
®
) with passage number 

of 13-15 were seeded on the transwell inserts at a concentration of 90,000 cells/cm
2
 and 

were grown in the standard medium. Both the receiver chamber and donor chamber were 

filled with the standard medium, Minimum Essential Medium (MEM, Sigma, USA) 

supplemented with 10% heat-inactivated fetal bovine serum (FBS), 100 U/ml penicillin 

and 100 μg/ml streptomycin (all purchased from Sigma, USA).  

Through the entire culture period, the cells were kept at 37°C in a humidified 

atmosphere containing 5% CO2. The cells become confluent 5-7 days later. After that, the 

medium was removed from the donor chamber to expose the cells to an air-liquid 

interface for further differentiation. The TEER value of the cell layers was monitored at 

the same time. It was reported that the epithelial models with the transepithelial electrical 

resistance (TEER) around 200 to 1300 Ω●cm
2 

had good correlation with bovine cornea 

and human cornea equivalents in permeation coefficient of timolol maleate.
32

 TEER is 

usually used to characterize the expression of functional tight junctions. Meantime, the 

culture medium in the receiver chamber was changed every other day. The cells were 

kept at the air-liquid interface for another 7-20 days until the TEER value arrived at 

around 200-400 Ω●cm
2
. 
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A.2.4 Permeation Experiments (Diffusion and Elimination) with PC Membrane 

 

The permeation experiments through PC membrane were performed with Timolol 

Maleate Ophthalmic Solution (0.5%) and Timolol GFS (0.5%). As shown in Figure A.1, 

the permeation studies were initiated by adding 500 µl PBS medium to the receiver 

chamber (Figure A.1A) and 30 µl normal saline solutions to the donor chamber (Figure. 

1B). The culture plate was tilted to 15-20° degree when sampling and adding happened at 

the donor chamber, which was used to facilitate the fluid spreading across the apical 

surface. Two drops (~ 60-100 µl) of Timolol Maleate Ophthalmic Solution (0.5%) and 

Timolol GFS (0.5%) were administered into the middle of the donor chamber (Figure 

A.1C), immediately followed with 30 µl normal saline added at the fixed position of the 

donor chamber to mimic the induced lacrimation (Figure A.1D).
10

 Aliquots of 200 µl 

were withdrawn from the receiver chamber (Figure. 1E) and an equal volume of blank 

PBS (Figure A.1F) was replaced. Meanwhile, aliquots of 60 µl aliquots of sample were 

taken out (Figure A.1G) from the donor chamber to simulate the drainage of the eye drop 

formulations due to the tear flow from induced lacrimation. At the same time, an equal 

volume of blank normal saline was added to the fixed position of the donor chamber 

(Figure A.1H). Every 15 minutes for 3 hours afterwards, aliquots of 200 µl were 

withdrawn (Figure A.1E) from the receiver chamber and replaced with an equal volume 

of blank PBS (Figure A.1F). Similar, aliquots of 60 µl were withdrawn from the donor 

chamber (Figure A.1G) and replaced with an equal volume of blank normal saline 
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(Figure A.1H) every 15 minutes for 3 hours. The culture plate was kept in the incubator 

during the rest time. The experiments were performed in triplicate.  

 

A.2.5 Permeation Experiments (Diffusion and Elimination) with In vitro Cell 

Models 

The permeation studies of Timolol Maleate Ophthalmic Solution (0.5%) and 

Timolol GFS (0.5%). across in vitro cell models were carried out. The experiment 

procedure was similar to the study with PC membrane model (Figure A.1). The study was 

initiated by adding 500 µl MEM with 2% FBS to the receiver chamber (Figure A.1A) and 

30 µl MEM with 2% FBS to the donor chamber (Figure A.1B). Two drops (around 60-

100 µl) of Timolol Maleate Ophthalmic Solution (0.5%) and Timolol GFS (0.5%) were 

administered to the middle of the donor chamber (Figure A.1C). The culture plate was 

tilted to 15-20° degree and 30 µl of MEM with 2% FBS was added at the fixed position 

of the donor chamber slowly to simulate the induced lacrimation (Figure A.1D). Aliquots 

of 200 µl medium were withdrawn from the receiver chamber (Figure A.1E) and an equal 

volume of blank medium was replaced (Figure A.1F). Meanwhile, aliquots of 60 µl fluid 

were taken out from the donor chamber from the fixed position to simulate the drainage 

of the eye drop formulations due to the tear flow from induced lacrimation (Figure A.1G). 

Also an equal volume of blank medium was added at the fixed position of the donor 

chamber (Figure A.1H). Aliquots of 200 µl were withdrawn from the receiver chamber 

and replaced with an equal volume of blank medium every 15 minutes for 3 hours from 

then on. The culture plate was put in the incubator at the rest time. In addition, aliquots of 
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60 µl were withdrawn from the donor chamber from the fixed bottom side and replaced 

with an equal volume of blank medium from the fixed top side every 15 minutes for 3 

hours also. The experiments were performed in triplicate. Care should be taken during 

instillation, sampling and replacing with blank medium, in case the artificial membrane 

was disturbed.  

 

A.2.6 Drug Quantitation 

 

UV spectrophotometer (infinite reader M200, TECAN) with a wavelength of 295 

nm was used to detect the concentration of timolol in all samples. For PC membrane 

study, blank PBS and normal saline solutions were used as the control groups for the 

collected samples from diffusion and elimination studies, respectively. For Cell model 

study, MEM with 2% FBS was used as the control for detection. TM Solution and TM 

GFS dissolved in control solutions with different dilution factors were measured as 

standard samples for calculation in PC membrane and cell model experiments.  

 

A.2.7 Kinetic Data and Statistical Analysis 

 

For both in vitro PC membrane and cell model studies, timolol mass acquired from 

the absorption and elimination experiments were plotted versus the sample collection 

time, respectively. The following kinetic parameters were calculated: eliminated timolol 

concentration at the apical surface from donor chamber 1 minute after dose 

administration (C1min); eliminated timolol concentration at the apical surface from donor 
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chamber 15 minute after dose administration (C5min); area under the timolol eliminated 

concentration vs. time curve (AUC), calculated from time = 1 min to the end of the 

observation times; peak time (tmax); peak timolol concentration (Cmax) in the diffusion 

study; area under the timolol diffusion concentration vs. time curve (AUC), calculated 

from time = 1 min to the end of the observation times; mean residence time (MRT) of 

timolol on apical surface, calculated from the ratio of the area under the first moment 

curve (AUMC, concentration and time vs. time from t=0 to 180 min) to AUC (Equation: 

MRT = AUMC/AUC). The AUC and AUMC values were both calculated using the 

linear trapezoidal rule. Statistical significance between TM GFS group and TM Solution 

group was determined with one-way t-test (* indicates P < 0.05, ** indicates P <0.005).  
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A.3 RESULTS   

 

A.3.1 ‘Precorneal’ retention of PC membrane model 

 

Timolol Maleate Solution (TM Solution) and Timolol GFS (TM GFS) with 

equivalent strength (5mg/ml Timolol) were used.
19, 20

 As mentioned in the method section, 

30 µl normal saline was instilled across the ‘precorneal’ one minute after drug dosing to 

simulate the induced lacrimation and then 60 µl apical fluid was immediately withdrawn 

to simulate lacrimation drainage.
10

 Induced lacrimation is commonly experienced when 

applying topical ocular formulations (e.g. eye drops) to the eyes. Generally, 60 µl is the 

induced lacrimation drainage volume.
10

 The repeating steps after induced lacrimation 

mimic ‘constant tear flow’. The normal tear flow rate is reported to be 4 µl/min, therefore 

60 µl was instilled and withdrawn every 15 minutes in the study to simulate ‘constant tear 

flow’. Relevant kinetic data of timolol concentration on the apical surface are listed in 

Table A.1. As seen from Table A.1, TM Solution had a larger washed away timolol 

concentration (3.40 ± 0.12 µg/µl) than TM GFS (2.65 ± 0.37 µg/µl) by induced 

lacrimation drainage (~1 min). However, at 15 min, the timolol concentration of TM 

Solution washed away by ‘constant tear flow’ become smaller (0.90 ± 0.08 µg/µl) than 

TM GFS (1.44 ± 0.12 µg/µl). Actually, timolol amounts of TM Solution at apical surface 

from 15 minutes to 3 hours (the end of the experiments) were all smaller than that of TM 

GFS, demonstrated by Figure A.2. Figure A.2 presents the elimination kinetic curve from 

‘constant tear flow’ (timolol concentration in aliquots withdrawn from apical surface of 

donor chamber versus sampling time, starting at 15 minutes for 3 hours). It was clearly 
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shown that timolol amounts (Figure A.2) of both formulations (TM Solution and TM 

GFS) decreased significantly during ‘constant tear flow’ phase, while TM Solution had a 

lower timolol content starting at 15 minutes and stayed at a lower amount for 3 hours. 

Specifically, in the case of TM Solution, the timolol concentration decreased from 

1.44±0.12 µg/µl to undetectable value in less than 90 min. The undetected time for TM 

GFS was longer, less than 120 min. Thus, TM Solution had a lower residence 

concentration than TM GFS on the artificial ‘corneal’ of PC membrane model. Due to the 

lower residence concentration, the area under the elimination curve (AUC) for TM 

solution (39.07 ± 4.31 min*μg/μl) was merely half of that for TM GFS (63.27 ± 4.31 

min*μg/μl), accompanied by a shorter MRT (17.4 ± 0.3 min vs. 23.9 ± 0.9 min).  

 

A.3.2 Diffusion across ‘corneal’ of PC membrane model 

 

The total absorption and diffusion rate of timolol across artificial ‘corneal’ of PC 

membrane model were plotted versus the sampling time, respectively (Figure A.3A and 

Figure A.3B). As shown in Figure A.3A, after administration of the two formulations, 

timolol permeated through the PC membrane immediately and the amount of absorption 

increased rapidly in the receiver chamber during the first 15 minutes. Although slowly, 

the absorption of the two formulations still increased after 15 minutes, and plateaued at 

around 60 minutes. Nevertheless, the final accumulated basolateral timolol in the receiver 

chamber from TM solution (94.46 ± 5.51 µg) was much smaller than TM GFS (156.62 ± 

27.94 µg). The different absorption amount could be explained by their different 

diffusion rates. The rate of diffusion peaked at 15 min for both formulations, but the peak 
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timolol concentration was 0.29 ± 40.02 µg/µL for TM solution and was 0.68 ± 0.05 

µg/µL for TM GFS. As a result of the different diffusion rate, the area under rate of 

diffusion curve (AUC) of TM GFS (18.02 ± 2.36 min*μg/µL) was statistically and 

significantly different (p* < 0.05) from the AUC of TM Solutions (6.61 ± 0.48 

min*μg/µL) (Table A.2).  

 

A.3.3 ‘Precorneal’ retention and diffusion across ‘corneal’ of cell model 

 

Timolol Maleate Solution (TM Solution) and Timolol GFS (TM GFS) with 

equivalent strength (5μg/μl Timolol) were also used in the Cell model study. Figure A.4 

presents, for the two formulations under study, the elimination kinetic curve versus time. 

The timolol washed away by the induced lacrimation (1 min after administration) showed 

significant difference between TM GFS (114.21±16.14 µg) and TM Solution 

(159.60±13.48 µg). Similar to the PC model, in the cell model TM GFS also had higher 

timolol concentration in the elimination study (starting at 15 minutes for 3 hours) under 

‘constant tear flow’ than TM Solution (Figure A.4), thus TM GFS had a higher 

‘precorneal’ residence concentration even though similar MRT compared to TM Solution. 

The higher ‘precorneal’ residence is also confirmed by a larger area under elimination 

curve (AUC) for TM GFS (Table A.3). Elimination kinetic parameters reported in Table 

A.3 show that the area under elimination curve (AUC) of TM GFS (60.31 ± 8.18 

min*μg/μl) was 1.17 fold of TM Solution (51.40 ± 2.97 min*μg/μl).  
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The diffusion results of the two formulations in cell model were also similar to the 

diffusion in the PC membrane model. The total absorption and rate of diffusion of the 

two timolol formulations across cell model were plotted versus the sampling time in 

Figure A.5A and Figure A.5B. According to Figure A.5A, TM GFS had a higher 

absorption across (93.60 ± 4.12 μg vs. 38.31 ± 0.92 μg) the artificial ‘corneal’ of the cell 

model and (Figure A.5B) a larger peak timolol concentration (0.25 ± 0.03μg/µL vs. 0.08 

± 0.00 μg/µL) than TM Solution. Consequently, TM GFS had a larger area under the rate 

of diffusion curve (AUC) than TM Solution (9.43 ± 0.81 min*μg/µL vs. 3.35 ± 0.19 

min*μg/µL). Also, the diffusion rate of both formulations peaked at 15 minutes (Table 

A.4). 

 

  



224 
 
 

A.4 DISCUSSION 

 

A.4.1 ‘Precorneal’ retention of PC membrane model 

 

The washing step in the PC membrane model simulated ‘induced lacrimation’ and 

‘constant tear flow’, in order to differentiate formulations based on the retention time on 

the ‘corneal’. The timolol cleared from the apical surface by the 60 µl ‘induced 

lacrimation drainage’ accounted for almost half of the total timolol elimination of the 

entire ‘precorneal’ study for the formulations in study. Nevertheless, different timolol 

amount was eliminated from the two formulations, under ‘simulated induced lacrimation’. 

The mass of timolol washed away by the ‘induced lacrimation drainage’ was 

203.85±7.09 µg for TM Solution and 158.88±21.92 µg for TM GFS (the ratio is more 

than 2:1), respectively (Table A.5). If percentage of timolol cleared away by ‘induced 

lacrimation drainage’ of total eliminated timolol was calculated, the value for TM 

Solution was 71% but 49% for TM GFS. Since larger amount of timolol was cleared by 

the ‘induced lacrimation’ from TM Solutions than from TM GFS (Table A.5), less 

timolol left on the ‘precorneal’ rendered less timolol capable of being cleared away from 

applied TM Solutions via ‘constant tear flow’. Table A.5 showed that timolol mass 

washed away by ‘constant tear flow’ from applied TM Solutions was 84.41 ± 4.01 µg, 

but was 163.37 ± 30.47 µg from TM GFS.  

Different retention results, as discussed above, demonstrated that ‘induced 

lacrimation drainage’ was less efficient in eliminating timolol from applied TM GFS than 

from TM solution, which could be explained by the gelling properties of TM GFS. It was 
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known that TM GFS contains GELRITE gellan gum, a purified anionic 

heteropolysaccharide derived from gellan gum. With a cation present, the aqueous 

solution of GELRITE tends to gel.
21

 In this study, once upon contact with the cations in 

the normal saline, TM GFS tended to form rigid gels. Consequently, the timolol trapped 

in the gel would become harder to clear away by tear fluid than simple timolol solutions. 

Different retention performance of the two ophthalmic formulations detected by the PC 

model with ‘simulated tear flow’ suggested that the initial washing step applied in the in 

vitro model successfully simulated the ‘induced lacrimation’ for screening formulations 

with different residence time.  

 

A.4.2 Diffusion across ‘corneal’ of PC membrane model 

 

Overall, the diffusion trends of the two formulations were similar, but the 

absorption amount and bioavailability were different. As shown in Table A.6, TM GFS 

had higher timolol absorption percentage (33%) than TM Solution (25%). The higher 

bioavailability of TM GFS was relevant with a lower total elimination percentage (67% 

vs. 75%) from ‘induced lacrimation’ and ‘constant tear flow’ than TM Solution.  

Although TM GFS had a higher timolol total elimination mass (322.26 ± 10.03 µg) than 

TM Solution (288.26 ± 10.90 µg) in Table A.6, the total timolol absorption from TM 

GFS was still larger than TM Solution (156.62 ± 27.94 µg vs. 94.46 ± 5.51 µg). The 

discrepancy of the low elimination percentage with the high elimination mass could be 

explained by dosing variation. Even though both two droplets of the two formulations 
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(TM Solutions and TM GFS) were applied in the study, the shape and volume of the 

droplets from the two bottles could be different owing to their different viscosity. Table 

A.6 also showed that the total recovered timolol mass from TM GFS (478.88 ± 37.94 µg) 

and TM Solutions (382.72 ± 6.97 µg) were slightly different. Therefore, the exact amount 

of timolol instilled from TM GFS could be slightly higher than TM Solution, resulting in 

a higher total eliminated timolol mass.  Since the absolute amount of timolol applied was 

different from the formulations in study, total absorption percentage and elimination 

percentage are better criterion than absorption and elimination mass in evaluating the 

retention and diffusion properties of applied timolol formulations.  

 

A.4.3 Epithelium cell model versus polycarbonate membrane (PC) model  

 

Cell model in this study could also differentiate TM solution and TM GFS in 

induced lacrimation drainage, total absorption, and total elimination. TM Solution had a 

higher percentage of (Table A.7) induced lacrimation drainage (61% vs. 46%), (Table 

A.7) a higher percentage of total elimination (90% vs. 78%) and (Table 8) a lower 

percentage of total absorption (10% vs. 22%) than TM GFS.  

Although the overall trends of the two models (PC model and Cell model) in terms of 

precorneal retention and diffusion were similar, the absolute values were slightly 

different due to different transport resistance. Because PC membrane model had a TEER 

value merely around 20-25 Ω●cm
2
, corresponding to a small transport resistance, the 

majority of the timolol could pass through the PC membrane model within the first 15 
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min (Figure A.3). While the established epithelium cell model in this study had a high 

TEER value around 200-400 Ω●cm
2
, thus timolol could not diffuse easily through the 

cell membrane, resulting in a continuous but slow timolol accumulation after the peak 

time (Figure A.5).   

Due to the high transport resistance, the overall accumulation of timolol in the 

receiver chamber of the cell model is less than that of the PC membrane model. As 

shown in Figure A.6A and Figure A.6B, the absorption percentage was smaller and the 

elimination percentage was larger in the cell model than that in the PC membrane model 

for both formulations. Despite the difference in elimination percentage and absorption 

percentage, the initial elimination percentage was similar for both models (Figure A.6C). 

Thus, the effect of initial washing applied in PC model and Cell model was equivalent in 

differentiating the timolol formulations in terms of ‘induced lacrimation drainage’.   

 

A.4.4 Correlation with published pharmacokinetic data 

 

The kinetics of timolol solution and “in situ” gelling formulation (Timoptic
®
 XE) 

was investigated previously with the pigmented rabbits.
32

 Although not exactly the same, 

the elimination studies of the in vivo rabbits have similar kinetic curves with than of PC 

model and cell model. In the diffusion study, the tmax values obtained from Timolol 

Maleate Solution and Timolol GFS were both around 15 min for the established two in 

vitro models, a little different from the in vivo data, which are 30 min and 60 min, 

respectively.
33

 There are two potential reasons for the slight difference. Firstly, the 
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transport resistance values of the in vitro models were not high enough. The epithelial 

models with the transepithelial electrical resistance (TEER) around 200 to 1300 Ω●cm
2 

was reported to have good correlation with bovine cornea and human cornea equivalents 

in permeation coefficient of timolol maleate. But actually, HCE-T model with TEER 

around 1300 Ω●cm
2 

had the best correlation. In our research, cell model had a TEER 

around 200-400 Ω●cm
2
, which is at the lowest range of acceptable TEER value for a 

good correlation. The PC model’s TEER was merely 20-25 Ω●cm
2
. So, the TEER of 

both in vitro models were much smaller than that of HCE-T model. Another reason  

Additionally, Timolol Solution and Timoptic
®
 XE have also been investigated by ex vivo 

rabbit corneas with simulated tear flow.
34

 The relative timolol delivered from Timoptic
®

 

XE was 2.36 fold of Timolol Solution in the end of diffusion study. This number was 

1.32 of the PC membrane model and 2.2 of the Cell model, calculated by the ratio of TM 

GFS absorption percentage with TM Solution absorption percentage (Table A.6 and 

Table A.8).  

Although the two models were not established with cornea epithelium cell lines, the 

two models had similar diffusion and elimination profiles, and both correlated well with 

in vivo and ex vivo pharmacokinetic study. Considering the source of human cornea or 

tedious maintenance of animal, the two in vitro models provided an extremely simple and 

easy way to fast screen ocular topical formulations with prolonged residence time, 

compared to ex vivo human cornea model and sophisticated 3D models. Among them, 

PC model is much cheaper and easier to build up than epithelium cell model. But Cell 
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model is more accurate than PC model, proved by a relatively accurate value of relative 

timolol delivered.   

Nevertheless, there are still some shortcomings of these two models. Firstly, the 

two formulations Timolol Maleate Solution and Timolol GFS used were not brand name 

drugs, merely generic drugs. So, in vitro evaluations of two different brand name drugs of 

timolol were still needed in the future study to further confirm the two in vitro models. 

Moreover, since the in vitro models in this study were consisted with polycarbonate (PC) 

membrane or Calu-3 lung epithelium cells only, they don’t possess the binding sites on 

the cornea cell lines. Thus, these two in vitro models are not adequate to screen ocular 

formulations specifically attaching to the binding sites on cornea epithelium layers for 

longer precorneal retention. To solve these problems, cornea epithelium cell model or 

three dimensional human cornea equivalents should be applied.  
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A.5 CONCLUSION 

 

Development of a simple, efficient and convenient model for screening topical 

ocular formulations is important for the ocular formulation development and 

advancement of ocular delivery. The in vitro models in this study, which used 

polycarbonate (PC) membrane and epithelium cell lines, show clear differences in 

elimination and diffusion results of the two different and well-studied formulations. 

Moreover, the two models also have good correlation in both elimination and diffusion 

with the in vivo animal study and ex vivo corneal study of timolol.
10, 35

 Last but not the 

least important, the two models, especially the PC model, are much cheaper and easier to 

establish than current models. Therefore, the washing step with simulated tear flow is an 

improvement of current existing in vitro cell models in mimicking the induced 

lacrimation and tear flow.
32

 In conclusion, the two models developed in this project are 

potential tools for screening ocular formulations ahead of large scale animal studies.  
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A.6 TABLES 

 

Table A.1 Statistical Data of Timolol eliminated from Donor Chamber after 

administration in PC study. 

 

Eye Drops C1min (μg/µL) C15min (μg/µL) AUC(min*μg/µL) AUCrel MRT(min) 

TM Solution 3.40 ± 0.12 0.90 ± 0.08 39.07 ± 4.31 1 17.4 ± 0.3 

TM GFS 2.65 ± 0.37* 1.44 ± 0.12** 63.27 ± 4.31 1.62 23.9 ± 0.9 
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Table A.2 Statistical Data of Rate of Diffusion of the two formulations through PC model 

 

Eye Drops Cmax (μg/µL) tmax (min) AUC(min*μg/µL) 

TM Solution 0.29 ± 0.02 15 6.61 ± 0.48 

TM GFS 0.68 ± 0.05** 15   18.02 ± 2.36** 
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Table A.3 Timolol eliminated from Donor Chamber after administration with Cell Model. 

 

Eye Drops C1min (μg/μl) C15min (μg/µL) AUC(min*μg/µL) AUCrel MRT(min) 

TM Solution 3.62 ± 0.31 1.18 ± 0.07 51.40 ± 2.97 1 11.1 ± 0.1 

TM GFS 2.59 ± 0.37** 1.37 ± 0.22 60.31 ± 8.18 1.17 11.0 ± 0.2 
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Table A.4 Rate of Diffusion of timolol across Cell Model. 

 

Eye Drops Cmax(μg/µL) tmax(min) AUC(min*μg/µL) 

TM Solution 0.08 ± 0.00 15 3.35 ± 0.19 

TM GFS 0.25 ± 0.03** 15 9.43 ± 0.81** 

 

  



235 
 
 

Table A.5 Eliminated timolol in PC Membrane Study (timolol amount at the apical 

surface) 

 

Eye Drops Induced Lacrimation Drainage Normal Constant  Tear Flow Total Elimination 

TM Solution 203.85 ± 7.09 µg (71%) 84.41 ± 4.01 µg (29%) 288.26 ± 10.90 µg (100%) 

TM GFS 158.88 ± 21.92 µg* (49%) 163.37 ± 30.47 µg (51%) 322.26 ± 10.03 µg* (100%) 

One way T-test, p*<0.05, p**<0.005 
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Table A.6 Recovered timolol from PC Membrane Study 

 

Eye Drops Total Absorption Total Elimination Total Mass 

TM Solution 94.46 ± 5.51 µg (25%) 288.26 ± 10.90 µg (75%) 382.72 ± 6.97 µg (100%) 

TM GFS 156.62 ± 27.94 µg* (33%) 322.26 ± 10.03 µg* (67%) 478.88 ± 37.94 µg* (100%) 

One way T-test, p*<0.05, p**<0.005 
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Table A.7 Eliminated timolol in Cell Model Study 

(timolol amount at the apical surface) 

 

Eye Drops Induced Lacrimation Drainage Normal Constant  Tear Flow Total Elimination 

TM Solution 217.05 ± 18.34 µg (61%) 140.03 ± 11.12 µg (39%) 357.08 ± 15.12 µg (100%) 

TM GFS 155.32 ± 2.59 µg** (46%) 181.49 ± 24.64 µg (54%) 336.81 ± 10.96 µg (100%) 

 

One way T-test, p*<0.05, p**<0.005 
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Table A.8 Recovered timolol from Cell Model Study 

 

Eye Drops Total Absorption  Total Elimination  Total Mass  

TM Solution 38.31 ± 0.92 µg (10%) 357.08 ± 15.12 µg (90%) 395.39 ± 14.29 µg (100%) 

TM GFS 93.60 ± 4.12 µg** (22%) 336.81 ± 10.96 µg (78%) 430.41 ± 7.77 µg* (100%) 

One way T-test, p*<0.05, p**<0.005 

 

  



239 
 
 

A.7 FIGURES 

 

 

Figure A.1 Diffusion and elimination studies with established in vitro models; A) Add 

500 µl medium solution to the receiver chamber; B) Apply 30 µl isotonic solution to 

provide moisture environment of ‘precorneal’; C) Instill 2 droplets of eye drops; D) 

Apply 30 µl isotonic solution to simulate induced lacrimation, immediately (~ 1 min) 

after administration of eye drops; E) Sample 200 µl fluid from receiver chamber for 

diffusion studies; F) Replace with 200 µl blank solution in the receiver chamber; G) 

Meanwhile, withdraw 60 µl fluid from donor chamber to simulate induced lacrimation 

drainage; H) Replenish with 60 µl blank solution in the donor chamber; Repeat E), F), G), 

and H) steps every 15 min for 3 hrs for diffusion studies and to simulate ‘constant tear 

flow’, respectively.  

  



240 
 
 

 

 

Figure A.2 Apical surface concentration of timolol with the PC membrane model 
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Figure A.3 A) Total absorption, B) Rate of diffusion of the two timolol formulations 

across PC membrane model. 
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Figure A.4 Apical surface concentration of timolol with Cell Model from 15 minutes to 3 

hours. 
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Figure A. 5 A) Total absorption, B) Rate of diffusion of the two timolol formulations 

across cell model. (0-30 min, increase sampling frequency) 
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 (A)    

(B)  

(C)  

 

Figure A. 6 Comparison between the PC Model and Cell Model in A) absorption ratio, B) 

elimination ratio and C) initial elimination ratio. 
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