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Students’ performance across several tests, including both cognitive and 

achievement tests, is often analyzed together to better understand their learning.  This 

analysis is guided by the assumption that there are specific relations between students’ 

cognitive abilities and their reading, writing, and math skills.  The research supporting this 

assumption is limited because cognitive-achievement research findings are mostly based 

on a single test, the Woodcock-Johnson tests (McGrew & Wendling, 2010), and previous 

studies involve analyzing a single intelligence and achievement test in isolation.  Thus, 

findings are limited to the specific tests that are included in those analyses, and are not 

necessarily generalizable across other tests.  Research that incorporates multiple 

intelligence and achievement tests, cross-battery analyses, can better address questions 

about the broader influences of children’s cognitive abilities on their achievement.  Such 

cross-battery research can extend psychologists’ understanding of how intelligence and 

achievement relate beyond the test-level to the construct level.   

 Six intelligence tests (KABC-II, WJ III, WISC-III, WISC-IV, WISC-V, and DAS-

II) and three achievement tests (KTEA-II, WIAT-II, WIAT-III) were analyzed in a cross-
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battery cognitive-achievement analysis in the current study.  Data were derived from seven 

of the tests’ standardization or linking samples; participants were 3,930 children and 

adolescents aged 6 to 16. 

In order to simultaneously analyze several tests a planned missingness approach 

and structural equation modeling were used.  Six broad abilities (Gc, Gf, Gv, Gsm, Gs, and 

Glr) and g were modeled as latent variables; each broad ability latent variable was indicated 

by 7 – 14 subtests.  Results suggest Gf and g were perfectly correlated and it was impossible 

to separate the two abilities statistically.  The cognitive abilities were predictors of three 

achievement skills (basic reading, broad writing, and broad math), which were indicated 

by four to six subtests.  Findings indicated Gc influenced all three academic skills; Gsm 

and Glr influenced basic reading and broad writing; Gs influenced broad writing and broad 

math; Gf exerted a significant effect on broad math; and Gv was not significantly related 

to any academic skill.  Significant cognitive-achievement relations have implications for 

diagnostic decision-making regarding specific learning disabilities, assessment planning, 

and educational recommendations. 
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Chapter 1:  Introduction 

When students struggle to perform adequately in their classes, school psychologists are 

often called on to assess their functioning.  Assessment results are crucial in determining the 

possible causes of achievement difficulties and in developing appropriate learning environments 

for students, including whether they meet criteria for special education or section 504 services and 

related accommodations and interventions.  The components of these evaluations vary according 

to the reason for the assessment referral, but if a specific learning disability is suspected or must 

be ruled-out, the evaluation typically includes the administration of standardized cognitive and 

achievement measures along with other measures.  Thus, improving school psychologists 

understanding of the relationships between cognitive and achievement measures is necessary in 

order to inform evidence-based diagnostic decisions and educational recommendations, with the 

goal of enhancing students’ academic achievement. 

Cognitive Assessment Considerations 

Interpretation of students’ cognitive assessment results is often guided by Cattell-Horn-

Carroll (CHC) theory.  CHC theory is not only the leading intelligence theory within the field of 

school psychology (Keith & Reynolds, 2010), but CHC theory is also relevant more broadly to the 

field of clinical diagnostic assessment because CHC theory provides a common taxonomy for 

cognitive abilities.  The CHC theory taxonomy improves the consistency of the interpretation of 

assessment results across different types of test batteries, including neuropsychological tests, and 

across different practitioners (Jewsbury, Bowden, & Duff, 2016).  CHC theory posits a three-

stratum model of intelligence.  A general intelligence factor, g, is at the apex of the model, the 

third stratum; g involves reasoning, problem solving, and learning (Colom, Karama, Jung, & Haier, 

2010).  Moving to the second stratum, general intelligence (g) subsumes 8 to 10 broad abilities.  
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Moving to the first stratum, the broad abilities subsume many narrow abilities—the intelligence 

subtests themselves.  The broad abilities represent abilities such as verbal 

comprehension/knowledge (Gc), fluid/novel reasoning (Gf), visual-spatial processing (Gv), short-

term memory (Gsm), and processing speed (Gs) (Schneider & McGrew, 2012; see Table 1 on page 

17 for a definition of each broad ability and the literature review for an in-depth discussion of the 

development of intelligence theory).  Modern intelligence tests measure a variety of these broad 

abilities, but each ability is not included in every battery.  Although different tests purport to 

measure the same broad ability constructs, the subtests within each test battery vary according to 

task demands, stimuli, and response format.  Due to these subtest specific differences, some school 

psychologists question whether or not these different tests are actually measuring the same abilities 

and if results across the tests are comparable (Reynolds, Keith, Flanagan, & Alfonso, 2013).  This 

question raises concerns regarding whether or not estimates of children’s abilities vary depending 

on which test was administered. 

In an attempt to answer this question, previous research has tested whether different 

intelligence tests measure the same constructs via cross-battery confirmatory factor analysis (CB-

CFA) (Reynolds et al., 2013).  CB-CFA is a useful technique to test theory and establish factorial 

invariance across tests.  The Reynolds study was among the largest CB-CFA analyses to date, 

simultaneously analyzing four recent and commonly used intelligence tests to determine whether 

the CHC broad abilities were invariant across different populations and tests (Reynolds et al., 

2013).  Their sample included children and adolescents ages 6 to 16 from the Kaufman Assessment 

Battery for Children, Second Edition (KABC-II) concurrent validity studies.  Indeed, the CHC 

broad abilities were found to be invariant, providing evidence that CHC theory is applicable across 

different tests and the tests measure the same CHC constructs similarly.  These findings suggest 
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that school psychologists can administer any of those four tests, or combinations of those tests, 

and be confident that they are measuring the same abilities in the students they assess regardless 

of the test(s) selected (Reynolds et al., 2013).  

Several other studies provide support for the findings from the Reynolds study and have 

also shown that the CHC broad abilities represent the same constructs across batteries.  These 

studies, however, were limited to simultaneously analyzing only two intelligence tests, and as a 

result, the findings were limited to a smaller set of tests (Flanagan & McGrew, 1998; Keith et al., 

2001; Keith & Novack, 1987; Phelps, McGrew, Knopik, & Ford, 2005; Roid, 2003; Sanders, 

McIntosh, Dunham, Rothlisberg, & Finch, 2007; Stone, 1992).  One of the earliest CB-CFAs was 

the largest, and included six intelligence tests, but all of the tests have since been revised 

(Woodcock, 1990).  Thus, CB-CFA analyses that include more than two intelligence tests and the 

most recent editions of those tests are needed.  This will establish that CHC theory explains the 

relations among cognitive abilities well, using the tests psychologists are likely to administer. 

The usefulness of CB-CFA research is not only supported by theoretical rationale, with the 

purpose of extending CHC theory across batteries, but for practical clinical reasons as well.  School 

psychologists often apply CHC theory to their practice through the lens of the cross-battery 

assessment approach (Flanagan, Ortiz, & Alfonso, 2013).  This approach encourages practitioners 

to utilize more than one intelligence test when assessing children in order to fully assess the 

abilities underlying intelligence; a single intelligence test often does not measure all of the possible 

broad abilities.  Practitioners are also encouraged to administer more than one test if the child’s 

scores are discrepant within one or more CHC broad ability composites scores as a means of further 

investigation.  Thus, the theory underlying the cross-battery approach assumes the different 

intelligence tests are measuring the underlying broad ability constructs equivalently and 
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recommends combining multiple intelligence tests to form one comprehensive evaluation of 

student’s intelligence.  

Cognitive-Achievement Assessment and Relations 

The cross-battery assessment approach, however, is not limited to cognitive measures.  The 

cross-battery assessment approach also suggests that a more comprehensive picture of students’ 

cognitive abilities will better inform how practitioners relate students’ intelligence to their 

achievement (Flanagan, Ortiz, & Alfonso, 2013).  The relations between students’ intelligence and 

achievement scores are often used to inform specific learning disability diagnostic decision 

making.  Interpreting multiple cognitive and achievement tests together simultaneously as part of 

a cross-battery assessment assumes the relations between different intelligence and achievement 

tests are equivalent across batteries.  School psychologists using this approach assume the CHC 

broad abilities underlying different intelligence tests are similarly related to reading, mathematics, 

and writing achievement across batteries; this assumption currently remains untested.  Cross-

battery research can be used to test these assumptions underlying the cross-battery assessment 

approach.  In order to increase the practical clinical implications of cross-battery research for 

school psychologists, CB-CFA intelligence test results should also be used to predict standardized 

academic achievement.  Such cross-battery intelligence-achievement research may bolster 

evidence-based decision making regarding specific learning disabilities diagnoses.  Therefore, 

cross-battery analyses (in this case cross-battery structural equation modeling, CB-SEM) are not 

only useful for furthering knowledge of the structure of intelligence, but also for clarifying the 

relations between students’ intelligence and their achievement across batteries.  

Although explaining students’ achievement is the typical use of intelligence tests in 

schools, there is little cross-battery research examining the relations between CHC abilities 
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(general and specific intelligences) and their effects on achievement.  Instead, most of the research 

using students’ performance on intelligence tests to predict performance on achievement tests has 

involved analyzing a single cognitive test in isolation and then using that test to predict a single 

standardized achievement test (e.g., the Woodcock Johnson Tests of Cognitive Abilities III (WJ 

III) may be used to predict students’ performance on the Woodcock Johnson Tests of Achievement 

III).  Another limiting factor of previous research in this area is that the majority of studies are 

based on the Woodcock-Johnson tests (McGrew & Wendling, 2010).  Thus, the assumption that 

the relations between students’ intelligence and achievement are stable across different test 

batteries needs to be tested further.  Additionally, analyzing several different tests may broaden 

school psychologists’ understanding of the more general effects of intelligence on achievement.  

Overall, research findings in this area are narrowly focused, and it is questionable whether these 

relations are generalizable to other tests that were not analyzed.  Cross-battery research can address 

this limitation and more broadly, explain the relations between students’ intelligence and 

achievement performance across multiple tests.  

Despite these limitations, previous research provides important insights about the relations 

between intelligence and achievement.  It is well-established that general intelligence, g, and 

standardized general achievement are highly correlated; estimates vary, but tend to be within the 

.80 range (Deary, Strand, Smith, & Fernandes, 2007; Kaufman, Reynolds, Liu, Kaufman, & 

McGrew, 2012).  Research guided by CHC theory suggests that specific broad abilities are 

important in understanding students’ achievement as well.  These findings suggest the CHC broad 

abilities differentially explain variation in students’ reading, mathematics, and writing 

performance; the importance of each ability varies according to the academic area under study 

(Gustafsson & Balke, 1993; McGrew & Wendling, 2010).  
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For example, fluid/novel reasoning (Gf) tends to explain more variance in mathematics 

performance in comparison to reading performance (McGrew & Wendling, 2010; Parkin & 

Beaujean, 2012).  Although fluid reasoning is generally the strongest influence on math 

performance, other abilities also have significant effects including verbal-comprehension (Gc), 

short-term memory (Gsm), and processing speed (Gs) (Floyd, Evans, & McGrew, 2003; Fuchs et 

al., 2010?; Keith, 1999; McGrew, Keith, Flanagan, & Vanderwood, 1997; McGrew & Hessler, 

1995; Niileksela, Reynolds, Keith, & McGrew, 2016; Taub, Floyd, Keith, & McGrew, 2008).  Two 

studies have suggested that visual processing (Gv) has significant effects on students’ math 

reasoning abilities using the WJ tests (McGrew & Hessler, 1995; Niileksela et al., 2016).  The 

relations between the broad abilities and achievement vary as a function of age as well.  For 

instance, long-term retrieval (Glr) may be important in explaining young children’s math 

performance, but its effect likely decreases as children develop (Floyd et al., 2003).  

In terms of writing performance, there is less research investigating its relations with 

cognitive abilities.  The little available research suggests significant effects for verbal-

comprehension (Gc), short-term memory (Gsm), and processing speed (Gs) (Beaujean et al., 2014; 

Floyd, McGrew, Evans, 2008; McGrew & Knopik, 1991; Niileksela et al., 2016).  The effects of 

fluid reasoning (Gf) were inconsistent (Beaujean et al., 2014; Floyd et al., 2008; McGrew & 

Knopik, 1991), and dependent on the students’ age or the particular writing test and its specific 

demands.  Among younger students, long-term retrieval appeared significant (Floyd et al., 2008) 

and Gv was significantly related to written expression in a single study (Niileksela et al., 2016). 

In contrast, reading is the most studied cognitive-achievement domain.  For reading 

achievement, verbal-comprehension (Gc) has generally shown the largest effect (McGrew & 

Wendling, 2010).  Auditory processing (Ga), processing speed (Gs), and short-term memory 



 

 7 

(Gsm) also consistently have significant effects on reading (Beaujean, Parkin, Parker, 2014; 

Benson, 2008; Elliot, Hale, Fiorello, Dorvil, & Moldovan, 2010; Floyd, Meisinger, Greg, & Keith, 

2012; Floyd, Keith, Taub, & McGrew, 2007; Havojsky, Reynolds, Floyd, Turek, & Keith, 2014; 

McGrew et al., 1997; Niileksela et al., 2016; Vanderwood, McGrew, Flanagan, & Keith, 2002).  

At a more specific level, in terms of the components of reading, long-term retrieval (Glr) appears 

important for basic reading (decoding and word recognition skills) (Floyd et al., 2007; Hajovsky 

et al., 2014), whereas fluid reasoning (Gf) may be important for reading comprehension (Floyd et 

al., 2012; McGrew, 1993; Niileksela et al., 2016).  Most studies suggest that the influence of Gv 

is negligible, but one study provides contradictory evidence suggesting it may be important for 

reading comprehension (Hajovksy et al., 2014).  

In sum, CHC theory fits well with modern, frequently used intelligence tests, regardless of 

whether the tests were explicitly developed according to CHC theory (Reynolds et al., 2013).  The 

predictive validity of the CHC broad abilities in explaining students’ standardized achievement is 

well-supported; the broad abilities differentially explain students’ reading, mathematics, and 

writing achievement (McGrew & Wendling, 2010).  Some broad abilities, particularly Gc, Gsm, 

and Gs, exert significant effects across academic domains, while others are particularly salient at 

certain ages (e.g. Glr) or for a narrower range of achievement skills (e.g. Gf) (McGrew & 

Wendling, 2010; Niileksela et al., 2016).  It is unclear whether one specific broad ability, Gv, is 

unimportant in understanding students’ achievement or whether Gv is influential for specific skills 

(Hajovsky et al., 2014; McGrew & Wendling, 2010; Niileksela et al., 2016).  

All of the above described studies were limited to the analysis of a single cognitive and 

achievement test.  Reading is the only achievement domain that has been studied using cross-

battery research.  One study simultaneously analyzed two intelligence tests, the Wechsler 
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Intelligence Scale for Children, Revised (WISC-R) and Woodcock Johnson-Revised (WJ-R) 

Cognitive, as predictors of three WJ-R Achievement reading subtests.  The sample was limited, 

however, and included 166 third and fourth grade, mostly Caucasian Texas students (Flanagan, 

2000).  The results of this CB-SEM study were consistent with previous non-cross-battery studies.  

Among these elementary school students, Gc was the strongest significant predictor of reading, 

followed by Ga and Gs (Flanagan, 2000).  

Methodological Considerations  

One possible reason for the lack of cross-battery cognitive-achievement relations research 

is the potential time and financial demands of data collection (Enders, 2010).  Requiring students 

to complete multiple intelligence and achievement tests may cause extensive examinee fatigue and 

be costly for researchers.  For this reason, methodology is a critical consideration in CB-CFA 

research.  Fortunately, planned missing data methodology is particularly useful for these purposes 

(Enders, 2010; Graham, Taylor, Olchowski, & Cumsille, 2006; McArdle, 1994).  Planned missing 

data designs limit examinee fatigue by removing the requirement that all examinees complete each 

test that will be analyzed.  Instead, all examinees complete one test, referred to as the linking test.  

Then, a subset of tests is given to each examinee.  This particular type of missing data design is 

referred to as a three form design procedure (Enders, 2010).  Other designs are possible, however, 

and may include samples where some participants do not complete a common linking test.  These 

alternative designs allow for the inclusion of broad ability constructs that may not be available in 

each test, and testing such designs may improve future data collection methods (Reynolds et al., 

2013).  More research is needed to investigate the feasibility of alternative planned missingness 

designs.  
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Purpose of this Study 

As previously discussed, the current understanding of cognitive-achievement relations is 

limited to research analyzing a single intelligence and single achievement test, and the majority of 

studies are based on the WJ tests.  Because much of the research in this area focuses on one specific 

test or battery, findings are limited to those specific tests and are less generalizable to students’ 

cognitive and achievement abilities more broadly.  This is problematic because psychologists 

assess students using a variety of tests.  Psychologists cannot assume the relations between 

students’ intelligence and achievement are reproducible across different tests without empirical 

evidence validating this assumption.  If this assumption is proven false, psychologists need to 

account for differences across tests when interpreting students’ test results.  

The current study will address the limitations of previous research and test the assumption 

that cognitive-achievement relationships are generalizable across tests in two ways.  The first 

purpose is to incorporate additional intelligence tests into a CB-CFA model, which will broaden 

the scope of cross-battery intelligence research.  Secondly, this more comprehensive cross-battery 

intelligence factor structure will be used to predict students’ standardized achievement 

performance, which will more broadly improve cognitive-achievement relations evidence.  

Predicting students’ achievement by CHC broad abilities that are also representative of several 

tests will improve school psychologists’ understanding of these relations at a construct, as opposed 

to test-specific, level.  Because these results will be generalizable across several test batteries, the 

cross-battery cognitive-achievement findings may inform school psychologists’ recommendations 

for supporting students’ academic achievement and evidence-based diagnostic decision making 

regarding specific learning disabilities, regardless of the tests they select.  The cross-battery 
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cognitive-achievement findings may also influence psychologists’ assessment planning and 

selection, particularly for psychologists who use a cross-battery assessment approach. 
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Chapter 2:  Literature Review 

This literature review is organized into two broad sections.  The first section is focused on 

intelligence and achievement theory and research.  The second section is focused on planned 

missing data methodology.  Within the first section, the development of intelligence theory, 

intelligence tests, and their applications are discussed.  Then, previous cross-battery confirmatory 

factor analysis intelligence research is reviewed.  The cross-battery assessment approach is 

described and previous cognitive-intelligence relations research is summarized.  The literature 

review concludes with a discussion of the importance of planned missing data methodology and 

related issues. 

Intelligence and Achievement Theory and Research 

 Overarching summary.  When students struggle to perform adequately in their classes, 

school psychologists are often called on to assess their functioning.  Students’ cognitive abilities 

and achievement are assessed, at a minimum, to better understand their strengths and weaknesses.  

Such assessment also aids in the determination of what area of their functioning is interfering with 

their learning.  These assessment results often inform school psychologists’ decisions about special 

education eligibility, need for services and accommodations, and whether a student meets criteria 

for a specific learning disability. 

 Several tests are available to school psychologists to conduct these evaluations.  However, 

not every intelligence test measures the same CHC broad abilities.  The tasks that are part of both 

intelligence and achievement tests vary across tests and involve different stimuli and response 

formats.  Whether or not tests measure the same abilities and whether the relations between 

cognitive abilities and achievement are reproducible across batteries are both questions with 

theoretical and clinical implications for school psychologists.  Most of the research that addresses 

these questions are limited to the specific tests that are included in those analyses.  Research that 
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incorporates multiple intelligence and achievement tests, CB-CFA analyses, can better address 

these questions.  Such cross-battery research will extend psychologists’ understanding of how 

intelligence and achievement relate not just at the test-level, but at the broader construct level.  The 

results of cross-battery cognitive-achievement research may have implications for educational 

recommendations and diagnostic decision-making regarding specific learning disabilities. 

 Applications of intelligence testing.  The purpose of the first cognitive test developed, the 

Binet-Simon Intelligence Test, was to assist in the identification of students who required special 

education services in schools (Binet & Simon, 1905).  Although the theory, content, and 

interpretation of intelligence tests has continued to develop over the past century, this original 

purpose for cognitive testing remains a key reason for assessment in schools.  Intelligence tests are 

often used in schools to diagnose specific learning disabilities or identify students who are gifted 

or intellectually disabled.  Assessment results in general provide information about students’ 

strengths and weakness, and inform academic placements, accommodations, and interventions.  

The value of assessment, including intelligence tests, is far-reaching.  At a broad level, assessment 

supports the ease of description of individuals and their skills; enhances communication among 

professionals; aids research and clinical practice by establishing a common terminology; and 

facilitates program evaluation, development of policy, and advocacy efforts.  At a more specific 

level, assessment results can be used for determining eligibility for special education services, 

informing diagnostic decision making, identifying a need for services, and informing a treatment 

plan (Dowdy, Mays, Kamphaus, & Reynolds, 2009).  Classifying and diagnosing students 

represents a core expectation of a school psychologist’s role by schools, parents, and the 

community.  Thus, assessment has been and continues to be central to the field of school 

psychology.  
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Assessment in general, and the use of intelligence tests in particular, has spread beyond 

schools and into the military, hospitals, clinics, and other settings.  Intelligence testing is an 

essential piece of clinical diagnostic assessment, and is useful when evaluating individuals with 

different disorders or brain injuries (Jewsbury, Bowden, & Duff, 2016).  Individuals’ intelligence 

have been linked to many important life outcomes beyond academic achievement, including, but 

not limited to years of education completed, occupational performance, income, and even health 

behaviors (Gottfredson & Deary, 2004; Neisser, Boodoo, Bouchard, Boykin, Ceci, & Loehlin, 

1996).  The importance of intelligence is clear and intelligence testing continues to play an 

important role in the field of psychology. 

 The development of intelligence theory.  “Intelligence can be defined as a general mental 

ability for reasoning, problem solving, and learning;” overall intelligence is broadly defined and 

integrates other more specific cognitive functions (Colom et al., 2010, p. 489).  The 

conceptualization and theory of intelligence has progressed greatly over more than a century and 

refinement of the theory continues to this day.  Charles Spearman is credited with being the first 

to develop a coherent intelligence theory in 1904.  He noticed that cognitive tests correlated highly 

with one another and hypothesized that these strong relations were caused by an underlying 

common intelligence ability, referred to as g (Kamphaus, 2009; Schneider & McGrew, 2012).  

Additionally, Spearman is credited with developing factor analysis.  Factor analysis uses the 

correlations among items to explain the common underlying constructs or factors (latent, or 

unobserved, variables).  Thus, factor analysis is a useful technique for establishing internal validity 

of tests, as well as convergent and discriminant validity when applied across tests (Keith, 2015, 

chapter 15).  Spearman’s factor analyses led to his two-factor theory of intelligence.  According to 

his theory, the variance of intelligence tests is explained by two parts: variance shared by all tests 
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(g) and variance specific to each particular test (Kamphaus, 2009).  Spearman’s two-factor theory 

is the foundation for modern, more comprehensive theories of intelligence. 

Other theorists emphasized the importance of multiple abilities.  L.L. Thurstone proposed 

multiple cognitive factors that were independent of the g factor (1938).  Thurstone’s multiple-

factor method laid the foundation for Cattell’s Gf-Gc theory (Schneider & McGrew, 2012).  The 

evolution of this theory began when Raymond Cattell demonstrated that general intelligence, g, 

was better represented by two factors instead of one, referred to as Gf and Gc. Cattell’s doctoral 

student, John Horn, further expanded this theory to incorporate multiple broad abilities.  This 

extended Horn-Cattell Gf-Gc theory, however, excluded a general intelligence, g, factor 

(Schneider & McGrew, 2012).  Gf and Gc continue to be important abilities within modern 

intelligence theory. 

These conflicting theories were synthesized as the result of a huge factor analytic 

investigation.  John Carroll’s seminal work, Human Cognitive Abilities: A Survey of Factor 

Analytic Studies (1993), presented the results from his reanalysis of more than 460 experimental 

and clinical datasets.  Importantly, his analyses encompassed a reanalysis of many of the key 

intelligence factor analyses since Spearman’s work, with a focus on large batteries, cross-battery 

data sets, and seminal studies.  As a result, Carroll proposed the three-stratum theory of intelligence 

(Schneider & McGrew, 2012).  Carroll unified previous theories by incorporating g and specific 

cognitive abilities into one overall, higher-order, structure of intelligence (Kamphaus, 2009).  The 

third stratum is the most general and represents g, the second stratum includes eight specific broad 

abilities, and the first stratum includes more narrow abilities; each stratum is subsumed by the 

higher stratum preceding it (Schneider & McGrew, 2012).  The stratums start with the most general 

overall intelligence ability, become increasingly more specific at the broad ability level, and then 
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the most specific at the narrow ability level (each broad ability is measured by more than one 

narrow ability).  The three-stratum theory of intelligence is the best supported structure of 

intelligence today (Keith & Reynolds, 2010). 

Because Carroll’s three-stratum theory and Horn-Cattell’s Gf-Gc theory share many 

commonalities, the synthesis of the two theories is frequently referred to as Cattell-Horn-Carroll 

(CHC) theory (McGrew, 1998).  A review of 20 years of recent factor analytic intelligence research 

demonstrated that CHC theory is currently the most supported intelligence theory, and that tests 

derived from other theories conform well to a CHC orientation (Keith & Reynolds, 2010).  Not 

only is CHC theory applicable to intelligence tests, but the CHC taxonomy also fits other types of 

cognitive processes well, often referred to as executive functions within a neuropsychological 

framework (Floyd, Bergeron, Hamiliton, & Parra, 2010; Jewsbury et al., 2016; Salthouse, 2005).  

Definitions of seven CHC broad abilities that are relevant to this study are presented in Table 1 

and are based on definitions presented in Schneider and McGrew (2012).  

As intelligence theory developed over the past century, so too did intelligence tests.  Early 

versions of intelligence batteries were atheoretical or were only loosely based on some sort of 

theory.  The development of current intelligence tests, however, is increasingly guided by theory.  

The Woodcock-Johnson Revised Test (WJ-R; Woodcock & Johnson, 1989) was among the first 

to bridge the gap between intelligence theory and practice by applying Horn-Cattell’s Gf-Gc theory 

to test development (Schneider & McGrew, 2012).  The WJ-R was unique in this way, and it 

measured six broad cognitive abilities.  Following the lead of the WJ-R, other tests began 

measuring other broad abilities.  Prior to 2000, the majority of intelligence tests, however, 

measured only two to three broad CHC abilities.  As such, several important broad abilities were 
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inadequately measured or neglected altogether, including Gf, Gsm, Glr, Ga, and Gs (Flanagan, 

Alfonso, & Ortiz, 2013).  

Today, this problem is less of a concern because intelligence tests are generally designed 

to measure multiple broad abilities.  Recent revisions of tests generally measure four to five CHC 

broad abilities (Flanagan et al., 2013).  Although CHC theory is regarded as the best supported 

theory, not all tests were explicitly developed with this theory as the guiding framework.  

Regardless of whether intelligence tests were explicitly based on CHC theory, however, CHC 

theory explains the structure of these tests well.  Factor analyses of popular intelligence tests, 

including the Woodcock-Johnson tests, Differential Abilities Scales, Kaufman Scales, and 

Wechsler scales, indicate that these tests are consistent with CHC theory (Keith & Reynolds, 

2010). 
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Table 1 

 

Descriptions of CHC Broad Abilities 

 

Broad 

Ability 

Definition 

Gc The breadth and depth of acquired cultural knowledge, including language and 

information learned inside and outside of school.  Gc is influenced by “experience, 

education, and cultural opportunities” and is often referred to as crystallized 

knowledge (p. 122).  Narrow abilities that Gc subsumes include general verbal 

information, language development, and lexical knowledge. 

Gf Problem solving using unfamiliar information or novel procedures that cannot be 

performed automatically.  Gf involves abstract reasoning, including inferential 

reasoning and concept formation, which relies less on prior learning.  Narrow 

abilities subsumed by Gf include induction, general sequential reasoning, and 

quantitative reasoning. 

Gv “The ability to make use of simulated mental imagery (often in conjunction with 

currently perceived images) to solve problems” (p. 129).  Gv involves the mental 

rotation of images, identification of patterns, or transformation of visual 

information.  Narrow abilities subsumed by Gv include visualization and speeded 

rotation. 

Gsm The ability to “encode, maintain, and manipulate information in one’s immediate 

awareness” (p. 114).  Gsm involves primary memory capacity and efficiency of 

attentional control in primary memory.  Narrow abilities subsumed by Gsm include 

memory span and working memory capacity. 

Gs The “ability to perform simple, repetitive tasks quickly and fluently” (p. 119).  Gs is 

less important than Gf and Gc in “predicting performance during the learning phase 

of skill acquisition,” but Gs predicts “skilled performance once people know how to 

do a task.”  Narrow abilities subsumed by Gs include perceptual speed, reading 

speed, writing speed, and number facility (also referred to as basic arithmetic 

speed). 

Glr The “ability to store, consolidate, and retrieve information over periods of time 

measured in minutes, hours, days, and years” (p. 116).  Glr involves the processes of 

memory.  Narrow abilities subsumed by Glr include associate memory, ideational 

fluency, and naming facility (also referred to as rapid automatic naming in the 

reading research). 

Ga The ability to detect and process meaningful information in sounds.  “Ga is what the 

brain does with sensory information from the ear” (p. 131).  Narrow abilities 

subsumed by Ga include phonetic coding and speech sound discrimination. 

 

Note.  Definitions are adapted from Schneider and McGrew (2012). 

   

 Previous cognitive CB-CFA research.  The theory, content, and interpretation of 

intelligence tests varies according to the test.  Modern intelligence tests measure a variety of broad 
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abilities and each ability is not included in every battery.  Although different tests purport to 

measure the same broad ability constructs, the subtests within each test battery vary according to 

task demands, stimuli, and response format.  Due to these subtest specific differences, some 

psychologists question whether or not these different tests are actually measuring the same abilities 

and if results across the tests are comparable (Reynolds et al., 2013).  This question raises concerns 

regarding whether or not estimates of children’s abilities vary depending on which test was 

administered. 

In an attempt to better understand the structure of intelligence tests across batteries, 

researchers analyze multiple intelligence tests simultaneously.  This type of research expands the 

application of factor analysis from analyzing single intelligence tests to joint analyses of multiple 

tests, referred to as cross-battery factor analyses (CB-FA).  Factor analyzing more than one 

intelligence test conjointly, particularly when the tests were designed according to different 

theories, allows researchers to test which theory is best supported.  When confirmatory factor 

analysis (as opposed to exploratory factor analysis) is used in a CB-FA (referred to as CB-CFA), 

researchers can test and compare models drawn from those different theories (Keith & Reynolds, 

2010).  In addition to answering questions about the underlying theory of intelligence, CB-CFA 

analyses can answer questions about the nature of the broad abilities at the construct level.  Most 

tests do not include more than two measures of any one broad ability, but CB-CFA allows for the 

analysis of several tests for each broad ability.  Therefore, simultaneously analyzing multiple tests 

is advantageous as each broad ability is measured by several indicators (Keith & Reynolds, 2010).  

Because the content, stimuli, and response format vary across tests, more generalizable 

conclusions about broad abilities are possible as a result. 
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In 1990, Richard Woodcock conducted the largest CB-CFA analysis to date that included 

seven intelligence tests (WJ, WJ-R, WISC-R, WAIS, WAIS-R, K-ABC, and Standford-Binet-IV).  

Participants were drawn from the WJ and WJ-R concurrent validity studies, and included third 

graders, fifth graders, and twelfth graders.  As previously discussed, many broad abilities were 

neglected by these pre-2000 era intelligence tests.  His synthesis of several tests provided 

quantitative evidence supporting Cattell-Horn’s extended Gf-Gc theory and its application across 

tests, even though some of the tests were not developed according to this theory.  As a result, 

Woodcock argued for the importance of cross-battery assessment among practitioners; 

practitioners could supplement one test by administering a second test in order to more completely 

measure several broad abilities (Woodcock, 1990). 

Several other CB-CFA analyses were conducted following Woodcock’s analysis based on 

either Cattell-Horn Gf-Gc theory or CHC theory (Flanagan & McGrew, 1998; Keith et al., 2001; 

Keith & Novak, 1987; Phelps et al., 2005; Sanders et al., 2007; Stone, 1992).  Each of these were 

limited to only two jointly-analyzed tests due to the time and financial burdens of assessing 

children with several tests.  The sample sizes of five out of six of these CB-CFA analyses were 

small, ranging from 114 to 155 students (one was an outlier and included 544 students; Keith & 

Novak, 1987); most tested a somewhat narrow age range, including third through sixth graders 

and sixth through eighth graders (Flanagan & McGrew, 1998; Keith et al., 2001; Phelps et al., 

2005; Sanders et al., 2007).  Furthermore, most of the tests have since been revised.  Regardless 

of these limitations, each of these analyses also provided support for the Gf-Gc theory or CHC 

theory, even though most of the tests, except for the WJ, were not explicitly developed using these 

theories.  
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The most recent CB-CFA analysis is the second largest, and doubled the number of tests 

factor analyzed to four—KABC-II, WJ-IV, WISC-III, WISC-IV (Reynolds et al., 2013).  This 

larger CB-CFA analysis was possible because of its design, using a planned missing data 

methodology.  The planned missing design capitalized on the advantages of CB-CFA analyses, 

allowing for the analysis of multiple tests.  The cost of administering several tests to a large sample 

of students was low because not every child was required to complete every test (Keith & 

Reynolds, 2010).  This study analyzed a larger sample, a total of 423 students, and included a 

larger age range, from 6 to 16 years.  

The results of the Reynolds analysis are worth discussing in more depth because my 

analysis will incorporate the same KABC-II convergent validity sample (in addition to six samples 

taken from additional datasets).  Five broad abilities were measured well by the four tests in their 

analyses.  These five broad abilities were Gc, Gf, Gv, Gsm, and Associative Memory, which is a 

narrow ability of Glr that is specific to remembering unrelated paired information.  In order to 

better understand how well each broad ability is measured by its corresponding subtests, the factor 

loadings should be examined.  The factor loadings indicate the strength of the relation of the subtest 

to the broad ability.  If CHC theory maps well onto the tests, high factor loadings would be 

expected from the subtests to the broad abilities they are purported to measure (Keith, 2015, 

chapter 15).  In Reynolds and colleagues’ analyses the factor loadings of the 12 subtests onto Gc 

were generally the strongest across the broad abilities (generally ranging from .62 to .87), 

suggesting Gc was the best measured broad ability among these tests.  The magnitude of the factor 

loadings for the other broad abilities encompassed a similar range.  More specifically, the factor 

loadings of the seven tests that represented Gv ranged from .56 to .74 (one outlier, Gestalt Closure, 

was .20); seven factor loadings for Gf ranged from .48 to .74; eight Gsm factor loadings ranged 
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from .45 to .76; and six Associative Memory loadings ranged from .53 to .79.  The correlations 

between the broad abilities were strong and ranged from .57 (Gv and Gsm) to .82 (Gf and Gv), 

meaning they are highly related.  In terms of the higher order structure, Gf generally had the 

strongest relations with g, but Gc had the strongest relations when differences due to sex and SES 

were not controlled.  The standardized loadings onto g were .98 for Gf, .82 for associative memory, 

.76 for Gv, .75 for Gc and Gsm.  In addition to these strong factor loadings and regression 

coefficients, the initial model fit the data well, and required minimal modifications, suggesting that 

the CHC taxonomy explained the broad abilities well.  The authors concluded that regardless of 

what theory was used to design the tests, CHC theory was well supported across these four tests 

(Reynolds et al., 2013). 

Several questions were left unanswered by this study.  The analysis was based on the three-

form missing data design, meaning that each examinee completed a common linking test (to be 

described in more detail later), the KABC-II.  This design limited the broad ability analyses to 

only those that were measured by each test.  The combination of these four tests prohibited the 

analysis of Gs, an important broad ability in explaining academic achievement.  For this reason, 

Reynolds and colleagues highlighted the need for further CB-CFA analyses using other designs.  

Although not part of their final model, preliminary analyses tentatively supported the analysis of 

broad abilities that were not measured by the reference test (Reynolds et al., 2013).  This finding 

hints at the possibility of CB-CFAs analyses that do not include one common linking test.  Such 

an alternative CB-CFA design will be explored in the current study, and discussed in more detail 

in a later section. 

 Cross-battery assessment approach.  There are many advantages to both research and 

clinical findings based on more than one intelligence test.  A modern practitioner-oriented 
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approach supports the use of more than one intelligence test when assessing a child.  This theory, 

known as the cross-battery assessment approach, is grounded in CHC theory and allows 

practitioners to assess a wider range of abilities than is possible when practitioners are constrained 

to using a single test (Flanagan, Ortiz, & Alfonso, 2013).  Based on experts’ classifications of tests 

and CB-CFA analyses (Reynolds et al., 2013), Flanagan and colleagues have classified the subtests 

of popular intelligence tests according to the CHC broad abilities that they measure (Flanagan et 

al., 2013).  These classifications allow practitioners to comprehensively assess a variety of 

students’ abilities.  This means, for example, that a psychologist may primarily evaluate a child 

using the Wechsler Intelligence Scale for Children, Fifth Edition (WISC-V).  However, because 

the WISC-V does not include subtests that measure Ga, the psychologist can supplement the 

testing results from the WISC-V with the subtests that measure Ga found in the WJ-IV.  In 

addition, if a child’s scores are discrepant within a CHC broad ability composite score, the cross-

battery assessment approach encourages the practitioner to administer additional measures of that 

ability, which may be assessed by additional intelligence tests.  

Cross-battery assessment extends beyond guiding the assessment of students’ intellectual 

abilities.  A key pillar of the cross-battery approach is examining the relations between cognitive 

abilities and academic skills.  This pillar bridges theory and practice (Flanagan et al., 2013).  

Understanding the relations between intelligence and achievement is important because school 

psychologists are often trying to understand the reasons for students’ learning difficulties.  For 

instance, a common situation is a student referred to a school psychologist due to low math 

performance.  If the student’s performance within a particular cognitive ability that is associated 

with math is low, along with low performance on standardized math tests, the testing results may 

justify a possible specific learning disability in math.  Using the cross-battery assessment approach, 
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a school psychologist may assess a student’s cognitive abilities using more than one test and then 

make inferences between the results from multiple intelligence tests and their relations to 

standardized achievement test results.  This association between intelligence and achievement tests 

is based on an untested assumption, however.  The cross-battery assessment approach assumes the 

relations between different cognitive and achievement tests are stable across batteries.  Research 

testing this assumption is needed, and extending cross-battery cognitive-achievement research into 

this area can answer this question. 

 Cognitive-achievement research.  The importance of measuring students’ intelligence in 

order to better support their learning is supported by a wealth of research.  It is well-established 

that there is a strong association between intelligence and standardized academic achievement.  At 

the broadest level, the correlation between general intelligence, g, and general academic 

achievement is high.  Some have estimated the correlation to be above .8 (Deary et al., 2007; 

Kaufman et al., 2012), with variability across studies.  This means that approximately 50 to 70% 

of the variation in standardized general achievement is explained by general intelligence (Deary 

et al., 2007; Kaufman et al., 2012; McGrew, 1993; McGrew & Hessler, 1995).  This percentage is 

lower for classroom grades, approximately 40% (Gustafsson & Balke, 1993), but intelligence 

remains a significant predictor regardless of how achievement is measured.   

 Clearly, g is critical in explaining student’s achievement.  In order to better understand 

specific academic skills, a more focused examination of cognitive ability, at the broad ability level, 

has been fruitful.  Research guided by CHC theory has demonstrated that the broad abilities likely 

differentially explain variance in reading, mathematics, and writing achievement and the effects 

of the broad abilities on achievement are significant above and beyond the effect of g (Gustafsson 
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& Balke, 1993; McGrew & Wendling, 2010).  In addition, the strength and significance of the 

effects of the broad abilities vary according to age (McGrew & Wendling, 2010).  

 Reading.  Early standardized cognitive-achievement relations research focused on the 

Woodcock-Johnson Revised Tests of Cognitive Abilities, which measured seven broad abilities 

(Gc, Gf, Gv, Ga, Gs, Gsm, and Glr), and the WJ-R Tests of Achievement.  Cognitive-achievement 

reading relations are the most studied achievement domain.  Reading achievement is separated 

into basic reading skills, including decoding and word recognition skills, and reading 

comprehension, which is the complex process of making meaning from text (McGrew & 

Wendling, 2010).  Early WJ-R and reading studies analyzed the data from the standardization 

sample using multiple regression (McGrew, 1993) and then later SEM analyses (Keith, 1999; 

Vanderwood et al., 2002).  Across basic reading skills and reading comprehension, Gc had the 

strongest influence and Gv was not significantly related to either (Keith, 1999; McGrew, 1993; 

McGrew et al., 1997; Vanderwood et al., 2002).  Results for all CHC cognitive-achievement 

relations research are summarized in Table 2 on page 34. 

The importance of the other variables varied according to the specific reading skills, and 

some associations were dependent on age.  Basic reading skills were most consistently related to 

Gc, Ga, and Gsm (McGrew et al., 1997; McGrew, 1993), whereas Glr’s relations were inconsistent 

(McGrew, 1993).  The effect of Gs on basic reading was more important for young children 

through late elementary school (Keith, 1993; McGrew, 1993; Vanderwood et al., 2002).  Gf, 

however, had stronger and more consistent relations with reading comprehension, whereas Ga, 

and Gs were only weakly related (McGrew, 1993).  Gsm’s effect on reading comprehension varied 

with age and appeared to increase with age, while Gf was moderately associated with reading 

comprehension at a young age, but this association declined over time (McGrew, 1993).  The 
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possible moderation of these relations by ethnic groups was also studied.  Caucasian, African 

American, and Hispanic groups were compared using the WJ-R (Keith, 1999).  Similar relations 

were found across groups for reading with one exception.  Gc and Gs had a stronger relation with 

the reading comprehension of middle school Hispanic students.  Additionally, Caucasian and 

Hispanic students from low SES backgrounds were also compared using the WJ-R, and Gc and 

Ga both significantly influenced their basic reading and reading comprehension performance to a 

similar extent (Garcia & Stafford, 2000). 

Despite changes in the revised WJ III test, similar relations have been found to the previous 

edition (WJ-R).  Gc had a strong effect on basic reading and reading comprehension which tended 

to increase with age (Benson, 2008; Evans et al., 2002; Floyd et al., 2007; Floyd et al., 2012).  Gs 

and Glr were generally important for basic reading and reading comprehension among younger 

students (Floyd et al., 2007; Floyd et al., 2012); the significant effect of Gsm on basic reading 

arose by age 7 (Floyd et al., 2007), and appeared consistently stronger for basic reading than 

reading comprehension (Evans et al., 2002).  Ga seemed to have a less prominent effect and was 

inconsistently significant at different ages (Benson, 2008; Evans et al., 2002; Floyd et al., 2007; 

Floyd, 2012).  

Even in the most recent revision of the WJ, the WJ-IV, Gc, Ga, and Gs significantly 

influence both basic reading and reading comprehension.  Similar to one study using the WJ-R, 

Gf significantly influenced reading comprehension (Niileksela et al., 2015).  In contrast to studies 

with the WJ-R and WJ-III (McGrew, 1993), Gsm and Glr did not exert a significant effect on either 

basic reading or reading comprehension.  Developmental differences were tested quantitatively 

and again supported differential effects across ages.   
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Reading cognitive-achievement relations were also studied using the WISC-IV, WISC-V, 

KABC-II, and the DAS-II.  It is important to note that each of these tests measures fewer than 

seven CHC broad abilities, and thus, it was not possible to test the effects of some abilities, most 

often Ga and Glr.  More specifically the WISC-IV and –IV included measures of Gc, Gf, Gsm, 

Gv, and Gs.  As measured by the WISC-IV, Gc, Gsm, and Gf significantly influenced students’ 

performance on a composite of reading (basic reading and reading comprehension were not 

separated; Beaujean et al., 2014); on the WISC-V significant relations between Gc and Gsm and 

basic reading and reading comprehension were found (Caemmerer, Keith, Maddocks, & Reynolds, 

2017).  Relations between the KABC-II (including measures of Gc, Glr, Gf, Gsm, and Gv) and the 

KTEA-II were tested using a CHC model (Hajovksy et al., 2014).  In contrast to research with the 

WJ, Glr had the largest direct effect on reading decoding (a basic reading skill), followed by Gc 

and Gsm. Surprisingly, Gv, in addition to Gc, was significantly related to reading comprehension.  

Similar to previous research the effect of Gc on reading decoding and reading comprehension 

increased with age, and was significantly greater in later grades than earlier grades.  Gsm and Glr’s 

effects were less influenced by developmental differences and were small to moderately sized 

across grades.  Relations between the reading skills themselves were tested, and reading decoding 

was found to have a large direct effect on reading comprehension.  (Hajovksy et al., 2014).  Lastly, 

one study analyzed the effects of the seven broad abilities (Gc, Gf, Gv, Gsm, Gs, Glr, Ga) measured 

by the DAS-II on students’ basic reading skills (Elliot et al., 2010).  Some of these broad abilities 

were measured by only one subtest, thus Glr, Ga, and Gs were limited in their representativeness 

of these broad abilities.  Nonetheless, consistent with previous research, Gc, Gsm, and Ga 

significantly influenced students’ basic reading skills.  An inconsistent result was the significant 

effect of Gf on basic reading skills (Elliot et al., 2010).  
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While only a few studies analyzed relations between students’ cognitive abilities and their 

reading skills using tests other than the WJ, many of the effects were consistent with research 

based on the WJ.  Consistently, Gc and Gsm seemed to exert important effects on basic reading 

and reading comprehension.  In contrast, Gv (as measured by the KABC-II) significantly 

influenced reading comprehension and Gf (as measured by the DAS-II) significantly influenced 

basic reading.  These two relations were not consistently supported in WJ research and thus warrant 

further exploration. 

Reading is the only achievement domain that has been studied using CB-SEM.  Two 

intelligence tests, the WISC-R and WJ-R, were used to predict reading tests from the Woodcock 

Johnson III Tests of Achievement.  Once again the strong influence of Gc on reading was 

supported, followed by Ga and Gs (Flanagan, 2000).   

In sum, it is clear that Gc is a strong influence on both basic reading skills and reading 

comprehension.  Ga, Gsm, and Gs have also shown consistent effects across batteries.  In contrast, 

Glr’s effects were somewhat inconsistent and appeared more important for basic reading and at 

younger ages.  Gf’s influence on reading comprehension was tentatively supported in a few 

studies.  Most studies suggest that Gv’s influence is negligible, but one study provides 

contradictory evidence suggesting it may be important for reading comprehension (Hajovksy et 

al., 2014). 

Mathematics.  Another widely researched academic domain is math (see Table 2 for a 

summary of findings).  Math achievement has been conceptualized as two skills, basic math skills, 

including arithmetic and computation skills, and math reasoning, which involves problem solving 

with word problems and applying mathematical operations and concepts (McGrew & Wendling, 

2010).  An early regression study using the WJ-R suggested that Gs, Gc, and Gf were the most 
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consistent predictors of basic mathematics skills and mathematics reasoning (McGrew & Hessler 

1995).  Gc and Gf’s effects on basic math and math reasoning increased with age, and Gsm was 

also moderately related to Basic Math, but from ages 5 to 10 only.  Math reasoning was influenced 

by Gv for five through eight year olds and by Glr in late adolescence (McGrew & Hessler 1995).    

Results based on a SEM analysis of the WJ-R were similar and reinforced the importance 

of Gs, Gc, and Gf in explaining math achievement (Keith, 1999; McGrew et al., 1997).  The SEM 

results, however, tended to vary more with age.  The relative importance of Gs for younger and 

older students was inconsistent (Keith, 1999; McGrew et al., 1997).  Gf appeared more important 

for math reasoning in elementary and middle school, but was not significant for high schoolers 

(Keith, 1999; McGrew et al., 1997).  Gc, on the other hand, was important for math reasoning 

across grades (Keith, 1999). 

Analyses with the revised WJ III offer contradictory evidence regarding which broad 

ability exerted the most important influence on math.  One study found that Gf was the only broad 

ability to exert large effects (Taub et al., 2008), whereas another suggested that Gc had the 

strongest effect on both basic math skills and math reasoning (Floyd et al., 2003).  Although Gf 

was not the strongest effect in this study, Gf moderately influenced basic math skills across all 

ages, and its effect was stronger for math reasoning (Floyd et al., 2003).  Both studies consistently 

found that Gc’s effect increased from moderate to strong in later adolescence (Floyd et al., 2003, 

Taub et al., 2008).  The effects of the other broad abilities were inconsistent across the studies, and 

tended to vary according to age.  Gsm was consistently moderately sized across ages for math 

reasoning and was significantly related to basic math skills after age seven (Floyd et al., 2003).  

Gs’ effect decreased from strong among five to six year olds to moderate for 9 through 13 year 

olds (Taub et al., 2008).  Glr was important across math skills for ages six through eight only, and 
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Ga was important for basic math reasoning among young children only (Floyd et al., 2003).  Across 

these studies, Gv consistently had no effect.  When analyzing the new WJ-IV, Gc, Gf, and Gs were 

all significantly related to both basic math skills and math reasoning.  Unexpectedly, Gv was 

significantly related to math reasoning (Niileksela et al., 2015).  

Two studies examined cognitive-math achievement relations using a battery other than the 

WJ, the WISC-IV and -IV (Caemmerer et al., 2017; Parkin & Beaujean, 2012).  Both studies 

support the importance of Gf on math, either an overall math achievement latent variable measured 

by one basic math and one math reasoning subtest (Parkin & Beaujean, 2012) or math reasoning 

and basic math separately (Caemmerer et al., 2017).  There is also evidence to suggest Gs is 

important for both math skills, and Gsm may be particularly important for math reasoning 

(Caemmerer et al., 2017).  Overall, much remains to be explored regarding cognitive-math 

relations using tests other than the WJ.  

In sum, Gf and Gc consistently exerted significant effects on students’ math achievement, 

while the effects of Gs and Gsm were consistent, but the strength of their effects varied with age.  

The influence of Glr and Gv was inconsistently significant and warrants further study. 

Writing.  While there have been a number of analyses of the relations between intelligence 

and reading and math achievement, writing is the least understood academic domain in terms of 

cognitive-achievement relations.  Writing achievement is separated into basic writing skills and 

written expression.  Basic writing skills tend to include measures of spelling, knowledge of writing 

mechanics, and word usage skills.  Written expression tends to measure sentence construction, 

sentence production in response to prompts or pictures, and it may include fluency measures.  

Conclusions based on the WJ-R suggest that Gc and Gs were consistently related to writing 

achievement across development (McGrew & Knopik, 1991).  The strength of Gc increased with 
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age.  The strength of Gs’ association was consistent across development for written expression, 

and it decreased for basic writing around age eighteen.  Gf was consistently related to written 

expression across development, but was mostly related to basic writing from ages six to thirteen.  

Ga’s relation was the most age dependent, as Ga was related to both writing domains before age 

11.  In contrast, there was little evidence of significant relations for Glr and Gsm, and less for Gv 

(McGrew & Knopik, 1991).   

Writing cognitive-achievement relations were largely similar based on the WJ III (Floyd, 

McGrew, & Evans, 2008).  Again, Gc’s effects were moderate to strong, and increased with age, 

and the effects of Gs were consistently moderate for both writing domains.  Similar to the findings 

with the WJ-R, Ga’s influence on written expression was limited to young children.  Additionally, 

Gv’s effects were negligible.  In contrast to the earlier edition of the WJ, Gsm exerted a moderate 

effect on both writing domains after age seven, Glr was important for both domains among young 

children, and Gf’s influence did not emerge until age fifteen (Floyd et al., 2008).  Research with 

the new WJ-IV (Niileksela et al., 2015) was more similar to the WJ III than the WJ-R for basic 

writing skills; Gc and Gsm exerted strong effects on basic writing, and the effect of Gs was 

moderate.  The associations with written expression, however, were more divergent.  Gv was 

strongly related to written expression across all ages, as well as Gs, but Gc did not exert a 

significant effect (Niileksela et al., 2015).   

Two studies analyzed these relations using the WISC-IV and WIAT-II and WISC-V and 

WIAT-III.  Results were mostly in agreement with those suggested by the WJ scales.  As measured 

by the WISC-IV, Gf, Gc, Gsm, and Gs were all important in explaining overall writing 

achievement (a combined factor of basic writing and written expression; Beaujean, Parkin, Parker, 

2014); and according to the WISC-V, Gc and Gsm had a significant influence on basic writing, 
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while Gf had a significant influence on a more complex written expression task (Caemmerer et al., 

2017).   

In summary, the effects of the broad abilities on writing achievement seem to be more 

inconsistent than the other achievement domains (see Table 2 for a summary of findings).  The 

influence of Gc and Gs were generally significant, Gf and Gsm exerted significant effects 

inconsistently, and Gv influenced written expression in one study. 

To summarize the research examining cognitive-achievement relations, some broad 

abilities consistently exert significant effects on multiple academic domains.  Gc, Gsm, and Gs 

significantly influence reading, math, and writing achievement.  Glr appears to influence all of 

these domains as well, but this broad ability seems to be more important for younger ages.  Gf, on 

the other hand, appears to consistently influence math, but the effects of Gf on reading 

comprehension and written expression are tentative.  Across most studies the effects of Gv were 

negligible; a few significant relations were found, however, on written expression, math reasoning, 

and reading comprehension.  The inconsistent effects of Gf and Gv warrant further study.  Also 

worth further study are the differences in the significance and relative importance of broad abilities 

across tests.  Most of the studies analyzed the WJ tests, and the assumption that cognitive-

achievement relations are replicable across different tests requires further study.  

 Applications to learning disability research.  As previously noted, findings from the 

current study may have implications for students with learning disabilities.1  Previous studies 

                                                 
1 Federal criteria indicate a student may have an specific learning disability if the “child does not achieve adequately 

for the child’s age or to meet State-approved grade-level standards;” a specific learning disability is defined as “a 

disorder in one or more of the basic psychological processes involved in understanding or in using language, spoken 

or written, that may manifest itself in an imperfect ability to listen, think, speak, read, write, spell, or to do 

mathematical calculations, including conditions such as perceptual disabilities, brain injury, minimal brain 

dysfunction, dyslexia, and developmental aphasia,” and excluding learning problems that are “primarily the result of 

visual, hearing, or motor disabilities, of mental retardation, emotional disturbance, or of environmental, cultural, or 

economic disadvantage” (U.S. Department of Education, Office of Special Education Programs, 2006). 
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suggest different cognitive abilities are more or less salient for students with particular learning 

disabilities.  Overall, working memory, processing speed, and language skills are important 

predictors for achievement among students with specific learning disabilities.  Students at-risk for 

or classified as meeting criteria for math, reading, or writing disabilities score relatively lower on 

working memory tests (also referred to as short-term memory in the CHC literature; Fuchs et al., 

2010; Geary, Hoard, Byrd, Craven, Nugent, & Numtee, 2007; Geary, Hoard, & Hamson, 1999; 

Hale, Fiorello, Kavanagh, Hoeppner, & Gaither, 2001; Mayes & Calhoun, 2007; Swanson & 

Alexander, 1997).  Fluency and processing speed abilities also appear to be lower in students with 

math, reading, and writing disabilities (Burns et al., 2002; Calhoon, Emerson, Flores, & Houchins, 

2007; Elliot et al., 2010; Geary et al., 2007; Mayes & Calhoun 2007; Niileksela & Reynolds, 2014).  

Fluency measures involve a timed component and tend to require students to solve simple 

mathematical operations (such as addition, subtraction, multiplication) or quickly read passages.  

These achievement fluency measures are similar to processing speed tasks on intelligence tests 

given the timed and simple nature of the tasks.   

In addition, students with reading disabilities and math problem solving disabilities tend to 

score lower on language tasks (referred to in the CHC literature as verbal-comprehension (Gc); 

Hale, Fiorello, Kavanagh, Hoeppner, & Gaither, 2001; Fuchs et al., 2008).  Also, students with 

reading disabilities tend to exhibit deficits in phonological skills (referred to in the CHC literature 

as audiological processing (Ga); McBride-Chang & Manis, 1996; Vellutino et al., 1996).  

 Recent cognitive-profile analyses revealed intra-individual differences among students 

with reading and math disabilities; intra-individual analyses involve comparisons between 

student’s scores on one cognitive ability and another ability (Compton, Fuchs, Fuchs, Lambert, & 

Hamlett, 2012).  Students with basic reading disabilities scored relatively lower on language 
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(which were similar to Gc tasks) and working memory tests, students with reading comprehension 

disabilities scored relatively lower on language tests, and students with math problem solving 

disabilities scored relatively lower on a Gf test in comparison to their scores on other cognitive 

abilities (Compton et al., 2012).  Processing speed was a relative strength for students with learning 

disabilities in comparison to their scores on other cognitive abilities.  Similar to the lack of CHC 

cognitive-writing relations literature, writing disabilities are the least studied and understood 

specific learning disability category. 
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Table 2 

Summary of Significant Cognitive-Achievement Relations Across Studies 

 McGrew, 

1993 

WJ-R 

McGrew et 

al., 1997 

WJ-R 

Keith, 

1999 

WJ-R 

Vanderwood 

et al., 2002 

WJ-R 

Evans et 

al., 2002 

WJ III 

Benson, 

2008 

WJ III 

Floyd et 

al., 2012 

WJ III 

Hajovsky  

et al., 2014 

KABC-II 

Beaujean  

et al., 

2014 

WISC-

IV* 

Niileksela  

et al., 2016 

WJ-IV 

Caemmerer et 

al., 2017 

WISC-V 

Reading  Comp.           

Gc Sig. (All: 

6 -18)  

Sig. 

(All: 

Grades 1 – 

12)  

Sig. (All: 

grades 1 – 

12) 

Sig. 

(All: Grades 1 

– 12) 

Sig. 

(All: ages 

6 – 18) 

Sig.  

(All: 

Grades K 

– 12)  

Sig. 

(All: ages 

5 – 18)  

Sig. 

(Grades 4 – 12) 

Sig. a Sig. 

(All: ages 6 

– 18)  

 

Sig. (All: 

ages 6-16) 

Gsm Sig. (Ages 

10 – 18) 

n.t. n.t. n.t. Sig. 

(All: ages 

6 – 18) 

- Indirect 

through 

decoding 

Indirect through 

decoding 

(Grades 1 – 3, 7 

– 12) 

Sig. a - Sig. 

(interacted 

with age) 

Gs  Sig. (Ages 

6 – 12) 

Sig. 

(grades 5 – 

6) 

Sig. 

(grades 5 

– 8) 

Sig. (Grades 5 

– 6)  

Sig. (ages 

6 – 10) 

n.t. Indirect 

through 

decoding 

N/A - Sig. (All: 

ages 6 – 

18)  

- 

Gf Sig. (All: 

ages 6 – 

18)  

n.t. n.t. n.t. Sig. (ages 

11 – 14) 

n.t. - - Sig. a Sig. (All: 

ages 6 – 

18) 

- 

Glr  - n.t. n.t. n.t. Sig. (ages 

6 – 11) 

n.t. Indirect 

through 

decoding 

Indirect through 

decoding 

(Grades 1 – 6) 

N/A - - 

Gv - n.t. n.t. n.t. - - - Sig. 

(Grades 1 – 3) 

- - - 

Ga Sig. (ages 

6 – 10)  

n.t. n.t. - Sig. (ages 

6 – 9) 

n.t. - N/A N/A Sig. 

(All: ages 6 

– 18)  

- 

Note.  If a broad ability was not measured by a specific test, N/A was entered into the cell. n.t. denotes paths from broad abilities to achievement skills that were not 

tested.  Non-significant effects were indicated by dashes. 
a Age differences were not tested in these studies. 

* Composite scores were used in these studies, therefore it was not possible to separate the effects according to specific achievement skills. 
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Table 2, cont. 

 McGrew, 

1993 

WJ-R 

McGrew et 

al., 1997 

WJ-R 

Keith, 

1999 

WJ-R 

Vander

-wood 

et al., 

2002 

WJ-R 

Evans et 

al., 2002 

WJ III 

Floyd et 

al., 2007 

WJ III 

Benson, 

2008 

WJ III 

Elliot 

et al., 

2010 

DAS-II 

Floyd et 

al., 

2012 

WJ III 

Hajovsky 

et al., 2014 

KABC-II 

Beaujean 

et al., 

2014 

WISC-IV 

Niileksela 

et al., 

2016 

WJ-IV 

Caemmerer 

et al., 2017 

WISC-V 

Basic  Reading             

Gc Sig. n.t. n.t. Sig. 

(All: 

grades 

1 – 12) 

Sig. 

(All: ages 6 

– 18) 

Sig. (ages 7 

– 18) 

Sig. 

(Grades 7 -

12) 

Sig. a Sig. 

(ages 7 

– 18) 

Sig. (All: 

grades 1 – 

12) 

Sig. a Sig. 

(All: ages 

6 – 18)  

Sig (All: 

ages 6 – 

16) 

Gsm Sig. n.t. n.t. n.t. Sig. 

(All: ages 6 

– 18) 

Sig. (ages 7 

– 18) 

Sig. 

(Grades 7 -

12) 

Sig. a Sig. 

(ages 7 

– 18) 

Sig. 

(grades 1 – 

3, 7 – 12)  

Sig. a - Sig (All: 

ages 6 – 

16) 

Gs Sig. (All: 

ages 6 – 

18) 

n.t. n.t. - Sig. (ages 6 

– 10) 

Sig. (ages 5 

– 8) 

n.t. - Sig. 

(ages 5 

- 8 

N/A - Sig. 

(All: ages 

6 – 18)  

- 

Gf - n.t. n.t. n.t.  - n.t. Sig. a - - Sig. a - - 

Glr Sig. (ages 

6 – 8) 

n.t. n.t. n.t. Sig. (ages 6 

– 9) 

Sig. (ages 5 

– 6) 

n.t. N/A Sig. 

(ages 5 

– 6) 

 

Sig. 

(grades 1 – 

6) 

N/A - - 

Gv - n.t. n.t. n.t. - - n.t.  - - - - - 

Ga Sig. (All: 

ages 6 – 

18) 

Sig (All: 

Grades 1 – 

9)  

Sig.  Sig  Sig. (ages 6 

– 9) 

- - Sig. a - N/A N/A Sig. 

(All: ages 

6 – 18)  

- 
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Table 2, cont. 

 McGrew & 

Hessler, 1995 

WJ-R 

McGrew et al., 

1997 

WJ-R 

Keith, 1999 

WJ-R 

Floyd et al., 2003 

WJ III 

Taub et al., 2008 

WJ III** 

Parkin & 

Beaujean, 2012* 

WISC-IV 

Niileksela et al., 

2016 

WJ IV 

Caemmerer et al., 

2017 WISC-V 

Math  Reasoning        

Gc Sig. (All: ages 6 – 

18) 

Sig. 

(Grades 3 -12) 

Sig. 

(grades 1 – 12) 

Sig. (All: ages 6 – 

18) 

Sig. (ages 9 – 18) n.r. Sig. (All: ages 6 – 

18) 

- 

Gsm Sig. (ages 6 – 10) n.t. n.t. Sig.(All: ages 6 – 

18) 

- n.r. - Sig. (interacted 

with age) 

Gs Sig. (All: ages 6 – 

18) 

Sig. 

(Grades 1 – 2, 5 – 

6, 10 – 12) 

Sig. (grades 1 – 4, 

9 - 12) 

Sig. (ages 6 – 14) Sig. (ages 5 – 6, 9 

– 13) 

n.r. Sig. (All: ages 6 – 

18) 

Sig. (interacted 

with age) 

Gf Sig. (All: ages 6 – 

18) 

Sig. 

(Grades 1 – 4, 7 – 

9) 

Sig. (grades 1 – 8) Sig. (All: ages 6 – 

18) 

Sig. (All: ages 6 – 

18) 

Sig. a Sig. (All: ages 9 – 

18) 

Sig. (All: ages 6 – 

16) 

Glr Sig. (ages 15 – 

18) 

n.t. n.t. Sig. (ages 6 – 8) - n.r. - - 

Gv Sig. (ages 6 – 8) n.t. n.t. - - n.r. Sig. (All: ages 6 – 

18) 

- 

Ga - - Sig. (ages 6 – 9) - - n.r. - - 

Basic  Math        

Gc Sig. (All: ages 6 – 

18) 

 n.t. Sig. (ages 9 – 18) Sig. (ages 9 – 18) n.r. Sig. (All: ages 6 – 

18) 

- 

Gsm Sig. (age 10, 12)  n.t. Sig.(ages 7 – 18) - n.r. - - 

Gs Sig. (All: ages 6 – 

18) 

 Sig. (grades 1 – 

12) 

Sig. (All: ages 6 – 

18) 

Sig. (ages 5 – 6, 9 

– 13) 

n.r. Sig. (All: ages 6 – 

18) 

Sig. (All: ages 6 – 

16) 

Gf Sig. (All: ages 6 – 

18) 

 n.t. Sig. (All: ages 6 – 

18) 

Sig. (All: ages 6 – 

18) 

Sig. a Sig. (All: ages 6 – 

18) 

Sig. (All: ages 6 – 

16) 

Glr -  n.t. Sig. (ages 6 – 8) - n.r. - - 

Gv -  n.t. - - n.r. - - 

Ga -  n.t. Sig. (ages 6 – 7) - n.r. - - 

** A math reasoning and basic math subtest were loaded onto the same latent variable in Taub et al., 2008.  Therefore it was not possible to separate the effects on the 

two skills.  n.r. The effects of these broad abilities were not reported in Parkin & Beaujean, 2012. 
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Table 2, cont. 

 McGrew & Knopik, 1991 

WJ-R 

Floyd et al., 2008 

WJ III 

Beaujean et al., 2014 

WISC-IV* 

Niileksela et al., 2016 

WJ IV 

Caemmerer et al., 2017 

WISC-IV 

Written  Expression     

Gc Sig. (All: ages 8 – 18) Sig. (All: ages 7 – 18) Sig. a - Sig. (Sentence Composition, 

All: ages 6 – 16) 

Gsm Sig. (ages 6 – 10) Sig. (All: ages 8 – 18) Sig. a - Sig. (interacted with age) 

Gs Sig. (All: ages 6 – 18) Sig. (All: ages 7 – 18) Sig. a Sig. (All: ages 6 – 18) - 

Gf Sig. (All: ages 7 – 18) Sig. (ages 15 – 16) Sig. a - Sig. (Essay Composition, All: 

ages 6 – 16) 

Glr - Sig. (ages 7 – 8) N/A Sig. (ages 6 – 8, 9 – 14) - 

Gv - - - Sig. (All: ages 6 – 18) - 

Ga Sig. (ages 6 – 10) Sig. (age 7, 16 – 17) N/A - - 

Basic  Writing     

Gc Sig. (All: ages 8 – 18) Sig. (All: ages 7 – 18) Sig. a Sig. (All: ages 6 – 18) Sig. (All: ages 6 – 16) 

Gsm - Sig. (ages 8 – 18) Sig. a Sig.(All: ages 6 – 18) Sig. (All: ages 6 – 16) 

Gs Sig. (All: ages 6 – 18) Sig. (ages 7 – 17) Sig. a Sig. (ages 6 – 18) - 

Gf Sig. (ages 6 – 13) Sig. (ages 15 – 18) Sig. a - - 

Glr - Sig. (ages 7 – 10) N/A - - 

Gv - - - - - 

Ga Sig. (ages 6 – 10) - N/A - - 

Note.  If a broad ability was not measured by a specific test, N/A was entered into the cell. n.t. denotes paths from broad abilities to achievement skills that were not 

tested.  Non-significant effects were indicated by dashes. 
a Age differences were not tested in these studies. 

* Composite scores were used in these studies, therefore it was not possible to separate the effects according to specific achievement skills. 
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Missing Data by Design Methodology 

 

 Overarching summary.  Planned missing data designs are beneficial when researchers 

want to analyze many items, but the burden of collecting the data from participants is high.  My 

study involved analyzing several intelligence and achievement tests simultaneously.  A planned 

missing data design with multiple linking tests was utilized in order to maximize the number of 

CHC broad abilities and achievement skills that can be studied.  Concerns about bias and power 

due to missing data were addressed by the use of FIML.  

 Planned missing data methodology.  A major advantage of CB-CFA intelligence-

achievement analyses is that these relations can be analyzed at a construct, rather than test, level.  

A challenge with CB-CFA research, however, is the potential time and financial demands (Enders, 

2010).  If every participant were required to complete each test included in the analyses, the 

number of measures would be small due to the time it takes to complete multiple intelligence tests, 

examinee fatigue, and the financial burdens of administering several tests to a large sample of 

students.  One possible solution is to focus on a smaller number of tests.  The problem with this 

approach, however, is that CB-CFA analyses that focus on two tests are less generalizable to the 

construct level of intelligence or achievement because the findings are limited to those specific 

tests.  Thus, CB-CFA analyses incorporating several tests are preferred.  

In order to capitalize on the benefits of CB-CFA analyses and overcome the inherent time 

and resource difficulties of this approach, a different type of data collection method is necessary.  

One such method is referred to as planned missing data methodology (Enders, 2010; McArdle, 

1994), which is well suited for large CB-CFA analyses.  Using this methodology, every participant 

is not required to complete each test, thus reducing examinee fatigue and the financial demands 
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that are associated with administering large numbers of tests.  Participants will be missing data for 

some tests, but the missing data is spread out across participants and is under the control of the 

researcher (Enders, 2010; McArdle, 1994).  For this reason, planned missing data designs are 

considered “efficiency-of-measurement designs” (Graham, Taylor, Olchowski, & Cumsille, 2006, 

p. 323). 

One popular type of planned missing data designs is the three-form design procedure 

(Enders, 2010; Graham et al., 2006).  In this design, all examinees complete one test, referred to 

as the linking test.  Then, a subset of tests is given to each examinee.  The three-form design allows 

a researcher to collect data on, for example, four tests, while each participant may only complete 

two tests.  Furthermore, an equal number of items is not required in each set (Grahman et al., 

2006).  The three form design was used by Reynolds and colleagues (2013) in their large 

intelligence CB-CFA analyses.  As discussed earlier, however, this type of design is not without 

its limitations.  For example, if participants are not required to complete the same common linking 

test, it is possible to incorporate more tests and samples.  Also, the three form design limited 

Reynolds and colleagues (2013) analysis to the broad abilities that each of the four intelligence 

tests shared in common.  Reynolds and colleagues (2013) noted that testing other types of planned 

missing designs may improve data collection methods and allow for the examination of an 

increased number of broad abilities.  

Methodologists also acknowledge that one common linking test may not be necessary.  The 

rationale for incorporating a common linking test is that the questions in the linking test are vital 

to the research questions.  Failure to have these vital questions answered could result in less power 

when answering the research questions involving those variables.  Despite the advantage of 
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avoiding such a concern, there may be scenarios when a common linking test is not needed 

(Graham et al., 2006).  Cognitive-achievement relations research may be such a scenario.  The 

constructs measured by intelligence (Reynolds et al., 2013) and achievement tests are similar 

across batteries.  Thus, the items within any particular test are not the focus of the analysis.  Instead, 

conclusions are aimed at the construct level and reach across batteries.  Therefore, it is reasonable 

that CB-CFA analyses without a common linking test are worth exploring for cognitive-

achievement relations research.  The current analysis will contribute to the literature by testing an 

alternative planned missing data design that is not based on one common linking test. 

 Missing data mechanisms.  Beyond the type of planned missing design, two issues may 

concern researchers who are considering using a planned missing data design: bias and power.  In 

order to discuss bias, a discussion of how missing data are conceptualized is necessary.  In 1976, 

Rubin and colleagues proposed a classification system for missing data that is currently still in use 

(Enders, 2010).  They proposed three missing data mechanisms that explain how missing data 

relate to variables (Enders, 2010).  One mechanism, data that is classified as missing completely 

at random (MCAR), is considered the ideal scenario.  When data are MCAR, the probability of 

“missing data on variable Y is unrelated to other measured variables and the values of Y itself” 

(Enders, 2010, p. 7).  Said differently, there is no association between the variable that caused the 

missingness and the variable containing the missingness (Graham et al., 2006).  Although ideal, 

MCAR is the most restrictive missing data condition.  In this scenario observed data points are 

considered a random sample of the scores that would have been analyzed if the data were complete.  

Thus, data that are MCAR are considered unbiased.  There are several scenarios in which MCAR 

might arise.  For example, in the process of collecting test data from students, students may become 
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ill or move to another school and miss the test day (Enders, 2010).  Data are missing for those 

students who were randomly missing during the data collection process. 

Two other missing data mechanisms are less desirable, but more common in research.  

Missing at random (MAR) is the more desirable of the two.  MAR means that missing data on 

variable Y are related to other measured variables in the model, but are not related to the values of 

Y itself, once the other variables are controlled (Enders, 2010).  In other words, data are considered 

MAR when there is no relationship between the missing data and the incomplete outcome variable 

(Enders, 2010).  An example involves a scenario in which students are administered an intelligence 

test as part of the screening process for entry to a charter school and then students’ physical fitness 

is measured 9 months later.  Suppose the charter school does not admit students who scored below 

80 on the intelligence test; all students who performed in the low cognitive range are missing 

physical fitness scores.  Thus, the probability of missing achievement data is a function of 

intelligence scores, but is unrelated to students’ physical fitness performance.  

The final missing data mechanism is data that are missing not at random (MNAR).  Data 

that are MNAR occur when the likelihood of missing data on variable Y is related to the values of 

Y itself, even after controlling for other relevant variables.  An example of MNAR is a case where 

students who are missing achievement data are also those who are below average on reading 

comprehension (Enders, 2010).  The missing achievement data is related to the students’ 

performance on reading comprehension, and this missing data pattern is not ameliorated by the 

other variables in the model. 

Importantly, data that are missing in planned missing designs are under the researcher’s 

control; the data are intentionally missing.  There is no correlation between the cause of the 
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missingness and the variable under study.  As a result it is reasonable to assume that the MCAR 

assumptions are met in planned missing designs (Enders, 2010; Graham et al., 2006).  As a result 

of this missingness, some effects will be tested without the full sample, meaning there is less power 

to detect these effects.  Power concerns are minimized, however, because researchers can restrict 

the missing data to certain variables.  Essentially, deciding to use planned missing data involves a 

cost-benefit analysis.  Researchers consider whether collecting additional variables compensates 

for the resulting loss of power (Enders, 2010).  

Another benefit of planned missing data designs is that modern techniques for dealing with 

missing data are applicable, such as maximum likelihood estimation (MLE).  The advantage of 

MLE is that it allows researchers to analyze the data without discarding incomplete cases.  More 

specifically, MLE maximizes power by borrowing information from the observed data (Enders, 

2010; Schafer & Graham, 2002; described in more detail below).  When MLE is applied to data 

that are MCAR or MAR, Rubin demonstrated that all parameters estimates are consistent and 

unbiased (McArdle, 1994; Rubin, 1987).  The effect on power depends on the magnitude of the 

correlations, however.  Weaker correlations between variables limit the effectiveness of MLE by 

decreasing the amount of information MLE can borrow from the observed data (Enders, 2010).  

Simulation studies using MLE assuage some of the concerns regarding loss of power though 

(Enders, 2010; Graham et al., 2006; McArdle, 1994).  The results of these studies demonstrate that 

the decrease in power is not proportional to the decrease in sample size.  For example, in terms of 

data with a medium effect size, power decreased by just ten percent between a pair of variables 

with only one-third complete data (Enders, 2010).  
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  Although researchers were cautious, and unsure of incorporating planned missing designs 

into their research two decades ago, missing data analysis is now well established and researchers 

are more confident in the merits of such an approach (Graham et al., 2006).  Power and bias issues 

are relatively minor and do not limit the usefulness of planned missing data designs in any 

substantial way.  Therefore, such designs are well suited for studying cognitive-achievement 

relations at the construct level. 

 MLE for Missing Data.  Methods for handling missing data are important in maximizing 

the effectiveness of planned missing data designs.  Thus, understanding how missing data is 

handled is critical when selecting such designs.  MLE for missing data handling is often referred 

to as full information maximum likelihood (FIML) estimation.  Like most missing data analyses, 

FIML requires an iterative process.  FIML operates by trying different combinations of population 

parameters until it identifies the combination of values that produces the best fit to the data (Enders, 

2010; Schafer & Graham, 2002).  

FIML begins by specifying a distribution for the population data.  The squared standardized 

distance between an individual’s data points and the center of the normal distribution (known as 

Mahalanobis distance) determines the magnitude of the log-likelihood value (Enders, 2010).  

Small distances produce less negative, large log-likelihood values, while large distances produce 

small log-likelihoods.  Thus, larger log-likelihood values are preferred and suggest a better fit to 

the data.  When this process is applied to missing data specifically, it is slightly different for each 

missing data pattern and the log-likelihood values depend only on the variables for which an 

individual has complete data (Enders, 2010).  The variables that are missing are ignored during 

the iterative estimation process, referred to as the EM algorithm, which continues until the highest 
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log-likelihood is produced (Enders, 2010; Schafer & Graham, 2002).  The earlier steps in the 

iterative process produce the largest changes in the log-likelihood, whereas changes in later steps 

are much smaller.  The iterative process continues until the difference between the steps falls below 

a very small threshold (referred to as the convergence criterion).  At this point, the iterative process 

stops as the estimates have converged on the maximum likelihood estimates (Enders, 2010).  

In this way, the log-likelihood remains a summary measure of the probability of drawing 

the observed data from a normally distributed population with a particular mean and covariance 

matrix.  It is important to emphasize that FIML does not impute or replace the missing values.  

Instead, the log-likelihood values for the incomplete cases “serve as a correction factor that steers 

the estimator to a more accurate set of parameter estimates” (Enders, 2010, p. 94).  Throughout 

the iterative process, regression equations are built that predict the incomplete variables from the 

observed variables.  By using the information from the observed data, the standard errors account 

for the missing data patterns.  FIML, in comparison to listwise deletion for handling missing data 

(or discarding all participants who have missing data), produces smaller standard errors, which 

results in higher power for FIML.  Even under ideal MCAR conditions, the standard errors for 

listwise deletion are approximately seven to forty percent larger than FIML, according to 

simulation research (Enders, 2010).  FIML produces unbiased estimates under MAR conditions as 

well, and thus, FIML is effective under conditions that cause traditional approaches to fail (Enders, 

2010).  In contrast, FIML will produce biased estimates under MNAR conditions.  This bias is 

more likely to be limited to a subset of variables using FIML, whereas the bias is more likely to 

be dispersed throughout the model when listwise deletion is used (Enders, 2010).  In sum, FIML 

allows researchers to maximize the data that are available and not discard important information 
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provided by variables with missing data, which thereby increases the accuracy the estimation 

process.  

Concluding Summary 

 In sum, CHC theory fits well with modern intelligence tests, regardless of whether the tests 

were developed according to CHC theory (Reynolds et al., 2013).  The predictive validity of the 

CHC broad abilities in explaining students’ standardized achievement is well-supported; the broad 

abilities differentially explain students’ reading, mathematics, and writing achievement (McGrew 

& Wendling, 2010).  The current understanding of cognitive-achievement relations, however, is 

limited to research simultaneously analyzing a single intelligence and single achievement test, and 

the majority of studies are based on the Woodcock-Johnson tests.  Therefore, findings are limited 

to those specific tests and are less generalizable to students’ cognitive and achievement abilities 

more broadly.  The current study addressed these limitations by utilizing a planned missingness 

design and incorporating additional tests into an intelligence CB-CFA.  Then, the cross-battery 

intelligence factor structure was used to explain students’ reading, mathematics, and writing 

achievement.  Using CHC broad abilities to explain students’ achievement skills, both of which 

are representative of several tests, may improve school psychologists’ understanding of these 

relations at a construct, as opposed to test-specific, level. 
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Chapter 3:  Method 

Participants 

 Participants were 3,930 children and adolescents aged 6 to 16 drawn from seven 

standardization linking samples.  Sample sizes within each sample ranged from 88 to 2,223.  These 

samples included the Kaufman Assessment Battery for Children, Second Edition (KABC-II) 

concurrent validity studies (referred to as the KABC-II XBA sample, n = 350), the KABC-II and 

Kaufman Test of Educational Achievement, Second Edition (KTEA-II) linking sample (n = 2,223), 

the Wechsler Intelligence Scale for Children, Fifth Edition (WISC-V) and KABC-II linking 

sample (n = 88), the WISC-V and Wechsler Individual Achievement Test, Third Edition (WIAT-

III) linking sample (n = 181), the Wechsler Intelligence Scale for Children Fourth Edition (WISC-

IV) and Wechsler Individual Achievement Test, Second Edition (WIAT-II) linking sample (n = 

532), the WISC-IV and Differential Abilities Scale, Second Edition (DAS-II) linking sample (n = 

202), the DAS-II and WIAT-II linking sample (n = 370).  Sample sizes within the KABC-II 

concurrent validity studies also varied because data collection resembled a planned missingness 

design (Reynolds et al., 2013).   

 Participant identification numbers were checked across samples to determine whether the 

same child participated in multiple standardization samples; 16 duplicates were identified.  One 

duplicate had two entries for the KABC-II and 15 duplicates had two entries for the DAS-II.  

Duplicate intelligence test entries were deleted, resulting in a total sample size of 3,930 children. 

These samples were created to be representative of United States children according to sex, 

racial group, parental educational level, and geographic region.  Demographic information for the 

sample is shown in Table 3.   



 

 47 

Table 3 

 

Percentages for Each Demographic Variable Across the Four Samples 

 

Test 

 

KABC 

XBA 

WISC4/ 

DAS 

DAS/ 

WIAT2 

KABC/ 

KTEA 

KABC/ 

WISC5 

WISC5/ 

WIAT3 

WISC4/ 

WIAT2 

Gender        

Male 49.4 50.0 48.5 50.1 48.9 55.2 50.8 

Female 50.6 50.0 51.5 49.9 51.1 44.8 49.2 

        

Ethnic Background        

White, non-Hispanic 63.1 35.5 58.8 62.2 46.6 50.3 61.8 

Hispanic 19.6 27.2 20.0 17.7 35.2 21.0 17.5 

African American 9.2 24.8 16.2 14.9 10.2 19.9 15.4 

Asian 4.7 6.4 3.8 - 2.3 1.7 4.3 

Native American 0.7 n.r. n.r - n.r. n.r. n.r. 

Other 1.4 6.4 1.4 5.2 5.7 7.2 0.6 

        

Parents’ Highest 

Level of Education 
       

8th grade or below - 4.5 5.1 - 1.1 2.2 5.6 

9th - 11th grade  9.0* 12.4 11.3 14.4* 12.5 8.3 11.7 

High school diploma 19.1 25.7 25.6 32.5 18.2 24.9 26.7 

Some college 35.7 28.7 30.2 30.1 36.4 35.4 31.8 

Bachelor’s or higher 33.6 21.2 27.8 23.0 31.8 29.3 24.2 

 

  

Note.  SES was not categorized the same across samples.  Asterisks denote samples in which a 

percentage was reported for 11th grade and below only.  Values that were not reported are denoted 

by n.r. 

 

 Across the different samples, children and adolescents were administered specific sets of 

tests for validity purposes.  Convergent validity was evaluated by examining the correlations 

between one intelligence test and other intelligence tests, or predictive validity was evaluated 

between an intelligence test and a standardized achievement test.  Because data collection for the 

KABC-II concurrent validity sample resembled a planned missingness design, all the participants 

in this sample completed the KABC-II (n = 350), which served as the linking test, and then select 

intelligence and achievement tests in a counterbalanced order.  The other intelligence tests 
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included from the KABC-II concurrent validity sample are the WISC-III, WISC-IV, and the WJ 

III.   

The other six samples did not share the same linking test. In this study those six samples 

were linked to each other through tests the samples shared in common.  Specifically, the KABC-

II-KTEA and KABC-II-WISC-V samples were linked to the KABC-II concurrent validity sample 

through the KABC-II; the WISC-IV-WIAT-II  and WISC-IV-DAS-II samples were linked to the 

KABC-II concurrent validity sample using the WISC-IV; the DAS-II-WIAT-II sample was linked 

to the WISC-IV-DAS-II sample through the DAS-II and to the WISC-IV-WIAT-II sample through 

the WIAT-II; and the WISC-V-WIAT-III sample was linked to the KABC-II-WISC-V through the 

WISC-V (see Table 4 for more details about how the tests were linked). 

Table 4  

Samples and How They are Linked 

 
 KABC

-II 

WJ 

III 

WISC

-III 

WISC

-IV 

WISC-V 

 

WISC

-V 

DAS-II 

 

KTEA

-II 

WIAT

-II 

WIAT

-III 

SAMPLES: 

KABC-II 

XBA 

350* 89 123 58* - - - - - - 

KABC-II/ 

KTEA-II 2,223* - - - - - - 2,223 -  

WISC-IV/ 

DAS-II 
- - - 202* - - 202* - - 

 

 

DAS-II/ 

WIAT-II  
- - - - - - 370* - 370*  

WISC-IV/ 

WIAT-II 
- - - 532* - - - - 532*  

WISC-V/ 

WIAT-III 
- - - - 181* - - - - 181 

WISC-V/ 

KABC-II 88* - - - 88* - - - - - 

 

Note.  Values represent the sample sizes for each test.  Asterisks indicate the linking tests across 

samples.  
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Measures 

 Six intelligence tests and three achievement tests were included in the cross-battery 

analyses.  The intelligence tests included the KABC-II (Kaufman & Kaufman, 2004), WISC-V 

(Wechsler, 2014), WISC-IV (Wechsler, 2003), WISC-III (Wechsler, 1991), WJ III (Woodcock et 

al., 2001), and DAS-II (Elliot, 2007).  The achievement tests included the KTEA-II (Kaufman & 

Kaufman, 2004), WIAT-II (Wechsler, 2001), and WIAT-III (Wechsler, 2009).  Refer to Table 5 

for the number of tests per broad ability that each test measures and to Table 6 for a description of 

all the subtests. 

KABC-II.  The KABC-II was developed using the CHC taxonomy and Lurian theory 

(Kaufman & Kaufman, 2004).  The KABC-II measures five CHC broad abilities: Gf, Gc, Gv, 

Gsm, and Glr.  All 16 KABC-II subtests were analyzed in this study.  Age-referenced standardized 

subtest scores range from 1 to 19, with a mean of 10 and a standard deviation of 3.  Average 

internal consistency estimates ranged from .74 to .93 in the norming sample.  

Participants who completed the KABC-II within the current study were drawn from three 

samples (KABC-II/KTEA-II, KABC XBA, and KABC-II/WISC-V).  The KABC-II and KTEA-

II were co-normed, meaning participants completed both tests.  Participants within the 

standardization sample included a national representation of children aged 3 to 18 who spoke 

English, were not institutionalized, and did not “have physical or perceptual impairments that 

would prevent them from being able to perform the tasks” (Kaufman & Kaufman, 2004, p. 78).  

Participants were representative according to sex, ethnicity, parental education, geographic 

location, special education, and gifted placement (Kaufman & Kaufman, 2004).  The KABC-II 
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XBA sample included students with special education and gifted placements as well (other 

demographic details are reported in Table 3). 

WISC.  The Wechsler Intelligence Scales for Children, normed for six to 16 year olds, 

were not initially developed using CHC taxonomy.  Instead the factor structure of the WISC has 

evolved over time.  Research with the WISC-IV and WISC-III editions suggests that they do, 

however, adhere to the constructs in CHC theory (Keith, Fine, Taub, Reynolds, & Kranzler, 2006; 

Keith & Witta, 1997).  The most recent revision, WISC-V, is more consistent with CHC theory 

than previous editions.  Regardless, a CHC five factor structure was analyzed for all three Wechsler 

tests.  The five broad abilities included Gc, Gf, Gv, Gsm, and Gs.  Twenty WISC subtests were 

analyzed in this study.  Age-referenced standardized subtest scores range from 1 to 19, with a mean 

of 10 and a standard deviation of 3.   

The 16 WISC-V subtest scores evidenced high reliability.  Average internal consistency 

estimates ranged from .80 to .96 in the norming sample (Wechsler, 2014).  Ten highly reliable 

subtests from the WISC-IV were analyzed.  Average internal consistency estimates ranged from 

.81 to .91 in the norming sample (Wechsler, 2003).  In addition, twelve subtests from the WISC-

III were analyzed.  Average internal consistency estimates ranged from .69 to .87 in the norming 

sample (Wechsler, 1991).  

Participants who completed a WISC measure within the current study were age six through 

16 years 11 months and were drawn from five samples, including the KABC-II XBA sample 

(which included the WISC-III and –IV), WISC-IV/WIAT-II, WISC-IV/DAS-II, WISC-V/KABC-

II, and WISC-V/KABC-II.  The 123 WISC-III participants included one child with a special 

education classification and the 58 WISC-IV participants included 16 children with a special 
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education placement.  Information regarding the WISC-IV/WIAT-II sample was unavailable and 

the WISC-IV/DAS-II sample is described below. 

Participants within the WISC-V standardization sample excluded those whose primary 

language was not English, those who were “primarily nonverbal or uncommunicative,” had an 

“uncorrected visual impairment” or “uncorrected hearing loss,” an “upper extremity disability that 

would affect motor performance,” disruptive behavior that would prevent a valid assessment, and 

“previously or currently diagnosed with any physical condition, neurological condition, 

psychological condition, or illness that might depress test performance, such as epilepsy, traumatic 

brain injury, or mood disorder” (Wechsler, 2014, p. 42).  “A representative proportion of children 

from various special education classifications was added” to the standardization sample, which 

included children with developmental delays, intellectual disabilities, specific learning disabilities, 

speech/language impairment, attention-deficit/hyperactivity disorder, and gifted and talented 

(Wechsler, 2014, p. 48); however, the WISC-V/KABC-II and WISC-V/WIAT-III samples were 

“nonclinical samples,” meaning children with special education classifications were not included.  

Other demographic information about the WISC samples is presented in Table 3.   

WJ III.  The WJ III is appropriate for a wide age range, from ages two to 90 or above.  The 

WJ III was developed using CHC theory and is the most complete measure of the range of CHC 

broad abilities in this study.  The WJ III is the only test in these analyses to assess auditory attention 

(Ga).  Therefore, Ga will not be included in these analyses because it was not measured by multiple 

batteries.  Instead, eleven subtests representing Gc, Gf, Gv, Gsm, Gs, and Glr were analyzed.  Age-

referenced standardized subtest scores are on a standard intelligence scale with a mean of 100 and 
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standard deviation of 15.  Median internal reliability estimates for these subtests ranged from .74 

to .94 in the norming sample.  

Participants who completed the WJ III were drawn from one sample, the KABC-II XBA 

sample.  WJ III participants were 89 children aged 7 to 16, none of which had a special education 

classification; additional demographic information is reported in Table 3.   

DAS-II.  The development of the DAS-II was guided by multiple theoretical orientations, 

including CHC theory.  The DAS-II is appropriate for ages two to 17.  Fourteen subtests from the 

DAS-II measure six broad abilities: Gc, Gf, Gv, Gsm, Gs, and Glr.  Age-referenced standardized 

subtest scores are t-scores with a mean of 50 and standard deviation of 10.  Average internal 

consistency estimates ranged from .68 to .97 in the norming sample.  

Participants who completed the DAS-II in the current study were drawn from two samples, 

the DAS-II/WISC-IV and DAS-II/WIAT-II samples.  Children in these samples included those 

ages six to seventeen whose primary language was English and children who were not part of the 

clinical samples.  Other demographic information about these samples is presented in Table 3. 

Table 5 

Number of Subtests per CHC Broad Ability 

 Gc Gf Gsm Gv Glr Gs 

KABC II 3 2 3 4 4 0 

WISC-III, IV, V 4 4 4 4 0 3 

WJ III 2 2 2 2 1 2 

DAS-II 3 4 3 5 2 2 

 

WIAT.  The WIAT-II and WIAT-III measure reading, writing, and mathematics 

achievement via nine and ten subtests, respectively.  An additional writing subtest was present on 

the WIAT-III because written expression was measured differently across the two WIAT editions.  
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The WIAT-II included one subtest, named Written Expression, but the WIAT-III included two 

written expression subtests, Sentence Composition and Essay Composition; the content and 

organization of the WIAT-III subtests was revised to provide more in-depth written expression 

skill coverage (Breaux, 2010).  The oral language subtests were excluded from these analyses 

because they are less relevant to the achievement analyses, an oral language specific learning 

disability does not exist, and the oral language subtests tend to overlap with Gc tasks.   

Age-referenced standardized subtest scores have a mean of 100 and standard deviation of 

15.  Reliability estimates were generally above .90 in the norming samples of both tests (Breaux, 

2010; Wechsler, 2005).  Participants who completed the WIAT in the current study were drawn 

from three samples, and their demographic information was presented above and in Table 3.  

KTEA-II.  The KTEA-II assesses students’ writing, mathematics, and reading 

achievement via six subtests.  Age-referenced standardized subtest scores have a mean of 100 and 

standard deviation of 15.  Split-half reliability estimates ranged from .89 to .97 in the norming 

sample.  Participants who completed the KTEA-II in the current study were drawn from one 

sample, and their demographic information was presented above and in Table 3. 

Total sample.  A total of 66 subtests were included in the intelligence CB-CFA model, 

and 16 in the achievement model.  See Table 6 for the names of each subtest and its corresponding 

instrument and descriptions of every subtest analyzed in this study.  Age-referenced standardized 

scores were in this study.  Mean subtest scores vary according to the test.  The mean subtest score 

for the WJ-III and all of the achievement tests (KTEA, WIAT-II, and WIAT-III) is 100 with a 

standard deviation of 15, the mean subtest score for the DAS-II is 50 with a standard deviation of 
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10 (T-scores), and the mean subtest score is 10 with a standard deviation of three for the KABC-

II and the Wechsler scales. 

 

Table 6 

Descriptions of the Tasks Involved in Each Subtest 

Cognitive Tests  

DAS-II  

Subtest Task Description 

Copying (Gv) The child draws a reproduction of abstract, geometric line designs. 

Digits Backward (Gsm) The child repeats, in reverse order, increasingly long series of digits. 

Digits Forward (Gsm) The child repeats increasingly long series of digits. 

Early Number Concepts (Gf) The child answers basic quantitative questions including counting, number 

concepts, and arithmetic. 

Matching Letter Like Forms 

(Gv) 

The child is shown a figure and then must select the identical shape for a 

several options. 

Matrices (Gf) The child solves visual puzzles by selecting a missing image from a picture 

matrix.  

Pattern Construction (Gv) The child is presented with a pattern by the examiner and then must use 

blocks or tiles to reproduce the pattern. 

Rapid Naming (Gs) The child, working as fast as possible while avoiding mistakes, must name 

colors and images that are presented to the child by the examiner. 

Recall of Designs (Gv) The child is shown an abstract geographic pattern for five seconds and then 

must recreate the pattern from memory by drawing it. 

Recognition of Pictures (Gv) The child is shown multiple images for a specified period of time and then 

must choose the images viewed from a larger group of pictures that includes 

pictures not viewed by the child. 

Recall - Digits Forward (Gsm) The child repeats a series of numbers in the order the child heard them from 

the examiner.   

Recall – Digits Backwards 

(Gsm) 

The child repeats a series of numbers in the inverse order the child heard them 

from the examiner. 

Recall of Objects-Immediate 

(Glr) 

The child is exposed to an array of objects, and then is asked to recall as 

many as possible. 

Recall of Objects-Delayed (Glr) A delayed version of Recall of Objects. 

Recall of Sequential Order 

(Gsm) 

The child is required to recall a series of verbal information and pictures in 

the order that the child saw them. 

Sequential and Quantitative 

Reasoning (Gf) 

The child completes a sequential pattern involving figures or numbers.  
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Table 6, cont.  

Speed of Information 

Processing (Gs) 

The child, under timed conditions, views a series of figures that have parts in 

rows and must choose the figure with the most parts in each row.   

Verbal Comprehension (Gc) The child follows verbal instructions to point to, manipulate, or select objects. 

Verbal Similarities (Gc) The child must describe the similarities between three words that describe 

common objects or concepts. 

Word Definitions (Gc) The child must define given words. 

KABC-II  

Atlantis (Glr) The child is taught nonsense names for pictures of fish, shells, and plants and 

recalls that information and points to the corresponding picture. 

Atlantis Delayed (Glr) A delayed recall version of Atlantis. 

Block Counting (Gv) The child views pictures of stacks of blocks, some hidden, and counts the 

exact number of blocks. 

Expressive Vocabulary (Gc) The child must name pictures of objects. 

Gestalt Closure (Gv) The child is shown a partially completed drawing and provides the name of 

the drawing as if it were complete. 

Hand Movements (Gsm) The child copies a series of taps demonstrated by the examiner, involving the 

fist, palm, or side of the hand. 

Number Recall (Gsm) The child listens to strings of numbers, increasing in length, and repeats the 

numbers back verbatim. 

Pattern Reasoning (Gf) The child is shown a matrix of pictures and points to one stimulus out of 

several options that completes the logical, linear pattern. 

Rebus (Glr) The child is taught a word associated with a symbol and then reads phrases 

using these symbols. 

Rebus Delayed (Glr) A delayed recall version of Rebus. 

Riddles (Gc) The child listens to characteristics of concepts and either points to a picture of 

the concept (early items) or verbally names the concept (later items). 

Rover (Gv) The child manipulates a toy dog on a grid with obstacles and attempts to 

move the dog to a given spot in the fewest moves. 

Story Completion (Gf) The child is shown a row of pictures that tell a story with missing parts and is 

required to select other pictures to complete the story in the correct order. 

Triangles (Gv) The child is shown an abstract design and recreates the design with several 

plastic or foam shapes. 

Verbal Knowledge (Gc) The child selects a picture that illustrates a given word or answers a general 

information prompt. 

Word Order (Gsm) The child touches a series of pictures in order after listening to the examiner 

read the names of the pictures. More difficult items include an interference 

task before the child can respond. 

WISC (Version)  

Arithmetic (Gsm) (III - V) The child solves orally presented arithmetic problems, without the use of 

paper and pencil, under timed conditions. 

Block Design (Gv) (III - V) The child must reproduce two-dimensional geographic patterns using blocks 

in a specified amount of time. 
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Table 6, cont.  

 

Cancellation (Gs; IV & V) The child is shown arrays of pictures and must select target symbols under 

timed conditions. 

Coding (Gs) (III - V) The child must use a key to copy symbols that correspond to shapes or 

numbers within a specific amount of time. 

Comprehension (Gc) (III - V) The child answers questions based on general knowledge and social 

conventions. 

Digit Span (Gsm) (III - V) The child must perform two tasks.  Digit span forward requires the child to 

repeat a series of numbers in the order the child heard them from the 

examiner.  Digit span backward requires the child to repeat a series of 

numbers in the inverse order the child heard them from the examiner. 

Figure Weights (Gf) (V) The child is presented with a key and selects a response option that balances a 

scale. 

Letter-Number Sequencing 

(Gsm) (IV & V) 

The child must listen to a set of numbers and letters.  The child must then 

repeat the numbers back from smallest to largest and the letters back in 

alphabetical order.  

Matrix Reasoning (Gf) (IV & 

V) 

The child is provided with five response options and must select one to 

complete a picture with a missing portion. 

Information (Gc) (III - V) The child is required to answer general knowledge questions. 

Object Assembly (Gv) (III) The child must complete puzzles using pieces without outlines. 

Picture Arrangement (Gf) (III) The child must sequence picture cards to complete a story. 

Picture Concepts (Gf) (IV & V) The child must choose a series of pictures from separate rows to create a 

group that shares common characteristics.   

Picture Completion (Gc) (III & 

IV) 

The child looks at a picture and identifies the essential missing piece of the 

picture under timed conditions. 

Picture Span (Gsm) (V) The child is shown pictures and then must recall those pictures in sequential 

order from a response page. 

Similarities (Gc) (III - V) The child must describe the similarities between two words that describe 

common objects or concepts. 

Symbol Search (Gs) (III - V) The child must determine whether or not a specified symbol is present or 

absent in a group of other symbols within a specified amount of time. 

Visual Puzzles (Gv) (V) The child is presented with images and must mentally manipulate them to 

form a complete picture.  

Vocabulary (Gc) (III - V) The child must define given words or provide a name for a picture. 

WJ III  

Analysis-Synthesis (Gf) The child must analyze parts of an incomplete logic puzzle and identify 

missing parts. 

Auditory Working Memory 

(Gsm) 

The child is required to listen to a series of numbers and words and then 

reorder the string of information. 

Concept Formation (Gf) The child is required to derive a set of rules pertaining to a set of pictures. 

Decision Speed (Gs) The child is required to quickly process concepts by circling two images that 

are related. 

  



 

 57 

Table 6, cont.  

General Information (Gc) The child is required to respond to a series of questions identifying where she 

would find and how she would use specified objects. 

Numbers Reversed (Gsm) The child is required to repeat a series of numbers in the inverse order the 

child heard them from the examiner. 

Picture Recognition (Glr) The child must recognize previously presented target pictures within a field of 

distracting pictures. 

Spatial Relations (Gv) The child identifies puzzle pieces that form a complete shape. 

Verbal Comprehension (Gc) The child is required to identify pictures of familiar and unfamiliar objects, 

listen to words presented by the examiner and provide an appropriate 

synonym or antonym, and complete four-part verbal analogies based on three 

parts already given. 

Visual-Auditory Learning (Glr) The child is required to learn unfamiliar symbols that represent familiar 

words, and then translate sequences of symbols into sentences that she read 

aloud. 

Visual Matching (Gs) The child must quickly circle matching numbers in an array of numbers. 

Achievement Tests   

WIAT (Version)  

Essay Composition (III) The child writes words, sentences, or a paragraph/short essay in response to 

prompts. 

Math Reasoning/Problem 

Solving (II &III) 

The child solves orally presented math word problems that may require 

multiple steps and may be related to time, money, measurement, geometry, 

probability, or reading graphs. 

Numerical Operations (II &III) The child is required to solve written math problems involving addition, 

subtraction, multiplication, and division.  

Pseudoword Decoding (II &III) The child is required to sound out nonsense words. 

Reading Comprehension (II 

&III) 

The child reads sentences or short passages and then answers questions about 

the main idea, details, or is asked to make inferences. 

Spelling (II & III) The child is required to spell a word based on definitions and its use in a 

sentence that are presented orally. 

Sentence Composition (III) The child must build sentences using target words and combine multiple 

sentences into one sentence while maintaining the meaning. 

Word Reading (II &III) The child identifies letters, sounds, or reads words from a list. 

Written Expression (II) The child writes words, sentences, or a paragraph/short essay in response to a 

prompt. 

KTEA-II  

Mathematics Applications/ 

Math Concepts & Applications  

The child answers math problems that are read to them that involve both math 

concepts and math applications used to solve real-world problems.  The child 

can rely on visual aids to assist in solving the problem. 

Mathematics Computation  The child must solve written math problems that involve basic math concepts. 

Nonsense Word Decoding The child must pronounce non-sense words aloud. 

Reading Comprehension 

 

 

The child is initially given commands in written sentences that the child must 

respond to either orally or by gesturing.  The child then is required to read 
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Table 6, cont. provided material and must answer literal and inferential questions about the 

reading. 

Spelling  The child must spell a word after hearing the word from the examiner and 

having the word used in a sentence by the examiner. 

Word Recognition The child begins the subtest by identifying specific letters and then reads 

words (both phonetic and nonphonetic) that get more difficult as the child 

progresses.    

Written Expression  The child completes a story booklet with age-dependent content. Earlier 

grades write letters and fill in writing mechanics, while older grades write 

sentences, complete dialogue, etc. 

Note.  The latent ability that each subtest measures is in parentheses following the name of the 

subtest. 

 

 

Data Analyses and Research Questions 

 Three statistical programs were used to conduct the SEM analyses.  The Statistical Package 

for the Social Sciences (SPSS, version 21, 2012) was used to select variables and participants and 

check the data.  Following data preparation, invariance was tested via SPSS Amos, Version 23.0 

(Arbuckle, 2015).  Then, Mplus (Muthén & Muthén, 2012), version 7 was used to analyze the CB-

CFA and SEM models.  Amos and Mplus handle missing data through the Full Information 

Maximum Likelihood (FIML) procedure.  Currently, FIML is a strongly recommended procedure 

for handling missing data (Enders, 2010; Enders & Bandalos, 2001; Schafer & Graham, 2002).  

For a detailed description of missing data considerations, including how FIML operates, refer to 

the literature review.  This study addressed three broad questions.  

Question one: Are the different samples of participants who completed the same test 

invariant? Measurement invariance was tested across different samples of youth who 

completed the same test (sample invariance) to determine if the intelligence constructs were 

measured in the same way across samples.  For example, two samples of youth completed the 

WISC-V: 88 youth were included in the WISC-V/KABC-II sample and 181 youth were included 
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in the WISC-V/WIAT-III sample.  In order to establish the WISC-V broad abilities were measured 

similarly across the two separate groups of youth, measurement invariance was tested.  Four other 

sample invariance tests included:  (1) three WISC-IV samples (WISC-IV/DAS-II, WISC-

IV/WIAT-II, WISC-IV/KABC-II XBA), (2) three KABC-II samples (KABC-II XBA, KABC-

II/WISC-V, KABC-II/KTEA-II), (3) two DAS-II samples (DAS-II/WIAT-II, DAS-II/WISC-IV), 

and (4) two WIAT-II samples (WIAT-II/DAS-II and WIAT-II/ WISC-IV).  If measurement 

invariance was established across samples, equivalent subtests across the samples were merged in 

later steps of the analyses, which allowed for larger combined sample sizes. 

The process of testing for invariance involves a series of steps using a multi-group 

confirmatory factor analysis.  Each step introduces more constraints into the model, and therefore, 

each step becomes progressively more stringent (Keith, 2014, chapter 19).  The first step involved 

testing configural invariance at the first order (broad abilities and subtests) level because the 

measurement model is of interest, not the structural model (which includes the relations between 

g and the broad abilities).  If the model fit well for both samples, configural invariance was 

accepted.  Next, weak factorial invariance (also known as metric invariance) was tested.  In this 

step, the subtest factor loadings were constrained to be equal across groups.  If weak invariance 

was supported, this means that the scaling of the latent variables was the same across groups 

(Keith, 2015, chapter 19).  In the third step, the factor loading constraints remained plus the 

intercepts of the subtests were constrained to be equal across groups (strong factorial invariance 

or intercept invariance).  Finally, strict invariance were tested by retaining all previous constraints 

plus constraining the residual variances of the subtests to be equal across groups (also known as 

residual invariance).  Establishing residual invariance means that differences in the means and 
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variances of the observed scores are fully explained by differences in the latent variables means 

and variances (Keith, 2015).  Together, these four invariance steps constitute measurement 

invariance. 

Beginning with the second step, each model was compared with the previous model using 

two criteria: the change in chi-square test and the change in the comparative fit index (CFI) (Keith, 

2015).  When comparing models, invariance is accepted if the change in chi-square is not 

significant and if the change in CFI is equal to or less than -.01 (Cheung & Rensvold, 2002).  The 

analysis progresses to the next step only if invariance is supported at the previous step.  It is 

possible to establish partial invariance, which allows a limited number of differences across groups 

at one step.  If partial invariance is accepted, then invariance testing can proceed to stricter 

constraints (Keith, 2015).  If measurement invariance was supported across samples, the subtests 

were merged. 

Question two: Are the different editions of the same test invariant?  Measurement 

invariance is also of concern across editions of the WISC (WISC-III, WISC-IV, and WISC-V) and 

WIAT (WIAT-II and WIAT-III) because many of the subtests are identical across the editions of 

the tests.  The merged invariant samples of the WISC-IV, WISC-V, and WIAT-II were used to 

test for edition invariance in this step of the analysis.   

WISC edition invariance was first tested between the merged KABC-II WISC-III and data 

and data from the three WISC–IV samples (KABC-II XBA WISC-IV, WISC-IV/DAS-II, and 

WISC-IV/WIAT-II).  If those data were invariant, they were merged and invariance was tested 

between the combined WISC-III/-IV combined data and the merged WISC-V data.  If invariance 
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was established, data for the 13 subtests that the WISC-III,-IV, and –V shared in common were 

merged into one combined dataset.  

Finally, invariance was tested for the merged WIAT-II sample data and the single sample 

of the WIAT-III.  If the six subtests that the two WIAT tests shared in common were invariant, 

those six subtests were merged.  Edition invariance was evaluated according to the same criteria 

used for sample invariance, the likelihood ratio test and change in CFI were compared between 

more constrained invariance models.  

Question three: How well will a CB-CFA model represent data from six IQ tests? 

After establishing invariance across the samples and editions of the same tests, the next analysis 

step tested a first order model across all six intelligence tests, including the six CHC broad ability 

latent variables and excluding g.  In this step, correlations were included between each of the six 

broad abilities.  The six broad ability latent variables were Gc, Gf, Gv, Gsm, Gs, and Glr.  Each 

broad ability was estimated by 7 to 15 subtests.  This resulted in 15 measured variables 

representing Gv, 12 subtests each represented Gc, Gf, and Gsm, and Glr and Gs were each 

estimated by 7 subtests.  Three correlations were drawn between pairs of Glr subtests that included 

a delayed counterpart (KABC-II Atlantis, KABC-II Rebus, and DAS-II Recall of Objects).  In 

order to assess delayed recall, the same test was administered twice, but after a delay of a specified 

time.  These correlations are referred to as correlated errors and indicate that the subtests share 

something in common beyond the Glr latent variable. 

Cognitive models were evaluated according to multiple measures of fit, as suggested by 

methodologists (Hu & Bentler, 1998, 1999).  Chi-square, root mean square error of approximation 

(RMSEA), standardized root mean square residual (SRMR), the comparative fit index (CFI), and 
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the Tucker-Lewis index (TLI) were used to assess the fit of single models (Keith, 2015).  Cut-off 

values that suggest good fit are RMSEA below .05, SRMR below .08, and CFI and TLI values 

above .95 (Hu & Bentler, 1999). 

 After an acceptable first order model was established, g was introduced and a second-order 

model (with g subsuming the six broad ability latent variables) was tested.  Model fit was evaluated 

according to the fit indices identified above.  Parameters of interest included the factor loadings of 

the subtests on their respective latent broad abilities and the factor loadings of the broad abilities 

on g. 

Question four: How well will a CB-CFA model represent data from three 

achievement tests?  Participants’ reading, mathematics, and writing achievement was initially 

analyzed separately in a CB-CFA.  Previous research suggests that the specific skills within these 

achievement domains are differentially influenced by the CHC broad abilities (McGrew & 

Wendling, 2010).  Therefore, six separate latent variables were created for the specific skills within 

reading, mathematics, and writing.  In terms of reading, basic reading and reading comprehension 

were tested.  Math was represented by basic math and math reasoning, while writing was 

represented by written expression and spelling.  Each of these skills were defined in the literature 

review.  The basic reading and written expression latent variables were estimated by four subtests 

and the other achievement skill latent variables were estimated by two subtests each (see Table 5 

for descriptions of each of these subtests).  These six specific achievement skills were correlated 

with each other and included in one large achievement model.  

The CB-CFA achievement involved testing one comprehensive cross-battery achievement 

model including all six specific achievement skills.  Model modifications based on modification 
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indices, if theoretically justifiable, were investigated during this step.  The fit of single models will 

be evaluated as described earlier under question three.  Parameters of interest included the factor 

loadings of the subtests onto their respective latent specific achievement variables. 

Question five: Do the CHC broad abilities differentially affect reading, writing, and 

mathematics achievement?  The final CB-CFA intelligence was used to predict the final 

achievement models.  These models, where intelligence explains achievement, were referred to as 

cross-battery SEM models, CB-SEM. Across these models, the parameters of interest were the 

paths from each broad ability to the achievement variables.  

Analyses were completed in a series of steps.  First, paths from all six broad abilities were 

tested in these initial broad ability-achievement models.  These paths were then examined for 

statistical significance (alpha level = .05).  Second, all non-significant paths were deleted from the 

cognitive-achievement in one step.  Third, g was introduced into the model with only significant 

cognitive-achievement paths.  A higher order model was tested in which g subsumed the six broad 

abilities, plus a path was added from g to the achievement latent variable, in addition to all of the 

significant broad ability-achievement paths.  If the path from g to the achievement skill was 

significant, the path was retained in the final model.  

When only significant and positive paths remained, a path from g to the achievement latent 

variables was tested.  The paths from g cannot be included earlier in the analysis because this will 

result in model underidentification, meaning that the model is unsolvable unless additional 

constraints are added (Keith, 2015).  Previous research supports the order of this analysis approach 

(Niileksela et al., 2016).  If the path from g to the achievement variable was non-significant it was 

removed in a subsequent model.   
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Some researchers in the field argue that g should be the central ability in explaining 

achievement, however (Parkin & Beaujean, 2012).  In order to address this current debate, an 

additional model was tested which included a second-order model of intelligence and included 

only one path, from g to each achievement skill (referred to as g only-achievement models).  

Therefore, a total of six CB-SEM cognitive-achievement models were tested. 

Model evaluation.  As described earlier, several fit measures were used to evaluate the fit 

of single models.  Cut-off values that suggest good fit are RMSEA below .05, SRMR below .08, 

and CFI and TLI values above .95 (Hu & Bentler, 1999).  Alternative, nested models were 

compared using the likelihood ratio test; change in CFI was used to compare invariance models 

(Cheung & Rensvold, 2002).  For non-nested competing models, the Akaike’s information 

criterion (AIC) was examined; smaller AIC values indicate better fitting models (Keith, 2015).   
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Chapter 4:  Results 

 This results section is divided into several sections.  First, descriptive statistics for all six 

datasets are presented.  Second, model results for sample and test edition invariance are described.  

Third, CB-CFA results for the intelligence and achievement models are presented. Finally, CB-

SEM cognitive-achievement models are described. 

Descriptive Statistics 

Subtest sample sizes, means, standard deviations, skewness, and kurtosis estimates are 

presented in Table 7.  The means and standard deviations of the subtests were mostly similar to 

those of their respective norming samples.  As evidenced in Table 7, the subtests were normally 

distributed; skewness and kurtosis values were within the acceptable ranges and were well below 

suggested cut-off points for univariate normality (below 2 and 7, respectively; Curran, West, & 

Finch, 1996).   

 

Table 7 

Descriptive Statistics for Cognitive and Achievement Tests 

Tests and Subtests N M SD Skew Ku 

Cognitive Tests      

 

DAS-II 
     

Copying (Gv) 178 51.23 8.412 .432 1.141 

Digits Backward (Gsm) 557 49.822 8.556 -.321 .515 

Digits Forward (Gsm) 557 49.810 9.777 .131 .934 

Early Number Concepts (Gf) 178 51.101 8.636 .398 -.189 

Speed of Information Processing 

(Gs) 
557 51.068 9.205 -.008 .374 

Matching Letter Like Forms (Gv) 178 51.708 9.081 -.289 .404 

Matrices (Gf) 557 50.206 9.193 .090 -.038 

Pattern Construction (Gv) 557 49.969 8.647 .686 1.605 

Rapid Naming (Gs) 557 50.470 8.969 .836 1.974 

Recall of Designs (Gv) 556 50.245 8.778 .014 .039 
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Table 7, cont. 

 
     

Recognition of Pictures (Gv) 557 50.260 9.294 .654 1.114 

Recall - Digits Forward (Gsm) 557 49.810 9.777 .131 .934 

Recall – Digits Backwards (Gsm) 557 49.822 8.556 -.321 .515 

Recall of Objects-Immediate (Glr) 557 49.057 10.324 -0.075 0.924 

Recall of Objects-Delayed (Glr) 557 50.165 9.458 -0.066 0.33 

Recall of Sequential Order (Gsm) 557 50.092 9.482 0.03 0.743 

Sequential and Quantitative 

Reasoning (Gf) 556 50.545 9.086 0.598 1.201 

Speed of Information Processing 

(Gs) 557 51.068 9.205 -0.008 0.374 

Verbal Comprehension (Gc) 178 50.152 8.956 1.094 2.15 

Verbal Similarities (Gc) 557 50.659 8.476 -0.286 1.244 

Word Definitions (Gc) 556 50.192 8.839 0.159 1.14 

 

KABC 
     

Atlantis (Glr) 2654 10.019 3.085 -0.181 -0.061 

Atlantis Delayed (Glr) 2435 9.933 2.804 -0.339 -0.131 

Block Counting (Gv) 2655 9.972 2.998 -0.019 -0.113 

Expressive Vocabulary (Gc) 2656 9.848 2.950 -0.032 0.045 

Gestalt Closure (Gv) 619 9.997 2.893 0.051 0.232 

Hand Movements (Gsm) 2656 10.075 2.878 0.038 0.11 

Number Recall (Gsm) 2657 10.235 2.860 -0.063 -0.073 

Pattern Reasoning (Gf) 2656 10.187 2.957 -0.087 0.039 

Rebus (Glr) 2657 10.144 3.042 -0.155 0.01 

Rebus Delayed (Glr) 2407 10.026 2.962 -0.275 -0.266 

Riddles (Gc) 2657 10.144 3.042 -0.155 0.01 

Rover (Gv) 2652 10.149 3.017 -0.053 -0.018 

Story Completion (Gf) 2653 10.098 2.980 0.019 -0.021 

Triangles (Gv) 2656 10.003 2.913 -0.083 -0.136 

Verbal Knowledge (Gc) 2657 10.012 2.944 -0.003 -0.069 

Word Order (Gsm) 2657 9.925 2.834 0.109 0.128 

 

WISC (Version) 
     

Arithmetic (Gsm) (III – V) 880 10.318 2.773 0.161 -0.334 

Block Design (Gv) (III – V) 1178 10.175 2.844 0.069 0.052 

Cancellation (Gs; IV – V) 998 10.032 3.019 0.048 0.062 

Coding (Gs) (III – V) 1178 10.055 2.902 0.204 -0.007 

Comprehension (Gc) (III – V) 1174 10.248 2.894 -0.062 0.188 

Digit Span (Gsm) (III – V) 1167 10.041 2.863 0.156 -0.01 

Figure Weights (V) 269 9.918 2.691 -0.109 0.078 
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Table 7, cont. 

 

Information (Gc) (III – V) 1124 

 

 

10.254 

 

 

2.836 

 

 

0.061 

 

 

-0.199 

Letter-Number Sequencing (Gsm) 

(III – V) 1050 9.996 2.816 -0.464 0.762 

Object Assembly (Gv) (III) 123 10.341 2.946 -0.221 0.523 

Picture Arrangement (Gf) (III) 123 10.65 3.445 0.203 -0.236 

Matrix Reasoning (Gf) (IV – V) 1060 10.205 2.862 0.132 -0.231 

Picture Completion (Gc) (III & IV) 324 10.33 3.003 -0.082 0.477 

Picture Concepts (Gf) (IV – V) 1060 10.282 2.916 -0.239 0.188 

Picture Span (Gsm; V) 269 9.747 2.663 0.063 -0.584 

Similarities (Gc) (III – V) 1179 10.179 2.873 -0.088 -0.069 

Symbol Search (Gs) (III – V) 1143 10.206 2.934 -0.145 0.736 

Visual Puzzles (Gv; V) 268 10.063 2.623 0.002 -0.53 

Vocabulary (Gc) (III – V) 1178 10.14 2.911 -0.164 0.079 

 

WJ III 
     

Analysis-Synthesis (Gf) 87 102.908 17.188 -0.293 0.404 

Auditory Working Memory (Gsm) 88 105.398 13.909 0.341 -0.109 

Concept Formation (Gf) 89 105.36 13.904 -0.083 0.535 

Decision Speed (Gs) 88 100.557 16.183 -0.706 3.748 

General Information (Gc) 89 98.371 16.156 -0.313 0.315 

Numbers Reversed (Gsm) 89 100.618 14.308 -0.04 0.518 

Picture Recognition (Glr) 89 100.787 12.576 0.037 2.841 

Spatial Relations (Gv) 89 100.618 11.329 -0.697 1.326 

Verbal Comprehension (Gc) 89 102.551 14.237 -0.685 0.556 

Visual-Auditory Learning (Glr) 89 94.652 19.760 -0.468 1.861 

Visual Matching (Gs) 89 95.843 13.372 0.342 0.082 

      

Achievement Tests      

 

WIAT (Version) 
     

Essay Composition (III) 151 100.755 15.719 -0.157 -0.487 

Math Reasoning/Problem Solving    

(II & III) 1083 101.727 15.327 -0.348 0.34 

Numerical Operations (II & III) 1081 102.087 15.313 -0.218 0.293 

Pseudoword Decoding (II & III) 1054 102.201 13.67319 -0.38 0.078 

Spelling (II & III) 1083 101.587 14.263 -0.204 0.44 

Sentence Composition (III) 179 99.587 12.828 -0.117 -0.12 

Word Reading (II & III) 1078 101.915 14.27557 -0.412 0.407 

Written Expression (II) 871 101.901 15.487 0.032 -0.193 

      



 

 68 

Table 7, cont. 

 

KTEA-II 

Nonsense Word Decoding  2021 99.883 15.05088 -0.014 -0.084 

Math Concepts & Applications  2223 100.102 14.999 0.072 0.126 

Mathematics Computation 2222 99.958 14.071 -0.063 0.198 

Spelling 2021 99.739 14.905 -0.004 0.045 

Word Recognition 2223 99.829 14.66346 0.025 0.239 

Written Expression 2223 100.029 15.158 -0.049 0.055 

 

 

Invariance Testing   

 Measurement invariance was tested to determine whether the intelligence and achievement 

constructs were measured in the same way across different samples and different editions of the 

tests.  This analysis was a necessary precursor to combining and simultaneously analyzing the data 

for the cognitive, achievement, and cognitive-achievement models.  Eight separate invariance 

models were tested.   

First, invariance was tested across different samples of youth who completed the same test 

(sample invariance).  Five sample invariance tests were conducted: (1) two samples WISC-V 

samples (WISC-IV/KABC-II and WISC-IV/WIAT-III),  (2) three WISC-IV samples (WISC-

IV/DAS-II, WISC-IV/WIAT-II, WISC-IV/KABC-II XBA), (3) three KABC-II samples (KABC-

II XBA, KABC-II/WISC-V, KABC-II/KTEA-II), (4) two DAS-II samples (DAS-II/WIAT-II, 

DAS-II/WISC-IV), and (5) two WIAT-II samples (WIAT-II/DAS-II and WIAT-II/WISC-IV).  

After invariance was established across all samples of youth who completed the same test, scores 

from those samples were merged into one large total sample of all students who completed that 

specific test.   

The merged data were then used to test invariance across test editions (edition invariance).  

Two tests in the current analysis included multiple editions of the same test, the WIAT (WIAT-II 
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and WIAT-III) and WISC (WISC-III, WISC-IV, and WISC-V).  Invariance was tested across 

different editions of these tests to determine whether the data could be merged across the subtests 

each edition shared in common.  Merging data across test editions and participant samples allowed 

for larger sample sizes, which increased the power of the subsequent cross-battery analyses.   

As described previously, invariance testing was completed in a series of steps, with more 

stringent constraints added at each step if the constraints in the previous step were supported.  If 

invariance was not established across samples or editions, partial invariance was tested (described 

further below).  The sequence of these steps began with configural invariance (a test of whether 

the same factor structure fits the data across groups, meaning subtests are associated with the same 

CHC broad abilities across groups), followed by metric invariance (factor loadings are constrained 

to be equal across groups), scalar invariance (intercepts plus factor loadings are constrained to be 

equal across groups), and finally strict invariance (residuals plus intercepts and factor loadings are 

constrained to be equal across groups).  The invariance testing sequence was slightly different for 

the two WIAT-II samples and two WIAT editions (described further below).  Across all invariance 

models, change in CFI was used to test whether the additional constraints at each step were 

supported (Cheung & Rensvold, 2002).  Absolute values equal to or less than .01 suggest the 

constraints did not degrade the model, and provide support for invariance. 

Sample invariance.  Configural invariance was supported across all four models; each of 

the configural models fit well with the two WISC-V samples, three WISC-IV samples, three 

KABC-II samples,2 and two DAS-II samples (refer to Table 8 for model fit indices).  In the WISC-

                                                 
2 It was not possible to test one KABC-II subtest, Gestalt Closure, from one sample, KABC-II/KTEA-II, for 

invariance due to a small sample size (n = 193 out of 2,223 total participants) related to a significant amount of 

missing data for Gestalt Closure in that specific sample.  Invariance was supported for Gestalt Closure between the 

two other KABC-II datasets, KABC-II XBA and KABC-II/WISC-V. 
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IV invariance model Gv and Gf were combined into one factor because there was only one measure 

of Gv, Block Design, and the model would have been under-identified otherwise.3  Accordingly, 

the structure of what the WISC-V, WISC-IV, KABC-II, and DAS-II measures is the same across 

the different samples of youth. 

Given that configural invariance was supported, metric invariance was tested next.  Metric 

invariance was supported across all four models as well; the change in CFI was well below the 

cut-off value for each of these models (refer to Table 8 for fit indices and change in CFI values).  

Thus, the scaling of the latent variables (the broad abilities) is the same across the different samples 

of youth, meaning that each unit change in the latent broad ability results in the same change in 

the subtests that estimate that latent variable across the different samples.   

Because metric invariance was established, scalar invariance was then tested.  Scalar 

invariance was supported across all four models—the starting point for each of the subtests was 

the same across the different samples of youth.  Finally, the most stringent level of invariance, 

strict invariance, was supported across three of the models: the WISC-V, WISC-IV, and KABC-

II models (see Table 8).  Therefore, the subtests in these tests measured the broad abilities with the 

same degree of measurement error across the multiple samples of the WISC-IV and –V and 

KABC-II.  Strict invariance was not supported for the DAS-II, however, because the change in 

CFI was slightly above the cut-off value (.011).  Modification indices and a comparison of the 

residuals across the two samples, derived from the scalar invariance output, suggested the Early 

Number Concepts subtest was the largest contributor to the lack of invariance.  Partial strict 

                                                 
3 Picture Completion is also a measure of Gv, but only one of the three WISC-IV samples included this subtest; 

therefore it was not possible to include the subtest here.  Picture Completion was also completed by participants in 

the single WISC-III sample (taken from the KABC-II XBA sample), and invariance was tested across the two 

editions of the tests and is described below. 
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invariance was tested by allowing the residual of the Early Number Concepts to freely vary across 

the two samples.  This modification resulted in a reduction of the change in CFI (.009), thus 

supporting partial strict invariance for the DAS-II samples.  This finding means differences across 

the two samples in DAS-II subtest means and variances, excluding Early Number Concepts, are 

due to differences in latent broad ability means and variances and covariances (Keith, 2015).  Of 

note, the sample size for Early Number Concepts was considerably lower than many of the other 

DAS-II subtests because Early Number Concepts is only administered to the youngest participants, 

those aged 2:6 – 6:11.  The smaller sample size of the Early Number Concepts subtest may have 

resulted in more variability in scores.  Some methodologists do not consider strict invariance a 

necessary component of measurement invariance (Vandenberg & Lance, 2000; Widaman & Reise, 

1997).  For this reason, all DAS-II data was merged, including scores for the Early Number 

Concepts subtest, because the partial residual invariance issue was not thought to influence later 

analyses. 

Initially, the WIAT-II model included three latent variables (one reading, one math, and 

one writing latent variable), which were estimated by two to three subtests each.  Configural 

invariance was not supported for this WIAT-II model, however—the initial proposed factor 

structure was inadequate.  Although CFI suggested good fit (.965) and TLI suggested adequate fit 

(.910), the adjusted RMSEA indicated poor fit (.130) (χ2(df) = 185.198(22), p < .001).  Additional 

analyses were conducted to explore the inadequate model fit.  Neither analyzing the two WIAT-II 

samples separately nor examining the modification indices resulted in improvements in the model; 

the WIAT-II factor structure remained inadequate.  Due to poor model fit (which is not problematic 

for later analyses because reading, math, and writing performance will be modeled separately) a 
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different approach was used to test invariance.  Invariance was instead tested using the covariance 

matrices, rather than the raw data.  Only subtests were included in these invariance models, no 

achievement latent variables were modeled.  Each of the seven WIAT-II subtests were correlated 

with each other.  First, each of these covariances was constrained to be equal across the two 

samples; this model fit the data well (see Table 8 for model fit indices and change in CFI values).  

Next, the subtest variances were also constrained to be equal, which was supported by no change 

in CFI.  Lastly, the subtest means were also constrained to be equal.  These constraints were also 

supported.  These steps allowed a more stringent test of invariance than those imposed during 

measurement invariance testing, but without specifying a known factor structure; these strict 

invariance steps were supported for the WIAT-II. 

Invariance was supported across the multiple samples of the five tests.  As a result, these 

multiple samples were merged into one total sample for each of the five tests.  Merging data 

involved combining subtest data from each sample into a single data column.  For example, DAS-

II Matrices subtest scores from the DAS-II/WIAT-II and DAS-II/WISC-IV samples were 

combined into one data column within a combined dataset. 
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Table 8 

 

Invariance Testing Across Samples 

Model Name χ2(df) p Δχ2 (Δdf) Δp CFI Δ CFI 
Adj. 

RMSEA 

WISC-V (2 samples)      
  

Configural Invariance 227.845(188) .025 - - .968 - .040 

Metric Invariance 241.667(199) .021 13.822(11) .243 .965 .003 .040 

Intercept Invariance 248.995(210) .034 7.328(11) .772 .968 -.003 .037 

Residual Invariance 263.053(226) .046 14.058(16) .594 .970 .002 .035 

DAS-II (2 samples) 

 

Configural Invariance 

 

 

389.887(310) 

 

 

.001 

 

 

- 

 

 

- 

 

 

.970 

 

 

- 

 

 

.031 

Metric Invariance 405.244(324) .001 15.357(14) .354 .970 .000 .030 

Intercept Invariance 415.799(338) .002 10.555(14) .721 .971 .001 .028 

Residual Invariance 467.622(358) .000 51.823(20) <.001 .959 .011 .033 

Partial Invariance 459.893(357) .000 44.094(19) .001 .962 .009 .033 

WIAT-II (2 samples)        

Covariance Invariance 33.794(21) .038 - - .997 - .037 

Variance Invariance 44.672(28) .000 10.878(7) .144 .997 .000 .037 

Mean Invariance 68.715(35) .000 24.043(7) .001 .993 .004 .047 

WISC-IV (3 samples)        

Configural Invariance 282.713(157) .000 - - .968 - .047 

Metric Invariance 307.314(172) .000 24.557(15) .056 .965 .003 .047 

Intercept Invariance 354.512(187) .000 47.198(15) <.001 .957 .008 .049 
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Test edition invariance. 

WISC edition invariance.  First, WISC invariance was tested between the WISC-III and 

WISC-IV data.  This invariance model included data from the merged WISC-III and –IV KABC-

II XBA concurrent validity study data and merged data from the other two WISC–IV samples 

(WISC-IV/DAS-II, WISC-IV/WIAT-II; see Figure 1).  The subtests that were administered in only 

one version of the test were included in the model, but were not tested for invariance.  Two such 

subtests, Object Assembly and Picture Arrangement, were part of the WISC-III but not the WISC-

IV, and thus were not included in the WISC-IV merged data group (see Figure 1).  For the purposes 

of invariance testing only, Gv and Gf were combined into one factor to avoid model 

underidentification due to too few Gv subtests.  Configural, metric, scalar, and residual invariance 

were each supported; change in CFI was below the .01 cut-off value (see Table 9).  Thus, data for 

the 14 subtests that were administered in both the WISC-III and –IV were merged resulting in the 

merging of data from three samples. 

Table 8, cont. 
       

Residual Invariance 384.303(210) .000 29.791(23) .155 .955 .002 .047 

KABC-II (3 samples)        

Configural Invariance 841.003(280) .000 - - .972 - .045 

Metric Invariance 865.834(302) .000 24.831(22) .305 .972 .000 .043 

Intercept Invariance 931.721(324) .000 65.887(22) <.001 .970 .002 .043 

Residual Invariance 1011.046(356) .000 79.325(32) <.001 .968 .002 .043 
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Figure 1.  WISC-III and WISC-IV edition invariance models 

Next, invariance was tested for the merged WISC-III/-IV data and the merged WISC-V 

data.  Here, three subtests were unique to the WISC-V (Figure Weights, Picture Span, and Visual 

Puzzles) and thus were not included in the WISC-III/-IV group; one subtest was not included in 

the recently revised WISC-V test (Picture Completion) and thus was only included in the WISC-

III/-IV group in this model; and the two WISC-III only subtests, Object Assembly and Picture 

Arrangement, were not included in this model because the amount of missing data impeded the 

analysis (see Figure 2).  These unique subtests are not tested for invariance because the subtests 

are not compared across groups.  Again, configural, metric, scalar, and residual invariance were 

each supported with the change in CFI well below the .01 cut-off value (see Table 9).  Data for the 

13 subtests that were administered in both the WISC-III/–IV and WISC-V were merged resulting 

in the merging of data from five samples.  These 13 merged subtests are referred to as “WISC” 

subtests in later analyses. 
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Figure 2.  WISC-III/-IV and WISC-V edition invariance models 

WIAT edition invariance.  Lastly, invariance was tested for the merged WIAT-II data and 

the single sample of the WIAT-III.  The same covariance invariance approach used across WIAT 

samples was used across editions.  The two tests shared six subtests (see Figure 3); again no latent 

variables were included in the analyses.  Subtests measuring written expression were not tested for 

invariance or merged because these three subtests, WIAT-II Written Expression, WIAT-III 

Sentence Composition, and WIAT-III Essay Composition, differed according to task content and 

organization.  Covariance, variance, and mean invariance were all supported; the change in CFI 

was minimal (see Table 9).  Accordingly, the six WIAT-II and WIAT-III subtests were merged; 

thus, data from three samples were merged.  These six merged subtests are referred to as “WIAT” 

subtests in later analyses. 
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Figure 3.  WIAT-II and WIAT-III edition invariance models 
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Table 9 

 

Invariance Testing Across Editions 

 

 

Cognitive CB-CFA  

Cognitive CB-CFA first-order model.  A first-order CB-CFA with six broad ability latent 

variables was tested.  In this first-order model each broad ability variable was correlated with all 

other broad ability variables.  A first-order model was specified prior to testing a second-order 

Model Name χ2(df) p Δχ2 (Δdf) Δp CFI Δ CFI 
Adj. 

RMSEA 

WISC-III & -IV 

 

Configural Invariance 

 

249.021(119) 

 

.000 

 

- 

 

- 

 

.971 

 

- 

 

.050 

Metric Invariance 254.026(125) .000 5.005(6) .543 .972 .001 .048 

Intercept Invariance 277.805(131) .000 23.779(6) <.001 .968 -.004 .050 

Residual Invariance 319.563(141) .000 41.758(10) <.001 .961 -.007 .052 

WISC-III/IV & -V 

 

Configural Invariance 

 

 

323.902(169) 

 

 

.000 

 

 

- 

 

 

- 

 

 

.973 

 

 

- 

 

 

.037 

Metric Invariance 334.838(178) .000 10.936(9) .280 .972 .001 .037 

Intercept Invariance 344.747(187) .000 9.909(9) .358 .972 .000 .035 

Residual Invariance 391.221(200) .000 46.474(13) <.001 .966 .006 .038 

WIAT-II & -III 

 
       

Covariance 

Invariance 
53.406(15) - - - .992 - .069 

Variance Invariance 56.195(21) .000 2.789(6) .835 .992 .000 .055 

Mean Invariance 60.587(27) .000 4.392(6) .624 .993 .001 .048 
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model (one that includes g) in order to first establish the best fitting model that explained the 

relations between the subtests and the broad abilities.  A priori classification of the subtests by 

factor is show in Figure 4: Gc was measured by 14 subtests, Gf was measured by 12 subtests, Gv 

was measured by 13 subtests, Gs was measured by 7 subtests, Gsm was measured by 12 subtests, 

and Glr was measured by 8 subtests.  Six subtests (KABC-II Gestalt Closure, KABC-II Hand 

Movements, WISC Picture Completion, WISC Arithmetic, DAS-II Verbal Comprehension, and 

WJ III Picture Recognition) were cross-loaded onto two broad ability factors based on results from 

previous studies (Keith, Low, Reynolds, Patel, & Ridley 2010; Reynolds et al., 2013).  Three 

correlated residual variances were included for the four KABC-II and two DAS-II subtests that 

included a delayed recall version of the initial measurement of the subtests (KABC-II Atlantis and 

Atlantis Delayed, KABC-II Rebus and Rebus Delayed, and DAS-II Recall of Objects Immediate 

and Recall of Objects Delayed).   

Results of the initial cognitive CB-CFA model are presented in Table 10.  The fit of the 

initial cognitive CB-CFA model was acceptable to well-fitting.  The RMSEA, CFI, and TLI values 

were considered excellent, and the SRMR value was adequate, but slightly exceeded the good fit 

threshold.  Almost all of the factor loadings and the three correlated variances were statistically 

significant.  One cross-loading was not statistically significant, the WJ III Picture Recognition 

subtest onto Gv; this cross-loading was subsequently deleted.  A reduced model without that cross-

loading was tested, and the fit indices were also acceptable to well-fitting.  The reduced model was 

compared to the initial model using the likelihood ratio test.  The change in chi-square was not 

statistically significant, thus supporting the reduced model; the reduced model is the final first-

order model (Table 10 for fit indices).  
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All of the factor loadings of the subtests onto their respective broad ability latent variable 

factors were statistically significant.  The standardized factor loadings of the subtests on Gc ranged 

from .716 (WISC Comprehension) to .872 (WISC Vocabulary), Gf factor loadings ranged from 

.353 (DAS-II Picture Similarities) to .738 (DAS-II Sequential and Quantitative Reasoning), Gv 

factor loadings ranged from .441 (DAS-II Recognition of Pictures) to .787 (DAS-II Pattern 

Construction), Gs factor loadings ranged from .391 (WISC Cancellation) to .745 (WISC Symbol 

Search), Gsm factor loadings ranged from .600 (WJ III Auditory Working Memory) to .779 

(KABC-II Word Order), and Glr factor loadings ranged from .462 (DAS-II Recall of Objects 

Delayed) to .790 (KABC-II Rebus Immediate; excluding subtests that were cross-loaded, as cross-

loadings are expected to be smaller given loadings onto two factors rather than one factor).  

Overall, these results suggest the subtests are generally good measures of the six broad abilities.  

Thus, the cognitive CB-CFA first-order model results suggest that the six CHC broad ability 

factors were invariant across the six intelligence tests analyzed in this study.  

In addition, all of the six broad abilities significantly correlated with each other.  The 

strongest relation was between Gf and Gv (r = .902), followed by Gf and Gc (r = .782), Gf and 

Glr (r = .749), Gc and Gv (r = .669), Gc and Glr (r = .676), Gf and Gsm (r = .647), Glr and Gv (r 

= .643), Gc and Gsm (r = .601), Glr and Gs (r = .592), Gf and Gs (r = .577), Gs and Gv (r = 

.565), Gv and Gsm (r = .551), Gsm and Glr (r = .540), Gsm and Gs (r = .507), and Gs and Gc (r 

= .422). 

Cognitive CB-CFA second-order model.  The second-order model, which included g, 

expanded on the final cognitive CB-CFA first-order model.  The addition of g resulted in model 

fit which was also acceptable to well-fitting (see Table 10).  The inclusion of g caused one cross-
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loading to become non-significant, the DAS-II Verbal Comprehension subtest onto Gf.  As a result, 

that cross-loading was subsequently deleted from the second-order model and all cognitive-

achievement SEM models.  The likelihood ratio test was not statistically significant, which 

supported the reduced second-order model without one cross-loading.  This final second-order 

model was compared to the final first-order model; the change in chi-square and aBIC both 

supported the final first-order model, however, this finding is not unusual. 
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Figure 4.  Final cognitive CB-CFA second-order model 
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Second-order loadings of the broad abilities on g were large and statistically significant: 

Gf = .993, Gv = .870, Gc = .806, Glr = .783, Gsm = .682, and Gs = .612 (see Figure 4 for the 

complete model).  Unlike the other broad abilities, Gf’s unique variance was not statistically 

significant from zero, which, along with Gf’s very strong factor loading on g (β = .993), suggests 

that Gf and g were perfectly correlated and statistically indistinguishable.  

Table 10 

Fit Indices of CB-CFA Cognitive Models 

 

aCompared to initial second-order model. 
bCompared to final measurement model. 

Achievement CB-CFA measurement model.  Auxiliary variables, which are variables 

that are not included in the analysis model, were included in all of the achievement measurement 

models.  The auxiliary variables in the achievement measurement models were the cognitive 

subtests; auxiliary variables were used as missing data correlates in the models, along with the 

achievement subtests (Muthén & Muthén, 2012).  Auxiliary variables were required due to the 

significant amount of missing data in the achievement models because participants only completed 

one of the achievement tests, either the WIAT or KTEA-II; no participant completed both tests. 

First, a measurement model that included six specific achievement skills was tested (see 

Figure 5).  These specific achievement skills included Basic Reading (estimated by four subtests), 

Model Name χ2 df Δχ2 Δdf Δp CFI TLI RMSEA SRMR aBIC 

Initial First-Order 2496.097 1321 - - - .959 .956 .015 .088 323685.134 

Final  First-Order 2497.078 1322 .981 1 .322 .959 .956 .015 .086 323681.017 

Initial Second-Order 2631.565 1331 134.487 9 <.001 .955 .952 .016 .087 323769.624 

Final Second-Order 2634.793 1332 3.228a 1a .072a .955 .952 .016 .087 323767.755 

 - - 137.715b 10b <.001b - - - - - 
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Reading Comprehension (estimated by two subtests), Basic Math (estimated by two subtests), 

Math Reasoning (estimated by two subtests), Basic Writing (estimated by two subtests), and 

Written Expression (estimated by four subtests).  The six specific achievement latent variables 

were each correlated with each other.   

 

 

Figure 5.  Initial achievement CB-CFA model 

The specific achievement skills measurement model did not converge.  Variations of the 

specific achievement skills measurement model were tested in order to specify a model that might 

converge.  One such model included correlations between all of the subtests of each of the tests.  

All WIAT subtests were correlated with each other and all KTEA subtests were correlated with 

each other in order to account for shared variance between subtests within the same test; this model 

also did not converge.  Another model tested broad achievement domains, with all the reading, 

writing, and math subtests loading onto three respective factors; this model also did not converge.  
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The convergence difficulties are likely due to the preponderance of missing data among the 

achievement variables.  Unlike the cognitive variables, no individuals completed more than one 

achievement test; individuals either completed the WIAT or the KTEA.  Also, individuals who 

completed the WIAT or KTEA did not complete any of the same intelligence tests.  Thus, the 

linking between the achievement tests was far removed; achievement subtests were linked through 

intelligence tests that were linked to other intelligence tests.  The convergence errors suggest there 

is likely a threshold amount of missing data that is permissible in planned missingness designs, 

and these achievement measurement models exceeded this threshold.  

Cognitive-Achievement CB models 

Because it was impossible to test a combined CB-CFA achievement measurement model 

across all of the achievement skills, each achievement skill was individually tested in a separate 

CB cognitive-achievement model.  Three cognitive-achievement models were tested: (a) a 

cognitive-broad reading model (a combination of basic reading and reading comprehension; 

estimated by six subtests), (b) a broad writing model (a combination of basic writing and written 

expression; estimated by six subtests), and (c) a broad math model (a combination of basic math 

and math problem solving; estimated by four subtests).  

The cognitive-broad reading model, however, did not converge.  A cognitive-basic reading 

model (estimated by the four basic reading subtests), however, did converge; thus, the two reading 

comprehension subtests were excluded from the reading model.  Therefore, the results for a 

cognitive-basic reading, cognitive-broad writing, and cognitive-broad math model are interpreted 

below. 
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Analyses were completed in a series of steps, which were described earlier, and two types 

of models were examined.  One type of model was a broad ability only (first-order)-achievement 

model.  The cognitive piece of the broad ability-achievement models included the final cognitive 

first-order model (without g).  Broad ability only models were first tested (before including g) 

because findings from most studies suggest that g affects achievement through the broad abilities; 

this suggests g is not a common cause of the broad abilities and achievement, and because only 

common causes are needed to create a valid model, g was excluded (Keith, 2015).  Also, as 

demonstrated earlier, g and Gf were statistically indistinguishable in the second-order model, and 

it would therefore be difficult to separate their influences on the achievement skills.    

Another set of cognitive-achievement models were also tested.  These models are referred 

to as g only-achievement models.  A higher-order model was tested in these models, and the 

achievement skill was regressed on only one cognitive ability, g.  The g only-achievement and 

broad ability-achievement models were then compared. 

Cognitive-Basic Reading Model.  The factor loadings of the four basic reading subtests 

(WIAT Word Reading, WIAT Pseudoword Decoding, KTEA-II Nonsense Word Decoding, 

KTEA-II Word Recognition) on the basic reading latent variable were statistically significant.  The 

standardized factor loadings ranged from .803 (WIAT Pseudoword Decoding) to .987 (WIAT 

Word Reading), which suggests the subtests are generally good measures of basic reading. 

First, a first-order broad ability model was tested which included paths from all of the broad 

abilities to basic reading (referred to as Reading All Broad model in Table 11).  Paths from Gf, 

Gv, and Gs were non-significant, thus those paths were simultaneously deleted from the model.  

The fit of the reduced model, which included paths from Gc, Gsm, and Glr, was good to acceptable 
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(see Table 11, referred to as Reading Final model).  The reduced model did not result in a 

significant change in chi-square, which supports the deletion of the non-significant paths (see 

Table 11 for model comparisons).  Next, g was incorporated into the reduced model, creating a 

second-order model, and a path from g to basic reading was added.  The path from g to basic 

reading was not significant (b = -.089; β = -.062, SE = .056, p = .269), and according to the aBIC 

the broad ability only-basic reading (first-order model, without g) fit better than the second-order 

model with g (see Table 11 for model comparisons).   

Accordingly, the broad ability only-basic reading model was interpreted (see Figure 6).  

The significant effects of the broad abilities on basic reading were moderate to large in size (using 

the criteria in Keith, 2015, chap 4).  The largest standardized effect was from Gc to basic reading 

(b = .463; β = .400, SE = .023, p < .001 ), which means that each standard deviation increase in Gc 

resulted in a .40 standard deviation increase in Basic Reading, controlling for the other broad 

abilities in the model.  In addition, Gsm (b = .396; β = .249, SE = .022, p < .001) and Glr had 

statistically significant influences on basic reading (b = .218; β = .215, SE = .027, p < .001). 

 

Figure 6. Cognitive-basic reading SEM model 
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Finally, a second-order model was tested, which only included a path from g to basic 

reading.  The fit of the g only-basic reading model ranged from poor (RMSEA = .090) to good 

(CFI = .952; see Table 11 for all fit indices).  The path from g to basic reading, however, was 

significant and large (b = 1.022; β = .746, SE = .011, p < .001).  According to the aBIC, in 

comparison to the first-order broad ability-basic reading model, the g only-basic reading model fit 

worse.  The g only model was also compared to the higher-order model with paths from the 

significant broad abilities and without a path from g (referred to as the Reading SO Final model in 

Table 11).  The change in chi-square was statistically significant, which supports the relations 

between the broad abilities and basic reading in the higher-order model.   

Cognitive-Broad Writing Model.  The factor loadings of the six broad writing subtests 

(WIAT-III Essay Composition, WIAT-III Sentence Composition, WIAT Spelling, WIAT-II 

Written Expression, KTEA-II Spelling, KTEA-II Written Expression) onto the broad writing latent 

variable factor were statistically significant.  The standardized factor loadings ranged from .515 

(WIAT-III Essay Composition) to .842 (KTEA-II Written Expression), which suggests the subtests 

are generally good measures of broad writing. 

Initially, a first-order broad ability model that included paths from all of the broad abilities 

to broad writing was tested (referred to as Writing All Broad model in Table 11).  The only non-

significant path was from Gv; this path was subsequently deleted.  The reduced model resulted in 

a significant change in chi-square (see Table 11 for model comparisons), but the path from Gv to 

broad writing was negative in the initial model, which is uninterpretable.  Therefore, the reduced 

model without Gv was accepted.  In the reduced model, the path from Gf to broad writing became 

non-significant so this path was also subsequently deleted.  The two reduced models were 
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compared using the likelihood ratio test; the reduced model without paths from Gf and Gv did not 

result in a significant change in chi-square, which supports the removal of the Gf path (see Table 

11 for model comparisons).  The fit of this reduced model, which included paths from Gc, Glr, Gs, 

and Gsm, was good to acceptable (see Table 11).  Next, a higher-order model was tested that 

incorporated g and added a path from g to broad writing.  The path from g to broad writing was 

not significant (b = -.015; β = -.013, SE = .069, p = .851), and according to the aBIC, the broad 

ability only-broad writing (first-order model, without g) fit better than the second-order model.   

Thus, the broad ability only-broad writing model was interpreted (see Figure 7).  The 

significant effects of the broad abilities on broad writing were moderate to large in size (using the 

criteria in Keith, 2015, chap 4).  The largest standardized effect was from Gc to broad writing        

(b = .276; β = .287, SE = .026, p < .001 ), which means that each standard deviation increase in Gc 

resulted in a .29 standard deviation increase in broad writing, controlling for the other broad 

abilities in the model.  In addition, Glr (b = .240; β = .285, SE = .032, p < .001), Gs (b = .375;        

β = .228, SE = .040, p < .001), and Gsm (b = .293; β = .222, SE = .025, p < .001) significantly 

predicted broad writing. 

 

Figure 7. Cognitive-broad writing SEM model 
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Finally, a second-order model was tested, which only included a path from g to broad 

writing.  The fit of the g only-broad writing model ranged from adequate to good (see Table 11 for 

all fit indices).  The path from g to broad writing was significant and large (b = .973; β = .815, SE 

= .011, p < .001).  According to the aBIC, in comparison to the final broad ability only-broad 

writing model, the g only-broad writing model fit worse.  The g only model was also compared to 

the higher-order model with paths from the significant broad abilities and without a path from g 

(referred to as the Writing SO Final model in Table 11).  The change in chi-square was statistically 

significant, which supports the relations between the broad abilities and broad writing in the 

higher-order model.   

Cognitive-Broad Math Model.  The factor loadings of the four broad math subtests 

(WIAT Math Problem Solving/Reasoning, WIAT Numerical Operations, KTEA-II Math 

Applications, KTEA-II Math Computations) onto the broad math latent variable factors were 

statistically significant.  The standardized factor loadings ranged from .774 (KTEA-II Math 

Computation) to .937 (WIAT Math Problem Solving), which suggests the subtests are generally 

good measures of broad math. 

First, a first-order broad ability model that included paths from all of the broad abilities to 

broad math was tested (referred to as Math All Broad model in Table 11).  Paths from Gv, Gs, and 

Glr were non-significant; thus, those paths were simultaneously deleted from the model.  The fit 

of the reduced model, which included paths from Gf, Gc, and Gsm, was good to acceptable (see 

Table 11); the reduced model did not result in a significant change in chi-square, which supports 

the removal of the non-significant paths (see Table 11 for model comparisons).  Next a higher-

order model was tested that incorporated g and added a path from g to broad math.  The path from 
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g to broad math was not significant (b = 1.876; β = 1.504, SE = 2.282, p = .510), and according to 

the aBIC, the broad ability only-broad math (first-order model, without g) fit better than the 

second-order model (see Table 11 for model comparisons).  Of note, the effects of Gf and g on 

broad math in the second-order model were impossible to disentangle as a result of the perfect 

correlation between Gf and g.  In other models, Gf had no effect on achievement areas, but for 

broad math the effect of Gf was significant.  Although g had no effect on broad math beyond that 

of Gf, because these two constructs are virtually inseparable, these findings can be interpreted as 

the effects of g on broad math, or as the effects of Gf on broad math.   

Nevertheless, because the effect of g on broad math was not significant, the broad ability 

only-broad math model was interpreted (see Figure 8). The significant effects of the broad abilities 

on broad math ranged from small to large in size (using the criteria in Keith, 2015, chap 4). The 

largest standardized effect was from Gf to Broad Math (b = .879; β = .705, SE = .038, p < .001), 

which means that each standard deviation increase in Gf resulted in a .71 standard deviation 

increase in broad math, controlling for the other variables in the model.  In addition, Gc (b = .136; 

β = .133, SE = .032, p < .001) and Gsm (b = .075; β = .053, SE = .025, p < .001) significantly 

predicted broad math. 
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Figure 8. Cognitive-broad math SEM model 

Finally, a second-order model was tested, which only included a path from g to broad math.  

The fit of the g only-broad math model ranged from adequate to good (see Table 11 for all fit 

indices).  The path from g to broad math was significant and large (b = 1.094; β = .869, SE = .008, 

p < .001).  According to the aBIC, in comparison to the broad ability only-broad math model, the 

g only-broad math model fit worse.  The g only model was also compared to the higher-order 

model with paths from the significant broad abilities and without a path from g (referred to as the 

Math SO Final model in Table 11).  The change in chi-square was statistically significant, which 

supports the relations between the broad abilities and broad math in the higher-order model.   
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Table 11 

Fit Indices of Cognitive-Achievement Models 

 

Note.  a The writing final (broad ability only-broad writing) model was first compared to the 

model without Gv, and then compared to the model with paths from all broad abilities.  

  

Model Name χ2(df) Δχ2 (Δdf) Δp CFI TLI RMSEA SRMR aBIC 

Reading All Broad 2781.158(1467) - - .962 .959 .015 .088 370728.813 

Reading Broad Final 2781.589(1470) .431(3) .934 .962 .959 .015 .088 370713.949 

Reading SO+g path 2916.540(1478) - - .958 .955 .016 .089 370808.115 

Reading SO Final 2953.995(1479) 37.455(1) <.001 .957 .954 .016 .087 372907.797 

     Reading g only 3135.560(1481) 181.565(2) <.001 .952 .949 .017 .090 371011.841 

Writing All Broad 2815.943(1497) - - .960 .957 .015 .087 373581.318 

Writing (no Gv) 2824.551(1498) 8.608(1) .003 .960 .957 .015 .087 373584.828 

Writing Final 2827.396(1499) 2.845(1) .092 .960 .957 .015 .087 373582.574 

  11.453(2)a .003 a      

Writing SO+g path 2954.271(1507) - - .956 .953 .016 .088 373668.665 

Writing SO Final 2954.307(1508) .036(1) .850 .956 .954 .016 .088 373663.603 

      Writing g only 3091.326(1511) 137.019(3) <.001 .952 .949 .016 .088 373785.327 

Math All Broad 2808.625(1467) - - .961 .958 .015 .087 372823.605 

Math Broad Final 2810.780(1470) 2.155(3) .541 .961 .958 .015 .087 372810.465 

Math SO+g path 2953.120(1478) - - .957 .954 .016 .087 372912.020 

Math SO Final 2953.995(1479) .875(1) .350 .957 .954 .016 .087 372907.797 

      Math g only 2971.708(1481) 17.713(2) <.001 .957 .954 .016 .087 372915.314 
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Chapter 5:  Discussion 

 The primary purpose of this study was to examine cognitive-achievement relations across 

several tests using cross-battery SEM analyses and planned missing data methodology.  A more 

comprehensive, cross-battery understanding of cognitive-achievement relations can address 

inconsistencies found in previous studies that were caused by examining these relations separately 

for individual tests.  Generalized cognitive-achievement relations, across tests, may guide 

practitioners’ specific learning disability diagnostic decisions, eligibility determinations, 

educational recommendations, and assessment planning, as well as provide empirical support to 

the current practice of cross-battery assessment, in which practitioners administer multiple 

intelligence and achievement tests to students and interpret the results conjointly. 

 Several additional purposes were subsumed within this overarching purpose, and were 

necessary precursors before addressing the overarching purpose.  Invariance across different 

samples of participants who completed the same test was evaluated.  After sample invariance was 

established, invariance across different editions of the same test was established in order to ensure 

equivalent constructs were measured across editions and allow for the merging of  data across the 

different samples and editions.  Next, CB-CFA intelligence models were tested to determine if six 

intelligence tests measured the same cognitive abilities similarly, which provided further support 

for CHC theory independent of the test under study.  Finally, after the precursory steps of 

invariance across samples and editions and a comprehensive CHC model of intelligence were 

supported, CB-SEM basic reading, broad math, and broad writing models were tested.   

 The organization of this section follows a similar sequence as the analysis sequence 

described above.  First, theoretical and methodological implications related to cross-battery 



 

 95 

intelligence models are presented.  Second, cognitive-achievement relations are compared and 

contrasted to previous research.  Third, implications for practice are discussed; fourth, limitations 

and future research directions are discussed; and finally, the section concludes with a brief 

summary.  

Cross-Battery Models  

 Theoretical implications.  A cross-battery CHC model consisting of six broad abilities, 

including Gc, Gf, Gv, Gsm, Glr, and Gs, fit data from six different intelligence tests well.  The 

factor loadings of all six broad abilities on g were large.  Results suggest Gf had the strongest 

loading on g, specifically there was a perfect correlation between the two abilities which will be 

discussed further below.  Gv had the second strongest loading on g, followed by Gc, Glr, Gsm, 

and finally Gs.  At the subtest level, the majority of the subtests loaded on the broad abilities in 

accordance with prior CHC classifications (Flanagan et al., 2013).  One exception was the WJ III 

Visual Recognition subtest, which was classified as a Gv subtest, but was found only to 

significantly load on Glr; these results replicate those based on the other CB-CFA study (Reynolds 

et al., 2013).  Taken together, the loadings of the broad abilities on g and the consistent loadings 

of the subtests on the broad abilities in accordance with a priori CHC classifications supports the 

applicability of CHC theory across intelligence tests and suggests practitioners can be confident in 

CHC classifications of these different tests. 

 An advantage of the current CB-CFA CHC model is the inclusion of two currently used 

tests, the DAS-II and WISC-V, and one additional broad ability, Gs, which extends the CB-CFA 

model presented by Reynolds and colleagues (2013).  This larger CB-CFA CHC model provides 

further evidence for the applicability of CHC theory to the development of modern intelligence 



 

 96 

tests, CHC-based interpretation of test results from these six tests, and cognitive research guided 

by CHC theory (Reynolds et al., 2013).  Despite differences across tests in regard to subtest task 

demands, stimuli, and response formats, these six intelligence tests are measuring the CHC broad 

abilities similarly, and thus, practitioners and researchers can assume broad ability scores from any 

of these six intelligence tests are measuring the same underlying cognitive ability.  On a practice 

focused note, the invariance of these six CHC broad abilities across the six intelligence tests 

provides empirical support for the cross-battery assessment approach, which encourages 

practitioners to supplement subtest scores from one intelligence test with scores from the same or 

different broad ability on another intelligence test. 

 Another important theoretical implication taken from the CB-CFA intelligence model is 

the perfect correlation between Gf and g; the loading of Gf on g was .99 and Gf’s residual was 

non-significant.  This perfect correlation between Gf and g is supported by previous research 

(Reynolds et al., 2013; Gustafasson & Balke, 1993), and suggests Gf and g constructs are 

redundant and may be used interchangeably.  This interchangeable relationship suggests subtests 

designed to measure Gf may also be considered primarily as measures of g (Reynolds et al., 2013). 

Alternatively, these findings suggest that a hierarchical g factor may be unnecessary in intelligence 

models.  The perfect relation between Gf and g raises questions about the structure of intelligence 

and which abilities are redundant (Reynolds et al., 2013, Gustafasson & Balke, 1993).  Further 

research is needed to better understand the overlap between Gf and g. 

 Methodology implications.  The current study is the first known study to examine a cross-

battery intelligence model and cross-battery cognitive-achievement relations using several 

datasets, which did not include one shared linking test as is common in planned missingness 
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designs; a shared linking test is a test that all participants complete and is used in the well-

established three-form planned missingness design.  An alternative planned missingness design 

was explored in the current study, and rather than one shared linking test, the seven datasets were 

linked to each other through various configurations of tests they shared in common; there was no 

single direct link between all of the datasets.  Such alternative planned missingness designs have 

been proposed as a possibility by previous researchers (Graham et al., 2006; Reynolds et al., 2013), 

but have been rarely studied.  Results from the current study, however, provide support for the use 

of an alternative planned missingness design, which does not require one shared linking test that 

all participants completed.  These results are encouraging for researchers because they suggest 

researchers can merge several datasets without  the inclusion of a single test that all participants 

completed.  Eliminating the need for a shared linking test in planned missingness designs may 

reduce examinee test fatigue, data collection demands, and encourage the merging of several 

different invariant datasets, which may result in larger sample sizes of merged data and allow for 

analyses that were not previously possible.   

Cognitive-Achievement Relations 

 Results from the current study provide evidence of cognitive-achievement relations across 

tests, which is lacking in the field, and indicates which relations are generalizable across different 

tests.  Broadly, the current results suggest verbal-comprehension (Gc) was the only broad ability 

to influence significantly all three academic skills in this study; both short-term memory (Gsm)  

and long-term retrieval (Glr) influenced basic reading and broad writing; processing speed (Gs) 

influenced broad writing and broad math; fluid reasoning (Gf) only exerted a significant effect on 

broad math; and visual-spatial processing (Gv) did not influence any of the three academic skills 
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examined in the current study, controlling for the other variables in the model.  Below, these cross-

battery cognitive-achievement results are compared and contrasted with previous research which 

has examined cognitive-achievement relations based on single cognitive and achievement test 

pairings. 

 Basic Reading.  In the current study, verbal-comprehension (Gc) was most strongly related 

to children and adolescent’s basic reading performance.  Children and adolescents with stronger 

acquired knowledge of vocabulary, including language and cultural knowledge, scored higher on 

a latent factor of word reading and pseudoword decoding tasks.  The strength of the relation 

between Gc and basic reading is a consistent finding across different tests (Benson, 2007; 

Caemmerer et al., 2017; Evans et al., 2002; Flanagan, 2000; Floyd et al., 2012; Keith, 1999; 

McGrew, 1993; McGrew et al., 1997; Niileksela et al., 2016; Oh et al., 2004; Vanderwood et al., 

2002).  Similarly, the effect of short-term memory (Gsm) on basic reading, a relation observed 

across several different tests, was also supported in the current study (Beaujean et al., 2014; 

Benson, 2007; Caemmerer et al., 2017; Cormier, McGrew et al., 2016; Elliot, Hale, Fiorello, 

Dorvil, & Moldovan, 2010; Evans et al., 2002; Floyd et al., 2007; Hajovsky et al., 2014; McGrew, 

1993).  Better developed Gsm abilities may allow children and adolescents to hold phonological 

information in their minds and manipulate that information to more accurately identify words and 

non-words (even after controlling for other relevant cognitive abilities).  In addition, the relation 

between long-term retrieval (Glr) and basic reading observed in the current study is supported by 

some evidence (Evans et al., 2002; Floyd et al., 2007; Floyd et al., 2012; Hajovsky et al., 2014; 

McGrew, 1993), although this relation was often only observed among younger children in 

previous studies.  The current findings suggest children and adolescents with stronger abilities to 
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store, consolidate, and retrieve information efficiently are better able to identify words and 

recognize non-word patterns.  Unlike past research with the WJ batteries, Gs did not exert a 

significant effect on basic reading skills (Evans et al., 2002; Floyd et al., 2007; McGrew, 1993; 

Niileksela et al., 2016); however, the lack of a significant relation between Gs and basic reading 

is supported by previous research using the WISC-IV and WISC-V (Beaujean et al., 2014; 

Caemmerer et al., 2017).  These discrepant Gs findings suggest there may be something specific 

about the Gs and basic reading measures of the WJ, which results in a significant relation, and 

practitioners using the WJ tests may anticipate such a relation, but practitioners using other tests 

may be less concerned with a Gs-basic reading relation. 

 Broad Writing.  Gc had the strongest influence on children and adolescents’ broad writing 

performance.  Children and adolescents with stronger acquired knowledge of vocabulary, 

including language and cultural knowledge, scored higher on a writing composite that included 

spelling (basic writing skill) and more complex sentence and essay writing (written expression 

skills) tasks.  Although writing is the least studied achievement domain, the majority of previous 

studies support a relation between Gc and broad writing or specific writing skills (Beaujean et al., 

2014; Caemmerer et al., 2017; Floyd et al., 2008; McGrew & Knopik, 1991).  In addition, Gsm 

had a significant effect: Children and adolescents who were better able to hold and manipulate 

information in their minds spelled more sounds and words correctly and were better able to 

compose sentences and essays; this finding is consistent with relations observed in several studies 

using the WJ (Cormier, Bulut et al., 2016; Floyd et al., 2008; McGrew & Knopik, 1993; Niileksela 

et al., 2016) and one WISC-V study (Caemmerer et al., 2017).  Similarly, processing speed (Gs) 

had a significant effect on broad writing performance, which is consistent with previous research 
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using the WJ (Cormier, Bulut et al., 2016; Floyd et al., 2008; McGrew & Knopik, 1993; Niileksela 

et al., 2016).  A Gs-writing relation was not observed using the WISC-V and WIAT-III 

(Caemmerer et al., 2017).  There may be two possible explanations for this inconsistency: First, 

the current study examined broad writing rather than specific writing skills, or second, the Gs 

factor as measured solely by the WISC-V is too narrowly defined in comparison to the Gs factor 

examined here.  In addition, the significant effect shown by Glr on broad writing is consistent with 

previous research using the WJ (Floyd et al., 2008; McGrew & Knopik, 1991; Niileksela et al., 

2016), and it suggests retrieval of words, previously learned information, and ideas has a 

significant influence on writing performance.  Finally, no significant relation was observed 

between Gf and broad writing in the current study, however, some evidence using older versions 

of the WJ, the WISC-IV and WISC-V suggests Gf is important for writing performance (Beaujean 

et al., 2014; Caemmerer et al., 2017; Floyd et al., 2008; McGrew & Knopik, 1991).  It is possible 

the influence of Gf on writing is narrowly focused and Gf influences only specific writing skills, 

such as more complex essay writing tasks; thus this relation was not observed when examining a 

broad writing factor. 

Broad Math.  Broad math performance was most strongly influenced by fluid reasoning 

(Gf); children and adolescents with stronger novel reasoning abilities scored higher on a latent 

broad math factor indexed by mathematic computation and multi-step math word problem tasks.   

The importance of Gf for math skills is highly consistent with findings based on the WJ (Floyd et 

al., 2003; Keith, 1999; McGrew & Hessler, 1995; Niileksela et al., 2016; Taub et al., 2008), WISC-

IV, and WISC-V (Caemmerer et al., 2017; Parkin & Beaujean, 2012).  In addition, Gs predicted 

broad math performance, which is consistent with previous WJ (Floyd et al., 2003; Keith, 1999; 
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McGrew & Hessler, 1995; Niileksela et al., 2016; Taub et al., 2008) and WISC-V (Caemmerer et 

al., 2017) studies.  The importance of Gc is consistent with previous WJ studies (Floyd et al., 2003; 

Keith, 1999; McGrew & Hessler, 1995; Niileksela et al., 2016; Taub et al., 2008), and suggests 

general acquired knowledge is important for math performance.  A significant relation between 

specific math skills and Gc was not found using the WISC-V (Caemmerer et al., 2017), however, 

which may be due to specific aspects of the WISC-V and WIAT-III; thus, practitioners using only 

the WISC-V and WIAT-III may not be concerned with such a relation, but practitioners using 

other tests may anticipate a significant Gc-math relation.  Finally, there was no significant 

association between Gsm and math in the current study, which is consistent with the majority of 

previous studies (Niileksela et al., 2016; Parkin & Beaujean, 2012; Taub et al., 2008).  Contrasting 

evidence suggests Gsm is important for the math performance of younger students (McGrew & 

Hessler, 1995; Caemmerer, et al., 2017).  More research is needed to clarify these discrepancies. 

In sum, the results of the current study align with previous studies which suggest children’s 

and adolescents’ Gc abilities are important for the majority of academic skills, including basic 

reading, broad writing, and broad math performance.  Similar to previous research, Gsm and Glr 

have important influences on children’s and adolescents’ basic reading performance, but unlike 

previous research, there was no evidence to support a relation between Gs and basic reading.  Gsm, 

Glr, and Gs all had important effects on broad writing performance, but some evidence supports a 

relation between writing skills and Gf, which was not observed here.  Finally, Gs and Gf influenced 

children’s and adolescents’ broad math performance, but no relation was observed with Gsm, 

which was found in a couple of studies.   
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Taken together, many of the previously observed cognitive-achievement relations were 

replicated in the current study.  Inconsistencies in cognitive-achievement relations across studies, 

however, may be attributed to several reasons:  (1) specific and unique task demands present within 

individual tests, (2) whether broad or specific achievement skills were examined, or (3) differences 

in how intelligence was modeled, such as the higher-order models used in the current study or 

bifactor models, which remove the influence of g from the broad abilities (bifactor models are 

discussed further below).  Despite some differences between findings from the current study and 

previous studies, the cognitive-achievement relations observed here provide further support for the 

important role CHC broad abilities have on achievement skills.  Results from the alternative 

cognitive-achievement models tested in this study support this assertion and suggest the influence 

of g on achievement skills primarily operates indirectly, through g’s influence on the broad 

abilities.  

Further Implications for Practice 

 The cognitive-achievement patterns described in this study can be used to guide the 

interpretation of psychological assessment results and inform diagnostic decision-making 

regarding specific learning disabilities, educational recommendations, and assessment planning.  

Children’s overall and broad cognitive abilities can explain strengths and weaknesses they exhibit 

in specific achievement skills.  For example, assume that a child was referred to a psychologist for 

an evaluation because he or she was struggling in math.  The psychologist might particularly focus 

on the child’s fluid reasoning performance and would likely give the child additional fluid 

reasoning measures to better understand his or her abilities in this area.  When interpreting the 

child’s assessment results, findings of below average math problem solving skills accompanied 
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with a relative weakness in the child’s fluid reasoning abilities would likely suggest a potential 

specific learning disability in math problem solving (assuming other information was consistent 

with this possible diagnosis).   

 Another example is a child who is referred due to reading difficulties. Based on the results 

of this study, the psychologist might decide to give the child additional verbal comprehension 

subtests, given the strong relation between verbal comprehension and reading.  If the child scored 

below average on a standardized basic reading test, and had lower verbal comprehension abilities, 

the psychologist may suspect a specific learning disability in basic reading.  Other data would of 

course be considered when making these diagnostic decisions, such as the child’s classroom 

performance, teacher and parent reports, school and medical records. 

 In addition to informing diagnostic decision making, the results from this study may inform 

educational recommendations and test planning decisions.  The child’s cognitive intrapersonal 

strengths and weaknesses may determine which accommodations are recommended.  For example, 

if a child has a learning disability in writing and a relative weakness in Gsm, reminders regarding 

writing conventions or the structure of paragraphs or essays may be recommended.  Another 

accommodation may include breaking the writing assignment into smaller steps in order to support 

the child’s working memory abilities.   

 For evaluation planning purposes, if one or more specific academic skills are the referral 

concern, psychologists may select tests and subtests that assess the cognitive abilities relevant to 

the academic skill and spend less time and effort on the assessment of cognitive abilities that lack 

evidence to support their importance for the particular academic skill.  Use of the cognitive-

achievement relations found in this study to guide test planning may be particularly relevant when 
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psychologists are using more than one intelligence test, which is encouraged in the cross-battery 

assessment approach.  These test planning decisions may be important for initial evaluations of 

children, as well as re-evaluations, which are currently required every three years in schools 

according to Individuals with Disabilities Educational Act (IDEA) guidelines.  Re-evaluations 

provide updated testing for children who qualify for special education services.  Selective testing 

which focuses only on significant cognitive-achievement relations that are relevant for the 

children’s particular disability can reduce the instructional time children miss for testing and 

reduce the testing demands on school psychologists. 

Limitations and Future Research 

 The findings of this study need to be considered within the context of the study’s 

limitations.  One limitation is findings are limited to the specific tests included in this study, and 

may not be generalizable to other tests used by psychologists, but not included in the study.  Due 

to the specific tests included in this study auditory processing, (Ga) was excluded from the analysis 

because the WJ III was the only test to include measures of Ga, and additional measures were 

needed from other tests for a cross-battery analysis.  In order to explore the cross-battery influence 

of Ga on academic skills, future research may include other measures, such as the newest edition 

of the WJ, 4th edition, and non-cognitive measures of Ga, such as the Comprehensive Test of 

Phonological Processing, Second Edition (CTOPP-2).  Other non-cognitive measures, such as 

executive functioning tests, can also be used to supplement cognitive tests in future studies in order 

to more comprehensively predict achievement, given findings that suggest these 

neuropsychological measures fit well within the CHC taxonomy (Floyd et al., 2010; Jewsbury et 

al., 2016; Salthouse, 2005). 
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 Another limitation concerns the planned missing design as it applied to the achievement 

data.  Because participants only completed either the KTEA or WIAT, and no one completed both 

tests, it was not possible to establish a CB-CFA achievement measurement model that best fit the 

data.  Thus, although one common linking test that all participants completed is unnecessary, it 

seems likely that at least partial overlap in which some portion of participants completed more 

than one of the measures under study is required in order to effectively use a planned missing data 

design.  Future research can incorporate more achievement data samples in order to explore an 

achievement measurement model, and test potential cross-loadings of achievement subtests or 

relations between achievement skills.  Relatedly, the non-overlapping achievement test data in the 

current study resulted in analysis difficulties due to convergence issues; these analysis difficulties 

meant it was impossible to study cognitive influences on several specific achievement skills, 

including reading comprehension, basic writing, written expression, basic math, and math problem 

solving skills.  As a result children’s and adolescents’ writing and math performance was studied 

at the broader domain level.  This collapsed the cognitive effects into broader influences and may 

have masked some of the nuanced specific influences which vary according to specific 

achievement skills; relations may exist for these specific skills that were not evidenced in the 

current study.  For example, some research suggests Gf significantly predicts written expression, 

but not basic writing skills (Caemmerer et al., 2017; Cormier, Bulut et al., 2016); this specific 

relation was not examined in the current study.  Future research can address this limitation in 

several ways.  Paths from cognitive abilities to particular achievement subtests, in addition to paths 

to the latent achievement variable, can test potential differential relations between cognitive 

abilities and broad and specific achievement skills.  Future research can also incorporate additional 
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achievement data in order to address the preponderance of missing data in the current study and 

allow for a more focused examination of specific achievement skills.   

 Another limitation is related to factors that may influence cognitive-achievement relations, 

but were not accounted for in the current study.  Previous research suggests developmental 

differences exist in cognitive-achievement relations (Niileksela et al., 2016; Taub et al., 2008). 

The strength of cognitive-achievement relations may change across development, and although a 

broad ability may not exert a significant effect across all ages, it may exert a significant effect at 

particular ages only.  Future research should examine cross-battery cognitive-achievement across 

ages in order to address that gap in the literature.  In addition to developmental differences, 

previous research suggests gender differences exist in some achievement skills (Scheiber, 

Reynolds, Hajovsky, & Kaufman, 2015), and thus potential cognitive-achievement differences 

between gender should be explored in future research.  Finally, it is unclear whether these 

cognitive-achievement relations are generalizable across different racial and ethnic groups (Garcia 

& Stafford, 2000; Keith, 1999) and across individuals with and without disabilities (Niileksela & 

Reynolds, 2014).  These considerations warrant further study. 

 Finally, this study was guided by CHC theory and thus a higher-order model of intelligence 

was analyzed.  There is currently a debate in the school psychology literature, however, regarding 

whether a higher-order or bifactor model is more appropriate when modeling cognitive data.  In a 

bifactor model g does not subsume the broad abilities, instead the intelligence subtests are 

influenced directly by both g and the unique effects of the broad abilities (with the effect of g 

statistically removed from the broad abilities).  The magnitude of the cognitive-achievement 

relations would likely vary dependent on the cognitive model under study; it is likely that a bifactor 



 

 107 

model would show weaker broad ability effects than would a higher-order model because a bifactor 

model partials out the effects of g from the broad abilities.  Future research is needed to clarify 

differences in the two models.  

Summary 

 Cross-battery research has several implications for practice and research associated with 

cognitive and achievement tests.  An adequately fitting cross-battery cognitive model that 

combines subtests and samples from six different tests supports the applicability of CHC theory to 

the development and interpretation of modern intelligence tests.  Cross-battery cognitive-

achievement relations demonstrate which relations are generalizable across tests, and which may 

be specific to particular tests.  The cross-battery cognitive-achievement findings may inform 

psychologists’ diagnostic decision making regarding specific learning disabilities, assessment 

planning, and provide empirical support for the practice of administering more than one cognitive 

test to children and adolescents, known as the cross-battery assessment approach.  Finally, the 

planned missingness methodology used as part of these cross-battery analyses suggests researchers 

may benefit from planned missingness designs, including those that do not include a single 

common linking test completed by all participants. 
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