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This report presents the results of research on comparing the structures and qualities of fast 

parallel prefix adders. The binary adder serves as a fundamental component of many digital 

arithmetic operations. Many modern microprocessors and ASICs that require high speed 

arithmetic logic often implement parallel prefix adders. Modern parallel prefix adder structures 

are based on previous works including those of Kogge-Stone, Brent-Kung, Ladner-Fischer, 

Knowles, et al. and designs presented in each work have their own merits and tradeoffs that are 

suitable for certain applications. 

 

Previous works have described standard and systematic ways to design and construct 

functional parallel prefix adder structures. Although the parallel prefix adder has been studied for 

decades, this work explores the possibility that non-standard and more optimal structures may 

exist by developing and utilizing a brute force search algorithm based on the prefix operator rules 

and properties to find all possible parallel prefix adder structures. The parallel prefix adder search 

algorithm design, search results and study of tradeoffs are discussed in this work. 
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1    Problem Definition 

 

Parallel prefix adder structure designs are heuristic-based and are not described by a formally 

defined set of equations with generalized and useful design variables. Previous works have 

described standard methods for constructing a parallel prefix adder structure that optimize 

modular layout (Brent-Kung [1]), fanout (Kogge-Stone [2]), and complexity (Ladner-Fischer [3]). 

Hybrid parallel prefix adders have been described in several other works over the years including 

Knowles [4] and Han-Carlson [5].  

 

This work aims to answer the question of whether there exists a prefix adder structure 

that may not implement a systematic structure and exhibits an improvement in key design areas 

(delay, complexity, fanout, area and power) compared to known standard structures. 
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2    Introduction 

 

Parallel prefix adders are based on the fundamental concept behind carry lookahead adder 

designs. For two given inputs A and B with N-bit vector representations aN-1, …, a0 and             

bN-1, …, b0 respectively, the carry behavior for each bit column i can be predicted by producing 

generate gi = ai bi and propagate pi = ai ⊕ bi signals in the pre-processing stage. When summing 

together bits ai and bi , the generate signal indicates that a carry will be generated regardless of a 

carry input, and the propagate signal indicates that the carry input will propagate to the carry 

output.  

 

The prefix computation stage is the heart of the prefix adder and is responsible for producing 

group generate gi:0 = gi + pi gi-1:0 and group propagate pi:0 = pi pi-1…p1 p0 signals for each bit 

column i. When summing together bit vectors ai, …, a0 and bi, …, b0, the group generate signal 

indicates that a carry output will be generated regardless of the carry input, and the group 

propagate signal will propagate the carry input to the carry output. The prefix operator is the 

fundamental operation of the prefix computation stage. The operator allows group generate and 

propagate signals for bit columns i:0 to be created from a subset of group signals i:k and k-1:0. 

Two properties of the prefix operator are associativity, which allows k to be any value between 0 

and i, and idempotency, which allows overlap or redundancy around the boundary k. The prefix 

operator grouping logic is usually illustrated as a single node in a parallel prefix adder design 

structure diagram. 

 

In the post-processing stage of a prefix adder, the sum output S represented by a bit vector          

si-1, …, s0 is produced by si = pi ⊕ ci signals where ci = gi-1:0 + pi-1:0 cin. As a result, the critical 

timing path of a parallel prefix adder is essentially governed by a series of 2-input logic 

combinations of generate and propagate signals that can be arranged efficiently but the 

arrangement is currently a heuristic approach. An efficient implementation achieves a delay on 

the order of log2N for N bits and allows the prefix adder to realize a significant improvement in 

speed relative to a ripple carry adder whose delay grows linearly as the adder size grows. 
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Parallel prefix adder structures have been studied for a long time because of their ubiquity in 

many digital systems and their value in high speed digital arithmetic. Another advantage of the 

prefix structure is its capability to be pipelined for higher throughput. The following sections 

provide an overview of previous key works on parallel prefix adders with a description of their 

design characteristics and tradeoffs. 

 

2.1    Kogge-Stone 

 

The Kogge-Stone type of adder is based on a set of mathematical rules described by Kogge and 

Stone in [2]. Figure 1 shows a 16-bit Kogge-Stone parallel prefix adder with minimum depth of 4 

and 49 nodes. The high complexity can be readily discerned in Figure 1 by the amount of nodes 

and wires. The design comes with the benefit that all nodes have a maximum fanout of 1 and is 

the fastest design when neglecting wire capacitance. Fanout here is defined as the number of 

branches to nodes located in other bit columns and does not count the implicit branch to the next 

row in the same bit column. 

    

 

Figure 1 – Kogge-Stone 16-bit, 4-level, 49-node adder 
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2.2    Ladner-Fischer 

 

Ladner and Fischer applied the concept of binary recursion to the parallel prefix problem in [3]. 

Their paper describes a set of rules for designing a family of adders that trades off between depth 

and complexity by varying the fanout.  

Figure 2 is best described as a Ladner-Fischer 16-bit adder with minimum depth of 4 and a 

maximum 32 nodes. The consequence of this design is the high fanout of 8 in the final level, 

which introduces more gate capacitance and delay on the node circuit driving the fanout.  

 

Figure 2 – Ladner-Fischer 16-bit, 4-level, 32-node adder 
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Figure 3 is an example of a Ladner-Fisher 16-bit adder variant that reduces complexity and fanout 

with node count of 27 by increasing the depth to 5 from the minimum depth of 4. Fanout is also 

reduced to 4 from the maximum fanout of 8. It exhibits characteristics in between the minimum 

depth Ladner-Fischer version and a Brent-Kung adder described in the next section. 

 

Figure 3 – Ladner-Fischer 16-bit 5-level 27-node adder 
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2.3    Brent-Kung  

 

The parallel prefix adder illustrated in Figure 4 was described by Brent and Kung in [4]. They 

were primarily concerned with the VLSI challenges at the time and cost of high complexity and 

fanout of the Kogge-Stone and Ladner-Fischer designs. The Brent-Kung parallel prefix adder 

design was based on the following restrictions: fanout = 1, at most 2 wire crossings, and all nodes 

are implemented uniformly with identical gate sizes. The penalty of minimizing complexity is an 

increase in depth to 2 log2N – 1 for an N-bit adder. For this reason, the Brent-Kung adder is 

considered to be a minimal complexity design and generally slower due to the depth. 

The 16-bit Brent-Kung adder in Figure 4 actually has a slight deviation from the true design 

described in the original paper because there is a fanout of 2 in the 4
th
 level on the 8

th
 bit column 

to reduce the depth to 6. However, this variation is still generally considered a Brent-Kung 

parallel prefix adder structure. 

     

 

Figure 4 – Brent-Kung 16-bit 6-level 26-node adder 
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2.4    Han-Carlson 

 

Han and Carlson described an approach for designing parallel prefix adders using design 

characteristics from Kogge-Stone and Brent-Kung [5]. The tradeoff is an increase in number of 

nodes for a decrease in depth, so a Han-Carlson adder is generally expected to perform faster than 

Brent-Kung without the heavy hardware cost of a Kogge-Stone. Figure 5 is a Han-Carlson 16-bit 

adder with the first and last rows resembling Brent-Kung adder and the inner rows resembling a 

Kogge-Stone adder. It has a depth of 5 levels and has the same number of nodes (32) as the 

minimum depth Ladner-Fischer. 

 

Figure 5 – Han-Carlson 16-bit 6-level 32-node adder 
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2.5    Knowles 

 

The Knowles parallel prefix adder designs trade off between fanout and complexity while 

maintaining the minimum depth [4]. Thus, the Knowles class of adders is a hybrid with 

characteristics that lie between Kogge-Stone and Ladner-Fischer. Figure 6 is a Knowles (1,2,2,4) 

16-bit adder in which the max fanout in levels 1, 2, 3, and 4 are 1, 2, 2, and 4 respectively. There 

are several other Knowles adders within the family with different maximum fanouts in each level 

that are not shown here. 

A characteristic of Knowles adders is that it allows idempotency and thus has some redundancy. 

In Figure 6 for instance, the final node on bit 8 groups together inputs 8:2 and 3:0 with 

redundancy on bits 3:2 to generate the group signals 8:0. 

 

Figure 6 – Knowles (1,2,2,4) 16-bit 4-level 42-node adder 
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2.6    Summary of Prefix Adders 

 

Table 1 shows a summary of existing parallel prefix adder designs and their key design variables. 

The most optimal parallel prefix adder structure is one that is able to minimize all three design 

variables and resides closer to the origin in the 3D plot of Figure 7. This report will show that 

parallel prefix adders with a non-standard structure and more optimal characteristics do exist. 

 

Table 1 – Summary of Parallel Prefix Adder Characteristics 

Structure Depth Max Fanout Nodes 

Kogge-Stone [2] log2N 1 N log2N-N+1 

Ladner-Fischer [3] log2N N/2 0.5N log2N 

Brent-Kung [1] 2 log2N – 1 1 2N-2- log2N 

Han-Carlson [5] log2N + 1 1 0.5N log2N 

Knowles (1,…,F) [4] log2N F Varies 

 

 

 

Figure 7 – 3D characteristic plot of existing parallel prefix adders  
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3    Study Approach 

A search algorithm was developed to execute a relatively efficient brute force search for all 

possible valid parallel prefix adder structures for a given value of N bits. The first step in 

designing the search algorithm requires a method for describing a prefix adder structure. Choi and 

Swartzlander have described a method for representing a complete set of Knowles prefix adders 

with matrices in [6]. The matrix representation was used as a standard way to produce a set of 

Spice simulation results for characterizing delay and transistor widths. 

However, this work aims to create a search algorithm that discovers all possible radix-2 prefix 

adder structures and then examine the tradeoffs between number of nodes (complexity), fanout, 

and number of levels (delay). The expectation is that the brute force search could reveal non-

standard and other novel hybrid prefix adder structures. The requirement for the matrix 

representation is simpler by only showing the location of identically sized nodes with fixed radix 

of 2, which is different than the matrices described in [6]. 

 

3.1    Prefix Structure Matrix Representation 

 

Concept: For row (i.e., level) j+1, the i
th
 column value represents the column index value of the 

signal source in the preceding row j. If no prefix computation exists, that is, a buffer is used 

instead, then the i
th
 column value equals i. 

Figure 8 illustrates the proposed matrix representation for 8-bit prefix adder structures to be used 

by the search algorithm. The bit columns are ordered from right to left for i = 0 to N-1 to be 

consistent with the dot diagram representation of the prefix adder structures above. Note that in 

the Brent-Kung table example assumes a fanout of 2 for column 4 (i=3) in level 3 rather than 

following the strict definition described in the Brent-Kung paper [4]. 
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Kogge-Stone  Ladner-Fischer  Brent-Kung 

6 5 4 3 2 1 0 0 

5 4 3 2 1 0 1 0 

3 2 1 0 3 2 1 0 
 

 6 6 4 4 2 2 0 0 

5 5 5 4 1 1 1 0 

3 3 3 3 3 2 1 0 
 

 6 6 4 4 2 2 0 0 

5 6 5 4 1 2 1 0 

3 6 3 4 3 2 1 0 

7 5 5 3 3 1 1 0 
 

 

Figure 8 – Matrix representation of 8-bit parallel prefix adders 

 

3.2    Prefix Structure Search Algorithm 

 

The search algorithm is provided with two input parameters N-bits and M-rows to describe the 

size of the prefix computation stage. A basic naïve brute-force search would generate every 

possible pattern of a N×M matrix with each entry having N possible values, which would yield 

N
NM

 possible combinations. A small N=8 bit adder with M=4 rows would yield 8x10
28

 possible 

combinations, which is a highly inefficient use of computing time and a single desktop computer 

will be incapable of completing the search within reasonable time.  

There are several important observations of the prefix structure that can be made to optimize the 

search algorithm: 

1. For the i
th
 bit column, group signal sources are always from the i

th
 column or less. That is, 

group i:0 will never receive signals from i+1 or higher. So the maximum values in each 

matrix cell are reduced as shown in Figure 9. 

7 7 7 7 7 7 7 7 

7 7 7 7 7 7 7 7 

7 7 7 7 7 7 7 7 
 

→ 

7 6 5 4 3 2 1 0 

7 6 5 4 3 2 1 0 

7 6 5 4 3 2 1 0 
 

 

Figure 9 – Adjustment of Max Values in Matrix 

The key improvement of this realization is this reduces the number of possible patterns 

from N
NM

 to (N!)
M
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2. The first 2 bit columns (i=0 and i=1) are always the same, so the algorithm does not need 

to try different combinations in those columns because there is only one valid column 

pattern for all prefix adder types. This provides a modest reduction to the number of 

possible patterns from (N!)
M

 to ((N-2)!)
M

 

3. Valid structures in row j+1 will always contain valid structures in all previous rows j or 

less. In other words, it is more efficient to test and gather all valid structures for the first 

row 1, and then test and gather all valid structures in the next row 2 using the subset of 

valid structures from row 1, and so on. There is no prediction on how many possible valid 

structures exist per row in order to estimate the algorithm speedup, but it will provide 

significant improvement in the efficiency of the search. 

4. Idempotency can be disallowed to further reduce the number of possible patterns. 

For a N=8 bit adder with M=4 rows, the worst-case number of possible patterns is ((N-2)!)
M

 = 2.7 

x10
11

 assuming no speedup benefit from observation 3 above. If a single desktop computer can 

compute about 100,000 patterns per second then it would take an estimated 31 days to discover 

and exhaust all possible patterns. Ideally, the algorithm would be able to complete within 

reasonable time for larger N-bit adders, but the number of possible prefix structures increases 

exponentially with N and search time increases accordingly. For the purpose of this work, the 

search algorithm will find all possible patterns of N=8 bits with up to M=4 rows and attempt to 

extrapolate the results to larger N-bit adder structures. The results will be studied and key 

findings may be extrapolated for larger N-bit adders.  

The search algorithm was written in LabVIEW graphical programming language and all the code 

is attached in the Appendix. There are more details and descriptions of the LabVIEW code and 

subroutines included in the Appendices. 
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4    Results 

A single desktop PC required almost 2 weeks to run the search algorithm without interruption and 

completed with the following amounts of prefix adder structures for N=8 bits with up to M=4 

rows tallied in Table 2. A complete pattern represents a fully functional prefix adder structure and 

an incomplete pattern represents a prefix adder structure that does not have all the required group 

generate and propagate signals on all outputs. The incomplete pattern may potentially be made 

complete with additional row(s) of prefix logic. The tallies do not include structures that have 

idempotency. It is noteworthy to observe how the number of both complete and incomplete prefix 

structures increases exponentially at higher levels. There is no reason to run the search algorithm 

for depth beyond the 2 log2N – 1 upper limit established by Brent-Kung and Han-Carlson. 

Table 2 – Tally of Parallel Prefix Adder Structures 

Level (Row) Complete Patterns Incomplete Patterns 

1 0 64 

2 0 4160 

3 52 172044 

4 45786 4668266 

 

4.1    Nodes, Fanout, and Depth Results 

 

The delay, complexity, and fanout characteristics will be used as a first approach to compare all 

valid parallel prefix adder structures that have been generated by the search algorithm. Previous 

works have different weights on importance of what areas of optimization to focus on and how to 

best represent delay, complexity, and fanout. For the purpose of this first study, a simplistic 

approach will be taken by making the following approximations for comparison. 

1. Complexity is represented by the number of nodes.  

2. Fanout is represented by the product of the max fanout of any one branch and the number 

of nodes divided by the number of branches to indicate an average fanout measure. By 

capturing the worst-case fanout and an average in a single fanout metric, two prefix 

structures with the same average fanout can be readily distinguished from each other if 
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one has several smaller fanouts (more favorable) and another has a single large fanout 

(less favorable).  

3. The delay is represented by the depth, i.e., number of rows or levels. 

A straight-forward comparison approach is to perform a 2D plot of complexity versus fanout for 

each level. A 3D plot of delay, complexity, and fanout actually would be more interesting 

especially for larger N-bit parallel prefix adders, however, all the valid 8-bit parallel prefix 

structures that have been generated by the search algorithm for this work only existed with 2 

delay points (3 or 4 levels) so it is simpler to examine the 2D plot at each level. 

Graphing a single metric or namely the quality factor is another useful comparison approach. The 

quality factor is defined as follows: 

QF� = Quality	Factor = �Complexity��Fanout��Delay� = 	
���������� !	" #�$%��&�'��

() #*+��
  

For example, the following table illustrates the characteristics for 8-bit parallel prefix adder 

structures. 

 

Table 3 – Summary of Parallel Prefix Adder QF0 Characteristics 

Structure Rows Branches Nodes Max Fanout QF0 

Kogge-Stone 3 17 17 1 51 

Ladner-Fischer 3 7 12 4 252 

Brent-Kung 4 10 11 2 96 

Han-Carlson 4 12 12 1 48 

Knowles (1,1,4) 3 11 14 4 212 

Knowles (1,2,2) 3 9 14 2 130 

Knowles(1,1,2) 3 15 17 2 116 

 

 

Although the QF0 definition is an overly simplified attempt at comparing parallel prefix structures 

and does not provide equal weight between Kogge-Stone, Ladner-Fischer, and Brent-Kung 

designs, the QF0 metric is very useful to quickly screen out the thousands of valid prefix 

structures that are worse than the worst QF0 = 252 of Ladner-Fischer. 
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4.1.1 3 Level 8-bit Prefix Adder Results 

 

 

Figure 10 – 3 Level 8-bit Prefix Adder Complexity versus Fanout Plot 

 

Two observations can be made from Figure 10: 

1. There are only 21 points for 52 parallel prefix structures. This indicates that there are 

slightly different structures with redundant characteristics. 

2. There is a nice array of tradeoff options between the two expected design extremes of 

Kogge-Stone and Ladner-Fischer. 
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Based on the graph in Figure 10, there are some prefix structures that appear slightly more 

optimal and closer to the graph origin than Knowles (1,2,2), particularly at the point (fanout, 

nodes) = (2.5, 14). There are 2 structures with this characteristic as follows in Figure 11.  

   

Knowles (1,2,2) (2.5, 14) Structure 1 (2.5, 14) Structure 2 

Figure 11 – Knowles (1,2,2) and (2.5, 14) Structures 

Knowles (1,2,2) has 5 branches with fanout of 2, and the new structures above only have 3 

branches with a fanout of 2. 
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There are other structures with slightly more fanout or complexity such as at the points (4.3, 13) 

or (2.3, 15) in Figure 10. The search algorithm produced 5 structures with a (4.3, 13) 

characteristic, but the 3 most interesting ones are shown as follow in Figure 12: 

   

(4.3, 13) Structure 1 (4.3, 13) Structure 2 (4.3, 13) Structure 3 

Figure 12 – (4.3, 13) Structures 

The algorithm also produced 4 structures with (2.3, 15) characteristics, but only 3 interesting ones 

are shown as follows in Figure 13: 

   

(2.3, 15) Structure 1 (2.3, 15) Structure 2 (2.3, 15) Structure 3 

Figure 13 – (2.3, 15) Structures 
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Overall one can observe and expect that all the 3 level 8-bit parallel prefix structures illustrated 

above exhibit various combined characteristics of Ladner-Fisher and Kogge-Stone. What is 

particularly interesting is the alternating prefix groupings especially at the 3
rd

 row. 

 

Figure 14 – 3 Level 8-bit Prefix Adder QF0 Plot 

 

 

 Figure 15 – 3 Level 8-bit Prefix Adder QF0 Histogram 

 

Of the 52 valid 8-bit prefix adder structures, the structure with the lowest QF0 is Kogge-Stone 

(QF0=51, pattern=0). The structures with the next lowest QF0 = 100 are patterns 2, 3, 4, 5, 7, and 

21. Pattern 2, 5, 7, and 21 are all (2.3, 15) structures, three of which are illustrated on the previous 

pages. Pattern 3 and 4 are (2.1, 16) structures, which is one node less than Kogge-Stone and has 1 
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branch with a fanout of 2. Overall, the QF0 plot suggests that all 52 valid 8-bit prefix adder 

structures have qualities that fit in between Kogge-Stone (QF0=51, pattern=0) and Ladner-Fischer 

(QF0=252, pattern=48) and this finding supplements the observations made on Figure 10. 

 

4.1.2 4 Level 8-bit Prefix Adder Results 

 

 

Figure 16 – 4 Level 8-bit Prefix Adder Complexity versus Fanout Plot 

 

At 4 levels, the prefix adder is sacrificing minimum depth for a reduction in complexity. Brent-

Kung and Han-Carlson have 11 and 12 nodes respectively for a 8-bit adder. The plot in Figure 16 

shows that Brent-Kung and Han-Carlson are among the most optimal minimum complexity 

structures possible located closest to the origin, but the search algorithm uncovered several other 

structures that are slightly more optimal than Brent-Kung at the point (fanout, nodes) = (1, 11) 

and also at (2.2, 10).   
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An interesting subset of those new structures are illustrated as follows in Figure 17. 

   

Brent-Kung (2.2, 10) Structure 1 (2.2, 10) Structure 2 

Figure 17 – Brent-Kung and (2.2, 10) Structures 

 

The key observation of the (2.2, 10) structures is that it saves one node on the MSB column with 

a few nodes rearranged. 
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(1, 11) Structure 1 (1, 11) Structure 2 (1, 11) Structure 3 

 

   

(1, 11) Structure 4 (1, 11) Structure 5 (1, 11) Structure 6 

Figure 18 – (1, 11) Structures 

 

The (1, 11) structures do not have a clear systematic design pattern, but the key takeaway is that a 

non-standard structure can be slightly more optimal. The advantage the (1,11) structures have 

over Brent-Kung is that all branches have no fanout to multiple nodes and the advantage over 

Han-Carlson is 1 less node (slightly lower hardware cost).  
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Figure 19 – 4 Level 8-bit Prefix Adder QF0 Plot 

 

 

Figure 20 – 4 Level 8-bit Prefix Adder QF0 Histogram 

 

Of the 45786 valid 8-bit prefix adder structures, Figure 20 shows that there are at least 1500 

possible 8-bit patterns with a QF0 between Han-Carlson (QF0 = 48) and Brent-Kung (QF0 = 96). 
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4.1.3 Extrapolation to Larger N-bit Min Depth Parallel Prefix Adder Structures 

 

The 3-level 8-bit (2.5, 14) Structure 1 and (2.3, 15) Structure 2 patterns are very interesting to 

extrapolate to larger N-bit adders because they exhibit a regular structure. Figures 21 and 22 

illustrate 16-bit prefix structures based on the 8-bit structures. 

 

Figure 21 – (Structure A) – 4 Level 16-bit based on 3-level 8-bit (2.5, 15) structure 

 

 

Figure 22 – (Structure B) – 4 Level 16-bit based on 3-level 8-bit (2.4, 14) structure 
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4.1.4 Comparison of Minimum Depth (4 level) 16-bit Prefix Adders 

 

Table 4 – Comparison of Minimum Depth 16-bit Prefix Adder Characteristics 

Structure Nodes Branches Max Fanout Fanout Metric 

Kogge-Stone 49 49 1 1 

Knowles (1,1,1,4) 49 43 4 4.6 

Structure B 42 31 3 4.1 

Knowles (1,1,2,4) 42 30 4 5.6 

Knowles (1,1,4,4) 40 25 4 6.4 

Knowles (1,2,2,4) 42 23 4 7.3 

Structure A 39 29 4 5.4 

Knowles (1,2,4,4) 36 17 4 8.5 

Ladner-Fischer 32 15 4 8.5 

 

Structure A is noteworthy because it fits in between Knowles (1,2,2,4) and Knowles (1,2,4,4) for 

complexity, but has a higher branch count because it has more individual branches and thus 

exhibits a lower fanout metric that is more similar to Knowles (1,1,2,4). Essentially, Structure A 

increases the number of individual branches while keeping the complexity lower than a 

comparable Knowles prefix structure. 

Structure B is nearly identical to a Knowles (1,1,2,4) in terms of complexity, but has a max 

fanout of 3 rather than 4, so it is able to achieve a fanout metric that is lower than Knowles 

(1,1,1,4) with less complexity. 

There are several other larger N-bit parallel prefix structures that could potentially be 

extrapolated from the 8-bit results. 
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4.1.5 Optimizing Larger N-bit Brent-Kung Prefix Adder Structures 

 

The 4-level 8-bit (2.2, 10) Structure 1 can be easily extended to larger Brent-Kung adders by 

saving one node as illustrated in Figure 23. 

 

Figure 23 – (Structure C) – 5 Level 16-bit based on 4-level 8-bit (2.2, 10) structure 

 

The minor modification has the benefit of eliminating one node on the MSB and reducing the 

number of wire crossings for the final node on the MSB. The benefits diminish for larger N-bit 

adders. 

The 4-level 8-bit (1, 11) structures are slightly more optimal than Brent-Kung, but due to the non-

standard structure they are hard to extrapolate to larger N-bit parallel prefix structures. 

Nonetheless, this work shows that slightly more optimal non-standard structures do exist. 
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4.2    Area, Power, and Delay Results 

 

The first study involved a relatively simplistic approach for comparing characteristics of different 

adders. Complexity was represented by the number of nodes. Fanout was represented by the 

product of the max and average fanout. Delay was represented by the number of levels. The next 

few sections describe the shortcomings of the first study and how it can be refined. 

Fanout is not usually a direct design parameter in digital circuit design. Normally gate sizing and 

fanout constraints are driven by area, speed, and power requirements. Therefore, a study of the 

fanout characteristics of different parallel prefix adders is not necessarily directly useful. 

Using the depth of a parallel prefix adder as a delay metric is very simplistic and assumes all 

nodes have the same average unit “node” delay and neglects the effect of fanout and wire 

capacitances. Using a logical effort model approach will improve the delay distinction between 

adder structures because it takes in account the effect of fanout on nodes in the critical signal 

path. The critical signal path starts from the LSB input of the adder to the deepest output bit, 

which is usually the MSB or the bit below it. There may be more than one path of the same depth 

so the critical path will be the worst-case logical effort of these paths.  

The logical effort model described in [7] and [8] enables computation of the minimum possible 

path delay D as follows: 

D = NF
(1/N)

 + P 

1. F = GBH = overall path effort 

2. G = ∏ gi = path logical effort where gi is the logical effort of each intermediate part 

a. Logical effort = Cin_device / Cunit_inverter 

3. B = ∏ bi = path branch effort where bi is the branch effort in each intermediate stage 

a. Branch effort = (Con_path + Coff_path) / Con_path 

4. H = Cout/Cin = path electrical effort or ratio of output to input capacitance for the circuit 

5. P = ∑pi = path parasitic delay where pi is the parasitic delay of each stage 
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Therefore, the minimum possible delay D can be computed based on the following: 

1. G will be neglected and equal to 1 because the logical effort for a buffer and a node is 

about the same. 

2. B is computed as the product all the fanouts on the critical path when assuming the buffer 

and all node inputs have similar input capacitance. This simplification helps in analyzing 

the large data set of results, although including some measure of wire capacitance and 

distinction between different input capacitances of nodes and buffer circuits would help 

improve the accuracy of the results. 

3. H will be neglected and equal to 1 because the input and output capacitances of the prefix 

adder structure are the same. 

4. P is computed as the sum of the parasitic delays of individual nodes. This can vary 

depending on whether the path goes through a buffer or a certain input in the group logic 

node, so for the purpose of this work to simplify the comparison, all paths are assumed to 

have approximately the same parasitic delay so the value of P will be neglected and 

assumed to be 0. 

In summary, the refinement to the delay metric is simply based on the product of the branches on 

the critical path. As a result, the delay expression nicely takes in account the parallel prefix adder 

depth, effects of fanout and characteristics of the actual critical path all in a single metric and 

essentially reduces 2 characteristic dimensions (depth and fanout) of the original study approach 

into a single dimension (delay). A small algorithm was developed to analyze each parallel prefix 

structure to identify critical paths and compute the worst-case delay based on the aforementioned 

assumptions. The algorithm is described in Appendix B. 

Furthermore, it is important to point out that all discussions up until this point assumed the fanout 

count did not include the implicit vertical (column) branch between buffers or nodes, that is, 

fanout only counted actual branches to new nodes. From this point onward, the fanout count will 

now include implicit branches mainly because the critical path especially in non-minimum depth 

parallel prefix adder structures do not always traverse through nodes. For instance, the 16-bit 

Han-Carlson in Figure 5 has two possible critical paths that are highlighted in Figure 24 with 5 

branches at columns starting and ending as 0→1→3→7→15→15 or 0→1→1→5→13→14, and 

these paths have branch efforts of 16 and 32 respectively. The latter path has an implicit branch in 

bit column 1. 
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Figure 24 – 16-bit Han-Carlson prefix adder propagation delay paths 



29 

 

A complexity metric that only relies on the number of nodes in an adder structure leaves out the 

impact of creating interconnections between nodes. For example, two structures may have an 

identical number of nodes, but one has a greater amount of wires compared to the other and thus 

contributes to larger area. A more faithful estimate of area is challenging to predict and compare 

among parallel prefix adders because of the variation in node placement and irregularity in their 

interconnections. However, representing area as the product of total number of nodes and total 

wire length would be generally an improvement in distinguishing adder designs. Total wire length 

is calculated as the sum of all horizontal distances of all wires from source to destination. The 

vertical distances of all wires are assumed to be negligible relative to horizontal wire lengths. 

Power dissipation was not a focus in the first study approach. Low power consumption has 

become increasingly important in digital design because it is motivated by demand for mobile 

devices and silicon cooling challenges due to increasing power density caused by shrinking 

transistor sizes. Additionally, as CMOS technology continues to shrink, static power dissipation 

due to leakage has been trending towards a larger share of total power dissipation, so the number 

of nodes would be considered a good metric of static power dissipation because more nodes, i.e., 

transistors, dissipate more static power regardless of whether a signal is propagating through the 

node. The second aspect which was neglected in the first study approach is dynamic power. 

Dynamic power could be generally modeled based on the capacitances and switching 

probabilities of each type of logic gate in the design, however, it becomes more challenging for a 

binary adder because different architectures exhibit different switching propagation paths that 

depend on the input values [9]. It is useful, however, to recognize that the dynamic power 

contribution could be generally approximated by the total wire length, i.e., total wire capacitance, 

in the adder structure. 

As a result, all parallel prefix adder structures could be compared using an area-power metric and 

delay. The Quality Factor could also be defined as follows: 

QF, = Quality	Factor = �Area��Power��Delay� = �Nodes��Total	Wire	Length��Delay�  

Table 5 summarizes the area-power and delay metrics as well as the QF1 using the 

aforementioned approach for existing adder structures. 
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Table 5 – Summary of 8-bit Prefix Adder Characteristics 

Structure Nodes Wire 

Length 

Area·Power Branch 

Effort 

Levels Delay QF1 

Kogge-Stone 17 51 595 8 3 6.00 3570 

Knowles(1,1,2) 17 25 425 12 3 6.87 2920 

Knowles (1,2,2) 14 27 378 18 3 7.86 2971 

Knowles (1,1,4) 14 24 336 20 3 8.14 2735 

Han-Carlson 12 21 252 16 4 8.00 2016 

Ladner-Fischer 12 20 240 30 3 9.32 2237 

Brent-Kung 11 17 187 24 4 8.85 1655 

  

 

The Area·Power metric has a stronger effect on the QF1 metric than the Delay metric. Although it 

is readily possible to apply a linear adjustment to balance the contributions, the purpose of the 

QF1 metric, like the QF0 metric, is only to quickly compare and screen out the thousands of valid 

prefix structures that are worse than the worst QF1 = 3570 of Kogge-Stone. 
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4.2.1 8-bit Prefix Adder Results 

 

 

Figure 25 – 8-bit Parallel Prefix Adder Area·Power versus Delay Plot 

Figure 25 nicely illustrates a complete spectrum of 8-bit parallel prefix adder characteristics in a 

single graph including both minimum depth and minimum complexity structures. The adder 

depth and fanout are now combined into a normalized delay metric. It is notable to observe that 

the graph still follows a similar pattern as in the first study approach (Figures 10 and 16) that 

examined characteristics in 3 areas (nodes, fanout, and depth). At one end of the spectrum, 

Kogge-Stone is the fastest and higher cost, and at the other end is Ladner-Fischer, which is slower 

and lower cost. Han-Carlson and Brent-Kung exhibit lower delay than Ladner-Fischer and some 

of the Knowles adders because of their lower branch effort on the critical path. These 

observations are also roughly in line with the remarks and conclusions in [8]. Lastly, an important 

observation of Figure 25 is that there indeed exist parallel prefix adder structures that are more 

efficient than the well-documented designs and supplements the findings of the first study 

approach in Section 4.1. 
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Figure 26 – 8-bit Parallel Prefix Adder QF1 Plot 

 

 

Figure 27 – 8-bit Parallel Prefix Adder QF1 Histogram 

 

To further supplement the observations on Figure 25, Figure 27 shows that there exist at least 100 

prefix adder structures with a QF1 metric better than the lowest QF1 = 1655 of Brent-Kung. A 

majority of the prefix adder structures have a QF1 that lie between 2500 to 5000, and Kogge-

Stone QF1 = 3570 lies roughly in the middle of the histogram curve. Also, Figure 25 showed all 

the 8-bit parallel prefix adders and suggested that the minimum depth adder structures are not 

necessarily the most efficient overall especially when the structure trends towards higher branch 

efforts. For comparison to Figure 10, only the 3 level prefix adder Area·Power versus Delay plot 

are shown in Figure 28. 
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Figure 28 – 3 Level 8-bit Parallel Prefix Adder Area-Power versus Delay Plot 

 

Figure 28 shows similar characteristics as Figure 10. Kogge-Stone and Ladner-Fischer lie on the 

extreme ends of the spectrum and the Knowles class of adder structures lie in between. There are 

adder structures that are more efficient and lie at the points (delay, complexity) = (6.87, 405), 

(7.56, 299), and (8.14, 240) and these structures are illustrated in Figure 29. 
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(6.87, 405) Structure (7.56, 299) Structure (8.14, 240) Structure 

   

Figure 29 – Area-Power-Delay Efficient 3 Level 8-bit Structures 

 

Observations based on Figure 29: 

1. The (6.87, 405) structure is identical to the (2.3, 15) Structure 2 shown in Figure 13 and 

has been extrapolated to a 16-bit Structure B in Section 4.1.3. An improved variation that 

is also based on the observations of (8.14, 240) structure is shown in Section 4.2.2. 

2. The (7.56, 299) structure is identical to the (4.3, 13) Structure 2 shown in Figure 12. 

3. The (8.14, 240) structure is a subtle modification of the Ladner-Fischer structure by 

moving the last node in Column 2 down from the 2
nd

 to 3
rd

 row. The key improvement of 

this modification is the branch effort of the critical path is reduced from 30 to 20, and 

therefore the delay is reduced from 9.32 to 8.14, which is a significant improvement. 

Also, this improvement extends very well to larger N bit adders and a 16-bit version is 

illustrated in Section 4.2.2. 

However, as the plot of all 8-bit parallel prefix adder characteristics in Figure 25 indicated, the 

minimum depth prefix structures are not necessarily the most efficient because of the larger 

branch efforts on the critical path and higher hardware costs (total wires and nodes). The efficient 

structures in Figure 24 that are closer to the origin reside along the points (6.73, 405), (7.44, 286), 

(8.00, 176), and (8.85, 130). The most interesting of these structures are illustrated in Figure 30. 
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(6.73, 405) Structure (7.44, 286) Structure (8.00, 176) Structure 

 

 

 

 (8.85, 130) Structure  

Figure 30 – Area-Power-Delay Efficient 8-bit Prefix Structures 

 

Observations based on Figure 30: 

1. The (6.73, 405) structure exhibits slightly better delay than the minimum depth (6.87, 

405) structure identified earlier because it has a lower branch effort on the critical path by 

moving nodes for the lower bits deeper in the structure. It also exhibits similar 

characteristics of staggering the prefix groupings as was observed in the (6.87, 405) 

structure. 
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2. The (7.44, 286) and (8.00, 176) structures are hybrids containing characteristics of other 

adders, but they exhibit slightly better area-power and delay characteristics compared to 

the nearest efficient minimum depth structure. However, they are difficult to extrapolate 

to larger N-bit adders. 

3. The (8.85, 130) structure is identical to the (2.2, 10) Structure 1 identified in Section 

4.1.2 and has been extrapolated to a 16-bit Structure C in Section 4.1.5. It has the same 

delay characteristic as Brent-Kung, but with a significantly lower area-power metric due 

to fewer nodes.  

 

4.2.2 Extrapolation to Larger N-bit Parallel Prefix Adder Structures 

 

The modified Ladner-Fischer that led to the 8-bit (8.14, 240) structure in Figure 29 is easy to 

extend to 16-bits. The key lesson here is to minimize the branch effort on the critical path by 

moving the lower bit branches further down the structure and inserting buffers in their place. This 

allows the adder attain a better branch effort on the critical path than Brent-Kung while 

maintaining minimum depth. 

 

Figure 31 – Modified Ladner-Fischer based on (8.14, 240) Structure 

Furthermore, the useful modification that was applied to Ladner-Fischer can also be applied to 

the (6.87, 403) structure that has already been extrapolated to 16-bits in Section 4.1.3. Figure 32 

shows Structure A (Section 4.1.3) with an improved branch effort. 
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Figure 32 – Modified Structure A based on (6.87, 403) and (8.14, 240) Structures 

Figure 33 illustrates a Structure D based on the design patterns observed in the (6.73, 405) and 

(6.87, 405) structures. Without the modification applied to Structure A as illustrated in Figure 28, 

Structure D has a slight edge over Structure A in that it has a lower branch effort. There is 

potentially a better solution than what was proposed for the 5
th
 row to achieve the required group 

signals to further reduce the branch effort. 

 

Figure 33 – (Structure D) – 16-bit structure based on (6.73, 405) and (6.87, 405) Structures 
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4.2.3 Comparison of 16-bit Prefix Adders 

 

Table 6 – Summary of 16-bit Prefix Adder Characteristics 

Structure Nodes Wire Length Area·Power Branch Effort Levels Delay 

Kogge-Stone 49 155 7595 16 4 8.00 

Knowles (1,1,1,4) 49 143 7007 40 4 10.06 

Knowles (1,1,2,4) 42 116 4872 60 4 11.13 

Knowles (1,2,2,4) 42 115 4830 90 4 12.32 

Knowles (1,1,4,4) 40 110 4400 100 4 12.65 

Structure D 39 95 3705 40 5 10.45 

Structure A 39 89 3471 60 4 11.13 

Modified Struct A 39 89 3471 40 4 10.06 

Knowles (1,2,4,4) 36 102 3672 150 4 14.00 

Han-Carlson 32 85 2720 32 5 10.00 

Ladner-Fischer 32 76 2432 270 4 16.21 

Modified L-F 32 76 2432 72 4 11.65 

Brent-Kung 26 49 1274 96 5 12.46 

Structure C 25 41 1025 96 5 12.46 

  

 

Table 6 summarizes the area-power and delay metrics for the existing adder structures and the 

extrapolated structures developed from the first study approach (Figures 21 and 22). 
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Figure 34 – 16-bit Parallel Prefix Adder Area-Power versus Delay Plot 

Figure 34 is a graphical representation of Table 6 and illustrates the spectrum of 16-bit prefix 

adder structures. The existing prefix adders still remain roughly in the same place relative to each 

other for 16-bits relative to 8-bits, but more remarkably, Han-Carlson and Brent-Kung appear to 

grow less quickly in delay relative to Ladner-Fischer as the adder size grows. The modification 

on Ladner-Fischer and Structure A to reduce the branch effort on the critical path brings the delay 

on par with Han-Carlson and Brent-Kung, but the improvement will be challenging to maintain as 

the adder size grows.  
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5    Conclusion 

 

Overall, the key takeaway from the new minimum-depth parallel prefix structures that have been 

uncovered by the search algorithm is that lower complexity and fanout metric results can be 

attained by staggering the prefix operator groupings as illustrated in Section 4.1.3. This increases 

the wire crossings by the branches that are not seen in any of the known documented prefix adder 

structures. Modern day silicon fabrication is capable of handling several metal layers so these 

new structures have potential for better speed performance and lower area compared to other 

minimum depth prefix adder structures. 

For the minimal complexity parallel prefix structures, Han-Carlson and Brent-Kung are fairly 

close to optimal with the benefit of an easily scalable design pattern. These adders also exhibit 

very appealing speed qualities as the adder size grows in size because their branch efforts double 

as size doubles, unlike Knowles and Ladner-Fischer whose branch efforts grow exponentially as 

size doubles. Also this work demonstrated that there are non-standard prefix structures that are 

slightly more optimal for complexity and fanout, but the effort to find these structures for larger 

N-bit adders may not be worth the small return in performance depending on the application. 

One area that was not explored with the search algorithm is allowing idempotency. This work did 

not explore this because the number of possible prefix structures increases significantly when 

allowing idempotency. However, this work compared the results to various Knowles adders that 

have redundancy and illustrated that there are inefficiencies with allowing idempotency. 

The Area·Power and Delay study could be extended with further refinements to the metrics for 

improving the comparison of results with the ultimate goal of better quantifying the most optimal 

prefix adder structure for a 8-bit adder and potentially larger N-bit adders. The delay estimate 

could be refined as described in [7] and [8].  

This search algorithm work could also be continued to search for optimal structures in 16, 32, or 

64 bit prefix adders. The current algorithm design described in this work requires no 

modifications to work with larger adder sizes, however, the search time increases exponentially 

and was not feasible to run the search algorithm on a standard desktop computer and complete 

within reasonable time. It may be possible to execute the search algorithm faster on higher 
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performance computers and gather results within reasonable time. There are potentially other 

search algorithm optimization tricks that could be applied to speed up the search time.  

Another possible further extension of this work could be performed by studying the prefix 

structure results from the search algorithm and potentially come up with some equations that can 

be used to describe the prefix structure when given key design parameters. This set of equations 

would be a valuable tool for synthesizers used to translate from RTL to actual transistor or logic 

implementations in FPGAs or ICs. 
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6    Appendix A: Search Algorithm LabVIEW Code 

6.1    Main Search Algorithm VI Front Panel 

 

 

  



43 

 

6.2    Main Search Algorithm 
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The Main Search Algorithm implements the algorithm described in the Search Algorithm 

section of this work above. 

The algorithm consists of 3 loops: 

1. Current Row 

2. Previous Row pattern 

3. Column pattern  

Pseudo-code outline of the algorithm: 

1. For the Current Row, there will be a collection of valid Previous Row patterns to brute 

force test all Column patterns from 0 to (N-1)!-1. 

2. If a valid Column pattern in the Current Row is found and is complete, the structure will 

be logged as a comma-separated text file for later analysis. Proceed to the next Column 

pattern and repeat steps 2-3. 

3. If a valid Current Row pattern is found but is incomplete, the structure will be stored in 

memory as a new Previous Row pattern to be used in testing new Column patterns in the 

next Current Row iteration. Proceed to the next Column pattern and repeat steps 2-3. 

4. When all Column patterns have been tested, save all the saved incomplete Current Row 

structures and proceed to the next Previous Row pattern, repeat steps 2-4. 

5. When all the Previous Row patterns have been tested, gather all the saved incomplete 

Current Row structures generated from testing all Column patterns against all Previous 

Row patterns, and advance to the next Current Row using only these incomplete 

structures for testing new prefix structures. Repeat steps 1-5. 

 

At the completion of this search algorithm, there will be a collection of text files representing 

valid prefix adder structures that is plotted and analyzed. 

 

The bottom portion of the code is only used to keep track of simulation time and characterize the 

algorithm pattern test rate on the computer.  
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6.3    Array Pattern Generator 

 

 

 

The Array Pattern Generator subroutine is given a pattern K between 0 to (N-1)!-1 and produces 

the K
th
 unique N-bit long row pattern. The Row input argument is used to determine if the first 2 

bit columns are (0,0) or (0,1) as described by observation #2 in the Search Algorithm section. The 

MaxValues input is used by the algorithm to determine the maximum value for each row entry as 

described by observation #1. 
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Basically, this algorithm does a variable modulo division on the pattern K value so a row R is 

represented as follows: 

R(0) = 0 always 

R(1) = 0 (if first row) or 1 (all other rows) 

R(2) = K mod 3 

R(3) = floor(K/3) mod 4 

R(4) = floor(K/12) mod 5 

R(5) = floor(K/60) mod 6 

R(6) = floor(K/360) mod 7 

R(7) = floor(K/2520) mod 8 

For example, for N= 8 bits, assuming the first row is being generated: 

Pattern K=0 is converted to R={0,0,0,0,0,0,0,0}  

Pattern K=1 is converted to R={0,0,0,0,0,1,0,0}  

Pattern K=2 is converted to R={0,0,0,0,0,2,0,0}  

Pattern K=3 is converted to R={0,0,0,0,1,0,0,0}  

Pattern K=((N-1)!-1)=(7!-1) = 20159 is converted to R={7,6,5,4,3,2,0,0}  
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6.4    Prefix Group Signals 
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The Prefix Group Signals subroutine is given a prefix array with a minimum of 1 row. A loop 

iterates through each row and uses the Group Cell subroutine to determine if a row contains a 

valid pattern, and if so, continue to the next row and repeat the validation. If the Group Cell 

routine detects a bad structure then this subroutine will quit with a Bad Prefix error. If the 

subroutine completes without error then it will return the total number of nodes used in the prefix 

structure and the final group generate and propagate signals formed by the prefix structure. The 

main search algorithm uses the final group generate and propagate signal result to determine if it 

is complete or incomplete and requires more subsequent row(s) to complete the structure. 
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6.5    Group Cell 

 

 

 

The Group Cell subroutine basically acts like a single Node for the i
th
 bit column and verifies 

that the Node is valid.  

The subroutine retrieves the previous row groups  (PrevRow array) at the current i
th
 bit column 

(PresentCol) and at the value contained within the prefix structure for the source group 

(OtherCol). If the value contained in the prefix structure and bit column i are equal (i.e 

PresentCol = OtherCol), then a buffer exists rather than a Node and the output group is the same 

as the original group at the i
th
 bit column position, that is, PresentValue = PrevRow(PresentCol). 

The Check Cell Prefix subroutine is used to determine if the newly concatenated group signals 

are valid. 
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6.6    Check Cell Prefix 

 

 

The Check Cell Prefix is where the prefix operator rules are applied and tested to verify if a new 

group generate and propagate signal is valid. The group signals are organized as a comma 

separated string (String), for example, group signals 3:0 are represented as 3,2,1,0. The prefix test 

rules are: 

1. Groupings may have redundancy if idempotency is allowed by detecting 2 consecutive 

equal values. For example, grouping 3:2 with 2:1 would be represented as 3,2,2,1 in the 

String. If idempotency is allowed, then it will eliminate redundancy on the input String 

and generate a new signal 3:1 represented as 3,2,1 in the output String 2. Otherwise, the 

grouping is invalid because no redundancy is allowed. 

2. Groupings must have monotonic order. For example, 3:0 is represented as 3,2,1,0 and is 

always monotonic. An invalid grouping of 3:1 and 3:0 is represented as 3,2,1,3,2,1,0, 

which is not monotonic. This applies both the associativity and idempotency rules, that is, 

redundancy can only be at most 1 bit and the prefix operator boundary cannot be 

separated by more than 1 bit. 

3. Groupings must not have gaps of more than 1 bit. For example, the string 3,2,0 is invalid 

because it cannot represent group 3:0 without bit column 1. This is a direct application of 

the associativity rule.  
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7    Appendix B: Prefix Structure Analysis LabVIEW Code 

7.1    Prefix Branch Count 
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The Prefix Branch Count takes in the prefix structure matrix, filters out all columns that do not 

have a branch, and does two things: 

1. Count the total number of branches. 

2. Count the total number of branches from the same column and finds the maximum 

number of branches in the overall design. 

This subroutine is used in analyzing prefix adder structures for the Node, Fanout, and Depth 

study. The nodes and depth come from the file name generated by the search algorithm. 
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7.2    Prefix Wire Count VI Front Panel 
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7.3    Prefix Wire Count  
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The Prefix Wire Count is more involved compared to the Prefix Branch Count and is central to 

performing the second study approach for calculating the area-power and delay metrics. It takes 

in the prefix structure matrix and analyzes the paths. 

Pseudo-code outline of the subroutine: 

1. For each Row in the prefix matrix, iterate through all Columns and whenever the value at 

that location in the matrix is not equal to the Column value then it is a branch. 

a. Collect all these branch source columns into an array. 

b. Find the difference between the matrix value and the Column value to determine 

the Horizontal Wire Length and accumulate the lengths for the Row. 

c. Accumulate a record of paths from the current matrix location at (Row, Column). 

All paths have a branch from (Row-1, Column) and potentially another branch 

from (Row-1, Matrix Value) where the Matrix Value is the branch Column in the 

previous row as defined earlier. These paths are stored as a String source column, 

final column. 

2. The second inner loop at the top inside the main loop iterates through all the collected 

branches from step (1a) to generate the fanout count for each Column in the current Row. 

If a Column doesn’t have a fanout of more than 1 then it will not receive a fanout count. 

The fanout counts are accumulated into a Col Fanouts array and each entry is stored as a 

String column, fanout.  

3. The Link Paths subroutine joins the recorded paths for the Current Row with the 

Previous Row and accumulates a growing list of possible paths from the top row down. 

The paths are stored as a String source column, intermediate column1, …, intermediate 

column N, final column where each entry separated by a comma is for each row. For 

example, a ripple-carry adder with a diagonal path from bit 0 to 7 would have the 

following String record 0,1,2,3,4,5,6,7. Also each column would have a path such as 

0,0,0,0,0,0,0,0 and so on.  

4. After iterating through all Rows in the prefix matrix, we now have arrays of records to 

perform the next step. For all the Rows, the accumulated wire length now indicates the 

Total Wire Length for the structure. The next loop iterates through each Path record and 

run the Calc Branch Efforts subroutine using the data from the Col Fanouts array. 

5. Finally, the maximum branch effort is used to calculate the minimum delay. 
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7.4    Link Paths 

 

 
 

The Link Paths subroutine iterates through each column in the current row and then scans 

through the columns of the previous row to find where the start column value of the current row 

may match the final column value of the Previous Row and links these paths together into a new 

concatenated string. In other words, it iterates through the current row to find where the path head 

matches the tail end of paths from the previous row. 

 

Take the following 4-bit Kogge-Stone as an example: 

 

Since there are only two rows, the first is the previous and the second is the current row. At a 

minimum, all rows will have vertical paths 0,0 and 1,1 and 2,2 and 3,3. In addition to those, the 

previous row contains the 3 horizontal branch paths 0,1 and 1,2 and 2,3. The current row contains 

the 2 horizontal branch paths 0,2 and 1,3. The Link Paths subroutine will link the heads of all 

current row paths to the tails of all previous row paths, so the following linked paths are created: 

0,0,0 and 0,0,2 and 0,1,1 and 1,1,1 and 1,1,3 and 1,2,2 and 2,2,2 and 2,3,3 and 3,3,3. 
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7.5    Calc Branch Efforts 

 

 

 

The Calc Branch Efforts subroutine takes in the Path record which is a String of linked columns 

from start to end in each row. It iterates through each Row and takes that column value from the 

Path record and pulls in the row from the Col Fanouts record and determines if the linked column 

has a fanout value to multiply into the Branch Effort metric. This subroutine is iterated in the 

Prefix Wire Count routine loop to accumulate an array of Branch Efforts for all paths so a 

worst-case value can be determined.   
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8    Appendix C: Prefix Structure Illustrator LabVIEW Code 

8.1    Prefix Structure Illustrator VI Front Panel 

 

This software was written to be able to select any one of the .csv log files containing a valid 

parallel prefix adder structure produced by the search algorithm software and draw a picture of 

the structure. This comes in handy for quickly inspecting the log files without having to draw out 

the structure by hand. This software also helps locate the structures with the desired 

characteristics (i.e. number of nodes and fanout metric).  
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8.2    Prefix Structure Illustrator 

 

 

The Illustrator is written as an Event structure so the Previous/Next file buttons or keyboard 

strokes can be used to sift through files in a folder and review the prefix structure rendering on 

the front panel. The above screenshot only shows the key component that prepares and draws the 

prefix structure image from the prefix array contained within the log files.  

One of the subroutines (subVIs) used by this code is the Prefix Branch Count and Prefix Wire 

Count to help sift through the results for prefix structures that have appealing characteristics. 

No further details will be provided because this code is not central to the search algorithm and is 

merely a supplementary tool to expedite analysis of the search algorithm results. 
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