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Automated human face recognition is a computer vision problem of considerable

practical significance. Existing two dimensional (2D) face recognition techniques

perform poorly for faces with uncontrolled poses, lighting and facial expressions.

Face recognition technology based on three dimensional (3D) facial models is now

emerging. Geometric facial models can be easily corrected for pose variations. They

are illumination invariant, and provide structural information about the facial sur-

face. Algorithms for 3D face recognition exist, however the area is far from being

a matured technology. In this dissertation we address a number of open questions

in the area of 3D human face recognition. Firstly, we make available to qualified
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researchers in the field, at no cost, a large Texas 3D Face Recognition Database,

which was acquired as a part of this research work. This database contains 1149

2D and 3D images of 118 subjects. We also provide 25 manually located facial

fiducial points on each face in this database. Our next contribution is the develop-

ment of a completely automatic novel 3D face recognition algorithm, which employs

discriminatory anthropometric distances between carefully selected local facial fea-

tures. This algorithm neither uses general purpose pattern recognition approaches,

nor does it directly extend 2D face recognition techniques to the 3D domain. In-

stead, it is based on an understanding of the structurally diverse characteristics of

human faces, which we isolate from the scientific discipline of facial anthropome-

try. We demonstrate the effectiveness and superior performance of the proposed

algorithm, relative to existing benchmark 3D face recognition algorithms. A related

contribution is the development of highly accurate and reliable 2D+3D algorithms

for automatically detecting 10 anthropometric facial fiducial points. While devel-

oping these algorithms, we identify unique structural/textural properties associated

with the facial fiducial points. Furthermore, unlike previous algorithms for detecting

facial fiducial points, we systematically evaluate our algorithms against manually lo-

cated facial fiducial points on a large database of images. Our third contribution is

the development of an effective algorithm for computing the structural dissimilarity

of 3D facial surfaces, which uses a recently developed image similarity index called

the complex-wavelet structural similarity index. This algorithm is unique in that

unlike existing approaches, it does not require that the facial surfaces be finely reg-

istered before they are compared. Furthermore, it is nearly an order of magnitude

more accurate than existing facial surface matching based approaches. Finally, we

propose a simple method to combine the two new 3D face recognition algorithms

that we developed, resulting in a 3D face recognition algorithm that is competitive

with the existing state-of-the-art algorithms.
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Chapter 1

Introduction

Automated human face recognition is a non-trivial computer vision problem of con-

siderable practical significance. It has numerous applications including automated

secured access to ATM machines and buildings, automatic surveillance, forensic

analysis, fast retrieval of records from databases in police departments, automatic

identification of patients in hospitals, checking for fraud or identity theft, and

human-computer interaction. Currently, popular techniques for automated per-

son identification include the use of personal identification numbers, access codes or

cards, bar codes, and radio frequency identification tags. All of these are susceptible

to loss or theft. Personal identification numbers and access codes/cards also require

substantial involvement of the human subject. Hence, they are of limited utility for

identifying very young children, or seriously ill or deceased persons.

A biometric is defined as an anatomical or physiological measurement, or

a behavioral characteristic believed to be unique to each individual. For nearly

a hundred years, manual approaches based on biometrics have been employed to

identify humans [2]. With the availability of superior computing power, automatic
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biometric techniques for human identification have emerged. These include tech-

niques based on the recognition of the face, the iris and retina of the eye, finger-

prints, palmprints, gait, voice, and handwriting. Of these, techniques based on iris

and fingerprint recognition are reported to be highly accurate [3], but they require

substantial cooperation from the human subjects. They are difficult to deploy in

real-time screening and surveillance applications, where minimal interaction with

humans is desirable, or where the system is to be operated covertly. Automated

face recognition systems, on the other hand, require less co-operation from human

subjects, relative to iris and fingerprint recognition systems. They are amenable

to surveillance applications, and can be developed using relatively low cost com-

ponents. Hence, considerable attention has been directed, over the past several

decades, towards developing reliable automatic face recognition systems.

Besides the need for automation, interest in computer algorithms for face

recognition is inspired by the need to develop objective measures of facial similarity

[4]. Such measures are required, for example, to construct effective lineups, of

individuals similar in appearance to that of an offender, in police departments [5].

Humans alone cannot be relied upon to perform such tasks accurately, since some

deficiencies in the face recognition abilities of humans are known to exist. For

example, a study of DNA exonerations reported that 84% of wrongful convictions

were due in part to false recognition by eyewitnesses or victims [6]. It is known

that the face recognition abilities of humans are influenced by cross-racial effects

and other socio-economic biases [7].

Considerable research attention has been directed, over the past few decades,

towards developing reliable automatic face recognition systems that use two dimen-

sional (2D) facial images. Commercial systems are also now available for 2D face
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recognition [8]. Two dimensional face recognition systems are easy and economical

to construct, but are inadequate for robust face recognition. A Face Recognition

Vendors Test was conducted in the year 2002 (FRVT 2002) to assess the perfor-

mance of fully automatic 2D face recognition algorithms at the time [9]. It was

found that the performance of the three best algorithms dropped nearly in half

for facial images with uncontrolled illumination or poses. At the same event, re-

searchers identified that using three dimensional (3D) facial morphable models [10]

to synthetically generate fontal 2D facial images could be a promising solution to

the facial pose problem.

Three dimensional face recognition technology is now emerging, in part, due

to the availability of improved 3D imaging devices and processing algorithms. For

such techniques, 3D images of the facial surface are acquired using 3D acquisition

devices. Three dimensional facial images have some advantages over 2D facial im-

ages. Their pose can be easily corrected by rigid rotations in 3D space. The shape of

a 3D facial surface depends on its underlying anatomical structure. Hence, images

acquired using 3D laser range finders are invariant to illumination conditions during

image acquisition. Moreover, when 3D facial models are acquired along with 2D fa-

cial images, information about the direction of facial surface normals obtained from

the 3D facial images can be used to correct the illumination of the 2D facial images

[11]. Three dimensional facial images also provide structural information about the

face (e.g., surface curvature and geodesic distances), which cannot be obtained from

a single 2D image.

The existing 3D face recognition algorithms can be broadly classified into

three groups [12]. First, there are algorithms that are based on the appearance

of facial range images (hereafter ‘appearance based techniques’). Then, there are
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those that rigidly align and compare 3D facial surfaces (hereafter ‘surface matching

based’). Finally, there are those that employ structural properties of local facial fea-

tures (hereafter ‘local feature based’). The existing appearance based techniques for

3D face recognition are straightforward extensions of successful 2D face recognition

techniques, e.g., ‘eigenfaces’ and ‘fisherfaces’ applied to facial range images. While

these have been successful to a degree at the task of 3D face recognition, intuitively

understanding the discriminatory facial structural information that they encode re-

mains an open problem [13]. Current techniques that rigidly align facial surfaces

and compare them are generally computationally expensive. Despite their success

with 2D face recognition [9], 3D techniques based on local facial features are poorly

developed. This is due to a lack of understanding of the discriminatory structural

characteristics of facial surfaces, and because of poorly developed algorithms for

reliably detecting the 3D local facial features.

In this dissertation we address a number of open questions in the area of 3D

human face recognition. Firstly, we make available to qualified researchers in the

field, at no cost, a large Texas 3D Face Recognition Database, which was acquired

as a part of this research work. This database contains 1149 2D and 3D images of

118 subjects. We also provide 25 manually located facial fiducial points on each face

in this database.

Our next contribution is the development of a completely automatic novel

3D face recognition algorithm, which employs discriminatory anthropometric dis-

tances between carefully selected local facial features. This algorithm neither uses

general purpose pattern recognition approaches, nor does it directly extend 2D face

recognition techniques to the 3D domain. Instead, it is based on an understanding

of the structurally diverse characteristics of human faces, which we isolate from the
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scientific discipline of facial anthropometry [1, 14, 15]. We demonstrate the effec-

tiveness and superior performance of the proposed algorithm, relative to existing

benchmark 3D face recognition algorithms. A related contribution is the develop-

ment of highly accurate and reliable 2D+3D algorithms for automatically detecting

10 anthropometric facial fiducial points. While developing these algorithms, we iden-

tify unique structural/textural properties associated with the facial fiducial points.

Furthermore, unlike previous algorithms for detecting facial fiducial points, we sys-

tematically evaluate our algorithms against manually located facial fiducial points

on a large database of images.

Our third contribution is the development of an effective algorithm for com-

puting the structural dissimilarity between 3D facial surfaces, which uses a recently

developed image similarity index called the complex-wavelet structural similarity

index [16, 17]. This algorithm is unique in that unlike existing approaches, it does

not require that the facial surfaces be finely registered before they are compared.

Furthermore, it is nearly an order of magnitude more accurate than existing facial

surface matching based approaches.

In Chapter 2 of this dissertation, we present some background on the problem

of 3D face recognition and review existing techniques. In Chapter 3, we describe in

detail the Texas 3D Face Recognition Database. In Chapters 4 and 5, we describe

the two novel algorithms for 3D face recognition that we developed. In Chapter 6

we compare these two new algorithms and explain how they can be combined into

a single algorithm in a simple way, thus producing even better performance. We

conclude this dissertation in Chapter 7 with ideas for extending the work presented

in this dissertation.
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Chapter 2

Background

2.1 3D Facial Models

2.1.1 Acquisition

Three dimensional facial models can be acquired using either active or passive

techniques [18]. Among the active techniques, laser range finders are widely used

[19, 20, 21, 22, 23, 24, 25, 26, 13, 27, 28]. Laser Range finders project light from a

laser source onto a scene and record its reflection to determine the depth at each

location. They produce dense and accurate 3D models that are invariant to ambi-

ent illumination conditions during image acquisition. However, they take longer to

acquire 3D images than the passive techniques, during which human subjects must

remain perfectly still [29]. Hence, they are unsuitable for high throughput screening

applications. Another concern is the intrusive nature of laser light on the human

eye.

The passive techniques employed to acquire 3D faces are stereo imaging [30,

31, 32, 33, 34, 35, 36, 33], and approaches based on structured light [37, 38, 39, 40, 41,
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11, 42, 43, 44]. In stereo imaging systems, multiple cameras simultaneously image

a face from different view points. The facial depth information is resolved using

camera calibration parameters and the disparity between the different facial images.

For the structured light approach, a standard light pattern (e.g., a light stripe

pattern) is projected onto a scene and its deformation is employed to determine the

depth at each location. Unlike active techniques, both 2D and 3D images can be

acquired simultaneously with passive techniques. Passive techniques are also faster,

safer, and cheaper than laser range finders, but they typically contain more missing

data.

Some researchers have raised concerns about the illumination invariant na-

ture of 3D facial models acquired using passive techniques [45]. They argue that

since intensity images are employed to construct 3D models in passive imaging tech-

niques, variations in illumination can alter the shape of the constructed 3D model.

However, a number of studies have dispelled these concerns and have shown that

the performance of 3D face recognition algorithms that employ passively acquired

3D models is unaffected by variations in illumination conditions during image ac-

quisition [46, 43, 11].

2.1.2 Representation

Three dimensional point clouds, triangulated surface meshes, and range images are

employed to represent 3D facial surfaces. The point cloud representation contains

the (x, y, z) coordinates of a set of random points on the facial surface (e.g., Fig.

2.1(a)). These points can be connected to their nearest neighbors via straight lines

resulting in a triangulated mesh representation (e.g., Fig. 2.1(b)). The 3D points in

these two representations are usually unstructured, and hence they require relatively
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(a) (b) (c)

Figure 2.1: A (a) 3D face point cloud, (b) 3D triangular mesh representation, and
(c) face range image/depth map.

involved processing algorithms.

A range image, also referred to as a 2.5D surface or depth map, consists of

(x, y) points on a regular rectangular grid. Each (x, y) point is associated with a

z value of the point on the 3D surface closest to the acquisition device (e.g., Fig.

2.1(c)). Range images can be captured directly using laser range finders or can be

generated from meshes or 3D point clouds by projecting them orthographically. As

points in a range image are placed along a regular rectangular grid, they can be

processed via relatively straightforward image processing algorithms. Range images

can also be easily transformed into 3D point clouds or surface meshes.

2.2 Face Recognition Tasks

The two main tasks performed by an automatic human face recognition system are

verification/authentication and identification [47].

2.2.1 Verification

Verification/authentication is a one-to-one matching task, wherein a person claims

to be a specific entity known to the system (Fig. 2.2(a)). The database of people
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(a)

(b)

Figure 2.2: Schematic diagrams for automatic face (a) verification, and (b) identifi-
cation systems.

known to the system is referred to as the ‘gallery’. The individual whose identity

is verified/authenticated by the system is referred to as a ‘probe’. A facial rep-

resentation of the probe is captured in real-time and compared against the gallery

representation of the claimed entity. If the similarity score between the two is greater

than a predefined threshold, the individual is verified as the claimed entity; other-

wise, he or she is rejected as an imposter. An example of a verification scenario is

a system for automated secured access to a building.

The performance of a verification system is evaluated in terms of a Receiver

Operating Characteristic (ROC) curve [48]. An ROC curve is a plot of the false

acceptance rate (FAR) versus the false rejection rate (FRR) (Fig. 2.3(a)). FAR

is defined as the proportion of comparisons between two different individuals that

are falsely accepted by the system [49]. FRR is the proportion of comparisons
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(a) (b)

Figure 2.3: A typical (a) Receiver Operating Characteristic curve, and (b) a Cumu-
lative Match Characteristic curve.

between two different images of the same individual that are falsely rejected by the

system [49]. Both FAR and FRR vary as the system’s decision threshold is varied

[50]. A single performance metric typically reported for verification systems is the

equal error rate (EER), where FAR = FRR (Fig. 2.3(a)). For an ideal system

EER = 0%. The area under the ROC curve (AUC) is also sometimes reported

as a measure of performance. It ranges from 0 for an ideal system to 0.5 for a

system with chance performance. It should be noted that while the EER quantifies

the verification performance of a 3D face recognition system at only one operating

point, the AUC is an overall measure of the system’s verification performance across

the whole gamut of operating points. Parametric [49] or non-parametric methods

[51], which are based on data sampling techniques [52], are employed to obtain

statistical confidence intervals for these performance statistics.

2.2.2 Identification

Identification is a one-to-many matching task wherein an unknown individual’s iden-

tity is established by comparing his/her probe face against a gallery of faces of known
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individuals (Fig. 2.2(b)). The closest matches in the gallery are found and ranked

in descending order of their similarity scores [9]. The probe is assigned the identity

of its closest matched face in the gallery.

The performance of an identification system is evaluated in terms of a Cu-

mulative Match Characteristic (CMC) curve [47, 53]. The CMC curve is a plot

of the recognition rate (RR) versus the top ranked k database matches considered

(Fig. 2.3(b)). The rank k RR value is the ratio of the number of probes, for which

the correct gallery match is present among the top k matches, to the total num-

ber of probes that query the system. This formulation assumes a ‘closed universe’

model wherein all individuals that query the system are assumed to be present in

the gallery. If the closed universe assumption is false, i.e., some probes are not

present in the gallery, the maximum RR achieved by the system is less than 100%.

Non-parametric methods based on sampling techniques are generally employed to

obtain statistical error bounds on the recognition rates [54, 55].

2.3 Existing 3D Face Recognition Algorithms

The existing 3D face recognition algorithms can be broadly classified into three

groups [12]. First, there are algorithms that are based on the appearance of facial

range images (‘appearance based techniques’). Then, there are those that rigidly

align and compare 3D facial surfaces (‘surface matching based’). Finally, there

are those that employ structural properties of local facial features (‘local feature

based’). Before reviewing these existing techniques, we would like to point out that

it is difficult to directly compare the performance of the existing 3D face recognition

algorithms for several reasons. First, they have been evaluated on different private

data sets not accessible to other researchers. A few 3D face recognition algorithms
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have been evaluated on a common publicly available database as a part of a technol-

ogy evaluation initiative called the Face Recognition Grand Challenge (FRGC) 2005

[13]. These algorithms can be regarded as the state-of-the-art in 3D face recognition.

Second, the existing 3D face recognition algorithms vary considerably with regards

to their reported performance statistics and experimental design protocols. Third,

most studies do not report the statistical error bounds for the observed results.

2.3.1 Appearance Based Techniques

Three dimensional appearance based techniques are straightforward extensions of

successful 2D appearance based techniques [56, 57, 58, 59, 60, 61, 62] to facial range

images. The preprocessing and normalization steps they require are segmentation

of faces from 3D images; removal of surface noise and holes; normalization of faces

to a canonical frontal pose; and the generation of range images in that pose (e.g.,

Fig. 2.1(c)).

Statistical subspace projection methods including principal component anal-

ysis (PCA) or ‘eigensurfaces’ [37, 30, 21, 63, 64, 65, 66, 19, 67, 68], independent

component analysis (ICA) [69], and linear discriminant analysis (LDA) or ‘fish-

ersurfaces’ [31, 32, 38] are the prominent 3D appearance based techniques. The

underlying philosophy of subspace projection techniques is to regard a facial range

image as an instance in N dimensional feature space, where N is the number of

pixels in the image. All human faces are modeled to lie on a linear subspace of this

feature space [70]. A statistical learning technique is employed to learn the linear

subspace from an ensemble of facial images. All facial images are projected onto the

learned subspace and are compared by means of a suitable distance metric in that

subspace.
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The various statistical learning techniques differ in the objective criteria that

they optimize. For PCA, a set of orthogonal directions that maximize the variance

of facial range images are obtained by eigen decomposition of their scatter matrix

[70]. PCA minimizes the mean squared error between an original image and the

corresponding image reconstructed from the PCA eigen directions. LDA projects

data onto novel directions so as to maximize the ratio of the between class scatter

and the within class scatter [71]. ICA considers not only the linear relationships

between pixels in a facial image, but also higher order relationships. It projects

data linearly onto a set of new basis vectors that are as statistically independent as

possible [72].

Of all techniques for 3D face recognition, PCA has been explored most exten-

sively, partly due to the success of the ‘eigenfaces’ technique for 2D face recognition

[56, 57]. For the FRGC 2005, the performance of 3D PCA was regarded as the

baseline [73]. PCA is reported to perform well with small 3D facial databases of

less than 100 subjects, but poorly for larger data sets. Analogous to 2D face recog-

nition, 3D techniques based on ICA [69], and LDA [31, 32, 41], have been reported

to perform better than 3D PCA. For subspace projection algorithms in general,

employing gradient images derived from facial range images is reported to produce

better results than employing the range images directly.

Besides the subspace projection techniques, other appearance based 2D face

recognition techniques based on Hidden Markov Models (HMM) [61], and embedded

HMM [62] have also been extended to facial range images [37, 74, 11, 75, 76, 43].

These techniques exploit the fact that facial features naturally occur in a fixed order

from top to bottom and from left to right, irrespective of changes in illumination,

pose, and facial expression. For these techniques, different facial components are
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modeled as states in statistical Markov models that are learned from an ensemble

of facial range images.

Appearance based techniques for 3D face recognition are generally regarded

as holistic techniques, in that they employ information from large facial image re-

gions. Their performance is generally greatly affected by the presence of outliers,

cluttered backgrounds, occlusions, noise, and variations in facial expression and

pose. It is hard to interpret the discriminatory facial structural information that

the subspace basis vectors encode [13]. Furthermore, in order to reliably learn the

facial subspaces, these techniques require training images of many subjects under

diverse imaging conditions.

2.3.2 Facial Surface Matching

The surface of the human face is an example of a free form 3D object that cannot be

recognized as either planar or naturally quadric [77]. A class of 3D face recognition

algorithms exists, wherein the shapes of the free form facial surfaces are compared

by means of a suitable distance metric. The general philosophy of such approaches

is to compute the structural dissimilarity between two facial surfaces after rigidly

registering them either coarsely, or finely. For coarse alignment the gross pose and

position of each facial surface in 3D space is computed and it is transformed to a

canonical position [20, 33, 22, 78, 23]. For fine alignment, the Iterative Closest Point

(ICP) [79] algorithm, wherein one 3D model is rotated and translated iteratively in

space until its distance from the other model converges to a minimum, has been

explored most extensively [34, 80, 81, 82, 83, 27, 84, 85, 86, 24, 35, 87, 88, 29].

Metrics including the mean squared error (MSE), point-to-closest-point

mean squared error (MSECP ) [79], point-to-closest-surface mean squared error [89],
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the Hausdorff distance, and the partial Hausdorff distance (pH) [90], have been em-

ployed to compute the structural dissimilarity between pairs of facial surfaces. The

pH metric rejects a fraction of the largest distances between points on the two sur-

faces and hence is robust to outliers caused by holes, noise, and occlusions, but

its performance depends on the fraction of points rejected. For ICP, the point-to-

closest-surface mean squared error metric is less susceptible to local minima prob-

lems than MSECP [89].

Within this class of 3D face recognition algorithms, the algorithms based on

the ICP procedure have been the most successful. They are reported to be robust to

variable facial poses [24], and illumination conditions during 3D image acquisition

[46]. They are also reported to perform better than 3D PCA [81, 82]. However, they

are computationally expensive. For example, it is reported that comparison of a pair

of 3D facial surfaces required 20 seconds on an average Pentium IV 2.8 Ghz CPU, for

3D facial models containing approximately 18,000 effective points [24]. The iterative

ICP procedure to align each pair of facial surfaces, is also not guaranteed to converge

to a global minimum. The existing facial surface matching techniques that do not

finely align facial surfaces, however, are not adequate for robust face recognition.

Their accuracy depends on that of the MSE, MSECP , or pH metrics, which in turn

are very sensitive to alignment errors between surfaces. Facial surface matching

based algorithms are also affected by the presence of variable facial expressions,

which are non-rigid deformations of the facial surface [86, 24, 35, 29]. For expression

invariant facial surface matching, researchers have investigated using only those

parts of the face, which deform less than others (e.g., the nose region [87, 88]).

However, this is reported to lower the overall recognition performance.

Some attempts have also been made to match facial surfaces using the statis-
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tics of the orientation of surface normals as measured by extended Gaussian images

[91, 92, 93], and phase Fourier transforms [94, 95]. Although such representations of

surfaces are scale and rotation invariant [95], they have not been explored extensively

for 3D face recognition.

2.3.3 Local Facial Features

Local 3D geometric characteristics including facial profile curves, and properties of

facial landmarks and their relationships to each other have been employed previously

for 3D face recognition. Facial profile curves can be easily obtained by intersecting

3D models by appropriately located 2D planes. For 3D face recognition, various pro-

file curves have been rigidly aligned and compared [26, 96, 39, 97, 36, 98, 83, 42, 41].

Similar to the rigid surface matching algorithms, the performance of rigid profile

matching algorithms is also adversely affected by the presence of variable facial

expressions [36]. In numerous facial profile matching studies, the central vertical

facial profile has been reported to be highly discriminatory for identifying individu-

als [26, 96, 39, 36]. Hence, techniques have also been investigated to automatically

locate this natural axis of bilateral symmetry of the human face. Cartoux et al.

automatically detected it by iteratively minimizing the difference between the prin-

cipal surface curvatures on either sides of the face [98]. Others have located it by

iteratively aligning a facial surface to its mirror image [83, 42, 82, 36].

Local geometric characteristics of facial sub-regions including their positional

coordinates, surface areas and curvatures, and 3D Euclidean distances, ratios of

distances, and angles between them have been employed previously for 3D face

recognition [99, 100, 25, 101]. The shapes of facial landmarks have been quantified

by Gaussian and mean curvature values [99, 25], Guassian-Hermite moments [44],
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‘point signatures’ [102, 103], and by 2D and 3D Gabor filter coefficients [104, 100]. A

successful 2D face recognition technique called local feature analysis (LFA) [59], has

also been applied to 3D facial images [38]. LFA exploits the inherent correlations

and redundancies between neighboring pixels of an image to statistically derive

topographical kernels that capture variations in sub-regions of the facial images

[59].

Automatic 3D facial landmark detection algorithms are not very well devel-

oped. A few attempts have been made to automatically locate facial landmarks on

3D models using their characteristic surface [87, 105, 106, 20, 99, 100, 24, 102] or

profile [101, 36] curvature properties, or by aligning 3D models rigidly [44], or non-

rigidly [81] to generic facial templates with known landmarks. The tip of the nose

has been detected as the most prominent point for 3D facial models in canonical

frontal poses [26, 22]. However, this heuristic fails for faces in arbitrary poses. None

of these studies, however, have reported the accuracy of their feature localization

techniques against any form of ‘ground truth’ data.

A number of techniques based on local facial features have been reported to

perform better than 3D PCA [102, 107, 108, 81]. Some have also been reported to

perform better than profile matching techniques [44, 81]. They have been reported

to be less affected by global changes in the appearance of facial range images in-

cluding variable facial expressions, poses, and the presence of noise and occlusions

that the holistic techniques [102, 103]. They have also helped to identify the local

discriminatory structural characteristics of 3D facial surfaces. Nevertheless, 3D face

recognition techniques based on local facial features have been explored much less

than the holistic techniques.

17



2.3.4 Ensemble Approaches

Despite the existence of rich literature on ensemble approaches for combining clas-

sifiers [109], only a few have been applied to 3D face recognition. These include a

combination of scores of 3D LDA, an algorithm based on surface normals, and a

profile matching algorithm using a non-linear rank sum method [41]; a hierarchical

combination of an ICP based algorithms and 3D LDA [24]; a combination of fea-

tures from the whole face, and from the mouth, nose and orbital regions [44]; and

a combination of the output of a facial surface matching algorithm and of a central

profile matching algorithm using the ‘maximum’ rule [83, 42]. All these ensemble

approaches have been reported to perform better than their individual constituent

algorithms.

2.3.5 Expression Invariant Approaches

Achieving invariance to facial expression variations is an open problem in 3D face

recognition. While the pose of 3D facial models can be easily corrected, changes in

facial expression, which are non-rigid transformations of the facial surface, are not

as trivial to rectify. Numerous studies have demonstrated that the performance of

existing 3D face recognition techniques is reduced for facial models with arbitrary

(other than neutral) expressions [24, 29, 35, 107, 108, 36, 104].

In order to solve this problem, researchers have proposed different ‘expression

invariant representations’ of the facial surface. Bronstein et al. [110, 40] assumed

different facial expressions to be isometric deformations of the facial surface. They

isometrically embedded facial surfaces into expression invariant canonical forms us-

ing multidimensional scaling. However, their assumption of isometric deformations

does not hold true for faces with open mouths. Wang and Chua [104] employed
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Author Algorithm
Data

Performance
Gallery Probe

Chang [65] PCA 200 676 RR = 94.5%

Pan [112]
Isometric

– – EER = 2.83%
flattening + PCA

Russ[84]
ICP,

198 745
FRR = 6.5%

MSECP + pH
FAR = 0.1%
RR = 98.5%

Koudelka [88] ICP, pH 198 198 RR = 94%

Kakadiaris [107] AFM 152 608
FRR ∼ 3.1%
FAR = 0.1%
RR = 99.3%

Table 2.1: A summary of the five 3D face recognition algorithms that were evaluated
at the Face Recognition Grand Challenge 2005 on the FRGC v0.1 database.

2D/3D Gabor coefficients calculated from range images at facial fiducial points to

generate expression invariant representations of 3D human faces. Lu and Jain [111]

proposed a technique, wherein 3D models were first matched rigidly using ICP, and

then non-rigidly deformed using thin-plate spline deformation to generate a dis-

placement vector image. The displacement vector images were then classified into

intra-person and inter-person deformations. Both these latter techniques met with

limited success. Chang et al. [87] investigated matching the ‘rigid’ nose and the

nose bridge regions using ICP. This, however, tended to lower the overall recognition

performance.

2.3.6 FRCG 2005 Algorithms

Lastly, in Table 6.2 we summarize the five 3D face recognition algorithms that were

evaluated on the publicly available FRGC v0.1 database during the FRGC 2005

evaluation [13]. These algorithms represent the current state-of-the-art in 3D face

recognition. The FRGC v0.1 database contained 943 images of 198 subjects, which
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were acquired using the Minolta Vivid 900/910 series (Konika Minolta Holdings,

Inc., Tokyo, Japan) 3D laser scanning system. At the FRGC 2005, researchers were

free to define their own training, and test data partitions. Hence, as is evident from

the third and fourth columns of Table 6.2, each of these algorithms was evaluated

on different data partitions of the FRGC v0.1 database.

Among these algorithms, two [65, 112] were appearance based algorithms

that employed 3D PCA. Another two [84, 88] were surface matching based algo-

rithms that used the ICP procedure to align 3D faces. The last was an ‘Anno-

tated Face Model’ (AFM) algorithm [107], wherein multiscale representations of

local facial regions were employed. Among these five existing algorithms, the AFM

algorithm performed the best with rank 1 RR = 99.3%, and FRR ∼ 3.1% at

FAR = 0.1%.

To summarize, in this chapter we presented some background on 3D face

recognition and reviewed existing algorithms. It is evident that there is considerable

room for improvement within various domains of 3D face recognition. These open

problems provide rich avenues for further research and investigation, and motivate

the work for this doctoral dissertation.
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Chapter 3

The Texas 3D Face Recognition

Database

To promote serious research in 3D face recognition and related scientific disciplines,

we are pleased to make available to qualified researchers in the field, at no cost the

Texas 3D Face Recognition Database. This large database of 2D and 3D facial mod-

els was acquired at the company Advanced Digital Imaging Research (ADIR), LLC

(Friendswood, TX), formerly a subsidiary of Iris International, Inc. (Chatsworth,

CA), with assistance from research students and faculty from the Laboratory for

Image and Video Engineering (LIVE) at the University of Texas at Austin. The

project was sponsored by the Advanced Technology Program of the National Insti-

tute of Standards and Technology. The database of images and information about

the subjects’ gender, ethnicity, facial expression, etc., will be hosted and managed

on LIVE’s web-servers, in an easy to browse, query and downloadable format. All

requests for access to the database will also be received and processed by LIVE. This

database will be a valuable resource to the 3D face recognition research community.

21



(a)

(b)

Figure 3.1: Color images of faces in the Texas 3D Face Recognition Database in (a)
neutral, and (b) expressive modes.

It will be the largest publicly available database of 3D facial images that have been

acquired using a stereo imaging system.

The database contains 1149 3D models of 118 adult human subjects. The

number of images for each subject varies from 1 per subject to 89 per subject. The

subjects’ ages range from ∼ 22 − 75 years. The database includes images of both

males and females from the major ethnic groups of Caucasians, Africans, Asians,

East Indians and Hispanics. The faces are in neutral and expressive modes (Fig.

3.1). The facial expressions present are smiling or talking faces with open/closed

mouths and/or closed eyes. The neutral faces are emotionless. All subjects were

requested to remove hats and eye-glasses prior to image acquisition.
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(a)

(b)

Figure 3.2: Raw (a) color, and (b) range images of the Texas 3D Face Recognition
Database.

3.1 Acquisition and Normalization

The 3D models in the Texas 3D Face Recognition Database were acquired using

an MU-2 stereo imaging system [113, 114] manufactured by 3Q Technologies Ltd.

(Atlanta, GA). All subjects were requested to stand at a known distance from the

camera system. At the beginning of each acquisition session, and at regular intervals

during the session (a session is defined as a set of images acquired one a particular

day) the stereo system was calibrated against a target image containing a known

pattern of dots on a white background [115]. This ensured that each 3D facial model

had the same dimensions as the actual real-world dimensions of the face. The stereo
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Figure 3.3: Inpuse noise on the surface of 3D models.

system acquired both the shape and the color images of the face simultaneously.

Hence, all pairs of range and color images for a particular acquisition in the Texas

3D Face Recognition Database are perfectly aligned.

The acquired 3D models were successfully transformed to a frontal orienta-

tion with the forehead titled back by 10◦ to the vertical axis. This was achieved by

iteratively aligning facial models in arbitrary poses to a template face in a canonical

frontal pose using the ICP algorithm [79]. Tilting the forehead of the 3D face back

by 10◦ to the vertical axis ensured that each (x, y) location was associated with a

unique z value, and hence the facial surface could be represented as z = f(x, y).

The final representation of each face in the database is a pair of range and

color images in the canonical frontal pose that are perfectly aligned to each other

(e.g., Fig. 3.2). The range images were constructed by orthographically project-

ing the pose normalized 3D models onto a regularly spaced rectangular grid. The

corresponding color images were constructed by obtaining the color information at

each point in the range image. The tip of the nose of each model is located at the

center of the image. The range images are of size 751× 501 pixels with a resolution
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(a)

(b)

Figure 3.4: Preprocessed (a) color, and (b) range images of the Texas 3D Face
Recognition Database.

of 0.32 mm along the x, y, and z dimensions. Each z value is represented in an 8

bit format with the highest value of 255 assigned to the tip of the nose and a value

of 0 assigned to the background. The color images are similarly of size 751×501×3

pixels represented in an uncompressed 8 bit RGB format.

3.2 Preprocessing

We further preprocessed the raw range and color images to convert them into a

form useful for face recognition. We removed small extraneous regions that were

not attached to the face region, e.g., shirt collars in the leftmost image in Fig.
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(a) (b)

Figure 3.5: Twenty-five anthropometric fiducial points (a) on a color image, and (b)
on a range image.

3.2 (a). For this, we detected the face region as the largest connected region of

non-zero z values in range images and retained it. All other regions were removed.

We eliminated small amounts of impulse noise present in the range images (e.g.,

Fig. 3.3) by median filtering them with a square window of size 3 × 3 pixels. We

interpolated the range images using bi-cubic interpolation to remove large holes and

finally smoothed them by applying a Gaussian window with σ = 1 pixel. These

steps were also applied to each of the R, G and B channels of the color images. The

preprocessed versions of the raw images shown in Fig. 3.2 are presented in Fig. 3.4.

3.3 Manual Fiducial Point Detection

We annotated all 1149 images in the Texas 3D Face Recognition Database with

the positions of 25 anthropometric facial fiducial points (Fig. 3.5). These fiducial

points are associated with facial anthropometric proportions [1] that are reported
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Figure 3.6: The graphical user interface that was developed for manually locating
anthropometric facial fiducial points.

to be variable for human populations [116, 117]. We located the fiducial points

manually on the color images by clicking at appropriate locations with a mouse and

a computer based graphical user interface (Fig. 3.6). The locations of the facial

fiducial points on the facial range and color images are the same as the two types

of images are perfectly aligned.

3.4 Data Partitions

With the intended goal of developing 3D face recognition algorithms, we partitioned

this database into a training data set and a test data set (Table 3.1). The training

data set contained a set of randomly selected 360 images of 12 subjects (30 im-

ages per subject) in neutral or expressive modes. For all the 3D face recognition

27



Partition No. of Subjects
No. of Images

Neutral Expressive Total
Training 12 228 132 360

Test
Gallery 105 105 0 105
Probes 95 480 183 663

Remaining 13 0 21 21

Table 3.1: A summary of the data partitions employed for developing 3D face recog-
nition algorithms.

algorithms that we developed, steps such as automatic facial fiducial point detec-

tion, classifier feature selection and classifier optimization were performed using the

training data set only. The trained classifier was evaluated on the independent test

data set, which did not overlap with the training data set.

The test data set included 768 images of 105 subjects. This test set was fur-

ther partitioned into a gallery set and a probe set. Consistent with the evaluation

protocol of the FRVT 2002 [118] and the FRGC 2005 [13], the gallery set contained

one range image each of 105 subjects with a neutral facial expression. The probe

set contained another set of 663 images of 95 of the gallery subjects with a neutral

or an arbitrary facial expression. In the probe set, the number of images of each

subject varied from 1 to 55. In accordance with the widely accepted ‘closed uni-

verse’ model for the evaluation of face recognition algorithms [118], every subject in

the probe data set was represented in the gallery data set. After partitioning the

entire database of 1149 images into the training and test data sets, 21 images of 13

subjects remained. All of these were faces with an arbitrary facial expression. In

the remainder of this document we refer to this set of images as the ‘Remaining’

set.
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3.5 Availability

In order to facilitate further research in the area of 3D face recognition, and other

related scientific disciplines, e.g., facial animation and graphics, and facial surgi-

cal planning, we have made the Texas 3D Face Recognition Database available to

qualified researchers in the field at no cost. The database of images is accompanied

with information about the gender, ethnicity, facial expression, and the locations of

the 25 manually detected anthropometric facial fiducial points. Information about

the specific data partitions that we employed for developing 3D face recognition

algorithms has also been made available. This will enable researchers to directly

compare the results of future 3D face recognition algorithms against ours. The

database of images along with its ancillary information is hosted and managed on

the web server maintained by the Laboratory for Image and Video Engineering at

the University of Texas at Austin. The database is available in an easy to browse,

search and downloadable format. All requests for access to the database are also

received and processed by LIVE.

For developing 3D face recognition algorithms, the Texas 3D Face Recogni-

tion Database will complement the publicly available and widely used FRGC 2005

database [13]. The Texas 3D Face Recognition Database differs from the FRGC

2005 database in a number of respects. First, it is the largest (in terms of the

number of images and subjects) publicly available 3D facial database that has been

acquired using a stereo imaging system. Images in the Texas 3D Face Recognition

Database have been acquired at a high resolution (0.32 mm) along the x, y and the z

dimensions. In comparison, images in the FRGC 2005 database have been acquired

using a 3D laser scanning system Minolta Vivid 900/910 series (Konika Minolta

Holdings, Inc., Tokyo, Japan), at a lower average resolution of 0.98 mm along the x
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ad y dimensions and 0.5 mm along the z dimension [65]. Hence, the Texas 3D Face

Recognition Database is a natural choice for researchers interested in experimenting

with high resolution 3D facial images acquired using a stereo imaging system.

Second, all images in the Texas 3D Face Recognition Database have been

acquired at the same scale and the dimensions of the 3D faces correspond to their

actual real-world dimensions. The scale of faces in the FRGC database varies con-

siderably (e.g., Fig. 3.7). Third, as a consequence of using a stereo imaging system,

which acquires the color and shape information of a scene simultaneously, the pairs

of color and range images in the Texas 3D Face Recognition Database are perfectly

aligned. In contrast, the color and range images in the FRGC 2005 database were

acquired a few seconds apart, and hence are not perfectly aligned [13]. For the

same reason, certain pairs of range and color images in the FRGC 2005 database

have inconsistent facial expressions [29]. As the acquisition time for the Minolta 3D

scanner is greater than 100 ms, certain 3D meshes in the FRGC 2005 database are

also reported to be distorted due to the subjects’ motion during image acquisition

[29].

The FRGC 2005 database is four times larger than the Texas 3D Face Recog-

nition Database in terms of the number of subjects and images, and contains greater

diversity of facial expressions. However, images in the FRGC 2005 database require

considerable amounts of non-trivial initial preprocessing, including hair, clothing

and background elimination, and facial pose and scale normalization (Fig. 3.7).

These steps are not required for the Texas 3D Face Recognition Database and

hence, it provides a good alternative for researchers focussed specifically on de-

veloping and evaluating novel algorithms for 3D face recognition, without regard to

the initial preprocessing of 3D images. Furthermore, the Texas 2D Face Recognition
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(a)

(b)

Figure 3.7: Examples of (a) color images, and (b) range images from the FRGC
2005 data set.

Database contains adequate variability to model a controlled real world operating

environment of co-operative users. The Texas 3D Face Recognition Database also

has the advantage of allowing researchers to evaluate face recognition algorithms in

a timely manner using modest computational resources. By comparison, evaluating

algorithms on the FRGC 2005 database may require the use of super computing

facilities.

The Texas 3D Face Recognition Database is also unique in that it contains

the positions of 25 manually annotated anthropometric facial fiducial points for

every image (Fig. 3.5). Currently, the locations of such a large number of manually

located facial fiducial points are not available for any 2D or 3D public database of

comparable size. Hence, none of the currently reported studies of 3D or 2D+3D

facial fiducial point detection report detection errors relative to any form of ‘ground
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truth data’ [87, 105, 106, 20, 99, 100, 24, 102, 100, 33, 63, 103, 104, 119]. The

availability of this information as a part of the Texas 3D Face Recognition Database

will thus be a very valuable resource for researchers working in the area of 2D and 3D

facial feature detection, face recognition, and facial processing and anthropometry.
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Chapter 4

3D Anthropometric Face

Recognition

Face recognition algorithms based on local facial features can be successful. At the

FRVT 2002 [9], two of the top three 2D face recognition algorithms, namely local

feature analysis [59], and elastic bunch graph matching (EBGM) [120] employed

local facial features. In EBGM, a face is represented as an ‘elastic bunch graph’,

comprised of Gabor wavelet coefficients computed at facial fiducial points, and 2D

facial Euclidean distances between them. Hüsken et al. developed a successful

2D+3D face recognition technique called ‘hierarchical graph matching’, which com-

bined scores of 2D EBGM and 3D EBGM (EBGM applied to facial range images)

[100]. Their technique was one of the top performers at the FRGC 2005 among the

algorithms that were evaluated on the FRGC v0.2 database.

Despite this, techniques for 3D face recognition based on local facial fea-

tures have been investigated much less than holistic face recognition techniques for

two reasons. First and foremost, there has not been any attempt to systemati-
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cally identify the local discriminatory structural characteristics of the human face

for automatic face recognition purposes. Among the few reported 3D face recog-

nition techniques that employ local facial features, the choice of facial landmarks

has either been ad hoc [99, 25, 101, 103, 81], or has been a straightforward exten-

sion of local 2D techniques to range images [100]. Hüsken et al. observed that 2D

EBGM outperformed 3D EBGM, and acknowledged that merely extending local

2D techniques to range images may not be the best way to discover discriminatory

structural characteristics of the human face.

Second, local 3D face recognition techniques require robust and accurate

automatic detection of facial fiducial points. Techniques for automatic detection

of facial fiducial points using 3D images remain poorly developed. This is further

complicated by the fact that the ‘ground truth’ locations of the facial fiducial points

are not available for any of the publicly available 3D face databases. It is no surprise

that all of the current studies of 3D or 2D+3D facial fiducial point detection [87,

105, 106, 20, 99, 100, 24, 102, 100, 33, 63, 103, 104, 119] report results of visual

inspection only and do not report errors statistics for comparison against any form

of ‘ground truth’ data.

We address these two fundamental open problems that may significantly im-

pact the design of effective 3D face recognition algorithms. We obtain information

about the structural diversity of human faces from the related scientific discipline

of facial anthropometry [1, 121], and identify discriminatory structural characteris-

tics of the face. We develop algorithms to automatically and accurately detect facial

fiducial points associated with these characteristics. Lastly, we develop a novel com-

pletely automatic 3D Anthropometric Face Recognition (3D AnthroFace) algorithm

that employs these local discriminatory facial characteristics. On a database of 1149
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Figure 4.1: The 25 facial fiducial points associated with highly variable anthropo-
metric facial proportions on a (a) color image, and (b) on a range image, and (c) a
set of 25 arbitrary facial points.

3D faces, we demonstrate the potential and significantly superior performance of our

proposed AnthroFace algorithm relative to three of the existing state-of-the-art 3D

face recognition algorithms [116, 117].

4.1 3D Anthropometric Face Recognition (AnthroFace)

4.1.1 Anthropometric Cranio-Facial Proportions

Anthropometric cranio-facial proportions [1] are ratios of pairs of straight-line and/or

along-the-surface distances between specific cranial and facial fiducial points (e.g.,

Fig. 4.1(a) and Fig. 4.1(b)). For example, the most commonly used nasal index

N1 is the ratio of the horizontal nose width to the vertical nose height (N1 =

(al − al)/(n − sn) from Fig. 4.1(b)). The scientific discipline of cranio-facial an-

thropometry has existed for nearly three centuries. Over the years numerous an-
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S. No Anthropometric Proportion σ

1. O3 = (ex− en, l)/(en− en) 7.75
2. O10 = (en− en)/(al − al) 8.29
3. O12 = (en− en)(ch− ch) 6.02
4. F32 = (n− sto1)/(ex− ex) 5.30
5. N1 = (al − al)/(n− sn) 5.81
6. N2 = (mf −mf)/(al − al) 7.08
7. N4 = (sbal − sn, l + r)/(al − al) 8.80
8. N6 = (ex−m′sag, l)/(mf −mf) 14.6
9. N7 = (sn− prn)/(al − al) 6.28
10. N8 = (sn− prn)/(sbal − sn, l + r) 12.8
11. N15 = (en−m′sag, l)/(sn− prn) 11.2
12. N16 = (en−m′sag, l)/(en−m, l) 7.26
13. N30 = (mf −mf)/(en− en) 6.06
14. N31 = (ex−m′sag, l)/(en− en) 7.01
15. N32 = (al − al)/ch− ch 5.04
16. N33 = (sn− prn)/(sn− sto1) 13.8
17. L1 = (sn− sto1)/(ch− ch) 5.40
18. L4 = (sn− ls)/(sbal − ls′, l) 10.2
19. L5 = (sn− ls)/(sn− sto1) 5.97
20. L6 = (ls− sto1)/(sn− sto1) 7.10
21. L7 = (ls− sto1)/(sn− ls) 13.3
22. L9 = (ls− sto1)/(sto2− li) 16.9
23. L14 = (sn− sto1)/(n− sn) 5.10

Table 4.1: The 23 most variable anthropometric facial proportions for adult humans
along with their standard deviation values [1]. The corresponding fiducial points are
presented in Fig. 4.1(b). N denotes nasal proportions, O denotes orbital propor-
tions, L denotes proportions related to the the mouth region, and F denotes facial
proportions.

thropometric facial proportions have been proposed and researchers have collected,

recorded and analyzed their values on various human populations.

Cranio-facial proportions are widely employed in art and sculpture as neo-

classical canons to aid in the creation of well-proportioned faces; in anthropology

for analyzing prehistoric human remains [122]; for quantifying facial attractiveness
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[15]; for analyzing facial disproportionality in anomalies or after facial injury as

an aid to planning facial cosmetic and reconstructive surgery [1, 123]; and recently

for creating parametric models of human faces in computer graphics [124]. As far

back as 1939, Hrdlička [125] emphasized the importance of anthropometric facial

proportions for comparing groups of people or populations. However, they have not

been employed previously to aid in the design 3D face recognition algorithms.

Farkas and Munro consolidated a list of 155 cranio-facial anthropometric

proportions that are used for planning facial reparative and cosmetic surgery [1]. By

means of physical measurements, they also computed the mean (µ) and standard

deviation (σ) values of these proportions for a population of 2564 healthy adult

human subjects belonging to diverse ethnic, gender, and age groups [1, 14]. From

among these 155 proportions, we isolated 70 anthropometric proportions associated

with the facial region that can be computed automatically from the fontal 3D facial

models normally acquired by 3D imaging devices. We identified a third (23) of these

70 facial proportions with the highest standard deviation values (Table 4.1) as being

representative of discriminatory facial structural characteristics. It is reasonable to

hypothesize that characteristics that display wide variation between individuals are

likely to be most useful for distinguishing them. Associated with these 23 most

variable anthropometric proportions are 25 anthropometric face fiducial points (Fig.

4.1(a) and Fig. 4.1(b)). This information about the structural diversity of human

faces forms the basis of our proposed 3D Anthropometric Face Recognition algorithm

[116, 117].
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4.1.2 Manual Detection of Anthropometric Fiducial Points

We manually located the 25 anthropometric facial fiducial points associated with

the diverse anthropometric measurements on all 1149 color images (Fig. 4.1(a))

in the Texas 3D Face Recognition Database (Chapter 3) that we employed. Since

the images in this database were acquired using a stereo imaging system, the range

and the color images for a particular acquisition were perfectly aligned. Hence, the

locations of the fiducial points for the range images (Fig. 4.1(b)) were the same as

their locations for the color images (Fig. 4.1(a)).

It is reasonable to assume that the human observer is perfect at detecting

anthropometric facial fiducial points, since they are defined simply by convention

of human observation. Hence, manual identification of the fiducial points served

two purposes. First, it provided the ‘ground truth’ data for assessing the perfor-

mance of the algorithms that we developed for automatically detecting the facial

fiducial points. Second, in a loose sense it helped to establish an upper bound on

the expected performance of 3D face recognition algorithms for perfectly detected

anthropometric facial fiducial points. At first we developed all 3D face recognition

algorithms using manually located facial fiducial points. We reasoned that only

upon establishing the potential of our proposed technique for manually detected

points, would it be worthwhile to investigate approaches to automatically locate the

facial fiducial points.

4.1.3 Classifier

We employed 300 3D Euclidean distances, and 300 geodesic distances between all

pairs of the 25 anthropometric face fiducial points (Fig. 4.1(b)) as features for our

proposed 3D AnthroFace algorithm [117]. We computed geodesic distances along
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the facial surface using Dijkstra’s shortest path algorithm [126, 127]. While 3D

Euclidean distances between facial fiducial points have been employed previously as

features for 3D face recognition [99, 100, 25, 101], using anthropometric geodesics

distances is novel to this work [117]. Studies have shown that geodesic distances

are better at representing ‘free-form’ 3D objects than 3D Euclidean distances [128].

Furthermore, a recent study suggested that changes in facial expressions may be

modeled as isometric deformations of the facial surface [40]. When a surface is de-

formed isometrically, intrinsic properties of the surface, including Gaussian curva-

ture and geodesic distances are preserved [129]. Hence, algorithms based on geodesic

distances are likely to be robust to changes in facial expressions.

We identified the 106 and 117 most discriminatory Euclidean and geodesic

distances, respectively, using the stepwise linear discriminant analysis [130] proce-

dure (‘stepdisc’, SAS Institute Inc., NC, USA). We pooled these 106 Euclidean and

117 geodesic anthropometric distances together, and using a second stage stepwise

linear discriminant analysis procedure, we identified the final combined set of 123

most discriminatory distance features. We then trained a Fisher’s linear discrimi-

nant analysis classifier [70] that linearly projected these 123 anthropometric distance

features onto 11 dimensions (11D). The classifier was trained using a training data

set and all images in an independent test data set were projected onto the learned

LDA directions. The final metric for comparing a pair of 3D faces in the 11D LDA

sub-space was the L2 norm.

4.1.4 Effect of Choice of Facial Fiducial Points

We also investigated the effect of the choice of face fiducial points on the performance

of the proposed 3D AnthroFace algorithm [116]. We repeated the steps of the 3D

39



(a) (b)

Figure 4.2: The reduced set of 10 anthropometric facial fiducial points for the An-
throFace algorithm on a (a) color image, and (b) range image.

AnthroFace algorithm with Euclidean and geodesic distances between 25 arbitrary

facial points instead of the 25 anthropometric fiducial points. These points were

located in the form of a 5 × 5 rectangular grid positioned over the primary facial

features of each face (Fig. 4.1(c)). We chose these arbitrary facial points as they

measure distances between the significant facial landmarks, including the eyes, nose

and the mouth regions, without requiring localization of specific fiducial points.

A similar set of facial points was also employed in a previous 3D face recognition

algorithm for aligning 3D facial surfaces using the Iterative Closest Point (ICP)

algorithm [24].

4.1.5 Reduction of Anthropometric Facial Fiducial Points

Next, we determined if a sub-set of the 25 manually located anthropometric facial

fiducial points could be employed for the 3D AnthroFace algorithm, without a sig-
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nificant loss in its performance. This was an important step towards completely

automating the proposed 3D AnthroFace algorithm. Clearly, the task of automat-

ically detecting all of the 25 anthropometric fiducial points with a high accuracy

is non-trivial and may even be redundant. To isolate this sub-set of points, we

first removed individual points (e.g. prn from Fig. 4.1(b)), or pairs of symmet-

ric points (e.g. al-al from Fig. 4.1(b)) from the overall 3D AnthroFace algorithm

and re-evaluated its performance. Interestingly, the removal of none of the indi-

vidual points/pairs resulted in a statistically significant loss in the performance of

the 3D AnthroFace algorithm. This indicated that some points in the set of 25

anthropometric points were clearly redundant. We then proceeded to remove larger

groups of fiducial points associated with the orbital, nasal, and mouth regions and

re-evaluated the overall performance of the 3D AnthroFace algorithm. Finally, we

isolated a sub-set of 10 anthropometric facial fiducial points (Fig. 4.2) that resulted

in statistically equivalent recognition performance to that of the algorithm that

employed 25 fiducial points. Hence, our final proposed 3D AnthroFace algorithm

employed only these 10 anthropometric facial fiducial points (Fig. 4.2), instead of

the 25 points that we initially proposed.

4.1.6 Automatic Detection of Anthropometric Fiducial Points

To completely automate our proposed 3D AnthroFace algorithm, we developed al-

gorithms to automatically detect the 10 anthropometric facial fiducial points (Fig.

4.2) that we isolated in the previous analysis. We automatically detected 3 of these

points (prn, and al-al in Fig. 4.2) using only the 3D shape information of the face,

while to locate the remaining seven points we employed both the 2D and the 3D

information of the face. Furthermore, to locate all the points except for the tip of
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Figure 4.3: An example of a 3D face in a canonical pose that was used to automat-
ically detect facial fiducial points.

the nose (prn), we assumed that each face was in a frontal upright position, with its

natural axes of bilateral symmetry roughly along the vertical dimension (e.g., Fig.

4.3).

The overall algorithm for detecting the 10 anthropometric facial fiducial

points proceeded in a sequence of cascaded steps. Each stage in the sequence utilized

fiducial point locations found in the previous stages to assist in locating the current

fiducial points. The logical sequence used was to begin with the most reliable and

easy to detect feature, proceeding to the features that were less reliable and harder

to detect. However, as it turns out, all facial fiducial points were quite reliable.

The sequence of stages for automatically detecting the fiducial points started

with the detection of the tip of the nose (prn). The location of this point was

then employed to detect the nose width points al-al. These three points were then

employed to detect the inner corners of the eyes (points en -en) and the center of

the nose root (point m′). The points prn and al-al were also employed to detect the

corners of the mouth (points ch-ch). Lastly, the locations of the points en-en were

used to locate the outer corners of the eyes (points ex-ex).
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While developing algorithms for detecting these fiducial points, an underly-

ing concept guided us. By their definition of being fiducial points or landmarks,

they had unique structural and/or textural properties that differentiated them from

their surrounding regions. When humans search for these facial fiducial points, ei-

ther by visual or tactile inspection, it is these characteristics that inherently guide

their search. We reasoned that the key to accurately locating these anthropometric

fiducial points was to isolate their unique structural and/or textural characteristics

and to search for them in an appropriately constrained region of the face. In the

following sections, we describe in detail the steps that we employed to automatically

detect each of the 10 anthropometric fiducial points.

4.1.6.1 Nose Tip (prn)

To locate the tip of the nose (point prn in Fig. 4.2) of each face in our database,

we employed a 3D template face with a manually located nose tip (Fig. 4.4). The

template face was one of the faces in the training data partition of our database. It

was a relatively noise free and symmetric face with no facial or surrounding hair,

and a neutral facial expression. We finely registered the entire surface of every 3D

face in our database to the surface of the template face using the ICP algorithm

[79]. After aligning the face to the template, we found the point on its surface that

was closest to the tip of the nose of the template face. This was our initial estimate

(ICP estimate) of the tip of the nose.

Although the ICP estimate was not very accurate (the standard deviation of

errors from the manually located nose tips was σx = 6.271 and σy = 9.415 pixels),

the ICP procedure served two purposes. First, it helped to transform 3D models in

arbitrary poses to a frontal upright canonical pose, which was required for detecting
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Figure 4.4: The 3D template face and its manually located nose tip, which was used
to automatically locate the nose tips of all 3D faces.

all the other points. Second, since the ICP estimate was in the central region of all

faces, we limited our search for the tip of the nose in the next stage to a window of

301× 301 pixels about the ICP estimate.

For facial range images of the form (x, y, z(x, y)), the Gaussian surface cur-

vature (K), the mean surface curvature (H), and two principal curvatures (κ1, κ2)

can be computed from their first and second partial derivatives as [129]

K =
zxxzyy − z2

xy

(1 + z2
x + z2

y)2
, (4.1)

H =
zxx(1 + z2

y) + zyy(1 + x2
x)− 2zxzyzxy

(1 + z2
x + z2

y)3/2
, (4.2)

κ1, κ2 = H ±
√
H2 −K, (4.3)

where zx and zy are the first partial derivatives of z(x, y) w.r.t x and y, respectively,

and zxx, zyy and zxy are the second first partial derivatives of z(x, y) w.r.t x and

y. Furthermore, the Gaussian curvature K = κ1κ2, and the mean curvature H =

(κ1 + κ2)/2. We computed these partial derivatives, and the Gaussian and mean

curvature values for the facial range images, using a method developed by Besl [131].
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(a) (b) (c)

Figure 4.5: The magnitudes of the Gaussian curvatures of the (a) elliptic, (b) convex
elliptic regions of a facial range image, and (c) of its central 301× 301 pixel region.
In each image, the Gaussian curvature has been plotted as a 3D surface with the
facial texture warped onto it.

The signs of the Gaussian and the mean curvatures define differently shaped

regions of a surface [132]. The regions with K > 0 are ‘elliptic’, those with K < 0

are ‘hyperbolic’, and those with K = 0 are either ‘planar’ or are ‘cylindrical’. For

the right-handed 3D co-ordinate system defined in Fig. 4.3, regions of the surface

with H > 0 are ‘concave’, while those with H < 0 are ‘convex’.

Researchers in the past have noted that the sub-parts of the human face

have distinct surface curvature properties [99, 25]. We observed that in fact, of all

the regions on the facial surface, the region surrounding the tip of the nose has the

highest elliptic Gaussian curvature (Fig. 4.5(a)), and more specifically the highest

convex elliptic Gaussian curvature (Fig. 4.5(b)). Hence, we employed a very simple

procedure, which reliably and accurately detected the tip of the nose for all 3D faces

in our database. Within the central region of each face of size 301× 301 pixel (Fig.

4.5(c)), which we had isolated previously using the ICP procedure, we searched for

the point with the maximum elliptic Gaussian curvature. This was the location of

the final automatically located tip of the nose. For apparent reasons (Fig. 4.5(b)),

we coined the term ‘The Pinocchio Feature’ for this reliable facial fiducial point.
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(a) (b)

Figure 4.6: (a) The edges detected with the LOG edge detector in sub-regions of
the facial range images centered about the detected nose tip, and (b) critical points
along the nose boundary and the tip of the nose.

4.1.6.2 Nose Width Points (al-al)

To detect the anthropometric facial fiducial points (al - al in Fig. 4.2(b)), which

define the anthropometric measurement of ‘nose width’, we restricted our search to

sub-regions of the range images of size 42×50 mm centered about the automatically

detected nose tip. We determined the size of this search region, using information

about statistics of the height and width of noses of adult human males [121]. On an

average, human males are reported to have wider (µ = 35 mm, and σ = 2.5 mm)

and taller (µ = 53 mm with σ = 3.4 mm) noses than females. Hence, to account

for variations in the human population, we fixed the width of the search region for

points al-al about the tip of the nose at the µ+ 6σ value for the width of noses of

human males. Similarly, we fixed the height of the search region at the 0.6 (µ+ 6σ)

value for the height of noses of human males.

We detected edges of the range image sub-regions using a Laplacian of Gaus-

sian edge detector [133], with σ = 7 pixels. Since the human nose is a distinct

protrusion in the facial surface, we observed that the left and right boundaries of

the nose were always clearly delineated in the edge maps of all faces (Fig. 4.6(a)).

From this edge map, we further isolated the left and right boundaries of the nose
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by traversing outwards horizontally in both directions from the tip of the nose, and

by retaining the first curves that were encountered.

We then detected all the ‘critical’ points (points of high curvature) with neg-

ative curvature values [134], which were present along the nose boundary contours.

We traversed all the nose boundary curves in the clockwise direction. For all faces

in our database, the points al - al were among these critical points (shown in Fig.

4.6(b)). From among the critical points, we isolated the points al - al, by searching

for the leftmost and rightmost critical points, that were closest to the tip of the nose

along the vertical direction.

4.1.6.3 Inner Eye Corners (en-en) and Center of Nose Root (m′)

To automatically locate the inner corners of the eyes (points en-en) we observed

that for all faces, these points were located in regions of the face that were distinctly

concave elliptic (Fig. 4.7(a)). We located the peaks of Gaussian curvature of these

two regions, as the initial estimates (curvature estimates) of the locations of the

inner corners of the eyes. In order to define the search regions for these peaks, we

employed the locations of automatically detected points prn, al-al, the location of

the highest point of each 3D model (v), and knowledge of the established horizontal

and vertical proportions of a normal adult human face [1].

For an average adult, the vertical distance between the inner corners of the

eyes and the tip of the nose is ∼0.3803 times the vertical distance between the top of

the head and the tip of the nose [1]. To account for variations in human populations,

we fixed the upper limits of our search regions to (prny +0.3803×1.5×|prny−vy|),

and their lower limits to (prny + 0.3803 × 0.33 × |prny − vy|), where prny is the

vertical co-ordinate of the tip of the nose and vy is the vertical co-ordinate of the
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(a) (b) (c)

Figure 4.7: (a) The magnitude of the Gaussian curvature of the concave elliptic
regions of a facial range image, (b) that of a smaller region defined to search for the
right eye’s inner corner, and (c) that of a smaller region defined to search for the left
eye’s inner corner. In each image the surface curvature is plotted as a 3D surface,
with the facial texture warped onto it.

highest point of the 3D model.

For the horizontal limits of the two search regions, we employed the fact

that for an average face, the ratio of the horizontal distance between the inner

corners of the eyes to nose width (the distance between points al-al) is unity [1].

We searched between prnx, the horizontal co-ordinate of the the tip of the nose and

(alx,left+0.5×|alx,left−alx,right|) for the curvature estimate of the inner corner of the

subject’s left eye. Similarly, for the curvature estimate of the inner corner of subject’s

right eye we searched between the horizontal limits (alx,right−0.5×|alx,left−alx,right|)

and prnx. These search regions for the two inner eye corners are shown in Fig. 4.7(b)

and Fig. 4.7(c), respectively. Within these two regions, we determined the locations

of the points with the highest Gaussian curvatures as the curvature estimates for

the inner corners of the eyes.

We obtained the final positions of points en-en by further searching in a

region of size 63×63 pixels about the curvature estimates, using a recently developed

2D+3D EBGM algorithm [135]. Briefly, in the 2D+3D EBGM algorithm the fiducial
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points of interest are located manually on a set of 2D and 3D example images. Forty

2D and 3D Gabor coefficients (at 5 scales and 8 orientations) are computed for the

manual fiducial points of the example images. The Gabor filters correspond to

a carefully designed version [136, 137] that are widely used in the area of 2D face

detection and recognition [120, 103, 104, 119]. We also carefully selected 68 images of

12 subjects from the training partition of our database, and 21 images of 13 subjects

from the Remaining partition (Table 4.2), as example images for the 2D+3D EBGM

algorithm. We included faces with various expressions, e.g., open/closed eyes, and

neutral/smiling with open/closed mouths in this set of example images.

In the 2D+3D EBGM algorithm, for a face with unknown fiducial points,

the same 2D and 3D Gabor coefficients are computed for every point within a search

window. The point, within this search window, that has Gabor coefficients most

similar to the Gabor coefficients of any example image, is regarded as the final

location of the fiducial point. We could have applied the 2D+3D EBGM algorithm

directly to the search windows (Fig. 4.7(b) and Fig. 4.7(c)) that we employed to

find the initial curvature estimates of the points en-en. However, this produced

a significant number of false positives at the locations of the inner corners of the

eyebrows, which have textural characteristics similar to the points en-en.

The center of the root of the nose (point m′ in Fig. 4.2), was located at the

algebraic mean of the positions of the automatically detected inner corners of the

two eyes.

4.1.6.4 Outer Eye Corners (ex-ex)

To automatically locate the outer corners of the eyes (points ex-ex in Fig. 4.2),

we employed the positions of the automatically detected inner corners of the eyes
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(en-en). For an average human adult, the distance between the inner and the

outer corner of an eye is approximately equal to the distance between the inner

corners of the two eyes [1]. With this anthropometric information, we computed

the initial estimate for the position of the outer corner of the subject’s left eye as

(enx,left + |enx,left − enx,right|, (eny,left + eny,right)/2), and that of the outer corner

of the right eye as (enx,right − |enx,left − enx,right|, (eny,left + eny,right)/2). We then

used the 2D EBGM algorithm to search within a rectangular window of size 63×105

pixels about these initial estimates for the final positions of the points ex-ex. The set

of example images for this 2D EBGM algorithm were the same as those for detecting

the point en-en. Note, that since the outer corners of the eyes did not have distinct

surface curvature characteristics, we used 2D EBGM instead of 2D+3D EBGM.

4.1.6.5 Mouth Corners (ch-ch)

We examined the curvature of facial surfaces regions located below the nose, and

observed that for all faces, the outer corners of the mouth were distinct concavities,

i.e., regions of high positive mean curvature (H) (Fig. 4.8(a)). Hence, the peaks

of mean curvature (H) in this region served as the initial estimates (curvature esti-

mates) for the locations of the points ch-ch. To find these peaks of mean curvature,

we defined appropriate search regions as follows.

We observed that for all faces (including those with beards, mustaches, and

arbitrary facial expressions) regions of the upper lip and lower lip had elliptic Gaus-

sian curvature (Fig. 4.8(b)). By detecting these upper and lower lip regions below

the tip of the nose, we determined the vertical limits of the search regions for the

curvature estimates of the corners of the mouth. Furthermore, we employed the

locations of the automatically detected points al-al to horizontally constrain these
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(a) (b)

Figure 4.8: (a) The the mean curvature (H) of the mouth region of an example face
plotted as a 3D surface, with the facial texture warped onto it. Notable are the
distinct peaks at the corners of the mouth. (b) Regions below the nose with elliptic
Gaussian curvature (non-black regions) of an example face. Notable are the regions
of the upper and the lower lip.

search regions. For chleft, we searched to the left of alleft between the horizontal

positions alx,left and (alx,left + 0.7×|alx,left−alx,right|), and for chright we searched

to the right of alright between alx,right and (alx,right − 0.7× |alx,left − alx,right|).

Finally, we refined the positions for the corners of the mouth by searching

in a window of size 33 × 93 pixels about the initial curvature estimates using the

2D+3D EBGM algorithm. We employed the same set of example images that we

had employed to detect the points en-en. This second stage, which refined the

positions of the corners of the mouth, eliminated a significant number of errors that

resulted in the first stage on open mouths.

4.2 Benchmark Algorithms

We compared the performance of the proposed 3D AnthroFace algorithm to that

of three existing state-of-the-art automatic 3D face recognition algorithms. We

implemented the eigensurfaces algorithm [19], the fishersurfaces algorithm [31, 38],
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Figure 4.9: The sub-regions of the facial range images that were employed for the
eigensurfaces and fishersurfaces 3D face recognition algorithms.

and a 3D face recognition algorithm based on the ICP procedure [24, 84] on our

database. For the eigensurfaces and the fishersurfaces algorithms, we employed sub-

sections of the facial range images between the pixels 147 and 553 along the vertical,

and 38 and 478 along the horizontal (e.g., Fig. 4.9). These limits corresponded to

the extrema of the uppermost, bottommost, leftmost, and rightmost co-ordinates,

respectively, of the 25 manually located anthropometric fiducial points across all

faces in the database. In setting these limits to the extrema of all faces, we ensured

that the main facial features were not excluded for any face.

Both the eigensurfaces and the fishersurfaces algorithms were trained and

tested on exactly the same data sets, which were employed to train and test the An-

throFace algorithm. For the eigensurfaces algorithm, we learned 69 eigen directions

that accounted for 99% of the variance of the data, and linearly projected all faces

in the test data set onto these eigen directions. The final metric for the comparison

of 3D facial surfaces in the eigen sub-space was the L1 norm. For the fishersurfaces

algorithm, we first reduced the dimensionality of the range images to 348 using

principal component analysis (PCA) [70]. This was done to ensure that the within-

class scatter matrix employed in the LDA computations was non-singular. We then

learned 11 LDA directions from the 348 PCA features and projected all faces in the

52



test data set onto these LDA directions and compared them using the L2 norm.

The 3D face recognition algorithm based on ICP did not require training.

Hence, we implemented it only on the test data set and compared all faces in the

probe set to all faces in the gallery set. We finely registered each pair of facial sur-

faces using the ICP algorithm. We implemented the ICP procedure on complete 3D

facial surfaces, which were sub-sampled down to 0.1 times of their original magnifi-

cations. The rotation and translation matrices learned from the ICP procedure were

employed to align the original sized 3D facial surfaces. These were finally compared

by means of the partial Hausdorff distance metric [90].

4.3 Performance Evaluation

4.3.1 Data

We employed the Texas 3D Face Recognition Database (Chapter 3). This database

contained 1149 2D and 3D images of 118 human subjects. We partitioned this

database into a training data set and a test data set (Table 4.2). The training data

set contained 360 randomly selected images of 12 subjects (30 images per subject)

in neutral or expressive modes. For all the 3D face recognition algorithms that we

developed, steps such as automatic facial fiducial point detection, classifier feature

selection and classifier optimization were performed using the training data set only.

The trained classifier was evaluated on the independent test data set, which did not

overlap with the training data set.

The test data set included 768 images of 105 subjects. This test set was

further partitioned into a gallery set and a probe set. Consistent with the evaluation

protocol of the FRVT 2002 [118] and the FRGC 2005 [13], the gallery set contained

one range image each of 105 subjects with a neutral facial expression. The probe
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Partition No. of Subjects
No. of Images

Neutral Expressive Total
Training 12 228 132 360

Test
Gallery 105 105 0 105
Probes 95 480 183 663

Remaining 13 0 21 21

Table 4.2: A summary of the data partitions employed for developing 3D face recog-
nition algorithms.

set contained another 663 images of 95 of the gallery subjects with a neutral or an

arbitrary facial expression. In the probe set, the number of images of each subject

varied from 1 to 55. In accordance with the widely accepted ‘closed universe’ model

for the evaluation of face recognition algorithms [118], every subject in the probe

data set was represented in the gallery data set.

After partitioning the entire database of 1149 images into the training and

test data sets, 21 images of 13 subjects remained. All these were of faces with

an arbitrary facial expression. We employed this Remaining set of images along

with 68 images of 12 subjects from the training data set as example images in the

2D/2D+3D EBGM algorithms for detecting facial fiducial points.

4.3.2 Automatic Fiducial Point Detection

In order to evaluate the performance of the automatic facial fiducial point detection

algorithms that we developed, we regarded the positions of the manually located

points as the ‘ground truth’. We computed the positional errors between the auto-

matically and manually located fiducial points along the x and y dimensions. As a

comprehensive measure of the detection performance of the algorithm for each of the

10 fiducial points, we computed the standard deviations (σx and σy, respectively)

of both types of errors for 1060 facial images. This set of images included all the
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images in our database except for the 89 example images, which were employed in

the EBGM fiducial point detection algorithms.

4.3.3 3D Face Recognition

We evaluated the verification performance of all 3D face recognition algorithms using

the Receiver Operating Characteristic (ROC) methodology [50], and observed the

values of the Equal Error Rates (EER) and the Areas Under the ROC Curves (AUC).

The identification performance of the algorithms was evaluated using Cumulative

Match Characteristic (CMC) curves, and the rank 1 Recognition Rates (RR) were

observed. Statistical 95% confidence intervals for the EER, AUC, and the rank 1

RR values were obtained empirically using bootstrap sampling. All performance

statistics were observed separately for neutral faces, for expressive faces, and for

both types of faces in the probe data set.

4.4 Results and Discussion

4.4.1 Manual 3D AnthroFace

The EER, AUC and rank 1 RR values for the 3D AnthroFace algorithm based

on 25 manually detected anthropometric fiducial points (Fig. 4.1(b)), and for the

algorithm based on 25 arbitrary facial points (Fig. 4.1(c)) are presented in Tables

4.3(a), 4.3(b) and 4.3(c), respectively. The same Tables also contain the performance

statistics for the benchmark eigensurfaces, fishersurfaces, and ICP algorithms. The

ROC and the CMC curves for these algorithms are presented in Fig. 4.10 and Fig.

4.11, respectively.

For all faces in the probe data set the proposed 3D AnthroFace algorithm

based on 25 manually located anthropometric fiducial points performed well (EER =
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EER [Confidence Interval] %
Algorithms Neutral Expressive All
Eigensurfaces 24.0 [21.3 26.3] 23.6 [19.2 26.2] 24.0 [21.8 26.6]
Fishersurfaces 8.11 [6.39 10.9] 3.60 [2.00 6.43] 6.69 [5.27 8.16]

ICP 7.97 [6.85 9.95] 9.92 [6.71 14.7] 9.03 [7.67 10.2]
3D AnthroFace

0.84 [0.53 1.14] 1.58 [0.64 2.67] 1.00 [0.64 1.45]
(25 anthro)

3D AnthroFace
8.78 [6.58 10.9] 5.10 [3.37 8.61] 7.65 [6.16 10.1]

(25 arbitrary)
(a)

AUC [Confidence Interval] ×10−2

Algorithms Neutral Expressive All
Eigensurfaces 16.7 [14.1 18.8] 14.9 [11.9 18.0] 16.3 [14.8 18.7]
Fishersurfaces 2.88 [2.12 3.71] 1.32 [0.32 2.49] 2.40 [1.79 2.96]

ICP 2.97 [2.16 4.12] 4.39 [2.18 7.80] 3.44 [2.56 4.27]
3D AnthroFace

0.07 [0.03 0.12] 0.08 [0.04 0.12] 0.08 [0.04 0.12]
(25 anthro)

3D AnthroFace
3.00 [2.23 3.95] 2.08 [0.68 4.61] 2.70 [2.03 3.65]

(25 arbitrary)
(b)

Rank 1 RR [Confidence Interval] %
Algorithms Neutral Expressive All
Eigensurfaces 58.1 [54.0 62.7] 52.5 [45.4 60.1] 56.6 [52.9 60.2]
Fishersurfaces 91.7 [89.4 94.0] 95.1 [91.8 97.8] 92.6 [90.6 94.4]

ICP 88.5 [85.6 91.5] 86.3 [80.9 91.0] 87.9 [85.5 90.2]
3D AnthroFace

98.8 [97.7 99.6] 95.6 [92.4 98.4] 97.9 [96.8 98.9]
(25 anthro)

3D AnthroFace
86.0 [82.9 89.0] 91.3 [87.4 95.1] 87.5 [84.9 89.9]

(25 arbitrary)
(c)

Table 4.3: The observed (a) EER, (b) AUC, and (c) rank 1 RR values and their
95% confidence intervals for the eigensurfaces, fishersurfaces, ICP, and the 3D An-
throFace algorithms based on 25 manually located anthropometric points and 25
arbitrary facial points.
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(a) (b)

Figure 4.10: (a) The semi-log CMC curves, and (b) the ROC curves for the perfor-
mance of the benchmark 3D face recognition algorithms, the AnthroFace algorithm
that employed manually located 25 points, and the 3D AnthroFace algorithm that
employed 10 automatically located points.

1% and rank 1 RR = 97.9%). It also performed significantly better than the three

holistic benchmark eigensurfaces, fishersurfaces, and ICP algorithms (Table 4.3, Fig.

4.10). These results clearly establish the potential of our proposed 3D AnthroFace

algorithm. The performance of the manual 3D AnthroFace algorithm can be also

regarded as an upper bound on the expected performance of the automated 3D An-

throFace algorithm for perfectly located anthropometric facial fiducial points. The

results also point towards the superiority of local feature based 3D face recogni-

tion algorithms over holistic techniques. Interestingly, some studies in the cognitive

sciences suggest that similar to the 3D AnthroFace algorithm, humans also process

facial information using relational information between parts of the face [138]. They

acquire this information by means of sequential eye movements between the different

facial features [139].
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(a) (b)

Figure 4.11: (a) The semi-log CMC curves, and (b) ROC curves for the performance
of the 3D AnthroFace algorithm based on 25 manually located facial fiducial points
and the algorithm based on 25 arbitrary facial points.

It may be non-trivial to automatically and accurately locate all the 25 anthro-

pometric facial fiducial employed in the manual 3D AnthroFace algorithm. Nonethe-

less, its high performance is an indication of the potential of 3D face recognition

algorithms that are carefully designed to incorporate knowledge about the struc-

tural diversity and statistical distribution of anthropometric measurements of hu-

man faces. This is further supported by the fact that the 3D AnthroFace algorithm

based on 25 anthropometric fiducial points performed significantly better than the

algorithm based on 25 arbitrary facial points (Table 4.3 and Fig. 4.11).

We attempted to gain further insight into the discriminatory structural in-

formation contained in the variable anthropometric facial proportions that we ini-

tially selected (Table 4.1). We separately ranked the anthropometric Euclidean and

geodesic distance between the 25 manually located facial fiducial points in descend-

ing order of their individual Fisher’s ratio [70] values. The 20 most discriminatory
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(a) (b)

Figure 4.12: The 20 most discriminatory facial (a) Euclidean, and (b) geodesic
distance features. The geodesic distances are symbolically depicted by straight lines.
In reality, they are along the surface of the face.

facial Euclidean and geodesic distances are presented in Fig. 4.12. Interestingly,

these distances were predominantly associated with the nasal region of the face, as

were a majority (12 out of 23) of the variable anthropometric facial proportions (Ta-

ble 4.1). Furthermore, 17 (O10, O12, N1, N6, N7, N8, N15, N16, N30, N31, N33,

L1, L4, L5, L6, L7, and L14) of the 23 facial proportions that we selected have also

been reported to be significantly different between the two sexes by Farkas [14], and

one (N7) has been reported to be significantly different for various ethnic groups

[15]. Clearly, all these factors contributed to the success of the 3D AnthroFace

algorithm.

We compared the performance of the proposed 3D AnthroFace algorithm,

which employed Euclidean and geodesic distances between the 25 anthropometric

facial fiducial points to a similar algorithm that employed only Euclidean distances

between the same fiducial points. We observed that for expressive faces, the veri-

fication performance of the algorithm that employed both Euclidean and geodesic
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Figure 4.13: (a) The semi-log CMC curves, and (b) ROC curves for the performance
of 3D AnthroFace algorithm that employed only Euclidean distances and the 3D
AnthroFace algorithm that employed both the Euclidean and the geodesic distances.
These curves were for expressive faces only.

distances (AUC = 0.0008, with a confidence interval of [0.0004 0.0012]), was sig-

nificantly better than the performance of the algorithm that employed only anthro-

pometric Euclidean distances (AUC = 0.0015, with a confidence interval of [0.0009

0.0023]) (Fig. 4.13(a)). This suggests that facial geodesic distances may be useful

for expression invariant 3D face recognition. It further supports Bronstein et al.’s

[40] proposition that different facial expressions may be isometric deformations of

the facial surface.

The performance of the 3D AnthroFace algorithm based on the reduced set

of 10 manually located anthropometric fiducial points (Fig. 4.2) is presented in

Table 4.4. For all faces in the probe set, this algorithm resulted in EER = 1.68%

and AUC = 0.0014. By comparison, the 3D AnthroFace algorithm based on 25

manually loacted fiducial points performed slightly better with EER = 1.00% and

AUC = 0.0008 (Table 4.4(b)). The recognition performance of the two algorithms

was comparable.
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EER [Confidence Interval] %
Algorithms Neutral Expressive All

3D AnthroFace
0.84 [0.53 1.14] 1.58 [0.64 2.67] 1.00 [0.64 1.45]

(25 manual)
3D AnthroFace

1.10 [0.65 1.96] 2.34 [1.01 3.10] 1.68 [1.10 2.24]
(10 manual)

3D AnthroFace
1.65 [1.11 2.28] 2.81 [1.27 4.30] 1.98 [1.37 2.88]

(10 automatic)
(a)

AUC [Confidence Interval] ×10−2

Algorithms Neutral Expressive All
3D AnthroFace

0.07 [0.03 0.12] 0.08 [0.04 0.12] 0.08 [0.04 0.12]
(25 manual)

3D AnthroFace
0.12 [0.04 0.30] 0.18 [0.05 0.30] 0.14 [0.07 0.25]

(10 manual)
3D AnthroFace

0.14 [0.08 0.23] 0.25 [0.11 0.42] 0.18 [0.11 0.28]
(10 automatic)

(b)

Rank 1 RR [Confidence Interval] %
Algorithms Neutral Expressive All

3D AnthroFace
98.8 [97.8 99.6] 95.6 [92.4 98.4] 97.9 [96.8 98.9]

(25 manual)
3D AnthroFace

98.8 [97.7 99.6] 96.2 [93.4 98.9] 98.0 [97.0 98.9]
(10 manual)

3D AnthroFace
97.3 [95.8 98.5] 95.6 [92.4 98.4] 96.8 [95.3 98.0]

(10 automatic)
(c)

Table 4.4: The observed (a) EER, (b) AUC, and (c) rank 1 RR values and their
95% confidence intervals for the 3D AnthroFace algorithms based on 25 manually
located Fiducial points, 10 manually located fiducial points, and 10 automatically
located fiducial points.

4.4.2 Automatic 3D AnthroFace

The standard deviations of the positional errors of the 10 automatically located

anthropometric facial fiducial points (Fig. 4.2) from their respective manual ‘ground
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Fiducial Point Error σx Error σy Radial Error σ
prn 3.265 5.250 6.183
alleft 2.254 5.172 5.642
alright 2.495 5.144 5.718
enleft 4.650 3.892 6.064
enright 4.232 4.199 5.962
m′ 4.234 5.658 7.067
exleft 5.609 4.018 6.900
exright 6.643 4.326 7.930
chleft 6.088 2.917 6.751
chright 6.174 3.267 6.985

Table 4.5: The standard deviations of the positional errors of the 10 automatically
located anthropometric facial fiducial points, in pixel units. The distance between
two adjacent pixels was 0.32 mm.

truth’ locations are presented in Table 4.5. All 10 anthropometric facial fiducial

points were detected very accurately. The radial standard deviation of error for

each of the 10 fiducial points was less than 8 pixels or 2.65 mm. The average radial

standard deviation across all the 10 fiducial points was 6.52 pixels or 2.09 mm.

The tip of the nose was detected reliably and accurately for all faces in

our database as the point in the central region of the face with the highest convex

elliptic Gaussian curvature. This characteristic property also corresponds well with

the intuitive definition of the tip of the nose. The outer corners of the eyes (ex-ex)

were detected least accurately, followed by the corners of the mouth (ch-ch). A large

majority of the false positives for the corners of the eyes were located at the edges

of the irises. This was not surprising as the edges of the irises can have textural

properties similar to the corners of the eyes. We also observed that many of the

false positive detections for the mouth corners occurred on smiling faces.

To automatically detect each of the fiducial points prn, en-en, ex-ex and

ch-ch we employed two stages. For each point, we obtained an initial estimate of
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its location using the first stage, and then searched within a window surrounding

this estimate for the final location of the point. The 2D histograms of the errors

for the two stages (ICP based and curvature based, respectively) of the algorithm

to detect the tip of the nose are presented in Fig. 4.14(a). The histograms for

the two stages (surface curvature based and 2D+3D EBGM based) of the inner eye

corner (en-en) detection algorithm, and those of the mouth corner (ch-ch) detection

algorithm are shown in Fig. 4.14(b) and Fig. 4.14(d), respectively. The histograms

for the errors of the two stages of the algorithm for detection of the outer corners of

the eyes (ex-ex) are shown in Fig. 4.14(c). It is clear that for each of these fiducial

points, the second detection stage helped to considerably reduce the errors of the

first stage. It is also instructive to note that for the points en-en, ex-ex and ch-ch a

combination of information from the 2D and 3D images resulted in the best overall

detection performance.

In the future it may be interesting to study the sensitivity of our proposed

fiducial point detection algorithms to small in and out of plane rotations of the

3D face. In our analysis, we computed the curvature of the frontal upright facial

surfaces from range images. Hence, it may also be useful to employ techniques to

compute surface curvature directly from arbitrarily oriented 3D point clouds or 3D

meshes, which might eliminate the need to operate on frontal upright faces.

Lastly, the performance of the 3D AnthroFace algorithm based on these

10 automatically detected fiducial points is presented in Table 4.4 and Fig. 4.10.

Overall, the verification performance (EER = 1.98% and AUC = 0.0018) of this

algorithm was statistically the same as that of the 3D AnthroFace algorithm based

on 10 manually detected fiducial points (EER = 1.68% and AUC = 0.0014). The

recognition performance of the two algorithms was also similar (Table 4.4(c)). It
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can be concluded that the 3D AnthroFace algorithm is robust to detection errors

with a minimum radial σ = 2.65 mm.

The verification performance of the 3D AnthroFace algorithm based on the 10

automatically detected points was slightly lower than the verification performance

of the 3D AnthroFace algorithm based on 25 manually detected fiducial points (Ta-

ble 4.4(a) and (b), and Fig. 4.10(b)). On closely examining Table 4.4 it is evident

that this decrease in performance was due to the reduction of anthropometric fidu-

cial points from 25 to 10, rather than a result of errors in detection of the fiducial

points. The recognition performance of the two 3D AnthroFace algorithms based

on 25 manually detection fiducial points, and 10 automatically detected fiducial,

respectively, was comparable (Table 4.4(c) and Fig. 4.10(a)). The 3D AnthroFace

algorithm based on 10 automatically detected facial fiducial points also performed

significantly better than the benchmark eigensurfaces, fishersurfaces, and ICP algo-

rithms (Fig. 4.10).

In conclusion, our proposed 3D AnthroFace algorithm presents a number

of novel contributions to the field of 3D face recognition. In the larger context, we

presented a novel way of thinking about the problem. Rather than employing general

purpose pattern recognition algorithms for the task, we introduced the concept

of employing domain specific knowledge about the structural diversity of faces to

design effective 3D face recognition algorithms. We presented a practical method

for isolating this knowledge from the scientific discipline of facial anthropometry

and developed successful, fully automatic algorithms based on this knowledge. We

obtained an upper bound for the expected performance of the proposed algorithm

for manually detected facial fiducial points and also demonstrated its performance

for automatically detected points.
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In the process, we also made significant strides towards solving the largely

unexplored and challenging problem of reliable and accurate 2D+3D facial fiducial

point detection. We envision the detection algorithms to be useful not only for

3D face recognition, but also for other disciplines that require facial anthropomet-

ric measurements including facial surgical planning and computer graphics. Unlike

many of the previously reported studies of automatic facial fiducial point detection,

we systematically assessed the performance of our algorithms against manually de-

tected points and verified their reliability and accuracy.
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(a)

(b)

(c)

(d)

Figure 4.14: The 2D histograms for the errors for the two stages of the detection
algorithms for (a) the tip of the nose, (b) the inner corner of the left eye (2 left
images) and inner corner of the right eye (2 right images), (c) the outer corner of
the left eye (2 left images) and outer corner of the right eye (2 right images), and
(d) the left (2 left images) and right (2 right images) corners of the mouth.

66



Chapter 5

3D Face Recognition by

Assessing Structural Similarity

The surface of the human face can be regarded as a free form 3D object that is

neither planar nor naturally quadric [77]. A class of 3D face recognition algorithms

exists, wherein two free form 3D facial surfaces are aligned and their shapes are

compared by means of a suitable distance metric. This paradigm can be regarded

as a template matching procedure, wherein the templates are the 3D facial surfaces.

The existing approaches for 3D face recognition based on this philosophy

[20, 33, 22, 78, 23, 34, 80, 81, 82, 83, 27, 84, 85, 86, 24, 35, 87, 88, 29] essentially

employ two steps. The first of these is to align the two facial surfaces. This nor-

mally proceeds in two stages, namely coarse alignment and fine alignment. For

coarse alignment, each 3D model is individually transformed to a canonical (frontal

upright in most cases) pose. As a consequence, the two models to be compared

become coarsely aligned by virtue of being in the same canonical pose. Fine align-

ment involves further alignment of the two coarsely aligned 3D facial surfaces. The
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(a) (b)

Figure 5.1: An original 3D facial point cloud A and its rotated version B (a) before,
and (b) after fine alignment using the ICP algorithm.

primary algorithm employed to finely align 3D facial models is the iterative closest

point (ICP) algorithm [79], wherein one 3D facial model is rotated and translated

in space, in an iterative manner, until its distance from the other model converges

to a minimum. Since the ICP algorithm is currently the de facto standard for all

3D face recognition algorithms that belong to this class of algroithms, we describe

its mathematical details in the following section.

5.1 Existing Approaches

5.1.1 Iterative Closest Point Algorithm

Given two sets of 3D points A = {a1, a2, a3 . . . aM} and B = {b1, b2, b3 . . . bN},

containing M and N points, respectively, we wish to rigidly align the point set B

to the point set A (e.g., Fig. 5.1). In other words, we wish to find the orthogonal

rotation matrix R and the translation matrix T which minimize the distance between
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the two point sets. Let A′ = {a′1, a′2, a3 . . . a
′
N} be the set of points in A that are

closest in space (in terms of the L2 norm) to the points in set B. The optimization

problem for ICP is formulated as a least squares problem of the form

min
R,T

f(R, T ) = min
R,T

N∑
i=1

‖a′i − (Rbi + T )‖2 (5.1)

R?, T ? = arg min
R,T

f(R, T ) (5.2)

subject to the constraints RRT = I and det(R) = 1.

On substituting a′i and bi with αi = a′i − a′ and βi = bi − b, respectively,

where a′ = 1
N

∑N
i=1 a

′
i and b = 1

N

∑N
i=1 bi, equations (5.1) and (5.2) reduce to

min
R
f(R) = min

R

N∑
i=1

‖αi −Rβi‖2, (5.3)

R? = arg min
R
f(R), (5.4)

respectively, and the translation matrix is computed as

T ? = a−R?b. (5.5)

Suppose that C and D are matrices of size 3×N , with 3D points αi and βi,

respectively, along their columns. The solution to equation (5.3) [140, 141], can be

obtained using the singular value decomposition of the matrix

H = CDT = UΛV T , (5.6)

where U and V are orthogonal matrices of size 3× 3 and Λ is a diagonal matrix of
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size 3× 3, as

R? = UPV T , (5.7)

where P is a diagonal matrix with values {1, 1, det(UV T )} along the principal diag-

onal.

The iterative optimization procedure of the ICP algorithm begins by assign-

ing the initial values R0 = I and T0 = [0 0 0]T to the overall rotation and translation

matrices, respectively. At each kth iteration, the set of points A′k that are closest

to the points in set RkB + Tk are found. Equations (5.7) and (5.5) are employed

to compute the new values for R? and T ?, and the overall rotation and translation

matrices are updated as

Rk+1 = RkR
? (5.8)

Tk+1 = R?Tk + T ?, (5.9)

until the mean squared error between the two 3D models converges to a minimum

or some other termination criteria are satisfied. The ICP procedure is normally

applied to coarsely aligned 3D models. This makes the optimization procedure less

susceptible to being trapped in a local minimum.

5.1.2 Existing Distance Metrics

After the two 3D facial models are aligned, the dissimilarity between their shapes is

computed by means of a suitable distance metric. In the existing literature on 3D

face recognition, three main distance metrics have been employed for this task. The

simplest of these is the mean squared error (MSE) metric applied to the z values

of two aligned facial range images [20, 33, 22, 78, 23]. Suppose ZA and ZB are two

facial range images, both of the same size R×S pixels. The MSE between them is
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defined as

MSE =
1
RS

R∑
i=1

S∑
j=1

[zA(i, j)− zB(i, j)]2 (5.10)

where zA(i, j) and zB(i, j) are the z values of the two images at the same image

location indexed by (i, j).

Two other metrics have been commonly employed for comparing the shapes

of aligned facial surfaces. They are the point-to-closest-point mean squared error

(MSECP ) [34, 46, 24, 35], and the partial Hausdorff distance (pH) [82, 84]. Given

two sets of 3D points A = {a1, a2, a3 . . . aM} and B = {b1, b2, b3 . . . bN}, containing

M and N points, respectively, the directed MSECP (A→ B) from set A to set B is

defined as

MSECP (A→ B) =
1
M

M∑
i=1

‖ai − b′i‖2, (5.11)

where b′i ∈ B is the closest point to ai ∈ A . The directed MSECP (B → A)

is similarly computed. This distance metric is the same as the distance that is

computed between a pair of 3D models during each iteration of the ICP algorithm.

The undirected MSECP between the two surfaces is defined as

MSECP = max{MSECP (A→ B),MSECP (B → A)}. (5.12)

The partial Hausdorff distance metric is computed in a manner similar to

the MSECP metric [90]. Given two sets of 3D points A = {a1, a2, a3 . . . aM} and

B = {b1, b2, b3 . . . bN}, containing M and N points, respectively, the partial directed

Hausdorff distance (hP (A → B)) is computed by sorting in ascending order the

distances of all points ai ∈ A to their closest points b′i ∈ B and by finding the P th
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largest distance in the ordered set

hP (A→ B) = P th max
a∈A
‖ai − b′i‖. (5.13)

The directed distance hQ(B → A) is similarly computed by considering the Qth

largest distance from point set B to point set A, and the undirected partial Hausdorff

distance (pH) between the two point sets is defined as

pH = max{hP (A→ B), hQ(B → A)}. (5.14)

The pH distance metric is more robust to outliers produced by holes, noise and

occlusions, than are MSE and MSECP , as it rejects a fraction of the largest dis-

tances between the pair of 3D models. The selection of the parameters P and Q

that govern the fraction of the distances that are rejected between the 3D mod-

els, is often determined using prior knowledge about the expected extent of overlap

between them.

The MSE metric is computationally and analytically simple, but is very

sensitive to rotational and translational errors between facial range images. Both

the MSECP and the pH distance metrics differ from MSE, in that they do not

assume perfect correspondence between the two 3D models. For MSECP and pH,

correspondence information between the two models is determined by searching

for pairs of closest points on the two models, using a computationally expensive

procedure (O(MN) for two models with M and N points, respectively).

Overall, these metrics have yielded poor results for comparing the shapes of

3D faces that are coarsely aligned [20, 33, 22]. This is due to their high sensitivity to

registration errors between the models. Currently, the successful 3D face recognition
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algorithms that employ one or the other of these metrics to compare the shapes of

3D faces, first finely align the faces using the ICP algorithm [34, 46, 24, 35, 82, 84].

The performance of these ICP based algorithms is reported to decrease significantly

for faces with arbitrary (other than neutral) facial expressions [86, 24, 35, 29]. Some

researchers have suggested employing sub-parts of the face that deform less than the

others during changes in facial expression (e.g., the nasal region), as the solution to

the problem of facial expressions [87, 88]. However, this has been reported to lower

the overall recognition performance of ICP based 3D face recognition algorithms,

relative to when they employ the entire facial surface.

Within this class of 3D face recognition algorithms that directly compare the

shapes of facial surfaces, we propose a novel algorithm called 3D Structural Similar-

ity Face Recognition (3D SSIMFace) [142]. The proposed 3D SSIMFace algorithm

computes the structural similarity between coarsely aligned 3D facial surfaces using

a recently developed image similarity index called the complex-wavelet structural

similarity (CW-SSIM) index [17]. The proposed algorithm is significantly superior

to existing ICP based algorithms that employ the MSE/MSECP /pH metrics in a

number of respects. First, since the CW-SSIM index is robust to small translations

and rotations between images, the 3D SSIMFace algorithm completely eliminates the

need to finely align facial models using the ICP algorithm, before they are compared.

Second, the CW-SSIM metric is inspired by the pattern recognition capabilities of

humans [17, 136, 137]. Furthermore, it computes the structural similarity between

images, by comparing their relative phases and is significantly more accurate than

the general purpose MSE/MSECP /pH metrics at discriminating between the 3D

facial surfaces of different human subjects.

We also propose a number of simple representations of the 3D facial surfaces,
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which when employed in conjunction with the CW-SSIM index are highly effective

at the task of 3D face recognition. These representations include edge maps de-

rived from the zero-crossings of Laplacian of Gaussian (LOG) filtered facial range

images, sub-sections of the facial range images that contain the eyes and the nose

regions only, and local regions of the facial range and edges images centered about

five anthropometric facial fiducial points. We empirically demonstrate the higher

accuracy of our proposed 3D SSIMFace algorithm relative to algorithms based on

ICP and MSE/MSECP /pH, and other benchmark algorithms including eigensur-

faces [19] and fishersurfaces [31, 38]. Furthermore, we quantify the extent to which

each of the CW-SSIM, MSE, the MSECP and pH indices is robust to geometric

transformations of 3D facial models, for the task of 3D face recognition.

5.2 3D Structural Similarity Face Recognition (SSIM-

Face)

5.2.1 Complex-wavelet Structural Similarity Index

The CW-SSIM index [17, 143] is an extension of the highly successful structural

similarity index (SSIM) [16, 144] to the complex-wavelet domain. The SSIM index

was developed for predicting human preferences in evaluating image quality. How-

ever, the utility of the CW-SSIM and SSIM indices is not limited to perceptual

image quality assessment, and they can be employed for pattern recognition tasks

as well. SSIM compares local structure and variation about a pixel, independent of

the mean intensity and contrast of images. It operates in the spatial domain and has

been shown to greatly surpass MSE both at predicting perceptual image quality

and at pattern recognition tasks [144, 17, 145]. The SSIM index, however, is not
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very robust to small registration errors and scale differences between images. The

CW-SSIM index was designed to improve these properties of the SSIM index [17].

Previous successful applications of the CW-SSIM index include accurate recogni-

tion of handwritten digits [17], and the assessment of observer variability in human

segmentations of medical images [146].

To compute the CW-SSIM index between a pair of images, the images

are first decomposed using a family of symmetric complex wavelets that are di-

lated/contracted and translated versions of a ‘mother wavelet’ [17, 143]. In one

dimension (1D), the mother wavelet, which is the modulated version of a slowly

varying and symmetric low-pass filter g(t), and can be written as

w(t) = g(t)ejωct, (5.15)

where ωc is the center frequency of the modulating band-pass filter. The family of

wavelets can be derived from the mother wavelet as

ws,p(t) =
1√
s
w

(
t− p
s

)
=

1√
s
g

(
t− p
s

)
ejωc(t−p)/s , (5.16)

where s ∈ R+ is the scale factor, and p ∈ R is the translation factor. The continuous

wavelet transform of a given real 1D signal x(t) can be written as [147]

X(s, p) =
1

2π

∫ ∞
−∞

X(ω)
√
sG(sω − ωc)ejωp dω, (5.17)

where X(ω) and G(ω) are the Fourier transforms of x(t) and g(t), respectively. The

wavelet transform of a real 2D signal can be analogously computed. The discrete

wavelet coefficients are sampled versions of the continuous wavelet transform.

Let cA = {cA,i|i = 1, ..., N} and cB = {cB,i|i = 1, ..., N}, respectively, be the
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two sets of discrete wavelet coefficients extracted at the same spatial location in the

same wavelet sub-bands of the two images being compared. The CW-SSIM index

between the images is defined as

S̃(cA, cB) =
2 |
∑N

i=1 cA,i c
∗
B,i|+K∑N

i=1 |cA,i|2 +
∑N

i=1 |cB,i|2 +K
, (5.18)

where c∗ denotes the complex conjugate of c, and K is a small positive constant.

The CW-SSIM index is computed locally using a 7×7 sliding window that moves

across each of the wavelet subbands. Finally, the resulting CW-SSIM index map for

a particular subband is combined into a scalar similarity measure using a weighted

summation. The weighting function is obtained using a Gaussian profile located at

the center of the image with a standard deviation equaling a quarter of the image

size. The CW-SSIM scores from the various subbands are averaged together to

obtain a single CW-SSIM similarity value for a pair of images. The value of the

CW-SSIM index ranges from 0 to 1, where 1 denotes perfect similarity between the

two images and 0 denoted complete dissimilarity.

In order to understand the CW-SSIM index better, equation (5.18) can be

decomposed into the product of two components as

S̃(cA, cB) =
2
∑N

i=1 |cA,i||cB,i|+K∑N
i=1 |cA,i|2 +

∑N
i=1 |cB,i|2 +K

·
2 |
∑N

i=1 cA,i c
∗
B,i|+K

2
∑N

i=1 |cA,i c∗B,i|+K
. (5.19)

The first component in equation (5.19) is completely determined by the magnitudes

of the wavelet coefficients. It achieves a value of 1 if |cA,i| = |cB,i| for all i. This term

is equivalent to the SSIM index applied to the magnitudes of the complex wavelet

coefficients and is related to CW-SSIM’s insensitivity to luminance and contrast

variations between images [17, 143].
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The second component in equation (5.19) is completely determined by the

relative phases of the complex wavelet coefficients of the two images. It achieves a

value of 1 if for all i, the phases of cA,i and cB,i differ by a constant value. This

phase component is related to CW-SSIM’s insensitivity to translation, rotation and

scale variations between images. To understand this, consider a signal shifted in

the time/space domain. The magnitudes of the Fourier transform coefficients of the

signal are unchanged as a result of the shift. However, the phases of its Fourier

transform coefficients undergo a linear shift. Similarly, for the case of the complex

wavelet transform, small consistent translations of an image (compared to the size

of the wavelet envelope), produce an approximately constant shift in the phase

of all coefficients of a particular wavelet subband [17, 143]. Hence, the magnitude

component of the CW-SSIM index computed for an image and its slightly translated

version is 1, and the phase component is ∼1, making the CW-SSIM index insensitive

to small translational errors. Furthermore, the net effect of small scale changes and

rotations can be approximated as small translations [17, 143]. Hence, the CW-

SSIM index is simultaneously insensitive to small translations, rotations and scales

differences between images.

A number of characteristics of the CW-SSIM index make it well suited for

computing the structural similarity between 3D facial surfaces. First, as mentioned

above, CW-SSIM is insensitive to small translations, rotations and scale differences

between images [17]. Hence, when applying the CW-SSIM index to coarsely aligned

3D facial surfaces, which have small registration errors between them, it is unneces-

sary to further finely align them using the computationally expensive ICP procedure.

We will also demonstrated this empirically. For the same reason, CW-SSIM is also

attractive for comparing pairs of 3D facial surfaces that have been finely aligned, as
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one can always expect small misalignment errors to exist even after the ICP proce-

dure. Such errors are more pronounced when the ICP algorithm fails to converge

to the global minimum and does not correctly register the facial surfaces. Similarly,

the CW-SSIM index is also a good choice for comparing 3D faces acquired at slightly

different scales, e.g., when the 3D acquisition devices are not precisely calibrated.

Second, the CW-SSIM index explicitly compares the phases of facial range

images, which is important for assessing the structural similarity between them. It

has been shown that much of the structural information of local image features of

typical natural images (such as those of human faces) exists in the relative phase

patterns of their wavelet coefficients [148]. Similar ideas of correlation between

wavelet phases of images have been successfully employed in a number of applications

of machine vision and image processing [149, 150], including image alignment [151],

feature localization [152, 153], texture description [154], and blur detection [147].

The idea of comparing the relative phases of facial images has also been successfully

employed previously for 2D and 3D facial feature detection [120, 100, 119, 104, 103,

135].

Third, the CW-SSIM index employs a wavelet decomposition. This is in-

spired by the remarkable pattern recognition and hence face recognition capabilities

of the human visual system. Similar to the CW-SSIM index, neurons in the primary

visual cortex have been successfully modeled as multi-scale band-pass oriented fil-

ters, that decompose an image into multiple channels [136, 137]. It has also been

suggested that these multiple channels representations may be useful for the nu-

merous pattern recognition tasks (including that of facial recognition) that humans

perform successfully [155].
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Figure 5.2: Examples of facial range images in the Texas 3D Face Recognition
Database.

5.2.2 3D Facial Representations

For the proposed 3D SSIMFace algorithm, we compared the shapes of coarsely

aligned 3D faces. Each face was in a canonical fontal upright pose, with its nose

tip located at the origin of the co-rdinate system (e.g., Fig. 5.2). We employed a

number of representations of the 3D face. Two of these representations were holistic,

in that they included large regions of the facial surface. These included the ‘holistic

range’ and ‘holistic edge’ images. The other representations were smaller ‘local facial

range and edge images’, centered about five anthropometric facial fiducial points.

These representations are described in detail in the following sections.

5.2.2.1 Holistic Range Images

We first evaluated how well each of the eyes, nose and the mouth regions (e.g. Fig.

5.3) of the facial range images, individually discriminated between humans, when

they were compared using the CW-SSIM index. As described in Section 4.1.6, we

automatically located 10 anthropometric facial fiducial points (Fig. 5.4) on all faces

in the Texas 3D Face Recognition Database. We employed the locations of these

fiducial points to segment the eyes, nose and the mouth regions of each face. We
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Figure 5.3: Examples of the eyes, nose and mouth regions, respectively (from top
to bottom) of two different faces.

computed the means and the standard deviations of the boundaries of each of these

regions across all images in the database. The final values of these boundaries were

fixed at their respective µ + 3σ or µ − 3σ values for the entire database of images.

For all faces, this created sub-regions that were of the same size, which is required

for computing the CW-SSIM index.

We evaluated the face recognition performance of each of the individual eyes,

nose and mouth sub-regions of the facial range images, that of the eyes and the nose

regions together, and that of the complete facial range images on a smaller training

data set. This data set did not overlap with the test data set, which we eventually

employed to evaluate all the other 3D face recognition algorithms. This data set

contained 360 facial range images of 12 subjects (30 images per subject). It was

randomly partitioned into a gallery set, which contained one image each of the 12

subjects with a neutral facial expression, and a probe set. The probe set contained

the remaining 348 images of the 12 subjects with a neutral or an arbitrary facial

expression. We compared all faces in the probe data set to all faces in the gallery
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(a) (b)

Figure 5.4: The 10 automatically detected anthropometric facial fiducial points.

data set and computed the Equal Error Rates (EER), Areas Under the Receiver

Operating Characteristic (ROC) curves (AUC), and the rank 1 Recognition Rates

(RR) for the face recognition performance of each of the eyes, nose and mouth facial

sub-regions.

We found that when the eyes and the nose regions of the 3D facial range

images were compared using the CW-SSIM index, they were good at discriminating

between human faces. However, the mouth region was extremely poor at the task,

with a rank 1 recognition rate of nearly half of that for the eyes and nose regions. We

also observed that the facial sub-regions that contained both the eyes and the nose

of 3D faces, were also more discriminatory than the complete facial range images

(e.g., Fig. 5.2).

Hence, as the first holistic representation of the 3D facial surfaces (hereafter

‘holistic range images’) for the proposed 3D SSIMFace algorithm, we employed sub-
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Figure 5.5: The sub-sections of the facial range images, which contained only the
nose and the eyes regions, and which were employed for the 3D SSIMFace algorithm.

sections of facial range images, which only contained the eyes and nose regions of

the 3D faces (e.g., Fig. 5.5). For each range image this sub-section was located

between pixels 200 and 425 along the vertical, and 75 and 425 along the horizontal.

We employed the locations of the 10 automatically detected anthropometric facial

fiducial points (Fig. 5.4) on all faces in our database to decide these limits. They

corresponded to the µ+ 3σ or µ− 3σ values of the boundaries of these region for all

faces in the database.

5.2.2.2 Holistic Edge Images

Edges of facial range images are physically meaningful in that they are the loca-

tions of the ridges and valleys of the facial surface. Furthermore, they are compact

representations of facial surfaces, which are rich in information about the ‘detailed’

components (regions of high curvature) of the surface [156]. In the past, similar edge

images have been successfully employed to match 3D aerial terrain images [134]. For

the eigensurfaces and fishersurfaces [38, 31, 30, 32] algorithms too, gradient images

derived from facial range images have been reported to perform better than range

images.

Hence, the second representation of 3D faces (hereafter ‘holistic edge images’)

that we employed for the 3D SSIMFace algorithm, were binary edge maps (e.g. Fig.
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Figure 5.6: The facial edge images that were employed for the proposed 3D SSIM-
Face algorithm.

5.6) derived from the original facial range images (e.g. Fig. 5.2). We obtained

these holistic edge images by convolving the facial range images with a Laplacian of

Gaussian (LOG) [133] kernel with σ = 7 pixels, and by detecting all zero-crossings of

the filtered images. For detecting edges, we employed the zero crossings of the LOG

filtered range images, because several theoretical studies have supported the unique-

ness of zero-crossings as a representation of certain band-limited two-dimensional

signals [157, 158].

5.2.2.3 Local Range and Edge Images

The third representation of 3D facial surfaces (hereafter ‘local range and edge im-

ages’) that we employed for the 3D SSIMFace algorithm were local patches of the

facial range and edge images (e.g., Fig. 5.7). The local images were of size 257×257

pixels and were centered about 5 automatically detected anthropometric facial fidu-

cial points. The 5 fiducial points were the two inner corners of the eyes, the tip of

the nose, and the two points that define the ‘nose width’, i.e., points en-en, prn,
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(a)

(b)

Figure 5.7: From left to right are shown the local (a) range, and (b) edge images of
size 257× 257 pixels centered about the anthropometric fiducial points en-en, prn,
al-al, respectively.

and al-al, respectively in Fig. 5.4(b). We selected these 5 points, because of all

the 10 anthropometric facial fiducial points, the regions about these 5 points were

individually the most discriminating.

The automatic fiducial point detection algorithms that we employed had a

maximum standard deviation of error from manually located fiducially points of less

than 8 pixels or 2.65 mm. These fiducial point detection errors translate to small

translational errors between the local range and edge images that we employed for

the 3D SSIMFace algorithm. Hence, the CW-SSIM index, which is insensitive to

small translations between images, is an ideal choice for comparing the local range

and edge images.

5.2.3 Recognition Algorithm

For the final 3D SSIMFace algorithm, we computed the structural similarity be-

tween the holistic range images (sR,holistic), holistic edge images (sE,holistic), the five

local range images (si
R,local, where i = {1, 2, 3, 4, 5}), and the five local edge images
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(si
E,local, where i = {1, 2, 3, 4, 5}) for pairs of coarsely aligned 3D faces using the

CW-SSIM index. All images were decomposed into their wavelet coefficients using

a complex version [159] of a 6-scale, 16-orientation steerable pyramid wavelet trans-

form [160]. This is a type of redundant wavelet transform that avoids aliasing in

the sub-bands and hence is a good choice for analyzing signals.

In all we obtained 12 (2 holistic and 10 local) similarity scores for each

pair of 3D faces. We converted the similarity scores into dissimilarity values using

d =
√

2(1− s) [161]. We computed an overall local dissimilarity score (dlocal) as the

arithmetic average of 10 local dissimilarity scores di
R,local and di

E,local. Finally, we

combined the scores of the two holistic representations dR,holistic and dE,holistic, and

the local dissimilarity score dlocal to obtain the final dissimilarity score (d) between

a pair of 3D facial surfaces as

d = ω1 dR,holistic + ω2 dE,holistic + ω3 dE,holistic. (5.20)

The weights (ωi) in equation (5.20) were computed using the areas under the ROC

curves of each of the individual representations as

ωi =
max[AUCi]
AUCi

, (5.21)

where i corresponds to {R, holistic}, {E, holistic} and {local}. These AUC values

were obtained using a smaller data set of 360 images of 12 subjects, which was

independent of the data set on which the algorithms were finally evaluated. By

computing the weights in this manner, we ensured that the scores of the individual

representations that performed better than the others, i.e., produced lower AUC

values, were weighted more heavily.
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5.3 Benchmark Algorithms

We compared the performance of our proposed 3D SSIMFace algorithm to three

existing state-of-the-art 3D face recognition algorithms. The first of these was an

ICP based algorithm [24, 84], wherein we first finely registered each pair of coarsely

aligned 3D facial models in our database. We implemented the ICP procedure on

complete 3D facial surfaces (e.g. Fig. 5.1), which were reduced to 0.1 times of their

original magnifications. The rotation and translation matrices learned from the ICP

procedure on the sub-sampled 3D models were employed to align the original 3D

facial models. We compared the finely aligned 3D facial models with each of the

MSE, MSECP and the pH distance metrics. For computing the pH distance metric

we rejected 10% of the largest distances between the two 3D models as outliers to

account of variations in the sizes of 3D faces.

For the ICP based algorithms we compared the shapes of entire 3D facial

surfaces. It should be noted that this is different from the SSIMFace algorithm,

wherein we compared parts of the facial surfaces that contained the eyes and nose

only. For the ICP based approaches we found that excluding the mouth region

lowered their overall performance, relative to when the entire facial surface was

employed. Similar results have been reported by other researchers in the past [87,

88]. Hence, we implemented the version of the ICP algorithm that resulted in the

best overall performance, and which employed the entire 3D facial surface.

We also implemented two other benchmark 3D face recognition algorithms,

namely eigensurfaces [19], and fishersurfaces [31, 38]. For these algorithms, we

employed sub-sections of the facial range images between the pixels 147 and 553

along the vertical, and 38 and 478 along the horizontal (e.g., Fig. 5.8). These

limits corresponded to the extrema of the uppermost, bottommost, leftmost, and
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Figure 5.8: The sub-regions of the facial range images that were employed for the
eigensurfaces and fishersurfaces 3D face recognition algorithms.

rightmost co-ordinates, respectively, of 25 manually located anthropometric fiducial

points (Section 3.3) across all faces in the Texas 3D Face Recognition Database.

In setting these limits to the extrema of all faces, we ensured that the main facial

features were not excluded for any face.

For the eigensurfaces algorithm, we learned 69 eigen directions that ac-

counted for 99% of the variance of the data, and linearly projected all faces in

the test data set onto these eigen directions. The final metric for the comparison

of 3D facial surfaces in the eigen sub-space was the L1 norm. For the fishersurfaces

algorithm, we first reduced the dimensionality of the range images to 348 using

principal component analysis (PCA) [70]. This was done to ensure that the within-

class scatter matrix employed in the LDA computations was non-singular. We then

learned 11 LDA directions from the 348 PCA features and projected all faces in

the test data set onto these LDA directions before comparing them by means of

the L2 norm. The eigensurfaces and the fishersurfaces algorithms were trained on a

training data set and were evaluated on a separate test data set. The proposed 3D

SSIMFace and the ICP based algorithms, which did not require training were also

evaluated on the test data that was employed to evaluate the eigensurfaces and the

fishersurfaces algorithms.
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Partition No. of Subjects
No. of Images

Neutral Expressive Total
Training 12 228 132 360

Test
Gallery 105 105 0 105
Probes 95 480 183 663

Table 5.1: A summary of the data partitions employed for training and testing 3D
face recognition algorithms.

5.4 Performance Evaluation

5.4.1 Data

We employed the Texas 3D Face Recognition Database (Chapter 3). This database

contained 1149 2D and 3D images of 118 human subjects. We partitioned the

database into a training data set and a test data set (Table 5.1). The training data

set contained 360 randomly selected images of 12 subjects (30 images per subject)

in neutral or expressive modes. For all the 3D face recognition algorithms that we

developed, steps such as automatic facial fiducial point detection, classifier feature

selection and classifier optimization were performed using the training data set only.

The trained classifier was evaluated on the independent test data set, which did not

overlap with the training data set.

The test data set included 768 images of 105 subjects. This test set was

further partitioned into a gallery set and a probe set. For all 3D face recognition

algorithms, faces in the probe set were compared to faces in the gallery set, which

resulted in a matrix of 105 × 663 comparison scores. Consistent with the evaluation

protocol of the FRVT 2002 [118] and the FRGC 2005 [13], the gallery set contained

one range image each of 105 subjects with a neutral facial expression. The probe

set contained another 663 images of 95 of the gallery subjects with a neutral or an

88



arbitrary facial expression. In the probe set, the number of images of each subject

varied from 1 to 55. In accordance with the widely accepted ‘closed universe’ model

for the evaluation of face recognition algorithms [118], every subject in the probe

data set was represented in the gallery data set.

5.4.2 3D Face Recognition

We evaluated the verification performance of all 3D face recognition algorithms us-

ing the Receiver Operating Characteristic methodology [50], and observed the values

of the Equal Error Rates and the Areas Under the ROC Curves. The identification

performance of the algorithms was evaluated using Cumulative Match Characteris-

tic (CMC) curves, and the rank 1 Recognition Rates were observed. Statistical 95%

confidence intervals for the EER, AUC, and the rank 1 RR values were obtained

empirically using bootstrap sampling. All performance statistics were observed sep-

arately for neutral faces, for expressive faces, and for both types of faces.

5.5 Results and Discussion

5.5.1 Discriminatory Facial Regions

The recognition performance of the individual eyes, nose, and mouth regions of

the facial range images when they were compared using the CW-SSIM index are

presented in Table 5.2. The performance statistics reported are for both neutral and

expressive faces. The ROC and CMC curves for the verification and identification

performance of these regions are shown in Fig. 5.9.

We found that for comparisons using the CW-SSIM index, the orbital region

of the 3D face was the most discriminatory, closely followed by the nasal region (Ta-

ble 5.2, and Fig. 5.9). The mouth region, however, was very poorly discriminating
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Facial Region EER (%) AUC ×10−2 Rank 1 RR (%)
Eyes 5.09 [3.74 6.04] 0.87 [0.55 1.05] 95.7 [93.4 97.7]
Nose 8.58 [6.91 10.1] 2.56 [1.62 3.23] 92.8 [89.9 95.4]

Mouth 29.0 [25.2 32.8] 22.7 [19.1 27.0] 52.0 [47.1 57.6]

Table 5.2: The observed EER, AUC, and rank 1 RR values and their 95% confidence
intervals for the eyes, nose and mouth regions of the facial range images, wherein
the facial sub-regions were compared using the CW-SSIM index.

(EER = 29% and rank 1 RR = 52%). The poor performance of the mouth region

could be explained by greater variation in its shape for different facial expressions.

In conclusion, the mouth region of the facial range images was clearly not very ac-

curate for matching 3D faces with the CW-SSIM index. Hence, we were justified

in excluding this region from the final holistic range image representation (Section

5.2.2.1) that we employed for the 3D SSIMFace algorithm.

(a) (b)

Figure 5.9: (a) The semi-log CMC curves, and (b) the ROC curves for the eyes,
nose and mouth regions of the facial range images, wherein the facial sub-regions
were compared using the CW-SSIM index.
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5.5.2 3D SSIMFace

The performance of the proposed 3D SSIMFace algorithm, and the benchmark eigen-

surfaces, fishersurfaces, and ICP algorithms is presented in Table 5.3. The ROC and

CMC curves for these algorithms are shown in Fig. 5.10. For all faces (neutral and

expressive), the 3D SSIMFace algorithm performed well both at the tasks of facial

verification (EER = 1.36% and AUC = 0.0019), and facial identification (rank 1

RR = 99.7%). It also performed significantly better than all the three benchmark

eigensurfaces and fishersurfaces, and ICP algorithms.

Note, that the performance statistics reported in Table 5.3 for the 3D SSIM-

Face algorithm are for the case when coarsely aligned 3D facial surfaces were com-

pared. By comparison, the performance statistics reported for the ICP based algo-

rithm are for the case when the same coarsely aligned facial surfaces were further

finely aligned using the ICP algorithm and were then compared using the pH dis-

tance metric. In Table 5.3, we have reported the results of the ICP algorithm with

the pH metric only, because of the three MSE, MSECP and pH metrics, compar-

ison of the finely registered facial surfaces using the pH metric resulted in the best

performance. It is evident that even after finely registering the 3D faces, the best

ICP based approach was nearly an order of magnitude less accurate at discriminat-

ing between them than the proposed 3D SSIMFace algorithm was at discriminating

between their coarsely aligned versions. Hence, the 3D SSIMFace algorithm, which

is based on the CW-SSIM index clearly obviates the need to finely register 3D faces

that are already in a canonical frontal upright pose.
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EER [Confidence Interval] %
Algorithms Neutral Expressive All
Eigensurfaces 24.0 [21.3 26.3] 23.6 [19.2 26.2] 24.0 [21.8 26.6]
Fishersurfaces 8.11 [6.39 10.9] 3.60 [2.00 6.43] 6.69 [5.27 8.16]

ICP + pH 7.97 [6.85 9.95] 9.92 [6.71 14.7] 9.03 [7.67 10.2]
3D SSIMFace 0.84 [0.27 1.21] 1.68 [0.49 3.81] 1.36 [0.94 1.79]

(a)

AUC [Confidence Interval] ×10−2

Algorithms Neutral Expressive All
Eigensurfaces 16.7 [14.1 18.8] 14.9 [11.9 18.0] 16.3 [14.8 18.7]
Fishersurfaces 2.88 [2.12 3.71] 1.32 [0.32 2.49] 2.40 [1.79 2.96]

ICP + pH 2.97 [2.16 4.12] 4.39 [2.18 7.80] 3.44 [2.56 4.27]
3D SSIMFace 0.17 [0.02 0.49] 0.18 [0.04 0.37] 0.19 [0.06 0.46]

(b)

Rank 1 RR [Confidence Interval] %
Algorithms Neutral Expressive All
Eigensurfaces 58.1 [54.0 62.7] 52.5 [45.4 60.1] 56.6 [52.9 60.2]
Fishersurfaces 91.7 [89.4 94.0] 95.1 [91.8 97.8] 92.6 [90.6 94.4]

ICP + pH 88.5 [85.6 91.5] 86.3 [80.9 91.0] 87.9 [85.5 90.2]
3D SSIMFace 99.8 [99.4 100] 99.5 [99.4 100] 99.7 [99.2 100]

(c)

Table 5.3: The observed (a) EER, (b) AUC, and (c) rank 1 RR values and their
95% confidence intervals for the proposed 3D SSIMFace algorithm, wherein coarsely
aligned 3D faces were compared using the CW-SSIM index, and for the benchmark
eigensurfaces, fishersurfaces, and ICP algorithms.

5.5.3 Before and After ICP

We further verified whether the CW-SSIM index was indeed robust to small rotations

and translations that were present between the pose normalized 3D models in our

database. We compared pairs of holistic range images, holistic edge images, and

local range and edge images of 3D faces, using the CW-SSIM index, before and

after they were finely aligned using the ICP procedure. Similarly, we compared
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(a) (b)

Figure 5.10: (a) The semi-log CMC curves, and (b) the ROC curves for the proposed
3D SSIMFace algorithm, wherein coarsely aligned 3D faces were compared using
the CW-SSIM index, and for the benchmark eigensurfaces, fishersurfaces, and ICP
algorithms.

pairs of facial surfaces, using the MSE, MSECP and pH metrics, before and after

they had been finely aligned. The face recognition performance of these comparisons

are presented in Table 5.4.

On comparing the first three columns of Table 5.4(a) to the correspond-

ing columns of Table 5.4(b), it can be observed that for the CW-SSIM index, the

performance was largely statistically equivalent before and after the 3D faces were

finely registered. This was true for all the three representations of 3D faces, namely

holistic range images, holistic edge images, and local range and edge images. By

comparison, the recognition performance of the MSE metric increased significantly

from a rank 1 RR = 48.7% before fine alignment of the 3D faces using ICP, to a

rank 1 RR = 60.9% after fine alignment. Similarly, the verification and recognition

performance of the MSECP and pH metrics also significantly improved after the
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Before ICP
Index EER (%) AUC ×10−2 Rank 1 RR (%)
dR,holistic 6.69 [4.93 7.88] 1.44 [1.05 1.97] 91.4 [89.3 93.4]
dE,holistic 3.58 [2.90 4.60] 0.53 [0.33 0.97] 96.8 [95.3 98.0]
dlocal 2.11 [1.44 2.89] 0.40 [0.11 0.68] 97.6 [96.4 98.6]
MSE 21.4 [19.2 23.4] 13.0 [11.9 14.5] 48.7 [44.9 52.6]
MSECP 15.6 [13.6 17.1] 7.32 [6.39 8.56] 58.2 [54.6 61.9]
pH 14.4 [12.3 16.0] 6.15 [5.32 7.43] 65.6 [61.8 69.3]

(a)

After ICP
Index EER (%) AUC ×10−2 Rank 1 RR (%)
dR,holistic 5.73 [4.36 6.84] 1.17 [0.72 1.54] 93.7 [91.7 95.5]
dE,holistic 3.96 [3.15 4.78] 0.57 [0.36 0.95] 96.2 [94.7 97.6]
dlocal 2.12 [1.46 2.74] 0.34 [0.17 0.57] 98.5 [97.6 99.4]
MSE 21.6 [19.0 23.2] 12.4 [11.3 14.1] 60.9 [56.9 64.7]
MSECP 12.6 [11.0 14.1] 5.57 [4.69 6.63] 77.1 [73.8 80.1]
pH 9.03 [7.67 10.2] 3.44 [2.56 4.27] 87.9 [85.5 90.2]

(b)

Table 5.4: The observed EER, AUC, and rank 1 RR values and their 95% confidence
intervals for comparing facial surface representations with the CW-SSIM, MSE,
MSECP , and pH indices, before and after 3D faces were finely regstered using the
ICP algorithm. The performance statistics are for all faces (neutral and expressive).

coarsely aligned faces were finely registered using ICP. This analysis confirmed that,

unlike the MSE, MSECP and pH metrics, the CW-SSIM index was indeed robust

to the small registration errors that were present between the pairs of frontal upright

3D faces in our database.

As an aside, from Table 5.4 it is interesting to note that out of the three

representations that we employed for the 3D SSIMFace algorithm, the combination

of local range and edge images resulted in the best performance, followed closely by

the holistic edge images. In a sense the edge images are also local representations of

the facial surfaces in that they only contain information about specific local regions
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Figure 5.11: The right handed 3D co-ordinate system.

of high surface curvature of the face. Hence, these results are interesting in that

they point towards the superior performance of local feature based approaches for 3D

face recognition relative to holistic approaches. Furthermore, on comparing Table

5.3 and Table 5.4, it is evident that for the 3D SSIMFace algorithm a combination

of the various holistic and local representations of 3D faces resulted in significantly

superior performance relative to either of them individually. This corroborates with

similar findings in previous 3D face recognition studies [44, 83, 42].

5.5.4 Analysis of Geometric Transformations

Lastly, to gain a better understanding of the workings of the CW-SSIM, MSE,

MSECP , and pH indices with different facial representations, we evaluated the

extent to which each of them was robust to geometric transformations (rotations,

translations and scaling) of 3D facial surfaces. In the context of 3D face recognition,

the presence of geometric distortions between pairs of facial surfaces can result in

two types of errors, namely false positives and false negatives. We analyzed the

robustness of each index with regard to false negative errors. A similar procedure
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(a)

(b)

Figure 5.12: The (a) range images, and (b) edge images (from left to right) of an
original 3D face, and its transformed version for −15 ◦ rotation about the z axis,
−15 ◦ rotation about the y axis, −15 ◦ rotation about the x axis, scaling of 0.75
times its original magnification, and translation of r = 34 mm and θ = π/4 in the
(xy) or (rθ) plane.

was adopted in a previous study on 3D face recognition [162]. We determined the

extent to which a true positive 3D face could be geometrically transformed without

it being misclassified as a false negative. The robustness of an index defined in this

manner depends on the operating point of its corresponding 3D face recognition

system. For all indices, we fixed this operating point at the false acceptance rate of

1%, which is a typical operating point for face recognition systems [13].

We compared 3D facial range and edge images (e.g., Fig. 5.12) using the CW-

SSIM index, and entire 3D facial surfaces (e.g., Fig. 5.1) using the MSE, MSECP

and pH metrics. We randomly selected one (neutral or expressive) face of each of

105 subjects from the test data set of the Texas 3D Face Recognition Database.

We rotated each 3D face from −30 ◦ to 30 ◦ in steps of 3 ◦ individually about the

x, y and z axes (defined in Fig. 5.11). We also scaled each face from 0.75 to 1.25

of its original magnification in steps of 0.025. In the real world, translation of the
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Distortion CW-SSIM CW-SSIM MSE MSECP pH
(range) (edge)

Rz (degrees) -9, 9 -15, 15 -9, 9 -9, 9 -9, 9
Ry (degrees) -9, 9 -21, 21 -3, 3 -3, 3 -6, 6
Rx (degrees) -12, 12 -24, 27 -3, 3 -3, 6 -3, 3

Scale 0.90, 1.10 0.83, 1.20 0.95, 1.0 0.93, 1.07 0.93, 1.07
r (mm) 13.6 20.4 6.79 6.79 6.79

Table 5.5: The maximum distortions for each of the similarity indices/3D facial
representations, that resulted in scores between a 3D face and its transformed ver-
sion that were less that the operating point of the corresponding indices’ 3D face
recognition system.

subject/camera system along the z (optical) axis changes the scale of the acquired

facial images. Lastly, we translated the 3D faces in the (xy) or its corresponding

(rθ) plane. For this, we fixed θ = π/4 and varied r from 0 mm to 34 mm in steps

of 2.26 mm. For all transformations, we assumed that the origin of the co-ordinate

system was located at the tip of the nose of the original 3D face. Using each of the

CW-SSIM, MSE, MSECP , and pH indices, we compared each transformed face to

its original version. We generated range and edge images of the 3D faces in the the

transformed poses/scales (e.g., Fig. 5.12) for computing the CW-SSIM scores. For

every transformation, we obtained the average and the 95% confidence interval of

the scores of a particular index across all 105 faces.

The greatest geometric transformations that each index could accommodate

before the score between a face and its transformed version became statistically

greater than the operating threshold of the corresponding index’s 3D face recogni-

tion system, are listed in Table 5.5. It can be observed that the CW-SSIM index

with facial range images was more robust to rotations about the y and x axes, and

to translations along the r axis, than the MSE, MSECP , and pH metrics. More-

over, it was only slightly more robust to scale changes than the MSE, MSECP ,
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and pH metrics. The CW-SSIM index with facial edge images, on the other hand

was considerably more robust to all geometric transformations, than all the other

indices/3D facial representations. It is also interesting to note that the CW-SSIM

index, with both range and edge images, was more or equally robust to out-of-plane

rotations (about the x and y axes) as it was to in-the-plane rotations (about the

z axis). Clearly, these factors contribute to the overall success of the proposed 3D

SSIMFace algorithm.

In conclusion, within the class of 3D face recognition algorithms that di-

rectly compare facial surfaces, we proposed a novel 3D SSIMFace algorithm which

employs the CW-SSIM index. We demonstrated the superior performance of the

3D SSIMFace algorithm, both in terms of recognition accuracy and robustness to

registration errors, relative to existing benchmark ICP based approaches. For com-

paring facial surfaces, we introduced three novel ideas. The first was to use an index

which is robust to small registration errors, and which obviates the need to finely

register 3D faces before they are compared. This represents a major paradigm shift

from the current de facto practice of employing the ICP algorithm before compar-

ing 3D faces. The second was to use a structural similarity index, which compares

the phases of facial range images, and is significantly more accurate at matching

3D faces than the general purpose MSE, MSECP , pH metrics. The third was

to employ information-rich edge images derived from facial range images with the

CW-SSIM index. Edge images are simple to compute and yet surprisingly effective

at distinguishing between 3D faces, as we demonstrated. In a more general context,

the methods that we developed for comparing 3D images using the CW-SSIM index

are not limited to facial range images. They could potentially be applied to other

3D pattern recognition tasks as well.
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Chapter 6

Combined Algorithm

As our final proposed 3D face recognition algorithm, we combined the two 3D An-

throFace (Chapter 4) and 3D SSIMFace (Chapter 5) algorithms that we developed.

The dissimilarity scores between the pairs of 3D faces for this combined algorithm

were the sum of the scores of the individual 3D AnthroFace and 3D SSIMFace algo-

rithms. We evaluated the performance of the combined algorithm on the test data

partition of the Texas 3D Face Recognition Database (Chapter 3). Its performance

statistics along with those of the 3D AnthroFace and 3D SSIMFace algorithms are

listed in Table 6.1. The ROC and CMC curves for the 3D AnthroFace, 3D SSIMFace

and the combined algorithm are presented in Fig. 6.1.

It is interesting to observe from Table 6.1 that the verification performance

of the 3D AnthroFace and the 3D SSIMFace algorithms was statistically equivalent.

The facial identification performance of the 3D SSIMFace algorithm (rank 1 RR =

99.7% for all faces), however, was significantly better than that of the 3D AnthroFace

algorithm (rank 1 RR = 96.8% for all faces). Moreover, a simple approach of

summing the scores of the two algorithms resulted in a very accurate algorithm
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EER [Confidence Interval] %
Algorithms Neutral Expressive All

3D AnthroFace 1.65 [1.11 2.28] 2.81 [1.27 4.30] 1.98 [1.37 2.88]
3D SSIMFace 0.84 [0.27 1.21] 1.68 [0.49 3.81] 1.36 [0.94 1.79]

Combined 0.42 [0.14 0.64] 1.62 [0.54 3.01] 0.77 [0.47 1.10]
(a)

AUC [Confidence Interval] ×10−2

Algorithms Neutral Expressive All
3D AnthroFace 0.14 [0.08 0.23] 0.25 [0.11 0.42] 0.18 [0.11 0.28]
3D SSIMFace 0.17 [0.02 0.49] 0.18 [0.04 0.37] 0.19 [0.06 0.46]

Combined 0.05 [0.01 0.11] 0.09 [0.01 0.21] 0.07 [0.02 0.16]
(b)

Rank 1 RR [Confidence Interval] %
Algorithms Neutral Expressive All

3D AnthroFace 97.3 [95.8 98.5] 95.6 [92.4 98.4] 96.8 [95.3 98.0]
3D SSIMFace 99.8 [99.4 100] 99.5 [99.4 100] 99.7 [99.2 100]

Combined 99.8 [99.4 100] 99.5 [99.4 100] 99.7 [99.2 100]
(c)

Table 6.1: The observed (a) EER, (b) AUC, and (c) rank 1 RR values and their
95% confidence intervals for the 3D AnthroFace, 3D SSIMFace and a combination
of both these algorithms.

with EER = 0.77%, AUC = 0.0007, and rank 1 RR = 99.7%. The verification

performance of this combined algorithm was also significantly better than that of

either of the 3D AnthroFace and 3D SSIMFace algorithms. This suggests that

the proposed 3D AnthroFace and 3D SSIMFace algorithms embody uncorrelated

or complementary discriminatory facial structural information. The AnthroFace

algorithm employs local discriminatory anthropometric facial distances. The 3D

SSIMFace algorithm is a combination of holistic and local approaches, wherein the

shapes of entire facial surfaces or their sub-regions are quantified and compared.

The fact that the two algorithms are complementary is further supported
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(a) (b)

Figure 6.1: (a) The semi-log CMC curves, and (b) the ROC curves for the 3D
AnthroFace, 3D SSIMFace algorithms, and a combination of both these algorithms.

by the observation that for the 3D AnthroFace algorithm, the anthropometric dis-

tances associated with the nose region of the face were the most discriminatory. By

comparison, for the 3D SSIMFace algorithm the surface of the orbital region was

more discriminatory than the surface of the nose region. The 3D AnthroFace and

3D SSIMFace algorithms were also based on very different design philosophies. The

3D AnthroFace algorithm was specifically designed to incorporate domain specific

knowledge about the structural diversity of human faces. The holistic facial surface

matching approaches that we proposed as a part of the 3D SSIMFace algorithm, on

the other hand, are not limited to facial images only and can be applied to other

3D surface matching applications.

A number of results in this dissertation also point towards the potentially

superior performance of the local feature based 3D face recognition algorithms rela-

tive to holistic approaches. These include the superior performance of the proposed
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Author Algorithm
Data

Performance
Gallery Probe

Chang [65] PCA 200 676 RR = 94.5%

Pan [112]
Isometric

– – EER = 2.83%
flattening + PCA

Russ[84]
ICP,

198 745
FRR = 6.5%

MSECP + pH
FAR = 0.1%
RR = 98.5%

Koudelka [88] ICP, pH 198 198 RR = 94%

Kakadiaris [107] AFM 152 608
FRR ∼ 3.1%
FAR = 0.1%
RR = 99.3%

Gupta et al.
3D AnthroFace +

105 663

FRR = 2.56%

SSIMFace
FAR = 0.1%
RR = 99.7%
EER = 0.77%

Table 6.2: A summary of the five 3D face recognition algorithms that were evaluated
at the Face Recognition Grand Challenge 2005 on the FRGC v0.1 database, and of
our final proposed 3D face recognition algorithm, which was a combination of the
3D AnthroFace and 3D SSIMFace algorithms.

3D AnthroFace algorithm in comparison to the holistic eiegnsurfaces, fishersurfaces

and ICP algorithms; the better performance of the local representations of the 3D

SSIMFace algorithm in comparison of the holistic 3D facial representations; and the

statistically equivalent verification performance of the purely local feature based 3D

AnthroFace algorithm to the 3D SSIMFace algorithm, which employed both holistic

and local facial representations.

Lastly, we compare the performance of the proposed combined algorithm to

that of the five 3D face recognition algorithms that were evaluated on the publicly

available FRGC v0.1 database as a part of the Face Recognition Grand Challenge

2005 [13] (Table 6.2). These algorithms represent the current state-of-the-art in

3D face recognition. Among these five existing algorithms, the ‘Annotated Face
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Model’ (AFM) algorithm proposed by Kakadiaris et al. [107], performed the best

with rank 1 RR = 99.3%, and at FAR = 0.1%, FRR 3.1%. It is clear that the

performance of the proposed 3D face recognition algorithm (rank 1 RR = 99.8%, and

at FAR = 0.1%, FRR = 2.56%), which combined the 3D AnthroFace and SSIMFace

recognition algorithms, on the Texas 3D Face Recognition was competitive with the

performance of the state-of-the-art algorithms on the FRGC v0.1 database.
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Chapter 7

Conclusion

In conclusion, automatic human face recognition is a non-trivial computer vision

problem of considerable practical significance. Three dimensional face recognition,

which is now emerging as a significant technology, has numerous open problems

that are yet to be resolved. In this dissertation, we developed novel 3D face recogni-

tion algorithms based on ideologies that are different from the existing paradigms.

Firstly, we scientifically analyzed the discriminatory facial anthropometric distances

and developed successful fully automatic 3D face recognition algorithms that em-

ploy these distances. We developed 2D+3D algorithms to automatically locate 10

anthropometric facial fiducial points with a high precision. In order to locate facial

fiducial points, we again employed evidence about the established proportions of fa-

cial features from the literature on anthropometric facial proportions. Secondly, we

developed a highly accurate algorithm for comparing the shapes of 3D facial surfaces

using the CW-SSIM index, which is also significantly more robust to registration

errors between 3D faces that the existing 3D face recognition algorithms.

On a large database of 3D images, we demonstrated the effectiveness and su-
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perior performance of our proposed algorithms relative to the existing benchmark 3D

face recognition algorithms. Furthermore, unlike many previously reported works of

3D face recognition, all algorithms in this dissertations were evaluated and compared

using rigorous statistical hypothesis testing. We envision that the ideas proposed in

this dissertation would not only advance the field of 3D face recognition, but would

also be applicable to the related scientific disciplines of facial computer graphics,

facial surgical planning, and general 3D object recognition.

In the future, a number of areas of this research work can be extended. For

example, the fiducial point detection algorithms can be extended to automatically

locate more than the 10 anthropometric fiducial points that we detected. It may

also be interesting to study the sensitivity of the proposed fiducial point detection

algorithms to small in and out of plane rotations of 3D faces. For detecting fiducial

points, we computed the surface curvature of 3D faces using frontal upright facial

range images. It may also be useful to investigate techniques for computing surface

curvature directly from arbitrarily oriented 3D point clouds or 3D meshes. This

may eliminate the need to operate on frontal upright faces. Similarly, for the 3D

SSIMFace recognition algorithm, we computed the CW-SSIM index between pairs

of facial range images. A 3D version of the CW-SSIM index could be developed,

which could operate directly on 3D models instead of on range images. In a future

study, it may also the instructive to analyze the extend to which the CW-SSIM,

MSE, MSECP , and pH indices are robust to the presence of noise and holes in 3D

faces.

Lastly, all the algorithms that we developed employed only 3D or structural

features of facial surfaces for recognition. The facial intensity/color information was

not employed for recognition. Numerous studies in the past have demonstrated that
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a combination of the 2D and 3D imaging modalities for face recognition, results

in superior performance relative to either of them individually. Hence, a natural

extension of this work would be to compare the performance of our proposed 3D

face recognition algorithms to state-of-the-art 2D face recognition algorithms and

to investigate techniques for combining it with 2D face recognition algorithms.
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