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Abstract 

 

Targeted Nanoparticle Formulation for a Poorly Water Soluble 
Gemcitabine Derivative and its In Vivo and In Vitro Anti-tumor Activity 

 

Michael Anthony Sandoval, M.S.Phr 

The University of Texas at Austin, 2012 

 

Supervisor:  Zhengrong Cui 

 

Cancer is a collection of over one hundred different types of diseases and is 

responsible for the leading cause of death in the United States. More strikingly, cancer 

mortality rates have remained relatively unchanged for the past several decades, 

indicating significant clinical demand for improved cancer therapy. Gemcitabine, known 

clinically as Gemzar®, is used to treat a variety of human cancers, however, clinical 

efficacy is modest due to it’s brief blood circulation, rapid clearance, manifestation of 

tumor-drug resistance, and lack of drug specificity. This thesis sought to develop a solid 

lipid nanoparticle-based platform to passively and actively target a gemcitabine lipophilic 

derivative, 4-(N)-stearoyl gemcitabine, into tumor cells over-expressing epidermal 

growth factor receptor (EGFR) after intravenous injection. Considering gemcitabine is 

hydrophilic and the core of the nanoparticle is solid (hydrophobic), we lipophilized 

gemcitabine by conjugating a stearoyl group to its N-terminus to form 4-(N)-stearoyl 

gemcitabine. Second, we incorporated stearoyl gemcitabine into lecithin-based 

nanoparticles. The nanoparticle formulation was prepared from lecithin/glyceryl 
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monostearate-in-water emulsions. Third, we grafted the gemcitabine nanoparticles with 

polyethylene glycol chains with reactive end groups that are capable of conjugating with 

a targeting moiety on the surface to actively target tumors that over-express EGFR. 

Taken together, the overall objective of the research presented in this thesis is to develop, 

characterize, and evaluate the anti-tumor performance in vitro as well as in mice against 

both human and mouse tumor models. 
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Chapter 1: General Introduction 

1.1  Motivation: Statistics and Significance 

Nearly 1.6 million cases of cancer will be diagnosed in year 2012, and will claim 

an estimated 577,190 lives in the United States [1]. As a result, cancer ranks as the 

second leading cause of death after heart disease, accounting for nearly one of every four 

deaths. Globally, the World Health Organization estimates an astonishing 7.6 million 

deaths from cancer to lead as the number one cause of death in 2008. Economically, the 

National Institute of Health projected the overall cost for cancer in the United States was 

$226.8 billion: $103.8 billion for direct medical costs and $123 billion for indirect 

mortality costs [1].  Interestingly, for the past several decades the scientific community 

has made exceptional progress towards the deeper understanding in cancer biology and 

advancing therapeutic options, however this has not translated into even distantly 

comparable advances in the clinic. If mortality rates of other chronic diseases (i.e. heart, 

cerebrovascular disease, and influenza) are compared to that of cancer from 1991 to 

2006, its shown that while heart disease and other major chronic diseases decreased 

substantially during this period, the mortality rates of cancer remained relatively constant 

(~16% decrease) [1]. Taken together, proportional and additional research is needed to 

gain a better understanding of cancer and identify new therapeutic options to fight this 

disease. 

 

1.2  Cancer and Chemotherapy 

 Cancer is a collection of over one hundred different types of diseases and is 

responsible to consume as the second leading cause of death in the United States. The 

mechanism by which cancer develops and progresses is not completely understood, as 
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there are several distinct pathways this can happen. However, its widely accepted that 

cancer is thought to develop from a cell in which the normal mechanism for control of 

growth and proliferation is abnormally altered [2]. A large body of research has 

accumulated demonstrating the concept of cancer development is a multi-stage process 

that is genetically regulated in three stages. The first stage “initiation,” requires cell 

exposure to carcinogenic substances that produce genetic damage, and if not mended, 

results in irreversible cellular mutations and the potential to develop into influential 

populations of cancer cells [2]. Substances that may act like carcinogens can be 

chemicals, physical, and/or biological agents. In the second stage, known as “promotion,” 

carcinogens stimulate the newly initiated cancerous environment to grow and flourish. 

Additionally, age, gender, diet, growth factors, and chronic inflammation may act 

together or in sequence to promote the development of cancer. Scientific literature states 

that several years (~10-20 years) can pass before any clinically relevant symptoms 

manifest [1-3]. Torring et al. conducted a population-based study that investigated the 

relationship between diagnostic interval and mortality in 268 colorectal cancer patients. 

They found that in patients that present clinical symptoms of cancer, the risk of dying 

within three years decreased with diagnostic intervals up to five weeks and then 

increased (p = 0.002). Moreover, the American Cancer Society believes there is evidence 

to suggest that one-third of the involved cancer deaths in 2012 is directly correlated to 

physical inactivity and obesity. Meaning, innovative chemoprevention strategies can 

potentially aim to improve lifestyle and diet, thereby increasing the time at which cancer 

is detected, however more research needs to be conducted for further conclusions and 

recommendations. The third stage of cancer development is known as “progression,” 

which involves further genetic mutations leading to increase cellular proliferation, 

invasion, and development of metastases [2]. 
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It has been reported that approximately 85% of cancers develop solid tumors [4], 

and depending on the tumor biology, more than half of deaths result. A solid tumor may 

arise from four tissue types: epithelial, connective, lymphoid, and nerve tissues; and are 

classified as either benign or malignant. By definition, benign tumors are non-cancerous, 

localized, and rarely metastasize [2]. In contrast, malignant tumors are genetically 

unstable and have the ability to invade contiguous tissues and metastasize to the 

surroundings. The primary modality in the approach to cancer treatment is surgery for 

most localized, solid tumors. However, because most cancer patients have metastatic 

disease at time of diagnosis, localized therapies are often obsolete, failing to produce a 

cure. Therefore, the goals of systemic therapy using highly cytotoxic drugs, referred to as 

chemotherapy, are intended to treat primary solid tumors and any metastatic disease. 

 The remnants of cancer therapy using chemotherapy can be traced back to the late 

1940’s when Goodman and Gilman first administered nitrogen mustard to patients with 

lymphoma [3]. The fundamental medical objective of chemotherapy is to destroy and 

prevent cancer cells from multiplying and metastasizing.  In general, chemotherapeutic 

drugs, with the exception of immunotherapeutics (not covered in this thesis) are 

efficacious by exerting their effects primarily to the mammalian cell cycle [5]. All tumor 

cells, as well as normal cells in the body, undergo the process of cell division and 

renewal, all of which involves the five-phase cell cycle: G0, G1, S, G2, and M. The G0 

phase (“resting phase”) is the starting point of the cell cycle in which no division occurs. 

The actively reproducing phases (G1, S, G2, and M) are associated with ready division 

synthesis, pre-mitosis, and mitosis, respectively [5]. Depending on which phase(s) is 

altered or interfered, chemotherapeutic drugs are categorized into two groups: cell cycle 

specific and cell cycle non-specific [3,5]. Cell cycle specific drugs have the ability to 
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exert its affect on a particular phase of the cell cycle and not on the resting phase. 

Whereas, cell cycle non-specific drugs can attack cells at any phase of the cycle [5-6].  

 

1.3 Gemcitabine as a Chemotherapeutic Drug 

Gemcitabine is an anti-metabolite indicated to treat a variety of human cancers 

including breast, ovarian, and non small cell lung cancers, yet, gemcitabine has been 

clinically adopted as the first-line treatment for patients diagnosed with locally advanced 

or metastatic pancreatic cancer [7]. Gemcitabine is known commercially as Gemzar® 

upon FDA approval in 2004, and originally marketed and distributed by Eli Lilly & 

Company. Due to Gemzar’s® recent patent expiration, the commercial launch of generic 

gemcitabine has been licensed to Teva Pharmaceuticals. According to IMS Health, the 

annual U.S net sales of Gemzar® were nearly $785 million. Since then, net sales have 

dropped ~72% to 91 million due to generic competition in most major markets. 

Chemically, gemcitabine (2′, 2′-difluorodeoxycytidine, dFdC), has a molecular 

weight of 263.2 g/mol and is water-soluble (2.2301 g/L). Its structure, like many drugs in 

the anti-metabolite class, is closely related to the analogue of deoxycytidine, which 

fluoride replace the hydrogen atoms on the 2’ carbons of the deoxycytidine. Literature 

reports that gemcitabine acts on the G1, M, and G2 cell cycle phase by replacing 

deoxycytidine during DNA replication, thus interrupting cell division, inhibiting DNA 

synthesis, and inducing programmed cell death [7-9].  

 Gemcitabine is considered a pro-drug, thus, in order for gemcitabine to exert its 

therapeutic action, the molecule must first traverse the cell membrane and be “activated” 

[7]. However, since gemcitabine is water-soluble and cannot pass through the cell 

membrane via passive diffusion, specialized transport systems, known as nucleoside 

transporters (i.e human equilibrative nucleoside transporter-1), are required for both 
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cellular entry and exit. Upon cell entry, gemcitabine is phosphorylated by deoxycytidine 

kinase (dCK) into gemcitabine monophosphate. It is then further phosphorylated into 

gemcitabine diphosphate and gemcitabine triphosphate [7]. The triphosphate derivative is 

then intercalated into DNA by DNA-polymerase alpha to inhibit DNA synthesis and 

induce programmed cell death. In addition, the diphosphate derivative acts as 

ribonucleotide reductase inhibitor that increases gemcitabine’s DNA incorporation.  

 

1.4  Gemcitabine and its Clinical Limitations 

Patients with advanced pancreatic adenocarcinoma are considered incurable with a 

median survival of less than one year [10-11]. The gold standard treatment is a single 

agent, gemcitabine. Despite its favorable in vitro toxicity profiles, the therapeutic efficacy 

of gemcitabine as a single agent is not clinically efficacious due its rapid in vivo 

metabolism (i.e short half-life of 32-84 minutes for short infusions in humans), pre-

clinical studies revealing patient tolerability is highly dose dependent, and induction of 

tumor-drug resistance [12-13]. For example, its reported that about ninety percent of the 

active gemcitabine triphosphate is rapidly eliminated in vivo due to the deamination to an 

inactive metabolite 2`, 2`-difluorodeoxyuridine (dFdU) by cytidine deaminase [14]. By 

synthesizing an amino acid ester prodrug of gemcitabine, Bergman et al. demonstrated 

gemcitabine’s in vivo sensitivity to deamination by cytidine deaminase was significantly 

improved. Gemcitabine is water-soluble and must be intracellularly activated, thus 

membrane transporters are needed to enter tumor cells as mentioned previously in this 

chapter. Immordino et al. synthesized a series of increasingly lipophilic gemcitabine 

derivatives by linking the 4-amino group with valeroyl, heptanoyl, lauroyl, and stearyol 

linear acyl fatty acid groups. They report that the lipophilic gemcitabine derivatives (90% 

recovered) degraded much slower in plasma than gemcitabine (40% recovered) after 8 
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hours. Furthermore, when gemcitabine or the lipophilic derivative of gemcitabine (i.e 

stearoyl gemcitabine) was intravenously administered to mice and their pharmacokinetic 

parameters were evaluated, the terminal half-life of gemcitabine was increased by 3.5 

times to that of unmodified gemcitabine (0.54 h vs. 1.86 h, respectively) [15-16]. It may 

seem when the metabolic problems of gemcitabine are addressed and circumvented, the 

anti-tumor activity would improve as well. Surprisingly, when Zhu et al. evaluated the in 

vivo anti-tumor activity of a stearoyl gemcitabe solution in a B16-F10 tumor model after 

intravenous injection, no significant differences were observed between stearoyl 

gemcitabine, unmodified gemcitabine, and normal saline.  

 

1.5 Cancer Nanotechnology 

During the development and growth of solid tumors, a process known as 

“angiogenesis” is induced to accommodate tumor dependency for nutrients and oxygen to 

grow beyond 1-2 mm in size [2]. Unlike blood vessels in normal tissue, tumor vessels 

become irregular in shape, dilated, and leaky with large fenestrations [17]. In addition, 

tumor blood vessels develop wide lumens and have impaired lymphatic drainage, which 

drives the extensive leakage of blood into the tumor tissue. As a result, the structural 

defects provide potential to propel macromolecules or nanoparticles to extravasate 

through gaps in the tumor vasculature and accumulate due to the slow venous return in 

tumor tissues and poor lymphatic drainage [17]. Exploiting this tumor biological 

phenomenon is known as the Enhanced Permeation and Retention (EPR) effect. 

An increasing emergence of nanotechnology has made a significant impact for 

cancer therapy by enhancing therapeutic effectiveness, reducing adverse side effects and 

improving drug pharmacokinetics [18]. In regards to size, the National Nanotechnology 

Initiative defines nano-scaled technology in the dimensions of 1 to 1000 nanometers. As 
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previously mentioned, nanoparticles with prolonged circulation time have the ability to 

accumulate at the tumor site via the EPR effect. For example, a 10- to 50-fold increase in 

drug accumulation was achieved using nanoparticles over nanoparticle-free drug after 

intravenous injection [19]. This observed phenomenon is referred to as “Passive 

targeting,” making nanoparticle-based therapeutics a promising delivery system for 

intravenous cancer therapy. It’s important to note that the extent and rate of tumor drug 

accumulation using nanoparticles is largely influenced by particle size, stability, shape, 

surface characteristics, as well as in vivo blood circulation time. For example, 

nanoparticles are commonly engineered with poly-ethylene glycol (PEG) to reduce the 

uptake by the reticuloendothelial system and increase blood circulation time versus non-

PEG counterparts [17, 20-21].  

Presently, there are several FDA approved nanoparticle-based drug products, as 

well as several in various stages of clinical trials [22]. To name a few, doxorubicin was 

formulated into liposomes, commercially known as Doxil®, for the treatment of patients 

with ovarian cancer; and paclitaxel-bound protein nanoparticles, known as Abraxane ®, 

for the treatment of metastatic breast cancer. The FDA approved Doxil® and Abraxane® 

in 1999 and 2005, respectively [22]. However, there are currently no FDA approved 

products that incorporate gemcitabine into nanoparticles.  

There are several research groups attempting to optimize the in vivo properties of 

gemcitabine using nanoparticle delivery systems [15-16,23-24]. For example, 

gemcitabine has been covalently coupled with 1,1`,2-tris-nor-squaenic acid to formulate 

4-(N)-Tris-nor-squalenoyl-gemcitabine (SQdFdC NA). Following intravenous treatment 

in murine metastatic leukemia L1210 wt bearing mice, the SQdFdC Na caused significant 

increase in mouse survival time as compared to gemcitabine alone [24]. After synthesis 

of stearoyl gemcitabine and incorporation into liposomes, Immordino et al. observed that 
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the in vivo anti-tumor activity and pharmacokinetic properties were significantly 

enhanced versus liposome-free stearoyl gemcitabine.  

 

1.6  Cancer Drug Targeting: The Epidermal Growth Factor Receptor 

Prior to FDA approval of any cancer drug, the main objective is to provide 

evidence of clinical effectiveness through significant survival return, beneficial effects to 

cancer-related symptoms and improved patient quality of life [25]. Ultimately, the 

beneficial effects of cancer treatment should outweigh any potential associated toxic or 

adverse clinical endpoints. Simply put, the performance of any drug is measured by its 

ability to achieve therapeutic benefit without damaging healthy, living cells. As 

previously mentioned in this chapter, normal and tumor cells both involve the cell cycle 

and undergo cell proliferation as a biological innate characteristic. It is well known that 

traditional chemotherapeutic drugs tend to exhibit deleterious effects on normal cells as 

well, particularly those with speedy turnover such as bone marrow cells, red blood cells, 

mucous membrane cells, hair follicle cells, and reproductive cells [2,17]. These cells are 

highly vulnerable, causing common clinically toxic effects like bone marrow depression, 

low white blood count (i.e. prone to infections), anemia, fatigue, vomiting, hair-loss, 

diarrhea, and fertility changes, to name a few. These foreseen and undesirable side effects 

are mainly due to the lack of drug specificity of the chemotherapeutics and encourage 

most chemotherapeutics to be used near their maximum tolerated dose. In addition, many 

of the chemotherapeutic drugs are low molecular weight molecules and are excreted 

easily by the body [26]. This remains one of the major limitations in cancer treatment. 

Therefore, the development of tumor-specific cytotoxic effects is highly sought after. A 

large body of research has accumulated demonstrating efforts to increase tumor-drug 

specificity can be achieved by means of “active targeting” [27]. 
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Over 100 years ago, Paul Ehrlich cleverly referenced the term, “magic bullet” 

after screening and connecting Salvarsan as the first selective and host friendly treatment 

option for Treponema pallidum, the causative agent for syphilis [17]. Prior to the 

discovery of salvarsan, targeted therapy for syphilis has not been achieved and highly 

toxic trivalent arsenic compounds were used. Since then, the term, “active targeted 

therapy,” has been used to describe the concept of overcoming therapeutic limitations 

poised by intravenously (parental) administered drugs. In cancer therapy, 

chemotherapeutics can be tumor targeted though a variety of means such as physical, 

biological, or molecular systems by taking advantage of tumor associated receptors 

including the epidermal growth factor receptor (EGFR) [27]. 

Epidermal growth factor (EGF) is a ligand to the EGFR, a 170 kD endogenous 

cell surface glycoprotein that, when stimulated, acts through protein-tyrosine kinase 

activity to stimulate several normal cellular functions including cell proliferation, 

survival, adhesion, migration, and differentiation.  In addition to EGF, more than ten 

ligands have been identified to exhibit strong receptor-ligand affinity towards EGFR [27-

28]. Epidermal growth factor receptor is expressed in a variety of normal cell types and 

there are many reports showing that EGFR is overexpressed in several tumor cells (10-

1000 times greater than normal cell expression of 1 x 104 receptors per cell), including 

those cell types where gemcitabine hydrochloride is indicated for usage [28-29]. For 

example, it has been discovered that EGFR is over-expressed in 30-50% of pancreatic 

cancer cells, 80-100% of human head and neck cancer cells, and 14-91% of human breast 

cancer cells [29].  Multiple EGFR targeting agents have been developed for cancer 

therapy, and the clinical efficacy are those EGFR targeting agents have been promising.  

For example, EGF and antibodies against EGFR had been conjugated onto liposomes and 

targeted to EGFR over-expressing tumor cells [30-31]. Similarly, Arya et al. (2011) 
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reported that conjugation of anti-HER2, an antibody against human EGFR-2, onto a 

gemcitabine-chitosan nanoparticle enhanced the anti-proliferative activity of the 

nanparticles against HER2-expressing Mia PaCa-2 cells and PANC-1 tumor cells in 

culture.
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2.1  Abstract 

Gemcitabine (Gemzar®) is the first line treatment for pancreatic cancer and often 

used in combination therapy for non-small cell lung, ovarian, and metastatic breast 

cancers. Although extremely toxic to a variety of tumor cells in culture, the clinical 

outcome of gemcitabine treatment still needs improvement. In the present study, a new 

gemcitabine nanoparticle formulation was developed by incorporating a previously 

reported stearic acid amide derivative of gemcitabine into nanoparticles prepared from 

lecithin/glyceryl monostearate-in-water emulsions. The stearoyl gemcitabine 

nanoparticles were cytotoxic to tumor cells in culture, although it took a longer time for 

the gemcitabine in the nanoparticles to kill tumor cells than for free gemcitabine. In mice 

with pre-established model mouse or human tumors, the stearoyl gemcitabine 

nanoparticles were significantly more effective than free gemcitabine in controlling the 

tumor growth. PEGylation of the gemcitabine nanoparticles with polyethylene glycol 

(2000) prolonged the circulation of the nanoparticles in blood and increased the 

accumulation of the nanoparticles in tumor tissues (>6-fold), but the PEGylated and un-

PEGylated gemcitabine nanoparticles showed similar anti-tumor activity in mice. 

Nevertheless, the nanoparticle formulation was critical for the stearoyl gemcitabine to 
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show a strong anti-tumor activity. It is concluded that for the gemcitabine derivate-

containing nanoparticles, cytotoxicity data in culture may not be used to predict their in 

vivo anti-tumor activity, and this novel gemcitabine nanoparticle formulation has the 

potential to improve the clinical outcome of gemcitabine treatment. 

 

2.2  Introduction 

Gemcitabine (2′, 2′-difluorodeoxycytidine, dFdC) is the active ingredient in 

Gemzar® (Eli Lilly & Co., Indianapolis, IN), which is the first line treatment for 

pancreatic cancer [1]. The therapeutic efficacy of Gemzar® as a single agent is modest, 

and thus, Gemzar® is often used in combination therapy for non-small cell lung cancer, 

ovarian cancer, and metastatic breast cancer. Although extremely cytotoxic to tumor cells 

in culture, the clinical efficacy from gemcitabine (Gemzar®) treatment requires further 

improvement [2,3]. 

Gemcitabine is a prodrug, and its mechanism of action is based solely on 

intracellular phosphorylation into its active triphosphate derivative [4]. About ninety 

percent of gemcitabine triphosphate (dFdCTP) is rapidly eliminated, mainly due to 

deamination to 2′, 2′-difluorodeoxyuridine (dFdU), a gemcitabine derivative with 

minimal anti-tumor activity [5]. The rapid metabolism of gemcitabine explains its short 

half-life (32-84 min for short infusions in humans) [6,7,8] and is thought to be 

responsible for its modest clinical activity [6]. Consequently, alternative methods were 

explored to improve the gemcitabine formulation such as enhancing the lipophilicity of 

gemcitabine by conjugating long fatty acid chains onto it. It was shown that a fatty acid 

ester derivative of gemcitabine (CP-4126, gemcitabine-5′-elaidic acid ester) exhibited a 

better anti-tumor activity than its parent compound when given orally or intraperitoneally 

to mice [9], but an intravenous formulation of the CP-4126 was not reported. It was also 
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shown that incorporation of a gemcitabine fatty acid amide derivative (4-(N)-stearoyl-

gemcitabine, GemC18) into liposomes offered advantages including hindered metabolic 

deactivation and improved anti-tumor activity in mouse models [10,5]. Recently, 

nanoparticles have gained attention as a delivery system for anticancer drugs including 

gemcitabine [11-15]. For example, gemcitabine had been covalently coupled with 1,1′,2-

tris-nor-squalenic acid to formulate 4-(N)-Tris-nor-squalenoyl-gemcitabine (SQdFdC 

NA) [11]. Following intravenous treatment of murine metastatic leukemia L1210 wt 

bearing mice, the SQdFdC NA caused a significant increase in mouse survival time 

compared to gemcitabine alone [11]. However, an alternative and efficacious gemcitabine 

formulation other than Gemzar® remains unavailable on the market. 

Previously, our group reported the preparation of solid lipid nanoparticles of 180-

200 nm from lecithin/glyceryl monostearate (GMS)-in-water emulsions [16-18]. 

Lecithins are components of cell membranes. They are included in intramuscular and 

intravenous injectables [19]. GMS is used in a variety of food, pharmaceutical, and 

cosmetic applications and is GRAS (generally regarded as safe) listed [20]. In the present 

study, the feasibility of using the solid lipid nanoparticles as a delivery system for 

gemcitabine was evaluated. In order to incorporate the hydrophilic gemcitabine into the 

lipophilic matrix of the nanoparticles, the previously reported 4-(N)-stearoyl gemcitabine 

was adopted to increase the lipophilicity of the gemcitabine [5]. Tween 20 was one of the 

components of the nanoparticles [17]. Although Tween 20 has short polyethylene glycol 

(PEG) chains, the chains may be too short to prevent or minimize the uptake of the 

nanoparticles by the reticuloendothelial system (RES) after intravenous injection. 

Therefore, the gemcitabine nanoparticles were PEGylated using a longer PEG (molecular 

weight, 2000), and the anti-tumor activities of the PEGylated and un-PEGylated 

gemcitabine nanoparticles were evaluated in vitro and in vivo. 
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2.3  Materials and Methods 

2.3.1  Chemicals and Cell-lines 

Acetone, dioxane, mannitol, ethyl acetate (EtOAc), ethylchloride, 

dichloromethane (CH2Cl2), anhydrous dimethylformamide (DMF), hexane, ammonium 

chloride (NH4Cl), trifluoroacetic acid (TFA), human plasma, isopropanol, 3-(4,5-

dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), Sepharose® 4B, sodium 

sulfate (Na2SO4), sodium carbonate (Na2CO3), stearic acid, sodium chloride (NaCl), 1-

hydroxy-7-aza-benzotriazole (HOAt), methanol, sodium dodecyl sulfate (SDS), and 1-

ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDCI) were from Sigma-Aldrich (St. 

Louis, MO). Gemcitabine hydrochloride (gemcitabine HCl) was from U.S. Pharmacopeia 

(Rockville, MD). Soy lecithin was from Alfa Aesar (Ward Hill, MA). GMS was from 

Gattefosse Corp (Paramus, NJ). Mouse lung (TC-1, ATCC # CRL-2785) and human 

pancreatic (BxPC-3, ATCC # CRL-1687) cancer cell lines were from American Type 

Culture Collection (ATCC, Manassas, VA). TC-1 cells were grown in RPMI1640 

medium (Invitrogen, Carlsbad, CA). BxPC-3 cells were grown in DMEM medium 

(Invitrogen). All media were supplemented with 10% fetal bovine serum (FBS, 

Invitrogen), 100 U/mL of penicillin (Invitrogen), and 100 μg/mL of streptomycin 

(Invitrogen). 

 
2.3.2  Synthesis of 4-(N)-Stearoyl Gemcitabine (synthesis performed by Dong Li & 

Dharmika S.P. Lansakara-P et al.) 

The 4-(N)-stearoyl-gemcitabine was prepared as previously described with slight 

modifications [5,20]. Briefly, 3′,5′-O-bis(tert-butoxycarbonyl) gemcitabine was 

synthesized following a literature protocol [20]. This Boc-protected gemcitabine (179 

mg, 0.39 mmol), stearic acid (121 mg, 0.42 mmol), and HOAt (57 mg, 0.42 mmol) were 
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dissolved in 4 mL of freshly distilled CH2Cl2. After the solution was cooled in an ice-

water bath, EDCI (89 mg, 0.46 mmol) was added. The reaction mixture was stirred under 

argon for 30 h. The mixture was diluted with 10 mL of water and extracted with 

EtOAc/hexane mixture (2:1). The combined organic phases were washed with saturated 

NH4Cl and NaCl, dried over anhydrous Na2SO4, and concentrated. The crude product was 

purified by silica chromatography (3:7 EtOAc/hexane). The purified Boc-protected-N-

stearoyl gemcitabine (230 mg, 0.32 mmol) was dissolved in 4 mL of freshly distilled 

CH2Cl2, and 1 mL of TFA was added. The solution was stirred at room temperature for 2 

h. The solvent and excess TFA were removed in vacuo to provide the desired product, 

which was confirmed using 1H NMR and MS data [5]. 

 

2.3.3  Incorporation of 4-(N)-Stearoyl Gemcitabine Into Nanoparticles 

Nanoparticles were prepared as previously described [17]. Briefly, 3.5 mg of soy 

lecithin and 0.5 mg of GMS were weighed into a 7 mL glass vial. One mL of de-ionized 

and filtered (0.22 μm) water was added into the lecithin/GMS mixture, which was then 

maintained on a 70-75°C hot plate while stirring until a homogenous slurry was formed. 

Tween 20 was added drop-wise to a final concentration of 1% (v/v). The resultant 

emulsions were allowed to cool to room temperature while stirring to form nanoparticles. 

To incorporate GemC18 into the nanoparticles to form stearoyl gemcitabine 

nanoparticles (GemC18-NPs), a predetermined amount of GemC18 was added into the 

lecithin and GMS mixture before the addition of water. The remaining steps were 

identical to the preparation of the gemcitabine-free nanoparticles. The size and zeta 

potential of the nanoparticles were measured using a Malvern Zetasizer Nano ZS 

(Westborough, MA). To monitor the short-term stability of the GemC18-NPs, the 
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nanoparticles were suspended in water and left at ambient condition for 20 days. Their 

particle size was measured at pre-determined time points. 

PEGylated GemC18-NPs (PEG-GemC18-NPs) were prepared by including 1,2-

distearyol-sn-glycero-3-phosphoethanolamine-N-[amino(polyethyleneglycol)-2000] 

(DSPE-PEG(2000), 11.6%, w/w of total lipids and Tween 20) (Avanti Polar Lipids, 

Alabaster, AL) in the GemC18, lecithin, and GMS mixture during the nanoparticle 

preparation. 

To determine the stability of the GemC18-NPs and the PEG-GemC18-NPs in 

simulated biological medium, the nanoparticles were diluted into normal saline or in 

normal saline with 10% of FBS, and their sizes were measured immediately (0 min) and 

after 30 min of incubation at 37°C. 

To fluorescently label the nanoparticles, 1,2-dioleoyl-sn-glycero-3-

phosphoethanolamine-N-(carboxyfluorescein) (ammonium salt) (DOPE-fluorescein, 1.9 

mg, Avanti Polar Lipids) was included in the lecithin, GMS, and GemC18 mixture during 

the nanoparticle preparation. 

To determine the solubility of the GemC18 in Tween 20 (1%), 1 mg of the 

GemC18 in tetrohydrofuran (THF) was placed into a glass vial. A pilot study showed that 

the solubility of the GemC18 in 1% Tween 20 was less than 1 mg/mL. After the 

evaporation of the THF, 1 mL of Tween 20 (1%) was added, and the mixture was treated 

following the procedure identical to the preparation of the GemC18-NPs. The mixture 

was spun down (18,000 × g), and the concentration of the GemC18 in the supernatant 

was determined using high-performance liquid chromatography (HPLC). 
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2.3.4  Transmission Electron Microscopy (TEM) 

The nanoparticles were examined using a transmission electron microscope 

(Philips CM12 TEM/STEM) following a previously reported method [17]. Briefly, a 

carbon-coated 200-mesh copper specimen grid was glow-discharged for 1.5 min. 

Nanoparticles in suspension were deposited on the grid and then stained with uranyl 

acetate before observation under TEM. 

 

2.3.5  Gel Permeation Chromatography (GPC) 

To separate un-incorporated GemC18 from nanoparticles, GPC was performed 

using a 6 mm × 30 cm Sepharose® 4B column, which was equilibrated using phosphate 

buffered saline (PBS, pH 7.4). Samples (100 μL) were applied into the column and eluted 

with PBS. Elution fractions of 250 μL were collected, and their absorbances at 269 nm 

and 248 nm were measured using a BioTek Synergy™ HT Multi-Mode Microplate 

Reader (Winooski, VT). 

 

2.3.6  In Vitro Release of GemC18 From GemC18-NPs and PEG-GemC18-NPs 

GemC18-NPs or PEG-GemC18-NPs in PBS (100 μg of GemC18) were placed 

into a 1 mL cellulose ester dialysis tube (MWC 50,000) from Spectrum Chemicals & 

Laboratory Products (New Brunswick, NJ). The dialysis tube was then placed into a 

plastic conical tube containing 13 mL of PBS with 0.05% (w/v) of SDS and incubated in 

a 37°C shaker incubator. At predetermined time points, 200 μL of the release medium 

was withdrawn and replaced with 200 μL of fresh release medium. As a control, the 

release of GemC18 from GemC18-in-Tween 20 micelles (100 μg/mL of GemC18 in 1% 

of Tween 20 in water) was also measured. The concentration of the GemC18 was 

determined by measuring the absorbance at 248 nm or using HPLC. 
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2.3.7  HPLC 

Agilent or Shimadzu HPLC with an Agilent C18 column (5 μm, 4.6 × 250 mm; 

Santa Clara, CA) was used to determine the concentration of GemC18. The mobile phase 

was methanol and water (93%:7%). The flow rate was 1 mL/min. The detection 

wavelength was 248 nm [5]. 

 

2.3.8  Uptake of Nanoparticles by Tumor Cells in Culture 

To microscopically examine the uptake of the nanoparticles, TC-1 cells (2 × 104) 

were seeded on poly-D-lysine-coated glass cover slips for 24 h. Cells were incubated 

with fluorescein-labeled GemC18-NPs (Fluorescein-GemC18-NPs) and maintained at 

4°C or 37°C for 6 h. Cells were then washed with PBS, fixed in 3% paraformaldehyde 

for 20 min, and washed three additional times prior to mounting on slides with 

Fluoromount G® (Southern Biotech, Birmingham, AL). Bright-field and fluorescent 

images were obtained using a Zeiss AutoImager Z1 microscope (Carl Zeiss, Thornwood, 

NY) with a Zeiss 20 × objective [17]. 

Moreover, the uptakes of the PEGylated and un-PEGylated GemC18-NPs by TC-

1 cells were compared as previously described [18]. Briefly, TC-1 cells (2.5 × 

105 cells/well) (n = 4) were seeded in a 24-well plate and incubated overnight at 37°C, 

5% CO2. The cells (in 600 μL medium) were then incubated with 100 μL of fluorescein-

labeled PEGylated or un-PEGylated GemC18-NPs at 37°C, 5% CO2 or at 4°C for 6 h. 

The initial fluorescence intensities of the PEGylated and un-PEGylated nanoparticles 

were confirmed to be identical. At 4°C, the internalization of the nanoparticles was 

inhibited, and thus, a comparison of the data at 4°C and 37°C can provide information 

about the internalization of the nanoparticles. After the incubation, the cells were washed 

3 times with PBS (10 mM, pH 7.4) and lysed with a lysis buffer (0.5% Triton X-100). 
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The fluorescence intensity was measured using a BioTek Synergy™ HT Multi-Detection 

Microplate Reader. 

 

2.3.9  In Vitro Cytotoxicity Assay 

Cells were seeded into 96-well plates (5,000 cells per well) and incubated at 

37°C, 5% CO2 overnight. Various amounts of gemcitabine HCl or GemC18-NPs in PBS 

were added into the wells, and the cells were then incubated for an additional 24 or 48 h. 

As a control, cells were treated with fresh medium. The number of cells alive was 

determined using an MTT assay. The fraction of killed or affected cells (Fa) and the 

fraction of viable or unaffected cells (Fu) at each concentration were calculated and 

plotted as the log (Fa/Fu) against the log (Dose). The IC50 was the dose at Log (Fa/Fu) = 

0 [21]. This experiment was repeated at least once. The IC50 values of the GemC18-in-

Tween 20 and GemC18 alone were determined similarly. 

 

2.3.10  In Vivo Tumor Treatment Studies 

National Institutes of Health guidelines for animal use and care were followed. 

The animal protocol was approved by the Institutional Animal Care and Use Committee 

at the University of Texas at Austin. Female C57BL/6 (18-20 g) and Nu/Nu mice (6-8 

weeks) were from Charles River Laboratories (Wilmington, MA). To establish tumors in 

mice, TC-1 or BxPC-3 tumor cells (5 × 105/mouse) were subcutaneously (s.c.) injected in 

the right flank of C57BL/6 or athymic mice, respectively. The hair, if any, at the injection 

site was carefully trimmed one day before the injection. GemC18-NPs or PEG-GemC18-

NPs in sterile mannitol solution (5%, w/v) were injected via the tail vein. As controls, 

tumor-bearing mice were injected with sterile mannitol solution (5%) or gemcitabine HCl 

dissolved in mannitol solution. To make sure that the same molar amount of gemcitabine 
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was injected, the doses of the gemcitabine HCl and GemC18 were 0.566 mg and 1 mg 

per mouse, respectively [22,23]. To evaluate the anti-tumor activity of the nanoparticles 

when injected peritumorally, PEG-GemC18-NPs or GemC18-NPs (0.25 mg of GemC18 

in 50 μL) were injected three times per week for a total of 5 times peritumorally around 

TC-1 tumors, starting when the tumors reached 5 mm in diameter. Control mice received 

sterile mannitol. To evaluate the anti-tumor activity of the GemC18-in-Tween 20 

micelles, GemC18 was saturated into 1% of Tween 20. The micelles were then i.v. 

injected into TC-1 tumor-bearing mice (150 μg/mouse) twice a week for 5 times. Control 

mice received an equivalent dose of PEG-GemC18-NPs or sterile mannitol. Tumor size 

was measured and calculated based on the following equation: tumor volume (mm3) = 

[length × width × width]/2. The experiment was repeated up to 3 times to confirm the 

antitumor activity of the GemC18-NPs. 

 

2.3.11 In Vivo and Ex Vivo Fluorescence Imaging 

BxPC-3 tumors were established in nude mice by s.c. injection of 5.0 × 105 cells. 

When the tumor size reached 10-12 mm, fluorescein-labeled, PEGylated or un-

PEGylated GemC18-NPs were injected intravenously via the tail vein into the mice (n = 

3). Twenty-four h after the injection, mice in each group were imaged using an In 

Vivo Imaging System (IVIS Spectrum Series, Caliper Life Sciences, Hopkiton, MA). 

Region of interest (ROI) values were recorded using Living Image® (ver. 4.0). 

Fluorescence intensity (total counts) was determined in a fixed, circular ROI. Relative 

fluorescence intensity was calculated by subtracting the fluorescence intensity counts in 

the ROI in the grayscale images from that of the ROI in the fluorescence images. After 

the in vivo imaging, mice were euthanized. Blood (500 μL), heart, lung, liver, spleen, and 
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kidney were harvested and imaged immediately. The total blood volume of a mouse (20 

g) was assumed to be 1.5 mL [24].  

To determine the half-life (t1/2) of the PEGylated and un-PEGylated GemC18-NPs 

in the blood circulation, tumor-free C57BL/6 mice were injected with fluorescein-labeled 

PEG-GemC18-NPs or fluorescein-GemC18-NPs and then euthanized 5 min, 1 h, 3 h, 6 h, 

12 h, or 24 h later. Blood samples (500 μL/mouse) were collected immediately, placed 

into a multi-well plate, and imaged using the IVIS Spectrum. Fluorescence intensity for 

each blood sample was determined, and data were analyzed using the PK Solver® and 

two-compartmental model to determine the t1/2 at the elimination phase [25]. 

 

2.3.12   Statistics 

Statistical analyses were completed by performing ANOVA followed by Fisher’s 

protected least significant difference (LSD) procedure. A p value of ≤ 0.05 (two-tail) was 

considered significant. 

 

2.4  Results and Discussion 

 
2.4.1   Preparation and Characterization of Stearoyl Gemcitabine-incorporated 
Solid Lipid Nanoparticles 

The nanoparticles were prepared from lecithin/GMS-in-water emulsions, and 

thus, had a lipophilic core [17,18]. Gemcitabine is water-soluble. To increase its 

lipophilicity, a previously reported stearic acid amide derivative of gemcitabine, stearoyl 

gemcitabine (GemC18), was adopted and synthesized, which was then incorporated into 

the nanoparticles by taking advantage of its lipophilic stearoyl group. The nanoparticles 

were prepared with lecithin, GMS, and Tween 20, which can potentially form micelles. 
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For example, the critical micelle concentration of Tween 20 was reported to be 

approximately .01 % (v/w) at 20°C [30]. Because the GemC18 molecules can be 

potentially incorporated into micelles that may be present in the nanoparticle preparation, 

GPC was carried out to examine whether the GemC18 in the nanoparticles can be 

separated from the GemC18 in micelles prepared with Tween 20. Nanoparticles and 

micelles were prepared with a final concentration of 100 μg/mL GemC18 and then 

applied into GPC columns. As shown in Fig. 2.1A, the nanoparticles eluted mainly in 

fraction 7, whereas the micelles eluted mainly in fraction 9, demonstrating that the 

Sepharose 4B column can be used to separate GemC18 molecules that were not 

incorporated into the nanoparticles, if any, from the GemC18-incorporated nanoparticles. 

At 0.1 mg/mL of GemC18, it appeared that 100% of the GemC18 was incorporated into 

the nanoparticles (Fig. 2.1A). When the GemC18 concentration was increased to 5 

mg/mL in the nanoparticle preparation, all the GemC18 molecules (100%) were still 

incorporated into the nanoparticles as well because a micelle peak in fraction 9 was not 

detected (Fig. 2.1B). However, when more than 5 mg/mL of GemC18 was used, and if 

the final concentration of the Tween 20 was kept at 1%, emulsions can no longer be 

formed, and the preparation simply remained as a turbid slurry even after an extended 

period of stirring at increased temperature. Therefore, the GemC18-NPs prepared with 5 

mg/mL of GemC18 were used for further studies. The GemC18-NPs were spherical (Fig. 

2.1C) and were stable when stored as an aqueous suspension in ambient conditions 

during a 20-day short-term storage period (data not shown). 

Similar to the GemC18-NPs, PEGylated GemC18-NPs were prepared with 5 

mg/mL of GemC18, and it appeared that all of the GemC18 was also incorporated into 

the nanoparticles due to the lack of a micelle peak on the gel permeation chromatograph 

of the PEGylated GemC18-NPs (Fig. 2.1D). The particle size and zeta potential of the 
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PEGylated and un-PEGylated GemC18-NPs are shown in Fig. 2.1E. As expected, 

PEGylation of the GemC18-NPs slightly increased its particle size (Fig. 2.1E). The zeta 

potentials of both the PEGylated and un-PEGylated GemC18-NPs were not within the 

range of −30 to +30 mV, which was considered to be unstable for colloid suspensions 

[26]. Shown in Fig. 1Fare the dynamic light scattering spectra of the GemC18-NPs, 

PEGylated and un-PEGylated, overlaid with that of the GemC18-in-Tween 20 micelles 

(i.e., the peak around 8 nm). The dynamic light scattering spectra of the PEGylated and 

un-PEGylated GemC18-NPs also did not reveal the presence of a significant amount of 

micelles in the nanoparticle preparations. There are two possible reasons for the lack of a 

significant amount of micelles in the nanoparticle preparation: 1) the Tween 20 was 

added in drop-wise; 2) the Tween 20 needed to act as an emulsifier for the formation of 

the emulsions. 

In an in vitro release study, GemC18 in Tween 20 micelles rapidly diffused out of 

the dialysis tube, in which the GemC18 micelles were placed (i.e., 36.8 ± 3.8% in 30 

min) (Fig. 2.1G), indicating that the diffusion of the GemC18 molecules through the 

dialysis membrane was not rate-limiting. However, when the GemC18-NPs were placed 

into an identical dialysis tube, only about 4% of the GemC18 was diffused in the release 

medium within 4 h (Fig. 2.1G) and less than 15% with 24 h (data not shown). Finally, the 

release curve of the GemC18 from the PEGylated GemC18-NPs was not significantly 

different from the release curve of the GemC18 from the un-PEGylated GemC18-NPs 

(Fig. 2.1G). 

Data in Fig. 2.1H (data not shown) showed that the hydrolysis of the gemcitabine 

from the GemC18-NPs was slow as well. After 72 h in PBS or mouse serum, more than 

80% of the gemcitabine was still in the GemC18 form (Fig. 2.1H). The rate of the 

hydrolysis of the gemcitabine from the GemC18-NPs seemed to be higher in human 
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serum than in mouse serum (Fig. 2.1H), likely due to interspecies variations in plasma 

amidase activity. 

Finally, after 30 min of incubation in normal saline with fetal bovine serum (FBS) 

(10%, v/v) at 37°C, the size of the PEG-GemC18-NPs did not change significantly (p = 

0.1) (Fig. 2.1I). However, the size of the un-PEGylated GemC18-NPs increased by 40.3 

± 6.9% (p = 0.006) (Fig. 2.1I). The sizes of the PEGylated and un-PEGylated GemC18-

NPs did not change after 30 min of incubation at 37°C in normal saline (i.e., without 

FBS) (data not shown). It is suspected that when the un-PEGylated GemC18-NPs were 

incubated in the presence of FBS, significant binding of proteins to the nanoparticles may 

have happened, or the nanoparticles may have aggregated in the presence of the FBS. 

Similar serum protein binding and/or particle aggregation are expected when the un-

PEGylated GemC18-NPs are injected intravenously into mice. 

 

2.4.2  Uptake of Nanoparticles by Tumor Cells in Culture 

To examine the uptake of the GemC18-NPs by tumor cells, fluorescein-labeled 

GemC18-NPs were incubated with mouse TC-1 tumor cells for 6 h at 37°C or 4°C. 

Strong fluorescence was observed when the cells were incubated with GemC18-NPs at 

37°C, but not when incubated at 4°C (Fig. 2.2A), suggesting that the internalization (or 

uptake) of the nanoparticles by the cells in culture was likely mediated by endocytosis. At 

4°C, endocytosis is arrested. The weaker fluorescence detected at 4°C was likely from 

particles bound on the surface of the cells. As expected, data in Fig. 2.2B showed that 

PEGylation of the GemC18-NPs significantly limited the uptake of nanoparticles by the 

TC-1 tumor cells in culture, but as it will be shown later, the PEGylation helps prolong 

the circulation of the nanoparticles in blood. 
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2.4.3  Evaluation of the Cytotoxicity of the GemC18-NPs and PEGylated GemC18-
NPs in Tumor Cells in Culture 

Prior to in vivo evaluation of the nanoparticles in mice, the cytotoxicity of the 

stearoyl gemcitabine nanoparticles to tumor cells in culture was evaluated. The 

gemcitabine nanoparticles were cytotoxic to both TC-1 and BxPC-3 tumor cells (Fig. 

2.3A). The IC50 values of the gemcitabine HCl were significantly lower than those of the 

GemC18-NPs and PEG-GemC18-NPs (Fig. 2.3A), indicating that in cell culture, the 

stearoyl gemcitabine nanoparticles were less toxic than the free gemcitabine HCl. The 

IC50 values of the GemC18-NPs and the PEG-GemC18-NPs were not different (p = 0.13 

in TC-1 cells, 0.129 in BxPC-3 cells). Data in Fig. 2.3B showed that when TC-1 tumor 

cells were incubated with the GemC18-NPs for 48 h, the percent of the dead TC-1 cells 

reached a level similar to that when the TC-1 cells were incubated with the gemcitabine 

HCl for 24 h, indicating that it simply took a longer time for the GemC18-NPs to kill 

tumor cells, which may be explained by the slow release of the gemcitabine or the 

GemC18 from the GemC18-NPs (Figs. 2.1G and H). Free gemcitabine molecules can 

enter cells in culture via nucleoside transporters [27]. Possible routes for the gemcitabine 

in GemC18-NPs or PEG-GemC18-NPs to enter the cells may include: i) cells take up the 

nanoparticles, and the gemcitabine is then hydrolyzed from the nanoparticles 

intracellularly; ii) the gemcitabine molecules is released by hydrolysis from nanoparticles 

and then transported inside the tumor cells by the nucleoside transporters. It remains 

unknown to what extent each route was responsible for the uptake of the gemcitabine in 

the nanoparticles by cells in culture. Finally, in TC-1 cells, the IC50 value of GemC18 (in 

trace amount of dimethyl sulfoxide) was 2.3-fold less than that of the GemC18-NPs (data 

not shown). 
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2.4.4  Biodistribution of the GemC18-NPs and PEG-GemC18-NPs in Tumor-
bearing Mice 

Imaging and biodistribution of the nanoparticles were completed using 

fluorescein-labeled GemC18-NPs in athymic mice with pre-established human BxPC-3 

tumors. In vivo imaging showed that PEGylation of the GemC18-NPs with PEG(2000) 

significantly increased the accumulation of the nanoparticles in the tumors (6.3-fold, p = 

0.0006) (Figs. 2.4A and B). Ex vivo imaging data shown in Fig. 2.4C indicated that 

PEGylation of the GemC18-NPs significantly increased the blood circulation of the 

nanoparticles and decreased the accumulation of the nanoparticles in the RES such as 

liver and spleen. For example, 24 h after injection, the amount of PEGylated GemC18-

NPs remaining in the blood was 5.3-fold higher than the GemC18-NPs (Fig. 2.4C). In 

fact, the half-life (t1/2) of the PEG-GemC18-NPs at the elimination phase in healthy 

C57BL/6 mice was determined to be 24.3 ± 3.8 h (with a mean residence time (MRT) of 

23.4 ± 0.5 h), but it was only 10.0 ± 0.7 h (MRT, 6.3 ± 2.0 h) for the un-PEGylated 

GemC18-NPs. The prolonged circulation of the PEGylated GemC18-NPs in blood was 

likely responsible for the enhanced accumulation of the PEG-GemC18-NPs in tumors 

(Figs. 2.4A and B) by the enhanced permeability and retention effect [28]. It is expected 

that the biodistribution and the pharmacokinetics of the GemC18 were similar to that of 

the nanoparticles they were incorporated into. 

 
2.4.5  Evaluation of the Anti-tumor Activity of the GemC18-NPs in Mice with Pre-
grafted Tumors 

The anti-tumor activity of the stearoyl gemcitabine nanoparticles was evaluated in 

mice with pre-established TC-1 or BxPC-3 tumors. As shown in Figs. 2.5A and B (data 

not shown), the GemC18-NPs were effective in controlling the growth of mouse TC-1 

tumors. TC-1 tumors grew aggressively in C57BL/6 mice when treated with sterile 
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mannitol (Fig. 2.5A). Two doses (i.v. on days 4 and 13) of GemC18-NPs in mice with 

TC-1 tumors (3.5 mm) led to a significant delay of the tumor growth (Fig. 2.5A). The 

same molar dose of the gemcitabine HCl (i.v. on days 4 and 13) significantly delayed the 

growth of the TC-1 tumors as well (Fig. 2.5A), but the GemC18-NPs were more effective 

than the gemcitabine HCl. Moreover, 21 days after tumor cell injection, the mean weights 

of tumors in mice that received sterile mannitol, gemcitabine HCl, or GemC18-NPs were 

1.13 ± 0.28 g, 0.11 ± 0.03 g, and 0.03 ± 0.03 g, respectively, and they were significantly 

different from one another (p < 0.01). H&E staining showed that there were more 

intercellular spaces in tumors in mice that received the GemC18-NPs, and the size of the 

cells and their nuclei in tumors in mice that received the GemC18-NPs was significantly 

larger (Fig. 2.5C, data not shown). Ki67 proliferation marker indicated that there was 

much less cell proliferation in tumors in mice that received the GemC18-NPs. Moreover, 

angiogenesis marker CD31, which indicated the presence of endothelial cells in blood 

vessels, showed that there were significantly less blood vessels in the tumors in mice that 

received the GemC18-NPs (62.9 ± 17.0 per 0.25 mm2) or gemcitabine HCl (46.2 ± 10.7 

per 0.25 mm2) than in tumors in mice that received the sterile mannitol (86.4 ± 27.8 per 

0.25 mm2) (p = 0.02, Control vs. Gemcitabine; p = 0.03, Control vs. GemC18-NPs). 

Also, the average length of the lumen of the blood vessels in tumors in mice that received 

the GemC18-NPs (12.7 ± 19.1 μm) or the gemcitabine HCl (10.7 ± 15.7 μm) were 

significantly smaller than in mice that received the sterile mannitol (26.6 ± 44.4 μm) (p = 

0.005, Control vs. Gemcitabine; p = 0.01, Control vs. GemC18-NPs). Finally, caspase 3 

staining showed that more cells in tumors in mice that received the GemC18-NPs (14.1 ± 

5.2 per 0.25 mm2) or gemcitabine HCl (12.1 ± 3.3 per 0.25 mm2) were caspase 3 

positive than in mice that received the sterile mannitol (6.1 ± 2.6 per 0.25 mm2) (p = 

0.0001, Control vs. Gemcitabine; p = 0.003, Control vs. GemC18-NPs). Taken together, 
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treatment with the GemC18-NPs inhibited tumor cell proliferation and angiogenesis, but 

promoted more tumor cells to undergo apoptosis, which may explain the increased anti-

tumor activity of the GemC18-NPs (Figs. 2.5A&B, not shown). 

The in vivo anti-tumor activity of the GemC18-NPs was also evaluated in athymic 

mice with pre-established human BxPC-3 tumors, and the GemC18-NPs were also more 

effective than gemcitabine HCl in controlling the growth of BxPC-3 tumors (Fig. 2.5A). 

Two doses of the GemC18-NPs (i.v. on days 6 and 19) completely inhibited the growth 

of the BxPC-3 tumors, whereas the same molar dose of gemcitabine HCl did not 

significantly affect the growth of the BxPC-3 tumors (p = 0.18 on day 24, Control vs. 

Gemcitabine) (Fig. 2.5A). Treatment with gemcitabine HCl or GemC18-NPs both helped 

mice maintain their weight. However, 3 weeks after the tumor injection, mice that 

received the sterile mannitol were significantly lighter than mice that received the 

gemcitabine HCl or GemC18-NPs (p = 0.0007, ANOVA) (Fig. 6B). 

Finally, to evaluate the extent to which the anti-tumor activity of the GemC18-

NPs may be attributed to the GemC18-free blank nanoparticles alone, another study using 

BxPC-3 tumors in nude mice was carried out. As shown in Fig. 2.5C, the GemC18-free 

nanoparticles alone did not significantly affect the tumor growth, whereas the GemC18-

NPs significantly inhibited the growth of the BxPC-3 tumors. Therefore, the anti-tumor 

activity of the GemC18-NPs was not simply from the blank nanoparticles. 

 
2.4.6  Comparison of the In Vivo Anti-tumor Activities of the PEGylated and un-
PEGylated Gemcitabine Nanoparticles 

Treatment of TC-1 tumor-bearing mice (i.v., a single dose) with the GemC18-NPs 

or the PEG-GemC18-NPs was initiated when tumors reached an average diameter of 4.5 

mm. Because the PEGylation of the GemC18-NPs significantly increased the 
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accumulation of the nanoparticles into tumors after i.v. injection, it was expected that the 

PEG-GemC18-NPs would have a stronger anti-tumor activity than the GemC18-NPs. 

Unfortunately, the PEG-GemC18-NPs and the GemC18-NPs did not show significantly 

different anti-tumor activities (p = 0.38 on day 12 after injection) (Fig. 2.6A). Twelve 

days after the injection of the GemC18-NPs, 50% (3/6) of mice in both groups became 

tumor free, and one mouse that received the PEG-GemC18-NPs had to be euthanized due 

to its large tumor. In the BxPC-3 tumor model, the GemC18-NPs and the PEGylated 

GemC18-NPs were not different in their abilities to inhibit the tumor growth as well 

(Fig.2.6B). In culture, the IC50 values of the PEG-GemC18-NPs and GemC18-NPs in TC-

1 and BxPC-3 cells were not significantly different (Fig. 2.3A). Therefore, it appeared 

that although PEGylation of the GemC18-NPs increased the accumulation of the 

nanoparticles into tumor tissues (Fig. 2.4B), it did not further improve the anti-tumor 

activity of the nanoparticles. Of course, the data from the in vivo or ex vivo imaging were 

representations of the distribution of the fluorescein associated with the nanoparticles, not 

the gemcitabine per se. It was assumed that the biodistribution of the fluorescein was 

similar to that of the gemcitabine because both of them were conjugated to a lipophilic 

molecule and then incorporated into the nanoparticles. Future experiments will be carried 

out to quantify the gemcitabine directly. Surprisingly, even when the PEGylated and un-

PEGylated GemC18-NPs were injected peritumorally, they showed similar anti-tumor 

activities as well (Fig. 2.6C). It was expected that same amount of the PEG-GemC18-NPs 

or the GemC18-NPs accumulated into the tumor tissues after peritumoral injection. 

Therefore, it seemed that it was not the amount of the GemC18-NPs accumulated in the 

tumor tissues that determined the resultant anti-tumor activity. The lack of difference in 

the anti-tumor activities from the PEGylated and un-PEGylated GemC18-NPs was 

unlikely due to the dose of the GemC18 (i.e., too much GemC18 was dosed) because 
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both nanoparticles did not cause total tumor regression at the dose used. At present, it is 

speculated that the slow release of the GemC18 from the PEGylated or un-PEGylated 

GemC18-NPs (Fig. 2.1G) may be related to the similar anti-tumor activity from them 

after either intravenous injection or peritumoral injection (Fig. 2.6). 

 
2.4.7  The PEGylated GemC18-NPs Were More Effective than the GemC18-in-
Tween 20 Micelles in Controlling Tumor Growth 

Data in Figures 2.4, 2.6, and 2.6 showed that the GemC18-NPs, PEGylated or un-

PEGylated, were more effective than gemcitabine HCl in controlling the growth of 

experimental model tumors in mice. However, it remains unknown whether the enhanced 

anti-tumor activity from the GemC18-NPs was simply due to the GemC18 molecules. To 

understand the importance of incorporating the GemC18 into the solid lipid 

nanoparticles, the anti-tumor activity of the PEGylated GemC18-NPs was compared with 

that of the GemC18-in-Tween 20 micelles. The solubility of GemC18 in 1% of Tween 20 

was estimated to be 726 ± 112 μg/mL (n =8). As shown in Figure 8, the PEG-GemC18-

NPs were significantly more effective than same dose of the GemC18-in-Tween 20 

micelles in inhibiting the growth of pre-established TC-1 tumors. In fact, although the 

GemC18-in-Tween 20 micelles slightly delayed the TC-1 tumor growth in the beginning, 

the mean size of the tumors in mice that received the GemC18-in-Tween 20 micelles was 

not significantly different from that in the untreated mice in the end (data not shown). 

The IC50 value of the GemC18-in-Tween 20 in TC-1 cells in culture was determined to be 

125.7 ± 15.8 nM (after 48 h of co-incubation), indicating that the GemC18 in the Tween 

20 micelles was still cytotoxic. Again, it is speculated that the slow release of the 

GemC18 from the GemC18-NPs, as observed in Fig. 1G, was important for the strong 

anti-tumor activity of the GemC18-NPs. The GemC18-in-Tween 20 was less effective 
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than the PEG-GemC18-NPs, possibly related to the fast release of the GemC18 from the 

GemC18-in-Tween 20 micelles (Fig. 2.1G). A comparison of the anti-tumor activities of 

an extended-release and an immediate-release gemcitabine or GemC18 formulations 

should help confirm this speculation. 

Taken together, data in Figures 2.5, 2.6, 2.7, and 2.8 demonstrated that the 

GemC18-NPs, PEGylated or un-PEGylated, were more effective than gemcitabine HCl 

or GemC18-in-Tween 20 micelles in controlling tumor growth in vivo. Apparently, the 

lower cytotoxic activity against the TC-1 tumor cells in culture as shown in Figure 

2.3A may not be used to predict the in vivo antitumor activity of the stearoyl gemcitabine 

nanoparticles. The in vivo tumor treatment studies with the nanoparticles were carried out 

because data in Fig. 3B showed that it simply took the GemC18-NPs a longer incubation 

time to kill as many cells as the gemcitabine HCl did, which was likely due to the slow 

release of the gemcitabine or GemC18 from the nanoparticles as shown in Fig. 2.1G. The 

slow release may be beneficial because it can potentially slow down the clearance of the 

gemcitabine from blood circulation. In addition, it is speculated that the following 

mechanisms have also contributed to the enhancement of in vivo anti-tumor activity by 

formulating the gemcitabine in the GemC18-NPs or PEG-GemC18-NPs: i) compared to 

free gemcitabine HCl, the nanoparticles extended the circulation time of the gemcitabine 

in mice; ii) the stearoyl group protected the deamination of the gemcitabine; and iii) the 

nanoparticles increased the concentration of the gemcitabine in tumor tissues. Although 

the PEGylated GemC18-NPs showed similar anti-tumor activity as the GemC18-NPs 

(Fig. 2.6), the PEGylated GemC18-NPs will be used in future studies due to their ability 

to decrease the accumulation of the nanoparticles into the RES. 

The advantages of using nanoparticles engineered from lecithin/GMS-in-water 

emulsions may include, but are not limited to the following. Firstly, lecithin, GMS, and 
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Tween 20 were all used previously in parenterals. Lecithin is a complex mixture of 

phosphatides consisting of phosphatidylcholine, phosphatidylethanolamine, 

phosphatidylserine, phosphatidylinositol and other substances such as triglycerides and 

fatty acids. It is GRAS listed and accepted in the FDA Inactive Ingredients Guide for 

parenterals [19]. Tween 20 is a polyoxyethylene (20) derivative of sorbitan monolaurate. 

It is GRAS listed and included in the FDA Inactive Ingredients Guide for parenterals 

[19]. GMS is used in a variety of pharmaceutical applications and is GRAS listed as well 

[19]. Therefore, it is expected that the nanoparticles have a favorable safety profile. In 

fact, data from preliminary toxicity studies are promising. For example, the GemC18-NPs 

did not induce detectable acute or subacute liver toxicity when injected intravenously into 

mice (Fig. 2.7). Previously, it was shown that the nanoparticles, even with cytotoxic 

docetaxel incorporated inside, did not cause any significant red blood cell lysis or platelet 

aggregation [18]. Moreover, in a related long-term study (1.5 years), the pathological and 

histological parameters of mice that received three doses of the nanoparticles by 

subcutaneous injection were compared to that of untreated mice, and an examination by a 

board-certified veterinary pathologist did not reveal any significant difference between 

those two groups of mice (Sloat and Cui, unpublished data). Secondly, the nanoparticles 

were solidified from warm oil-in-water emulsion droplets, and the emulsions were 

prepared by mechanical stirring at an increased temperature. In other words, both 

mechanical energy and heat provided the energy needed for the formulation of the 

emulsions. Toxic organic solvents are not needed during the preparation of the emulsions, 

and thus, there is not a need to remove organic solvents. Thirdly, the gemcitabine 

nanoparticle formulation is versatile in that it may be readily modified in multiple ways 

such as the incorporation of another lipophilic active compound into the core of the 

gemcitabine nanoparticles to further enhance their anti-tumor activity or the conjugation 
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of ligands onto the surface of the nanoparticles to target the nanoparticles to tumor cells 

that over-express a specific receptor. 

 

2.5  Conclusions  

In the present study, a new nanoparticle-based gemcitabine formulation that 

showed enhanced anti-tumor activity in mice with pre-established model tumors was 

reported. When fully developed, this new gemcitabine formulation can potentially 

improve the clinical outcome of gemcitabine therapy. Moreover, it was shown that in 

vitro cytotoxicity data from the stearoyl gemcitabine nanoparticles couldn’t be used to 

predict their in vivo anti-tumor activity. PEGylation of the nanoparticles significantly 

prolonged their blood circulation time and increased the accumulation of the 

nanoparticles into tumor tissues, but did not further enhance the anti-tumor activity. 
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3.1  Abstract 

Previously, it was shown that a novel 4-(N)-stearoyl gemcitabine nanoparticle 

formulation was more effective than gemcitabine hydrochloride in controlling the growth 

of model mouse or human tumors pre-established in mice. In the present study, the 

feasibility of targeting the stearoyl gemcitabine nanoparticles (GemC18-NPs) into tumor 

cells that over-express epidermal growth factor receptor (EGFR) to more effectively 

control tumor growth was evaluated. EGFR is over-expressed in a variety of tumor cells, 

and EGF is a known natural ligand of EGFR. Recombinant murine EGF was conjugated 

onto the GemC18-NPs. The ability of the EGF to target the GemC18-NPs to human 

breast adenocarcinoma cells that expressed different levels of EGFR was evaluated in 

vitro and in vivo. In culture, the extent to which the EGF-conjugated GemC18-NPs were 

taken up by tumor cells was correlated to the EGFR density on the tumor cells, whereas 

the uptake of untargeted GemC18-NPs exhibited no difference among those same cell 

lines. The relative cytotoxicity of the EGF-conjugated GemC18-NPs to tumor cells in 

culture was correlated to EGFR expression as well. In vivo, EGFR-over-expressing 

MDA-MB-468 tumors in mice treated with the EGF-conjugated GemC18-NPs grew 

significantly slower than in mice treated with untargeted GemC18-NPs, likely due to that 

the EGF-GemC18-NPs were more anti-proliferative, anti-angiogenic, and pro-apoptotic. 
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Fluorescence intensity data from ex vivo imaging showed that the EGF on the 

nanoparticles helped increase the accumulation of the GemC18-NPs into MDA-MB-468 

tumors pre-established in mice by more than 2-fold as compared to the un-targeted 

GemC18-NPs. In conclusion, active targeting of the GemC18-NPs into EGFR-over-

expressed tumors can further enhance their anti-tumor activity. 

 

3.2  Introduction 

Gemzar®, gemcitabine hydrochloride for injection, is approved for the treatment 

of pancreatic, breast, lung, and ovarian cancers [1]. Although extremely toxic to tumor 

cells in culture, there continues to be a need to improve the clinical outcomes of 

Gemzar® therapy, and there are reports showing that formulating gemcitabine into 

nanoparticles may be an effective approach to address this need [2-10]. Previously, we 

reported a novel gemcitabine nanoparticle formulation and demonstrated that the 

nanoparticles were more effective than gemcitabine hydrochloride (HCl) in controlling 

the growth of model mouse or human tumors in mice, clearly indicating that 

the in vivo efficacy of gemcitabine can be improved using nanoparticles [8]. The 

nanoparticle delivery system for gemcitabine was prepared from lecithin/glycerol 

monostearate (GMS)-in-water emulsions. Gemcitabine is highly water soluble; and thus, 

in order to incorporate it into the solid lipid nanoparticles, gemcitabine was lipophilized 

by conjugating a stearoyl group to its N-terminus to form 4-(N)-

stearoyl gemcitabine (GemC18) [5]. The enhanced anti-tumor activity from the 

stearoyl gemcitabine nanoparticles (GemC18-NPs) was not simply due to the GemC18 

because the same dose of GemC18 in Tween 20 micelles did not show any significant 

anti-tumor activity [8]. 
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In the present study, the feasibility of further improving the anti-tumor activity of 

the stearoyl gemcitabine nanoparticles by actively targeting them into tumors was 

evaluated. It was hypothesized that conjugation of epidermal growth factor (EGF) as a 

ligand to EGF receptor (EGFR) on the surface of the stearoyl gemcitabine nanoparticles 

will increase the delivery of the nanoparticles into tumor (cells), and thus improve the 

resultant anti-tumor activity. Among the earliest growth factors characterized and 

sequenced, EGFR (a 170 kD endogenous cell surface glycoprotein) has been inherently 

tied with normal cellular function including cell proliferation, survival, adhesion, 

migration, and differentiation. More than ten ligands, including EGF, have been shown to 

exhibit strong receptor-ligand affinity towards EGFR [11]. Although EGFR is expressed 

in a variety of normal cell types at ~ 1 × 104 per cell, there are numerous studies reporting 

the over-expression of EGFR in various tumor cells (i.e., 10–1000-fold greater than in 

normal cells) [12]. For example, it has been discovered that EGFR is over-expressed in 

80–100% of human head and neck cancer cells, 14–91% of human breast cancer cells, 

and 30–50% of human pancreatic cancer cells [13]. Multiple EGFR targeting agents have 

been developed for cancer therapy (e.g., anti-EGFR MAb 225, ZD1839 

(Iressa))[14] and [15], and the clinical efficacy of those EGFR targeting agents have been 

promising [16]. In the present study, the over-expressed EGFR was exploited as a target 

to more specifically deliver the GemC18-NPs into tumor cells by conjugating EGF onto 

the surface of the nanoparticles. Previously, EGF and antibodies against EGFR had been 

conjugated onto liposomes to successfully target them to EGFR-over-expressing tumor 

cells [17-19]. For example, it was shown that treatment of nude mice with EGFR-over-

expressing A549 human non-small cell lung cancer cells with gemcitabine-incorporated 

liposomes surface-conjugated with monoclonal antibodies against EGFR more effectively 

inhibited the tumor growth than un-targeted liposomes [19]. Similarly, Arya et al. (2011) 
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reported that conjugation of anti-HER2, an antibody against human EGFR-2, 

onto gemcitabine–chitosan nanoparticles enhanced the anti-proliferative activity of the 

nanoparticles against HER2-expressing Mia PaCa-2 cells and PANC-1 tumor cells in 

culture [20]. 

 

3.3  Materials and Methods 

3.3.1  Materials and Cell-lines 

Gemcitabine HCl was from U.S. Pharmacopeia (Rockville, MD). Soy lecithin was 

from Alfa Aesar (Ward Hill, MA). Geleol™ (Glycerol-monostearate, GMS) was from 

Gattefosse Corp. (Paramus, NJ). The 1, 2-distearoyl-sn-glycero-3-phosphoethanolamine-

N-[maleimide (polyethylene glycol)-2000] (DSPE-PEG(2000)-maleimide) and 1,2-

dioleoyl-sn-glycero-3-phosphoethanolamine-N-(carboxyfluorescein) (ammonium salt) 

(DOPE-fluorescein) were from Avanti Polar Lipids, Inc. (Alabaster, AL). Ovalbumin 

(OVA), 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT), poly-D-

lysine hydrobromide, 2-iminothiolane hydrochloride (Traut's Reagent), and Tween 20 

were from Sigma-Aldrich (St. Louis, MO). CBQCA Protein Quantification Kit, cell 

culture medium, fetal bovine serum (FBS), and antibiotics were from Invitrogen 

(Carlsbad, CA). Sephadex™ G-25 column (PD-10) was from GE Biosciences 

(Piscataway, NJ). Recombinant murine EGF was from Peprotech Inc. (Rocky Hills, NJ). 

Human breast adenocarcinoma cell lines, MDA-MB-468 (HTB-132), MDA-MB-231 

(HTB-26), and MCF-7 (HTB-22) were from the American Type Culture Collection 

(ATCC, Rockville, MD). It was reported that those cells express 1 × 106, 2 × 105, and 

1 × 104 EGFR per cell, respectively [21] and [22], and our RT-PCR data confirmed the 

differential expression as well (Rodriguez and Cui, unpublished data). All tumor cells 
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were grown in Dulbecco's modification of Eagle's medium (DMEM) supplemented with 

10% FBS, 100 U/mL of penicillin, and 100 μg/mL of streptomycin. 

 
3.3.2  Preparation and Characterization of EGFR-targeted Stearoyl Gemcitabine 
Nanoparticles 

Recombinant murine EGF was conjugated onto nanoparticles by forming a stable 

thioether group. GemC18 and GemC18-containing nanoparticles (GemC18-NPs) were 

prepared as previously described [23]. Briefly, 3.5 mg of soy lecithin, 0.5 mg of GMS, 

5 mg of GemC18, and 0.875 mg of DSPE-PEG (2000)-maleimide were placed into a 

7 mL glass vial. One milliliter of water was added into the mixture, which was then 

maintained at 70–75 °C while stirring until the formation of homogeneous slurry. Tween 

20 was added in a step-wise manner to achieve a final concentration of 1% (v/v). The 

resultant emulsions were allowed to stay at room temperature while stirring to form 

nanoparticles. To thiolate EGF, EGF was diluted into phosphate buffer saline (PBS, 

0.1 M, pH 8.0) with ethylenediaminetetraacetic acid (EDTA, 5 mM), followed by the 

addition of Traut's reagent (2 mg/mL) and a 1 h incubation at room temperature. 

Thiolated EGF was purified/desalted using a Sephadex™ G-25 column and mixed with 

pre-prepared GemC18-NPs. The mixture was incubated overnight in a nitrogen-enriched 

atmosphere. Un-conjugated EGF was removed using a Sepharose® 4B column. The 

purified EGF-conjugated GemC18-NPs are named EGF-GemC18-NPs. As a control, 

OVA was conjugated onto the GemC18-NPs using the same procedure to prepare OVA-

GemC18-NPs. To fluorescently label the nanoparticles, DOPE-fluorescein (0.95 mg) was 

included in the lipid mixture during the nanoparticle preparation. The concentration of 

the EGF and OVA in the nanoparticle preparations was determined using the CBQCA 

Protein Quantitation Kit following the manufacturer's instruction(s). The concentration of 
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the GemC18 in the final nanoparticle preparations was determined using Agilent high 

performance liquid chromatography (HPLC) with an Agilent ZORBAX Eclipse Plus 

C18 column (4.6 × 150 mm, 5 μm; Santa Clara, CA) after the nanoparticles were 

dissolved into tetrahydrofuran. The mobile phase was methanol (100%). The flow rate 

was 1 mL/min. The detection wavelength was 248 nm[5] and [8]. 

The particle size and zeta potential of the nanoparticles were determined using a 

Malvern Zetasizer® Nano ZS (Westborough, MA). The nanoparticles in suspension were 

stored in ambient condition for 20 days, and their particle sizes were measured every five 

days. 

 

3.3.3  In Vitro Cellular Uptake Assay 

MDA-MB-468, MDA-MB-231, or MCF-7 cells were seeded in 12-well plate 

(2 × 105 cells/well) (n = 6) and incubated at 37 °C, 5% CO2 for 24 h. Cells were then 

incubated with fluorescein-labeled EGF-GemC18-NPs or fluorescein-labeled OVA-

GemC18-NPs (50 μL) for 6 h at 37 °C, 5% CO2, washed three times with PBS, and re-

suspended in a cell lysis buffer (20 mM Tris, 100 mM NaCl, 1 mM EDTA, 0.5% Triton 

X-100). The 6 h incubation time was chosen based on data from previous 

studies [8] and [24]. The fluorescence intensity of the samples in a black bottom plate 

(Corning, NY) was measured at 492/518 nm using a BioTek Synergy®Multi-Mode 

Microplate Reader (Winooski, CT). To confirm that the uptake was mediated by the 

EGF-EGFR interaction, the cells were incubated with free EGF (0.1 mg/mL) for 1 h prior 

to the addition of the nanoparticles. Data are reported as the absolute fluorescence 

intensity values or the % of uptake, which was calculated using the following formula: % 

uptake = (fluorescence intensity value in the cell lysates)/(total fluorescence intensity 

value of the nanoparticles added into the cell culture). 
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3.3.4  Fluorescence Microscopy for the Detection of the Uptake of Nanoparticles 

MDA-MB-468 or MCF-7 cells (2 × 105) were seeded on poly-D-lysine-coated 

glass cover slips and incubated in 6-well plates at 37 °C, 5% CO2 for 24 h. After 

complete adherence, cells and cover slips were incubated with fluorescein-labeled EGF-

GemC18-NPs or fluorescein-labeled OVA-GemC18-NPs for 6 h at 37 °C and 5% CO2, 

washed three times with PBS, and fixed with paraformaldehyde (3% in PBS) for 20 min 

at room temperature. The cover slips were washed with PBS an additional three times 

and mounted onto ethanol-cleaned glass slides using Vectashield H-1200 with 4′,6-

diamidino-2-phenylindole (DAPI) (Vector laboratories, Burlingame, CA). Cells were 

examined using an Olympus BX60 microscope (Center Valley, PA). 

 

3.3.5  Flow Cytometry 

MDA-MB-468, MDA-MB-231, and MCF-7 cells (1 × 106/well) were incubated 

with fluorescein-labeled EGF-GemC18-NPs or fluorescein-labeled OVA-GemC18-NPs 

for 6 h at 37 °C, 5% CO2. Cells were washed three times with PBS, re-suspended in PBS, 

and analyzed using a BD FACSCalibur Flow Cytometer (San Jose, CA). Data was 

analyzed using the FlowJo Flow Cytometry Analysis software (Tree Star Inc., Ashland, 

OR). 

 

3.3.6  In Vitro Cytotoxicity Assay 

Cells (5000/well) were seeded in a 96-well plate and incubated overnight at 

37 °C, 5% CO2. Cells were then incubated in the presence of various concentrations of 
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EGF-GemC18-NPs, OVA-GemC18-NPs, or sterile PBS for 48 h. Cell viability was 

determined using an MTT assay following the manufacturer's instructions. OD570 nm 

and OD630 nm values were measured using a BioTek SynergyTM HT Multi-Mode 

Microplate Reader. To understand whether the cells underwent apoptosis after treatment 

with the GemC18-NPs, MDA-MB-468 cells (5 × 104) were incubated with EGF-

GemC18-NPs or OVA-GemC18-NPs for 48 h, washed, stained using a Guava Nexin kit 

that contains annexin V and 7-amino actinomycin D (7-AAD) according to the 

manufacturer's protocol, and analyzed using a Guava Easycyte 8HT Flow Cytometry 

System (Millipore, Hayward, CA). 

3.3.7  Evaluation of the In Vivo Anti-tumor Activity of the EGF-GemC18-NPs 

National Institutes of Health guidelines for animal use and care were followed. 

Animal protocol was approved by the Institutional Animal Care and Use Committee at 

the University of Texas at Austin. Female athymic Nu/Nu mice (18–20 g) were from 

Charles River Laboratories (Wilmington, MA). MDA-MB-468 tumor cells 

(1 × 107 cells/mouse) were mixed with BD MatrigelTM (50:50, v/v) and subcutaneously 

injected in the right flank of the mice on day 0. On day 11, mice (n = 7, 5 for control) 

were randomized and injected intravenously (i.v.) via the tail vein with 200 μL of EGF-

GemC18-NPs or OVA-GemC18-NPs in sterile mannitol (5%, w/v) or sterile mannitol 

alone as a negative control. Injection was repeated on days 17, 28, and 37. The dose of 

the GemC18 was about 860 μg per mouse per injection. Tumor growth and mouse 

survival was monitored. Tumor size was calculated based on the following equation: 

tumor diameter (mm) = (length × width)/2. 

3.3.8  Ex Vivo Imaging Using IVIS® Spectrum 

The biodistribution of EGF-GemC18-NPs and OVA-GemC18-NPs were 

evaluated in Nu/Nu mice with pre-established MDA-MB-468 tumors using an 
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IVIS® Spectrum from Caliper (Hopkinton, MA). When the tumor size reached 8–10 mm, 

fluorescein-labeled EGF-GemC18-NPs or fluorescein-labeled OVA-GemC18-NPs were 

injected intravenously via the tail vein into mice (n = 3). As a control, mice were injected 

with sterile mannitol (5%, w/v). Mice were euthanized 24 h later to collect tumor, heart, 

lung, liver, spleen, and kidney. Samples were imaged immediately on non-fluorescent 

black Strathmore Artagain paper (Neenah, WI). Region of interest (ROI) values were 

recorded using Living Image® software (ver. 4.0). Fluorescence intensity (total counts) 

was determined in a fixed, circular ROI and reported after normalizing to the weight of 

the tumors or organs. 

To determine the half-lives of the EGF-GemC18-NPs and OVA-GemC18-NPs, 

healthy, tumor-free C57BL/6 mice were injected intravenously with fluorescein-labeled 

EGF-GemC18-NPs or fluorescein-labeled OVA-GemC18-NPs and euthanized 5 min, 

3 h, 6 h, 12 h, or 24 h later to collect blood samples (500 μL/mouse), which were placed 

into a multi-well plate and imaged using the IVIS® Spectrum to determine the 

fluorescence intensity. Pharmacokinetic data were analyzed based on the fluorescence 

intensity values using the PK-Solver assuming a two-compartmental model [25]. 

 

3.3.9  Histology 

Nu/Nu mice (n = 3) with pre-established MDA-MB-468 tumors were dosed (i.v.) 

with sterile mannitol, OVA-GemC18-NPs, or EGF-GemC18-NPs 20, 30, 40, and 53 days 

after the tumor cell injection. On day 54, mice were injected intraperitoneally with 5-

bromo-2′-deoxyuridine (BrdU, 100 μg/g body weight) in sterile PBS and euthanized 

30 min later. Tumor tissues were collected, fixed in formalin, embedded, sectioned, and 

stained at the University of Texas MD Anderson Cancer Center Science Park Research 

Division (Smithville, TX) with antibodies against BrdU, CD31, and caspase 3 as markers 
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of cell proliferation, angiogenesis, and apoptosis, respectively. Slides were examined 

under a bright-field microscope. In addition, a slide was also stained with anti-EGFR-

Alexa fluor 488 (Millipore, diluted 1/500) and DAPI, and then examined using a Leica 

TCS SP5 X Supercontinuum confocal microscope (Buffalo Grove, IL). 

 

3.3.10  Statistical Analysis 

Statistical analyses were completed by performing analysis of variance (ANOVA) 

followed by Fisher's protected least significant procedure. Mouse survival curves were 

analyzed using the Mantel–Cox log-rank method (GraphPad Prism®). A p-value of 

≤ 0.05 was considered significant. 
 

3.4 Results and Discussion 

 
3.4.1  Preparation and Characterization of EGF-GemC18-NPs and OVA-GemC18-
NPs 

The EGFR-targeted GemC18-NPs were prepared by conjugating murine EGF 

onto pre-prepared GemC18-NPs. It was shown that murine EGF and human EGF bind to 

human EGFR with similar affinity at pH 7.4, and they have similar biological activity, 

but murine EGF is preferred due to the absence of lysine residues, which minimizes cross 

reaction [26] and [27]. As a control, OVA was also conjugated onto the GemC18-NPs to 

generate OVA-GemC18-NPs. OVA was used as a control to EGF because the isoelectric 

point (pI) of OVA is similar to that of the murine EGF (pI = 4.6) [28] and [29], and there 

is no report showing that OVA is a ligand to EGFR. Data that will be presented later also 

demonstrated that OVA did not affect the EGF-EGFR interaction. 

The particle size, polydispersity index, and zeta potential of the EGF-GemC18-

NPs and OVA-GemC18-NPs are shown in Table 1. Also shown in Table 1 are the final 
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concentrations of GemC18 and EGF (or OVA) in the EGF-GemC18-NPs and OVA-

GemC18-NPs. Statistical analyses did not reveal any significant difference between the 

EGF-GemC18-NPs and OVA-GemC18-NPs in those parameters, except the EGF or 

OVA protein concentration, which was likely due to the difference in the molecular 

weights of OVA and murine EGF. In a short 20-day stability study, when the 

nanoparticles were stored in ambient condition in an aqueous suspension, the particle size 

of both EGF-GemC18-NPs and OVA-GemC18-NPs did not change (data not shown). 

 
3.4.2  In Vitro Uptake of the EGF-GemC18-NPs by Tumor Cells Expressing 
Different Levels of EGFR 

Three human breast adenocarcinoma cell lines, MDA-MB-468, MDA-MB-231, 

and MCF-7, were used in the in vitro uptake studies because they express different levels 

of EGFR per cell (1 × 106, 2 × 105 and 1 × 104, respectively) [21] and [22]. As shown 

in Fig. 3.1A, after 6 h of incubation, the cellular uptakes of the OVA-GemC18-NPs by 

the three different cell lines were not different (p = 0.71, ANOVA). However, the extent 

of the uptake of the EGF-GemC18-NPs by the same cell lines was dependent on the 

number of EGFR per cell (Fig. 3.1A). In other words, the MDA-MB-468 tumor cells took 

up more EGF-GemC18-NPs than the MDA-MB-231 cells, and the MDA-MB-231 cells 

took up more EGF-GemC18-NPs than the MCF-7 cells (Fig. 3.1A). Data in Fig. 1B 

showed that pre-incubation of the MDA-MB-468 cells with free EGF for 1 h significantly 

inhibited the cellular uptake of the EGF-GemC18-NPs, but not the OVA-GemC18-NPs, 

by the MDA-MB-468 cells, demonstrating that the uptake of EGF-GemC18-NPs was 

mediated by the EGF–EGFR interaction. This is in agreement with Blessing et al., who 

reported that the competition of free EGF with EGF-containing plasmid DNA-
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polyethylenimine complexes resulted in decreased transfer of the plasmid into EGFR-

over-expressing cells [30]. 

Flow cytometry and fluorescence microscopy were also employed to confirm that 

the uptake of the EGF-GemC18-NPs, but not the OVA-GemC18-NPs, was dependent on 

the density of the EGFR on tumor cells. As shown by the right-shifting of the fluorescein-

positive peak in Fig. 3.2A, the uptake of the EGF-GemC18-NPs by the MDA-MB-468 

cells was much more extensive than that of the OVA-GemC18-NPs, but it was only 

slightly different in the MDA-MB-231 and MCF-7 cells. Moreover, as indicated by the 

green fluorescence intensity in the micrographs in Fig. 3.2B, after 6 h of incubation, the 

uptake of the EGF-GemC18-NPs by the MDA-MB-468 cells was significantly greater 

than the uptake of the OVA-GemC18-NPs. However, the uptake of both nanoparticles by 

the MCF-7 cells was weak (Fig. 3.2B). The microscopic and flow cytometric data also 

showed that there is a slight increase in the uptake of the EGF-GemC18-NPs over the 

OVA-GemC18-NPs by MCF-7 cells (Fig. 3.2), which was expected because the MCF-7 

cells express EGFR at a level of 1 × 104 per cell [21]. Taken together, data 

in Fig. 3.1 and Fig. 3.2 showed that the murine EGF conjugated onto the GemC18-NPs 

helped facilitate the uptake of nanoparticles by EGFR-expressing tumor cells through the 

EGF-EGFR interaction. 

 
3.4.3  Correlation of the In Vitro Cytotoxicity of the EGF-GemC18-NPs with the 
Density of the EGFR on Tumor Cells 

The cytotoxicities of the EGF-GemC18-NPs and OVA-GemC18-NPs in MDA-

MB-468, MDA-MB-231, and MCF-7 cells were evaluated and compared. As expected, 

in all three cell lines, the EGF-GemC18-NPs were more cytotoxic than the OVA-

GemC18-NPs (Fig. 3.3A). Moreover, it appeared that the extent to which the EGF-
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GemC18-NPs were more cytotoxic than the OVA-GemC18-NPs was dependent on the 

density of the EGFR on the cells (Fig. 3.3A). In other words, the difference in the 

cytotoxicities between the EGF-GemC18-NPs and the OVA-GemC18-NPs was much 

greater in the MDA-MB-468 cells than in the MDA-MB-231 cells; and it was greater in 

the MDA-MB-231 cells than in the MCF-7 cells (Fig. 3.3A). Finally, data in Fig. 3.3B 

showed that the tumors cells treated with the GemC18-NPs underwent apoptosis as well. 

The cytotoxicity data are in agreement with the cell uptake data shown 

in Fig. 3.1 and Fig. 3.2. It is likely that the high density of EGFR on the surface of the 

MDA-MB-468 cells allowed the cells to take up more EGF-GemC18-NPs. The more 

EGF-GemC18-NPs that are internalized into the cells, the more cytotoxicity is expected. 

 
3.4.4  The EGFR-targeting GemC18-NPs More Effectively Controlled the Growth 
of Pre-established EGFR-over-expressing Tumors in Mice 

To investigate whether the EGF-GemC18-NPs are more cytotoxic than the OVA-

GemC18-NPs to EGFR-over-expressing tumors in vivo, their ability to control tumor 

growth in vivo was evaluated and compared in mice with pre-established MDA-MB-468 

tumors. As shown in Fig. 3.4A, tumors in mice that were treated with the EGF-GemC18-

NPs grew significantly slower than in mice that were treated with the OVA-GemC18-

NPs. From day 45 to day 50, the mean diameter of tumors in mice treated with the EGF-

GemC18-NPs was significantly smaller than in mice treated with the OVA-GemC18-NPs 

(p < 0.05) (Fig. 3.4A). Statistical comparison of the size of tumors in mice treated with 

EGF-GemC18-NPs and that in mice treated with OVA-GemC18-NPs beyond day 50 was 

not carried out due to the death of mice in both groups around day 50. In fact, it seemed 

that the 4 doses of OVA-GemC18-NPs simply inhibited the growth of the MDA-MB-468 

tumors for about 40 days. When the treatment was stopped — last dose on day 37, the 
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tumors started to grow again (Fig. 3.4A). In contrast, when the treatment with the EGF-

GemC18-NPs was terminated, the mean diameter of the tumors continued to decrease 

(Fig. 3.4A). Mice that were treated with the EGF-GemC18-NPs also survived longer than 

those treated with the OVA-GemC18-NPs (Fig. 3.4B). The median survival time for mice 

that were treated with the EGF-GemC18-NPs was 160 days, only 69 days for mice 

treated with the OVA-GemC18-NPs. A comparison of the survival curves of the EGF-

GemC18-NPs and OVA-GemC18-NPs revealed a p value of 0.053, which would have 

been smaller (i.e., 0.023) if one of the mice that were treated with the OVA-GemC18-

NPs did not accidently pass away during the i.v. injection of the nanoparticles on day 37. 

Nonetheless, data in Fig. 3.4 showed that the EGF-conjugated GemC18-NPs were more 

effective than the control GemC18-NPs in controlling the growth of EGFR-over-

expressing tumors in vivo. It is worth mentioning that gemcitabine HCl at the molar 

equivalent dose (28.3 mg/kg) caused serious toxicity to nude mice with MDA-MB-468 

tumors because mice that were treated with gemcitabine HCl did not survive as long as 

mice that were injected with sterile mannitol (Fig. 3.7). 

For immunohistology analysis, another mouse study was carried out by treating 

MDA-MB-468 tumor-bearing mice with sterile mannitol, OVA-GemC18-NPs, or EGF-

GemC18-NPs 20, 30, 40, and 53 days after tumor cell injection. Similar to what was 

shown in Fig. 3.4A, tumors in mice that were treated with the EGF-GemC18-NPs grew 

significantly slower than in mice that were treated with the OVA-GemC18-NPs 

(Fig. 3.4C). Tumors were harvested on day 54 for analysis. Anti-BrdU staining showed 

that cell proliferation was less extensive in tumors in mice that were treated with the 

GemC18-NPs (Fig. 3.5A). More importantly, BrdU positive staining was significantly 

less extensive in tumors in mice that were treated with the EGF-GemC18-NPs than in 

tumors in mice that were treated with the OVA-GemC18-NPs (Figs. 3.5A, B). Anti-



 53 

CD31 staining, a marker of endothelial cells, revealed extensive vascularization in tumors 

in mice that were treated with sterile mannitol and to a less extent in tumors in mice that 

were treated with OVA-GemC18-NPs (Fig. 3.5A). However, CD31 positive staining was 

very rare in tumors in mice that were treated with EGF-GemC18-NPs (Fig. 3.5A). 

Finally, caspase3 positive staining, an apoptosis marker, was extensive in tumors in mice 

that were treated with the EGF-GemC18-NPs, but significantly less extensive in tumors 

in mice that were treated with OVA-GemC18-NPs or sterile mannitol (Figs. 3.5A, C). 

Data in Fig. 3.5D (data not shown) showed that almost all the tumor cells were EGFR 

positive, because almost all cell nuclei (DAPI positive) were surrounded by EGFR 

positive staining. Therefore, it is likely that the caspase 3 positive cells in Fig. 3.5A were 

EGFR positive. Taken together, it appeared that, compared to the OVA-GemC18-NPs, 

the EGFR-targeted EGF-GemC18-NPs were more anti-proliferative, anti-angiogenic, and 

pro-apoptotic, which may explain why the EGF-GemC18-NPs were more effective than 

the OVA-GemC18-NPs in controlling the growth of the MDA-MB-468 tumors as shown 

in Fig. 3.4. 

 
3.4.5  The EGF on the EGF-GemC18-NPs Increased the Accumulation of the 
Nanoparticles in Tumors in Mice 

To evaluate the biodistribution of the EGF-GemC18-NPs and OVA-GemC18-

NPs in mice, fluorescein-labeled nanoparticles were injected (i.v.) into nude mice with 

pre-established MDA-MB-468 tumors with an average diameter of 7–10 mm. Twenty 

four hours later, mice were euthanized to harvest tumor, lung, liver, spleen, kidney, and 

heart, and the fluorescence intensity in them were determined using an IVIS® Spectrum. 

It was reported that the fluorescence intensity determined in ex vivo imaging is an 

accurate reflection of fluorescence-labeled nanoparticles accumulated inside organs due 
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to the deep penetration in the near-infrared region and negligible auto-fluorescence 

in ex vivo organs [31]. Shown in Fig. 3.6A are the fluorescence images of different 

organs and tumor tissues. The values of the fluorescence intensity, after normalization to 

tumor or organ weights, are shown in Fig. 3.6B. The fluorescence intensity in tumors in 

mice that were treated with the EGF-GemC18-NPs was more than 2-fold greater than that 

in tumors in mice that were treated with the OVA-GemC18-NPs (p = 0.0003), clearly 

demonstrating that the EGF on the EGF-GemC18-NPs enhanced the accumulation of the 

EGF-GemC18-NPs into EGFR-over-expressing tumors. It is noticed that the fluorescence 

intensity in the livers in mice that were injected with the EGF-GemC18-NPs tended to be 

higher than that in mice that were injected with the OVA-GemC18-NPs (Fig. 3.6A), 

which may be explained by the fact that the EGFR expression is slightly higher in cells in 

the liver and kidney (i.e., 1 × 105 EGFR/cell). Due to the variations in the size (or weight) 

of the organs from different mice, the fluorescence intensity values reported in Fig. 3.6B 

were normalized by organ weight. Interestingly, the fluorescence intensity values in 

livers after normalizing to weight were no longer significantly different in mice that were 

injected with EGF-GemC18-NPs or OVA-GemC18-NPs (Fig. 3.6B). 

Shown in Fig. 3.6C are the kinetics of the fluorescence intensity in the blood 

samples in healthy C57BL/6 mice injected with fluorescein-labeled EGF-GemC18-NPs 

or fluorescein-labeled OVA-GemC18-NPs, and there appears to be no difference between 

those two nanoparticle formulations. In fact, the half-lives of the EGF-GemC18-NPs and 

the OVA-GemC18-NPs at the elimination phase were not different (5.9 ± 2 h vs. 

6.2 ± 1.5 h, respectively, p = 0.86). The half-lives of the EGF-GemC18-NPs and the 

OVA-GemC18-NPs have the potential to be significantly increased, because the original 

GemC18-NPs exhibited a half-life of around 24 h at the elimination phase [8]. 

Conjugation of the EGF or the OVA to the terminal of the PEG chains on the GemC18-
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NPs was likely responsible for the shorter half-life observed. It is known that the ability 

of the PEG to extend the blood circulation time of a drug carrier is related to parameters 

such as the amount and the molecular weight of the PEG [32]. Therefore, future research 

efforts are underway to examine the feasibility of extending the half-life of the EGF-

GemC18-NPs by increasing the amount of PEG(2000) in the formulation or using longer 

PEG molecules. The inclusion of certain percent of PEG(2000) that lacks the maleimide 

group, and thus does not allow the conjugation of the EGF protein, is expected to help as 

well. 

As aforementioned, Gemzar® is commonly used as a single agent or in 

combination with additional anti-cancer drugs to treat pancreatic, breast, and lung 

cancers. Although relatively efficacious, there is still room to improve the anti-tumor 

activity of the gemcitabine HCl for injection. Data from several previous studies showed 

that formulating gemcitabine or its derivatives into nanoparticles (e.g., liposomes, 

polymeric nanoparticles, solid lipid nanoparticles) could potentially improve the resultant 

anti-tumor activity in vivo [2-10]. Previously, our group reported that change of 

the gemcitabineformulation from the gemcitabine HCl solution to a 

stearoyl gemcitabine in solid lipid nanoparticles significantly improved the resultant anti-

tumor activity [8], and the data in the present study clearly demonstrated that further 

surface modification of the nanoparticles by conjugating EGF as a ligand to actively 

target the GemC18-NPs to tumor cells significantly increased the anti-tumor activity of 

the GemC18-NPs against the EGFR-over-expressing MDA-MB-468 tumors in mice 

(Fig. 3.4), very likely due to the EGF's ability to increase the accumulation of the EGF-

GemC18-NPs into the MDA-MB-468 tumors in vivo (Fig. 3.6). It remains unknown to 

what extent the EGF on the GemC18-NPs also increased the uptake or internalization of 

the GemC18-NPs by the tumor cells in tumor tissues. Data from a previous study showed 
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that anti-HER2 antibody targeting of long-circulating lipidic nanoparticles increased the 

cellular uptake of the nanoparticles by the tumor cells in animal models, although they 

did not increase tumor localization (accumulation) [33]. Nonetheless, it is clear that 

the in vivo anti-tumor efficacy of the gemcitabine can be improved by formulating it into 

a tumor-targeting nanoparticle formulation. 

The nanoparticles used in the present study were prepared from lecithin/GMS-in-

water emulsions. Lecithin is a complex mixture of phosphatidylcholine, 

phosphatidylethanolamine, phosphatidylserine, phosphatidylinositol and other substances 

such as triglycerides and fatty acids. It is generally regarded as safe (GRAS) and accepted 

in the FDA Inactive Ingredients Guide for parenterals [34]. GMS is used in a variety of 

pharmaceutical applications and is GRAS listed as well [34]. Tween 20 was used in the 

nanoparticle preparation as an emulsifier. Tween 20 is also GRAS listed and included in 

the FDA Inactive Ingredients Guide for parenterals [34]. Therefore, it is expected that the 

nanoparticles have a favorable toxicity profile, and data from our preliminary toxicity 

studies are promising. For example, it was previously shown that the GemC18-NPs did 

not induce detectable acute or sub-acute liver toxicity when injected intravenously into 

mice [8]. Similar nanoparticles did not cause any significant red blood cell lysis or 

platelet aggregation [24]. Moreover, in a 1.5-year study, the pathological and histological 

parameters of mice that received three doses of similar nanoparticles by subcutaneous 

injection were evaluated, and an examination by a board-certified veterinary pathologist 

did not reveal any significant difference between the treated and untreated mice 

(Sloat and Cui, unpublished data). Therefore, the possibility exists for the translation of 

these GemC18-NPs and/or the EGF-GemC18-NPs from bench to clinic as a novel and 

more efficacious gemcitabine formulation. Similar alternative GemC18 nanoparticle 
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formulations may also be developed to improve the clinical outcome 

of gemcitabine therapy. 

The EGFR was chosen as the target to actively deliver the GemC18-NPs into 

tumors in the present study. The majority of the normal cells express EGFR at 1 × 104 per 

cell, but EGFR is over-expressed in a variety of cancer cells [35]. In case targeting EGFR 

is not feasible, alternative targets including transferrin receptors, folate receptors, or 

vascular cell adhesion molecule-1 (VCAM-1) may be utilized [36-38]. Other tumor-

specific ligands may be identified using phage display as well. 

 

3.5  Conclusions  

It was previously shown that formulating a stearoyl gemcitabine derivative into 

nanoparticles significantly improved the resultant anti-tumor activity. Data in the present 

study showed that the anti-tumor activity of stearoyl gemcitabine nanoparticles can be 

further improved by actively targeting them into tumors. 
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Chapter 4: Anti-tumor Efficacy of Oral 4-(N)-Stearoyl Gemcitabine 
Nanoparticles 

 

4.1  Abstract 

Previously, we reported the development of novel gemcitabine nanoparticles 

(GemC18-NPs) by incorporating 4-(N)-stearoyl gemcitabine into solid lipid 

nanoparticles. When administered intravenously, the GemC18-NPs were more effective 

than gemcitabine alone in controlling the growth of various human and mouse tumors in 

mouse models. In the present study, we evaluated the antitumor activity of the GemC18-

NPs when given orally. GemC18-NPs were prepared from lecithin/glyceryl 

monostearate-in-water emulsions, as previously described. The stability of the GemC18-

NPs in simulated gastric and intestinal fluid was evaluated and found to be relatively 

stable in both environments. Gemcitabine plasma pharmacokinetic parameters (e.g., 

Tmax, Cmax, t1/2, AUC) were determined using healthy mice after intravenous or oral 

administration. The antitumor activity of the GemC18-NPs against model mouse lung 

tumors (TC-1) in mice was evaluated after the nanoparticles were given orally or 

intravenously. Oral GemC18-NPs significantly inhibited TC-1 tumor growth, whereas 

oral dosing with GemC18-in-vegetable oil (nanoparticle-free) did not. Tumor-bearing 

mice that were treated with oral GemC18-NPs also survived longer than with oral 

GemC18-in-vegatable oil (mean survival time, 51 d vs. 31 d). In addition, the oral 

GemC18-in-vegetable oil seemed to be toxic to mice. The relative oral bioavailability of 

GemC18 given as GemC18-NPs was ~70%. Taken together, the oral stearoyl 

gemcitabine nanoparticles showed strong antitumor activity. 
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4.2  Introduction 

Gemcitabine (Gemzar®) is a chemotherapeutic drug indicated for use in a variety 

of cancers including, ovarian, breast, non-small lung, and pancreatic cancer. Currently, 

gemcitabine is formulated and FDA approved for intravenous infusions of 1,000 – 1,250 

mg/m2 on days 1 and 8 of a 21 d cycle, or days 1, 8, and 15 for a 28 d cycle [1-3].  

Due to the aggressive biologic nature of some cancers, such as pancreatic cancer 

with a median 5-year survival rate less than 4%, improving the patient’s quality of life is 

becoming an increasing central consideration to improve overall therapy. A research 

study by Liu et al. found that ~90% of 103 metastatic cancer patients indicated a 

preference for orally administered chemotherapy, of which relating to convenience 

(57%), avoiding difficulties in intravenous access lines (55%), and preference for a 

controlled, personalized therapy environment (33%) [3-4]. Simply put, most patients 

would prefer an orally formulated therapeutic. From a financial perspective, hospital 

administration costs further propagate the desire to formulate oral chemotherapeutics. 

Traditionally, medical costs for cancer therapy include: hospitalization, physician fees, 

salaries of nurses and technical support personnel, intravenous infusion equipment supply 

costs, administration supply product fees, and overhead charges (capital equipment, 

regulatory compliance costs, and liability insurance costs) [5]. The National Institute of 

Health estimated an overall cost for cancer in the United States to be ~$226.8 billion. 

Furthermore, between 1991 and 1996, a sharp decline (57%) in Medicare reimbursement 

for cancer therapy was observed. 

Even though economic incentives as well as patient preference provide enough 

rationale to orally formulate FDA approved chemotherapeutics, undesirable 

pharmacokinetics is a major hurdle that needs to be overcome. Studies have confirmed 

that the majority of currently available chemotherapeutics are not suitable applicants for 
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oral delivery due to low and highly variable oral bioavailability, including gemcitabine 

[6-8]. For example, in a clinical study by Veltkamp et al. evaluating gemcitabine toxicity, 

tolerability, pharmacokietincs, and anti-tumor activity in patients with advanced or 

metastatic cancer, found that systemic exposure was low with an estimated bioavailability 

of 10% due to first-pass liver metabolism [7]. Hence, oral administration of gemcitabine 

may be an unrealistic alternative to intravenous treatments of the drug due to its extensive 

first-pass liver metabolism and conversion into an inactive gemcitabine metabolite, 2′,2′- 

difluorodeoxyuridine (dFdU). 

There have been recent efforts to decrease the deamination or conversion of the 

active gemcitabine molecule (dFdC) into it’s inactive metabolite (dFdU) by covalently 

attaching long chain fatty acids to the 4-amino group (i.e. 4-(N)-stearoyl gemcitabine, as 

previously discussed), or through coupling acyclic isoprenoid chains of squalene 

(SQdFdC NA) [7]. It was shown that a fatty acid ester derivative of gemcitabine (CP-

4126) exhibited better anti-tumor activity than its parent compound when given orally in 

human non-small cell lung cancer tumors in mice [9-10]. However, one of the three 

dosing regimens investigated at 10 mg/kg CP-4126 daily caused severe toxicity and 

forced the study to terminate. Further, dosing regimens of 15 mg/kg or 20 mg/kg CP-

4126 at five times every three days, showed either favorable toxicity profiles with no 

anti-tumor activity or significant anti-tumor activity with non-favorable toxicity, 

respectively [9]. Alternatively, Couvreur et al. assessed anti-tumor activity in leukemic 

F344 Fischer rats after oral administration of gemcitabine or SQdFdC NA. They show 

that the rats receiving SQdFdC NA survived statistically longer gemcitabine alone, 

however tumor size regression was not reported [10]. 

Previously, we reported the development of 4-(N)-stearoyl gemcitabine solid lipid 

nanoparticles (GemC18-NPs) and demonstrated significant anti-tumor performance and 
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prolonged mouse survival in both human and mouse tumor model versus gemcitabine-

alone or GemC18-in-Tween 20 micelles [11]. Due to our favorable results and the 

increasing attention to formulate oral chemotherapeutics, we were driven to evaluate the 

in vivo anti-tumor activity of the GemC18-NP when given orally. 

 

4.3  Materials and Methods 

4.3.1  Chemicals and Cell-lines 

Mannitol, methanol (HPLC-grade), ethyl acetate (EtOAc), dichloromethane 

(DCM), potassium phosphate monobasic, sodium chloride, sodium hydroxide, Tween 20, 

and Tween 80 were from Sigma-Aldrich (St. Louis, MO). Gemcitabine hydrochloride 

(gemcitabine HCl) was from U.S. Pharmacopeia (Rockville, MD). Soy lecithin was from 

Alfa Aesar (Ward Hill, MA). Glycerol monostearate (GMS) was from Gattefosse Corp 

(Paramus, NJ). Mouse lung (TC-1, ATCC # CRL-2785) cancer cell lines were from 

American Type Culture Collection (ATCC, Manassas, VA). TC-1 cells were grown in 

RPMI1640 medium (Invitrogen, Carlsbad, CA). All media were supplemented with 10% 

fetal bovine serum (FBS, Invitrogen), 100 U/mL of penicillin (Invitrogen), and 100 

μg/mL of streptomycin (Invitrogen). 

 

4.3.2  Preparation of 4-(N)-Stearoyl Gemcitabine Nanoparticles 

GemC18-NPs were prepared as previously described in Sloat and Sandoval et al, 

2011. Briefly, 3.5 mg soy lecithin, 0.5 mg of glycerol monostearate, 1,2-distearyol-sn-

glycero-3-phosphoethanolamine-N-[amino (polyethyleneglycol)-2000] (DSPE-

PEG(2000), 11.6% (w/w) of total lipids and Tween 20) (Avanti Polar Lipids, Alabaster, 

AL), and 5 mg of GemC18 were placed into a 7 mL scintillation glass vial. One mL of 

de-ionized (Millipore Milli-Q; Billerica, MA) and filtered (0.22 μm) water was added 
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into the mixture, which was then maintained on a 70-75 ºC hot plate while stirring, with 

occasional water-bath sonication (Bransonic Ultrasonic Cleaner, Danbury, CT), until the 

formation of homogenous slurry. Tween 20 was added in a step-wise manner to a final 

concentration of 1% (v/v). The resultant emulsions were allowed to cool to room 

temperature while stirring to form nanoparticles. As control, GemC18-free nanoparticles 

(Blank NPs) were prepared as described above without the addition GemC18. GemC18-

alone was also dissolved into vegetable oil (GemC18-in-oil, ConAgra Foods; Omaha, 

NE). The size and zeta potential of the nanoparticles were measured using a Malvern 

Zetasizer Nano ZS (Westborough, MA).  

Prior to animal studies, the GemC18-NPs were prepared with 5% mannitol (w/v) 

to adjust for tonicity for intravenous injection.  

 

4.3.3  Stability of 4-(N)-Stearoyl Gemcitabine Nanoparticles 

To evaluate the gastrointestinal stability of the GemC18-NPs similar to what they 

may experience when orally administered, non-fed Simulated Gastric Fluid (SGF) and 

Simulated Intestinal Fluid (SIF) was prepared as follows. SGF  (pH 1.2) was prepared by 

dissolving 2 g of NaCl into 7 mL HCl and adding 991 mL deionized and filtered (0.22 

µm) water. The SIF (pH 6.8) was prepared by adding 6.8 g of KH2PO4 and 896 mg 

NaOH into 1000 mL deionized and filtered (0.22 µm) water. The GemC18-NPs were 

incubated with SGF or SIF in 37°C for 0, 1, 2, 4, and 6 h. As control, the nanoparticles 

were incubated in PBS (pH 7.4) as well. At pre-determined time points, particle size was 

measured using a Malvern Zetasizer Nano ZS. 
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4.3.4  In vitro Release in Simulated Gastric Fluid (SGF) and Simulated Intestinal 
Fluid (SIF) 

GemC18-NPs and GemC18-in-Tween 20 micelles in SGF or SIF were placed into 

a 1 mL cellulose ester dialysis tube (MWC 50,000) from Spectrum Chemicals & 

Laboratory Products (New Brunswick, NJ). The dialysis tube was then placed into a 

plastic conical tube containing 13 mL of SGF or SIF with 0.05% Tween 80 and incubated 

in a 37ºC shaker incubator. At predetermined time points (0, 0.5, 1, 1.5, 2, 3, 4, or 6 h), 

200 µL of the release medium was withdrawn, and 200 µL of fresh release medium was 

added back. The concentration of the GemC18 was estimated by measuring the 

absorbance at 248 nm (BioTek Synergy™ HT Multi-Mode Microplate Reader 

(Winooski, VT) as previously described [11]. 

 

4.3.5  In Vivo Anti-tumor Efficacy Study 

Animal protocol was approved by the IACUC at the University of Texas at 

Austin. Female C57BL/6 mice (18-20g, 6-8 weeks, n = 5) were subcutaneously (s.c) 

injected with mouse TC-1 lung cancer cells (ATCC # CRL-2785, 5 x 105 cells/mouse) in 

the right flank. Mouse hair was carefully trimmed at the injection site 1 day prior to the 

injection. Treatment with GemC18-NPs, GemC18-in-oil, Blank NPs, and sterile mannitol 

(5% w/v) were started on day 11, and mice were orally gavaged daily until the endpoint 

(i.e., death, tumor size greater than 15 mm, tumor ulceration, weight loss of more than 

20%, or severe signs of pains and distress). As a positive control, a group of mice were 

injected via the tail vein with the GemC18-NPs, twice a week until the endpoint. The 

dose of GemC18 was 250 μg per mouse per dose for all formulations. Tumor size was 

measured 2-3 times a week, and tumor diameter was calculated as: diameter (mm) = 

[length + width]/2. Mouse survival time was also recorded. 
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An additional animal study was performed to evaluate and compare orally 

administered GemC18-NPs, gemcitabine hydrocholoride (GemHCl), and GemC18-free 

vegetable oil. Female C57Bl/6 mice with TC-1 tumors were used as described above.  

The mice were dosed with 150 μg of GemC18 per mouse per dose as well as equal molar 

doses of GemHCl (85 μg per mouse per dose).  

 

4.3.6  Plasma Pharmacokinetics  

To evaluate the pharmacokinetic parameters of GemC18-NPs when given orally 

or intravenously, mice were dosed with 1 mg of GemC18-NPs (0.56 mg gemcitabine). At 

pre-determined time points (0.25, 0.5, 1, 2, 4, 8, 12, 24, or 48 h), mice were euthanized 

and blood was collected into heparin-coated tubes and centrifuged (8000 rcf) for 10 min 

to isolate plasma. Samples were stored in a −80 °C until analysis. At time of analysis, a 

hydrolysis method was used to detect the concentration of GemC18 in plasma [12]. 

Briefly, to 75 μL of plasma, 25 μL of uracil 1-β-D-arabinofuranoside solution (AraU, 10 

μg/mL) was added as an internal standard, followed by the addition of 100 μL of 2 N 

NaOH. This mixture was then vortexed and incubated at 40 °C for 1 h. Following 

incubation, 800 μL of acetonitrile and 75 μL of 1.4 M H3PO4 was added, followed by 

centrifugation at 13,000 rpm for 10 min. The supernatant was then collected and dried 

under vacuum. Lastly, the residue was re-dissolved in 100 μL of 2.5 mM PBS (pH 7.4) 

and centrifuged (13,000 rpm 10 min) to collect the supernatant, which was then analyzed 

using an Agilent HPLC with Agilent C18 column (5 μm, 4.6 mm × 250 mm; Santa Clara, 

CA) to measure gemcitabine concentration. The mobile phase was 5 mM sodium acetate 

(pH 6.0) and methanol (95/5, v/v), and the detection wavelength was 266 nm. Drug 

concentration value was derived after the gemcitabine concentration was converted to 
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stearoyl gemcitabine concentration. Data was analyzed using the PK Solver® and two-

compartmental model to determine the t1/2 at the elimination phase [11]. 

 

4.3.7  Statistical Analysis 

Statistical analyses were completed by performing analysis of variance, followed 

by Fisher's protected least significant difference procedure. Mouse survival curves were 

compared using the Mantel-Cox log-rank method using Prism® from GraphPad 

Software, Inc. (La Jolla, CA). A p value of ≤ 0.05 (two-tail) was considered significant. 

 

4.4  Results and Discussion 

The GemC18-NPs were prepared as previously described [11]. Considering that 

the intended application of these stearoyl gemcitabine nanoparticles is for oral 

administration, it’s critical to study the effect on particle size in similar environments 

present in the gastrointestinal tract. When the GemC18-NPs were incubated in the 

presence of intestinal pH (SIF, pH 6.8) and PBS (pH 7.4), particle size did not change 

over a 6 h period (Fig. 4.1). In simulated gastric fluid (pH 1.2), the nanoparticles 

appeared to aggregate (~15%) after 1 h incubation and particle size did not change 

thereafter (p > 0.5, Fig. 4.1). Previous studies by Tobio et al. and Garca-Fuentes et al. 

showed the presence of increasing PEG or Poloxamer 188 on the surface of nanoparticles 

stabilized and hindered aggregation of the particle in gastric fluid. The GemC18-NPs 

were engineered with 11.6% w/w polyethylene glycol(2000), therefore we postulate that 

increasing the amount of PEG could retard particle growth in SGF. Its noteworthy to 

mention that in a previous study by Sloat and Sandoval et al. demonstrated that the 

GemC18-NPs were stable in simulated biological medium (10% FBS in 0.9% saline) 

suggesting that the GemC18-NPs may not extensively aggregate in vivo. In a release 
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study (Fig. 4.2), drug release from the nanoparticles in SGF was slow over 2 h (~16.8%), 

whereas the release of GemC18-in Tween 20 micelles was rapid. When the nanoparticles 

were incubated in the SIF release medium, about 15% of GemC18 was released from the 

nanoparticles over 6 h. Therefore, we concluded that the observed particle growth in SGF 

did not significantly influence drug release. This is of particular importance because an 

ideal delivery system intended for oral administration, drug release from the carrier 

should withstand acidic pH changes to not only protect the drug from degradation, but to 

facilitate transport and release in the small intestines [6,13-14].  

Treatment of tumor-bearing mice with orally gavaged GemC18-NPs resulted in a 

significant delay in the growth of the TC-1 tumors, as compared to the untreated group 

(Fig 4.3A). Mice that received treatment with GemC18-in-oil (nanoparticle-free) 

exhibited similar anti-tumor activity in comparison with GemC18-NPs up to day 25; 

however, the mice in this group did not survive as long as those receiving the 

nanoparticles (p = 0.0031, Log-rank (Mantel-Cox) Test) (Fig. 4.4B). Similar anti-tumor 

activity of the GemC18-NPs given intravenously via mouse-tail vein to those reported 

earlier [11]. During treatment with GemC18-in-oil, mice exhibited significant weight 

loss, severe signs of pain and distress (arched backs, hair loss, and sedentary activity), 

and were euthanized preemptively. In another study (data not shown), we evaluated if 

orally gavaged vegetable oil had any deleterious effects on mice toxicity or survival. As 

expected, mice that received identical volumes of vegetable oil did not exhibit any 

adverse or similar reactions, indicating that the observed results in Fig 4A and B was not 

due to the solvent per se. No detectible anti-tumor activity or toxicity was observed in 

mice orally gavaged with Blank-NPs. The GemC18-NPs were prepared with excipients 

(lecithin, GMS, and Tween 20) that are considered Generally Regarded As Safe (GRAS) 

and accepted in the FDA inactive ingredients guide for parenterals [15]. Previous studies 
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shown that the GemC18-NPs did not induce any measurable signs of liver toxicity when 

injected intravenously into mice [11]. It was also shown by Yanasarn et al. that the 

nanoparticles, incorporated with docetaxel, did not cause any significant red blood cell 

lysis or platelet aggregation [16]. Furthermore, in a long-term study (1.5 years), the 

pathological and histological parameters of mice that received three doses of the 

nanoparticles by subcutaneous injection were compared to that of untreated mice, and an 

examination by a board-certified veterinary pathologist did not reveal any significant 

difference between those two groups of mice (Sloat and Cui, unpublished data). Taken 

together, we believe that the nanoparticles used to formulate stearoyl gemcitabine are 

safe and biocompatible. 

To study the in vivo pharmacokinetics of the stearoyl gemcitabine nanoparticles, 

we administered GemC18-NP by tail vein intravenous injection or oral gavage to healthy 

BALB/c mice at a single dose of 1 mg. As Fig. 4.4A shows, gemcitabine from the 

GemC18-NPs, when given i.v, appeared to follow a two-compartment model with a 

distribution half-life (T50α) of 0.09 h, an elimination half-life (T50β) of 13.02 h and an 

Area Under Curve (AUC0→∞) of 196.47 mcg/mL*h. In parallel, mice that received the 

GemC18-NP by the oral route (Fig. 4.4B) presented a T50α or 1.39 h, T50β of 6.84 h, the 

highest observed concentration (Cmax) of 17.56 mcg/mL, time to reach maximum 

concentration (Tmax) of 2.02 h, and AUC0→∞ of 112.31 mcg/mL*h. Additional 

pharmacokinetic parameters can be found in Table 2. When we compared the relevant 

pharmacokinetic data of the oral versus intravenous administered GemC18-NPs, the 

relative oral bioavailability was determined to be around 70%. The observed and 

improved bioavailability of gemcitabine when given as GemC18-NPs is highly desirable, 

as in previously published pharmacokinetic literature, an observed bioavailbility of 

gemcitabine was found to be only ~10% [7,17].  
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4.5  Conclusions  

We observed that the stearoyl gemcitabine nanoparticle formulation when given 

orally displayed encouraging anti-tumor activity, did not appear toxic to mice, and 

favorable pharmacokinetics. To date, there is currently no FDA approved gemcitabine 

formulations for the oral route. In future studies, we will evaluate the organ 

biodistribution of the GemC18-NPs in mice after oral and intravenous injection. 

Furthermore, we would like to produce a dose-response curve and further understand 

possible mechanisms for the observed anti-tumor activity. 
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Tables and Figures 

Table 1: Characterization of nanoparticles. Data shown are mean ± S.D (n ≥ 3). 
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Table 2: Pharmacokinetic Parameters Post Administration of GemC18-NP in Mice. 
 

Intravenous Injection Oral Gavage 

Parameter Unit Observed Parameter Unit Observed 

k10 1/h 2.21 Tmax h 2.02 

k12 1/h 5.62 Cmax μg/ml 17.56 

k21 1/h 0.19 t1/2Alpha h 1.39 

t1/2Alpha h 0.09 t1/2Beta h 6.84 

t1/2Beta h 13.02 t1/2Ka h 1.29 

C0 μg/ml 434.34 AUC0-t μg/ml*h 109.22 

V (mg)/(μg/ml) 0.002 AUC0-inf μg/ml*h 112.31 

CL (mg)/(μg/ml)/h 0.004 AUMC μg/ml*h^2 659.78 

V2 (mg)/(μg/ml) 0.06 MRT h 5.87 

CL2 (mg)/(μg/ml)/h 0.01 V/F (mg)/(μg/ml) 0.02 

AUC0-t μg/ml*h 156.66 CL/F (mg)/(μg/ml)/h 0.0146677 

AUC0-inf μg/ml*h 196.47 V2/F (mg)/(μg/ml) 0.01 

AUMC μg/ml*h^2 2690.01 CL2/F (mg)/(μg/ml)/h 0.00015 

MRT h 13.69    
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Figure 2.1: Preparation and characterization of GemC18-NPs. (A) In GPC, GemC18-
free-NPs and GemC18-NPs eluted about two fractions earlier than 
GemC18 in Tween 20 micelles (□)..The concentration of the GemC18 in 
the micelles and GemC18-NPs was 100 μg/mL. (B) Gel permeation 
chromatographs of GemC18-NPs prepared with 0, 0.1, 0.5, 1, 2.5, and 
5 mg/mL of GemC18. In A and B, gemcitabine was measured at 248 nm. 
(C) TEM micrograph of the GemC18-NPs (with 5 mg/mL of GemC18). 
(D) Chromatographs of GemC18-NPs (•) and PEGylated GemC18-NPs 
(Δ) prepared with 5 mg/mL of GemC18. (E) The size and zeta potential of 
the GemC18-NPs and the PEG-GemC18-NPs. (F) The dynamic light 
scattering spectra of the GemC18-in-Tween 20 micelles (left), GemC18-
NPs, and PEG-GemC18-NPs (far right) overlaid. (G) The release of the 
GemC18 from the GemC18-NPs (•) or PEG-GemC18-NPs (Δ). (I) The 
size of the GemC18-NPs and PEG-GemC18-NPs after 30 min of 
incubation at 37 °C in FBS in normal saline. Except in C and F, all data 
presented were the mean from at least 3 independent determinations. 
Standard deviations were not included in some figures for clarity. 
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Figure 1: continued (p.75). 
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Figure 2.2:  The uptake of GemC18-NPs by TC-1 tumor cells in culture. (A) 
Fluorescence micrographs. Cells were incubated with fluorescein-labeled 
GemC18-NPs for 6 h at 37 °C or 4 °C and observed under a bright-field 
microscope (left panel) or a fluorescence microscope (right panel). Photos 
were taken at 20× magnification. (B) Comparison of the uptakes of 
PEGylated and un-PEGylated GemC18-NPs. *p < 0.001, PEG-GemC18-
NPs vs. GemC18-NPs at 37 °C. 
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Figure 2.3:  GemC18-NPs were cytotoxic to tumor cells in culture. (A) The IC50 values 
of gemcitabine, GemC18-NPs, and PEG-GemC18-NPs in TC-1 and 
BxPC-3 cells. Cells were incubated with gemcitabine HCl or nanoparticles 
for 48 h. *For both cell lines, p < 0.05, Gemcitabine vs. GemC18-NPs. (B) 
It took the GemC18-NPs a longer time than thegemcitabine HCl to kill 
tumor cells. TC-1 cells were incubated with gemcitabine HCl or GemC18-
NPs at 28.7 nM for 24 or 48 h, and the % of surviving cells was 
determined. Data are mean ± S.D. (n = 3–4). 
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Figure 2.4:  In vivo and ex vivo imaging of GemC18-NPs and PEG-GemC18-NPs. (A) 
IVIS images of athymic mice 24 h after injection of fluorescein-labeled 
GemC18-NPs or PEG-GemC18-NPs. (B) Relative fluorescence intensity 
values in BxPC-3 tumors (circular ROI in A). ap = 0.0006, GemC18-NPs 
vs. PEG-GemC18-NPs. (C) Tissue distribution of fluorescein-labeled 
GemC18-NPs and PEG-GemC18-NPs 24 h after injection. b. GemC18-
NPs vs. PEG-GemC18-NPs, p = 0.003, 0.021, and 0.002 for blood, liver, 
and spleen, respectively. 
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Figure 2.5:  In vivo anti-tumor activity of GemC18-NPs against BxPC-3 tumors in 
athymic mice. (A) BxPC-3 tumor growth curves. Tumor cells were seeded 
on day 0, and mice were i.v. injected on days 6 and 19. (B) Average 
weight of BxPC-3 tumor-bearing mice after different treatments. 
*p = 0.0007 (ANOVA on week 3). 
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Figure 2.6:  Comparison of the in vivo anti-tumor activities of GemC18-NPs and 
PEGylated GemC18-NPs. (A) TC-1 tumors in C57Bl/6 mice. Mice 
(n = 5–7) were injected (i.v.) with GemC18-NPs or PEG-GemC18-NPs 
once (1 mg GemC18 per mouse). (B) BxPC-3 tumors in athymic mice. 
Mice (n = 5) were injected (i.v.) with GemC18-NPs or PEG-GemC18-NPs 
3 times (days 0, 12, and 21). In A and B, tumor sizes were reported 
starting from the day of the injection of the nanoparticles. Data shown are 
mean ± S.E.M. Statistical analysis did not reveal any differences between 
the GemC18-NPs and PEG-GemC18-NPs in A–B. 
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Figure 2.7: Healthy C57Bl/6 mice (n = 3) were injected via the tail vein with 
GemC18-NPs (1 mg of GemC18/mouse) or 0.566 mg of gemcitabine HCl 
in sterile mannitol (5%). As controls, mice were either injected (i.v.) with 
polyriboinosinic-polyribocytidylic acid (poly(I:C) or pI:C, 50 μg/mouse 
(Sigma) as a positive control or sterile mannitol solution as a negative 
control. Twenty-four h (A) or 7 days (B) later, mice were euthanized to 
collect blood samples. Aspartate aminotransferase (AST) and alanine 
aminotransferase (ALT) activities in the serum samples were determined 
using AST and ALT kits from Teco Diagnostics (Anaheim, CA). Date 
reported are mean ± S.D. in A, * p < 0.0001, ** p = 0.008, Control vs. 
Gemcitabine. 
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Figure 3.1:	   In vitro uptake of EGF-GemC18-NPs by tumor cells expressing different 
levels of EGFR. (A). MCF-7, MDA-MB-231, or MDA-MB-468 cells 
were incubated with fluorescein-labeled EGF-GemC18-NPs (EGF-NPs) 
or fluorescein-labeled OVA-GemC18-NPs (OVA-NPs) for 6 h, and the 
extent of nanoparticle uptake was determined by measuring the 
fluorescence intensity (*p = 0.0001; **p = 0.03). (B). The uptake of the 
EGF-GemC18-NPs or OVA-GemC18-NPs by MDA-MB-468 cells with 
(EGF+) or without pre-incubation of the cells with free EGF 
(***p = 0.009, EGF-NPs vs. EGF + EGF-NPs). The initial fluorescence 
intensity values of the EGF-NPs and the OVA-NPs were not different. 
Data shown are mean ± S.D. (n = 4 in A, and 3 in B). 
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Figure 3.2:	   Flow cytometric and fluorescent microscopic analyses of the uptake of 
EGF-GemC18-NPs by tumor cells expressing different levels of EGFR. 
(A). Typical flow cytometric graphs of cells after 6 h of incubation with 
fluorescein-labeled EGF-GemC18-NPs (green, far right), fluorescein-
labeled OVA-GemC18-NPs (gray, middle), or sterile PBS (solid gray 
area). Experiment was repeated three times with similar results. (B). 
Fluorescent microscopic images of MDA-MB-468 and MCF-7 cells 
after 6 h of incubation with EGF-GemC18-NPs, OVA-GemC18-NPs, or 
sterile PBS (control). Cell nucleus was stained with DAPI (blue). 
Nanoparticles were labeled with fluorescein and shown in green. 
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Figure 3.2:	   continued (p. 84). 
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Figure 3.3:	   In vitro cytotoxicity of EGF-GemC18-NPs. (A). Percent of cells alive 
after 48 h of incubation with different concentration of GemC18 in EGF-
GemC18-NPs or OVA-GemC18-NPs (n = 4). (B). Flow cytometric 
graphs of MDA-MB-468 cells after 24 h of incubation with EGF-
GemC18-NPs or OVA-GemC18-NPs and stained with Annexin V and 
7-AAD. Numbers in the quadrants are % of cells in early apoptosis 
(LR), late apoptosis (UR), and cell debris (UL). Experiment was 
repeated 3 times with similar results. 
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Figure 3.4:	   Anti-tumor activity of EGF-GemC18-NPs in nude mice with pre-
established MDA-MB-468 tumors. (A). Tumor growth curves. (B). 
Mouse survival curves (p = 0.053, EGF-GemC18-NPs vs. OVA-
GemC18-NPs). In A and B, mice were dosed 11, 17, 28, and 37 days 
after tumor cell injection. (C). Tumor growth curves in mice used for 
immunohistology analysis. In A and C, *p < 0.05, EGF-GemC18-NPs 
vs. OVA-GemC18-NPs. 
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Figure 3.5:	   Immunohistographs of MDA-MB-468 tumors after treatment with EGF-
GemC18-NPs or OVA-GemC18-NPs. (A, slides prepared by M.D 
Anderson). Tumor tissues were staining with antibodies against BrdU, 
CD31, or caspase 3 (Cas 3). Scale bars = 100 μm. (B). The % of BrdU 
positive cells. (C). The % of caspase 3 positive cells. 
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Figure 3.6:	   Biodistribution of EGF-GemC18-NPs. (A). Ex vivo fluorescence IVIS 
images of MDA-MB-468 tumors and organs 24 h after injection (T = 
tumor, K = kidney, H = heart, and S = spleen). (B). A comparison of the 
normalized fluorescence intensity of EGF-GemC18-NPs or OVA-
GemC18-NPs in tumors and different organs 24 h after injection (*, 
p = 0.0003 in tumors). (C). Fluorescence intensity in the blood of 
healthy C57BL/6 mice at different time points after i.v. injection of 
fluorescein-labeled nanoparticles. Data shown in B and C are 
mean ± S.D. from three replicates. 
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Figure 3.7:	   At 28.3 mg/kg, gemcitabine hydrochloride was toxic to nude mice 
with MDA-MB-468 tumors. MDA-MB-468 tumor cells 
(1 × 107 cells/mouse) were mixed with BD MatrigelTM (50%:50%) 
and subcutaneously injected in the right flank of the mice on day 0. On 
day 11, mice were randomized and injected intravenously (i.v.) via the 
tail vein with 200 μL of gemcitabine hydrochloride (n = 5), OVA-
GemC18-NPs in sterile mannitol (5%, w/v) (n = 7) or sterile mannitol 
alone as a negative control (n = 5). Injection was repeated on days 17, 
28, and 37. The dose of the GemC18 was about 0.860 mg per mouse 
per injection; the dose of the gemcitabine hydrochloride was 0.566 mg 
per mouse per injection. 
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Figure 4.1:  Stability of GemC18-NPs in Simulated Gastric Fluid (SGF, pH 1.2) or 
Simulated Intestinal Fluid (SIF, pH 6.8) for up to 6 h at 37°C. 
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Figure 4.2:  In vitro release of GemC18 from GemC18-NPs or GemC18-in Tween 20 
micelles (GemC18-Micelles) in Simulated Gastric Fluid (SGF, pH 1.2) 
or Simulated Intestinal Fluid (SIF, pH 6.8).  
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Figure 4.3:  The anti-tumor activity of GemC18-NPs in mice with pre-established 

TC-1 tumors. (A) Tumor growth curves. TC-1 tumors were 
subcutanously implanted in C57BL/6 mice and when reached 4-5 mm (n 
= 5) the mice were orally gavaged with GemC18-NPs, GemC18-in-oil, 
or Blank-NPs. Mice were also intravenoulsy injected with GemC18-NPs 
as positive control. (B) Survival curves of mice is A. 
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Figure 4.4:  Plamsa gemcitabine concentration (ug/mL) versus time (h) curves after 

GemC18-NPs were (A) intravenously injected or (B) orally gavaged into 
BALB/c mice. 
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