

Copyright

by

Dustin Lee Smith

2014

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UT Digital Repository

https://core.ac.uk/display/211333702?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

The Thesis Committee for Dustin Lee Smith

Certifies that this is the approved version of the following thesis:

Steganoscription: Exploring Techniques for Privacy-preserving

Crowdsourced Transcription of Handwritten Documents

APPROVED BY

SUPERVISING COMMITTEE:

Unmil Karadkar

Pat Galloway

Supervisor:

Steganoscription: Exploring Techniques for Privacy-preserving

Crowdsourced Transcription of Handwritten Documents

by

Dustin Lee Smith, B.S.

Thesis

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

Master of Science in Information Studies

The University of Texas at Austin

May 2014

 Dedication

I dedicate my master thesis to my wonderful wife, Christine. You’ve been an unwavering

pillar of support throughout the nine month process that culminated in this master thesis.

You supported me through countless late nights, early mornings, boring weekends, and

stressful holidays. You were gracious when I would transition directly from my daily

work to thesis work and you didn’t get to see me at all or spend time with me during the

80-90 hour work weeks those last few months. I could not have made it without your love

and support. I will never forget it. I love and cherish you!

v

Acknowledgements

I would like to express my gratitude to my supervisor Unmil Karadkar for introducing me

to the topic, for his continual guidance, for his persistence in challenging my perceptions,

and for his thorough comments and feedback on this master thesis. Furthermore I would

like to thank my second reader, Pat Galloway, for her exciting character during our

meetings, unique and artistic perspective on a very technical topic, and her comments and

feedback on this master thesis. Also, I would like to thank Dr. King Davis, Celeste

Henery, and Lorrie Dong for their support of this research and their advocating efforts to

market it. Lastly I would like to acknowledge the National Association of State Mental

Health Program Directors, the Substance Abuse and Mental Health Services

Administrator, and the Institute for Urban Policy Research and Analysis, UT Austin as

the primary supporting groups for this master thesis. I would like to thank my team at

BuildASign.com, friends, and family, who have supported me throughout the entire

process, both by keeping me sane and encouraging me along the way.

vi

Abstract

Steganoscription: Exploring Techniques for Privacy-preserving

Crowdsourced Transcription of Handwritten Documents

Dustin Lee Smith, M.S.Info.Stds.

The University of Texas at Austin, 2014

Supervisor: Unmil Karadkar

The focus my research is the historical document format represented by the

Central State Hospital (CSH) dataset, handwritten medical records. The specific problem

innate to the CSH dataset in question is how to transcribe sensitive, cursive-handwritten

documents via a manual vehicle- such as crowdsourcing. Manual methods are necessarily

no matter the sophistication of the optical character recognition system used because of

the inconsistencies within cursive script. To address this problem I've developed an

application that enables users to transcribe sensitive, handwritten, document images while

preserving the privacy of the context around the transcribed text via random word

selection and visual manipulation of the displayed text. This is made possible through

several algorithms that process documents from a top-down approach. These system

operations detect and segment lines of text in images, reverse the slant common to

cursive script, detect and segment words, and finally, manipulate word-images before

they are displayed to users; combinations of color, noise, and geometric manipulations

vii

are currently supported and used randomly. This system, called Steganoscription,

combines the concepts of steganography and transcription.

viii

Table of Contents

List of Figures ..x

Chapter 1 Introduction ...1

Background ...1

Central State Hospital (CSH) ..2

CSH Collection ...2

Objective ...3

Chapter 2: Related Work ...4

Document Analysis ...4

Cursive Script Analysis...5

Steganography...7

Chapter 3: Approach ..9

Gamera ..9

Thresholding ...10

Line Segmentation ..11

Ascenders and Descenders ..13

Shearing ..14

Word Segmentation ..15

Steganography and Transcription ...17

Chapter 4: System ..21

System Overview ..21

Database Schema ..22

Transcription Portal ..23

Chapter 5: Evaluation ..25

Image Binary Thresholding ..25

Line Segmentation ..26

Line-image Shearing ...28

ix

Word Segmentation ..29

Chapter 6: Discussion and Future Work ..31

Research Community Context ..31

Strengths ...32

Weaknesses ...33

Interdisciplinary Value..33

Future Work ..33

References ..36

x

List of Figures

Figure 1: A comparison of forward sheared text (a) on the left and upward slanted

text (b) on the right ...6

Figure 2: Order of algorithm processes. ..9

Figure 3: A comparison of colored text (a) on the left to binary threshold text (b) on

the right ...11

Figure 4: Visualization of applying the row projection function to a thresholded

document. ..12

Figure 5: Sample cursive document ...13

Figure 6: Line breaks detected on sample document ...13

Figure 7: Example of the original line segment boundaries, indicated by the blue

lines, versus the extended boundaries. ..14

Figure 8: Example of a word image with no text. ..16

Figure 9: Example of the required pixel threshold needed for a word break to be

considered a word break. (a) represents a case that would not be

considered a word break. (b) represents a case in which a word break

would be generated. ..17

Figure 10: Black text with a small concave arc. ..18

Figure 11: Blue text with an applied geometrics wave. ...18

Figure 12: Black text with a greater concave arc. ..18

Figure 13: Black text with an applied geometric wave..19

Figure 14: Line Red text with an applied geometric wave.19

Figure 15: Black text with a noise filter...19

Figure 16: High level system view. ...21

xi

Figure 17: Database schema with table descriptions. ..23

Figure 18: Transcription web portal – the current interface.24

1

Chapter 1 Introduction

BACKGROUND

As a society we learn from historical experiences to inform our future decisions—a

reality which makes historical records a priceless artifact as well as a reminder of events.

While much contemporary information can be found via Google searches, our historical

records are unfortunately inaccessible at scale. This is because much of history is locked

in physical documents that have not been indexed for search and analysis. As a society

we have continuously improved on our ability to preserve these documents through

robust archival practices and, more recently, digitization; the next step must be taken to

convert these documents into a machine-readable format so that they can be indexed for

search and analyzed at scale. For cursive documents, techniques that automatically detect

words and transcribe them are not 100% viable, which means that crowdsourced

transcription must be seriously considered. In the case of mental health documents,

however, public transcription is not an option as the act of transcription involves reading

them, which has implications for privacy of patients, doctors, and employees alike,

potentially resulting in social repercussions to family and descendants. My research aims

to apply mechanisms to crowdsource the transcription of privacy-sensitive documents

while maintaining the anonymity of individuals named in handwritten records by

constraining the context of such mention as well as by exploiting document

characteristics. In so doing I aim to bridge the gap between the handwritten, textual

documents that are inaccessible for machine processing and the high powered analysis

tools that are readily available today. This thesis reports on the design and evaluation of a

system for crowdsourced transcription of privacy-sensitive, cursive, handwritten,

historical documents.

2

CENTRAL STATE HOSPITAL (CSH)

Central State Hospital was founded in 1870 as the first African-American mental

hospital; the hospital is still active and is located in Petersburg, Virginia.1 It was

originally named Central Lunatic Asylum for the Colored Insane. Administrators of the

CSH have kept and maintained meticulous records ever since its inception. These

documents have recently been digitized into image format, but neither the physical nor

the digitized documents are stored in an archival environment. This terabyte scale image

dataset provides a great opportunity to explore transcription methods that will address

issues likely to be encountered by many other historical collections of mental health

records as similar hospitals were opened in other states soon after the Civil War.

CSH COLLECTION

The dataset of images includes handwritten cursive documents to record board meeting

minutes, patient admission, treatment, and discharge, sign-in sheets, and reports from the

hospital’s director to the state governor. The research reported in this thesis has used the

board meeting minutes as these minutes are considered institutional records rather than

patient records and have the lowest possibility of identifying individual patients. As such,

these minutes present the safest approach to avoid sensitive content and provide the

variability that we need to cover a significant portion of the document structures. The

documents are mostly handwritten, but also include printed format as well. This research

only focuses on digitized handwritten documents.

There are about 500,000 professionally digitized pages across the entire dataset.

The digital masters of these pages are 400 dpi TIFFs that cumulatively occupy 14

1 http://www.csh.dmhmrsas.virginia.gov/about.html

3

terabytes of hard drive space and are stored in a folder structure that reflects minimal

structural information.

OBJECTIVE

The objective of my research is to provide access to these records, especially text within

the record for searching and finding topics, finding patterns in the data for a variety of

demographics.

4

Chapter 2 Related Work

This research builds upon advances made in the following areas: off-line and online

script recognition, document analysis, and Steganoscription and is presented in the

context of these fields.

Off-line cursive recognition differs from on-line in that on-line recognition is

performed at the time of writing and typically makes use of special writing surfaces;

these surfaces track the writer’s strokes and record points for later analysis. Off-line

recognition is performed on pre-written text via many different approaches. Vinciarelli

(2002) provides an extensive survey on cursive word recognition, both on-line and off-

line, while Plamondon and Srihari (2000) present a broader view of handwriting

recognition systems that are not specific to cursive text. My research method falls under

the off-line classification of script recognition and like other approaches in this class; it

includes document analysis, preprocessing, and segmentation.

DOCUMENT ANALYSIS

The field of document analysis focuses not on the contents of a document image,

but on its structure and content layout. For many approaches in word segmentation, this is

the first step and is followed by line detection and line segmentation, which involves

locating lines of text within a document, separating individual lines from the document

for further analysis and manipulation. Breuel (2003) introduces several algorithms for

performing document layout analysis. Most notably and related to my research is his

approach for locating lines of text. His method uses background analysis and white-space

analysis to locate columns of text and perform local methods of line detection within the

column to mitigate error introduced by multi-column documents. While the result of his

5

approach is not related to my work—in that my work does not involve columns, the

method he uses to locate these columns is very similar. Background and white-space

analysis are integrated steps of the histogram approach described in this thesis.

CURSIVE SCRIPT ANALYSIS

Cursive script was a focal point starting with the earliest research due to its

dominance as a writing style for hundreds of years and even until the most recent decade.

Mermelstein and Eyden (1964) have published the earliest known work in automatic on-

line recognition of cursive script. The earliest off-line work was submitted about ten

years later by Sayre (1973), which used letter n-grams and introduced the notion of letter

segmentation. More recently Bozinovic and Srihari (1989) introduced several new

techniques to be used for off-line cursive recognition, including methods for improving

detection of letters and increasing efficiency of processing by reducing the number of

passes through the document. Guillevic and Suen (1995) introduce methods for

performing off-line cursive recognition on French bank checks. They present methods for

dealing with limited vocabulary and free form cursive (not constrained to a line). Tomai

et al. (2002) introduce a method for mapping cursive word-images to pre-transcribed

words. Unfortunately the transcription of large datasets is an often-encountered barrier to

post-transcription actions. Though, when these requirements are met, document analyst

could benefit greatly from linking the text back to the original document. My software

utilized the Gamera library for custom recognition systems; Droettboom et al. (2003)

introduce this library, framework, and methods for character recognition that use the

6

software. De Zeeuw (2006) performs line and word segmentation as well as word slant

correction using a histogram based method. Fischer et al. (2010) focus on historical

documents and use a Hidden Markov Model (HMM) based word segmentation method

that was introduced by Zimmermann and Bunke (2002). The strength of Zimmermann

and Bunke’s method is that it does not require the letter recognition step, which reduces

the computational cost on the process.

Among the most crucial, and certainly the most unique, of preprocessing steps for

cursive document segmentation is slant and/or skew correction. “Slant” refers to a word’s

deviation from the horizontal word baseline, shown in Figure 1b. Figure 1a illustrates a

“skew” (or “shear”) effect, which is the deviation of the vertical median of each letter

with respect to the letter’s base position. When persistent across the entire word, the

effect creates the forward or backward angle common to the cursive script.

 Figure 1: A comparison of forward sheared text (a) on the left and upward slanted

text (b) on the right

The characteristic shear of cursive handwriting presents a unique challenge for automated

recognition methods because of the variability of shear angle that is heavily influenced by

the writer’s style. In addition to the slant and shear correction methods introduced and

7

used by Vinciarelli (2002, Plamondon et al. (2000), Droettboom et al. (2003) and de

Zeeuw (2006), Dong et al. (2005) perform Radon transformations to de-skew and de-

slant word images based on stroke length and deviation from a word’s baseline position.

STEGANOGRAPHY

To incorporate security into my research I apply steganography. Morkel et al (2005)

define steganography as “the art of hiding the fact that communication is taking place, by

hiding information in other information.” My application of steganography stretches this

definition. I am not hiding communication to an end user, but instead I am hiding the

context of a message and its meaning within a larger context in order to communicate

only the carrier of a message and not the message itself. Morkel et al. (2005) provide an

overview of traditional image steganography definitions and techniques. A very popular

application of image manipulation techniques, though not necessarily for steganography,

is performed by Von Ahn et al. (2008), who introduced the reCAPTCHA system. This

system is used on “over 200,000” websites to protect them from malicious automated

scripts and robots by providing a security barrier that requires the translation of a

distorted word-image into text.2 Another key function is to use “wasted human

2 https://www.google.com/recaptcha/admin#whyrecaptcha

8

processing power” to translate words within books that automated methods cannot

recognize. Their system alters the words that are translated through techniques such as

distorting the image, changing the aspect ratio, or altering the image with noise. These

techniques serve to keep robots from reading the text, but can also be used to anonymize

words from their contextual location such that neither humans nor robots can link the

words together and discover the information that is within the full document. This is

accomplished by masking the location of words within the larger document to which they

belong. Without knowing the surrounding words or being able to match the background

of a word to another word, it’s unlikely that any meaning can be derived from the word.

Removing the background context prevents users from associating words through

document characteristics and distorting words prevents users from associating words

based on script characteristics.

9

Chapter 3 Approach

In order to make the test in the document available for machine analysis, my approach

uses a crowdsourcing technique rather than developing robust algorithms for text

detection. Automated transcription for any text has not been perfect, and a human reader

is often necessary to decipher at least some of the text. I am also designing for sensitive

materials, such as health records, so a necessary function of my application is randomized

word-image selection and image manipulation prior to displaying the image for the

human transcriber. Figure 2 depicts the process from a high level; each of these steps will

be discussed in the following sections of this chapter.

 Figure 2: Order of algorithm processes.

GAMERA

The Gamera framework is a system, including a library and application, for document

analysis. It also provides a basis on which users can build optical character recognition

(OCR) systems upon. In research to date, this framework has primarily been used to

detect and identify musical notations on handwritten bars. I vetted similar systems, such

as Tesseract-OCR, but as past applications of Gamera have focused towards free-form

scripts like musical notation and ancient glyphs it seemed like a better fit. Further

10

evaluation of Tesseract vs. Gamera will be discussed in the Discussion chapter. My initial

approach was to use open source OCR and image libraries to segment the document

images into words and for shearing these words. I expected the Gamera library3 to carry

the heaviest burden. In practice, Gamera’s document analysis features including its

projection and thresholding functions proved inadequate due to their dependency on the

native datatype, ONEBIT; other libraries like scikit-image (skimage) and numpy are not

compatible with this format. My revised process uses the projection functions and

Gamera’s implementation of DjVu thresholding, which are described in the following

sections. After discussing thresholding and line segmentation I discuss the rest of my

approach: image shearing, word segmentation, and word transcription.

THRESHOLDING

Thresholding is the first operation applied to a document image before my script can find

line breaks. Since images are taken in full color, my script cannot accurate distinguish

lines at the pixel level. To remove the spectrum of colors in the image, thresholding is

applied. Simply put, thresholding takes variable inputs to force an image into binary:

meaning every pixel either has a value of zero or one. There are several ways to execute

thresholding even within the Gamera libraries; I chose DjVu after comparing the methods

because it produced the clearest black and white image. Here I define “clearest” to mean

that the words are fully black and not speckled with white pixels; also, the white around

the words and throughout the image is consistent with the least amount of noise. DjVu

was introduced by Haffner et al. (1999) for compression of high-quality images for slow-

3 http://gamera.sourceforge.net/)

11

connection transfers. Part of their research led to a method for this bi-level image

compression, converting an image into black/white pixels only. An example of the

conversion of a full color image, as shown in Figure 3a, to a binary image, as shown in

Figure 3b, using DjVu thresholding is given.

 Figure 3: A comparison of colored text (a) on the left to binary threshold

text (b) on the right

To do this while keeping the contents of the image intact and legible, their work uses a k-

means algorithm to group the black pixels and white pixels appropriately such that the

foreground and background of the image remain distinct.

LINE SEGMENTATION

Gamera’s projection functions, projection_rows() and projection_cols() provide crucial

analysis for detecting line breaks in document images. These functions count black pixels

in every row/column within the document. Figure 4 shows an example of the function

projection_rows being applied to a document. Longer lines contain more black pixels and

thus produce a larger spike on the graph. For line detection I apply this projection_rows

function to an entire document to obtain a vector of pixel densities at each row.

12

4

Figure 4: Visualization of applying the row projection function to a thresholded

document.

With the row-density vector the algorithm I developed locates local minima within the

document by using sliding windows, which translates the problem from finding local

minima on a large document to finding absolute minima on a restricted view of the

document. This transformation has the potential of producing incomplete or false lines, so

my script mitigates this problem by requiring a minimum distance between minima. An

example of the results produced by this approach is in Figure 6 compared to the original

document in Figure 5.

4 http://koreanwarletters.blogspot.com/2011/04/korean-war-letter-1st-marine-division.html

13

Figure 5: Sample cursive document Figure 6: Line breaks detected on sample

 document

ASCENDERS AND DESCENDERS

Handwritten script, especially cursive, is characterized by ascenders and descenders. An

ascender is the top part of a letter that rises above the other letters. This typically occurs

with capital letters, some lowercase, or when the writer exaggerates part of a letter

beyond the typical boundaries of that letter; examples of lowercase acenders would be ‘l’,

‘t’, ‘b’, ‘d’, ‘f’, ‘h’, and ‘k’. Descenders are similar; these are letters that descend lower

than the base of the word to which they belong. The most common descenders in English

are lowercase ‘g’, ‘y’, ‘q’, ’p’, and ‘j’. In cursive, this list is extended to include the

cursive form of ‘f’. Due to the artistic nature of cursive many other letters are

exaggerated and end up being either ascenders or descenders.

14

I addressed the issue of ascenders and descenders between lines by extending the

boundaries of lines after locating initial break points. Without this step, recognized lines

excluded several ascenders and descenders, thus resulting in partial letters, which would

complicate the task of transcription. For example, there are remarkable similarities

between cursive handwritten ‘u’ and ‘y’ as well as ‘n’ and ‘h’. The ascenders and

descenders are critical for a human transcriber to distinguish between these letters. This

method works very well to give the transcriber a better picture of the full line. An

example of the difference is depicted in Figure 7.

Figure 7: Example of the original line segment boundaries, indicated by the

blue lines, versus the extended boundaries.

SHEARING

Most of the cursive writing that I have observed in the CSH dataset is sheared forward,

which makes word breaks difficult to detect. In order to detect these word breaks

successfully I corrected the forward shear by shearing the line image counterclockwise.

Initially, I used the AffineTransform implementation in the skimage transform library.

This worked well on smaller images, but when I scaled up to the larger images I

encountered issues that prevented the process from completing. After much

15

troubleshooting and debugging I discovered that there was incompatibility between the

binary files that were being produced on the larger images and the shearing algorithm. To

rectify this situation I developed and implemented a simple shearing algorithm as

follows:

def shear(array, strength, shift_axis, increase_axis)

res = np.empty_like(array)

index = np.index_exp[:] * increase_axis

roll = np.roll

for i in range(0, array.shape[increase_axis]):

index_i = index + (i,)

res[index_i] = roll(array[index_i], -i * strength, shift_axis)

return res

The script iterates through each row of an image and shifts pixel values by positive or

negative integer factors depending on the parameter passed. The script treats each row of

pixel values as a list and ‘rolls’ values to the left to achieve the counterclockwise rotation

effect.

WORD SEGMENTATION

With the lines segmented and sheared, a word segmentation algorithm, that I developed

and implemented, then detects and segments words from each line and stores them in a

database table. Using a method similar to that of line segmentation, the word

segmentation algorithm first obtains pixel density for each column within an identified

line of text. At this point, the images are represented by a datatype that is specific to the

numpy library, one that is compatible with many Python libraries, but is not compatible

with Gamera’s projection functions. The word segmentation algorithm performs a

16

vertical sum of pixel values (either 1 for white or 0 for black) down each column of the

document to achieve the same effect, a vector of pixel densities per column. Similar to

the process for identifying line breaks, the script then performs a local minima search

across the width of the line via a sliding window. In the case of word detection I set a

requirement in the script that the pixel values within the window have some fluctuation in

order for a local minimum to be considered a minimum. I accomplished this by requiring

the minimal pixel value in the window to be different than the maximum pixel value. By

adding this requirement the occurrence of empty word images, those with no text as in

Figure 8, significantly decreased.

 Figure 8: Example of a word image with no text.

Additionally my script requires the local minima to have some area around it that is also

empty because there are cases in which thresholding and simple human error during the

event of writing can create false word breaks. Figure 9 shows an example of the required

width to qualify as a word break.

17

 Figure 9: Example of the required pixel threshold needed for a word

break to be considered a word break. (a) represents a case that would not be

considered a word break. (b) represents a case in which a word break would

be generated.

Considering that the documents in the CSH dataset are of high quality with widths around

up to and exceeding four thousand pixels, a single pixel break is barely visible so this

threshold around word breakpoints is essential in order to avoid false word breaks. The

same technique may not be applicable on lower quality images with lower pixel densities.

The script also stores the individual word-images in a database table in order to tie them

back to the pages, lines, and transcriptions to which they belong.

STEGANOGRAPHY AND TRANSCRIPTION

In order to capture word transcriptions I set up a public transcription portal at

https://razor.ischool.utexas.edu/steganoscription. This web interface displays a random

word image from the word database. Before being displayed, the script randomly

manipulates the image in one of six ways and saves it in a temporary web accessible file.

The current manipulations are blue color change plus wave, noise, 60 degree arc, -40

degree arc, red color plus wave, red color change + background speckles. These

manipulations are respectively illustrated below in Figure10 – Figure 15.

https://razor.ischool.utexas.edu/steganoscription

18

 Figure 10: Black text with a small concave arc.

 Figure 11: Blue text with an applied geometrics wave.

Figure 12: Black text with a greater concave arc.

19

Figure 13: Black text with an applied geometric wave.

 Figure 14: Line Red text with an applied geometric wave.

 Figure 15: Black text with a noise filter.

The script displays widgets that provide users with three options: insert text into

transcription field and submit in order to upload the transcription to the database, click

the “No text in image” button if there is indeed no text in the image, or click the “Next

image” button if they want to try a different word. The “No text in image” button

20

provides administrators with data to use for curating the word-image collection. Currently

the segmentation scripts do not automatically detect and remove empty images, so this

feature allows these images to be flagged by transcribers and later removed by

administrators.

21

Chapter 4 System

SYSTEM OVERVIEW

I built the system specifically for the CSH dataset, but the architecture could be used on

any image dataset. The system consists of four database tables and a single dynamic web

page. At a high level, the system is very low maintenance. My scripts pre-populate the

pages, pg_lines, and line_words tables, which store page images, line images, and word

images respectively. The web portal retrieves images from the data set and populates

word transcriptions provided by the web site visitors in the fourth database table,

word_text. Figure 16 below shows communication within the system.

 Figure 16: High level system view.

22

DATABASE SCHEMA

The tables in the database each record information about the documents at various levels.

The pages table contains document level information, such as unique page identifier,

RGB values, row projection vector for the document, column projection vector for the

document, and the actual image file name within the CSH file system. The pg_lines table

contains line images for each line within each page. Lines are given a unique ID and also

contain the page ID for the page that they belong to as a foreign key. Similarly the

line_words contains unique identifiers for each word and the line that they belong to as

foreign keys. Both the pg_lines table and line_words tables contain image metadata: x

and y position within the original document, height, width, and file name. The word_text

table captures the word ID and transcription submitted from the web portal. A new record

is created when (1) a user submits a transcription, or (2) a user clicks the “No text in

image” button. The text provided by the portal is inserted into the transcription field; if

the user clicks the no text button, then a keyword indicating this fact is inserted instead;

see Figure 17 for a visual illustration of the schema. The file names saved in the pages,

pg_lines, and line_words tables are relative to a base file system path.

23

 Figure 17: Database schema with table descriptions.

TRANSCRIPTION PORTAL

The web portal, illustrated in Figure 18, is designed for simplicity and with a functional

goal. The image is the primary focus, with secondary focus being on the interaction

elements below the image. It needs further UI development in order to be aesthetically

pleasing.

24

Figure 18: Transcription web portal – the current interface.

The interaction elements are simple with security being at the forefront of each database

call. No scripts are run that endanger the file system and any text that is added into the

database is stripped of possibly malicious content before query execution. This is done

with standard functions designed to prepare user-generated data for input into a database.

25

Chapter 5 Evaluation

In order to ensure that the algorithms perform satisfactory and accomplish the stated

goals of separating words from the documents that include them, I evaluated the

developed system components. System components that will be evaluated include: image

binary thresholding, line segmentation, line-image shearing, and word segmentation.

IMAGE BINARY THRESHOLDING

I tested multiple thresholding methods before settling on DjVu, specifically Gamera’s

custom thresholding algorithm and another popular method introduced by Otsu (1979)

called Otsu thresholding. In testing, DjVu performed better: producing a clearer image in

a similar amount of processing time vs. the Otsu method. Gamera’s method is a simple

binary threshold that decides if a pixel will be black or white based on a crude method

(i.e., pixels greater than X are black and pixels less than X are white), which is not a

sufficient solution to the corpus images as it produced subpar binary images that were not

suitable for subsequent processes. A key feature of DjVu thresholding is the prevention

of “blockiness”, which would be important to produce a clearer word when the script is

already unclear.

The thresholding step is by far the greatest bottleneck in the system at about 4

minutes of execute time for each full page document. Across the 500,000 CSH images

the total execution time for that one step is upwards of 2,000,000 minutes, or 1,400 days

of computing time. Obviously that indicates a lack of scalability in the thresholding

26

algorithm, which was not optimized for the scale of the corpus. With some optimization

the processing time could be more manageable, but the likelihood of significant

improvement is low considering the size of the images and the processes needed for good

thresholding to occur (i.e. pixel clustering and comparison). The more effective option to

minimize processing time would be to scale horizontally across multiple computing

nodes. There are no dependencies on each document, so the pages could be processed in

parallel, but for this proof of concept I proceeded with the smaller problem of processing

single documents.

LINE SEGMENTATION

I evaluated the effectiveness of the line segmentation algorithm using the following

metrics: error rate for valid line detection, detection legitimacy, and execution time.

Actual line detection refers to the likelihood that when a line is detected, it

actually contains a line of text versus a blank line or some partial, illegible line of text. I

performed a manual random sampling of about twenty documents, I assessed that about

10% of line images within the Board Minute image set are blanks or incomplete. These

occurrences appear for a number of reasons, the primary being a result of how the images

were captured originally. The digital master documents include background, the surface

on which the documents were resting during the digitization process. While it’s important

for archival purposes to include the entire document, when this background is binarized it

is seen as a black border of uneven size. This causes the line segmenting algorithm to

27

generate false positives, identifying lines where there are none. If the border were to be

removed, the line segmentation algorithm would ignore these empty spaces. It’s also

difficult to develop rules to ignore the lines because they are non-uniform down the page.

Detecting and segmenting a correct line 90% of the time is an acceptable level of

performance for this task. On a test document with no borders, splatters of ink, or slanted

lines, the performance was perfect at 0% error for the line detection task, which indicates

that the performance depends upon the quality of the digitized images.

 Compared to the binary thresholding step, the line segmentation step runs quicker:

in less than thirty seconds. The profile of this corpus lends itself to vertically short lines

and full pages. On average, there are 53 lines in a Board Minute document. Meaning that

in thirty seconds of runtime, the algorithm is detecting each line break and saving a new

image file in the file-system for each line. Breaking down the processing time further, the

line segmentation algorithm is saving about two line-images per second.

 Another tricky aspect of line segmentation in this corpus is the handling of

ascenders and descenders in the context of line height. Terminating lines at local minima

from one break point to the next inevitably resulted in cases where the resulting lines

included several partial letters. In the Board Minutes, acenders and descenders often

encroach up to half way into the line above or below. More often than not this occurs

with line descenders. I addressed this issue by extending the boundaries of a “line” after

locating the midpoint between lines by adding 30% more pixels to the bottom of the

segment and 20% more pixels to the top. The approach to the top and bottom differ

28

because the observed descenders were more exaggerated than the ascenders. To Arrive at

20% and 30%, I tweaked the input until the resulting segments were accurate enough to

be readable, but were not so inclusive that a human transcriber would be confused.

This is necessary to keep each word legible for the transcribers. With this

modification in place, the algorithm only cuts off small bits of letters in very rare cases.

The text that is cut off is not enough to be detrimental to the legibility of the word either.

LINE-IMAGE SHEARING

Compared to one of the best python image manipulation libraries, skimage, my custom

shearing function is lacking in features and flexibility. Skimage allows for full 360 degree

counterclockwise shearing, while my function can only rotate in 45 degree increments.

This meets the needs of the application to most of CSH’s board minute registers, but will

not be scalable across the entire document set. As writers and the script context changes,

there will be cases in which the cursive slant is different or even non-existent. At least

one case exists within the board minute documents where the same page contains script

with the expected slant as well as script with no slant. In this case my function will also

shear the latter case in the same manner as the former case, resulting in script that appears

slanted to the left and script that is difficult to segment into words. Currently I am

applying one shear angle to all lines, but a very important enhancement moving forward

would be adaptive shearing; I’ll discuss this process in the next chapter.

29

 While my function lacks granular rotation, it performs more consistently and

efficiently than skimage’s shear. It performs more consistently in that it runs on small

images as well as very large images, while skimage fails at larger resolutions. One

advantage of my simpler, no-frills shearing function is that it runs faster as it requires

fewer steps to complete processing. In contrast, the shear function in the Skimage library

needs to create a special transformation object before executing a warp function to apply

the shear.

WORD SEGMENTATION

I evaluate the effectiveness of the word segmentation algorithm in a much the same way

that I evaluate the line segmentation: accuracy, execution time, and detection error rate.

Word detection refers to the likelihood that when a word boundary is detected, it

contains a word or partial-word of text and is not a false positive, such as a blank image

or noise. Completely blank images are very rare or non-existent. In the case of line

segmentation, extraneous page borders resulting from the process of digitization were

responsible for the blank lines, but with word segmentation there are no borders; so, the

algorithm is able to successfully cull blank images directly. It does this by not allowing

an image to be saved if the minimum pixel count in the columns is the same as the

maximum pixel count in the columns. This occurs in two cases: a completely black image

or a completely white image, both of these cases are undesirable.

30

While removing entirely empty spaces from a line works well, there are numerous

cases in which the algorithm mistakes small dark pixel areas for words. Since descenders

and ascenders are so prevalent in the writing, it is not uncommon to see only the bottom

or top of a letter in a word image. By including such cases, the word segmentation

algorithm performs poorly quite often. I have not developed a solution to removing these

images yet, other than allowing the system to be curated through the “no text in image

button” provided at the transcription portal. Additionally, even when the word segmenter

captures text accurately, it doesn’t always capture full words. It is difficult to evaluate

this positively or negatively because this performance is directly related to the writer’s

style. There are cases in which two distinct words are run together as if they were one

word and there are also cases in which the first letter of a word is given a liberal amount

of space between it and the rest of the word. While semantically a single capital letter

does not qualify as a word, the algorithm treats it as such, in maintaining fidelity to the

nature of the writing. “Fixing” the writing technique algorithmically would compromise

the integrity of the writing.

 Similar to the line segmenter, the processing time of the word segmenter is very

low as a percent of total processing time; it runs in less than ten seconds per line and

generates 8 word-images per line on average for the Board Minute registers.

31

Chapter 6 Discussion and Future Work

In this paper I introduce a technique and a software system for privacy-preserving

transcription of handwritten documents through crowdsourcing efforts. Much work has

been done over the decade of development in this field, but there has been a lack of focus

on enabling the crowdsourcing of handwritten script transcription. In this discussion I

want to highlight some cases where my research fits within the community, strengths of

the work, weaknesses of the work, other field in which this work can be useful, and how

this work can be extended upon with future work.

RESEARCH COMMUNITY CONTEXT

Like my research, Tomai et al. (2002) performs preprocessing steps such as line and word

segmentation, and then, unlike my research, maps from an image to a machine-readable

word bank based on constraints and feature matching. Their approach requires that a

machine-readable word bank exist for whatever data set being used. My work could work

well in tandem with their approach; cases in which machine-readable words don’t exist

for a corpus, those words could then be included in the transcription word image set.

Once the word image is transcribed the machine-readable text can then be inserted into

the word bank for future use.

While there are strengths to the shearing function I wrote, Dong et al. (2005)

approach is presented as more robust and efficient that other algorithms. Unfortunately,

there are no Radon transformation-based systems available and the complexity presents a

32

significant barrier for use, so I was not able to take advantage of this method for my

research. Using their method could have improved the effectiveness and versatility of my

line shearing by de-shearing each line relative to how forward-sheared the script is

originally.

The reCAPTCHA system, presented by Ahn et al. (2008), has enabled large-scale

transcription for “old printed material” (Ahn et al. 2008, 1465) and is being used widely

across the web, but it does not specifically support handwritten documents. My work

could be used to expand the scope of the reCAPTCHA system to include handwritten

documents.

STRENGTHS

As reviewed in prior chapters some primary strengths of this work are that it

handles cursive handwriting, enables the public transcription of sensitive text, and

provides the database infrastructure for scaling up.

While the database schema is not novel, it serves as a contribution directly to the

CSH archives. It will enable the CSH team to conduct quantitative analysis on the

document set, which was not possible before. Basic query can retrieve telling statistics

(i.e. words per line, lines per document, and words per document) and observing these

over the life of the documents can reveal implications around the tenure of one writer

over another or how the use of words changes over time. For example, did the writer use

more or less words per line in 1870 versus 1920? Were they larger or smaller words? By

33

breaking down the table structures in a way that directly relates pages to lines to words, I

have created a simple way to gain insight into these minor changes over time that are

accessible via large data sets.

WEAKNESSES

Several weakness of this work include blank images not being removed, a generalized

shear function that does not handle special cases or variations in shear intensity, and the

lack of support for removing borders around images that disrupt the line segmentation

process.

INTERDISCIPLINARY VALUE

Another field that could potentially use this system is the medical industry.

Medical technology is rapidly expanding and hospital staffs still maintain several

handwritten records. My techniques could reduce cost of filing and storage if these

documents could be digitized. They could also be used to digitize existing patient

records.

FUTURE WORK

Future work could follow four trajectories, enhance the effectiveness of the algorithms,

improve the efficiency of the algorithms, apply crowdsourcing techniques to maximize

34

the application of human effort, and add features to the Web portal for improved

transcriptions.

To enhance the effectiveness of the scripts several improvements can be made. I

mentioned adaptive shearing in prior chapters. This feature would de-shear the script on a

line by line basis, or even word by word, so that there are no cases in which the script is

de-sheared more or less than necessary. This would greatly improve the outcome of the

word segmentation script. Another important feature to add would be automated blank

image detection and removal. This could be added to the word segmentation process;

before saving an image to the file system this feature would check the image for text and

not save it if no text is detected. Finally, a feature could be added to the process of line

segmentation that detected borders around the document and automatically removed them

prior to segmenting lines. This would reduce the number of empty lines to a small

number, if not zero, and would thus improve overall effectiveness of all following steps.

 As mentioned in chapter 5, processing image documents individually is a time

intensive task, and would not be scalable for large data sets. A proven method for scaling

computing tasks is to run the same task simultaneously across multiple machines. This

type of processing is only possible if there are no dependencies between tasks. Since each

document image is processed individually, then there are no dependencies between

documents and they can be processed in parallel. Future work should include building the

framework for this parallel processing.

35

 To transcribe large data sets, a robust crowdsourcing strategy is necessary.

Human transcribers drive the data collection for this system, so scalable crowdsourcing

techniques will be a crucial step towards effectively transcribing full data sets. Examples

of these techniques include scheduling low cost Human Intelligence Tasks (HITs) on

crowdsourcing platforms, incentivizing transcription efforts, or finding ways to spread

the system socially or virally.

 To empower other archives to use the system and market it for their own

collection future work would include an API for connecting to the system and to a hosted

database, as well as a javascript portal to replace the static portal so that it could be

dispersed as far as possible across the web. This also contributes to methods for scaling

the crowdsourcing effort. Making the portal available for anyone to host of a website is

key to obtaining transcriptions.

36

References

Bozinovic, R. M., & Srihari, S. N. (1989). Off-line cursive script word recognition.

Pattern Analysis and Machine Intelligence, IEEE Transactions on, 11(1), 68-83.

Breuel, T. M. (2003, April). High performance document layout analysis. In Proc. Symp.

Document Image Understanding Technology.

de Zeeuw, F. (2006). Slant Correction using Histograms. Undergraduate Thesis.

http://www. ai. rug. nl/~ axel/teaching/bachelorprojects/zeeuw_slant correction.

pdf.

Dong, J. X., Dominique, P., Krzyyzak, A., & Suen, C. Y. (2005, August). Cursive word

skew/slant corrections based on Radon transform. In Document Analysis and

Recognition, 2005. Proceedings. Eighth International Conference on (pp. 478-

483). IEEE.

Droettboom, M., MacMillan, K., & Fujinaga, I. (2003, April). The Gamera framework

for building custom recognition systems. In Proceedings of the Symposium on

Document Image Understanding Technologies (pp. 275-286). (see

also http://gamera.sourceforge.net/)

Ehrich, R. W., & Koehler, K. J. (1975). Experiments in the contextual recognition of

cursive script. IEEE Transactions on Computers, 24(2), 182-194.

Fischer, A., Indermühle, E., Bunke, H., Viehhauser, G., & Stolz, M. (2010, June).

Ground truth creation for handwriting recognition in historical documents. In

37

Proceedings of the 9th IAPR International Workshop on Document Analysis

Systems (pp. 3-10). ACM.

Guillevic, D., & Suen, C. Y. (1995, August). Cursive script recognition applied to the

processing of bank cheques. In Document Analysis and Recognition, 1995.,

Proceedings of the Third International Conference on (Vol. 1, pp. 11-14). IEEE.

Haffner, P., Bottou, L., Howard, P. G., & LeCun, Y. (1999, September). DjVu:

Analyzing and compressing scanned documents for Internet distribution. In

Document Analysis and Recognition, 1999. ICDAR'99. Proceedings of the Fifth

International Conference on (pp. 625-628). IEEE.

Hayes, B., Tesar, B., & Zuraw, K. (2003). OTSoft: Optimality Theory Software (Version

2.1) [Software]. Available from

http://www.linguistics.ucla.edu/people/hayes/otsoft/

Mermelstein, P., & Eyden, M. (1964, October). A system for automatic recognition of

handwritten words. In Proceedings of the October 27-29, 1964, fall joint

computer conference, part I (pp. 333-342). ACM.

Morkel, T., Eloff, J. H., & Olivier, M. S. (2005, June). An overview of image

steganography. In ISSA (pp. 1-11).

N. Otsu: A Threshold Selection Method from Grey-Level Histograms. IEEE Transactions

on Systems, Man, and Cybernetics (9), pp. 62-66 (1979)

Plamondon, R., & Srihari, S. N. (2000). Online and off-line handwriting recognition: a

38

comprehensive survey. Pattern Analysis and Machine Intelligence, IEEE

Transactions on, 22(1), 63-84.

Sayre, K. M. (1973). Machine recognition of handwritten words: A project report.

Pattern Recognition, 5(3), 213-228.

Tomai, C. I., Zhang, B., & Govindaraju, V. (2002). Transcript mapping for historic

handwritten document images. In Frontiers in Handwriting Recognition, 2002.

Proceedings. Eighth International Workshop on (pp. 413-418). IEEE.

Vinciarelli, A. (2002). A survey on off-line cursive word recognition. Pattern

recognition, 35(7), 1433-1446.

Von Ahn, L., Maurer, B., McMillen, C., Abraham, D., & Blum, M. (2008). recaptcha:

Human-based character recognition via web security measures. Science,

321(5895), 1465-1468.

Zimmermann, M., & Bunke, H. (2002). Hidden Markov model length optimization for

handwriting recognition systems. In Frontiers in Handwriting Recognition, 2002.

Proceedings. Eighth International Workshop on (pp. 369-374). IEEE.

