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Section I 

Introduction 

Without the benefit of definitive investigation, speculation has 

lead to the assumption that steady state cruise is the most efficient 

way to cruise an aircraft. Recent work [8,10,11) has shown that this is 

not the case when trying to minimize average fuel used per distance 

traveled. Speyer [8] states that a cyclic cruise with large variations 

from steady state will lead to lower fuel consumption. Walker [11) 

started an investigation to prove Speyer correct. He found four cycles, 

all of which were an improvement over steady state, one by as much as 

3%. This report will correct, refine, and extend Walker's work. 

The purpose of this investigation is to show the complex nature 

of the optimal periodic cruise problem and to develop numerical tech

niques to study the problem. Section II describes a four-state hyper

cruiser model for flight in a vertical plane over a spherical nonrotat

ing earth. A simplification of the spherical earth model leads to a 

flat earth model. These models are then nondimensionalized and reduced 

to three-state models to simplify the solution process. 

Section III presents a statement of the particular problem to be 

solved in this investigation. The steady state solutions for the spher

ical earth and flat earth models developed in Section II are also 

presented. In Section IV, the general periodic optimal control problem 

is formulated. The first variation necessary conditions for both the 
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free final range problem and the fixed final range problem are stated. 

Section V uses these first variation necessary conditions to develop the 

hypercruiser as a periodic optimal control problem. Section VI reviews 

some of the important characteristics of the monodromy matrix. The 

eigenvalues and eigenvectors of the monodromy matrix are also discussed. 

Section VII presents the shooting method used in this investigation. 

Section VIII discusses the algorithms used to trace families of cyclic 

initial conditions. Section IX discusses the families generated for 

both the spherical earth and flat earth models. Phase plane plots of a 

particular cycle are presented to show the character of a cycle. Sec

tion X discusses the conclusions that are drawn from this investigation. 



Section II 

Coordinate System and Model 

This Section describes the coordinate system and the model used 

in this investigation. The nondimensionalization and state reduction of 

the system are also described. 

2.1 Coordinate System 

The coordinate system is shown in Figure 1. The x axis is hor

izontal and positive in the direction of motion. The h axis points away 

from the center of the earth. The origin of the coordinate system is at 

sea level directly below the point where the hypercruiser starts its 

flight. 

2.2 Hypercruiser Model 

The hypercruiser model chosen for this investigation is a simple 

one. The reasons for this are two-fold. First, much analytical work 

has been done on the solution of the flat earth model in the past few 

years. One of the purposes of this investigation is to verify and quan

tify this work. The second reason will become more apparent in Section 

V when the hypercruiser model is formulated as a periodic optimal con

trol problem. During this step, many partial derivatives are taken. A 

simple model will keep this step tractable. 

The differential equations of motion are a simplification of the 

equations for flight in a vertical plane over a spherical earth. The 

assumptions contained in the equations are constant gravity, constant 
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weight, and an isothermal atmosphere, which implies constant speed of 

sound. The differential equations of motion are 

x = M a cos Y (2. 1) 

h M a sin y (2.2)= 

g (T - D - Wsin Y)M = ~ 2. 3)a W 

g (L - w cos Y) M a cos Yy + (2.4)= M a w R + h
0 

where 

d( )/dt' 

x horizontal distance traveled , 

h height above sea level , 

M Mach number , 

y flight path angle , 

a speed of sound, assumed constant , 

g acceleration due to gravity, assumed constant 

2 g = 32.174 ft/sec , 

w weight, assumed constant w= 70,000 lb ' 

T thrust , 

D drag , 

L lift ' 

radius of the earth ; = 2. 1 x 10 ft •R0 
7 

The assumptions of constant gravity, constant weight, and constant speed 

of sound are made to simplify the solution process. 
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The second term in Equation (2.4) is the contribution to the 

equations of motion due to the spherical earth. Several times 

throughout this report, reference will be made to the flat earth solu

tion. This solution is obtained using Equations (2.1) through (2.4) 

without the spherical earth term. 

The temperature and pressure models are from the stratospheric 

layer of the standard atmosphere. Temperature is assumed constant, 

Q = 390 0 R, where Q denotes absolute temperature. The pressure model is 

p = c1 (2.5) 

where c and c2 are constants whose values are1 

2
c1 = 2.6783378 x 103 lb/ft

-5 c = -4.8100264 x 10 1/ft2 

The assumption of constant temperature leads to constant speed of sound, 

a= 967.705 ft/sec . 

The models for lift and drag ar~ 

L = 2 
1 p k M2 b2 (2.6)CL 

D = 
1 p k M2 b2 CD (2.7)
2 

+ K c2 
L 

(2.8)CD = CD 
0 

where 



CL 
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k ratio of specific heats ; k = 1. 4 

b2 b2reference area ; 576 ft2 
t= 

coefficient of lift 

coefficient of dragCD 

CD CD =coefficient of zero-lift drag .02 t 

0 0 

K coefficient of induced drag ; K .8= 

The assumption of constant aerodynamic coefficients CD and K is good in 
0 

the higher Mach number region but may be questionable at lower Mach 

numbers. Later. solutions of interest will be shown in the Mach 2 

region. These solutions can be used to show trends but should be used 

carefully when quantifing those trends. 

Thrust and coefficient of lift are selected as controls. They 

may be varied as desired within bounds. No bounds are put on the coef

ficient of lift. When an interesting solution is found, the CL history 

should be checked to make sure it is reasonable. The bounds on thrust 

are 

0 < T < T (2.9)max 

where maximum thrust is T = 50,000 lb. max 

The model for fuel flow is 

(2.10) 

o- = UM (2.11) 
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where 

weight of fuel consumed , 

thrust specific fuel consumption 

(/ constant ; (j = .1 1/sec • 

The constant (/ is chosen for convenience. Because of this, the 

amount of fuel used which is generated by this model should not be 

viewed as an absolute number but as a performance measure to compare 

different control strategies. 

The models for T and cr are the most limiting assumptions.max 

Both T and cr should vary with h and M. In this study, T is con-max max 

stant and cr is linear with M. As mentioned earlier, these assumptions 

are made to allow the algebra in Section V to remain tractable. 

When the periodic cruise problem is studied, it is assumed that 

the engine can be turned on and off instantaneously. At first, this may 

sound like a bad assumption, but the engine used for this study is a 

SCRAM (Supersonic Combustion RAMjet) engine. It is similar to a ramjet 

engine in that it has no turbines. Since there are no turbines, there 

is no spool-up time. To start the engine, inject fuel into the engine 

and ignite it. To stop the engine, shut off the flow of fuel. Both of 

these operations can be done very quickly, so the assumption that they 

occur instantaneously is not bad. 

2.3 Nondimensionalization and Reduction of State 
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To improve the precision of integration, Equations (2.1) and 

(2.2) are nondimensionalized by the constant F. The resulting set of 

equations is 

...!. cos yM a 
x = (2.12)F 

...!. M a sin y
h = (2.13)F 

g CT - D - W sin Y)M = (2.14)a W 

y g CL - w cos Y) M a cos Y 
= + (2.15)M a W CR h)0 + 

where 

x nondimensional range ; x = x/F , 

h nondimensional altitude ; h = h/F 

F nondimensionalization factor ; F = 500,000 ft . 

Equations (2.12) through (2.15) represent a four-dimensional 

system. Since time does not appear explicitly in the equations, this 

four-dimensional system can be reduced to a three-dimensional system by 

dividing Equations (2.13) through (2.15) by Equation (2.12) • This 

causes nondimensional range x to become the independent variable. For 

equation (2.13), this division is 

Ch/x) = Cdh/dt)/Cdx/dt) = Cdh/dx) = h' 

where C )' denotes d( )/dx The new three-dimensional system is 



Section III 

Problem Statement and Steady State Solution 

This Section presents the problem statement of the optimal con

trol problem and the steady state solution for both the flat earth and 

the spherical earth models. 

3.1 Problem Statement 

Minimize with respect to the control functions [CL(x) ,T(x)J, the 

period xf, and the initial conditions [h(O),M(O),Y(O)] 

xf 
J - f-(_/_T__,...y dx (3. 1)- cos0 a 

xf 

subject to the differential constraints 

h' = tan Y (3. 2) 

g F (T D - W sin Y)
M' ==---'--------- (3.3)2M a Wcos Y 

g F ( L - W cos Y)Y' = + (3. 4)
2 2M a W cos Y R_ + h 

u 

the boundary conditions 

h(O) = "hcxf) (3. 5) 

M(O) = M(xf) (3.6) 

Y< o) = Y<xr) (3.7) 

10 
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and the control inequality constraint 

0 < T < T (3.8)- max 

3.2 Steady State Solution 

During steady state flight, Y= 0 and T = D, so the integrand of 

the performance index J is constant, thus, Equation (3.1) becomes 

UD
J SS = a (3.9) 

where Jss denotes steady state performance index. 

Since(/ and a are constant, minimizing Equation (3.9) implies 

minimizing D. In order to get an expression for D, an expression for L 

is needed. To get an expression for L, Equation (2.4) is used. Recall 

that for steady state flight Y=O and Y=O. Make these substitutions into 

Equation (2.4) and solve for L : 

L (3.10)
SS 

where Lss denotes steady state lift. 

One way to eliminate the spherical earth term is to let R0->oo. 

When this is done, the second term in Equation (3.10) vanishes. This 

gives the proper lift for steady state cruise over a flat earth, L = W. 

Equation (3.10) combined with 
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1 2 2 q p k M b (3.11)= 2 

L (3. 12)= q CL 

D = q (CD + K C2) (3.13)L
0 

gives the steady state drag 

2 2 2K w M a )2D = q +-- ( 1 - (3.14)CDSS q g (RO + h)0 

where q denotes dynamic pressure and D denotes steady state drag •
SS 

Equation (3.14) is minimized using a numerical one-dimensional 

search technique. Mach number is specified and a search is conducted 

for the altitude which produces minimum drag for that Mach number. The 

results are shown in Figures 2a and 2b. Figure 2a shows altitude vs. 

Mach number for the best steady state cruise over a spherical earth. 

Figure 2b is for steady state cruise over a flat earth. Note that Fig

ure 2b is a curve of constant dynamic pressure corresponding to flight 

at maximum lift over drag. 

Steady state performance vs. Mach number for cruise over a 

spherical earth is shown in Figure 2c. Figure 2d is for steady state 

cruise over a flat earth. Note the performance index for the flat earth 

case is constant. For the spherical earth case, the improvement in the 

performance index at increasing Mach number is due solely to the spheri

cal earth term. 



Section IV 

Derivation of the Periodic Optimal Control Problem 

In this section, the first variation necessary conditions for 

the free final range and the fixed final range problems are derived. 

Section III describes the specific problem to be solved in this 

investigation. Before deriving the optimal control problem, a more gen

eral problem will be stated. Minimize 

xf 
1 ('J = - , L(X,U) dx ( 4. 1)

-xf o 

subject to the differential constraints 

X' = f(X, U) (4.2) 

the prescribed boundary conditions 

(4.3) 

and the control inequality constraint 

u . < u < u (4.4)min - max 

where 

state vector, 

u control vector, 

f set of differential equations. 

x 

13 
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Form the augmented performance index 

x 
T 1 f T ,T

J' = µ iii+ - f [ L + f f - ,, X' J dx (4.5)
x:f o 

Here µand t are vectors of Lagrange multipliers and the prime on J' is 

used to distinguish it from J. Define 

T
G = µ iii (4.6) 

H = L + tT 
f (4.7) 

Substitute Equations (4.6) and (4.7) into Equation (4.5). The augmented 

performance index becomes 

xf 
J' = G + - 1 

'\. 
"' , [ H - ,:"\T X' J dx (4.8) 

xf u 

The first variation of J' is 

x x 
T - c- 1 c

+ _1 [ (H - 1\ XI) bX ] + =- .{ 
xf 0 xf u 
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xf xf 
1 II 1 (" II+-[ J + - ..,1 Jdx (4.9) 

x  ' xf x f xc+ c+ 

where 

6 ( ) - variation of ( ) holding x constant, 

6c ) - total variation of ( ). 

The limits of integration are broken at x because the deriva
c 

tive of the integral is discontinuous at that point. The point phys i 

cally corresponds to the point where the control is discontinuous. For 

simplicity only one discontinuous point is assumed here. Note that 

xf 

b 
(" [ H - ~T X' J dx = J (4.10)

# 
xf 

b bb T 
I' ~ bX I dx ~T 6x J r ~, T 6x ctx (4.11)

'j # = # 'j # 
a a a 

~x = 6x - X' 6X (4.12) 

6x 0 (4.13)
0 = 

6X fix bx (4.14)= = cc+ c

bX bX fix (4.15)
c+ = c- = c 

IV.. ) - ( ) (4.16)= c+ c
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Substitute Equations (4.10) through (4.16) into Equation (4.9) 

and collect terms. The first variation becomes 

bJ I : bX + ( ~ /\ H 6-X c c 

x c
1 

+ - f 
-xf o 

II dx (4.17) 

In order for the first variation to vanish, a necessary condi

tion for a minimum, the following conditions must be satisfied : 

Differential Constraints 

X' = f (4.18) 

Euler Equations 

(4.19) 

(4.20) 

Prescribed Boundary Conditions 
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it = 0 (4.21) 

Natural Boundary Conditions 

T 
to 

+- = 0 (4.22)GX 
0 xf 

T 
tr 

= 0 (4.23)GX 
f xf 

-J + H - 0 (4.24)f 

Natural Corner Conditions 

= 0 (4.25)/\" 

/\ H = 0 (4.26) 

The Hamiltonian, as defined in Equation (4.7), is a function of 

X, U, and#'· Since it is not a function of the independent variable x, 
the Hamiltonian is constant during the cycle. 

Equation (4.20) is slightly different from the other conditions. 

The difference is caused by Equation (4.4) which is the control inequal

ity constraint. Equation (4.20) is satisfied in one of two ways. If 

HU = 0, the control takes on a value which is in the interior of the 

inequality constraint of Equation (4.4). If the control tends to take a 

value outside the inequality constraint, Equation (4.20) is satisfied by 

setting the control on the boundary and setting 6u = O. 



18 

The above conditions are the first variation necessary condi

tions for the free final range problem. This is the problem in which 

the final range after one cycle is not specified. For the fixed final 

range problem, the conditions are the same except for one. Equation 

(4.24) comes from the oxf term in Equation (4.17). In the fixed final 

range problem, the final range is specified so 6xf .=.. 0. Therefore, 

Equation (4.24) is not present in the fixed final range problem. 



Section V 

Hypercruiser as an Optimal Control Problem 

This Section uses the results of Section IV to formulate the 

hypercruiser as an optimal control problem. 

5. 1 Hamiltonian 

Form the Hamiltonian 

TH L f= 
+ " 

(! T 

"- h' += a y + + fM M' f y Y'cos 
h 

(! T g F ( T - D - W sin Y) 
= a cos y + '\ tan y + fM M a2 W cos y 

g F ( L - Wcos Y) ( 5. 1 ) +(.y 2 2 +(.y_
M a wcos Y + hR0 

The h subscript on "- denotes that t- is the component of the t 
h h 

vector associated with the h' differential equation. Similar notation 

is used for the other t's. Since the Hamiltonian is not a function of 

the independent variable x, it is a constant of the motion. This is 

useful to use as a check when numerical routines are tested. 

5.2 Controls 

Equation (4.20) is used to derive the equations for the controls 

CL and T. The equation for CL will be derived first. Since there are 

no bounds on CL and since CL is not singular, Equation (4.20) is satis

19 
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fied by He = 0 
L 

g F DC g F LC 
L L 

= 0 = (5.2)He -~M 2 + ~y 2 2L M a W cos y M a W cos y 

where 

DC = p k M2 b2 K CL (5.3) 
L 

2 2 
p k M b (5.4)LC = 2L 

Substitute Equations (5.3) and (5.4) into Equation (5.2), and solve for 

CL. The result is the equation for the CL control, 

(5.5) 

The thrust equation is not quite so straightforward. Since 

HTT ~ 0, the thrust control is singular. The thrust control is obtained 

by using Pontryagin's "Minimum Principle" on Equation (4.20) 

1-1 < 0.. T T = [ T~ax (5.6)
HT > 0 

(/ g F (5. 7)HT = y +a cos '\M 2
M a W cos y 

HT is known as a switching function because when HT = 0, the thrust is 

switched from on to off or vice versa. This form of the control only 

allows maximum thrust or no thrust. If HT = 0 for a finite interval of 

time allowing intermediate values of thrust (a singular arc in the 
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calculus of variations [3]), a chattering of thrust would occur. This 

phenomenon has not been observed by the author. 

5.3 t Differential Equations 

The differential equations for t are obtained from Equation 

(4.19) · Equation (5.5) is used to do some simplification : 

tM g F2 C2 D t y g F2 C2 L ,_:-.. I : -H = --..,...---2 2 2
h h M a Wcos Y M a Wcos Y 

(5.8)+ - - 2 
(R + h)

0 

2 
tM g F p k b CDtM g F ( T - D - W sin Y) 0

-H = + ~--2------M 2 2M a W cos Y a W cos Y 

2 ,\ y g F ( L - W cos Y) 
(5.9)+ 3 2 2M a2 W cos Y 4 ~M M a W K cos Y 

t- fM g F sin Y (T - D)(/ T sin Y h
ty' = -HY = - 2 - --2- 

a cos Y cos Y M a
2 

W cos
2Y 

fM g F f y g F L sin Y 
+ (5.10)2 2 2

M a 
2 

cos2Y M a W cos Y 

5.4 Boundary Conditions 

The prescribed boundary conditions state that 
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(5.11) 

where X = [ h , M , Y ]T This means the initial altitude must equal 

the final altitude, the initial Mach number must equal the final Mach 

number, and the initial flight path angle must equal the final flight 

path angle. Equations (4.22) and (4.23) will be used to show that t 
must be periodic. G is defined as 

T T 
G = µ it= µ (X(xf) - X(O)) (5.12) 

Take the partial derivatives of G, substitute them into Equations (4.22) 

and (4.23), and add (4.22) and (4.23). The resulting equation is 

T T 
T t 0 T t f 

-µ + -- + µ = 0 (5.13) 
xf xf 

This gives the result 

t(O) = f.Cxf) (5.14) 

Thus, not only is X required to be periodic, but Equations 

(4.22) and (4.23) require~ to be periodic. Since H is a constant of 

the motion, Equation (4.24) becomes H = J. 

5.5 New State Vector 

Combine the X and t vectors to form a new state vector Z where 

z = [~] (5.15) 
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The differential equation for this new state vector is 

Z' = [~:] = f(Z) (5.16) 

The Euler equations have been used to eliminate the control from 

the differential equations. The range derivative of the state vector Z 

is a function only of itself. This means that given an initial value 

for the state vector, Z(O), and the final range, xf, the state at the 

final range, Z(xf), is uniquely determined. Further, through the use of 

Equations (4.21) through (4.23), the very compact requirement 

Z(O) = Z(xf) is obtained. 

5.6 Corner Conditions 

A corner occurs when the thrust is turned on or off. This 

causes a discontinuity in the derivative of the state vector Z. Equa

tion (4.15) implies that the vector X must be continuous at a corner 

point. Equation (4.25) states that the Lagrange multipliers f must be 

continuous at a corner. These two imply/\ Z = 0. 

Equation (4.26) states that the Hamiltonian must remain constant 

when the thrust is changed. This condition is automatically satisfied 

because the thrust changes when HT = O. 

5.7 Transition Matrix 

Methods to be developed later in this report make use of the 

transition matrix of the cycle. The transition matrix is a lineariza

tion about the path and can be used to map initial variations to final 
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variations. 

(5.17) 

where i(xf,O) denotes the transition matrix from initial range to final 

range. The transition matrix differential equation is 

6, <x. o) A(x) IHx,O) 6(0,0) = I (5.18)= 

orA (5.19)= Oz 

f = Z' (5.20) 

The A matrix is 6 by 6. It's elements are listed in Appendix A for con

venience. The differential equation for 6 assumes continuous 

variations. This condition is satisfied everywhere on the path except 

where the engine turns on or off. These corner points cause discon

tinuities in the 6 variations which cause jumps in 6. Following is the 

derivation of the transfer matrix i(x ,x ) which 
c+ c-

causes jumps in the 

transition matrix. Refer to Figure 3 for the notation used in the 

derivation. 

The variation of Z at x can be calculated using the transition 
c-

matrix IHx , O)
c

~z = ~<x ,o) ~z 0 (5.21)
c- c-

The variation 6z causes the corner to occur at x The change in c- c+ 

the location of the corner, 6x , is calculated as follows : c 
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(5.22) 

(5.23) 

c'6z + z' bx J (5.24)
c- c- c 

z I bx (5.25)
c- c 

8 6zTz cc-bx = (5.26)c 8 z I
Tz cc-

The relationship between bZ and bZ is calculated as follows 
c- c+ 

6z = ~z + z' bx = &z + z 1 bx (5.27)
c c- c- c c+ c+ c 

bZ = bZ - [Z' - Z' ] bx (5.28)
c+ c- c+ c- c 

Combine Equations (5.26) and (5.28) to give 

8 6zTz c
&z bZ + [Z' - Z' ] c- (5.29)

c+ = c- c+ c- 8 Z'TZ cc

8Tz 
{ I + [Z' - Z' ] c- ~z (5.30)= c+ c- 8 z' c-Tz cc-

The term in the braces of Equation (5.30) is the transition matrix from 

x to x Use the properties of transition matrices to give
c- c+ 

acx ,o) = ~ex ,x ~ex ,o) (5.31)c+ c+ c- c
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8Tz 
- 2 I ) ___c_-__lHx ,x ) = { I + [Z' (5.32)

c+ c- c+ c- HTZ z I c
c-

The algorithm for calculating the final state, transition 

matrix, and fuel used is summarized below. 

1) Initialize 

Z(O) - guess, 

- guess, 

lHO,O) = I, 

wf = o. 

2) Integrate one step. 

3) If final range is reached, go to 6. 

4) If no thrust change, go to 2. 

5) Thrust change : 

find thrust change point very accurately using HT = 0, 

change thrust, 

calculate aci ,i ),c+ c-

calculate 6(x ,0) = ~(x ,i ) ~(x ,0),c+ c+ c- c

go to 2. 

6) Final range reached 

wf 
calculate J 

xf 

stop. 

The state has 6 differential equations, the transition matrix 

has 36 differential equations, and the equation for fuel used is 1 
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differential equation. This is a total of 43 equations which must be 

integrated. 



Section VI 

Monodromy Matrix, Eigenvalues, and Eigenvectors 

This Section starts off with a review of some of the important 

characteristics of the monodromy matrix. Stability coefficients are 

then presented to simplify the presentation of eigenvalues. Finally, a 

method for computing eigenvectors is presented. 

6.1 Properties of Monodromy Matrix 

The monodromy matrix is the transition matrix evaluated over one 

cycle. [5] and [9] describe many of the properties of the monodromy 

matrix in detail. Some of the important properties are repeated here. 

The monodromy matrix is symplectic which means it satisfies 

a K aT = K ( 6. 1) 

where 

Identity (6.1) is a useful check on the numerical accuracy of the mono

dromy matrix. Another useful property of a symplectic matrix is the 

occurance of eigenvalues in reciprocal pairs; that is, if one eigenvalue 

is fi' i=1,2,3, another eigenvalue is fi+ 3 = 1/fi' i=1,2,3. Since the 

monodromy matrix is real valued, imaginary eigenvalues occur in complex 

conjugate pairs. 

28 
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Another important fact is the monodromy matrix always contains 

two unity eigenval~es. The two unity eigenvalues are coupled so they 

form a Jordan box. The Jordan form of a is 

1 1 

1 

When all the above facts are combined, it can be seen that the 

allowable eigenvalue patterns of the monodromy matrix are severely res

tricted. Figure 4 shows all possible combinations of the eigenvalues. 

The primary eigenvector associated with one of the unity eigen

values is the initial derivative vector Z'(O), i.e. (~-I)Z'(O) = O. If 

the initial conditions of a cycle are perturbed so that a new cycle 

occurs, a family of cycles results. That is, 

oz<xf) = 6z< a) 

bz<xf) + z, <xf)b"Xf = ~&z<o) + z, <o)6xf = &z<o) (6.3) 

(~-r)&Z(O) = -Z'(O)bxf (6.4) 

Equation (6.4) shows that the second-order generalized eigenvector asso

ciated with the other unity eigenvalue is the family direction. 

6.2 Stability Coefficients 
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In [2], Broucke describes two real valued scalars and 

called stability coefficients. These stability coefficients are used to 

simplify the presentation of eigenvalues. Since Broucke's problem is 

two-dimensional, his stability coefficients are the coefficients of the 

characteristic equation of the monodromy matrix. The hypercruiser prob

lem is three-dimensional. The stability coefficients are still coeffi

cients of the characteristic equation, but the characteristic equation 

is in the form 

2 4 3 2(s - 1) (s + + s + + 1) = 0 (6.5)a 1 sa 1 s a2 

The coefficients a 1 and a2 are related to the eigenvalues of the 

monodromy matrix as 

1 
a1 =- <t1 +-

1 
+ t2 +-) (6.6) 

t1 t2 

+-) +-) + 2 (6.7)a2 = <t1 
1 <t2 1 

t1 t2 

but, and can be calculated without first calculating the eigena1 a2 

values. This is done as follows 

Tr(!)) (6.8)s1 = 

Tr(!) !)) (6.9)s2 _ = 

a1 =-S 1 + 2 (6.10) 

1 2 (6.11)a2 = -2<S2-S1) - 2 s1 + 3 
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where Tr( ) indicates the trace of ( ). The a 1, a plane is divided2 

into 7 regions as shown in Figure 5. The regions are separated by the 

two straight lines, 

a - 2 a - 2 (6. 12)2 - 1 

which corresponds to = -1'ti = ti+3 

a2 = -2 a1 - 2 (6.13) 

which corresponds to = and the parabolati = ti+3 1 ' 

1 2 + 2 (6. 14)a2 = 4 a1 

which corresponds to fi = ,\+1 and fi+3 = ti+4 - ,\. 

The form of the eigenvalues for each region is also shown in 

Figure 4. Everytime a 1,a crosses a line described by Equations (6.12)2 

through (6.14), an interesting event happens. For instance, when a 1,a2 

go from region 6 to region 1, the distinct eigenvalues on the real axis 

coalesce at unity and then break off the real axis onto the unit circle. 

Other events can easily be identified by studying Figure 5. The intro

duction of a and a greatly simplifies the presentation of the eigen1 2 

values of the family. 

6.3 Calculating Eigenvectors 

There are three problems with using a general purpose eigenvec

tor routine in this investigation. First, the unity eigenvalues are 

usually unity only to about 5 decimal places. Because of this accuracy 
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problem, a general purpose eigenvector routine treats the two unity 

eigenvalues as distinct. Instead of returning a primary eigenvector and 

a second order generalized eigenvector for the two unity eigenvalues, 

two primary eigenvectors are returned which are very close to being 

linearly related. 

The second problem is the errors in the unity eigenvalues may be 

in the form of small imaginary parts on the order of 10-5 • These small 

imaginary parts sometimes cause large imaginary components in the eigen

vectors. The primary eigenvector should be equal to the initial deriva

tive vector of the system. It makes no physical sense for this problem 

to have an imaginary part in the initial derivative vector. 

The third problem is that eigenvectors are not unique. By 

allowing a general purpose eigenvector routine to calculate eigenvec

tors, it is not possible to take full advantage of the non-uniqueness of 

eigenvectors. This non-uniqueness is especially useful when calculating 

the second order generalized eigenvectors associated with the unity 

eigenvalue of ij. 

The calculation of eigenvectors involves the solution of a 

linear system of the form 

A x = y (6.15) 

where A is a 2n by 2n matrix of rank m where m < 2n. The solution of 

Equation (6.15) is obtained by first partitioning the linear system : 
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(6.16) 

where A11 ism by m and full rank, and all other sub-matrices are con

formable. Since A is rank m, the identity 

(6.17) 

is satisfied. Further, in order for a solution of Equation (6.16) to 

exist, the linear system represented by A and y must be consistent [1]; 

that is, it must satisfy the identity 

(6.18) 

If this condition is satisfied, the solution to (6.16) is 

(6.19) 

where x is an arbitrary (2n-m) vector.
2 

The primary and second order generalized eigenvectors associated 

with the two coupled unity eigenvalues must satisfy 

A p = 0 (6.20) 

A s = p (6.21) 

where A= (~ - I), pis the primary eigenvector, and s is the second 

order generalized eigenvector. Apply Equation (6.19) to the solution of 

Equations (6.20) and (6.21) to give 
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= [- A~~ A12] 
P2p (6.22)= [::] 

-1 -1 
A 11 A 11 

s [- A12] rA~~ A12] (6.23)= = P2 + s20[::] 
From Equation (6.2), it is seen that A is 6 by 6 of rank 5. 

Thus, in Equations (6.22) and (6.23), all terms in brackets are 6 by 1, 

and p and s2 are scalars.2 



Section VII 

Shooting Method 

This Section describes the shooting method used in this investi

gation. Following the derivation of the shooting method is a discussion 

of its performance. 

7.1 Derivation of Shooting Method 

A shooting method is an algorithm applied iteratively to a sys-

tern. Tile object of each iteration is to adjust a set of parameters in a 

manner that will drive a set of conditions to zero. When the conditions 

are zero, the method is said to have converged. The solution to which 

the shooting method converges must be unique in the immediate vicinity 

of the solution. 

The conditions which must be satisfied to have a cyclic path are 

represented in vector form as 

i = 1, ••. ,6 i i 3 i i j 

(7. 1) 

Z . - canst
Jr 

The special conditions imposed on the 3rd and jth elements of iii are 

necessary to satisfy the uniqueness requirement of the solution. Speci

fying z = O implies that the path starts at Y = o. Tilis specifies
3 0

0 

the point on the path to which the shooting method converges. Y0 = 0 

35 
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happens twice in a simple cycle, once at the maximum altitude of the 

cycle and once at the minimum altitude of the cycle. All results 

presented in this report are for y = O at the maximum altitude.0 

As was seen in Section VI, there are continuous families of ini

tial conditions which produce cyclic paths. Specifying Z. = const 
Jo 

causes the shooting method to converge to a particular solution on the 

family. It should be noted that specifying Z. = const and xf free is 
Jo 

equivalent to specifying and xf = const. Thus, when the 

shooting method converges and a cyclic path is found, all the first 

variation necessary conditions for the fixed final range problem stated 

in Section IV will be satisfied. Points on the family where H = J will 

satisfy all the first variation necessary conditions for the free final 

range problem. To better illustrate the role that j plays on i!t, i!t for 

j = 5 is presented below 

z - z,
1f 0 

z  z22f 0 
z3 

fit = - zz4 40f 
- constz5 

f 
z6 - z6 

f 0 

The algorithm for selecting j will be presented in Section VIII. 
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From one iteration to the next, the magnitude of iii should 

decrease, 

..n_n+ 1 _ ,n..n = iR ..n..n ~ ..n.n( z z ) 
~ ~ - I ~ = 0 ~ O' f (7.2) 

where ilin is iii for the nth iteration, ilin+ 1 is iii for the n+1th iteration, 

and the variable~ is adjusted to vary the speed of convergence. Fast 

convergence near a solution is obtained by setting~= 1. Farther away 

from the solution, it is desired to stay within the linear assumption of 

the shooting method. This is done by chosing :B as 0 < :B < 1. 

Take the variation indicated in Equation (7.2) 

(7. 3) 

· nce the 3rd and J.th i·n1· t1·a1 d·t· t tSl con 1 ions are cons an , 6z = o and
30 

6z. = o. Define a new vector 62 which contains 4 elements and is0Jo 

obtained by removing the 3rd and jth elements from 6z0 , and a new matrix 

~z which is iliz with the 3rd and jth columns removed. Equation (7.3) 
0 0 

then becomes 

(7.4) 

Note that 

6z = ~z + z' 6-X 
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szo = fiz (7.5)0 

~zf = &zf + z, f 6-Xf (7.6) 

&zf = i &z0 (7.7) 

where 6z is 6z with the 3rd and jth elements removed, and i is0 0 

"ll(-xf, 0) w1·th the 3rd and J. th columns removed. Substitute Equations 

(7.5) through (7.7) into Equation (7.4). The result is 

which can be expressed in matrix form as 

zI 

f <"'z 6 + ;;g;z )J (7.8) 
f 0 

From Equation (7.1), note that 

= I (7.9)"'z
f 

I (7. 10)~z = 
0 

where I is I with the 3rd and jth columns removed. Substitute Equations 

(7.9) and (7.10) into Equation (7.8). The result is the linear system 

used in the shooting method for this investigation : 
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[Z' rn - I) J - s ii (7.11)
f I 

To calculate the perturbations 6xf and 6z0 , the linear system 

of Equation (7.11) must be solved. The vector Z'r is 6 by 1 and the 

matrix(~ - l) is 6 by 4. The left hand side matrix of Equation (7.11) 

is 6 by 5. Since the linear system is not square, it is solved in a 

least square sense using the pseudo-inverse. 

The algorithm for obtaining a cycle is 

1) Initialize 

guess,ZO 

guess,xf 

18 set,
I 

j set. 

2) Calculate Zf and~ using algorithm of Section 5.7. 

3) Calculate ii. 

4) If convergence is achieved, go to 6. 

5) Convergence not achieved : 

form and solve linear system of Equation (7.11), 

update initial conditions and final range, 

= z + i ~z0 ,z0 0 

xf = xf + bxf, 

go to 2. 

6) Convergence achieved 
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stop. 

7.2 Shooting Method Performance 

The shooting method presented above has been used almost 

exclusively during this investigation. This method has worked very 

well. When z0 and xf are within 2 to 3 significant digits of the solu

tion, it takes only about 3 iterations to find the solution to 10 

digits. The space around a solution is highly non-linear. This makes 

convergence very difficult or impossible when the guess on z0 and xf is 

not within 2 digits of the solution. Because of this, the first cycle 

is difficult to find. Once one cycle is found, an algorithm exists to 

predict z0 and xf for a neighboring cycle. This algorithm will be 

presented in Section VIII. 



Section VIII 

Tracing Families 

This Section describes the algorithms used for tracing a family 

of initial conditions. The second order generalized eigenvector used to 

start the family trace is described first. Finally, an extrapolation 

routine used to trace the family after several points on the family have 

been obtained is presented. 

8.1 Eigenvector Direction 

In [9], Speyer states that the second order generalized eigen

vector points in the direction of a family of cyclic paths. Therefore, 

given one cycle, the second order generalized eigenvector, s, can be 

used to predict the initial conditions of a neighboring cycle. Equation 

(6.23) is rearranged to give a more useful form of s : 

(8. 1)s = c(1 (V 1 + c(2 V2) 

where, 

-1 -1 
A11 A11 A121[-

0 Jv, = 

v2 = [- A~; A12] 

d:1 = P2 

41 
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In equation (8.1), it is seen that d affects how v and v are2 1 2 

linearly combined, and d affects the length of s. The scalars d and2 1 

d
2 

are chosen to take full advantage of the non-uniqueness of eigenvec

tors. The s vector is used to perturb the initial conditions, Z(O), in 

the direction .of a neighboring cycle. In this report, the only initial 

conditions of interest are those where 0 at the maximum altitude ofYo= 

the cycle. Thus, it is desired to have the y perturbation of s equal to 

0, s3 = o. This is obtained by choosing d2 = -V 1 /V 2 where 
3 3 

v1
3 

and v2
3 

are the 3rd components of v1and v2 respectively. The scalar d 1 is 

chosen such that the perturbation vector s is a certain length. Notice 

that the sign of d is used to control which way on the family the trac
1 

ing is done. By changing the sign of d 1, the direction of the perturba

tion is changed. 

It is interesting to note that v2 is proportional to the initial 

derivative vector. The v1 vector contains perturbation components in 

both the family direction and the initial derivative direction. By 

choosing correctly, is used to take the initial derivatived2 d 2V2 

direction out of v leaving only the desired family direction.1 

8.2 Extrapolation Routine 

Using the second order generalized eigenvector to trace the fam

ilies is very inefficient. The calculation of s involves a matrix 
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inversion and 3 matrix multiplications. When several points on the fam

ily are found, an extrapolation routine is used to predict new neighbor

ing cycles. 

The extrapolation routine first chooses one of the 6 states as 

the independent variable for the extrapolation. The other 5 states are 

then extrapolated individually by curve fitting the state against the 

independent variable. The result is the prediction of a neighboring 

rdcycle. Experience has shown fitting a 3 order curve through the last 

4 family points works well. 

Suppose the curve in Figure 6 is Zk vs. Zi for a portion of the 

family. In region a, Zk would be chosen as the independent variable for 

the extrapolation because Zi is a one-to-one function of Zk. In region 

b, Zi would be chosen as the independent variable for the same reason

ing. 

The independent variable chosen for the extrapolation is also 

used as j for the shooting method in Section VII. The reason for this 

is seen by refering to point c in Figure 6. If c is the prediction of a 

neighboring cycle, the shooting method will attempt to close the predic

tion to the family. If j = k, the shooting method will not be able to 

close the prediction. However, if j = i, closure will be achieved. 

The size of the extrapolation step is controlled such that the 

prediction of the neighboring cycle closes to the family in a certain 

number of iterations of the shooting method. If the shooting method 
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takes more iterations than specified, the extrapolation step is scaled 

down for the next extrapolation. Similarly, if the shooting method 

takes less iterations than specified, the extrapolation step is scaled 

up. Experience has shown the shooting method should converge in two 

iterations. 



Section IX 

Discussion of Families 

This section starts by presenting the families generated using 

the methods of the previous sections. A comparison between the steady 

state and periodic cruise is presented next. Finally, phase plane 

diagrams for a particular cycle are presented to show the character of a 

cycle. 

9.1 Spherical Earth Family 

2 

Figures 7a through 7g show the spherical earth family. Figures 

7a through 7f are, in order: h vs. M, t- vs. 
h 

M, tM vs. M, ty vs. M, J 

and H vs. M, and xf vs M for the family. Figure 7 g is a vs. a 1' sta

bility coefficients, for the family. The symbols on each figure are 

used to relate a particular family point on one figure to the same fam

ily point on another figure. Notice the cusp at M: 2. All the state 

variables have this cusp except t-· 
h 

The points on the family satisfy all the first variation neces

sary conditions for the fixed final range problem. The only first vari

ation necessary condition not satisfied for the free final range problem 

is H = J. Refer to Figure 7e which is J and H vs. M. There are 2 

points on the family where H = J, one at M = 2.58 and another at M = 

3.77. In (10], Speyer developes a second variation sufficient for non-

optimality : that there exist distinct eigenvalues on the unit circle. 

Refer to Figure 7g to see the cycle at M = 3.77 has distinct eigenvalues 

45 
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on the unit circle and therefore cannot be an optimal solution. The 

cycle at M = 2.58 does not have any distinct eigenvalues on the unit 

circle. [5] and [9] present a second variation sufficient condition for 

optimality that a real valued Riccati matrix be periodic and remain 

finite. This test should be applied to the M = 2.58 cycle to confirm 

that the cycle satisfies all the second variation conditions for a rela

tive minimum. 

9.2 Flat Earth Family 

Figures 8a through 8h show the flat earth family. Although this 

family has little practical importance, it is interesting theoretically. 

The flat earth family has the same cusp displayed by the spherical 

earth. 

By comparing Figures 7b through 7d with 8b through 8d, it is 

seen that the shape of the flat earth and spherical earth} 's are very 

similar. Figure 8e and 8f are J and H vs. M for the flat earth family. 

Figure 8f is an expanded plot of the flat portion of Figure 8e. Walker 

[11] stated that first order optimization techniques failed to converge. 

The flatness in Figure 8e may be the reason for this. There are two 

cycles where H = J. The one at M =6.36 has the distinct eigenvalues 

off the unit circle. This cycle is a possible minimum for the flat 

earth free final range problem. The Riccati matrix test should also be 

applied to this cycle. 

9.3 Comparison of Periodic and Steady State 
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Figure 9a is dimensional altitude vs. Mach number on the spheri

cal earth family for both the periodic and steady state solutions. 

Recall that the altitude for the periodic solution is the maximum alti

tude. 

Figures 9b and 9c are two different comparisons of performance 

index for the spherical earth. Figure 9b is J vs. M. The periodic 

solutions show an improvement over steady state of about 4% at M = 2 to 

about 2% at M = 8. Figure 9c is J vs. minimum specific energy, energy 

per unit weight, of the cycle. The justification for comparing J vs. 

minimum specific energy of the cycle follows. Since a SCRAM engine does 

not have turbines, it cannot develop any static thrust. Some type of 

assisted launch could be used to get the hypercruiser flying. The 

launch assist system is limited to the amount of energy it is able to 

impart to the hypercruiser. It is true that the SCRAM engine can be 

used after launch to increase the energy of the hypercruiser, but this 

can be considered to be part of the launch. Given that a certain amount 

of energy can be imparted to the hypercruiser to establish cruise, what 

type of cruise is best? The periodic cruise shows an improvement over 

steady state which is roughly constant at about 4.5%. 

Figures 10a and 10b show comparisons for the flat earth case. 

The minimum specific energy comparison is not shown because J is conss 

stant for the flat earth. The improvement of periodic over steady state 

is roughly constant at about 4%. 

9.4 Phase Plane 
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Figures 11a through 11g are plots of a particular cycle at 

M = 8.06 on the spherical earth family. Figure 11a is dimensional alti

tude vs. M. This cycle has the best performance index of any found to 

date, yet does not satisfy the first variation necessary conditions for 

the free final range problem. Figures 11a through 11e are phase plane 

plots which show the magnitude of oscillation in the state variables for 

the cycle. Of particular interest is Figure 11a. This cycle oscilates 

in altitude between about 90,000 ft and 130,000 ft, and in Mach number 

between about 7.45 and 8.15. Another interesting fact is the maximum 

specific energy of the cycle is approximately twice that of the minimum 

specific energy of the cycle. 

Figure 11f and 11g show the control history of the cycle. For 

this vehicle, CL = • 157. The CL control for this cycle is operating 
E max 

around this value. The corners in the CL history are caused by the 

thrust switching. 

This cycle at M = 8.06 has a peculiar property. Normally, 

(~ - I) is rank 5. At this point on the family, (~ - I) has rank 4 and 

still only 2 unity eigenvalues. This indicates that the Jordan box con

taining the 2 unity eigenvalues has disappeared. This is believed to be 

caused by the fact that ~xf"~H = 0 at this point on the family. 



Section X 

Conclusions 

Families of cyclic paths are shown which result in better cruise 

performance than steady state. One point on the spherical earth family 

and one point on the flat earth family are presented as possible rela

tive minimums for the free final range problem. The Riccati matrix test 

should be done to verify this. The possible relative minimum on the 

spherical earth family is of particular interest since M = 2.5 is 

attainable with current technology. 

The emphasis in this report is on the development of numerical 

algorithms to be used in the investigation of periodic optimal control 

problems. Walker [11] describes a more realistic SCRAM engine model. 

Future work should incorporate this model to see how the results are 

affected. 

This report showed only one family for each model. Other fami

lies exist. The point where two families cross is called a bifurcation 

point. Appendix B contains an explanation of the bifurcation point and 

a possible numerical algorithm for finding crossing families. This 

algorithm has not been implemented. These other families may result in 

better cruise performance. 
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Appendix A 

A Matrix Elements 

This Appendix contains the elements of A used in the transition 

matrix differential equation, Equation (5.18). 

0A11 = 

0A12 = 

=--2A13 
cos y 

0A14 = 

0A15 = 

0A16 = 

2g F c D2 
A21 = 2M a W cos Y 

2 g F p k b c0 
g F (T - D - Wsin y 0 

A22 = 2 2 2
M a Wcos Y a Wcos y 

g F sin Y(T - D - W sin Y> g F 
---2A23 = 2 2M a W cos Y M a 

0A24 = 

ty g F L 
A25 = :-.,2 M2 2 a W cos y

'M 
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= _ ----=-g.....,F_L___ 
2 2

fM M a Wcos Y 

(-R + -h) 2 
0 

2 g F g F L 

A32 = M3 a2 - M3 a2 Wcos Y 

g F L sin Y 
= 2 2 

M a W cos Y 

= 0 

g F L 

= ___,,._g_G_L___ 

M
2 

a 
2 

W f y cos Y 

3 2 3 2
fM g F C2 D f y g F c2 L 

A41 = 
Ma2 Wcos Y M2 a 2 W cos Y 

2 ty 

2 fM g F2 C2 p k b2 CDO
fM g F C2 D 
2 2 + 2

M a Wcos Y a Wcos Y 

t y g F 
2 c2 L 

+ 3 2M a Wcos Y 

f y g F 
2 c L sin Y2 

2 2 2M a W cos Y 
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0A44 = 

2 
g F c D

2 =A45 2
M a W cos y 

2 
g F c L

2 1 
= +A46 2M2 a W cos y + h)2<"Ro 

2tM g F C
2 

D 
=A51 2 2

M a W cos Y 

2 
fM g F p k b CD Y)

0 2 ~M g F (T - D - W sin 
=A52 2 3 2

M a W cos y M a W cos Y 

2 ,\y g F L 6 ty g F 
+4 2 4 2

M a W cos y M a 

tM 
g F [ (T - D) sin Y - W] 

=A53 2 2 2
M a W cos Y 

g F p k b
2 

CD sin ytM 
0 ty g F L sin y 

+ +2 2 3 2 2 a W cos Y M a W cos Y 

= 0A54 

2 g F p k b CD 
g F (T - D - W sin Y) 0 

= +A55 2 2 2M a W cos y a W cos Y 

g F L 2 g F 
3 a 2= M 2 Wcos Y - M3 a
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2 2 g F C D sin y ty g F sin y
tM 2 c2 L 

A61 = 2 2 2 2 2
M a Wcos Y M a Wcos Y 

F [ (T - D + p k b
2 

M
2 

CD ) sin Y - W]tM g 
0 

A62 = 2 2 2
M a Wcos Y 

t y g F L sin Y 
+ 

3 2
M a W cos2Y 

U T tM g F(T - D) ty g F L 2 . 2y 1 
= [ --- ----][ sin + --] 

a M a 2 W M2 a 2 w cos3y cos y 

~M g F 2 sin Y - [t_ - 2 J 3 
h M a cos Y 

- --2
cos y 

g F ( T - D) sin Y g F = - + -~2'---2-2 2
M a W cos Y M a cos Y 

g F L sin Y 
2 2 2M a Wcos Y 



Appendix B 

Bifurcation Points 

A bifurcation point is where two families cross. At a bifurca

tion point the cycles for both families are identical. Several 

interesting things happen to the transition matrix at a bifurcation. 

First, the transition matrix acquires two extra unity eigenvalues to 

make a total of four. Recall that this is precisely the condition on 

the line represented by Equation (6.13) in the a 1,a2 plane. This line 

is therefore referred to as the single period bifurcation line. The 

line in the a ,a plane represented by Equation (6.12) is refered to as
1 2 

the double period bifurcation line. The reason for this can be under

stood by examining what happens to the eigenvalues of 6 over multiple 

periods. Define 6' to be the transition matrix evaluated over a single 

period and ,~' to be its eigenvalues. Over two periods the transition 

2matrix is6" = l>'I>' and the eigenvaluesof6" are(."= (,\ 1 ) . If a 

cycle is on the double period bifurcation line it has two eigenvalues at 

2
-1. Over two periods these eigenvalues become (-1) = 1. A line in the 

a 1,a plane can be identified as the ith period bifurcation line for any2 

integer i. 

The second interesting thing to happen to 6 at a bifurcation is 

the rank of (!) - I) drops from the normal 5 to 4. This indicates that 

the Jordon form of 6 acquires a second off-diagonal 1. We assume that 

the Jordon form is 
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,, ( B. 1) 
1 

"1 1 
1 

1 1 
1 

If this is the case then there are two primary eigenvectors associated 

with two of the unity eigenvalues and two second-order generalized 

eigenvectors associated with the other unity eigenvalues. 

It should be mentioned that the fact that a acquires two extra 

unity eigenvalues does not guarantee that the rank of Cl) - I) drops. 

Figure 7g shows that the spherical earth family crosses the single 

period bifurcation line twice. The rank of (~ - I) does not drop at 

either of these points. This requires the Jordon form of a to be 

" ( B. 2) 
1 
} 

1 1 
1 1 

1 1 
1 

at these points. Figure 7g also shows that the spherical earth family 

crosses the double period bifurcation line three times. One of these 

points was selected and evaluated over two periods and the rank dropped 

to four. 

Figure 12 shows a bifurcation in the h vs. M plane for the 

spherical earth family. The new family shown in Figure 12 was found by 

doing a crude search around the bifurcation point. It would be desir
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able to find a more systematic and efficient method to break off of a 

bifurcation point. The author has not implemented such a method, but 

following are some ideas on the subject. 

Equation (6.22) is the equation for the primary eigenvectors. 

Since (~ - I) is rank 4, A is 4 by 4, A is 4 by 2, and p is a 211 12 2 

vector. The primary eigenvector equation can be written as 

( B. 3) 

where v, and v2 are 6 vectors and d 1 and c( are scalars. Along the fam2 

ily, it has been shown that Z' (0) is a primary eigenvector. A test was 

done to test the linear dependence of z' (0) on v, and V2 by calculating 

the determinant of the Grammian matrix [ 1 ]. The determinant was zero 

indicating that Z'(O) is linearly dependent on v and v and therefore1 2 

is a primary eigenvector. 

Equation (6.23) is the equation for the second-order generalized 

eigenvector and can be represented as 

( B. 4) 

where the V's and d's are different vectors and scalars from those in 

Equation ( B. 3). If s is used as the family direction, Equation (B.4) 

indicates that a search in a four-dimensional subspace of the six

dimensional state space is necessary at a bifurcation point. This 

four-dimensional search can be further reduced. Recall that for the 

hypercruiser problem the only families of interest are those where 
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= 0. Thus, specifying s = 0 reduces the search to three dimensions.Y0 3 

The search can be reduced further by specifying the magnitude of s. By 

specifying Isl = canst, the search is reduced to two dimensions. 

One further reduction will be discussed based on the premise 

that the correct search direction is the second-order generalized eigen

vector associated with Z'(O) as the primary eigenvector, the search can 

be reduced to a one-dimensional search. To better illustrate this 

point, the solution to the second-order generalized eigenvector can be 

written in another form: 

[AJ~J [- A~~ A12]s ( B. 5)= P1 + s2 

= [AJ~] [ - -1 [ - A~} A 1 ~ ( B. 6)A11 A12] P2 + s2 

Equation (B.6) shows that if p (in Equation (B.5)) is to be in the
1 

direction of Z'(O), the two elements of p
2 

are not independent. This 

fact combined with the two previous reductions gives a one-dimensional 

search. This is a big improvement over the six-dimensional brute force 

search of the state space. 
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h 

x 

Figure 1 Coordinate System. 
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