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Abstract:  

Plasmonic metasurfaces are optical components that enhance the light-matter interaction 

and can control the flow of light. The scalability and universality of the metasurface 

design enables their deployment across the entire electromagnetic spectrum.  Especially 

attractive are the metasurfaces designed to operate in the mid-infrared part of the optical 

spectrum. That is due to two factors:  the variety of technological applications and the 

limited choice of conventional optical components in the mid-IR spectral region.  

 

 Graphene has emerged as a promising optoelectronic material because its optical 

properties can be rapidly and dramatically changed using electric gating. In particular in 

the mid-IR regime, graphene has plasmonic properties and can be utilized as a tunable 

inductor for active modulation of the light with an ultra-fast rate. However graphene’s 

weak optical response, especially in the infrared part of the spectrum, remains the key 

challenge to developing practical graphene-based optical devices such as modulators, 

infrared detectors, and tunable reflect-arrays. 
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  In this thesis, we take advantage of plasmonic metasurfaces to enhance the light 

interaction with graphene for crucial optoelectronic applications. The ability to modulate 

light at a high-speed is an important part of modern communication systems. We use the 

plasmonic properties of graphene in the mid-IR range to spectrally shift a narrow-width 

Fano resonance. Using this approach, we achieve strong modulation of amplitude and 

phase using plasmonic Fano-resonant metasurfaces integrated with graphene. We also 

demonstrate that the strong spectral shift of the plasmonic resonance can be used to 

extract one of the key optical parameters of graphene: the free carrier scattering rate.  

 

 Another interesting branch of optics is wave-front engineering. The ability to 

dynamically manipulate the phase, inspires interesting applications such as beam steering 

and holograms. We use a Michelson interferometry to measure the graphene-induced 

phase modulation. In particular, we show that it is possible to modulate the phase of 

electromagnetic wave while the amplitude is constant. We demonstrate proof of concept 

application of active phase modulation in motion sensing and polarization conversion.   

 

  An emerging area of optoelectronic is ultra-fast photodetectors based on graphene 

and other 2-D materials. We employ Full-wave and electrostatic simulations to study the 

performance of a metasurface-based photodetector. Circuit analysis is utilized to provide 

a mathematical relation for the responsivity of the metasurface-based graphene 

photodetector. It is shown that electrically-connected metasurfaces can dramatically 

enhance the collection efficiency of graphene photodetectors. 
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Chapter 1:  Introduction  

 

1.1 WHY OPTOELECTRONICS?  

In the recent decades there has been a lot of research and technological advance in 

the field of optics and electronics. Semiconductor companies now are able to 

manufacture small chips with billions of transistors as the basic component for processing 

digital electronic data. At the same time, optical fiber communication has overtaken the 

data transfer between continents, countries and now it`s starting to reach directly to the 

consumer. This has increased the speed of communication in particular internet which 

billions of people depend on its reliability. Therefore, optics and electronic has changed 

out lifestyle in dramatic ways. On the other hand, the marriage of electronics and optics 

has created the very important fields of optoelectronic and electro-optics. 

Optoelectronics is the study and application of devices that source, detect and 

control light which are important elements of communication systems. Similarly named 

field of electro-optics deals with interaction of light with materials in different electronic 

states for controlling and manipulation of light. The advance in electromagnetics has 

brought in new mechanisms to manipulate and control light to produce devices relevant 

to technological need. One of the most important fields which is trying to address this 

problem is the field of metamaterials. 

1.2 FROM METAMATERIALS TO METASURFACES  

Meta means beyond in Greek and metamterial is a material with engineered 

optical properties that does not exist in naturally found materials. This field started in 

1999 when Pendry et al. for the first time showed that it possible to engineer a material 

https://en.wikipedia.org/wiki/Light
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from periodic arrangement of metallic split ring resonators that can produce negative 

magnetic permeability
1
    . This brought up the theoretical predictions of Veselago in 

1960s that simultaneous negative permeability     and negative permittivity      

can result in material with negative refraction
2
. In 2001 Shelby et al. experimentally 

demonstrated that light can refract negatively in the microwave regime by an arra that 

combines metallic wires and split rings resonators responsible for negative   and   

respectively
3
. Pendry also theoretically predicted that by a slab of metamaterial with 

negative index of refraction can be used as a perfect lens. The resolution of a perfect lens 

is not hindered by the diffraction limit 
4
. This was a promising start to the field of 

metamaterials which boomed in the early 2000s. Later on Shalaev et. Al was able to 

demonstrate the negative refraction of light at the telecommunication wavelength 

       5
. Bringing the field of metamaterials to the optical and infrared regime 

increased the study of plasmonics. Plasmons are collective oscillation of free electrons in 

response to the incident light. These oscillations give rise to surface plasmon polariton 

(SPP) that are surface waves confined to the surface of the metal. The confinement of the 

electromagnetic energy to the surface of metal can enhance light amplitude by orders of 

magnitude with interesting applications in biosensing and green energies. However the 

field enhancement comes at a price: metallic losses from electron-electron scattering 

which is the main obstacle for the progress of metamaterials in the optical and IR regime. 

Additionally, due to difficulty in nanofabrication of 3-D metamaterials, the field of 

metamaterial changed direction toward engineering 2-D metasurfaces 
6,7

 which are 

single-layer metamaterials. Plasmonic metasurfaces are already finding applications in a 

variety of areas such as light manipulation 
8–15

, biochemical sensing
15–17

, nonlinear optics 

18,19
 and spectrally-selective thermal emission

20
  to name just a few. Ultra-thin optical 
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components such as optical lenses
21,22

, wave-plates
23

 and beam steering devices
8,24

 are 

some of the recent examples of employing metasurfaces for molding the flow of light.  

 

1.3 TECHNOLOGICAL OPPORTUNITIES IN THE MID-INFRARED RANGE  

The scalability and universality of the metasurface design enables their 

deployment across the entire electromagnetic spectrum. Especially attractive are the 

metasurfaces designed to operate in the mid-infrared (mid-IR) part of the optical 

spectrum. That is due to two factors:  the variety of technological applications and the 

limited choice of conventional optical components in the mid-IR spectral region. For 

example, the          spectral range hosts important bio-molecular and chemical 

fingerprints
16

 that are being exploited for ultra-sensitive fingerprinting and 

characterization of  molecular monolayers
9,12

.  In addition, the atmospheric transparency 

windows of         and          are exploited for a variety of thermal 

imaging applications
25,26

 . These unique properties of infrared radiation are now used to 

address crucial health, security, and environmental applications 
14,27–30

, but more rapid 

progress is impeded by the limited availability of passive and active mid-infrared devices 

and components such as  sources and detectors 
31–35

, as well as optical modulators and 

switches
36–43

. This niche can be potentially filled by active plasmonic metasurfaces. 

 

1.4 ACTIVE METASURFACES 

Plasmonic enhancement of light-matter interaction improves the performance and 

reduces the sizes of detectors
44–46

 , sensors 
47–49 

and lasers
50

. When integrated with 

electrically or mechanically tunable materials or substrates, plasmonic metasurfaces can 
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assume the role of a versatile platform for developing dynamically tunable optical 

devices, thus paving the way for a variety of technological applications in hyper-spectral 

imaging
51

, single pixel detection
52

, and 3D imaging
53

, as well as optical modulators and 

switches 
36–43

.  

1.4.1 Response time  

Active control of light required an active material with tunable index of 

refraction. Slow physical processes result in slow devices. Examples are materials where 

index change is due to change in temperature or alignment. A few examples are devices 

that operate based on liquid crystals
36

, advanced materials exhibiting metal-insulator 

phase transitions
38

, and mechanically stretchable elastomeric materials
54

. On the other 

hand, if the tunability comes from the electronic properties of material, the response 

could be potentially high-speed. Semiconductor interfaces controlled through 

electrostatic carrier depletion 
40,43,55

 and graphene are two important examples.  

 

1.4.2 Semiconductors as active materials:  

Semiconductors have been used as active materials to modulate the terahertz 

waves. By fabricating electrically connected metrasurfaces on top of a doped 

semiconductor, it was possible to modulate the charge carrier concentration of the 

semiconductor below the metasurface
55

. This can be achieved by applying a voltage 

between the metasurface and the doped semiconductor. This concept was also used in the 

mid-infrared regime but resulted in a weaker modulation
43

.  
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1.4.3 Graphene as an active material  

An emerging material is graphene, a 2-dimentional monolayer of carbon which 

has a linear electronic dispersion that makes it a unique material with exotic properties 

such as large mobility and zero energy bandgap. Graphene charge concentration can be 

tuned by electrostatic gating with an ultra-fast speed limited to the circuit time constant. 

However graphene as well as depletion type semiconductor devices have small effect in 

the near infrared and mid-infrared regime and an optical modulator based on these 

materials would have shallow modulation depth and narrow bandwidth. The limited 

effect of the single layer graphene (SLG) on plasmonic metasurfaces in mid-IR is due to 

two factors: (i) relatively broad plasmonic resonances in that spectral range 
56

, and (ii) 

weak absorption of graphene in mid-IR due to the absence of interband transitions 
57

. 

However due to small loss in the mid-IR graphene has a plasmonic response and behaves  

primarily inductive in this regime
57

.  

In this dissertation, we use graphene as our active material and study the 

amplitude and phase modulation as well as detection of mid-IR light using graphene-

based active metasurfaces. By integrating graphene into a plasmonic metasurface, it is 

possible to enhance the light-matter interaction by orders of magnitude and observe 

stronger modulation of amplitude and the phase and photo-responsivity.  

 

1.5 APPLICATION OF MODULATORS AND PHOTO-DETECTORS IN HIGH-SPEED 

COMMUNICATION SYSTEMS  

As previously mentioned, fiber optics is becoming the dominant method of the 

high-speed communication systems. In Fig. 1.1, the block diagram of a fiber 
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communication system is shown which consists of a transmitter, a receiver and optical 

fiber as the transmission medium.  

 

 

Figure 1.1: The block diagram of optical fiber communication system. A transmitter 

consists of an optical source, a coder and an optical modulator whereas a 

receiver is comprised of a photo-detector, and amplifier/shaper module and 

a decoder.  

As the figure suggests, optical modulators and photo-detectors are the heart of the 

transmitters and receivers. The following summarizes data transmission on fiber optics 

network. First a coder, convert the analog data e.g. audio/video to digital pulses. Next an 

optical modulator converts the digital data (electrical) to optical pulses which transmit 

over the fiber and are detected by a photo-detector. The detected signal is amplified and 
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shaped to recover the original digital data. Finally a decoder reproduces the input 

audio/video data.  

A transceiver is a dual-purpose equipment that consists of a transmitter and a 

receiver. The extension of the fiber to the end-user is possible by high-speed transceivers 

which will boost the downstream and upstream speed of communication and internet 

systems dramatically.  

 

1.6 OPTOELECTRONIC APPLICATIONS OF GRAPHENE-BASED ACTIVE METASURFACES; 

OPPORTUNITIES AND CHALLENGES 

1.6.1 Amplitude modulators  

Amplitude modulator is an important module in optical transceivers which are a 

necessary component of fiber communication systems. The artwork in Fig. 1.2 is an 

example of a graphene based active metasurface which functions as a modulator: 

converts the coded electrical signal (showed by green numbers) to optical pulses. A fiber 

is used to bring a continuous beam of light to the device as shown on the left. The device 

is a plasmonic metasurface integrated with graphene similar to a MOSFET transistor 

where the gate voltages tunes the channel (graphene) properties. The plasmonic 

metasurface enhances the light interaction with graphene, thereby the gate voltage can 

tune the light amplitude. Strong modulation allows switching of the light which can be of 

great interest if it is done at high-speeds of telecommunication systems.  
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Figure 1.2: An optoelectronic device that can strongly modulate (switch) the incident 

light and functions as a transmitter. The device is a graphene-based active 

metasurface similar to a MOSFET transistor with graphene playing the role 

of the channel. The device functions as a transmitter that converts the coded 

electrical voltage of the gate (shown by green numbers) to optical pulses.  

 

Modulators are also important in high-speed tuning of the power of a light source 

i.e. a laser, without altering the laser input power. It has been shown that tuning of the 

mid-IR light using graphene-based active metasurfaces can be broad and ultra-fast
58,59

. 

However the modulation depth in these works did not exceed 30% calling for new 

designs that allow higher modulation depth of 10dB and higher required for switching of 

the light.  

1.6.2 Phase modulators 

Another application of metasurfaces is in shaping the wave-front of the 

electromagnetic waves. This requires local control over amplitude and phase. 

Conventional optics uses propagation effect to gradually modify the light beam e.g. 

10100101001 
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metamaterials with spatially varing indices can steer and control beam in applications 

such as optical cloaking
3,60

 and superlens
61

. Metasurfaces on the other hand are able to 

introduce an abrupt change in optical properties which originates from the interaction of 

light with subwavelength antenna arrays. These arrays can have spatially varying optical 

response which provides great flexibility in  molding the wavefront with applications in 

holograms
62–66

 ,beam steering
67

 and optical devices such as lenses
21

, axicons 
68

 and 

waveplates 
23

. The recent progress on active metasurfaces is promising to bring dynamics 

to these applications making them more even appealing for technological use. To achieve 

this goal, it is necessary to use a design where the properties of the active material can be 

independently modulated across the array. An array of graphene ribbons with each ribbon 

attached to a separate voltage can be an example of in-homogenous gating of an active 

metasurface. But as a first step, we study active metasurfaces with homogenous gating.    

Although there has been a few experimental demonstration of phase modulation 

in the terahertz regime using terahertz time-domain spectroscopy
55,69

, to our knowledge 

there has been no experimental study on phase modulation using active metasrufaces in 

the mid-IR. Liquid crystals are the common technology for phase modulation in the mid-

IR range due to their ability to induce    phase shift at high transmission amplitudes. 

However liquid crystals have several fundamental molecular vibration bands and 

overtones in the mid-wave Infrared          and long-wave Infrared           

which contribute to high absorption coefficient and hinder its widespread application. 

More importantly, the response time of this class of active material is limited to          

milliseconds
70

. Therefore, graphene-based active devices can be an interesting alternative 

due to their high-speed potentials, lack of intrinsic absorption bands and possibility of 

high-transmission. However as mentioned before, graphene has weak effect in the mid-IR 
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range. The integration of graphene to a plasmonic metasurface can potentially solve this 

problem. In this dissertation, we report the measurement of graphene-induced phase 

modulation in the mid-IR range which to our knowledge is the first time. The graphene is 

integrated into a plasmonic metasurface to enhance the phase modulation in the 

wavelength of our interest.  

1.6.3 Photo-detectors  

Graphene can also be used as a photoconductor. Graphene photo-detectors are 

interesting for two reasons (i) graphene has zero  energy bandgap therefore can be 

utilized as a wide-band detector. (ii) photodetectors based on graphene can be ultra-fast. 

Several mechanism have been suggested for photodetection using graphene including 

photovoltaic effect
71

, photo-thermoelectric effect 
72

, bolometric effect
73

 and photogating 

effect
74

. I will focus on the photovoltaic effect in this dissertation that is based on 

separation of photo-generated electron-hole pairs by the built in electric field at the 

junction between n or p-doped graphene and metallic contacts. A source-drain bias can 

achieve the same effect through external electric field although it will generate a dark 

current since graphene is a semi-metal.  

A single layer graphene (SLG) can absorb 2.3% of the incident light which is 

remarkably high for an atomically thin material. However for applications such as 

photodetectors it is highly desirable to enhance the absorption. SLG has been integrated 

into optical microcavities
75,76

, planar photonic crystal cavities
42

, optical waveguides
77

 and 

plasmonic nanostructures
78

 to enhance the absorption of light. In another work, the 

graphene plasmons on an array of nano-ribbons were employed as a photodetector due to 

large field enhancement that originates from the confinement of the plasmons to a 

graphene surface
79

. In a recent article, it was shown that a metasurface can enhance the 
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absorption and collection efficiency of graphene photodetectors
71

. However the 

photocurrent generated in this work was less only 12mA/W which cannot nearly compete 

those achieved via graphene photo-transistors       
74

 and regular silicon photodiodes 

         (although that detects      ). This calls for better metasurface designs 

with higher responsivities.  

 

1.7 THE ORGANIZATION OF THE DISSERTATION   

In chapter 2, I review the physics of graphene and its exotic properties. In 

particular the optical properties which is relevant to this dissertation will be studies in 

depth. 

In chapter 3, Fano resonance will be discussed. Electromagnetically induced 

transparency as a special case of Fano resonance will be reviewed.  

In chapter 4, I study amplitude modulation of mid-IR light by graphene 

integration into plasmonic metasurface.  A Fano-resonant metasurface is used to enhance 

the light matter interaction. It is shown that by changing the graphene charge 

concentration the amplitude can modulate by 10 times resulting in 10 dB modulation 

depth. A new method for determining the collisional time of graphene charge is proposed 

which matches the results of electrical transport measurement. Substrate effect on the 

quality factor of the the Fano-resonant mode is studied.  

In chapter 5, I use a Michelson interferometric system for measuring the phase 

modulation induced by an active graphene metasurface. I show that it is possible to use 

the device for potentially ultra-fast electrical calibration of a laser interferometric setup. 

Such a system can be used for high-speed motion detection. I finally demonstrate the 
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tunable ellipticity of the reflected wave for a 45  incident polarization with potential 

applications in polarization-division multiplexing and ultrathin tunable waveplates  

In chapter 6, a Fano-resonant metasurface is designed to improve both the 

absorption and collection efficiency of graphene photo-detectors. The metasurface has a 

drain and source electrode on each unit cell which facilitates the immediate collection of 

the photogenerated electron-hole pairs. Numerical simulation can estimate the the dark 

current flowing on graphene and the absorption enhancement. A circuit analysis can 

provide an analytic expression for responsivity. A comparison between a graphene 

photodetector with and without metasurface can calculate the responsivity improvement 

by the metasurface.  

In chapter 7,  I will study the substrate effect on the quality factor of the fano 

resonances and I will demonstrate the possibility of all optical measurement of carrier 

scattering rate. 

In Chapter 8, I go over the simulation process used in this dissertation, show the 

simulation domain and provide details about data analysis used for calculation of spectral 

response of metasurfaces.  

In chapter 9 I conclude the dissertation by summarizing the findings and discuss 

the prospect for future works.  
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Chapter 2: Graphene properties 

Since being introduced in 2004
81

, graphene has been an important frontier in 

science due to interesting electronics, optical and mechanical properties which makes 

them relevant to these fields. These properties has been studied in the literature in depth. 

Here I focus on the electronic and optical properties that are relevant to my research.  

 

 2.1 ELECTRONIC PROPERTIES   

2.1.1 Electronic dispersion  

Graphene has a hexagonal lattice of     hybridized carbon atoms with two atomic 

basis A and B in a unit cell as shown in Fig 2.1. The size of C-C atomic bound    and the 

lattice constant   are          ̇ and         ̇ respectively and the primitive lattice 

vectors are     (
√ 

 
 
 

 
)      (

√ 

 
  

 

 
).  

 

 

Figure 2.1: Graphene lattice with two atomic basis A and B shown by the blue and red. 

The closest atomic distance          ̇ and the lattice constant is   
      ̇. Picture taken from Ref[82] 
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Starting from these lattice vectors and using tight binding approximation, the band 

structure can be derived as
83

: 

     √      (
√ 

 
   )    (

 

 
  )        

 

 
     (2.1) 

Where    is the hopping energy between nearest carbon atoms and    and    are 

the momentom in   and y directions. The energy band diagram is shown in Fig 2.2a 

which shows a hexagonal Brillouin zone. The conduction and valence band cones meet at 

6 points in the reciprocal lattice known as K points as shown in Fig. 2.2a. The energy 

band is linear close to the K points and can be described by:  

                                                   | |          (2.2)           

where   is the Planck constant,    
√ 

 
                is the Fermi velocity in 

graphene and   is the momentum reference with respect to K point. This linear dispersion 

implies that the effective mass of charges are zero in monolayer graphene which is the 

reason behind the novel electronic and optical properties of graphene i.e. the large 

mobility and wideband interband absorption of graphene. Fermi energy which is the 

energy of the highest level of occupied quantum state at the absolute zero temperature 

can be described by       √     where    is charge carrier concentration on 

graphene. Graphene is electron-doped if electrons are occupying the conduction band and 

is hole-doped otherwise as shown in Fig. 2.2b.    
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Figure 2.2: (a) Energy-momentum dispersion of monolayer graphene (in units of 𝛄𝟎) 

calculated using tight binding method with γ0=2.7 eV. The magnified view 

of the energy bands shows the energy-momentum dispersion is linear close 

to the Dirac point (Figure and caption adapted from Ref [84]) (b) Energy 

band for electron-doped graphene (left) and hole-doped graphene (right) 

2.1.2. Electrical transport 

Graphene exhibits excellent transport properties. The ballistic transport occurs 

when the charges are not impeded by substrate impurities and phonons and experience no 

backscattering. The charges move at a velocity of              with elastic mean 

free path of few hundreds of nanometers in clean samples. For graphene, the electron 

scattering from acoustic phonons is weak and the scattering from optical phonon is only 

important for energies higher than          . In long graphene channels however, the 
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transport becomes diffusive
85

 due to elastic and inelastic scatterings. The elastic 

scattering are due to coulomb scattering from charged impurities (mainly the trapped 

charges in the insulating substrate
86

), defects and adsorbates, surface roughness and 

ripples of graphene
84

. Graphene phonons result in inelastic scattering
87

. In addition the 

insulating substrate`s surface phonons which are thermally excited can generate electric 

field that extends away from the surface and can couple to graphene carriers which leads 

to scattering
88

. The semi-classical diffusive conductivity of graphene can be described 

by
86

:  

                       
     

 

 

   

  
             (2.3) 

 In eq. 2.3,          are the spin and valley degeneracy factors and   is the 

scattering time. By measuring the conductivity of graphene as a function of the Fermi-

energy (I-V measurement) the scattering time can be estimated.  

2.2 OPTICAL PROPERTIES 

The electrical and optical properties of materials are closely related. The optical 

absorption in graphene depends on the Fermi energy of electrons as detailed in this 

section. The absorption of un-doped graphene at zero kelvin temperature is frequency 

independent and can be described by           where      ⁄      ⁄  is the 

fine structure constant
89

 (see Fig. 2.3a).  
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Figure 2.3: (a) Transmission through a monolayer and bilayer of graphene along the 

yellow line. The picture is taken from Ref [89] (b) interband transition for 

photon energies higher than     (green arrow). Pauli blocking for energies 

smaller than    .  

The light-graphene interaction is strong, for comparison 20 nm of InGaAs would 

be required to absorb the same amount of telecommunication wavelength,         . 

Optical losses of graphene strongly depend on the carrier concentration (Fermi energy) 

and mainly originate from two distinct mechanisms:  

1) Interband losses: If the energy of the photon is larger than     (      ), 

the photon can excite an electron from the valence band to the conduction 

band which is called interband transition as shown in Fig 2.3b. 

2) Intraband losses: Graphene plasmons  lose energy to electrons scattering 

from charged impurities, defects and phonons as detailed in 2.1.2. This 

transition will keep the electron in the conduction band and is called intraband 

transition. The random phase approximation
90

 provides an analytical 

expression for these two transitions:  
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In eq. 2.4,    is the Boltzmann constant,   is the temperature,   is the 

frequency of IR light, and   is the free carrier scattering rate.  

The real (lossy) part of graphene conductivity for the interband and intraband 

transitions have been demonstrated in units of universal optical 

conductivity        ⁄  in Fig. 2.4a,b respectively as functions of the 

wavelength        . The temperature has been assumed to be room 

temperature (     ). The scattering time of         (corresponding to the 

carrier scattering rate            ) was chosen. 

 

 

Figure 2.4: The real part of optical conductivity as a function of wavelength for different 

Fermi energies. (a) the interband (b) The intraband components of loss in 

units of         ⁄ . The legend in (b) lists the values of Fermi 

energy/carrier concentration for each color.  
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From Fig 2.4 it is apparent that the optical loss strongly depends on the carrier 

concentration of graphene and wavelength. In the mid-IR range which is the wavelength 

range of our interest, as the Fermi energy increases the interband loss decreases due to 

transition to the Pauli blocking regime where        and the optical excitation  is 

avoided (the red arrow in Fig 2.3b). For example at      , the interband loss drops 

significantly for Fermi energies higher than          . However the intraband losses 

increase for higher dopings which is due to higher rate of scattering occasions at larger 

carrier concentrations. 

  

   2.2.1 Graphene plasmonic properties  

 Graphene is a semi-metal and can be assumed as a conductor. Therefore it has 

both resistive and reactive properties which is reflected in the real and imaginary part of 

the conductivity in the random phase approximation formalism. In Fig. 2.5 the ratio 

between imaginary and real part       ⁄  is shown as a function of wavelength and for 

different Fermi energies at zero temperature. This ratio is less than one for the visible 

range and far infared as shown by the striped regions, which implies that graphene is 

mainly lossy (resistive) in these regimes. The dominant loss in the visible and far-infared 

regions are the interband and intraband transitions respectively. However in the mid-IR 

regime, this ratio can be large which means graphene is primarily inductive and due to 

small losses can behave like a plasmonic material. Graphene becomes increasingly 

metallic as the Fermi energy acquiring qualities of metals such as inductive and 

plasmonic properties. Therefore, graphene has unique properties in mid-IR and the 

interaction of graphene with the electromagnetic field of a resonant element at frequency 

   √  ⁄  will induce a frequency shift due to the graphene perturbation in the 
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inductance. By tuning the graphene inductance it`s possible to manipulate the resonance 

frequency of the resonant element which is the strategy used in dissertation to manipulate 

the amplitude and phase of the mid-IR light.   

 

 

Figure. 2.5: Optical response of moderately doped graphene in different spectral ranges: 

A mid-IR window, with dominantly plasmonic response, inside the entire 

optical spectrum with dominantly lossy behavior. Plasmonic and lossy 

regimes are shown by arrows on the top for a graphene with EF = 0.4 eV. A 

narrow spectral range at which graphene behaves as a dielectric occurs at 

      ⁄  inside the low wavelength lossy regime. The graphene 

intraband scattering rate was assumed to be   = 269 cm−1. (The figure and 

caption take from Ref [91].  

2.3 TUNING CARRIER CONCENTRATION  

Being a conductor, graphene can screen the electrostatic fields. The two 

prominent scheme for gating graphene are back-gating and top-gating as depicted in Fig 

2.6. The common approach is to transfer graphene onto a highly doped silicon substrate 
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with an insulator between Si and graphene. Applying a gate voltage     between silicon 

graphene will vary the electrostatic fields         in the insulator and the graphene 

electron (hole) concentration per area:              that screens the fields. Here C and 

  are the capacitance per area and the thickness of the insulator layer respectively. 

Similarly, a voltage  between graphene and a top-gate     can induce carrier 

concentration of              on the graphene below the top-gate. Using these two 

approaches, one can tune the carrier concentration of graphene at a speed limited by the 

time constant of the circuit. Here for simplicity, we assumed that the insulator does not 

have any impurity. For practical substrates, the impurity sites trap charge carriers which 

will induce a residual charge on graphene. This effect will be elaborated in section 4.8.  

 

Figure 2.6: Schematic for back-gating and top-gating. A back-gate voltage between 

highly doped silicon and graphene induces electrostatic fields in the 

insulator that are screened by a carrier concentration that is proportional to 

the back-gate voltage    . Similarly a voltage     can induce charges on 

graphene below the top-gate.   
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2.4 GRAPHENE FABRICATION TECHNIQUES  

Several methods have been proposed for graphene fabrication. Some of the more 

established methods include micromechanical exfoliation of graphite, graphite oxidation, 

synthesis of graphene by chemical vapor deposition (CVD) method, electric arc graphene 

production, thermal decomposition of silicon carbide and epitaxial growth of graphene on 

metal surface
92

. In this dissertation, we used CVD graphene which is widely used for the 

synthesis of carbon nanostructures. In particular, the method is employed to fabricate 

large-area graphene which is important in our research since the bi-periodic metasurfaces 

are tens of microns in each dimension. The technique is based on the possibility of 

thermal catalytic decomposition of gaseous hydrocarbons on the surface of some metals 

with the formation of various nanocarbon structures
93

. The detail of fabrication stages 

and transfer technique used in this dissertation is available in appendix B.  

2.5 CONCLUSIONS  

Graphene exhibits outstanding electronic properties such as large mobility which 

stems from its unique linear dispersion. In large graphene channels, the electrical 

transport is diffusive and limited by the elastic and inelastic scattering of the charge 

carriers. The electrical properties can be described by a semi-classical diffusive 

conductivity as a function of Fermi energy and scattering time. The later can be derived 

from electrical transport (I-V) measurements. The optical properties of graphene strongly 

depends on the Fermi energy of the carrier and can be described by interband and 

intraband transitions in a random phase approximation. In the mid-IR regime, graphene 

experiences small optical loss compared to the visible and far-IR/terahertz region and 

behaves primarily as an inductor. By varying the Fermi level, graphene can be treated as 
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a tunable inductive perturbation to an optical cavity and facilitate the design and 

fabrication of ultrathin tunable optical devices.    
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Chapter 3:  Fano resonance 

 

3.1 INTRODUCTION:  

One of the interesting concepts in study of light-matter interaction is the Fano 

interference. This phenomena was originally discovered by Fano in quantum physics to 

describe the asymmetrical shape of ionization spectral lines of atoms and molecules
94

. A 

higher energy photon ionizes an atom by two different mechanisms. i) Direct optical 

excitation of an electron from its bound state to the unbound state and ii) Indirect 

excitation of two electrons into an intermediate bound state, followed by an Auger-like 

electron ejection. The first process is non-resonant and exists as long as the photon 

energy exceeds the excitation threshold. However the second process requires the 

electrons to be excited into a well-defined auto-ionizing state and therefore is resonant. 

The ionization cross section exhibits an asymmetrical dependence on the photon energy 

due to quantum mechanical interference between these two processes. In analogy, wave 

interference can give rise to Fano resonance in photonic systems. In principle the 

interference between a bright mode with a short lifetime with a dark mode with a long 

lifetime leads to a Fano resonance. The bright (dark) mode has a strong (weak) radiative 

coupling to the incident light, however the dark mode is only allowed to couple to the 

bright mode via near-field. As a consequence, the incident photons can get trapped in the 

dark mode for a long time before they couple back to the bright mode and radiate to the 

continuum or decay into the non-radiative (ohmic) channels. This will enhance the light-

matter interaction in the spectral vicinity of the dark mode. This concept is illustrated in 

Fig. 3.1 for two adjacent dipole antennas which supports two eigenmodes. A dipole 

(bright) mode that can couple to the far field  and a quadrupole (dark) mode which cannot 
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couple to the far-field and the dipole mode due to anti-symmetric change distribution. 

However, by adding an asymmetry to the structure as shown on the right, the dipole and 

the quadrupole mode start interacting in the near-field as their overlap integral is now 

non-zero. This energy transfer between the dipole and quadrupole mode enhanced the 

light-matter interaction as detailed in the proceeding sections.  

 

 

Figure 3.1: The eigenmodes of a double antenna structure (left). The coupling of the 

quadrupole mode to the far-field is forbidden due to anti-symmetric charge 

distribution. Adding an asymmetry to the structure ( right) will allow near-

field interaction between the dipole and the quadrupole mode. Figure taken 

from Ref [95].   

3.2 ANALYTICAL MODELING   

The interference of two coupled photonic resonators can be best modeled in the 

framework of temporal coupled mode theory
96

. It is assumed that the bright mode with 

the natural frequency of    and the lifetime of    can directly couple to the incident light 

while the dark mode with natural frequency of    the lifetime of       can only be 

excited though coupling to the bright mode. The equation of temporal coupled mode 

theory can describe the dynamics of such two-mode interaction
97

:  

  ̇          
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                                     ̇          
                                       (3.1)               

 In eq. 3.1,    and    are the field amplitude for the bright and dark modes.     

and   are the amplitude and frequency of the incident field,    is the coupling strength of 

the bright mode to the incident wave,   is the coupling strength between the two 

resonators. Eq. 3.1 is normalized in such a way that the incident power is |   |
 
energy 

stored in the bright and dark modes are |  |
 and |  |  respectively. It is assumed that the 

bright mode can radiate into reflection and transmission in a symmetric way, therefore 

the scattered waves can be expressed as:      
    and          

   . The 

reflection and transmission coefficients can be consequently described as
97

:  

  
  

   
 

  |  |
          

   

         
            

   
 

      
  

                                                        (3.2) 

Also the lifetime of the modes can be derived in terms of radiative    and ohmic 

lifetimes   :  

                                           ⁄      ⁄    ⁄                                   (3.3)                                                                     

In Fig. 3.2 the reflectance and transmittance spectra described by eq. (3.2) is shown for 

different values of spectral detuning         between the bright and the dark 

resonance. The frequency of the bright resonance    is assumed to be fixed while    is 

changing.  
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Figure 3.2: Reflectance and transmittance spectra of a Fano-resonant system from eq. 3.1 

and 3.2 with finite ohmic losses. The three curves correspond to spectral 

detuning of                 as shown by the red,green and blue curves 

respectively. The parameters used are the following:   
       ,   

  
  

         and         . Figure taken from Ref[97]. 

The strongly asymmetrical scattering spectra for       is the characteristic of 

the Fano interference between the modes. The particular case that the two resonances 

have identical spectral position       is referred to as electromagnetically induced 

transparrency (EIT) which is distinguished by the symmetrical line-shape (green curve) 

and maximum transmittance at the resonance. Without the coupling between the 

resonances     ),  only a transmission minimum would be observed due to excitation 

of the bright mode.  



29 

 

3.3 LIGHT-MATTER INTERACTION ENHANCEMENT 

As mentioned earlier incident photons that can couple to the dark mode through 

Fano interference, will be stored in the mode for      . Therefore, the energy stored in 

the dark resonance is much larger than that of the bright mode. In Fig. 3.3, the total stored 

energy in the system: |  |
  |  |  is shown as a function of incident frequency 

normalized to the frequency of the bright mode. The red curve shows the total stored 

energy which has very high value at      which results in large enhancement of the 

optical near field. This field enhancement can be used in sensing protein monolayers
14

, 

gas-sensing
98

 and single-layer graphene
57

 just to name a few.  

  

 

Figure 3.3: The total stored energy in the resonators as a function of normalized 

frequency    ⁄ . The reflectance is shown by the free curve. The figure has 

been taken from Ref [97].  
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3.4 DOUBLE-LORENZIAN REPRESENTATION:     

The Fano expression for the reflection coefficient can be simplified to a double-

Lorenzian by assuming that the coupling coefficient   is frequency-independent and the 

coupling is weak (| |  | |   , which corresponds to the case that the dark mode has a 

high quality factor. The double-Lorenzian expression reads
97

:  

        
  

     ̂    ̂ 
   

  

     ̂    ̂ 
                                (3.4)  

The new parameters of complex amplitude      and frequency  ̂    are related to 

the parameters of the Fano model in the following manner:  

 ̂            
  

 ̂
 ,         (3.5) 

  ̂   
       

      
  

 ̂
 , 

While the effective radiative coupling parameters are:  

   |  |
 (

 ̂    

 ̂     ), 

   |  |
 (

  

 ̂     )          (3.6) 

In eq. 3.5 and 3.6,  ̂              
     

    is the complex spectral 

detuning. Also      are complex values where  |  | and |  | is the radiative coupling 

amplitude of the bright and the dark mode.  

The bi-resonant expression of eq. 3.4 can fit to the experimentally measured 

scattering spectrum and derive the frequency and the lifetime of the resonances. This 

provides a platform for spectroscopic characterization of e.g. an analyte added to a 

plasmonic metasurface which exhibits Fano resonance. As an example, the complex 

conductivity of a single layer graphene was characterized by estimating the spectral shift 

and lifetime modification of a Fano resonance
57

. It must be noted that double-Lorenzian 

eq. 3.4 can be extended to the case of triple-Lorenzian to model a double-Fano resonance 

system.  
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3.5 CONCLUSION 

We provided a general picture of Fano interference and used a couple mode 

theory to analytically model this important phenomena highly used in light-matter 

interaction. The coupled mode theory can be a useful tool in study of plasmonic 

metasurfaces with Fano-resonance or metasurfaces that are interacting with a material 

resonance. In the next chapter, we use a triple-Lorenzian to fit to the experimentally 

measured reflectivity spectra of a metasurface which supports two Fano resonances. The 

metasurface is functionalized by graphene which tunes the resonance frequency, lifetime 

and coupling amplitude, upon applying a gate voltage to the graphene. The coupled-mode 

model enables tracing these resonance parameters as a function of the gate voltage. By 

using a perturbation method, we are able to calculate an important property of graphene: 

the scattering (collisional) time of the carriers. 
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Chapter 4:  Electrical Switching of In1frared Light Using Graphene 

Integration with Plasmonic Fano Resonant Metasurfaces 

4.1 INTRODUCTION 

As mentioned in chapter 1 and 2, graphene has been recently center of attention as 

a promising optoelectronic material because its optical properties can be rapidly and 

dramatically changed using electric gating. Graphene’s weak optical response, especially 

in the infrared part of the spectrum, remains the key challenge to developing practical 

graphene-based optical devices such as modulators, infrared detectors, and tunable 

reflect-arrays.  In this chapter, it is experimentally and theoretically demonstrated that a 

plasmonic metasurface with two Fano resonances can dramatically enhance the 

interaction of infrared light with single layer graphene.  Graphene’s plasmonic response 

in the Pauli blocking regime is shown to cause strong spectral shifts of the Fano 

resonances without inducing additional non-radiative losses. we experimentally 

demonstrate that, by integrating an SLG with a high-Q Fano-resonant metasurface, it is 

possible to modulate mid-IR reflectivity an order of magnitude (     ), thus achieving 

the modulation depth as high as 90% using electrostatic gating. This is accomplished by 

designing a metasurface that exhibits a spectrally narrow reflectivity  dip. The strong 

enhancement of the electric field parallel to the SLG’s surface is shown to result in strong 

graphene/metasurface coupling that inductively (i.e. essentially losslessly) shifts the 

plasmonic resonances of the metasurface by approximately half of the spectral width. The 

                                                 
1 Dabidian, N.; Kholmanov, I.; Khanikaev, A. B.; Tatar, K.; Trendafilov, S.; Mousavi, S. H.; Magnuson, 

C.; Ruoff, R. S.; Shvets, G. Electrical Switching of Infrared Light Using Graphene Integration with 

Plasmonic Fano Resonant Metasurfaces. ACS Photonics 2015, 2 (2), 216–227 

 

The role of co-authors in this works was as follows: Kholmanov and Magnuson fabricated and transferred 

CVD graphene, Khanikaev and Mousavi designed the C-shaped metasurface, Tatar did all the coupled-

mode fittings in this chapter. Trendafilov confirmed the theoretical simulations.   
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resulting electrically controlled deep modulation of the reflected IR light is caused by the 

said spectral shift which is determined by graphene’s optical conductivity       and 

controlled by varying the charge carriers concentration       in the SLG by applying a 

variable back-gate voltage   .  

We also use first-principles electromagnetic simulations to demonstrate that the 

phase and amplitude of the reflected light can be dynamically varied independently of 

each other. Phase modulation (PM) at the specific wavelength   
  can be accomplished 

by keeping the amplitude   of the reflected light constant while varying its phase    as a 

function of   . Similarly, amplitude modulation (AM) can be accomplished at the specific 

wavelength   
  . Similar amplitude and phase modulation can be accomplished in 

transmission, thus paving the way for infrared rapidly tunable reflect- and transmit-

arrays.  The effects of graphene’s strong coupling to the metasurface on the optical 

response (i.e. the wavelength-dependent reflectivity/phase and the linewidth of the 

reflectivity peak) are investigated by varying the charged carriers’ concentration in the 

electrically gated SLG. 

Finally, we experimentally demonstrate the possibility of all-optical measurement 

of the free carrier collisional time  86
 which appears in the Drude expression of intraband 

conductivity of graphene. A simple procedure for extracting   from the reflectivity 

spectra of the integrated graphene/plasmonic metasurface is described. This procedure is 

valid in the low optical frequency regime, where graphene’s optical conductivity is 

dominated by graphene’s Drude response. It is demonstrated that this extracted carrier 

scattering time is consistent with that obtained using dc conductivity measurements.  
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4.2  SWITCHING STRATEGY 

  Because the main motivation of this work is the development of an efficient 

electrically controlled IR modulator, we start be reviewing the desired properties of such 

device. A conceptual example of a reflection modulator is shown in Figure 4.1a, where 

the wavelength-dependent reflectivity      from a frequency-selective metasurface can 

be spectrally shifted from the on- to the off-state by some non-optical (e.g., electrical) 

means. Ideally, at the targeted wavelength  , such modulator would have a relatively high 

on-reflectivity        and very low off-reflectivity         in its off-state. The spectral 

shift could be caused, for example, by applying back-gate voltage    to the layer of 

graphene as shown in Figure 4.1b. The performance of such modulator would be 

characterized by the modulation depth (MD) defined as    (         ⁄ )      . 

A high-performing modulator must have       . 

 

 

Figure 4.1 (a) Conceptual schematic of an efficient light modulator based on a 

frequency-selective tunable reflector. Key features:  narrow linewidth, large 

spectral shift, and zero reflectivity at the targeted wavelength. The HWHM 

of the reflectivity peak (      is shown by the black arrow (b) The 

realization based on a Fano-resonant metasurface integrated with graphene. 

Spectral shifting is achieved by back-gating of the graphene underneath the 

metasurface.  
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It follows from Figure 4.1a that the metasurface and its reflectivity      must 

satisfy the following requirements: (a) narrow linewidth      that can be bridged by 

graphene-induced spectral shift   ;  (b) strong concentration of the optical energy by the 

metasurface capable of producing        , and (c)  near-zero reflectivity in the vicinity 

of the target wavelength  . To satisfy these conditions, we have designed a metasurface 

which exhibits broadband reflectivity that is greatly reduced at the two nearby 

wavelengths due to the phenomenon of plasmon-induced electromagnetically induced 

transparency(EIT)
9,100,101

 which is directly related to
97

  Fano interference.  

4.3  METASURFACE DESIGN 

 The schematic unit cell and the SEM image of the fabricated metasurface are 

shown in Figures 4.2a,b. The unit cell consists of three key elements: (i) a metallic wire 

that electrically connects the neighboring cells in y-direction, and whose functionality is 

to provide broadband reflectivity of the y- polarized light; (ii) a pair of x-oriented 

monopole antenna pairs 
101,102

 attached to the wire, and (iii) a C-shaped antenna (CSA) 

placed in their proximity. The plasmonic metasurface is assumed to be placed on a thick 

SiO2 substrate. In practice, the substrate used in the experiments is a finite-thickness 

(     ) SiO2 grown on a Si wafer, but the oxide layer is thick enough to avoid any 

effect of the Si wafer on optical properties of the metasurface. This metasurface exhibits 

an optical response with two maxima in the transmission spectrum (or two deep 

reflectivity minima) due to Fano resonances, and therefore can be characterized as a 

plasmonic metasurfaces exhibiting double electromagnetically induced transparency 

(double-EIT). This effect is illustrated in Figure 4.2c, where we use a bottom-up 

approach of adding different constitutive parts of the unit cell to illustrate the nature of 

the two resonances as detailed below.  
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First, we note that a grid of plasmonic wires behaves as anisotropic “dilute 

plasma” 
103

 for the y-polarized incident light. Specifically, the structure strongly reflects 

the light with the wavelength   which is longer than the characteristic effective plasmon 

wavelength   
    which is a function of the inter-wire spacing   , wire width  , and the 

frequency-dependent dielectric permittivity       of the underlying substrate. As 

expected, the reflectivity      of the wire array shown as the black solid line in Figure 

4.2c increases as the function of the wavelength and reaches     at        . Next, a 

CSA supporting a dipolar antenna resonance at   is added to the metasurface. The 

destructive interference between anti-parallel currents in the wires and in the CSA for 

     produces a pronounced dip in reflectivity at          as shown by the blue line 

in Figure 4.2c. We refer to this dip as the EIT2.  Although the dip at       is not 

particularly narrow because of the strong coupling between the dipole-active mode of the 

CSA and the plasmonic wire, we demonstrate below that the half width at half maximum 

(hwhm)      of the emerging reflectivity peak can be considerably narrowed by 

employing a second Fano resonance at the shorter wavelength.  

Specifically, by adding the x-directed (horizontal) plasmonic monopole antennas 

to the wire grid, we introduce a second dark (monopole) mode whose resonant frequency 

corresponding to          is primarily determined
101,102

 by the monopoles’ length    

according to     √      . This emergent mode is referred to as the monopole mode 

because of the strong current flow between neighboring monopole antennas. Note that if 

the monopole antennas are equally spaced, that is     (    ), then by symmetry the 

monopole mode is strictly dark (i.e. completely decoupled from the normally incident 

light and the concomitant uniform wire current) in the absence of the near-field coupling 

between the C-shaped and monopole antennas. The symmetry breaking produced by the 
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introduction of the CSA antennas and by the non-equal spacing of the antennas causes the 

narrow-band monopole mode to couple to the broad-band wire grid currents, thus 

producing Fano interference. The destructive Fano interference between the wire current 

and the current flowing between the monopole antennas results in the  short-wavelength 

reflectivity dip at          which is referred to as the first EIT  (EIT1) in the rest of 

the paper. The charge distribution and current profile for the EIT1 dip are shown in 

Figures 4.2e,g respectively.  

The addition of the monopole antennas also has an effect on the dipole mode and, 

by extension, on the EIT2 reflectance dip. By comparing the spectral positions of the 

EIT2 with (red line) and without (blue line) the monopole antennas, we conclude that the 

capacitive coupling between the CSAs and monopole antennas causes the spectral 

position of EIT2 to red-shift. The near-field coupling between C-shaped and monopole 

antennas produce a characteristic quadrupole-like charge distribution shown in Figure 

4.2f  which is responsible for electric field enhancement between the antennas. This field 

enhancement plotted in Figure 4.2d can be exploited in graphene-functionalized 

metasurfaces as explained below. The near-field coupling between the two discrete 

(dipolar and monopolar) modes and the broad-band currents flowing in the plasmonic 

wire grid cause Fano interference. The result of this interference is a double-dip 

reflectivity spectrum shown in 4.2c (red line). Qualitatively, the EIT2 reflectivity dip at 

         is caused by the counter-flowing currents in the CSA and the wire grid 

plotted in  Figure 4.2h.  The resulting narrow reflectivity peak “sandwiched” between the 

EIT1,2 dips at    and    is the main consequence of the double-Fano resonance. It is 

exploited in this work in order to develop a graphene-based reflection modulator.  The 

modulation is accomplished by electrically controlling the conductivity of graphene, 
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which in turn detunes the reflectivity dips by a considerable fraction of the linewidth      

of the reflectivity peak. In order to achieve the largest possible spectral shift of Fano 

resonances by the addition of an SLG placed underneath the metasurface, it is important 

that it experiences the largest possible tangential component    of the electric field. 

Therefore, one of the functions of the metasurface is to produce a strong near-field 

enhancement            
  of the incident electric field      on the surface of 

graphene. This tangential field intensity enhancement, which is proportional to the 

interaction energy between graphene and the metasurface, is plotted in Figure 4.2d as the 

function of the wavelength of the incident wave.  The maxima of   correspond to the 

spectral positions of the Fano resonances
97

. Note that a much stronger tangential field 

enhancement is observed at      compared to     , suggesting that the strongest 

coupling between the metasurface and SLG should be expected at the long-wavelength 

(second) Fano resonance. We also note that the possibility of employing two discrete 

states strongly interfering with a continuum state has been discussed in the original paper 

by U. Fano
94

, and its application to multi-band sensing applications was later 

suggested
104

. Here, we employ the double-Fano resonance for several purposes. First, we 

use the two Fano resonances in order to produce a narrow-band reflectivity maximum 

that can be utilized for dynamic modulation of reflectivity using SLG. Second, we 

experimentally demonstrate a dual-band SLG modulator that produces the highest degree 

of optical modulation at the frequencies corresponding to the two EIT resonances, 

  and   . Third, we demonstrate that the degree of optical modulation (both in amplitude 

and phase), which is proportional to the frequency shifts       due to the SLG’s 

hybridization with the metasurface, depends on the tangential field distribution in 

graphene. For example, the charge distribution on the metasurface corresponding to the 



39 

 

second (long-wavelength) Fano resonance supports a much higher tangential field, 

resulting in        . The consequence of this hierarchy of Fano resonances is that the 

modulation depth around      is larger than that around     . 

 

 

 

Figure 4.2: Design of a metasurface exhibiting double-Fano resonance. (a) Geometry 

of the unit-cell of the metasurface with parameters:              

                        , and       . For the two fabricated 

metasurfaces        and       . The thickness of metal is    
     (5nm Cr+25nm gold) (b) SEM image of the metasurface fabricated 

on top of graphene. Bar: 3μm. (c) Simulated Reflectivity at normal 

incidence for wire grid (black), wire and CSA (blue) and the full structure 

all on the Si/SiO2 substrate. (d) Value of         ⁄  
 integrated over 

graphene surface where    is the tangential electric field. The insets show 

the value of         ⁄  
 for the two modes with the colorbar indicating the 

local values in the gap. In (e) and (f) colors represent    calculated 5 nm 

below the metasurfaces/SiO2 interface for EIT1 (e) and EIT2 (f) excited by a 

y-polarized incident field. The electric current density for EIT1 (g)  and 

EIT2  (h) is plotted inside the metal 5nm above the substrate’s surface.  
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We also note that the possibility of employing two discrete states strongly 

interfering with a continuum state has been discussed in the original paper by U. Fano
94

, 

and its application to multi-band sensing applications was later suggested
104

. Here, we 

employ the double-Fano resonance for several purposes. First, we use the two Fano 

resonances in order to produce a narrow-band reflectivity maximum that can be utilized 

for dynamic modulation of reflectivity using SLG. Second, we experimentally 

demonstrate a dual-band SLG modulator that produces the highest degree of optical 

modulation at the frequencies corresponding to the two EIT resonances,   and   . Third, 

we demonstrate that the degree of optical modulation (both in amplitude and phase), 

which is proportional to the frequency shifts       due to the SLG’s hybridization with 

the metasurface, depends on the tangential field distribution in graphene. For example, 

the charge distribution on the metasurface corresponding to the second (long-wavelength) 

Fano resonance supports a much higher tangential field, resulting in        . The 

consequence of this hierarchy of Fano resonances is that the modulation depth around 

     is larger than that around     . 

 

4.4 COUPLED MODE THEORY DESCRIPTION OF DOUBLE-FANO RESONANCES 

Extending the earlier developed theory
57,97

 of Fano-resonant metasurfaces which 

demonstrated that the complex-valued reflectivity coefficient      from a metasurface 

supporting a single Fano resonance can be described by a two-pole  (double-Lorentzian) 

function, we approximate the reflectivity from a double-Fano resonant metasurface using 

the following triple-Lorentzian function:   

      
  

       
 

  

            
 

  

            
,               (4.1) 
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where       and       are the spectral positions and the lifetimes of the monopole 

(dipole) resonances of the “bare” (i.e. without graphene) metasurface. The first term in eq 

4.1 describes the broadband reflectivity by the plasmonic wires, the second term 

describes the resonant reflectivity by the monopole resonance, and the third term 

describes the resonant reflectivity by the CSA resonance. The complex 

amplitudes   ,  ,   (where          , see the details in the chapter 7) of the 

corresponding modes are proportional to their far-field coupling strength
57,97

. Note that, 

in general, the resonance frequencies do not coincide with the spectral positions of the 

reflectivity dips:            .The corresponding quality factors of the two resonances 

defined as                  will be computed below from the experimental data by 

fitting the reflectivity spectrum            to the |    |  function given by eq 4.1.      

 

4.5  INTEGRATION OF THE METASURFACE WITH GRAPHENE 

The multi-pole expansion of the reflectivity coefficient remains valid after loading 

the metasurface with SLG. The addition of an SLG perturbs the resonant frequencies of 

the modes according to  ̃                 ⁄    ̃    , where the graphene-

induced complex-valued frequency shift   ̃    is calculated 
57

 according to  

  ̃           ∫ |  |
   

 
  

    
⁄  ,     (4.2) 

where                  is the complex-valued surface conductivity of the SLG 

represented as the sum of it resistive and reactive parts,   
    

 is the stored energy of the 

given (monopole or dipole) mode, and the integration is performed over graphene’s 

surface  . 

It follows from eq 4.2 that the addition of graphene has two effects: (a) spectral 

blue-shift of the resonant frequencies      equal to          [  ̃    ]     , and 
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(b) additional spectral broadening of the mode, i.e. the increase of the quantity        , 

which is equal to  (        )     [  ̃    ]     . According to eq 4.2, these 

frequency/lifetime changes are proportional to the square of the tangential electric field of 

each mode on graphene, thus suggesting that the dipole resonance should experience 

larger perturbation that the monopole resonance according to Fig4.2b. Spectral tuning of 

the optical response of the graphene-functionalized metasurface is accomplished by 

injecting free charge carriers into graphene.  

4.6  TUNING OPTICAL PROPERTIES OF GRAPHENE  

As explained in chapter 2, Graphene’s optical conductivity         can be 

described by random phase approximation (eq. 2.3) which provides the frequency-

dependent conductivity in terms of Fermi energy, scattering time and temperature. The 

real and imaginary parts of the graphene conductivity        , measured in the units of 

universal optical conductivity        ⁄ , are plotted in Figures 4.3a,b respectively, as 

functions of the wavelength        . The scattering time         (corresponding 

to the carrier scattering rate            ) was assumed. A dip of     is observed at 

intermediate wavelengths (e.g.,      ) due to the Pauli blocking of loss-inducing 

interband transitions. The plasmonic response of graphene can be quantified by the ratio 

        ⁄  
57

, which was recently measured by launching graphene plasmons using near-

field scanning optical microscopy
105

. As Figure 4.3c shows, the higher the charge 

concentration, the larger this ratio becomes, making graphene increasingly plasmonic. 
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Figure 4.3 Optical properties of graphene. (a) Real and (b) imaginary parts of 

graphene’s optical sheet conductivity          calculated from eq 2.4 for 

different values of graphene doping. (c) Ratio of inductive to resistive 

conductivities for different free carrier densities in graphene color-coded 

according to the inset in (b). Carrier scattering time:     fs.  

4.7 SAMPLE FABRICATION 

 The process of sample fabrication followed the steps below. First, the SLG was 

grown on polycrystalline Cu foil using a CVD technique
106

 and subsequently transferred 

from the Cu foil onto     thick insulating (SiO2) layer that was grown on a lightly 

doped silicon substrate
107 

using wet thermal oxidation. Second, good quality graphene 

area were isolated with an oxygen plasma cleaning step. Thirdly, two             

metasurface samples with unit cell dimensions given in Figure 4.2 and two different gaps 

(       for Sample 1 and          for Sample 2) between the CSAs and 

monopole antennas were fabricated on top of the isolated SLG using electron beam 

lithography (EBL). The detailed recipe for nanofabrication and graphene synthesis and 
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transfer is available in appendix A and B respectively. The thickness of the metasurface 

was 30nm (5nm of Cr and 25nm of Au). An SEM image of a segment of the Sample 1 is 

shown in Figure 4.2b, where the inset zooms in on a single unit cell of the metasurface on 

SLG. Finally, source and drain contacts (10nm Cr+100nm Au) were deposited on top of 

graphene on both sides of the metasurface using another EBL step. Back-gating voltage 

applied across the SiO2 insulating layer between the Si substrate and the drain electrode 

was used to modulate graphene’s carrier density as shown in Figure 4.1b.  

4.8 EXPERIMENTAL RESULTS 

Two metasurfaces with physical dimensions given in the caption of Figure 4.2 

were fabricated on top of an SLG grown using chemical vapor deposition (CVD) and 

transferred onto an oxidized Si wafer. The carrier density   in graphene was controlled 

by an applied electrostatic potential difference between the SLG and the Si backgate 

according to   √  
            , where    is the residual carrier density at 

       which is the potential at the charge neutrality point (CNP)  and       

     is the potential deviation from the CNP voltage      that can be experimentally 

determined from electric measurements
108

 as shown below in Figure 4.4a and      ⁄  

is the gate capacitance per unit area; d and   are the thickness and electrostatic 

permittivity of the SiO2 spacer. The reason for having residual charges    at the CNP can 

be explained as follows: The SiO2 substrate has impurities and defect sites close to the 

surface. As CVD graphene is transferred onto the oxide substrate, graphene carriers 

(electrons and holes) will get trapped in the defect sites. The trapped charges will produce 

electrostatic fields that are screened by graphene. This results in puddles of electrons and 

holes across graphene with concentrations that depends on the concentration of substrate  
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Figure 4.4: Experimentally measured reflectivity modulation from a plasmonic 

metasurface (see inset) integrated with back-gated graphene. (a) Measured 

drain-source dc electric resistance of the SLG vs gate voltage    (see Figure 

4.1b). Charge neutrality point:          . (b) Color-coded reflectivity 

from the Sample 1 in the vicinity of the dipole resonance. The minimum 

(min) and the half maximum (HM) of the reflectivity spectrum are shown 

for different Fermi energies   . (c,d) Reflectivity spectra for the Sample 1 

(c) and Sample 2 (d). The spectra are color-coded according to the values of 

      tabulated in (f). Inset in (c): SEM image of the unit cell of the 

metasurface fabricated on top of the CVD graphene.  (e,f) Relative 

reflectivities (extinction ratios) RR      corresponding to the spectra in 

(c,d). Insets: baseline reflectivity        at      and the extinguished 

reflectivity             for the 3 highest holes’ concentrations    

corresponding to the maximum of RR     .  
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impurities
86,109

. Therefore at the charge neutrality point, the conductivity and the carrier 

concentration is finite. We estimate that for our sample            . The residual 

charges at the CNP point can be estimated to be around                 using a self-

consistent method
86

 as detailed in the next section. All experiments were carried out in 

the hole-injection regime of     .  

4.8.1 Electrical transport measurement 

SLG’s characterization was carried out using current-voltage (I-V) measurements. 

The charge neutrality point (CNP)             is identified by measuring the drain-

source electric resistance         as shown in Figure 4.4a. In the absence of gating 

(     , graphene is hole-doped which is due to doping by adsorbates such as resist 

residue added during fabrication and OH groups that borrow electons from graphene
109

. 

For voltages smaller than the charge neutrality point       , graphene is hole-doped 

and for       , it is electron-doped. We choose to inject hole into graphene, because at 

     graphene is hole-doped. This means for large gate voltages we can achieve higher 

   and Fermi levels with negative voltages (hole injection) compared to positive 

voltages (electron injection).  

Due to the breakdown voltage of silicon dioxide at 0.5 GV/m, we vary the back 

gate voltage in the              range using “Heathkit 500V PS-3” power supply. 

The holes’ areal concentration (given by         ⁄ ) can reach the maximum values 

of   
                for the peak gate voltage.  
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4.8.2 Optical modulation/switching measurement   

Optical characterization of back-gated metasurfaces integrated with graphene was 

performed in the mid-infrared part of the spectrum using a Thermo Scientific Continuum 

microscope coupled to a Nicolet 6700 FTIR Spectrometer with NA=0.58. The sample 

spectra averaged over 32 scans were collected with spectral resolution of       .
 

The reflectivity spectra        from graphene-integrated Fano-resonant 

metasurfaces are plotted in Figures 4.4c and 4.4d for Samples 1 (      ) and 2 

(       ), respectively. The spectra are color-coded according to the values of 

carrier (hole) concentrations       in the SLG described in the Figure 4.4f inset. The 

color-coded spectra for the Sample 1 in the vicinity of the dipole resonance (close to the 

EIT2 reflectivity dip) are re-plotted in Figure 4.4b to illustrate that the spectra are shifted 

by more than hwhm of the reflectivity peak by changing the free carrier areal density in 

graphene from      to               . This remarkably strong effect of 

graphene on the reflectivity is caused by two properties of the graphene-loaded 

metasurface: (i) narrow spectral width of the reflectivity peak, and (ii) strong 

concentration of the tangential electric field.  While the most dramatic modulation of the 

reflected intensity is observed near the EIT2 dip (around   
       ), a weaker (but 

comparable with the present state-of-art results
105

) are also observed near the EIT1 dip 

(around   
       ).  

To quantify the efficacy of the resulting graphene/metasurface modulator, we 

define the wavelength-dependent modulation depth (MD) as 
110–112

 
 

        |
                

      
|       |  

 

       
|      .  (4.3)  

Here                        ⁄  is the extinction efficiency that represents the ratio 

between the baseline reflectivity                  measured in the absence of free 
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carriers in the SLG and the extinguished reflectivity                  measured for 

the gate voltage corresponding to the finite gate-induced carrier concentration     . 

Relative reflectivities         for the Samples 1 and 2 are plotted in Figures 4.4e,f, 

respectively. The higher is the relative reflectivity, the better is the modulator. Ideally, 

one would prefer that both the baseline reflectivity        and the relative reflectivity 

     
      corresponding to the largest applied voltage be large numbers. For example, 

a modulator with a low value of the baseline reflectivity would be inefficient regardless 

of its relative reflectivity. As our experimental results presented in Figures 4.4c,d 

indicate, these two requirements can indeed be satisfied by a Fano-resonant metasurface 

integrated with back-gated SLG. 

Specifically, large values of the peak RR, defined 

as                 
      , are experimentally measured around   

    for both 

samples. For Sample 1,       
   

   leading to        
   

     (corresponding to 

extinguishing the baseline reflectivity from     down to     ) is demonstrated, while 

an even higher       
   

    leading to       
   

     (corresponding to extinguishing 

the baseline reflectivity from     down to     ) is achieved for Sample 2. We note that 

these modulators are relatively narrow band because of the resonant nature of the 

metasurface. For example, the 3dB bandwidth of the modulation depth was measured to 

be             and             (corresponding to 3.5% and 2% of the resonance 

wavelength) for Samples 1 and 2, respectively. We also observe that the  RR is much 

smaller for the shorter-wavelength monopole mode  at   
        . This is a direct 

consequence of the weaker tangential field enhancement   at the monopole resonance as 

observed from the theoretical calculation shown in Figure 4.2d.   
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Note that the small feature at          is due to the occurrence of epsilon near 

zero (ENZ) effect that stems from the longitudinal phonon polariton resonance of SiO2 

where   
       

113,114
. This resonance is excited by the electric field component of the 

incident light (  ) which is normal to the substrate. Therefore it is predicted to appear for 

finite incidence angle and P-polarized incident field. These are indeed the experimental 

conditions encountered in our experiment because of the inherent properties of the 

focusing optics of the infrared microscope. The existence of an optical phonon at 

     
    115 

and the strongly dispersive character of the substrate’s dielectric 

permittivity      
            affect the quality factor of the dipole resonance. 

Specifically, the resonant behavior of       causes the quality factor and spectral shift of 

the dipole mode to increase in comparison with the case of an idealized (non-dispersive) 

substrate that is typical for visible/near-IR frequency range.  Additional information 

about the substrate effect is provided in Chapter 7.  

As mentioned earlier, an ideal modulator needs to be both efficient (high baseline 

reflectivity, i.e. moderate insertion loss) and possess a high modulation depth. Achieving 

high MD by itself is not particularly challenging: as long as the reflectivity drops to near-

zero value (as it is indeed the case according to Figures 4.4c,d of the metasurface under 

this study), even the slightest spectral detuning of the Fano resonance will result in a high 

MD. Simultaneously satisfying the efficiency requirement is more challenging because it 

requires that the spectral detuning       due to graphene be comparable to     .  

4.9 DERIVATION OF RESONANCE PARAMETERS USING COUPLE MODE THEORY 

In order to understand how the SLG shifts the frequencies and quality factors of 

the two Fano resonances, we have fitted the experimentally measured reflectivity spectra 

|    |  for the Sample 1 to the triple Lorentzian formula given by eq 4.1. The fitting 
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parameters are                            which represent the complex amplitude 

of the background, monopole mode and dipole mode, the frequency of the monopole 

mode and the dipole mode and the lifetime of the background, monopole and the dipole 

mode respectively. Defining the difference between the two sides of eq 4.1 as:  

                                 

[     
  

   
 
  

 
  

        
 
  

 
  

            
]

 

 

                                                          (4.4)  

The fitting becomes possible by minimizing ∑      . The least-square method was 

applied in Matlab where initial values and a range for all fitting parameters were provided 

as the input. The results of the fitting procedure for the three selected concentrations of 

charge carriers are shown in Figure 4.5a. The ENZ feature has been excluded from the 

fitting window.  

The resonant wavelengths      and quality factors      for the two resonances are 

plotted in Figure 4.5 for increasing doping levels   . According to Figures 4.5b,d, the 

resonant wavelengths first slightly increase for small values of     because            

  due to the interband term
 41,57 

as shown in Figure 4.3c.  This spectral detuning is very 

small for carrier concentrations corresponding to interband transitions-dominated regime 

which is defined by               and bounded by the vertical dashed lines in Figure 

4.5. At the same time, as the Pauli blocking starts taking place for              , the 

quality factor of both resonances experiences a rapid increase shown in Figures 4.5c,e by 

the red circles. The rise in the Q-factors (QFs) correlates with the decrease of the real 

(dissipative) part of graphene’s surface conductivity    shown by the blue circles in 

Figures 4.5c,e. Overall, the transition to Pauli blocking regime for high values of carrier 
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density causes considerable change of the QFs for both modes: the     of the monopole 

and dipole mode change in the              range (15%) and in the         

     range (21%), respectively. Note that the maximum of QF approximately coincides 

with the minimum of    for both modes. Spectral blue-shifting of both resonances can be 

clearly observed in Figures 4.5b,d as the carrier density increases. This experimentally 

observed behavior is consistent with eq 4.2. For example, for the dipole mode the spectral 

shift is |   |         (           ) or about |   |         of the total 

bandwidth. Assuming that      , we conclude that the |   |          condition, 

which is necessary for an efficient and deep modulator, is satisfied for the dipole 

resonance of the integrated graphene/metasurface structure.On the other hand, the 

corresponding spectral shift numbers for the monopole resonance (EIT1) are more 

modest: |   |         (           ), or about |   |        . The spectral 

shift of the monopole mode is considerably smaller than that of the dipole mode, which is 

mainly due to its weaker interaction with graphene (smaller tangential field 

enhancement  ) as shown in Figure 4.2d.  

Eq. 4.1 is the expression of a triple Lorentzian with     and  , representing the 

complex amplitude, frequency and the life time of the resonances. As graphene doping 

changes these values also vary as table 4.1 shows.  It would be interesting to compare the 

amplitude and the life time of the three different Lorentzian. As stated before, the 

amplitude is proportional to the far field radiation and the life time represents the loss of 

the modes. This is an interesting example of coupling between the bright background 

(continuum) mode with dark (discrete) modes. It`s expected for the bright background to 

have large amplitude and short life time whereas the dark modes is supposed to have  
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Figure 4.5: (a) The measured reflectivity spectrum (solid lines) for Sample 1, fitted to the 

tri-Lorentzian spectrum given by eq 4.1 (circles) for three selected holes’ 

concentrations. (b-c) Extracted resonant wavelengths    and the quality 

factor       of the dipole mode. (d,e): same as (b,c), but for the monopole 

mode. Vertical dashed lines: carrier concentration n corresponding 

to                . Blue circles in (c) and (e):     in units of the 

universal conductance        ⁄  calculated at corresponding resonant 

frequencies         .  
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smaller amplitude and longer life time. This is obvious from table 4.1 because |  |  

|  | |  |  and          . 

 

   

        |  | |  | |  |         

     

                               

      3.17 0.31

8 

0.12

9 

1634 1359 7.0 46.6 59.0 

.5e12  3.34 0.29

7 

0.12

2 

1632 1363 5.5 49.4 64.4 

1e12  3.52 0.27

8 

0.11

6 

1637 1375 4.5 52.2 69.7 

1.6e12  3.59 0.27

6 

0.11

8 

1642 1394 4.3 53.0 70.2 

3e12  3.59 0.28

1 

0.12

5 

1651 1407 4.2 53.0 67.5 

4.8e12  3.49 0.28

7 

0.13

2 

1657 1421 4.5 52.6 64.6 

   

Table 4.1: The doping dependent values for amplitude, frequency and the life time of the 

triple Lorentzian in eq. 5.1 The frequency values are in        and the life 

times have a femtosecond unit.  

All the fittings in this section was performed by Kaya Tatar.   

 

4.10 CONCLUSIONS   

We have experimentally demonstrated electrical control of the reflectivity of mid-

infrared light using back-gated single layer graphene. An order of magnitude modulation 

of the reflected light was accomplished by designing a novel type of a metasurface 

supporting double Fano resonances and integrating it with an under-layer of graphene. 

The unique aspect of such modulator is its high baseline reflectivity and large reflectivity 

extinction coefficient (modulation depth). A new metasurface-based approach to 

extracting the free carrier scattering rate in graphene was also demonstrated. Numerical 

simulations indicate that independent amplitude and phase modulation are possible in 
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reflection and transmission. This work paves the way to future development of ultrafast 

opto-electronic devices such as dynamically reconfigurable holograms, single-detector 

imagers, dynamical beam-steering devices, and reconfigurable biosensors. 
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Chapter 5:  Experimental Demonstration of Phase Modulation and 

Motion Sensing Using Graphene-Integrated Metasurfaces 

 

5.1 INTRODUCTION 

Plasmonic metasurfaces can modify the wavefront of light by altering its 

intensity, phase and polarization state. Integration of plasmonic metasurfaces with active 

components, giving rise to active plasmonic metasurfaces, allow dynamic modulation of 

the wavefront leading to interesting applications such as beam-steering, holograms and 

tunable waveplates. Fig. 5.1 shows the schematic of a device which can electrically 

control the wavefront of the incident beam with an antenna array and an active medium. 

Such device is known as reflect antenna array and requires careful design of antennas and 

an active mechanism which can control and change the phase by   . In particular each of 

the antennas needs to induce a different phase shift that linearly depends on its position 

along the array. Using such mechanism, active steering of the beam of light in different 

directions at high-speeds is a possibility as long as the active material and the electrical 

circuit operate at high-speed. Graphene is an interesting material whose property can be 

actively controlled by electrical gating at a Gigahertz rate.  In this chapter, we use a 

graphene-integrated metasurface to induce a tunable phase change to the wavefront of the 

reflected light. The metasurface supports a high quality Fano resonance around 7.7 

micron. The phase change due to electrical gating is measured using a Michelson 

interferometer. It is shown that the reflection phase can be tuned up to 55  on gating the 

graphene. In particular the phase can be changed by 28  while keeping the reflected 

amplitude nearly constant. Using the experimentally measured phase, it is also 

demonstrated that the polarization state of the reflected light can be modulated via 
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application of a gate voltage. Finally, we show a proof of concept application of our 

system as a potentially high-speed non-moving laser interferometry system with sub-

micron accuracy. 

           

                                                                     

 

Figure 5.1: Schematic of a device which can actively steer the beam into different 

direction with an electrical control signal. The blue lines represent the phase 

front of reflected waves.  

5.2 METASURFACE DESIGN/OPTICAL CHARACTERIZATION  

In chapter 4, we showed 10 dB amplitude modulation, effectively switching the 

Mid-IR light by electrically controlling the charge concentration of single layer graphene 

(SLG) that is integrated to a plasmonic Fano metasurface
99

. In this chapter, we use a 

similar active metasurface, using SLG as the active electro-optical material, but focus on 

the phase modulation of the reflected waves as shown in Fig. 5.2a where a backgate 

scheme is used to change graphene doping by an electrostatic gate voltage   . This in turn 

induces a gate-voltage dependent phase change        to the wavefront of the waves 

reflected from the plasmonic metasurface. Using a Michelson interferometric setup as 

depicted in Fig. 5.1b, we measure the voltage dependent modulation of reflection phase. 

We employ the plasmonic metasurface to enhance the interaction of electromagnetic 
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fields with the single layer graphene (SLG). The unit cell of the metasurface is shown in 

Fig. 5.3a which consist of a continuous wire and a dipole. The metasurface exhibits 

electromagnetically induced transparency (EIT). This EIT is directly related to the Fano 

resonances which is defined by the interaction of a bright mode with broadband response 

 

  

 

Figure 5.2: Schematic for graphene-induced phase modulation of the reflected light 

waves. The plasmonic metasurface is fabricated on top of a single layer 

graphene (SLG). Source (S) and drain (D) contacts are attached to SLG for 

its electrical characterization. The phase modulation    is a function of the 

gate voltage    applied across the insulating SiO2 spacer.  (b) Experimental 

setup for the phase measurement: a Michelson interferometer with a beam-

splitter (BS) and two polarizers    and    used to adjust the power and set 

the polarization of the infrared beam. The active graphene-integrated 

metasurface placed in the test arm (Arm 2) induces a voltage-tunable phase 

shift       , and the moveable mirror on a motorized stage placed in the 

reference arm (Arm 1) induces a displacement-tunable phase shift      . 

with a narrowband dark mode
97

. The continuous wire of this structure mimics a dilute 

plasma and provides a broadband background. The structure supports a dark mode with 

quadrupolar charge distribution, which manifests as a minimum in reflection spectrum. 
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At the resonance, the current density of the dipole and the wire are anti-symmetric as 

shown in Fig. 5.3a. The interaction of light and graphene is proportional to |  
 | 57,99

  

 

Figure 5.3:  (a) The unit cell of the metasurface with the following dimensions:   
                ,         , the width of all the wires   
       and the periodicity in both directions             . The 

current profile at the reflectivity minimum for the structure without 

graphene is shown on the top right. The current is plotted 5 nm above the 

SiO2 surface. Near-field enhancement |  
     

 ⁄ | at the Fano resonance 

frequency is plotted at the graphene plane (bottom right). (b) An SEM 

picture of the metasurface. The black scale bar represents 2 micron.  

where    is tangential electric field at the graphene surface. The field enhancement 

defined by |  
     

 ⁄ | at the resonance is shown in Fig. 5.3a where      is the incident 

field. An SEM picture of the metasurface is shown in Fig. 5.3b.  

 

 The metasurface is fabricated on top of SLG and an electrostatic gate voltage    is 

applied between the silicon backgate and the graphene to change the carrier concentration 

n of SLG which controls the optical conductivity of graphene. A list of the 

experimentally applied gate voltages and the corresponding graphene’s Fermi energies is 

listed in Table 1. The electric fields        inside the silicon oxide spacer of thickness 
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      separating the SLG from the back gate are tabulated as a function of the 

applied gate voltage   . 

 

   (V) E(MV/cm)        

-40 -0.4 0.08 

-20 -0.2 0.09 

0 0 0.10 

30 0.3 0.12 

80 0.8 0.15 

150 1.5 0.18 

280 2.8 0.23 

Table 5.1: Fermi energies    in the SLG and the corresponding electric fields        

inside the silicon oxide spacer of thickness       separating the SLG 

from the back gate are tabulated as a function of the applied gate voltage   .  

The simulated reflectivity and reflection phase for Y-polarized light at normal 

incidence for different Fermi energies is shown in Fig. 5.4a,b. The reflectivity of our 

sample is measured using laser spectroscopy. The source is a quantum cascade laser 

(Daylight solution, MIRcat-1400). The laser light is split into two arms by a beam splitter 

(CaF2 2-8 um). The results for different gate voltages are shown in Fig. 5.4c. The 

experiment is performed at normal incidence and for the light polarized along the dipole 

(Y-direction). The setup shown in Fig 5.2b was used to measure the optical spectroscopy 

of the sample where the arm 1 is blocked by IR absorbing material and the only detected 

signal is from the graphene metasurface. The laser was operated on pulsed mode with 

pulse repetitions rate of         with the pulse duration of       . A MCT detector 

was utilized for the measurement of intensity. The signal was amplified by a lock-in 
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amplifier model (Stanford research systems SR844) with an integration time of     . A 

high numerical aperture NA=0.5 ZnSe lens was used as the objective. 

 

 

Figure 5.4: (a) The simulated metasurface reflectivity spectrum for normal incidence 

with Y-polarized light. The colors represent different Fermi energies of the 

graphene. (b) The simulation results for reflection phase. Excitation 

parameters is similar to (b) (c) The measured reflectivity for y-polarized 

incident light at normal incidence. Different voltages have been color-coded 

according to their correspondent Fermi energy in (a)  

 The gate voltages in Fig 5.4c correspond to the Fermi energies in Fig. 5.4a and there is a 

good agreement between the measured and simulated reflectivity.  

5.3 SAMPLE FABRICATION  

The processes used for fabrication of the sample were similar to the process 

explained in section 4.7 with the details and recipes given in Appendix A and B. The only 

difference is that a Ni (15 nm) and Au (80 nm) contact was deposited on the back-gate to 

lower the contact resistance between the gold pads of the chip carrier and the silicon. 
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5.4 ELECTRICAL TRANSPORT MEASUREMENT 

We used a parametric analyzer (Keithley 2450) for the current-voltage (I-V) 

measurement to characterize the SLG. In Fig. 5.5 the resistance between drain and source 

contacts     is shown  as a function of gate voltage. The maximum resistance 

corresponds to charge neutrality point of graphene. For our sample          .  

 

 

Figure 5.5: Electrical transport measurement for graphene: the resistance between the 

drain and the source contact (     as a function of gate voltage   . The inset 

shows the graphene metasurface integrated with graphene with the drain and 

source contacts.  

A fitting procedure was used to determine the electrical properties of the sample and 

graphene as detailed in appendix D section b.  

5.5 INTERFEROMETRIC MEASUREMENT 

We used a Michelson interferometer as shown in Fig. 5.2b to measure the phase 

modulation of the reflected plane wave due to graphene gating. A quantum cascade laser 

is used as the light source. The laser light is split into two arms by a beam splitter (CaF2 

2-8 µm). On arm 1, the beam is reflected from a mirror mounted on a motorized stage 
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whose motion is controlled by a closed-loop actuator with optical encoding capability. 

On arm 2, the graphene-integrated metasurface is mounted. The reflected wave (marked 

by red arrows in Fig. 5.3b) combine on the beam-splitter (BS) and an MCT detector 

measures the resulting interference signal. The interfered wave can be described as:     

  (      )      (        )   (  )   (     (  ))      

          (5.1)  

where   and       are the amplitude and the position-dependent phase of the waves 

from arm 1, respectively.       and   (  ) are the amplitude and the voltage-dependent 

phase of the reflected wave from the graphene-integrated metasurface, respectively. From 

eq 5.1, the time-averaged intensity is:  

 

|       |
 

 
| | 

 
 

|     |
 

 
                -  (  )         

           (5.2) 

where |       |
 
 is the measured intensity for position   of the mirror and graphene gate 

voltage   . Equation 5.2 consists of a DC offset (first two terms on the right hand side) 

and an interferometric part (last term in the right hand side). To characterize   (  ), we 

set the voltage to        and move the mirror with constant step sizes, measuring the 

intensity after each step to record a few full-wave interferometric oscillations of the 

intensity. We then return to the original position, change the voltage to       and go 

forward for the same number of steps. Finally we return to the original position at 

      . The schematic in Fig. 5.8b summarizes the above-mentioned movement of the 

actuator that is used to measure the phase change between        and        By 

using a least-square fitting of the measured interferometric data to a cosine function with 

an offset:         (        )        we can find the fitting parameters of 
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     ,  ,       and       where                and  (  )     (  ). Here 

      originates from the difference between the path lengths of two arms. By 

comparing the fitted parameters for the two forward directions at to        and to 

     , the phase change can be calculated from: 

  (  )  [  (  )          ]           (  ).     

                    (5.3) 

The normalized interferometric signal can be defined from the fitted parameters:  

  (    )  
| (    )|

 
      

     
.            

             (5.4) 

In Fig. 5.4a,   (        ) and   (           ) are shown with green and 

blue circles respectively where       is the mirror position and    are the number of 

minimum step size and   is the minimum step size of the actuator. The fitted curves are 

demonstrated by the red and black solid lines in Fig. 5.4a. The x-axis is the number of 

minimum step sizes. In principle the fitting parameter b is equal to      ⁄  where   is 

the wavelength of light. However to characterize the actuator step size with a finite error, 

we keep it as a fitting parameter. After fitting the interferometric signal in the two 

forward  direction, we notice that     and     (parameter   for the first and second 

forward direction) in all the experiments are roughly equal with 0.5 % maximum error for 

all of our experiments. To minimize this error, we define             ⁄  and use it in 

the fitting procedure mentioned earlier. In addition, from the fitting we find the minimum 

step size of the actuator to be        . Each actuator jump consisted of 8 minimum 

step sizes. The integration time for intensity measurement was set to be 100 ms and there 

is a 200ms delay time after an actuator jump till the intensity is measured.  
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The procedure for phase modulation calculation between      and       can 

be summarized as the following:  

 

 Apply     , move the mirror in the forward direction for certain number of 

actuator jump.  

 Move backward at      return to the original position. 

 Change the voltage to       move forward for the same number of actuator 

jumps 

 Return to the original position at       

 Fit the forward curves for intensity to         (        )         which 

gives fitted  values of    and    .  

 Assign                

 Fit the two curves again to         (    (  ))   (  ) 

   (  )           (  ) 

The gate voltage was reset to      before each measurement, in order to avoid 

the potential hysteretic interfacial effects
117

 (e.g. charge trapping and redox reaction) that 

takes place at high gate voltages. To confirm that the hysteretic effects does not affect our 

measurement, we calculate the variation of  (    ) (when moving in the forward 

direction at     ) for different voltages. The results are shown in in Fig. 5.6 where the 

y-axis is  (    ) in degrees. The small error of around 1 degree ensures that    returns 

to the same value each time we reset to     .  
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Figure 5.6: Variations of         in degree as a function of gate voltage.  

The results of our interferometric experiments are shown in Fig. 5.7. In Fig. 5.7b, the 

fitted curves to   (    ) are demonstrated for three different Fermi energies at    

       . The x-axis is the mirror movement normalized to the wavelength. The  total 

phase shift for the Y-polarized light is about   (       )      (corresponding 

to          ). To make sure our measurement results are reproducible we perform the 

phase measurement experiment 3 times. The robustness and repeatability of the phase 

shift is confirmed by repeating the experiments three times and plotting the measured 

phase shifts for the three trials in Figure 5.7c. We speculate that the repeatability can be 

further improved by graphene’s passivation that can be achieved by, for example, 

depositing an insulating layer of Al2O3
116,117

 or boron nitride (BN)
118

 over the SLG and 

fabricating the metasurface on top of it.   
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Figure 5.7: (a) The Interference for two different voltages: the x-axis shows mirror 

position in units number of minimum step sizes of roughly 68 nm. The dots 

represent normalized interference data    as defined by eq 5.4 for        

(green)         V (blue). These data are fitted to          (  )  

where   and  (  ) are the fitting parameters and      . All the 

experiments are run at              (           . For each gate 

voltage the actuator moves for 25 jump in one direction.  (b) Fitted 

interference patterns as (a), but plotted for three values of    (black:    
       , red:           , blue:           ) over one oscillation period 

        . (c) The results of three independent interferometric 

measurement trials: Phase change    as a function of Fermi energy. The 

phase change is measured with respect to          (             The 

incident field was polarized along Y-direction. These three curves show the 

reproducibility of the experimental results (d) The results of trial1 is shown 

in the reflectivity-phase plane. The reflectivity changes about 10 % in the 

colored region while the phase is changing by about 28 degrees.  
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In Fig. 5.7d the phase shift results of trial1 is shown in reflectivity-phase plane. 

Different Fermi energies are shown by different colors. The reflectivity in the colored 

region changes only about 10 % whereas the phase is changing by about        

degrees. The property of the pure phase shift at a constant reflectivity is promising for 

realizing fast phase modulators, as well as in other optical applications. 

              

5.6 APPLICATIONS OF PHASE MODULATION  

5.6.1 Motion detection 

The concept of interferometric motion detection using an active graphene 

integrated metasurface illustrated in Fig. 5.8a is explained by observing that the test and 

reference arms of the Michelson interferometer can, in principle, be exchanged. That 

means that, instead of using the known       to measure the unknown       , we can 

now use the tabulated        to measure the unknown   . If an arbitrary reflecting 

object moving along the           trajectory is used instead of the mirror, then 

extracting           would enable tracking its motion. Such tracking requires that the 

phase shift        in Arm 2 (which becomes the new reference arm) be changed on the  
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Figure 5.8: (a) Schematic of the interferometric motion detection using a graphene 

integrated metasurface. The motion of the reflecting object (mirror on a 

moving stage) is detected by varying the phase of the reflected light from 

the graphene integrated metasruface via field-effect gating. (b) Normalized 

interferograms           plotted for three mirror positions           

(         corresponds to   steps of the moving stage,         for 

black, red, and blue symbols, respectively) and seven voltages from Table 1. 

Horizontal axis:        from Fig. 5.7c (Trial 1). 

time scale which is much shorter that the object’s movement. The experimentally 

obtained plot of        presented in Fig. 5.7c serves as a look-up table for measuring 

the movement of the reflecting object (e.g. a moving mirror). The key advantage of the 

non-mechanical change of   is the speed (tens of GHz) at which such change can be 

accomplished.However, there is a significant difference between measuring        using 

a sequence of        spanning several periods (where           ) as it was done 

Fig. 5.7a, and extracting           using a sequence of            spanning a  
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fraction of a radian. The accuracy of the latter simulation may be potentially limited 

because of the smaller phase change in the reference arm. To investigate the spatial 

resolution of a graphene-based distance measurement interferometer, we have selected 

six mirror position triplets           (where        ,          , and    is 

different for different triplets) and plotted the normalized interferograms   (     ) as a 

function of        for the seven voltages listed in Table 5.1.The experimental results 

for one such triplet is shown in Fig. 5.8b, where the black, red, and blue symbols 

correspond to   ,   , and    members of the triplet, respectively. The data was fitted to 

  (     )     [          ] (solid lines), where                 

         follows from the definition of         . Using         (     )  , the 

relative distances         and         were measured and plotted in Fig. 5.8c for all 

six            position triplets. Note that this technique does not attempt to extract the 

absolute distances. 

 

Next, we demonstrated that the accuracy of the displacement measurement is high 

despite the fact that the phase change in the reference arm of the interferometer is less 

than one radian according to Fig. 5.8b. Figures 5.9a,b illustrates the accuracy of the 

measurement by plotting the extracted positions of    and    (referenced to   ) for all the 

23 triplets. For simplicity we assume     . The black solid dots, represent the 

calculated position for a certain triad number. The red lines correspond to mean value of 

position:   ̅̅̅          and   ̅̅ ̅          and the black lines show the standard 

deviation for positions. The standard deviation for positions    and    were calculated to 

be          and          which also determine the error bar of our measurement 

for the two measurements. Figure 5.9c summarizes these calculations. The dashed blue 
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line is drawn at 45 degrees to illustrate the agreement between the actual displacements 

of the mirror (horizontal axis) and the displacement measured using the graphene-based 

interferometer. The red solid dots shows the mean value of our measurements and the 

error bars are shown similar to Figures 5.9a,b by the black lines. These data indicate that 

displacement as small as          can be measured with       accuracy which is 

roughly      error. For displacement of           the error is       which is 

roughly        error. In addition, no assumption of constant (distance-independent) 

reflectivity from the moving object is needed for the application of this technique.  

 

 

 Figure 5.9: The extracted relative displacements         (a) and         (b) for 23 

triplets from the 25 data points (corresponding to 25 actuator jumps) are 

shown by black solid dots. The solid red lines correspond to the mean value 

of   ̅̅̅ and   ̅̅ ̅ whereas the black lines show the error bar determined by the 

standard deviation   and   . For simplicity,    is assumed to be zero (c) 

The mean value and error bar of the displacement measurement are shown 

with solid red dot and black lines. A blue dashed line is drawn at     to 

compare the extracted and actual mirror positions. All measurements are 

performed at     .  
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The distance measurement technique based on active graphene integrated 

metasurfaces demonstrated above is a potential alternative to the more conventional 

chirp-based techniques
119

 because it is carried out in mid-IR, where atmospheric light 

scattering is considerably reduced
120

 and passive chirping outside of the laser is 

challenging, and at potentially high (multi-GHz) speeds.  

5.6.1.1 Maximum traceable object velocity: 

It would be interesting to know how fast of an object can be traced using with the 

motion sensing technique described in 5.6.1 for a given tolerable error. We start by 

estimating the speed of our device. To simplify, we neglect the parasitic capacitance of 

the circuit and also assuming        .  From capacitance per area of our device 

           , the response time of our sample is roughly        . Therefore, it take 

at least           to take 7 data points of Fig. 5.6b. This corresponds to 55 degree 

phase modulation. Assuming we can tolerate 20% error and reminding that       
  

 
         the distance that the mirror can move while the gate voltages are changing 

can be estimated by    
    

  
        where         

   

   
   . The maximum 

velocity of the mirror that can be traced will then be        
  

  
       . It should 

be noted that the maximum velocity in linearly related to error. For example for 10% of 

tolerable error the maximum velocity will decrease by a factor of 2.  

5.6.2 Application in polarization conversion 

The second application enabled by voltage-controllable Graphene-integrated 

metasurfaces is the development of electrically tunable wave plates that can control the 

polarization state of the reflected mid-IR light in real time. Because the utilized 

metasurface (see Fig. 5.3a) is strongly anisotropic, its response to   polarized light is 
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very different from the resonant response to   polarized light considered so far. 

Specifically, while strong Fano resonance at      occurs for the latter, no such 

resonance exists for the former. In the absence of resonance, no significant phase 

variation is expected for reflected   polarized light as the gate voltage is varied. This is 

confirmed by our interferometric measurement, the results of which are described in Fig. 

5.7a, where the experimentally obtained phase changes at      for both x and y 

polarized light at normal incidence are plotted as functions of graphene’s Fermi energies 

       taken from Table 5.1. Both experimentally measured         and         are 

in good agreement with numerical simulations (Fig. 5.7c). Note that the theoretically and 

experimentally obtained reflection phases are referenced to those at the CNP point of 

graphene. The absence of the metasurface’s resonant response to   polarized light is 

also experimentally confirmed by featureless reflectivity        that does not 

appreciably change with    as shown in Fig. 5.7b. Note that the    and   axes are the 

principal axes of the metasurface (i.e.      ) due to the mirror reflection symmetry of 

the structure with respect to the   axis.  

The action of an active phase plate is easily captured by examining the 

polarization state of the reflected light that is polarized at    with respect to the principal 

(  and  ) axes of the graphene-integrated metasurface at incidence. The resulting (un-

normalized) polarization ellipse is given by the following parametric formula: 

  (  )  √      [   (  )    ]     

  (  )  √                  (5.5) 

where         is a parameter, the two polarized reflectivities (   and    ) may be 

voltage-dependent, and the reflected phase shift        (  )     (  )       

between the two polarizations is also controlled by the gate voltage. 
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Figure 5.10: (a) Measured phase shifts     and     of the linearly polarized light 

reflected at normal incidence from the voltage-controlled graphene-

integrated metasurface. Red line:   polarised, black line:   polarized 

light, horizontal axis: graphene’s Fermi energy. (b) Measured reflectivity for 

  polarised incident light corresponding to three Fermi energies. (c) 

Simulated phase shifts     and     plotted as a function of the Fermi 

energy. (d) Normalized polarization ellipses of the reflected light calculated 

using eq 5.5 and the experimentally obtained     and     from panel (a). 

The constant           was extracted from COMSOL simulations. 

Incident light’s polarization at     with respect to the principal axes of the 

metasurface was assumed. The colors correspond to the Fermi energies from 

panel (b). All measurements and simulations correspond to the wavelength 

of light (    ) that corresponds to the minimum of        at    

       . In simulations   
    

        was used. 

. Here,                          is the phase shift at the     . Here we focus 

on the case where    and     are nearly voltage-independent as can be observed from 
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the experimental data presented in Fig. 5.7b. However, the significant (by almost a full 

radian) voltage-induced      translates into an equal magnitude shift of    , and, 

therefore, a significant rotation of the polarization ellipse. Three such normalized 

polarization ellipses are presented in Fig. 5.7d for the corresponding gate voltages and  

graphene’s Fermi energies extracted from Table 1. These results indicate that both the 

ellipticity and the orientation of the polarization ellipse can be significantly altered by 

applying a gate voltage. For example, we observe from Fig 5.7d that the direction of the 

major axis can be moved from the second quadrant (at           ) to the first 

quadrant (at           ). Note that such orientation of the polarization ellipse is 

enabled by the voltage-induced phase shift, and cannot be accomplished by pure 

amplitude modulation of either         or        . This implies that only a limited sub-

space of Stokes parameters of the reflected light can be accessed by pure amplitude 

modulation. For example, if the major axis of the polarization ellipse is restricted to stay 

in the first quadrant, then only the positive values of the second Stokes parameter    

               , defined as the intensity difference of light passing through the 

analyzers oriented at      and      degrees with respect to the principal polarization 

axes, can be accessed. In contrast, phase modulation demonstrated here does not suffer 

from such restrictions. Therefore, one may envision using phase-shifting graphene-

integrated metasurfaces for real-time ellipsometric applications
121

 that require high time 

resolution. The mathematic analysis and data processing in this section was performed by 

Dr. Shourya Dutta Gupta.  
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5.7 PRELIMINARY PHASE MODULATION MEASUREMENTS USING AN OPEN-LOOP 

ACTUATOR  

In this section, additional examples of phase modulation measurement are 

provided for two other devices. The main difference of these experiments compared to 

the one described in section 5.5 is that an open-loop actuator was utilized in arm1. An 

open-loop actuator is not equipped with an optical encoding system and therefore the 

movement is not as accurate as a closed-loop actuator. To reduce the error, we used 

slightly different procedure for phase measurement where the mirror is not returned to the 

original position when the voltage changes. The procedure can be summarized as such:  

 

 Assign       move forward for a few periods  

 Change the voltage to        move forward.  

 Keep moving forward for all N gate voltages  

 Fit all the interference signals measured to         (        )         

 Assign             /N  

 Fit the two curves again to         (               )        

   (  )           (  ) 

 

Fig 5.8a,b compares the mirror stage movement procedure for the open-loop and 

close-loop actuator (section 5.5). With an open-loop actuator the mirror is not returned to 

the original position which was mainly to avoid the backlash effect which originates from 

in-accurate step size of the actuator when the motion is reversed. It should be noted that 

resetting to      after each gate voltage as was done in section 5.5 and as shown in Fig. 

5.8b helps to reduce the measurement error. Without this resetting, graphene is exposed 

to high gate voltages for longer time during the phase modulation experiment leading to 
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larger error from the redox effect. Interferometry measurement were performed using the 

setup of Fig. 5.2b and for two different samples using an open-loop actuator. 1) The 

metasurface design introduced in Fig 4.2 and 2) the design in Fig 5.3a. Figure 5.9 shows 

the experimental results for the double-Fano resonance structure of Fig. 4.2a. The 

dimensions are given in the caption of Fig. 5.9 and are different from those in Fig 

4.2a.The reflectivity spectrum for three different voltages given in the legend is shown. 

The CNP point for this device is at        . 

 

Figure 5.11:  (a) With an open loop actuator, the mirror moves in the forward direction 

for all voltages (b) By using a closed-loop motor we return to the original 

position after each voltage change 

Considerable blue-shift is obtained as the gate voltage changes from CNP point to 

        with a total           which corresponds to the Fermi energy of    

      . The phase modulation was measured at two different wavelength shown by the 

red and black arrows. At both of these wavelengths the reflectivity is almost constant as 

the Fermi energy changes. The red arrow points at           which is the reflectivity 

peak between the dipole and monopole mode. The black arrows is at          : the 

reflectivity minimum for         . In Fig. 5.9b, the reflectivity and phase modulation 

are shown as a function of Fermi energy for both wavelengths. Different colors of the 

solid circles represent various Fermi energies. The phase modulation at           is 
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around 17 degree while the reflectivity is almost constant and slightly above       as 

the Fermi energy changes from           and          . At          , the 

phase modulation is around 40 degrees while the reflectivity is roughly constant around  

      . In Fig. 5.10 the result of phase modulation measurement of the metasurface 

design in Fig 5.3a is shown where an open-loop actuator was used in the measurement. It 

should be noted that the measurement was performed on a different sample than the 

sample used in section 5.5. 

 

 

Figure 5.12: (a) The reflectivity of the sample in Fig 4.2a measured by a QCL at normal 

incidence. The dimensions of the structure are                

                         , and           and       . 

(b) The phase modulation and reflectivity as a function of Fermi energy for 

two wavelength shown by the red and black arrows in (a). 

The reason for additional experiments of section 5.5 and fabrication of a new 

sample was to use a closed-loop actuator with smaller movement error as mentioned 

earlier. The FTIR measurement results are shown in Fig 5.10a where Fermi energy 

changed from            and           . The phase modulation at           
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was measured using a QCL and the interferometric setup of Fig 5.2b. A phase modulation 

of around 85 degrees is achieved as the Fermi level changes from            and 

           which is larger than the phase modulation achieved in section 5.5. In 

addition the reflectivity stays constant around        while the phase changes by about 

40 degrees. It should be noted that a lower reflectivity minimum and higher Fermi energy 

might explain the higher phase modulation. However it is difficult to compare these two 

measurements as the metasurface quality, graphene quality, the actuator accuracy and the 

measurement procedure used in the experiment are different from section 5.5.  

 

 

Figure 5.13: (a) The reflectivity of the metasurface design of Fig 5.3a measured by a 

FTIR. (b) The phase modulation and reflectivity as a function of Fermi 

energy at             

5.8 CONCLUSION 

In summary, we have experimentally measured the gate voltage induced phase 

change of the reflected light from a graphene integrated metasurface. A phase change of 

almost 55  was recorded with a Fano-resonant metasurface design, of which about 28  

occurred at nearly constant reflection amplitude. Numerical simulations performed 
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matched closely with the measured phase response of the sample, further substantiating 

the experimental results. As a proof-of-concept application of this device, we employed it 

as a non-mechanical motion-sensing device and were able to measure submicron 

distances within 10% accuracy. Finally, we demonstrated that the anisotropic response of 

the metasurface coupled to the voltage dependent phase change allowed this device to be 

used as an ultra-thin active polarization converter. The results presented in this letter have 

significant implications for applications like active beam steering, phase conversion and 

motion sensing. However, the high insertion loss of     (close to       in our sample) 

and large applied bias voltages limit the efficiency of the studied design. These 

limitations can potentially be overcome by using alternative designs of the samples, thus 

enabling realization of practical high-efficiency devices in future. 
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Chapter 6:  Enhancement of graphene photodetection                               

using high-collection efficiency plasmonic metasurfaces 

 

6.1 INTRODUCTION 

As mentioned in the introduction chapter, graphene photodetectors can be 

wideband and potentially ultra-fast. The speed of photodetectors is generally limited by 

two factors. 1) Transit time of the generated electron-hole, which is the time it takes for 

the carrier to move from source to drain electrode 2) The RC time constant of the photo 

detection circuit. The holy grail of communication system is being able to modulate and 

detect the signal at a fast speed and therefore reduce both the transit time and the time 

constant of the photodetectors. A typical photodetector based on photoconductivity is 

shown in Fig. 6.1a where the blue and the yellow regions represent the photoconductor  

 

Figure 6.1: (a) A typical photodetector based on photoconductivity
71

. The blue and 

yellow region represent the photoconductor and contact. The electron-hole 

pair are generated in response to photons illuminated at the device. The load 

resistance, the bias voltage and the photocurrent are shown in the circuit. (b) 

The equivalent circuit model for the photodetector in (a).    and    are the 

metal-graphene contact resistance and graphene resistance.  
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And the metallic electrodes respectively. Fig 6.1b shows the circuit model for the 

photodetector circuit of Fig 6.1a where the graphene photoconductor is modeled with a 

current source     and a parallel resistance    and a series resistance    is modeling the 

graphene-metal contact resistance. The transit time can be described as         ⁄  

where   is the width of the photo-conducting region and     is the carrier drift velocity 

which is proportional to the carrier (electron or hole) mobility:  

                                           
      .                                (6.1) 

In eq. 6.1,         ⁄  where       is the bias voltage between the drain and source 

electrodes. Graphene introduces two interesting features as a photoconductor: i) large 

mobility which reduces the transit time.  ii) Equal mobility for electron and hole    

   unlike other semiconducting materials where hole mobility is much lower than that of 

electron. Thereby both electron and hole contribute equally to the current. From eq. 6.1, 

the transit time can be described as:  

                                                  ⁄                       (6.2)  

As a result of the quadratic relation bet 

ween the size and the transit time, it is highly desirable to reduce the size of the photo-

conducting region   to reduce the transit time. Ideally the transit time needs to be smaller 

than graphene recombination time which is     picoseconds
122,123

. In order to further 

decrease     it is also possible to increase      , however that is limited by breakdown 

field of the photoconductor material or substrate/superstrate between drain and source 

contacts. In what follows we use the procedure outlined in Ref (71) to estimate the 

photocurrent for the photodetector in Fig. 6.1 based on transit time and recombination 

time of photocarriers, assuming that the photoconductor is graphene.   
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Fig 6.1 shows an absorption event at      which generates an electron-hole 

pair. The probability of the hole and electron reaching the electrodes is             ⁄  and 

              ⁄  respectively where    is the photocarrier recombination lifetime. By 

integrating the contribution of all photons over the graphene surface photocurrent is 

obtained:  

              ∫        
 

 
 

  
  

     
 
  

  
    
     

 
       (6.3) 

Assuming uniform illumination of monochromatic light on the graphene channel. In eq. 

(6.3),       is the electron-hole generation rate per unit distance and is given by:  

      
      

   
 

           (6.4)  

  where      is the incident power, M is the hot carrier multiplication factor and   is the 

fraction of incident light absorbed in the graphene layer. The hot carrier multiplication 

factor M linearly scales with frequency and approaches unity in the mid-IR range
124

. 

Equation 6.3 reduces to:  

    
     

  
 

    

   
    

 
   
    

           (6.5) 

Photodetectors based on photo-conductivity are benchmarked by their photoconductive 

gain which is the number of detected photocarriers per absorbed photon:                                 

   
   

 
   

     

  
 . From (6.5):  

  
    

   
    

 
   
    

           (6.6)  

From Norton theorem, the parallel circuit model of graphene shown in 6.1b can be 

converted to a series circuit of           as the source and    as resistance. Then    
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can be calculated from the circuit element as:                     where   ,    

and    are the equivalent resistance for graphene, metal-graphene contact and the load 

for the photodetector of Fig 6.1a. The responsivity of the photodetector defined by                     

          ⁄  and is given by:   

    
  

         

 

  
   

           (6.7) 

If        the photo-carriers are collected very efficiently and the photoconductive gain 

G becomes close to its maximum value of 2. This can be directly calculated form eq 6.6. 

A photoconductive gain     means that for every photon that is absorbed in graphene, 

2 photocarriers are detected (one electron and one hole). In addition to photocarriers that 

arrive at the electrodes by drift velocity, some photocarriers go through ballistic motion at 

the Fermi velocity of        
 

 
 independent of the electric field across the electrodes. 

These are the carriers which are not affected by substrate impurities and graphene 

phonons and experience no backscattering. For a gap length of          and 

graphene mobility of 1000        and a bias-voltage            ( maximum voltage 

allowed before break-down in the air-gap), the transit time             whereas the 

ballistic transport time       ⁄          which are both smaller than the 

recombination time for single-layer graphene        picoseconds
122,123

. The hierarchy 

for the lifetime of these processes for the above-mentioned parameters can be 

summarized:            although     depends on gap size, graphene mobility and 

bias voltage and can be smaller or larger than    accordingly. However the ballistic 

photocarriers travel in random directions and move toward the drain and source contact 

with the same probability and therefore do not contribute to the photocurrent. The  
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 Equation 6.7 indicates that there are two major ways to improve the responsivity 

of a photodetector. 1) Increasing the graphene absorption (   and 2) improving collection 

efficiency by reducing the transit time which increases the photoconductive gain    . In 

this chapter, we design a metasurface that serves two purposes simultaneously, i) increase 

the absorption of light in graphene by enhancing the electromagnetic fields ii) reduce the 

size of photo-conducting region to improve collection efficiency. We first investigate the 

optical response of the metasurface and calculate graphene absorption from full-wave 

COMSOL simulation. The dark current is calculated using electrostatic COMSOL 

simulations. Finally the photocurrent and responsivity of the photodetector is estimated.  

6.2 METASURFACE DESIGN AND ABSORPTION ANALYSIS  

We used a metasurface similar to the double-fano resonance metasurface that was 

explained in depth in section 4.3 of chapter 4 with a slight difference that the center of 

dipole is connected to the wire of adjacent unit cell which provides drain and source 

electrodes for the purpose of collecting the photocarriers. The unit cell of the structure is 

shown in Fig. 6.2a. The simulation results for the reflectivity of this metasurface 

integrated with graphene (          ) is shown in Fig 6.2b which is similar to the 

response of the structure analyzed in section 4.3. The inset of Fig. 6.2b shows the charge 

distribution of the monopole and dipole mode. The line that connects the dipole to the 

wire is passing through the center of the dipole which has zero charge for both the 

monopole and dipole mode which explains why it does not change the optical response of 

the structure. The SEM picture for the fabricated metasurface on graphene in shown in 

Fig. 6.2c. The source lines extend beyond the metasurface on one side and connect to a 

large source contact (not shown in Fig. 6.2c) and similarly the drain lines connect on the 

other side to a large drain contact. The design provides a drain and source for each unit 
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cell which is the main idea of this work: collect the electron-hole pair on each unit cell, 

reducing the size of the photo-conducting region to the gap (between monopole and 

dipole) of the metasurface which coincides with maximum concentration of photo-

carriers. Figure 6.2d depicts the graphene ohmic loss across the spectrum, comparing the 

loss for inside and outside the gap. The ohmic loss surface density was calculated from:  

              
      

  
       |  |

                                (6.8) 

where    is the tangential electric field at the graphene plane. The blue curve is the ohmic 

loss in the gap and has a maximum close to the dipole mode at          however it is 

vanishing close to the monopole mode at        . The red curve is the graphene loss 

outside the gap and has a maximum at the wavelength of monopole resonance. The insets 

of Fig 6.2d show the field enhancement |      ⁄ | of these two modes which confirm that 

the field enhancement (loss) outside the gap is mainly due to the monopole mode whereas 

the loss in the gap is primarily induced by the dipole mode. The total graphene loss is 

shown by the magenta curve and is around 40 % at         , however it should be 

noted that only the electron-hole pairs generated (due to absorption) inside the gap find 

the opportunity to be collected before recombination. In other word we can approximate 

the fraction of absorbed light      .  
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Figure 6.2: (a) Geometry of the unit-cell of the metasurface with parameters:       

                                   , and         and 

       . The length of the horizontal wire that connect the dipole to the 

vertical wire is 1.302   .  (b) The simulation results for reflectivity of the 

metasurface at normal incidence of Y-light. The insets show the charge 

distribution of the monopole mode (left) and the dipole mode (right). (c) the 

SEM picture of the fabricated metasurface on graphene. The size of the 

scale bar is    . (d) Graphene absorption inside (blue) and outside (red) the 

gap. The magenta color shows graphene absorption on all areas. The insets 

represent the field enhancement |      ⁄ |  by the metasurface for the 

monopole (left) and dipole mode (right).    
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6.3  DARK CURRENT ESTIMATION 

An electrostatic COMSOL model is employed to estimate the dark current. Figure 

6.3a shows the potential on the graphene plane (right below the metasurface). A potential 

difference of             is applied between the electrodes and the right electrode is 

grounded. We assume that addition of graphene under the metasurface does not change 

the electrostatic fields which is a good approximation since graphene is ultrathin and has 

a small conductivity compared to metal. The electrostatic fields are depicted in Fig 6.3b 

which is around 0.8 MV/m in the gap between the electrodes. The field lines in Fig 6.3c 

show the paths with equal electrostatic fields which correspond to the paths with equal 

current, since graphene has identical conductivity everywhere due to the back-gating 

scheme. The colors represent the potential and the density of the lines imply current 

density which is larger in the gap between the electrodes. The graphene surface current 

density is calculated from the electric field though:                where   is the 

conductivity of graphene. Graphene photodetectors are usually operated at the charge 

neutrality point. The absorption is maximum at this point since the interband transition is 

allowed for all electron energies smaller than photon`s energy       .  For all 

calculation in this chapter, we use the conductivity of graphene at the charge neutrality 

point. The DC conductivity of graphene at the charge neutrality point depends on the 

concentration of impurity, however it has been reported to be in the range:     ⁄    

    ⁄  where    is the Planck constant and   is the electron charge. The conductivity is 

    ⁄  for high quality samples and converges to     ⁄  for bad quality samples
86

. We 

choose                ⁄   . In Fig. 6d the colors show the surface current 

density in units of Ampere per meter. Next a line is defined across the unit cell that 

passes through the gap to calculate the current flowing in different cross section of the 
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unit cell and to estimate the total dark current. For clarity the line is shown in both Fig 

6.3a and 6.3d. The total current across the line can be calculated as  

  ∫  ⃗⃗  ⃗    ̂   ∫  ⃗⃗  ⃗    ̂    (6.9) 

 Where the surface current density  ⃗⃗  is integrated along the line and  ̂ is the unit vector 

normal to the line. The total dark current calculated from eq. 6.9 is equal to            

      . Also in Fig 6.3d the percentage of the current that passes through each area is 

given with the gap current being the highest at 54 %. Also the total graphene resistance of 

the unit cell circuit can be calculated as                        ⁄       . The unit 

cells are connected in parallel, thereby the total dark current of the photo-detector circuit 

is going to be                             where   and   are the number of unit 

cells in the horizontal and vertical direction.   
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Figure 6.3: (a) The electrostatic potential across the structure. A bias voltage of 0.1 V is 

connected between the left and red right (ground) electrode. (b) Electric 

field in units of volts per meter. (c) The streamlines of equal electric field 

which corresponds to equal currents. (d) The surface current density in units 

of Ampere per meter. The numbers indicate what percentage of the total 

current flows through different areas of the metasurface.  

6.4 RESPONSIVITY ENHANCEMENT USING PLASMONIC METASURFACE  

To provide a reference for the photocurrent enhancement, we would like to 

compare the responsivity for two cases: 1) a bare graphene sheet between a drain and 

source with identical width (   and length      and a load resistance of   . 2) a 

metasurface-based photodetector (MBPD) on top of a graphene sheet (Fig. 6.2c) with the 
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same width and length of the previous case. Comparing the two numbers will quantify 

the photocurrent enhancement using the plasmonic metasurface.  

 

6.4.1 Photocurrent generation for a reference graphene sheet  

For both case 1 and 2, we choose         ,       , recombination 

time of         , mobility of              ,                ⁄ , for 

simplicity      and           , at the incident wavelength of        . For case 1 

of bare graphene from eq. 6.2 we find,          which results in the photoconductive 

gain of         . Graphene resistance is also calculated from    
 

 

 

 
       . 

The fraction of energy absorbed in bare graphene is known to 2.3% thereby        . 

The responsivity can then be estimated from eq. 6.7 to be            .  

6.4.2 Photocurrent generation for a MBPD 

The goal in this section is to estimate the responsivity of the MBPD (shown in 

6.2c) based on the equivalent circuit model in Fig. 6.1a,b and a circuit analysis. In Fig. 

6.4 the circuit model of the photodetector is shown with each unit cell modeled with a 

circuit similar to 6.1b. It should be noted that    is Fig. 6.4 is the graphene resistance of a 

unit cell (       ) calculated in section 6.3 using electrostatic simulations. The circuit has 

N unit cell in X direction and M unit cell in Y direction and  
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Figure 6.4: The electrical circuit model, corresponding to the MBPD each unit cell is 

modeled with a circuit shown in Fig. 6.1b. The drain and source lines and 

the direction of current flow is shown by the arrows. The load resistance and 

the DC bias complete the circuit.     
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is connected to a bias voltage and a load resistance where the direction of current flow is 

shown by arrows. From circuit theory, each unit cell (circuit of 6.1a) can be simplified to 

6.5a. Therefore the photodetector circuit is comprised of     circuit of Fig 6.5a with 

parallel current source and resistance and can be reduced to the equivalent circuit of Fig 

6.5b. The load current    is then given by:  

 

   
     

             
 

          (6.10)   

Equation 6.10 and the circuits of Fig. 6.5 indicate that the measureable 

photocurrent    depends on the ratio between   and    and the number of unit cells of 

the MBPD. Reducing the size of the metasurface as long as the collective response of the 

metasurface is preserved, can increase the load current for a given generated photocurrent 

of    .    

 

Figure 6.5: (a) The equivalent circuit for a metasurface unit cell with the equivalent 

graphene resistance of    and contact resistance of   . (b) The equivalent 

circuit for the MBPD (circuit of Fig 6.4) where   and   are the number of 

unit cells in X and Y direction.  
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Now we calculate photocurrent generated by each unit cell:     of the circuit 

shown in Fig. 6.4. Having in mind that the incidence power in each unit cell                   

                  where      is the total incident power on the whole device area.   

          
    

  

 

  
      

          (6.11) 

which leads to:  

   
  

             

    

  

 

  
   

 
  

            
    

 

  
   

          (6.12) 

         
  

            

 

  
   

                     (6.13) 

which is the responsivity of the MBPD. From section 6.2, we know that      . Since 

the periodicity of the metasurface is            , we choose        so that 

the metasurface covers the whole area of the device (         .   and   are 

large enough for our device to demonstrate collective (periodic) response. The graphene 

resistance for each unit cell          from our electrostatic calculations in section 6.3 

and the gap size of the metasurface is 100nm, which gives          and the 

photoconductive gain estimates as       .  This is a considerable improvement 

(almost 5 orders of magnitude) compared to case 1 with bare graphene (         . 

The improvement is due to high collection efficiency of the metasurface design. From eq. 

6.13 the responsivity can be estimated: 

                                (6.14) 
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Therefore performance improvement is the ratio of the responsivity of the MBPD and 

bare-graphene which is about 31000. The drastic improvement is primarily due to high 

collection-efficiency of the metasurface. The secondary reason is that the graphene 

absorption of light is enhanced by the plasmonic metasurface. From section 6.3 , the dark 

current of the MBPD with        can be estimated as                          

       . For the laser power of          , the photocurrent of the MBPD is 

going to be          (assuming that the absorption is not saturated yet), which is 

roughly 10 times smaller than the dark current.  

6.5 DETECTIVITY AND NOISE-EQUIVALENT POWER 

The main design parameter for a photodetector is the sensitivity in detecting the 

optical signal of interest. The figure of merit of a detector that quantifies this sensitivity is 

defined as: 

        
√    

   
      (6.15) 

Where A is the device area in    and    is the signal bandwidth in Hertz and NEP is the 

noise-power equivalent which is the optical input power to the detector that produces a 

signal-to-noise ratio of unity (S/N=1). For the MBPD photodetector of this chapter, the 

signal bandwidth can be calculated from the time constant of the circuit    as    

     ⁄  where         . Here           are the resistance and capacitance of the 

photodector circuit which easily relate to the unit cell values:          and    

    . From standard formula of capacitance,     of a unit cell can be approximated by: 

          by neglecting the effect of the oxide substrate. The circuit time-constant  

can be simplified to                  from which the signal bandwidth    

           .  



95 

 

To calculate the noise-equivalent power, we need to determine how much input 

signal power would result in a photocurrent equal to the dark current (for a given bias 

voltage). From pervious calculations, the dark current is around       for            

and the responsivity is around         . This requires 110 mW of input power to 

achieve       of photocurrent, in other words           .  

The total area of MBPD is             the figure of merit or detectivity of the 

MBPD is then calculated from eq. 6.15 to be                 

    
. It should be noted 

that this value is much lower than conventional mid-IR photodetectors. As an example 

detectivity of GeHg (a bandgap material) is around             

    
 at the temperature of 28 

kelvin although the time constant is only tens of nanoseconds which is much slower than 

the MBPD of about      . Another point is that graphene mobility is high even at room-

temperature which is an advantage compared to bandgap materials which require cooling 

to low temperatures.  

From this comparison, one can conclude that graphene photodetectors are mostly 

useful for high-speed (large bandwidth) detection of signal however the sensitivity is 

much lower than the traditional bandgap materials.  

6.6 PERFORMANCE EVALUATION 

In this section, we compare the performance of the MBPD introduced in this 

chapter to other similar works. To our knowledge, the only MBPD published is Ref [71] 

where a plasmonic metasurface with a simple dipole antenna array was fabricated on 

CVD graphene between large drain and source contacts. The MBPD of this chapter 

employs a Fano resonance which has larger quality factor and therefore larger field 

enhancement than a dipole resonance used in Ref [71]. In fact, our MBPD can absorb 20 

% (       of the incident light energy which is twice the absorption reported in [71]. 
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The dark current in the mentioned work can be estimated from the transport measurement 

to be               
     

       
     where         is the resistance between the drain 

and source contact at the CNP point. This dark current is almost 4 times smaller than the 

dark current of our photodetector       . The reason can be explained by larger 

resistance of the antenna array where the antennas are oriented in series between the 

contacts whereas in our MBPD, all the unit cells are connected in parallel and therefore 

the circuit resistance is lower. For equal gap size and graphene mobility, the 

photoconductive gain should be equal. Also if    and    are the resistance and the 

capacitance of each unit cell (nano-detector) the RC time response for both MBPDs will 

be identical to      (neglecting the parasite capacitances). On another note, the bias 

voltage required for collection in our MBPD (            is much smaller than Ref 

[71] (          leading to much lower power consumption which is an advantage  e.g. 

in wearable technologies.  

In an interesting work, it was shown that two graphene transistor, spaced by 5 

nanometers can produce relatively large responsivity of     ⁄ 74
. The top graphene 

transistor absorbs light and the photocarriers can tunnel through the short barrier. The 

tunneled carriers change the doping of the graphene in the lower transistor and shift the I-

V curve of the lower transistor inducing a large change in current. The top transistor and 

the incident photons therefore are acting as gate contact for the lower transistor and the 

entire arrangement functions as a phototransistor. The detector is wide-band as graphene 

has no band-gap. Wide-band detection is an interesting feature of graphene photo-

detectors. On the other side however the measured photocurrent does not give any 

information about the energy of the incident photon. In that regard, one can envision an 

array of MBPD with large quality factor (narrow-band) that can potentially reproduce the 



97 

 

spectral information of the incident light similar to a spectrometer. This distinguishes our 

work from the photo-transistor of Ref[74].  

 

6.7 CONCLUSION 

We designed a Fano-metasurface with high-collection efficiency and large field 

enhancement. The electrical connectivity of metasurface provides a drain and source 

electrode for every single unit cell of the metasurface which reduces the transit time and 

improves the collection efficiency dramatically. Using full-wave simulations, the 

graphene absorption in the gap was calculated. The equivalent graphene resistance and 

the dark current was determined from an electrostatic simulations. A circuit analysis 

provided the mathematical relation for the responsivity of the MBPD. The devices 

demonstrates 31000 times responsivity improvement compared to a similar graphene 

photodetector without a metasurface. The sensivity of the MBPD was calculated and 

compared to band-gap materials.   
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Chapter 7: Material Characterization and Substrate Effect 

 

7.1 INTRODUCTION  

Plasmonic metasurfaces interact with the substrates, superstrates and 2D materials 

that they are integrated with. In chapter 4, 5 and 6 the interaction of plasmonic 

metasurfaces with graphene was utilized for realization of amplitude and phase 

modulators and high-speed sensors such as motion sensors and photodetectors. Therefore, 

it is important to characterize graphene and also study the interaction of metasurface 

resonances with the phonon resonance of SiO2 which is the conventional isolating spacer 

in silicon samples. In this chapter, we employ coupled mode theory to analyze the optical 

response of the metasurface for two different purposes 1) derive the scattering time of 

charge carriers in graphene which is an important graphene parameter and 2) study the 

interaction of metasurface resonance modes with SiO2 phonon resonance. The derived 

scattering time is in agreement with the scattering time derived from electrical transport 

measurement.  

7.2 All optical measurement of carrier scattering rate 

In this section we use a perturbative approach
57

 to derive scattering rate of 

graphene charges. If a metamolecule made of PEC is perturbed by a mantle of surface 

area S and thickness      where    is the resonant frequency of the metamolecule, the 

resonant frequency shift can be described by
57

:   

 

             
  

 
 

 ∫     || | |||
 
   

 

  
 

 ∫    
 
  

 |  |    
 

  
 

          (7.1) 
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Where  || and    are the components of permittivity parallel and normal with respect to 

mantle surface and     ∫ | |   
 

 is the stored electromagnetic energy of the bare 

metamolecule. By observing that for graphene   ( ||   )         , eq 7.1 will be 

simplified to eq 4.2.  Below we demonstrate that spectral shifts and linewidth changes 

produced from loading plasmonic metasurfaces with gated graphene can be used for 

precise determination of graphene’s optical properties. Specifically, the free carrier 

scattering rate   can be determined using a simple procedure that utilizes complex-valued 

resonant frequencies  

  ̃    
              ⁄    ̃    

      (7.2) 

that are experimentally measured for a broad range of carrier’ densities      

          . The corresponding resonant wavelengths and quality factors are plotted in 

Fig. 4.5. According to eq 4.2,    ̃    
   satisfies

57
 the following equation:  

 
     ̃    

   

     ̃    
   

  
         

    

         
    

 ,       (7.3) 

where graphene’s conductivity is calculated at the resonant frequency      
  

    ̃    
   .  

Equation 7.3 expresses a novel opportunity for characterizing optical properties of 

graphene (rhs of the equation) using experimentally measured frequency shifts of 

metasurface resonances (lhs of the equation). This approach is particularly valuable in the 

mid-IR portion of the spectrum where traditional transmission/absorption spectroscopy of 

graphene
41,57

 is challenging because    of the SLG is much smaller than the universal 

conductance        ⁄  as shown in Figures 4.3b,c. Under such circumstances, very 

small (   ) changes in transmission through graphene must be accurately measured in 
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order to extract graphene’s optical parameters such as, for example, its carrier scattering 

rate  .  

Since the metasurface is fabricated on top of the graphene, we do not have access 

to the parameters of the fabricated bare-metasurface. Therefore, we use COMSOL 

simulations followed by the least-square fitting procedure detailed in 4.9.1 to derive   . 

It should be noted that simulation underestimates the metallic losses, therefore the 

lifetime    of the bare metasurface is defined as a fitting parameters. we now can 

calculate   ̃ 
  for a wide range of hole densities                         for 

the dipole resonance using eq 7.2. The calculation of the scattering time   was done using 

a two-parameter best-fit procedure. The fitting parameters are   and the lifetime of the 

bare metasurface   . The lhs of eq 7.3 was expressed as a   -dependent 

quantity        . Next, the rhs of eq 7.3 was expressed as a  -dependent 

quantity       . Graphene conductivities that need to be inserted into the rhs of eq 7.3 

were calculated from eq 2.4. The best-fit pair        was determined by minimizing 

∑       in MATLAB where the difference function      is defined as:  

                              .    (7.3) 

The density range was chosen to ensure that Drude conductivity contribution 

          dominates over the interband conductivity contribution          . The dipole 

resonance was chosen over the monopole resonance because according to Figures 4.2 c,d 

the effect of graphene on the former is much larger than on the latter. The experimentally 

obtained quantity       ̃ 
        ̃ 

   ⁄  was plotted in Figure 7.1 alongside with the 

material quantity                   ⁄  calculated for three values of hole scattering 
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Figure 7.1: Extraction of the holes’ scattering time   in the Drude-dominated regime. 

Lines:    
    

 ⁄  calculated for three values of free carrier scattering time  , 

circles: ratio of graphene-induced frequency shifts                                                       

-  [  ̃    
  ]      ̃    

    of the resonances for a range of carrier 

concentrations. 

time:      fs,      fs, and       fs.  According to eq 7.1, these two quantities 

must be equal under the assumption that   does not depend on the density of free carriers. 

It follows from Fig. 7.1 that this equality is rather accurately satisfied only for   . 

Therefore, our experimental results impose very restrictive limits on the value of  . We 

note that         fs, obtained using dc conductivity measurements, is indeed an under-

estimate of the actual scattering time. As argued above, this may be related to the 

presence of grain boundaries outside of the optical field concentration areas of the 

metasurface.  

 

7.3 EFFECT OF THE SIO2 SPACER ON THE QUALITY FACTOR OF THE PLASMONIC MODE 

Plasmonic metasurfaces mentioned in this dissertation, were fabricated on a 

silicon dioxide spacer of a Si/SiO2 substrate. Silicon dioxide has a strong polaritonic 

resonance
113

 at      
    .  Fig. 7.2a displays the numerically simulated reflectivity of 
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different components of the structure without the material resonance for the non-

dispersive spacer with the refractive index        . The quality factors of the 

monopolar and dipolar resonances are obtained by fitting the numerically calculated 

reflectivity  to eq 4.1.  The comparison of the quality factors of the two resonances is 

presented in Table 7.2 for non-dispersive and dispersive SiO2 spacers. While the quality 

factor of the monopolar resonance is only slightly affected by the polaritonic resonance in 

SiO2, that of the dipolar resonance is two times higher for the metasurface on the 

dispersive SiO2 substrate with complex-valued dielectric permittivity      
    

               plotted in Fig. 7.2d.   

 

Spacer property  monopole dipole 

Dispersive spacer (SiO2) 19 20 

Non-dispersive spacer (       ) 18 10 

Table 7.1: The quality factor of the two resonances of a metasurface (defined in Figure 

4.2a) fabricated over (second row) a dispersive SiO2 spacer with the 

complex-valued dielectric permittivity            plotted in Fig. 7.2d, 

and (third row) idealized non-dispersive spacer with refractive index 

        .  

To investigate the effect of proximity between the dipole/monopole modes and 

the phonon-polariton resonance on the quality factor of the said modes, we have 

intentionally brought the frequency of the dipole mode closer to the polariton resonance. 

This was accomplished by up-scaling all the dimensions of the metasurface in the xy 

plane in order to red-shift the frequency of the dipole resonance. The colors in Fig. 7.2b 

depict the reflectivity for different periodicities. As the periodicity increases from 

               (    ), the wavelengths of the monopole/dipole resonances, as well 

as the related  wavelengths of the EIT1 and EIT2 dips, change by 36% and 18 %, 
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respectively. The quality factors of the two resonances were extracted by fitting the 

reflectivities for each period to tri-Lorentzian profiles given by eq 4.1. The results of this 

extraction shown in Fig. 4.7c indicate that the quality factor of the monopole resonance 

increases from        to        (152% increase), whereas the quality factor of the 

dipole resonance changes from        to        (376% increase). The reason for 

this dramatic increase can be explained as being due to the increase of the 

electromagnetic energy stored in the dispersive medium, i.e. in the SiO2 substrate 

underneath the plasmonic antenna. Recall that the electric energy stored in any dispersive 

medium with frequency-dependent complex-valued dielectric permittivity of      

               depends on the time-averaged electric field
2
   according to the 

following expression: 

 

    
 

 

          

  
   

 

 
(
    

  
     )        (7.4) 

The multiplier factor                     that enters eq 7.4 is equal to     for 

a non-dispersive material. However it could be a rather large number for a dispersive 

material in the proximity of a phonon-polariton resonance. As the stored electric energy 

of a resonator increases, it`s quality factor   increases. This comes from the definition of 

quality factor which is the ratio between the store energy and the dissipated energy. In 

Fig. 7.2d, the black and the blue curves show        and        of SiO2 
125

. The red 

circles depict               which grows from    at shorter wavelengths to     at 

        close to the phonon resonance. Even more importantly for this work, the 

value of      can significantly exceed that of     even for those frequencies for which 

        is satisfied. That means that the dispersion can become significant before the 
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Figure 7.2: The normal incidence reflectivity from bare (no graphene) plasmonic 

metasurface shown in Fig 4.2 fabricated on top of (a) idealized non-

dispersive spacer with refractive index         and (b) dispersive SiO2 

spacer with complex dielectric permittivity           plotted in (d) as a 

function of the wavelength  .  Vertical axis: periodicity   with which all in-

plane dimensions are scaled with respect to the baseline dimensions given in 

caption to table 7.1. The thickness of the spacer (     ) and of the 

metasurface (       ) are kept fixed for all values of  .  (c) The quality 

factors of both modes versus resonance wavelength for different 

periodicities. (d) The real and imaginary parts of the SiO2 permittivity. The 

red dots represent                 .  

advent of high losses that would reduce the quality factor of the dipole resonance. For 

example, at       we find that        while          and        ⁄    . The 

increase in      increases the radiative quality factor of the dipole resonance because the 

quality factor is proportional to the stored energy which, in turn, is proportional to      . 

This increase in the stored energy as the frequency of the dipole resonance approaches 
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the polaritonic resonance of SiO2 explains the dramatic increase of the quality factor of 

the dipole mode plotted in Figure 7.2.  

 

7.4 CONCLUSIONS 

In summary, it was shown that the graphene-induced optical detuning of 

plasmonic metasurface analyzed by the coupled mode theory provides a method for 

deriving the carrier scattering rate of graphene. The result is in agreement with that 

obtained from electrical transport measurement. Also it was shown that the proximity of 

the metasurface resonance with the phonon resonance of SiO2 increases the energy 

restored in the substrate which increases the quality factor of the mode.  
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Chapter 8: Numerical Simulation of Graphene-Integrated 

 Plasmonic Metasurfaces 

8.1 INTRODUCTION  

This chapter is an overview of the numerical simulation technique used in this 

dissertation. The simulation domain and boundary condition setting are introduced and 

the equations that derive the reflection coefficient from full-wave simulations are 

described. The numerical simulation results are compared to their experimental 

counterparts.  

 

8.2 NUMERICAL ANALYSIS TECHNIQUE 

   For all the simulations in this dissertation, COMSOL MULTIPHYSICS a 

commercial software based on finite-element method was used. In Figure 8.1 the 

simulation domain and the material properties are shown. The two domain at either ends 

(left and right ends) represent perfectly matched layers (PML) which by definition does 

not reflect light at its boundary. The boundaries at the most right and left end are Perfect 

electric conductor (PEC). All other outside boundaries have periodic boundary condition.  

The incidence wave is a plane wave which is modeled by a surface current as 

shown in Figure 8.1a. The surface current is defined by          ̂     ( (    

   )) where    and     are x and y components of the propagation vector and m is equal 

to x or y for the incident polarization of x and y.  

Material properties are set for all domains, for gold and silicon dioxide the Palik 

handbook of optical properties was used
125

. The reflectivity can be derived from 

reflection coefficient   as:   |  |. To calculate reflection coefficient  , we define two 

planes in the far-field at two z-coordinates distanced by   as shown in Fig 8.1b. The  
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Figure 8.1: (a) The simulation domain. Different regions are tagged with their material 

name (b) The two reference planes in the air region used to define the 

reflection coefficient.  

plane should be far enough from the sample to avoid near fields. The simulation results 

can provide the total electric field   and    at these two z-coordinates which can be 

described in terms of forward and backward waves as:  

           

                     

     (8.1) 

           

                                           =     
       +     

     

                                       

           (8.2)                    

From equations 8.1 and 8.2, one can solve for the reflection coefficient   for known 

values of          and  . In the simulations,    was chosen to be          where    is 

the z-coordinate of the first plane. The above-mentioned procedure and the associated 

Matlab script that was used in this dissertation was developed by Dr. Hossein Mousavi.  
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 8.3  NUMERICAL SIMULATIONS AND PROSPECTS FOR INDEPENDENT  AMPLITUDE/PHASE 

MODULATION 

Numerical simulations were carried out in order to verify the experimental results 

presented in Figure 4.4. In addition, these numerical simulations enable us to make 

predictions about some of the physical quantities that were not experimentally measured 

in this work, such as the amplitude and phase of the transmitted waves. The SLG was 

modeled using a surface current
 57            where    is the tangential electric field 

on the graphene plane and      is the optical conductivity of single-layer graphene 

described by eq. 2.4.  

Figures 8.2a,b show the simulated reflectivity amplitudes      |    |  and 

phases              of the reflected light  for different carrier concentrations, and 

figure 8.2a is in excellent quantitative agreement with the experimentally measured 

spectra shown in Figure 8.2c. For completeness, we also present in Figures 8.3a,b the 

numerically simulated transmittances      and phases       of the transmitted light 

although no experimental measurements of the transmission were performed. All 

simulations are performed for sample 1 with the gap size of 70nm. The incidence light is 

chosen to be  P-polarized with the angle of incidence        for consistency with our 

experimental setup that utilizes a high-NA microscope.  

     Below we use the results of the numerical simulations to demonstrate the 

promise of graphene-functionalized Fano-resonant metasurfaces for developing rapidly 

tunable amplitude and phase modulators (AM and PM) that can potentially operate with 

nanosecond-scale modulation speeds. We demonstrate that nearly pure phase modulation 

can be achieved at certain wavelengths (shown by red arrows in Figures 8.2a,b for 

reflected light and Figures 8.3a,b for transmitted light). For some other wavelengths 

(shown by black arrows in Figures 8.2a,b for reflected light and Figures 8.3a,b for  
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Figure 8.2:  Reflectivity of sample 1 with parameters given in Fig 4.2 (      ) from 

numerical simulations (a) and FTIR measurements (b). The simulated 

results for phase of the transmitted light at different graphene doping levels 

(c). The arrows indicate the spectral positions with constant scattering 

intensities (red arrows) and phase (black arrows). The simulated reflectivity-

phase plane as function of carrier concentration at two different wavelength. 

(d) The red axes corresponds to the wavelength shown with the red arrow 

(  
          ) and similiarly black axes corresponds to black arrows 

(   
          ). The color of the circles correspond to the dopings 

presented in (c).  

 

transmitted light) nearly pure amplitude modulation occurs as the carrier concentration 

changes. Specifically, in Figure 8.2d we plot the reflection data for four values of carrier 

density varying between          and               (color-coded circle symbols) 



110 

 

for two specific wavelengths (  
         and   

         ) in the (    ) phase 

plane. We observe that, for a fixed wavelength     
  , the reflection phase      

    

varies by almost         degrees as the function of   while the reflection amplitude 

    
    changes by only 3% for the same variation of carrier density. The implication of 

this result is that one can develop a narrow-band PM which only affects the phase but not 

the amplitude of the reflected light. For example, if different elements of the metasurface 

can be independently controlled, one can envision an active beam steering reflect-array 

that is based on SLG-functionalized metasurface. Similarly, a narrow-band AM that 

affects the amplitude but not the phase of the reflected light can be  

 

 

Figure 8.3: Tranmission spectrum of different doping levels from numerical simulations. 

Intensity (a) and the phase (b). The color coding corresponds to the legend 

in Fig 8.2c.  
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Figure 8.4: Transmission-phase plane for different graphene carrier concentrations at 

  
           (red curves/axes) and    

           (black curves/axes). 

These wavelengths correspond to the position of the arrows in Fig. 8.3. 

Graphene doping levels are color-coded according to the legend in Fig 8.2c. 

implemented at     
  : according to Figure 8.2d, the reflectance     

    varies by 

factor   (from        to       ) whereas the phase      
    changes by only 

       degrees for the same variation of graphene’s carrier density. Likewise, in 

Figure 8.4 we plot the transmission for two selected wavelengths (  
          

and   
         ) in the (    ) phase plane. Phase modulation without amplitude 

change can be achieved in transmission at     
  : the transmission phase      

    

varies by almost         degrees as the function of   while the transmission 

amplitude     
    changes by only 3% for the same variation of carrier density. 

Similarly, amplitude modulation without phase change can be achieved in transmission 

at     
  : the transmission amplitude     

    changes by a factor 3 (from       

to      ) while the transmission phase      
    changes by only        degrees. 

By controlling both the amplitude and phase of the individual segments of a metasurface, 

one can now envision actively controlled planar structures capable of forming infrared 

holograms
62

 and infrared scene projectors of almost unlimited complexity operating in 

either transmission or reflection. 
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8.4 CONCLUSION 

Numerical simulations, can predict the electromagnetic response of an active 

graphene metasurface. Graphene was modeled with a surface current that depends on the 

tangential electric fields and graphene optical conductivity from the random phase 

approximation. The results of the COMSOL multiphysics simulations were in excellent 

agreement with the experimentally measured reflectivity. The possibility of independent 

modulation of amplitude and phase was explored for the metasurface used in chapter 4.  
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Chapter 9: Conclusions and future outlook  

In this dissertation, we explored the possibility of active modulation of mid-IR 

light using graphene-integrated metasurfaces. Graphene`s electronic and optical 

properties can be tuned by a rate only limited by the circuit`s time constant which makes 

it an appealing active materials for high-speed optoelectronics. We studied the 

modulation of amplitude and phase of the mid-IR light by integrating large-area CVD 

graphene with plasmonic Fano-resonant metasurfaces which enhance the interaction of 

light with graphene by up to 3000 times. By applying a back-gating scheme, the 

reflectivity was modulated by 10 dB at around      . A method was proposed to 

derive the scattering rate of graphene free carriers from the graphene-induced variation of 

the optical response. It was shown that the proximity of the Fano resonance to the 

polaritonic resonance of the SiO2 can increase the quality factor of the resonance.  

A Michelson interferometry setup was utilized to measure the phase modulation 

by graphene. It was shown that the phase can change by     at        . In particular 

the phase can change by     while the amplitude stays nearly constant which is inspiring 

for interesting applications in dynamically reconfigurable holograms and beam steering.  

The setup can be used as an electrically-calibrated laser interferometry system which is 

able to detect the motion of an object with sub-micron accuracy. Electrical calibration can 

be potentially ultra-fast as it does not involve moving parts. Using the experimentally 

measured phase, it was also demonstrated that the polarization state of the reflected light 

can be modulated via application of a gate voltage for an incident polarization along 45 

degree. This is due to the anisotropic response of the metasurface which only changes the 

phase for the Y-polarized incident light and not for the X-polarized light.  
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An electrically-connected metasurface was employed to enhance the responsivity 

of a metasurface-based graphene photodetector. COMSOL simulation showed that the  

metasurface increases the graphene absorption from 2% to 40%, while 20% is absorbed 

in the gap between the drain and source and can be collected efficiently. From an 

electrostatic simulation, the resistance between the drain and source electrodes was 

calculated for each unit cell. From circuit theory, an analytic relation for the responsivity 

of the metasurface-based photodetector was derived. A comparison between a bare-

graphene photodetector with a metasurface-based graphene photodetector quantified the 

performance improvement. Addition of the metasurface improved the photoconductive 

gain dramatically, which is due to improvement in collection efficiency. This leads to the 

overall responsivity improvement of        times.  

 

 

 One challenge in prototyping and commercialization of the devices 

presented in this dissertation is the large gate voltages. Future works should be 

aimed at reducing the gate voltage. One possibility to explore is using a high-k 

dielectric spacer between the graphene and conductive substrates.  

 

 We were able to achieve     phase shift which is impressive for a 

monolayer of active material. However, for advanced applications like beam-

steering and dynamic holography a    phase shift is necessary. Moreover, the 

insertion loss was too large (10dB). This calls for better designs that allow    

phase modulations while keeping the insertion loss at reasonable values. 
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Appendix A: Nanofabrication processes and recipes: 

  

A.1 SAMPLE FABRICATION PROCESS  

 

The nanofabrication process of the devices covered in this dissertation have been 

performed in Pickle clean room facilities in university of Texas at Austin. In this 

appendix, we first review the steps of nanofabrication of graphene-integrated 

metasurface. Then we provide the detailed recipe for each step.  

 

  

1. The process starts with e-beam lithography of alignment marks on top of a     

    sample of Si/SiO2. The lithography defines 4 large alignment marks on the 4 

sides of the sample at                           and          all dimensions in 

millimeters. Each alignment mark is a cross of two wires with the length and 

width of         and      . An array of small crosses         and 

      is defined on an area of           in the middle of the sample. 

The distance between any two small cross are       in both directions.  

 

2. A CVD graphene patch with the approximate size of         is transferred 

onto the middle of the Si/SiO2 sample. The recipe for the growth and transfer of 

the CVD graphene is provided in appendix B.  

 

3. An e-beam lithography step, masks large patches of high-quality graphene (areas 

without ripples, cracks  and large area defects sites) of            or larger 

and exposes the area surrounding patch. In Fig. 1A a high-quality graphene patch 

of            is masked by an ebeam-lithography step. The green areas are 

covered with PMMA resist. The area surrounding the patch are exposed with 

electron beam green and developed thereby are not covered with resist.  

 

4. An oxygen plasma cleaning step cleans the graphene on the exposed part resulting 

in isolated patches of high-quality graphene. The power and and oxygen flow 

rates are set to 70 Watts and 20 sccm respectively. The process time was chosen 

to be 10 seconds.  

 

 

5. The PMMA is removed with acetone.  

 

6. An e-beam lithography step is used to fabricate the metasurface.  
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7. Another e-beam lithography step defines the large drain and source contacts.  

For  photodetector structure of chapter 6, the extended drain and source wires 

were exposed in the same exposure with metasurface. The large contacts were 

subsequently exposed on top of these extended wires.  

 

 

Figure 1A: A high-quality graphene area (the green rectangle) is masked using an e-

beam lithography step which follows by an oxygen plasma cleaning step 

which defines a rectangular isolated graphene patch.  

8. The sample is mounted on a chip carrier using an adhesion layer of silver paste.  

 

9. The drain and source contacts of each device are wire-bonded to the separate 

contact pads of the chip carrier.  

 

10. The chip carrier is mounted on a Faraday cage shown in Fig 2A to protect the 

graphene devices against electrostatic discharge. Several BNC female connectors 

are provided to carry the drain, source and gates signals to the voltage 

source/parametric analyzer.   
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Figure 2A. The bird view of the sample mounted on a chip carrier which is fixed to a 

Faraday cage. The sample is on the top right corner of the chip carrier and it 

is wire-bonded to contact pads of the chip carrier. Four black plastic arms 

clamp the chip carrier to the Faraday cage. Several female BNC connections 

are provided to carry the signals to the voltage source/parametric analyzer.  

 

A.2 NANOFABRICATION PROCESS 

 

The nanofabrication process is summarized in the schematic in Fig. 3A:  

 

(a) The process starts with spin coating of a Poly(methyl methacrylate) PMMA 

resist on the substrate (Si/SiO2/Graphene). 

(b)  Next the electron beam exposes the targeted area followed by a development 

step which will define a groove in the exposed regions as depicted in Fig 

A3(b). 

(c) An adhesion layer (Cr/Ti) followed by a noble metal (Au/Ag) are deposited 

in the ordered mentioned.  

(d) The sample is immersed in acetone for several hours which solves the 

PMMA. Thereby the gold adhering to the PMMA is lifted.      

https://en.wikipedia.org/wiki/Poly(methyl_methacrylate)
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Figure 3A: Steps of nanofabrication process. Step (a)-(d) are used for fabrication of all 

the samples in this dissertation. The recipe creates graphene-integrated 

metasurface devices. 

We next detail the fabrication recipe for the metasurfaces, crosses and the contacts. 

 A.3 ELECTRON-BEAM LITHOGRAPHY 

 

A JEOL JBX-6000FS electron-beam lithography (EBL) system was used for all 

the fabrications in this dissertation. The machine has an accelerating voltage of 50 

KV and is capable of patterning 20 nm features for PMMA resist. It incorporates 

two different objective lenses with maximum field size of 80 and 800 microns 

respectively.  

 

A.4 NANOFABRICATION RECIPE  

(a) Spin coating  

 

Metasurface and crosses: The resist  PMMA 950k C2 was spun at 5000 rpm for 

1 min followed by a post-bake at      for 2 minutes.  

 

Large contact pads:  
The resist PMMA 495k A4 was spun at 2000 rpm for 1 min followed by a post-

bake at       for 2 minutes.  
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(b) Electron-beam lithography and development  

 

Metasurface and crosses: The exposure current was chosen to be 100PA with 

dosage of          . The development time was 90 seconds and the developer 

MIBK:IPA (1:3) was kept at   .  

 

Large contact pads:  

The exposure current was chosen to be 15NA with dosage of          . The 

development time was 40 seconds and developer MIBK:IPA (1:3) was kept at 

room temperature. 

(c) Metallic deposition 

The adhesion layer was deposited at the rate of 0.1 A/s (Angstrom per second).  

For deposition of gold the deposition rate of 0.5 A/s was not exceeded to avoid 

high temperature in the deposition chamber which would deform the PMMA 

resist and damage the underlying graphene.  

(d) Lift-off  

The sample was left in the acetone at room temperature for at least 2 hours. For 

faster lift-off time, the acetone was put on a hotplate at     for at least 15 minutes 

or until the lift-off is complete. For the photodetector metasurface of chapter 6, 

due to connectivity of the metasurface in both direction, the sample was sonicated 

for a few seconds before being removed from acetone to complete the lift-off.  
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Appendix B: CVD graphene synthesis and transfer2  

 

B1. SYNTHESIS   

 

Monolayer graphene was grown on 25-μm thick polycrystalline Cu foils in a hot 

wall furnace consisting of a 22-mm internal diameter quartz tube heated in a tube 

furnace. Typically the growth process is composed of the following steps: i) loading the 

Cu foil into the quartz tube, evacuate, back fill with hydrogen, heat to 1000 °C and 

maintain a H2 pressure of 40 mTorr under a 2 sccm flow; ii) stabilize the Cu film at the 

desired temperatures, up to 1030 °C, and introduce 35 sccm of CH4 flow for 10 min at a 

total pressure of 500 mTorr; iii) after exposure to CH4, the furnace was cooled down to 

room temperature with rate of 50 °C/min
93

.  

B2. TRANSFER 

 

The transfer of graphene onto the target substrate (quartz substrate with 

metamaterial patterns) was performed using dry transfer method that allows to avoid 

trapping the solutions (used in the transfer processes) between metamolecules, as 

described elsewhere
126

 . Briefly, a poly-(methyl methacrylate) (PMMA) was spin coated 

(3500 rpm, 1 min) on top of the graphene/Cu foil. A polydimethylsiloxane (PDMS) 

frame with a hole of about 0.5×0.5 cm
2
 size in the center was attached to the top of the 

graphene/Cu foils. After etching the Cu foil in 0.1 M ammonium persulfate solution, the 

PDMS/PMMA/graphene system was dried in air and put onto the target substrate. After 

removing the PDMS mechanically, the sample was put in a vacuum desiccator overnight 

in order to have better adhesion of graphene to the substrate. Afterwards, PMMA was 

removed by submerging the sample into acetone. The final graphene/substrate was dries 

in a vacuum desiccator overnight, and used for spectroscopy measurements.  

 

 

 

 

 

  

                                                 
2 Thanks to Iskandar kholmanov from department of mechanical engineering for the systhesis and transfer 

of CVD for all the projects in this dissertation and who also provided the recipe detailed in appendix B. 
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Appendix C: Alignment procedure for the interferometric setup  

 

Fig. C1 shows the steps involved in the alignment procedure. All the optical components 

have been introduced in the caption at the bottom of the figure. In all the steps, 

components with the orange color is being aligned while the other component are still. 

Starting from top left here is the list of steps:  

 

 The Optical path of the laser beam has to be aligned to the optical table. We used 

two pin-hole far away from each other. (around 2 meters away) One close to the 

laser and one close to the sample position. We adjusted the height of them to 7 

inches and fixed them to the same row of holes on the optical table. We then put 

the IR camera after the second pinhole on the sample side. By adjusting the 

height and orientation of the laser, the beam will pass through the center both of 

the pin-holes producing concentric beams in the IR camera.  

 

 The beam-splitter is inserted in the desired space between the two pin-holes. The 

IR camera is placed approximately in the right position so that the splitted beam 

(in arm1) is normal to the original beam. The azimuthal angle of the beam-

splitter is adjusted so that the beam is observed in the center of the camera. This 

gives us an approximate 45 degree.  

 

   A pin-hole is inserted into arm1 and adjusted to the center of the beam by 

producing concentric pattern in the camera.  

 

 The camera is relocated to the detector position. A mirror on a motorized stage is 

inserted into arm1. The mirror has to be aligned with the pinhole making sure 

that the beam is reflected from the mirror in the exact same direction toward the 

pinhole and the camera. By opening and closing the pin-hole we can test this 

with the help of the camera.  

 

 Arm 1 is blocked by absorbing material. A mirror is inserted into arm2. Both 

mirrors should be at the same distance from the beam-slitter. The mirror is 

aligned with the beam with the help of the pin hole and the camera.  
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Figure C1: The steps for alignment of a Michelson interferometry setup used in chapter 

5. The starting point is from top-left. The arrows show the order of progress. 

All the optical elements are introduced in the bottom caption.  In each step, 

the element with the orange color is active or is getting aligned while the 

other components are passive and still.  
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 A lens is inserted 4 inches from the camera. This is the focal length of the lens. 

This will not affect out alignment. Next a high numerical objective from ZnSe is 

inserted around 5mm away from the mirror on arm2. The objective is mounted 

on a XYZ translation stage with standard micrometers. The objective is aligned 

to the center of the beam by observing complete circles in the camera in both X 

and Y translation directions. 

 

 A MCT detector is placed in the focal point of the lens and aligned with the 

beam by maximizing the measured intensity.  

 

 The graphene metasurface sample is placed in the focal point of the objective. 

The sample is mounted on a XYZ translation stage with standard micrometers. 

At this point we focus on the Si/SiO2 substrate surface at 9 micron due to high 

reflectivity at that SiO2 phonon resonance. We align the sample to the beam by 

maximizing the measured intensity in the detector.  

 

 By removing the IR absorbing material from arm1, we now use the camera to 

check the alignment of the reflected beams in arm1 and arm2. By moving the 

motorized mirror, we should observe interference which is modulation of beam 

intensity as the mirror is moving. If the modulation is weak then the above steps 

should be iterated.  

 

 The MCT detector is inserted back and the intensity is measured as a function of 

mirror position. A good alignment results in large modulation depth of the 

signal. It should be noted that our laser beam slightly shifts as the wavelength is 

changing. So for each wavelength alignment should be repeated.  

  

 

Figure C2 shows the actual setup. A flip mirror was used after the QCL for 

practical purposes. The graphene sample and the objective are not inserted in the setup 

yet.    
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Figure C2: Picture of the setup. All the optical elements are tagged. This is not the final 

setup and the graphene metasurface, the camera and the objective are not in 

the setup. But it shows the interferometric Michelson setup with beam 

splitter, pinholes and mirrors on the two arms. 

 

In Fig C3, the IR camera pictures of the interfered beam for a good and a bad alignment 

is shown with their corresponding modulation pattern. 
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Figure C3: (a,b)The IR camera picture of the interfered beam and the intensity 

modulation for well aligned beam. A well-rounded pattern is observed in the 

camera and the modulation depth of the measured intensity as a function of 

mirror position is large. (c,d) the asymmetric beam and low modulation 

depth are indicators of poor alignment.  

A symmetric interference beam of Fig C3a leads to large modulation depth of Fig. C3b 

and an asymmetric beam of Fig. C3c leads to small modulation depth of Fig C3d.   
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Appendix D: Calculation of graphene mobility and carrier collisional 

times from the electrical transport measurement 

 

Here we provide two different methods that were used to calculate the graphene 

electrical properties from the transport measurement for samples studied in chapter 4 

(section D1) and 5 (section D2). In Fig. D1a the schematic of a graphene-integrated 

metasurface device is shown with drain, source and backgate contacts and a gate voltage 

applied between source and back-gate. Figure D1b demonstrates the SEM image of such 

device. The blue arrows are pointing at graphene edges. 

 

 

Figure D1: (a) The schematic of a graphene-integrated metasurface device with drain and 

source and gate connected between source and silicon back-gate. (b) SEM 

image of a graphene-integrated metasurface device. Graphene edges are 

marked by blue arrows. 

D1: In this section, we calculate the mobility and carrier collisional time as well 

as the residual charge from the transport measurement data of Fig. D2.  The hole mobility 

   of graphene at room temperature was calculated from the measured electrical 
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conductivity according to
             ⁄           ⁄  where       is the 

electrical conductivity of graphene at the hole concentration of   . We used     

            for this calculation. It should be noted that this calculation ignores the 

contact resistance between graphene and source/drain which for this case is a good 

approximation since the contact resistance between chromium and graphene is relatively 

small compared to graphene resistance. We will calculate this contact resistance in 

section D2 using a fitting method.  

 

 

Figure D2: The resistance between the drain and source for the graphene-integrated 

metasurface device of chapter 4.  

The carrier collisional time can also be calculated
86

 from the measured dc 

electrical conductivity to be   
   

     
      which is consistent with the value of 

   

derived using the optical conductivity of graphene as explained in chapter 7. The residual 

charges at the CNP point was calculated from    
       

    
              where    is 

the minimum conductivity from the DC transport measurement and      is the SiO2 

substrate charge impurity which can be roughly estimated from the graphene mobility
86

. 

The slight p-doping of the SLG by the SiO2 substrate is inferred from       . 
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D2:  In section D1, the graphene electric properties was calculated directly from 

the values of resistance at certain Fermi energies. However this approach neglects the 

contact resistance which is the resistance between graphene and the source/drain contacts. 

In this section, we derive all the electronic parameters of graphene from fitting to the 

transport measurement curve.  

This approach takes the contact resistance into account. This resistance can be 

written as 
116

:    (  )                   √  
  [  (       )]

 
⁄    where 

        ⁄  with    and    being the length and the width of graphene channel.  

 

 

Figure D3: The resistance between the drain and source for the graphene-integrated 

metasurface device of chapter 5. The red line is the fitting used to determine 

the contact resistance, mobility and residual charges.  

By fitting the experimentally measured resistance in Fig. D3 to    , the fitting 

parameters         ,                and              ⁄   can be derived. 

The charge neutrality point (CNP)             corresponding to      is 
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identified by the maximum value of        . The slight p-doping of the SLG by the 

SiO2 substrate is inferred from       . Due to the breakdown voltage of silicon 

dioxide at 0.5 GV/m, we vary the back gate voltage in the              range 

using “Heathkit 500V PS-3” power supply. The holes’ areal concentration can reach the 

maximum values of   
                for the peak gate voltage. The red curve in Fig 

D3 demonstrates the fitted line in the hole regime. The carrier collisional time can be 

calculated from mobility from   
    

     
      where          is the hole 

conductivity.  
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