
a2) United States Patent
Khanetal.

US009977904B2

US 9,977,904 B2
May 22, 2018

(0) Patent No.:

(45) Date of Patent:

(54) SYSTEMS AND METHODS FOR

AUTOMATED DETECTION OF

APPLICATION VULNERABILITIES

(71) Applicant: The Board of Regents, The University
of Texas System, Austin, TX (US)

(72) Inventors: Latifur Khan, Plano, TX (US);

Zhigiang Lin, Dallas, TX (US);
Bhavani Thuraisingham, Dallas, TX

(US); Justin Sahs, Richardson, TX
(US); David Sounthiraraj, Richardson,

TX (US); Garrett Greenwood,

Richardson, TX (US)

(73) Assignee: Board of Regents, The University of
Texas System, Austin, TX (US)

(*) Notice: Subject to any disclaimer, the term ofthis

patent is extended or adjusted under 35
U.S.C. 154(b) by 70 days.

(21) Appl. No.: 14/629,876

(22) Filed: Feb. 24, 2015

(65) Prior Publication Data

US 2015/0242636 Al =Aug. 27, 2015

Related U.S. Application Data

(60) Provisional application No. 61/944,304,filed on Feb.

25, 2014.

(51) Int. Cl.
HOAL 29/06 (2006.01)
GO6F 21/57 (2013.01)
HOAW 88/02 (2009.01)

(52) U.S. Cl
CPC oieeaes. GO6F 21/577 (2013.01); HOAL 63/1433

(2013.01); GO6F 2221/033 (2013.01); Ho4W
88/02 (2013.01)

a>
303

(58) Field of Classification Search

CPC ... HO4L 9/3242; HO4L 63/126; HO4L 9/3247;
GO6F 2221/2129; GO6F 21/44

See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

7,657,937 B1* 2/2010 Kumar0.... HO4L 63/1416

726/23
2005/0273854 Al* 12/2005 Chessc.... GO6F 11/3612

726/22
2011/0225655 Al* 9/2011 Niemela0.0.. GO6F 21/566

726/24
2011/0321139 Al* 12/2011 Jayaraman GO6F 21/51

726/4

OTHER PUBLICATIONS

NPL—May 2011—Huet al. Automating GUI Testing for Android

Applications.*

(Continued)

Primary Examiner — Tri Tran

(74) Attorney, Agent, or Firm — Thomas|Horstemeyer,

LLP

(57) ABSTRACT

Disclosed are systems and methods for performing auto-

matic, large-scale analysis mobile applications to determine
and analyze application vulnerability. The disclosed systems

and methods include identifying potentially vulnerable

applications, identifying the application entry points that
lead to vulnerable behavior, and generating smart input for

text fields. Thus, a fully automated framework is imple-
mented to run in parallel on multiple emulators, while

collecting vital information.

20 Claims, 10 Drawing Sheets

424

\] obtain Mobile Application from Source Entity

306

\ Disassemble the Mobile Application

Vulnerability in

Application?

Y

Identify a Point of Entry in the Mobile Application

\} Identify Elements on a User interface Corresponding
to the Point of Entry

312

315

317

{clentify an Input Type Correspondingto the Elements
on the User Interface

324
\

324
_| Store the Generated Simulated User Input According

to the Input Type

CORE Metadata, citation and similar papers at core.ac.uk

Provided by UT Digital Repository

https://core.ac.uk/display/211333633?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

US 9,977,904 B2
Page 2

(56) References Cited

OTHER PUBLICATIONS

Artzi, Shay, et al. “A framework for automated testing ofjavascript

webapplications.” Software Engineering (ICSE), 2011 33rd. Inter-

national Conference on. IEEE, 2011.

Christodorescu, Mihai, and Somesh Jha. Static analysis of

executables to detect malicious patterns. Wisconsin Univ-Madison

Dept of Computer Sciences, 2006.

Clark, Jeremy, and Paul C. van Oorschot. “SoK: SSL and HTTPS:

Revisiting past challenges and evaluating certificate trust model

enhancements.” Security and Privacy (SP), 2013 IEEE Symposium

on. IEEE, 2013: 511-525.
Enck, William, et al. “TaintDroid: An Information-Flow Tracking

System for Realtime Privacy Monitoring on Smartphones.” In

Proceedings of the 9th USENIX conference on Operating systems

design and implementation (2010).

Fahl, Sascha, et al. “Why Eve and Mallory love Android: An

analysis of Android SSL (in) security.” Proceedings of the 2012

ACMconference on Computer and communications security. ACM,

2012.
Felt, Adrienne Porter, et al. “A survey of mobile malware in the

wild.” Proceedings of the Ist ACM workshop on Security and

privacy in smartphones and mobile devices. ACM,2011.

Georgiev, Martin, et al. “The most dangerous code in the world:

validating SSL certificates in non-browser software.” Proceedings

of the 2012 ACM conference on Computer and communications

security. ACM, 2012.

Hu, Cuixiong, and Julian Neamtiu. “Automating GUItesting for

Android applications.” Proceedings of the 6th International Work-

shop on Automation of Software Test. ACM, 2011.

Kolter, J. Zico, and Marcus A. Maloof. “Learning to detect and.

classify malicious executablesin the wild.” The Journal of Machine

Learning Research 7 (2006): 2721-2744.

Portokalidis, Georgios, et al. “Paranoid Android: versatile protec-

tion for smartphones.” Proceedings of the 26th Annual Computer

Security Applications Conference. ACM, 2010.

Rastogi, Vaibhav, Yan Chen, and William Enck. “AppsPlayground:

automatic security analysis of smartphone applications.” Proceed-

ings of the third ACM conference on Data and application security

and privacy. ACM,2013.

Yan, Lok-Kwong,and Heng Yin. “DroidScope: Seamlessly Recon-

structing the OS and Dalvik Semantic Views for Dynamic Android

Malware Analysis.” USENIX security symposium. 2012.

Zheng, Cong,et al. “Smartdroid: an automatic system for revealing

ui-based trigger conditions in android applications.” Proceedings of

the second ACM workshop on Security and privacy in smartphones

and mobile devices. ACM, 2012.

Zhou, Wu,et al. “Detecting repackaged smartphone applications in

third-party android marketplaces.” Proceedings of the second ACM

conference on Data and Application Security and Privacy. ACM,

2012.
Zhou, Yajin, et al. “Hey, You, Get Off of My Market: Detecting

Malicious Apps in Official and Alternative Android Markets.”

NDSS. 2012.

* cited by examiner

U.S. Patent May22, 2018 Sheet 1 of 10

—

Computing Environment 103

Data Store 118

Mobile Applications 140 Emulators 149

Potentially Vulnerable
Applications 143

Confirmed Vulnerable

Applications 146
|”EntryPoints152

tq {

Vulnerability

Identifier 121

Device

Manager 127

Proxy 130

Correlative

Analyzer 161

US 9,977,904 B2

100a

Emulator Devices 115a

Mobile Application(s)

140

Operating System 169

Display 163

User Interface 172

OOO

Emulated Mobile

Computing Device

Ti5N

Computing Device 109

Application Source
System 175

Application Data

179

106

U.S. Patent May22, 2018 Sheet 2 of 10

Static Analysis

US 9,977,904 B2

100b

203

Valsonuy

AGS

206

209

212

Dynamic Analysis

LTP Tratie

 230Co

Results

 Nop
FIG. 2

 agentes
se aeSian

U.S. Patent May22, 2018 Sheet 3 of 10 US 9,977,904 B2

121

<i /
303 ¥

NS Obtain Mobile Application from Source Entity

306 v

NO Disassemble the Mobile Application
 309

Vulnerability in

Mobile

Application?

NO Identify a Point of Entry in the Mobile Application

315 ¥
\ Identify Elements on a UserInterface Corresponding

to the Point of Entry

 317 Vv

KO Identify an Input Type Corresponding to the Elements

on the UserInterface

321 ¥.
\ Generate a Simulated User Input Based on the Input

Type

324 v
\ Store the Generated Simulated User Input According

to the Input Type
 Vv

End > .
8

FIG. 3

U.S. Patent May22, 2018 Sheet 4 of 10 US 9,977,904 B2

AB
S

as w
e
o
e

a

% | constructors <constrectars LUaiethod
% | ire seedmethodconstructors!

a8

i

FIG. 4

U.S. Patent May22, 2018 Sheet 5 of 10 US 9,977,904 B2

Algocktont 255:

PAPUE agp. Ths spy uehe analy

CRUEGYRE ONE Borfeehaves

3 hegie

Be
tw

ee

geeras
a Paes

FIG. 5

U.S. Patent May22, 2018 Sheet 6 of 10 US 9,977,904 B2

 ok
Sndroidmame com. exeple hestpanstench. Yaiabsh iehby i

n> aettonrbentyLew0b)

S QaeP ENSRASS

sebieebymakes f

andacid: cde"Siarantegesfield oo

anxolsi ideidsphousFieta” androids lauttyephone

£ deteger,Skeieey =

CyB, Rahos
ipG. veh, hawtd

oy PBy

 pargetot kphagen.cetText. 0

FIG. 6

U.S. Patent May22, 2018 Sheet 7 of 10

703 Vv

Generate a Schedule to Test the Mobile Applications
in Emulated Devices

706 Vv

\ Retrieve Emulators to test the Mobile Applications in
Parallel Based on the Schedule

709 Vv

\O Install and Execute the Mobile Applications on each of

the Emulators

 A 712
Provide the Simulated User Input to User Interface

Elements at the Entry Points of the Mobile Applications

715 Vv

NS Detect and Record State Changes in the Mobile
Applications

721 ¥ Record Data Regarding the Emulations of the Mobile

Applications
vy

End

FIG. 7

US 9,977,904 B2

127

/

U.S. Patent May22, 2018 Sheet 8 of 10 US 9,977,904 B2

Algorithm 3: schedule: Apnheation Scheduling

iaputc apps, a list of apps to be tested

1 begin
2 for app &> apps da

pm geei Sera rom the

thie is. 4

3

4

erry

frcengta 3 af

8 for wenivity §© ieyFoint stepp) da
8 ivity tenedator acery)

% AEOmanout lerpalator activnny)

x uninatal L femdator,app
% i 3 ubathor demudafor)

FIG. 8

903 |

NS Window

oe fap Event
Tap Event ‘

Processing

Reture Event
FIG. 9

U.S. Patent May22, 2018 Sheet 9 of 10 US 9,977,904 B2

133

7 i
I Retrieve Data Related to Network Traffic Between the

Emulators and the Network From the Proxy

1006 ¥
SS Map Successful Attacks to Potentially Vulnerable

Applications that Were Attacked by the Proxy

1012 1015

Application Flag Application As Confirmed to be

Vulnerable? Vulnerable

1018

NI Mark Application as Safe t

FIG. 10

U.S. Patent May22, 2018 Sheet 10 of 10 US 9,977,904 B2

Computing Environment 103

Computing Device(s) 1100 1

Vulnerability Identifier 124

Memory(ies) 1106 |

Device Manager 127
 Processor(s)

41103

Pata srore Proxy Application 130

Correlative Analyzer 133
A

- »

US 9,977,904 B2

1
SYSTEMS AND METHODS FOR

AUTOMATED DETECTION OF

APPLICATION VULNERABILITIES

CROSS-REFERENCE TO RELATED

APPLICATIONS

This application claims priority to, and the benefit of,

provisional application entitled “SYSTEM AND METHOD

FORAUTOMATED DETECTIONOF SSL/TLS MAN-IN-
THE-MIDDLE VULUNERABILITIES,”filed on Feb. 25,
2014, and assigned application No. 61/944,304, which is

incorporated herein by reference in its entirety.

STATEMENT OF GOVERNMENT INTEREST

This invention was made with support by Air Force Office

of Scientific Research grant FA-9550-12-1-0077. The U.S.

governmenthas rights in the invention.

BACKGROUND

Many applications use secure sockets layer (SSL) or

transport layer security (TLS) protocols to transmit sensitive

information securely. However, developers often provide

their own implementation of the standard SSL/TLScertifi-

cate validation process. Manyof these custom implementa-

tions suffer from defects leaving the applications vulnerable

to SSL/TLS man-in-the-middle attacks. In this way, attack-

ers can gain access to highly confidential information pro-

vided by a user through these vulnerable applications.

BRIEF DESCRIPTION OF THE DRAWINGS

Many aspects of the present disclosure can be better

understood with reference to the following drawings. The

components in the drawings are not necessarily to scale,

emphasis instead being placed uponclearly illustrating the

principles of the disclosure. Moreover, in the drawings, like

reference numerals designate corresponding parts through-

out the several views.

FIG. 1 is a drawing of a networked environment accord-

ing to various embodiments of the present disclosure.

FIG. 2 is a block diagram illustrating examples of func-

tionality implemented by the networked environment of

FIG. 1.

FIG.3 is a flowchart illustrating examples of functionality

implemented as portions of an application vulnerability

service executed in a computing environment in the net-

worked environment of FIG. 1.

FIGS. 4 and 5 are example algorithms of functionality
implemented as portions of the application vulnerability

service executed in the networked environmentof FIG. 1.
FIG.6 is sample code of one embodimentof functionality

implemented as portions of an application vulnerability

service executed in the networked environmentof FIG. 1.
FIG.7 is a flowchart illustrating examples of functionality

implemented as portions of an application vulnerability
service executed in the networked environment of FIG.

FIG. 8 is an example algorithm of functionality imple-
mented as portions of an application vulnerability service

executed in the networked environment of FIG. 1.

FIG. 9 is a block diagram illustrating examples of func-
tionality implemented by the networked environment of

FIG. 1.

15

20

35

50

55

2
FIG. 10 is a flowchart illustrating examples of function-

ality implementedas portions of an application vulnerability

service executed in the networked environment of FIG. 1.

FIG. 11 is a schematic block diagram that provides one
example illustration of a computing environment employed

in the networked environment of FIG. 1.

DETAILED DESCRIPTION

The present disclosure relates to systems and methods for

automatically detecting and identifying vulnerabilities in
applications. A number of applications offered by an appli-

cation marketplace use modified security protocols that can
compromise highly sensitive information. Given a large set

of mobile applications, a static and dynamic analysis can be
performed on each application to determine which ones are

vulnerable. In particular, applications can be analyzed to

determine which applications include modified security pro-
tocols. If an application includes a modified security proto-

col, then the application can be deemed to be potentially
vulnerable. Further analysis can be performed on each

application to trace the invocation of vulnerable code asso-
ciated with the modified security protocol back to an entry

point user interface window of the application. Smart input

can be generated for the user input elements on the entry
point window ofthe application.

The system can then begin dynamically testing each ofthe
applications to see if the modified security protocol actually

comprises secure data. To begin, each of the potentially
vulnerable applications can be installed and executed on

emulated mobile computing devices. User input automation

can be performed on each of the applications. Specifically,
the generated smart input can be provided to the user input

elements on the entry point window. Execution of each of
the applications can trigger HTTPStraffic from the appli-

cation. This traffic can pass through a proxy configured to

attempt a secure sockets layer (SSL) man-in-the-middle
(MITM)attack, for example. Data regarding successful and

failed attempts by the proxyto intercept the traffic from the
applications can be recorded. The data can be analyzed to

determine which applications are actually vulnerable.
With reference to FIG. 1, shown is a networked environ-

ment 100a according to various embodiments. The net-

worked environment 100a includes a computing environ-
ment 103 in data communication with a testing environment

106 and one or more computing devices 109 by way of a
network 112. The testing environment 106 includes a plu-

rality of emulator devices 115a, 1154... 115N. The network
112 includes, for example, the Internet, intranets, extranets,

wide area networks (WANs), local area networks (LANs),

wired networks, wireless networks, or other suitable net-
works, etc., or any combination of two or more such

networks.
The computing environment 103 can comprise, for

example, a computing device such as a server computer or
any other system providing computing capability. Alterna-

tively, a plurality ofcomputing devices can be employed that

are arranged, for example, in one or more server banks or
computer banks or other arrangements. For example, a

computing environment 103 can comprise a cloud comput-
ing resource, a grid computing resource, and/or any other

distributed computing arrangement. The computing envi-
ronment 103 can include computing devices that can be

located in a single installation or can be distributed among

many different geographical locations.
Various applications and/or other functionality can be

executed in the computing environment 103 according to

US 9,977,904 B2

3
various embodiments. Also, various data is stored in a data

store 118 that is accessible to the computing environment

103. The data store 118 can be representative of a plurality

of data stores 118 as can be appreciated. The data stored in

the data store 118, for example, is associated with the

operation of the various applications and/or functional enti-

ties described below.

The components executed on the computing environment

103, for example, include a vulnerability identifier 121, a

device manager 127, a proxy 130, a correlative analyzer 133,

and other applications, services, processes, systems,

engines, or functionality not discussed in detail herein. The

vulnerability identifier 121 can be executed to traverse

through a plurality of mobile applications retrieved from an

application source system 175 to identify which ones of the

mobile applications are potentially vulnerable. In one

embodiment, the vulnerability identifier 121 can be config-

ured perform a static analysis to identify the applications

that use their own implementation of a standard certificate

validation process or a modified version of a security

protocol.
Once the vulnerability identifier 121 has identified the

potentially vulnerable applications that involve a modified

version of a security protocol, the vulnerability identifier
121 can be configured to identify an entry point window

corresponding to the vulnerability of the application. In this
regard, the vulnerability identifier 121 can be configured to

identify the entry point window that leads to the invocation
of the vulnerable code identified during the static analysis.

The vulnerability identifier 121 can identify user interface

input elements on the entry point window. The vulnerability
identifier 121 can generate smart simulated user input for

each of the input elements based on identified limitations.
The device manager 127 can be configured to perform a

dynamic analysis ofthe information identified and generated

by the vulnerability identifier 121. In one embodiment, the
device manager 127 can be configuredto install and initiate

execution of each of the applications in a plurality of
emulator devices 115. In this regard, the device manager 127

can be configured to manage the emulator devices 115 and
monitorthe state of each of the applications running on each

of the emulator devices 115.

The proxy 130 can be a MITM proxy configured to
execute an SSL MITM attack. The proxy 130 can be

configured to intercept all network traffic between the emu-
lator devices 115 and each of the applications running on the

emulator devices 115. The proxy 130 can also be configured
to report the network traffic back to the computing environ-

ment 103. To this end, the proxy 130 can facilitate detecting

the vulnerabilities by successfully attacking each of the
applications.

The correlative analyzer 133 can be configured to confirm
which of the applications identified initially as potentially

vulnerable are in fact actually vulnerable. In other words, the
correlative analyzer 133 determines which of the applica-

tions involve security protocols that do not protect informa-

tion as intended. In particular, the correlative analyzer 133
uses logs generated by the device manager 127 and the

proxy 130 to determine which of the applications were
actually attacked by the proxy 130. In one embodiment, the

correlative analyzer maps successful attacks identified from
data retrieved from the proxy 130 to the actual application

that was attacked. By matching the attacks to the time

periods in which the application was executing on an
emulator device 115, the correlative analyzer 133 can deter-

mine which applications are vulnerable.

40

45

4
The data stored in the data store 118 includes, for

example, mobile applications 140. Each of the mobile

applications 140 can further include an indication of poten-

tially vulnerable applications 143 and confirmed vulnerable
applications 146. According to some embodiments, the

vulnerability identifier 121 can be configured to identify
which onesofthe mobile applications 140 are the potentially

vulnerable applications 143. Similarly, the correlative ana-
lyzer 133 can be configured to identify which ones of the

mobile applications 140 are the confirmed vulnerable appli-

cations 146. The mobile applications 140, including the
potentially vulnerable applications 143 and the confirmed

vulnerable applications 146, can correspondto applications,
including executable code and data, which can be offered in

an application marketplace or can be otherwise submitted by
third parties for detection an identification of vulnerabilities.

Tn somecases, the execution of a mobile application 140 can

be modeled as a sequenceofactivities or phases that involve
the user. In one embodiment, the mobile applications 140

can be specially instrumented to facilitate identification of
vulnerabilities.

The mobile applications 140, including the potentially
vulnerable applications 143 and the confirmed vulnerable

applications 146, can be supported by one or more different

mobile computing platforms. In one non-limiting example,
at least some of the mobile applications 140 can be execut-

able on the ANDROID platform and can correspond to the
ANDROID package (APK) file format. In another non-

limiting example, at least some of the mobile applications
140 can be executable on the IPHONEplatform and can

correspond to the IPHONEpackage archive (IPA)file for-

mat.

The data stored in the data store 118 can further include,

for example, emulators 149, entry points 152, user input
profiles 155, application state data 158, proxy traffic data

161, and potentially other data. The emulators 149 can

correspond to a queue of emulator devices 115 that are
available to the device manager 127 to emulate each of the

potentially vulnerable applications 143. Emulators 149 can
also indicate the internal state of each emulator device 115

such that the device manager 127 can take corrective action
by restarting an emulator device 115 in the event that the

emulator device 115 has encountered an error. The emulators

149 can be used by the device manager 127 to schedule and
distribute testing of the potentially vulnerable applications

143 across multiple running emulator devices 115.
In some embodiments, the emulators 149 correspond to

software that enables emulation or virtualization of a par-
ticular emulator device 115. The emulators 149 can emulate

the various hardware resources, the performance character-

istics, and/or other characteristics ofan emulator device 115.
In some cases, the emulators 149 can obtain device perfor-

mance data related to each of the emulator devices 115 to
facilitate emulation. The device performance data can indi-

cate the performance characteristics of particular emulator
devices 115, e.g., processor performance, memory perfor-

mance, touchscreen performance, etc. The device perfor-

mancedata can be in a formatsuitable to configure operation
of the emulators 149. The entry points 152 can correspond

to the identified entry point windowsthat correspond to the
vulnerability of the potentially vulnerable application 143.

The user input profiles 155 include data used to generate
simulated user input to be provided to the executing

instances of the mobile applications 140 on the emulator

devices 115. The simulated user input can include textual
input, touchscreen gesture input, audio input, image input,

and/or other forms of user input. The user input profiles 155

US 9,977,904 B2

5
can be generated basedat least in part on the static analysis
of a mobile application 140, a manual confirmation of user

inputs obtained by wayof the vulnerability identifier 121, a

randomized approach, and/or other approaches. The user
input profiles 155 can be the same for a particular mobile

application 140 across multiple different emulator devices
115 or can differ across multiple different emulator devices

115.
In some embodiments, the user input profiles 155 can

indicate the types of user input thatare elicited by the mobile

application 140 at various times or stages of execution. For
example, the user input profiles 155 can indicate that a

particular mobile application 140 has an entry point 152
window that presents a screen of two buttons, selection of

one button leads to a first activity, and selection of another
button leads to a second activity. Further analysis can

indicate thatthe first activity expectstheusertofill in textual

input in two text regions, while the second activity expects
the user to supply a swipe gesture. The user input profiles

155 can also indicate what data the mobile application 140
expects to obtain, e.g., from a configuration file or other

source. The user input profiles 155 can store each of the
expected types of user input in storage buckets based on the

mobile application 140.

The application state data 158 can correspond to data
associated with states of each of the mobile applications 140

running on the emulator devices 115. For example,if a state
change occurs during the execution of one of the mobile

applications 140 on one of the emulator devices 115, then
the state change can be recorded in application state data

158. In one embodiment, each of the state changes for each

of the mobile applications 140 can be stored in a storage
bucket associated with each of the mobile applications 140.

The proxytraffic data 161 can correspond to data that is
intercepted between each of the mobile applications 140

executing on the emulator devices 115 and the target server

each of the mobile applications 140is trying to access.Ifthe
proxy 130 is successful in attacking and thereby intercepting

the communication, the proxy 130 can obtain data regarding
the communications between the mobile applications 140

and the target server. The proxy 130 can be configured to
store the intercepted communication data underproxytraffic

data 161.

The testing environment 106 can include a networked
array of emulator devices 115 which are maintained for the

purposes of automated testing and verification of mobile
applications 140, specifically the potentially vulnerable

applications 143 identified by the vulnerability identifier
121. The emulator devices 115 can correspond to different

device platforms (eg, BLACKBERRY, IPHONE,

ANDROID,etc.) and different models of devices from a
variety of manufacturers. Although a particular emulated

mobile application 140 can be tested on multiple different
emulator devices 115, the testing environment 106 can

include multiple units of the same emulator device 115 to
support concurrent testing of multiple mobile applications

140. Each of the emulator devices 115 can correspond to an

emulator 149 executed in a computing device, for example,
within the computing environment 103. In some cases,

multiple emulators 149 can be executed in a single comput-
ing device.

Each emulator device 115 can be associated with an actual
mobile computing device that comprises, for example, a

processor-based system such as a computer system. Each of

the emulator devices 115 can be embodied in the form of a
laptop computer, personal digital assistants, cellular tele-

phones, smartphones, music players, web pads, tablet com-

10

15

20

25

30

35

40

45

50

55

60

65

6
puter systems, game devices, electronic book readers, or
other devices with like capability. Each of the emulator

devices 115 can be associated with a display 163. The

display 163 can comprise, for example, one or more devices
such as liquid crystal display (LCD) screens, gas plasma-

based flat panel displays, organic light emitting diode
(OLED)displays, electronic ink displays, or other types of

display devices, etc. The emulator devices 115 can be
executed by the computing environment 103 or by an

external computing device or environment.

Each of the emulator devices 115 can be configured to
execute various systems such as one or more mobile appli-

cations 140, an operating system 169, and/or other systems.
The testing management layer 166 is executed to facilitate

management of the particular emulator device 115 for the
device manager 127. To this end, the device manager 127

can be configured to enable initialization or reset of the

emulator device 115, installation of mobile applications 140,
performance monitoring, and/or other features related to

management of testing. In one embodiment, the testing
management layer 166 can incorporate the commercially

available ANDROID Monkey and Robotium applications.
The mobile applications 140 correspond to the potentially

vulnerable applications 143 from the data store 118 which

are loaded onto the emulator device 115 for testing. The
mobile applications 140 can be configured to render a user

interface 172 on the display 163.
The computing device 109 can comprise, for example, a

server computer or any other system providing computing
capability. Alternatively, a plurality of computing devices

109 can be employedthat are arranged, for example, in one

or more server banks or computer banks or other arrange-
ments. For example, a plurality of computing devices 109

together can comprise a cloud computing resource, a grid
computing resource, and/or any other distributed computing

arrangement. Such computing devices 109 can be located in

a single installation or can be distributed among many
different geographical locations. For purposes of conve-

nience, the computing device 109 is referred to herein in the
singular. Even though the computing device 109 is referred

to in the singular, it is understood that a plurality of
computing devices 109 can be employed in the various

arrangements as described above.

Various applications and/or other functionality can be
executed in the computing device 109 according to various

embodiments. The components executed on the computing
device 109, for example, include an application source

system 175, application data 179, other applications, ser-
vices, processes, systems, engines, or functionality not dis-

cussed in detail herein. The application source system 175 is

executed to transfer one or more mobile applications 140
from a source entity (e.g., a developer, publisher, and so on)

to the computing environment 103 fortesting.
The application source system 175 can be embodied as an

application marketplace that includes various data relating to
the operation of the application marketplace system. The

application data 179 can describe the various mobile appli-

cations 140 which are offered for download, pricing for the
mobile applications 150, information about which mobile

applications 140 are compatible with which emulator
devices 115, metadata for the mobile applications 140,

and/or other information.
Turning now to FIG. 2, shown is an example of a system

overview for a portion of the automated detection of appli-

cation vulnerabilities in a networked environment 1005
according to various embodiments.It is understood that the

system overview of FIG. 2 provides merely an example of

US 9,977,904 B2

7
the many different types of functional arrangements that can

be employed to implementthe operation ofthe portion of the

systems and methodsdisclosed herein. As an alternative, the

system overview of FIG. 2 can be viewed as depicting an

example of steps of a method implementedin the computing

environment 103 (FIG. 1) according to one or more embodi-

ments.

In the networked environment 1008, the system overview

includes a portion corresponding to a static analysis of the

mobile applications 140 and a portion corresponding to a

dynamic analysis of the mobile applications 140. To main-

tain feasibility of testing a large number of mobile applica-

tions 140 in a limited amount of time, the systems and

methods disclosed herein use static analysis techniques to

reduce the number of windowstested, following which, the

systems and methodsdisclosed herein use a dynamic analy-

sis technique to test multiple mobile applications 140 in

parallel.

In the static analysis portion of the system for automated

detection of application vulnerabilities, the mobile applica-

tions 140 are provided to the vulnerability identifier 121 to
perform disassembly 203, vulnerability detection 206, entry

point identification 209, and smart input generation 212. In

some embodiments, the vulnerability identifier 121 performs
disassembly 203 on each of the mobile applications 140 to

disassemble the mobile applications 140 to a human-read-
able format. In one embodiment, the human-readable format

is Smali. Once the mobile application 140 has been disas-
sembled, the vulnerability identifier 121 performs the vul-

nerability detection 206 that can involve determining

whether the mobile application 140 over-rides the
X509TrustManager or HostNameVerifier interfaces. The

mobile applications 140 that do not override these interfaces
either do not use SSL or use the built-in SSL support without

modification, and can there be considered secure. The

mobile applications 140 that do override these interfaces
introduce vulnerabilities at the entry point 152 window

corresponding to vulnerable code associated with the over-
ridden interface implementation.

The mobile applications 140 that have been identified as
overriding security interfaces can be determinedas a poten-

tially vulnerable application 143. The vulnerability identifier

121 performs entry point identification 209 by identifying
the entry points 152 that lead to the invocation of the

vulnerable code identified.
Once the mobile application 140 has been identified as a

potentially vulnerable application 143, the vulnerability
identifier 121 can generate user input profiles 155 corre-

sponding to user input elements on the entry point 152

window. The user input profiles 155 can correspond to
simulated user input generated based on limitations identi-

fied for each of the user input elements. For example,
suppose one user input element requires a password con-

sisting of at least one alphabetic character and at least one
numeric character. The smart input generator 212 can gen-

erate the proper user input profile 155 for the user input

element whereby the user input profile 155 contains one
alphabetic character and one numeric character. The user

input profile can, for example, be stored in a storage bucket
associated with the potentially vulnerable application 143

being tested.
In the dynamic analysis portion of the system for auto-

mated detection of application vulnerabilities, the device

manager 127 installs and instantiates execution of the poten-
tially vulnerable applications 143 on the emulator devices

115. The device manager 127 then beginsthe user interface

5

10

15

20

25

30

35

40

45

50

55

60

65

8
automation 215 to each of the potentially vulnerable appli-
cations 143 to provide the user input profiles 155 at the entry

point 152.

The proxy 130 can attempt an attack on the HTTPStraffic
between the potentially vulnerable applications 143 execut-

ing and the Internet. The proxy 130 can store data regarding
successful attacks and associated communications inter-

cepted in response to the successful attack in proxy traflic
data 161. The correlative analyzer 133 can perform a cor-

relative analysis 221 by mapping successful attacks recorded

bythe proxytraffic data 161 to the corresponding potentially
vulnerable application 143. The correlative analyzer 133 can

determine which of the potentially vulnerable applications
143 are in fact the confirmed vulnerable applications 146

and send the results 225 to the application source system
175.

Referring next to FIG. 3, shown is a flowchart that

provides one example of the operation of a portion of the
vulnerability identifier 121 according to various embodi-

ments. It is understood that the flowchart of FIG. 3 provides
merely an example of the many different types of functional

arrangements that can be employed to implementthe opera-
tion of the portion of the vulnerability identifier 121 as

described herein. As an alternative, the flowchart of FIG. 3

can be viewedas depicting an example of steps of a method
implemented in the computing environment 103 according

to one or more embodiments.
Beginning with box 303, the vulnerability identifier 121

obtains a mobile application 140 from a source entity. For
example, a developer can upload the mobile application 140

to the application source system 175, which can be embod-

ied as an application marketplace. Alternatively, the vulner-
ability identifier 121 can configure the emulator devices 115

to obtain the mobile application 140 from the application
source system 175.

In box 306, the vulnerability identifier 121 disassembles

the mobile application 140 into a human-readable format,
for example, Smali. Alternatively, the vulnerability identifier

121 can decompile the mobile application 140 to Java. The
bytecode for the mobile application 140 can be disassembled

to Smali used the apktool. Smali disassembly is relatively
faster than decompiling to Java.

In box 309, the vulnerability identifier 121 determines

whether the mobile application 140 is potentially vulnerable.
In one embodiment, the vulnerability identifier determines

whether the mobile applications 140 overrides the
X509TrustManager or HostNameVerifier interfaces. The

mobile applications 140 that do not override these interfaces
either do not use SSLor use the built-in SSL support without

modification, and can therefore be considered secure. The

mobile applications 140 that do override these interfaces can
often introduce vulnerabilities.

Common vulnerable implementations of the
X509TrustManager and HostNameVerifier interfaces

include no-op implementations, trusting self-signed certifi-
cate implementations, and check validity only implementa-

tions. The most common implementation of the

X509TrustManagerinterface is the “no-op” implementation
which asserts all certificates are valid without looking at

them.In the trusting self-signed certificate implementation,
the implementation checks if the certificate chain consists of

a single certificate, as is the case in self-signed certificates.
In this case, it uses checkValidity to check thatthe certificate

has not expired, but does notverify the certificate’s signature

or ask the user if they wantto trust a self-signed certificate.
The check validity only implementation iterates through the

certificate chain to check that each certificate has not

US 9,977,904 B2

9
expired. However, this implementation does not do any
other type of certificate validation.

Once the vulnerability identifier 121 has determined that

there is a vulnerability in the mobile application 140, the
vulnerability identifier 121 has determined that the mobile

application 140 is a potentially vulnerable application 143.
In box 312, the vulnerability identifier 121 identifies an entry

point 152 corresponding to the vulnerable code identified in
the mobile application 140.

A typical mobile application 140 will have many entry

points 152, such asactivities or services. Therefore, dynamic
analysis of each of the entry points 152 can be prohibitively

slow. However, many (sometimes most) of these entry
points 152 lead to code paths that do not involve making

HTTPSconnections. Therefore, the vulnerability identifier
121 is configuredto identify only those entry points 152 that

lead to the invocation of the vulnerable code identified

during static analysis. To achieve this, a method call graph
(MCG)is constructed for each potentially vulnerable appli-

cation 143. The MCG can trace each vulnerable method
back to the entry point 152 that ultimately causes the

execution ofthe vulnerable code. The vulnerability identifier
121 can construct a graph of methods contained in the

compiled version of the potentially vulnerable application

143. In one embodied, the MCG can exclude traversal of
libraries due to time delay. The modified MCGtraversal

procedure shown in the example algorithm shown in FIG.4
can be used to identify vulnerable entry points 152, as will

be further described below.
In box 315, the vulnerability identifier 121 identifies

elements on a user interface corresponding to an entry point

152 window.In one embodiment, the vulnerability identifier
121 can identify user input elements on the user interface

corresponding to an entry point 152. The vulnerability
identifier 121 can generate simulated user input for each of

the user input elements and store the user input into user

input profiles 155 based on data associated with the simu-
lated user input and the corresponding user input element.

Simulating user interaction with the potentially vulner-
able application 143 requires understanding what is being

displayed on the screen and providing intelligent input. As
an example, consider the login screen of an online banking

app. A typical login screen will contain username and

password text boxes, possibly a “remember me” check box,
and a login button which will submit the user’s credentials

whenclicked. The user will typically provide input to these
elements in this order, starting with the username, and

ending with tapping the login button. A useful user interface
automation componentas described herein can simulate this

behavior without the need for human intervention or guid-

ance.
According to some embodiments, static analysis tech-

niques can be used to leverage information available in the
metadata and code associated with the potentially vulnerable

application 143 to determine a form of valid input for the
input elements.In particular, vulnerability identifier 121 can

use two sources of information: developer-supplied input

type annotations and type casts in the code to determine the
form of valid input. The input type annotations can be used

by developers to control the keyboard that appears when a
user selects the input field corresponding to the input ele-

ment. The input type annotations can be configured to
restrict the characters that the user is able to input element.

The example algorithm shown in FIG. 5 can be used to

generate the simulated user input for input elements asso-
ciated with the entry points 152, as will be further described

below.

10

15

20

25

30

35

40

45

50

55

60

65

10
Using the limitations to the input elements defined by

analyzing each of the input elements and for example, the

input type annotations of each of the input elements, the

vulnerability identifier 121 identifies the input types corre-
sponding to the input elements in box 317. In box 321, the

vulnerability identifier 121 can generate a simulated user
input based on the input types identified for each ofthe input

elements on the entry point 152 window.In box 324, the
simulated user input can be stored in user input profiles 155.

With reference to FIG. 4, shown is an example algorithm

usedto identify vulnerable entry points 152. It is understood
that the algorithm of FIG. 4 provides merely an example of

the many different types of functional arrangements that can
be employed to implementthe operation ofthe portion ofthe

vulnerability identifier 121 as described herein. As an alter-
native, the algorithm of FIG. 4 can be viewed as depicting

an example of steps of a method implemented in the

computing environment 103 according to one or more
embodiments.

To find entry points 152 that execute a particular vulner-
able method, start at the seed in the algorithm, and traverse

into its parents (the methods that call it), and into their
parents, and so on, until a method that has no parents is

reached. In a typical MCGtraversal procedure, this would

be the end of the traversal. When a method with no parents
is reached, the algorithm can be configured to jump to the

constructor of that method of the class and continue travers-
ing from there. This allows for the system to continue

traversing when the developer instantiates an object and
passes that object to the operating system. Only when a

constructor is reached that is never called in the code does

the example algorithm stop traversing. These constructors
can therefore be only called by system code, and can be

embodied as the entry points 152 to the potentially vulner-
able applications 143.

The identified vulnerable entry points 152 can correspond

either to activities or services. While services are non-user
interface based components mostly associated with long-

running background processes that are unlikely to trigger
SSL connections, the systems and methods disclosed herein

can be configured to only trigger activities declared in the
manifest file of the potentially vulnerable application 143.

Thereafter, the example algorithm ends.

With reference to FIG. 5, shown is an example algorithm
used to generate simulated user input for input elements

associated with the entry points 152. It is understoodthat the
algorithm ofFIG. 5 provides merely an example ofthe many

different types of functional arrangements that can be
employed to implement the operation of the portion of the

vulnerability identifier 121 as described herein. As an alter-

native, the algorithm of FIG. 5 can be viewed as depicting
an example of steps of a method implemented in the

computing environment 103 according to one or more
embodiments.

As shown in the algorithm of FIG. 5, the vulnerability
identifier 121 can generate smart input by attempting to

assign a data type for each input element. Once a type has

been assigned, the vulnerability identifier 121 can use a
simple table to provide typical input of that type. The type

assignmentprocess begins by looping over every activity in
the targeted potentially vulnerable application 143 (line 3).

Each activity can declare a layout with a call to setContent-
View. The vulnerability identifier 121 can extract this call

from code and load the associated layout XMLfile (line 4).

From the layout file, the vulnerability identifier 121 can
extract user interface elements, specifically elements of the

EditText type, and loop over these elements to extract the

US 9,977,904 B2

11
element identification and input type annotation (lines 5-7).
If there is a type annotation, the vulnerability identifier 121

uses that and moves on to the next user interface element

(lines 8-10).
If there is no annotation, the vulnerability identifier 121

attempts to extract type information from the disassembled
code of the potentially vulnerable application 143. The

vulnerability identifier first finds variables that reference the
elements by ID (line 11). Next, the vulnerability identifier

121 collects all parts of the code that access these variables

(line 12), and for each call to the element’s getText function
(line 13), the vulnerability identifier 121 tracks usage of that

value through any type cast operation (lines 14-15). The
vulnerability identifier 121 can use any such type casts as

type labels (line 17). Finally, the vulnerability identifier
converts these type annotations to input strings (line 21).

Thereafter, the example algorithm ends.

Turning nowto FIG.6, shown is sample code from which
the vulnerability identifier 121 can extract type information.

It is understood that the sample code of FIG. 6 provides
merely an example of the many different types of functional

arrangements that can be employed to implementthe opera-
tion of the portion of the vulnerability identifier 121 as

described herein. As an alternative, the sample code of FIG.

6 can be viewed as depicting an example of steps of a
method implemented in the computing environment 103

according to one or more embodiments.
As shown in the sample code of FIG. 6, there are two

EditText fields: one which expects an integer, but provides
no input type annotation, and one which expects a phone

numberand uses the appropriate input type annotation. To

extract these types, the vulnerability identifier 121 first looks
at AndroidManifest.xmlto find the activity name (MainAc-

tivity). Using this name, it next looks in MainActivity.smali
to look for calls to SetContentView. The vulnerability iden-

tifier 121 then extracts the ID being passed as an argument

(0x7f03 in this case).
The vulnerability identifier 121 then looks in R$lay-

out.xmlto find the name associated with that ID (activity__
main). Finally, the vulnerability identifier 121 opens the

associated file (activity__ main.xml), and searches for Edit-
Text fields, and extracts their names, and any input type

annotations. In the case ofthe field named phone_field, there

is now enough information to associate a type withthefield:
it is of type phone.

The other field, named integer_field, does not supply any
type of annotation, so the vulnerability identifier 121 must

rely on code analysis to determine its type. The vulnerability
identifier 121 first looks the nameup in the file R$id.smali

to find its associated numeric ID (Ox7f080000). Next, it

looks in the disassembled code, specifically MainActivity.s-
mali, in order to associate the ID with a variable name. In

line 1-3 of MainActivity.smali, the vulnerability identifier
121 traces the use of the ID througha call to findViewByid,

which returns an object, which is then associated with the
nameinteger. Later in the code, the vulnerability identifier

121 then uses data flow analysis provided by Androguard to

find places where this name is accessed (line 5), then
searches for the getText methodcall (line 6), and traces the

result (in register v3) to a call to parseInt (line 10). Then, the
vulnerability identifier 121 can associate the Integer type

with the name integer_field. Thereafter, the sample code
ends.

Moving on to FIG. 7, shownis a flowchart that provides

one example of the operation of a portion of the device
manager 127 according to various embodiments.It is under-

stood that the flowchart of FIG. 7 provides merely an

10

15

20

25

30

35

40

45

50

55

60

65

12
example of the many different types of functional arrange-

ments that can be employed to implementthe operation of

the portion of the device manager 127 as described herein.

As an alternative, the flowchart of FIG. 7 can be viewed as

depicting an example of steps of a method implemented in

the computing environment 103 according to one or more

embodiments.

Beginning in box 703, the device manager 127 can

generate a schedule to test the potentially vulnerable appli-

cations on the emulator devices 115. In embodiments imple-

mented on the ANDROID systems, the device manager 127

can be based on the ANDROID ADBtooling framework.

The device manager 127 can manage and orchestrate the

process of installing mobile applications 140 on the emu-

lated computed devices, executing user interface automa-

tion, and collecting statistics such as application logs and

networktraffic logs, while being tolerant towards the erratic

behavior of the emulator devices 115.

The device manager 127 can comprise an emulator man-

agement thread and an application scheduling thread. The

emulator management thread can be configured to manage

two pools of emulator devices 115 (each of the emulator

devices 115 can be associated with a respective thread): the

running pool and the free pool. The free pool contains the

emulator devices 115 that are ready to be used, in an

“online” state, but not currently testing a potentially vulner-

able application 143. When the scheduling thread of the

device manager 127 requests an emulator device 115,it is

removed from the free pool and returned to the scheduler.

When the scheduler finishes a job, it returns the emulated

mobile computing device to the emulator management

thread, which adds it back to the free pool.

When the device manager 127 begins to execute instal-

lation and instantiation of the potentially vulnerable appli-

cations 143 according to the schedule, it can register a

DeviceChangeListener callback with the ADB. When an

emulator device 115is initiated or dynamically addedto the

system, the emulator device 115 enters an “online”state. The

managementthread can add the emulator device 115 to both

the running pool and the free pool. If the emulator device

115 ever enters an “offline” state and/or crashes, the man-

agement threat removes the emulator device 115 from both
pools, stops execution on the emulator device 115, andstarts

a new emulator device 115 in place.
The application scheduling thread manages a list of

potentially vulnerable applications 143 to be tested and
processes them. An example algorithm detailing how the

potentially vulnerable applications 143 are process is shown

in FIG. 8 as will be further described below. The device
manager 127 retrieves the emulator devices 115 to test the

potentially vulnerable applications 143 according to the
schedule in box 706.

In box 709, the device manager 127 installs and executes
the potentially vulnerable applications 143 on the emulator

devices 115 in the testing environment 106 according to the

schedule. The emulator devices 115 can execute the poten-
tially vulnerable application 143 at variousstates, activities,

or windows. The device manager 127 can provide simulated
smart user input at various points to emulate user interaction

with the potentially vulnerable application 143. The simu-
lated user input can be configured to drive execution of the

potentially vulnerable application 143 in waysthatare likely

to lead to the vulnerable code being executed. The device
manager 127 can explore code paths that originate in each

vulnerable entry point 152 identified during the static analy-

US 9,977,904 B2

13
sis. An example block diagram of the user interface auto-
mation componentis shownin FIG. 9, which will be further

described below.

The device manager 127 can decomposethe userinterface
into component elements. For each of these elements, the

device manager 127 can extract properties such as the
coordinates that define boundaries, what form of input(e.g.

text or tap) it expects, etc. With this information, the device
manager 127 can craft appropriate input events to send to the

potentially vulnerable application 143. For example, if the

user interface componentis a button or a checkbox,a click
event with appropriate coordinates is generated or retrieved

from the user input profiles 155. If the user interface
component is a textbox, then text input events can be

generated or retrieved from the user input profiles 155.
In box 712, the device manager 127 can provide the

simulated user input to the user interface elements of the

potentially vulnerable applications 143. According to some
embodiments, once the device manager 127 has identified

the elements of the user interface and the type of input they
require, the device managercanretrieve the input stored in

user input profiles 155 to send to the potentially vulnerable
application 143. In box 715, the device manager 127 detects

and records state changes occurring in the potentially vul-

nerable applications 143. In one embodiment, the device
manager 127 registers handlers for interfaces that are trig-

gered whenthe state changes. In such an embodiment, the
device manager 127 can be notified of state transitions.

The potentially vulnerable applications 143 can continue
to run on the emulator devices 115. While running, the

device manager 127 can be configured to record all data

regarding the emulations of each of the potentially vulner-
able applications in box 721. For example, the device

manager 127 can be configured to generate and store appli-
cation logs and network traflic logs for each of the poten-

tially vulnerable applications 143.

Once the simulated user input has been provided to the
entry point 152 of the potentially vulnerable application, the

device manager 127 can wait until the proxy 130 attempts
the MITMattack of the potentially vulnerable application.

Thereafter, the execution of this portion of the device
manager 127 ends.

Referring next to FIG. 8, shown is an example algorithm

used to manage and process the potentially vulnerable
applications 143. It is understood that the algorithm of FIG.

8 provides merely an example of the manydifferent types of
functional arrangements that can be employed to implement

the operation of the portion of the device manager 127 as
described herein. As an alternative, the algorithm of FIG. 8

can be viewed as depicting an example of steps of a method

implemented in the computing environment 103 according
to one or more embodiments.

As shown in the algorithm, the scheduler iterates over
each potentially vulnerable 143 to be tested (line 2), first

getting an emulator device 115 from the managementthread
(line 3). The device manager 127 can then install the

potentially vulnerable application 143 on that emulated

mobile computing device and running user interface auto-
mation on each vulnerable activity identified by static analy-

sis (lines 4-7). Then, the scheduler uninstalls the potentially
vulnerable application 143 and returns the emulator device

115 to the management thread (lines 8, 9). This algorithm
can be simplified by using the scheduler to monitor the size

of the running pool, and creates a thread for each emulator

device 115. The device manager 127 can distribute poten-
tially vulnerable applications 143 among them,so that the

emulator devices 115 execute in parallel(i.e. the loop of line

30

40

45

55

14
2 is parallelized). Additionally, the scheduler handles any
errors reported by the emulator devices 115. If installation

fails, it retries one time, and then abandonsthat potentially

vulnerable application 143. If failure occurs during user
interface automation, it moves to the next entry point 152.

Thereafter, the portion of the algorithm for the device
manager 127 ends.

Referring next to FIG. 9, shown is an example block
diagram showing an example of how the user interface

automation is implemented. It is understood that the block

diagram of FIG. 9 provides merely an example of the many
different types of functional arrangements that can be

employed to implement the operation of the portion of the
device manager 127 as described herein. As an alternative,

the block diagram of FIG. 8 can be viewed as depicting an
example of steps of a method implemented in the computing

environment 103 according to one or more embodiments.

In box 903, the window correspondingto the entry point
152 can be identified so that the device manager 127 can

enumerate the user interface components in box 906. To
identify the window’s elements and extract their properties,

the device manager 127 can utilize the ANDROID ViewS-
erver, an internal component of the ANDROID application

tooling framework. The ViewServer provides a set of com-

mands that can be used to query the ANDROID Window-
Manager, which handles the display of user interface ele-

ments and the dispatch of input events to the appropriate
element. Specifically, the device manager 127 queries the

ViewServer to retrieve the entire view hierarchy, which
contains all of the UI elements andtheir properties, such as

coordinates and editability properties.

Once the device manager 127 hasidentified the elements
of the user interface window corresponding to the entry

point 152 and the types of input they require, the device
manager 127 can apply the smart input, in box 909, to the

elements. After which, the device manager 127 proceeds to

the tap event processing in box 913. For text fields, the
device manager 127 can use the text stored in user input

profiles 155. Once the input event has been crafted, the
device manager 127 can use the input command available

throughADB.This commandsupports both text input events
and tap events at specific coordinates.

Overall, the process of automating a window has two

phases. First, the device manager 127 fills all editable text
fields by iterating through them, generating tap events that

focus them, then inputting the smart input generated by
static analysis. Then, the device manager 127 iterates

through all clickable elements and generates tap events at
the appropriate coordinates. Between each tap, the user

interface automation component waits for a response from

the state management component to respond. When the
device manager 127 receives a response, the device manager

127 proceeds to the next input element.
The device manager 127 can utilize the API provided by

the ANDROID ViewServer component to obtain informa-
tion about the potentially vulnerable application’s 143 cur-

rent state and to detect state changes. The ViewServer

provides WindowChange and FocusChange events, which
are triggered whenthestate changes. By registering handlers

for these events, the device manager 127 is notified of any
state transition and can record the state transition in appli-

cation state data 158. The user interface automation com-
ponent waits after each tap event is processed so that the

handlers have time to react to a state change.

Whenthe potentially vulnerable applications 143 transi-
tion to a newstate, the user interface automation component

can generate a “back button” event, which causes

US 9,977,904 B2

15
ANDROID to pop the current window from its stack,
returning to the target window. ANDROIDallowsfor “non-

cancellable” dialogs and similar user interface components

that temporarily disable the effect of the back button. In
these cases, the back button event generated by the user

interface automation component can have noeffect. There-
fore, the device manager 127 system can check for a state

change before resuming normal operation. If the state
remains unchanged, additional tap events can be generated.

The additional tap events can be configured to click on any

“OK”or “Cancel” buttons, dismissing the dialog and return-
ing to the target window.Ifthe state remains unchangedafter

three such tap events, the device manager 127 can terminate
the potentially vulnerable application 143, abandoning the

current activity and moving on to the next entry point 152.
Tuming now to FIG. 10, shown is a flowchart that

provides one example of the operation of a portion of the

correlative analyzer 133 according to various embodiments.
It is understood that the flowchart of FIG. 10 provides

merely an example of the many different types of functional
arrangements that can be employed to implementthe opera-

tion of the portion of the correlative analyzer 133 as
described herein. As an alternative, the flowchart of FIG. 10

can be viewed as depicting an example of steps of a method

implemented in the computing environment 103 according
to one or more embodiments.

Beginning with box 1003, the correlative analyzer
retrieves data related to network traffic between the poten-

tially vulnerable applications 143 executed by the emulator
devices 115 and the target server. In one embodiment, the

network traffic can be obtained from the proxy 130. The

proxy 130 can execute, for example, an SSL MITM attack
to intercept all HTTPStraffic between the emulator devices

115 and the Internet. When running the multiple emulator
devices 115 in parallel, the proxy 130 can require the ability

to manage the sheer number of simultaneous connections.

The proxy 130 can use, for example, Mallory or the Burp
Suite proxy. The proxy 130 can be configuredto allow other

computing devices of users to write scripts that modify or
log the network traffic data to log successful HTTPS con-

nections, or successful attacks, to the data store 118. The
proxy 130 can use iptables to bypass the proxy for all

non-HTTPStraffic, reducing the load on the proxy 130 and

allowing the computing environment 103 to scale to the
required level.

The proxy 130 can intercept communications between the
potentially vulnerable applications 143 and the Internet. The

proxy 130 can then store data regarding the intercepted
communications in proxy traffic data 161. In some embodi-

ments, the proxy 130 can detect vulnerabilities by success-

fully attacking the potentially vulnerable applications 143.
In one embodiment, the proxy 130 can not be able to map

the vulnerability back to the potentially vulnerable applica-
tion 143 that was attacked.

Because several potentially vulnerable applications 143
are tested in parallel, there can be multiple successful attacks

at approximately the sametime. Further, network delays can

cause timestamps to differ slightly between the device
manager 127 and the proxy 130. In embodiments in which

the emulator devices 115 are running on the same machine
and sharing the same network interface, the correlative

analyzer 133 can use domain name service (DNS) lookups
to facilitate matching the times that a potentially vulnerable

mobile application 143 was executed with the time period

that the proxytraffic data 161 indicates a successful attack.
In box 1006, the correlative analyzer maps the successful

attacks to the potentially vulnerable applications 143 that

10

15

20

25

30

35

40

45

50

55

60

65

16
were attacked by the proxy 130. In one embodiment, instal-
lation timestamps from the device manager 127 can be used

to map each ofthe potentially vulnerable applications 143 to

the block oftime it was running on the emulator device 115.
Network logs from the device manager 127 can be traversed

for DNS queries, which can further be used to map time
blocks of application execution to Internet domains. Finally,

the proxytraffic data 161 can be used to generate a second
mapping from the time blocks of application execution to

the Internet domains. Whena time block from the proxy 130

overlaps a time block from the device manager 127 indi-
cating that a potentially vulnerable application 143 was

accessing the same domain, the associated potentially vul-
nerable application can be marked as a confirmed vulnerable

application 146. In this way, the correlative analyzer can
determine whether the potentially vulnerable application is

in fact vulnerable, in box 1012.

If it is determined that the potentially vulnerable appli-
cation 143 is vulnerable, then in box 1015, the correspond-

ing mobile application can be marked as a confirmed vul-
nerable application 143 and the confirmed vulnerability can

be reported to the application source system 175. Otherwise,
the correlative analyzer 133 can determine that the poten-

tially vulnerable application 143 is not vulnerable in

response to receiving an indication that the proxy 130 could
not attempt a MITM attack on the corresponding mobile

application 140, or otherwise. Then, in box 1018, the poten-
tially vulnerable application 143 can be marked as safe and

the satisfactory performance of the mobile application 140
can be reported to the application source system 175.

Thereafter, this portion of the correlative analyzer 133 ends.

With reference to FIG. 11, shown is a schematic block
diagram of the computing environment 103 according to an

embodimentofthe present disclosure. The computing envi-
ronment 103 includes one or more computing devices 1100.

Each computing device 1100 includesat least one processor

circuit, for example, having a processor 1103 and a memory
1106, both ofwhich are coupled to a local interface 1109. To

this end, the computing device 1100 can comprise, for
example, at least one server computer or like device. The

local interface 1109 can comprise, for example, a data bus
with an accompanying address/control bus or other bus

structure as can be appreciated.

Stored in the memory 1106 are both data and several
components that are executable by the processor 1103. In

particular, stored in the memory 1106 and executable by the
processor 1103 are the vulnerability identifier 121, the

device manager 127, the proxy 130, the correlative analyzer
133, and potentially other applications. Also stored in the

memory 1106 can be a data store 118 and other data. In

addition, an operating system can be stored in the memory
1106 and executable by the processor 1103.

It is understood that there can be other applications that
are stored in the memory 1106 and are executable by the

processor 1103 as can be appreciated. Where any component
discussed herein is implementedin the form of software, any

one of a number of programming languages can be

employed such as, for example, C, C++, C#, Objective C,
Java®, JavaScript®, Perl, PHP, Visual Basic®, Python®,

Ruby, Delphi®, Flash®, or other programming languages.
A number of software components are stored in the

memory 1106 and are executable by the processor 1103. In
this respect, the term “executable” means a program file that

is in a form that can ultimately be run bythe processor 1103.

Examples of executable programs can be, for example, a
compiled program that can be translated into machine code

in a format that can be loaded into a random access portion

US 9,977,904 B2

17
of the memory 1106 and run bythe processor 1103, source
code that can be expressed in proper format such as object

code that is capable of being loaded into a random access

portion of the memory 1106 and executed by the processor
1103, or source code that can be interpreted by another

executable program to generate instructions in a random
access portion of the memory 1106 to be executed by the

processor 1103, etc. An executable program canbe stored in
any portion or componentofthe memory 1106 including, for

example, random access memory (RAM), read-only

memory (ROM), hard drive, solid-state drive, USB flash
drive, memory card, optical disc such as compact dise (CD)

or digital versatile disc (DVD), floppy disk, magnetic tape,
or other memory components.

The memory 1106 is defined herein as including both
volatile and nonvolatile memory and data storage compo-

nents. Volatile components are those that do not retain data

values upon loss of power. Nonvolatile components are
those that retain data upon a loss of power. Thus, the

memory 1106 can comprise, for example, random access
memory (RAM), read-only memory (ROM), hard disk

drives, solid-state drives, USB flash drives, memory cards
accessed via a memory card reader, floppy disks accessed

via an associated floppy disk drive, optical discs accessed

via an optical disc drive, magnetic tapes accessed via an
appropriate tape drive, and/or other memory components, or

a combination of any two or more of these memory com-
ponents. In addition, the RAM can comprise, for example,

static random access memory (SRAM), dynamic random
access memory (DRAM), or magnetic random access

memory (MRAM)andother such devices. The ROM can

comprise, for example, a programmable read-only memory
(PROM), an erasable programmable read-only memory

(EPROM), an electrically erasable programmable read-only
memory (EEPROM), or other like memory device.

Also, the processor 1103 can represent multiple proces-

sors 503 and the memory 1106 can represent multiple
memories 506 that operate in parallel processing circuits,

respectively. In such a case, the local interface 1109 can be
an appropriate network that facilitates communication

between any two of the multiple processors 503, between
any processor 1103 and any of the memories 506, or

between any two of the memories 506, etc. The local

interface 1109 can comprise additional systems designed to
coordinate this communication, including, for example, per-

forming load balancing. The processor 1103 can be of
electrical or of some other available construction.

Although the vulnerability identifier 121, the device man-
ager 127, the proxy 130, the correlative analyzer 133, and

other various systems described herein can be embodied in

software or code executed by general purpose hardware as
discussed above, as an alternative the same can also be

embodied in dedicated hardware or a combination of soft-
ware/general purpose hardware and dedicated hardware. If

embodied in dedicated hardware, each can be implemented
as a circuit or state machine that employs any one of or a

combination of a number of technologies. These technolo-

gies can include, but are not limitedto, discrete logic circuits
having logic gates for implementing various logic functions

upon an application of one or more data signals, application
specific integrated circuits having appropriate logic gates, or

other components, etc. Such technologies are generally well
knownby those skilled in the art and, consequently, are not

described in detail herein.

The flowcharts of FIGS. 3 and 4 show the functionality
and operation of an implementation of portions of the

mobile application verification service 124. If embodied in

10

15

20

25

30

35

40

45

50

55

60

65

18
software, each block can represent a module, segment, or

portion of code that comprises program instructions to

implement the specified logical function(s). The program

instructions can be embodied in the form of source codethat

comprises human-readable statements written in a program-

ming language or machine code that comprises numerical

instructions recognizable by a suitable execution system

such as a processor 1103 in a computer system or other

system. The machine code can be converted from the source

code, etc. If embodied in hardware, each block can represent

a circuit or a numberofinterconnected circuits to implement

the specified logical function(s).

Although the flowcharts of FIGS. 3 and 4 showa specific

order of execution, it is understood that the order of execu-

tion can differ from that which is depicted. For example, the

order of execution of two or more blocks can be scrambled

relative to the order shown. Also, two or more blocks shown

in succession in FIGS.3 and 4 can be executed concurrently

or with partial concurrence. Further, in some embodiments,

one or more of the blocks shown in FIGS. 3 and 4 can be

skipped or omitted. In addition, any number of counters,

state variables, warning semaphores, or messages might be

added to the logical flow described herein, for purposes of

enhancedutility, accounting, performance measurement, or

providing troubleshooting aids, etc. It is understood thatall

such variations are within the scope of the present disclo-

sure.

Also, any logic or application described herein, including

the vulnerability identifier 121, device manager 127, proxy

130, or correlative analyzer 133, that comprises software or

code can be embodied in any non-transitory computer-

readable medium for use by or in connection with an

instruction execution system such as, for example, a pro-

cessor 1103 in a computer system or other system. In this

sense, the logic can comprise, for example, statements

including instructions and declarations that can be fetched

from the computer-readable medium and executed by the

instruction execution system. In the context of the present

disclosure, a “computer-readable medium” can be any

medium that can contain, store, or maintain the logic or

application described herein for use by or in connection with

the instruction execution system.
The computer-readable medium can comprise any one of

many physical media such as, for example, magnetic, opti-
cal, or semiconductor media. More specific examples of a

suitable computer-readable medium would include, but are
not limited to, magnetic tapes, magnetic floppy diskettes,

magnetic hard drives, memory cards, solid-state drives, USB

flash drives, or optical discs. Also, the computer-readable
medium can be a random access memory (RAM)including,

for example, static random access memory (SRAM) and
dynamic random access memory (DRAM), or magnetic

random access memory (MRAM). In addition, the com-
puter-readable medium can be a read-only memory (ROM),

a programmable read-only memory (PROM), an erasable

programmable read-only memory (EPROM),anelectrically
erasable programmable read-only memory (EEPROM), or

other type of memory device.
It should be emphasizedthat the above-described embodi-

ments of the present disclosure are merely possible
examples of implementations set forth for a clear under-

standing ofthe principles of the disclosure. Many variations

and modifications can be made to the above-described
embodiment(s) without departing substantially from the

spirit and principles ofthe disclosure. All such modifications

US 9,977,904 B2

19
and variations are intended to be included herein within the
scope of this disclosure and protected by the following

claims.

Therefore, the following is claimed:
1. A non-transitory computer-readable medium embody-

ing at least one program that, when executed by at least one
computing device, causes the at least one computing device

to at least:
obtain a plurality of mobile applications from a source

entity;

generate a plurality of method call graphs individually
corresponding to a respective one of the plurality of

mobile applications;
identify an entry point corresponding to a potential vul-

nerability in the mobile applications based at least in
part on the plurality of method call graphs andat least

one overridden interface from an SSL library;

generate a simulated user input for an element of a user
interface associated with the entry point based at least

in part on an input type associated with the element of
the user interface;

install and initiate execution of each of the mobile appli-
cations in a plurality of emulated mobile computing

devices;

provide the simulated user input to each of the mobile
applications in response to determining that a state of

each ofthe mobile applications corresponds to the entry
point; and

determine that a communication interception obtained
from a proxy corresponds to one of the mobile appli-

cations in response to obtaining the communication

interception from the proxy, wherein the communica-
tion interception indicates the proxy successfully inter-

ceptedtraffic from the corresponding one of the mobile
applications.

2. The non-transitory computer-readable medium ofclaim

1, wherein the at least one program further causestheat least
one computing device to at least determine whetherthe entry

point of the one of the mobile applications is vulnerable in
response to analyzing the communication interception

obtained from the proxy.
3. The non-transitory computer-readable medium ofclaim

2, wherein the at least one program further causesthe at least

one computing device to at least report performance of the
one of the mobile applications to the source entity in

response to determining that the one of the mobile applica-
tions is vulnerable.

4. The non-transitory computer-readable medium ofclaim
1, wherein the at least one program further causestheat least

one computing device to at least disassemble each of the

mobile applications to a human readable format to identify
the entry point corresponding to the potential vulnerability

in the mobile applications.
5. The non-transitory computer-readable medium ofclaim

1, wherein the at least one program further causestheat least
one computing device to at least generate a schedule for

emulating the mobile computing devices, the schedule

defining a timing for obtaining the emulated mobile com-
puting devices to install and execute each of the mobile

applications on a respective emulated mobile computing
device, and wherein installing and executing each of the

mobile applications in the emulated mobile computing
devices is executed according to the schedule.

6. The non-transitory computer-readable medium ofclaim

1, wherein the proxy is configured to intercept and record
network traffic data between the mobile applications

executed by the emulated mobile computing devices and a

10

20

35

40

45

50

55

65

20
target domain, and wherein the communication interception

corresponds to a portion of the network traffic data associ-

ated with the potential vulnerability of the one of the mobile

applications.

7. The non-transitory computer-readable medium ofclaim

6, wherein the network traffic data comprises logging suc-

cess data and logging failure data.

8. A system, comprising:

a data store; and

at least one computing device in communication with the

data store, the at least one computing device being

configured to at least:

identify a plurality of mobile applications that are asso-

ciated with a potential vulnerability;

generate a plurality of method call graphs individually

corresponding to a respective one of the plurality of

mobile applications;

identify an entry point corresponding to the potential

vulnerability in the mobile applications basedat leastin

part on the plurality of method call graphs andat least

one overridden interface from an SSL library;
install and initiate execution of the mobile applications in

a plurality of emulated mobile computing devices;

provide a simulated user input for an element of a user
interface associated with the entry point for each of the

mobile applications, the simulated user input config-
ured to test the potential vulnerability of each of the

mobile applications; and
determine that a proxy intercepted communications from

at least one of the mobile applications in response to

analyzing networktraffic data associated with the entry
point and the mobile applications.

9. The system of claim 8, wherein the at least one
computing device is further configured to at least:

disassemble each of the mobiles applications to a human

readable format; and
determine whether each of the mobile applications use a

modified implementation of a pre-defined security pro-
tocol.

10. The system of claim 8, wherein the at least one
computing device is further configured to at least manage

the installation and execution of each of the mobile appli-

cations on the emulated mobile computing devices accord-
ing to a schedule.

11. The system of claim 8, wherein the at least one
computing device is further configured to at least record a

state change that occurred during execution ofat least one of
the mobile applications in response to determining that the

state change occurred during execution oftheat least one of

the mobile applications.
12. The system of claim 8, wherein the network traflic

data comprises logging success data associated with each of
the mobile applications, wherein the logging success data

corresponds to at least one successful access to a target
domain using the simulated user input provided via the

element of the user interface.

13. The system of claim 12, wherein the at least one
computing device is further configured to at least determine

that the at least one of the mobile applications improperly
granted the at least one successful access to the target

domain to determine whether the at least one of the mobile
applications is vulnerable.

14. A method comprising:

identifying, by at least one computing device, a plurality
of applications that are associated with a potential

vulnerability;

US 9,977,904 B2

21
generating, by the at least one computing device, a

plurality of method call graphs individually corre-

sponding to a respective one of the plurality of appli-

cations;

identifying, by the at least one computing device, an entry

point correspondingto the potential vulnerability in the

plurality of applications based at least in part on the

plurality of method call graphs and at least one over-

ridden interface from an SSL library;

installing and initiating execution of the applications, by
the at least one computing device, in a plurality of

emulated mobile computing devices;
providing, by the at least one computing device, a simu-

lated user input for an element of a user interface
associated with the entry point for each of the appli-

cations; and

determining, by the at least one computing device, at least
one of the applications is vulnerable in response to

determining that a proxy successfully intercepted traffic
from the at least one of the applications by processing

networktraffic data associated with the entry point of

each of the applications.
15. The method of claim 14, wherein the network traffic

data is obtained from the proxy that successfully intercepted
traffic from the at least one of the applications, and the

networktraffic data comprises logging success data, logging
failure data, a plurality of time periods associated with each

of the applications executed by the emulated computing

devices, and a server each of the applications are commu-
nicating with.

22
16. The method of claim 14, wherein the potential vul-

nerability is a man-in-the-middle attack.

17. The method of claim 14, further comprising deter-

mining, by the at least one computing device, whether each
of the applications uses a modified implementation of a

pre-defined security protocol, wherein the pre-defined secu-
rity protocol comprises at least one of a secure sockets layer

or a transport layer security.
18. The method of claim 14, further comprising:

determining, by the at least one computing device,

whether a time block in the networktraffic data corre-
spondsto a time period that one of the applications was

executing;
determining, by the at least one computing device,

whether a domain associated with the time block in the
networktraffic data corresponds to the domain associ-

ated with the time period during which the one of the

applications was running; and
recording, by the at least one computing device, the

potential vulnerability of the one of the applications as
a confirmed vulnerability in a data store.

19. The method ofclaim 18, further comprising reporting,
by the at least one computing device, the confirmed vulner-

ability of the one of the applications to a source entity.

20. The method of claim 14, further comprising storing,
by the at least one computing device, the applications in

respective storage buckets in response to identifying
whether each of the applications are potentially vulnerable

and confirmed as being vulnerable.

* * * * *

