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Abstract 

 

RAPID WIDE-FIELD IMAGING OF SOFT-TISSUE 

MICROSTRUCTURE  

 

Will A. Goth, Ph.D. 

The University of Texas at Austin, 2018 

 

Supervisor:  James W. Tunnell 

Co-Supervisor: Michael S. Sacks 

 

Tissue microstructure is pivotal in determining the function, behavior, and disease 

state of biological tissues.  Histology and advanced optical techniques are commonly used 

to examine the cellular, extracellular, and subcellular constituents that define tissue 

microstructure. However, these techniques frequently require tedious and destructive tissue 

preparations and lengthy imaging times, or have limited fields of view. Therefore, it is 

challenging to study soft-tissue microstructure within the macroscopic spatial and temporal 

context of tissue- and organ-level function. Wide-field imaging techniques provide a non-

destructive alternative to rapidly assess tissue microstructure across macroscopic fields of 

view. Rather than resolving microstructure directly, these techniques are sensitive to light-

scattering characteristics of tissue that indicate the underlying microstructure. This 

dissertation develops light-scattering models to interpret tissue microstructure from light-

scattering across macroscopic fields of view rapidly and non-destructively.  

The first half of the dissertation uses spatial frequency domain imaging (SFDI) to 

quantify the sub-diffuse light-scattering characteristics of tissues that are intrinsically 

linked to microstructure. It then introduces a novel empirical model which allows rapid 

fitting of SFDI data and is sensitive to changes in microparticle size. This technique is then 
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demonstrated as a potential surgical guidance tool for Mohs Micrographic Surgery by 

rapidly and non-destructively demarcating tumor boundaries in skin biopsies. The imaging 

and processing speeds achieved with this technique can improve clinical workflows, 

particularly tissue-conserving surgical procedures, which are currently hindered by the 

time necessary to determine tumor boundaries using histopathology. Improvements to this 

technique by use of higher spatial frequencies are also considered. 

The second section investigates polarization-dependent scattering in tissues that is 

a result of collagen fiber microstructure. An experimentally-validated computational model 

is developed to allow direct conversion of polarized-light measurements into absolute 

measures of collagen fiber alignment in tissues. Furthermore, a combined polarized light 

SFDI system (pSFDI) is demonstrated to measure distinct fiber alignments in multi-

layered tissue samples. The increased speed and versatility of this system is employed to 

map wide-field microfiber kinematics during mechanical tissue deformation. This 

technique enables direct examination of the contributions of local fiber kinematics to 

tissue- and organ-level scales of growth and remodeling.  
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Chapter 1: Introduction 

This chapter will discuss key soft tissue structures and the traditional techniques 

used to investigate these structures. The improvements to these techniques made possible 

with biomedical optics are discussed, as well as unmet contemporary needs in quantifying 

tissue structure. Finally, this chapter introduces the imaging techniques that are the focus 

of this dissertation, spatial frequency domain imaging and polarized light imaging, and 

summarizes the ensuing chapters of this work. Several portions of this chapter are excerpts 

from a previously published review paper (Goth, Lesicko et al. 2016). The author of this 

dissertation was also the primary author of the review, writing all sections except portions 

of the introduction and conclusion, with input on structure and content from the co-authors.  

1.1 THE IMPORTANCE OF SOFT TISSUE MICROSTRUCTURE 

1.1.1 Key soft tissue structures 

The term “soft tissue” broadly encompasses many distinct tissue types, including 

tendons, muscles, and brain matter.  Each type of soft tissue varies in terms of constitutive 

structure and composition, yielding vast distinctions in characteristic forms and functions 

between types.   In this dissertation, the primary structural types are classified into two 

main groups: cellular structures and extracellular matrix (ECM) support structures. 

Cellular structures are defined by their varieties of cell types and their organization. In 

particular, the proliferation of cells is a structural indicator which is often used to 

differentiate healthy tissue regions, inflammation, immune responses, and tumor genesis.  

This dissertation focuses on cellular aggregation as a structural indicator of physiological 

and pathological tissue state. Additionally, subcellular components such as the nucleus and 

mitochondria may be used to identify cellular organization, as these are the binding sites 

of many histological dyes and also may also have an influence on cellular light transport.  

Among the extracellular support structures, collagen and elastin are crucial to the 

mechanical behavior of soft tissues, excluding muscular tissues and nervous tissues. 
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Elastin, unsurprisingly, dictates the elasticity of tissue, which allows the tissue to return to 

its initial state after deformation (Sandberg, Soskel et al. 1981). The concentration and 

organization of collagen fibers is arguably the most predictive component of soft tissue 

mechanical function. The arrangement of collagen fibers into rope-like bundles enables the 

remarkable tensile strength of tendons and ligaments, while transversely isotropic fibers in 

skin, heart valve leaflets, and the inner and outer cervix wall provide stable macroscale 

membrane structures. Since type I collagen is the most abundant protein in the body and is 

the major determinant of dense connective tissue mechanical behavior, this dissertation 

focuses on quantifying collagen fiber structure in terms of its directional organization to 

provide a mechanistic understanding of soft tissue response to deformation (Parry 1988, 

Gelse, Pöschl et al. 2003). 

1.1.2 Tissue structure and function relationships 

Determining how tissue microstructural constituents function, both individually 

and organizationally, can provide significant insight into macroscopic tissue- and organ-

level function. The health and behavior of the cell populations in soft tissue are directly 

related to ECM properties, and vice-versa. Additionally, microscopic ECM and cell 

behavior both contribute to macroscopic organ-level function, and organ-level factors, such 

as injury or disease, affect local microstructure. Tissue microstructure is the chief 

mechanistic link between these disparate scales; it is therefore essential that both the local 

tissue microstructure and the macroscopic context are considered when examining the 

physiological state and function of tissues and organs. However, the soft tissue 

microenvironment is characterized by constant activity; cell growth, cell death, 

differentiation, propagation, protein production, signaling, and mechanical stimulation 

constantly occur.  Tissue microstructure offers merely a snapshot of the highly dynamic 

physiological state of tissues and organs. Therefore, a more complete determination of the 

relationships between tissue microstructures, macroscopic functions, and physiological 

states can only be achieved when tissue microstructure is studied within the context of 

tissue- and organ-level spatial and temporal scales.  
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1.1.3 Applications  

Major, immediate benefits result from understanding the relationships between 

tissue microstructure and tissue- and organ-level function. Tissue microstructure and 

morphology have long been the gold standard for differential diagnostics for a broad range 

of diseases and for differentiating between malignant tumors, benign tumors, and healthy 

tissues.  Current diagnostic techniques typically require histological analysis of biopsied 

tissue. However, real-time knowledge of tissue microstructures would allow surgeries and 

procedures to be more accurate exercises rather than static protocols, in which the surgeon 

can assess progress more reliably throughout the process (Vannier and Marsh 1996, 

Goldberg, Grassi et al. 2005, Xing, Thorndyke et al. 2006).  Explicitly defining disease 

boundaries using microstructures can vastly improve patient outcomes by enabling 

physicians to ensure that all diseased or damaged tissue is removed or repaired while 

healthy tissue remains undisturbed. 

Computational models of tissues and living tissue systems can off improved 

patient-specific treatment of diseases. For example, applying unique patient models of 

valvular dysfunction can allow the use of custom tailored bioprosthetic heart valves which 

are more effective in treating diseases in the long-term and necessitate fewer invasive 

surgeries (Aggarwal, Aguilar et al. 2013). However, highly precise inputs in relation to 

structure, composition, and material properties must be used for these models to accurately 

simulate real tissue mechanical behavior (Sun and Lal 2002).  Some of the most accurate 

contemporary models of tissue growth and remodeling require accurate knowledge of fiber 

microstructure throughout the entire tissue (Fung 1990, Sacks 2003).  The fiber orientation 

distribution function is one of the most common microstructural metrics that has been 

incorporated into biomechanical modeling; this can be expressed either as two- or three-

dimensional probability density functions or summary statistics which describe the 

distribution, such as alignment variance or skew.  

Information concerning native tissue structure and material properties is also 

necessary to produce genuinely biomimetic synthetic tissues that can sustain functionality 

in highly dynamic biological environments (Courtney, Sacks et al. 2006, Amoroso, 
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D’Amore et al. 2011).  Microstructural heterogeneity across large scales is pivotal to the 

enduring functional performance of native tissues. However, while engineered tissues have 

become increasingly complex, most possess relatively homogeneous microstructures 

relative to native tissues. A mechanistic understanding of the contributions of 

microstructural heterogeneity to macroscopic function can facilitate the development of 

synthetic tissues which meet or exceed the performance of native tissues. 

1.2 IMAGING TISSUE STRUCTURE 

1.2.1 Traditional medical imaging techniques  

Non-optical techniques have been commonly adopted as modern medical imaging 

standards, particularly in the areas of large-scale morphology, tissue differentiation, and 

biomechanics.  These methods are effective primarily due to their relatively large fields of 

view, intrinsic contrast mechanisms, and broad in vivo utility.  However, they also face 

fundamental limitations in terms of accessing important microscopic scales of tissue 

structure.  

Ultrasound, which detects differences in tissue densities, is a form of localized 

tomography which is non-destructive and easily administered to a broad variety of tissues 

(Shung and Thieme 1992, Tranquart, Grenier et al. 1999).  Although ultrasound can yield 

images of macroscopic tissue- and organ-level morphology at functional-imaging rates, 

density differences at the microstructural level of tissue are often too insignificant to obtain 

meaningful contrast to microstructures.   

Magnetic resonance imaging (MRI) and other nuclear imaging techniques also 

have relatively broad fields of view, with scales ranging from organ- to body-level 

(Lauterbur 1973). Magnetic resonance imaging is particularly appropriate for 

hemodynamic functional imaging; however, it requires extensive acquisition times for 

smaller scale, static structural data and has spatial resolution limits of around 0.5 − 1 𝑚𝑚 

for conventional systems (Haacke, Brown et al. 1999, Prasad 2006). Higher overall 

resolution is achievable by enhancing the signal-to-noise ratio substantially with stronger 
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magnetic fields, but this requires instrumentation that is either prohibitively costly or ill-

suited for imaging biological tissue (Degen, Poggio et al. 2009).  For example, producing 

a high magnetic field MRI to attain a 0.1 𝑚𝑚 resolution in conventional MRI format 

would cost over $250 Million (Vedrine, Aubert et al. 2008).  

Conventional X-ray computed tomography (CT) is the most capable of obtaining 

micron-level resolution while maintaining large imaging depths and fields of view 

(Flannery, Deckman et al. 1987, Hsieh 2009).  However, ionizing radiation associated with 

X-rays limits exposure time before severely damaging biological tissues, which renders it 

a non-option for extended use (Brenner, Elliston et al. 2001, Brenner and Elliston 2004, 

Smith-Bindman, Lipson et al. 2009). 

1.2.2 Histological techniques 

Light-based microscopy has historically been among the most powerful tools for 

understanding biological organisms (Hodgkin and Lister 1827, Bloom, Fawcett et al. 

1962). The most significant advantage of light microscopy is that the images it produces 

can be broadly interpreted by researchers with disparate backgrounds, although specialized 

training is necessary for precise clinical interpretation. Light microscopy also enjoys a 

nearly unmatched versatility in its application; it can function as both a simple low-level 

magnifier and as a probe of cellular and sub-cellular scales.   Bright-field microscopy is 

the simplest form of light microscopy and one with which most people are familiar (Keller 

and Goldman 2006); it involves a thin sample being placed on a slide between an 

illumination source and an objective lens which relays the transmitted image to the viewing 

ports. Contrast is created primarily by the absorption of light as it passes through the 

sample, which produces a ‘shadow’ of the sample structure.  

Bright-field microscopy relies entirely upon intrinsic absorption, which often 

results in low contrast in most prepared thin samples.  Histological stains, or dyes which 

bind to specific tissue or cellular and ECM components, are often necessary to achieve 

suitable contrast in bright-field microscopy.  To apply wide-field light microscopy to 

untreated tissues, other methods of endogenous contrast enhancement have been 
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investigated. Phase contrast, differential interference contrast (DIC), and dark field 

microscopy all utilize different sources of endogenous tissue contrast in order to produce 

greater detail in terms of untreated tissue structure. These techniques can be particularly 

effective when each is combined onto a single microscope stage so that the sample can be 

imaged using different modalities.   

The primary limitation of using traditional light-based microscopy techniques to 

examine tissue microstructure is these techniques destructiveness; samples must be fixed 

and thinly sectioned, and the resulting microstructure may be altered by the preparations 

such that it is no longer representative of functional, in vivo tissue. Additionally, the tissue 

is unusable for continued study after imaging, meaning that dynamic tissue changes such 

as fiber kinematics are essentially impossible to determine except at experimental 

endpoints.   

1.2.3 Advanced optical techniques 

Laser-scanning is nearly ubiquitous among advanced optical microscopy 

techniques. Typically, a laser source is focused to a well-defined spot, the size of which 

determines the resolution. The reflected light is then detected, generally through the same 

objective optics. Advanced theories concerning the interactions between light and tissue 

allow powerful measurement and imaging of tissues, and resolutions achieved with these 

techniques have approached theoretical diffraction limitations (Balas 2009). Light within 

the visible and infrared spectrum is non-ionizing and can generally be employed in a non-

destructive manner in thick tissues without the need for physical section, which enables 

tissue microstructure to be analyzed in vivo or at least in an in situ functional setting. 

Additionally, these optical techniques are capable of a broad range of scales, resolutions, 

and sources of both endogenous and exogenous contrast, which render them highly 

versatile for a vast array of applications. Importantly, advanced optical techniques offer 

degrees of freedom beyond spatial variation of intensity with which to perform quantitative 

measurements. Polarization-, wavelength-, and frequency-dependent measurements can 

enable the quantification of a greater variety of tissue metrics, including molecular 
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composition, fiber alignment, cellular structure, and mechanical properties. Importantly, 

advanced optical techniques often provide sensitivity to tissue microstructures without 

necessitating the resolution of the microstructures themselves. These factors make 

advanced optical techniques ideal for analyzing the microstructure of tissues. However, 

tradeoffs often characterize many of these techniques, particularly in terms of the extensive 

imaging times typically required to achieve high sensitivity and resolution at tissue- and 

organ-level scales; this imposes practical limits on the assessment of functional tissue 

microstructure within a macroscopic context.  

1.2.3.1 Confocal Microscopy 

Laser-scanning confocal microscopy uses intrinsic contrast to resolve 

microstructures with varying refractive indices, and has also demonstrated that specific 

biological molecules such as melanin provide particularly high contrast (Minsky 1961, 

Wilson 1990). Fluorescent dyes can also be used as markers to highlight specific areas of 

tissues and cells, and multiple fluorescent channels can be imaged simultaneously while 

maintaining exact registration (Brakenhoff, Voort et al. 1989, Murray 2005). This powerful 

technique is responsible for producing striking images of tissue and cell structure. The 

confocal principle is a method that entails filtering out any light aside from that reflected 

from the focal plane; this avoids a major problem in traditional light microscopy when 

investigating thick samples (> 50 µ𝑚) with low endogenous contrast from absorption 

(Dunn, Smithpeter et al. 1996). Consequently, the axial and lateral resolutions of the system 

are entirely dependent upon its optical components, primarily the numerical aperture and 

confocal pinhole size of the system. Confocal microscopy has become particularly relevant 

in the advent of modern lasers, which can be focused significantly more precisely than 

incoherent light sources. Practical limits have increasingly approached the theoretical 

diffraction limits of sub-micron resolution in both axial and lateral dimensions. 

Commercially available objectives with a numerical aperture of at least 0.9 can expect to 

achieve axial and lateral resolution of approximately 0.5 − 5 𝜇𝑚 in practice (Pawley 

2010). 
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The primary limitations of confocal laser-scanning microscopy techniques are 

related to the method of spatial filtering. Spatial filtering requires point-scanning, which 

results in substantially longer acquisition times, such that video-rate imaging (> 20 𝐻𝑧) is 

achievable, but only for limited spatial dimensions  (Rajadhyaksha, Anderson et al. 1999). 

Typically, microstructural resolution must be sacrificed to permit sampling of larger fields 

of view (> 1 𝑐𝑚2). Line scanning and raster scanning techniques can achieve faster 

imaging speeds, although this also compromises the resolution and imaging field (Murray 

2005).  Additionally, the spatial filtering which eliminates out-of-focus light also rejects 

light that has been multiply scattered en route to and from the sample. This means that the 

depth penetration of confocal reflectance microscopy operating near ideal confocal 

performance is limited to about 3 to 4 transport lengths (Chapter 2) for an adequate signal-

to-noise ratio (Smithpeter, Dunn et al. 1998).  The transport length depends upon many 

factors, including the tissue optical properties and laser wavelength; for reference, confocal 

microscopy is generally limited to under 300 µ𝑚 in human skin tissue (Nehal, Gareau et 

al. 2008). 

1.2.3.2 Non-linear Microscopy 

Non-linear laser-scanning microscopy techniques, namely two photon and second 

harmonic generation (SHG), offer several advantages when compared to reflectance and 

fluorescence confocal techniques. In traditional fluorescence, a single incident photon 

results in the emission of a similar energy photon in fluorophores. In multi-photon 

fluorescence, two (or more) incident photons on a single molecule results in the emission 

of a photon with higher energy, which results in a higher frequency and a lower wavelength 

(Göppert‐Mayer 1931, Kaiser and Garrett 1961).  Because this phenomena only occurs 

when the photons arrive nearly simultaneously at the molecule, it confines the effect to the 

focal volume of the system, which results in submicron resolution imaging capabilities 

(Budnev, Ginzburg et al. 1975). SHG achieves essentially the same effect through a 

slightly different physical mechanism (Prasad and Williams 1991).  
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Non-linear laser-scanning microscopy techniques provide several advantages in 

relation to confocal and fluorescence microscopy (Denk, Strickler et al. 1990, Denk and 

Svoboda 1997).  Longer excitation wavelengths in the red and near infrared allows 

significantly deeper penetration (up to 1 𝑚𝑚) while the maintaining the sub-micron 

resolution (So, Dong et al. 2000, Helmchen and Denk 2005). Additionally, multi-photon 

systems require substantially less illumination power, since no pinhole is necessary for 

optical sectioning, which results in less light being wasted through filtering, less photo-

bleaching in final images, and less photo-damage to the sample (Patterson and Piston 

2000).  Emission wavelengths can be easily distinguished from the excitation wavelength, 

which results in a drastic improvement in terms of contrast when introduced as an imaging 

method (Denk, Piston et al. 1995). Most importantly, two-photon and SHG can measure 

intrinsic contrast differences from native tissue structures. Many structurally-relevant 

molecules, including collagen and elastin, can be specifically identified using two-photon 

excitation or second harmonic generation (Zipfel, Williams et al. 2003). Contrast 

enhancement and specific labeling of other tissue regions and constituents can also be 

achieved by using fluorophores similar to those used in confocal fluorescence imaging 

(Dickinson, Bearman et al. 2001, Rubart 2004). 

Despite their superior performance, non-linear laser-scanning microscopy 

techniques for examining tissue microstructures possess notable limitations. Excitation 

wavelengths in the near IR have inherently larger diffraction-limited resolutions; however, 

this loss in resolution is primarily an issue in sub-cellular imaging, and the technique 

remains capable of resolving most of the fine details of tissue microstructure. While 

achieving a 1 𝑚𝑚 sampling depth is generally considerable in optical imaging, it typically 

requires physical staining of the sample with specific dyes or nanoparticles and often 

precipitates tissue damage due to the high fluence rates necessary. Finally, high-speed 

scanning with reduced lateral resolution can allow video-rate acquisition for small 2D 

planes, but not for substantial fields of view relative to tissue- and organ-level scales (Kim, 

Buehler et al. 1999). For example, a single plane, 0.25 𝑚𝑚2 image with a pixel size of 

8 𝜇𝑚 requires a 20-minute scan on contemporary two-photon imaging systems.  
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Additionally, the limited axial sectioning depth (~5 − 50 𝜇𝑚) often requires imaging 

multiple planes if the sample is not substantially flat.  

1.2.3.3 Spectroscopic Techniques 

Spectroscopic microscopy techniques use wavelength-dependent reflectance and 

fluorescence to quantify the structure and composition of tissues at cellular and molecular 

scales. Diffuse reflectance spectroscopy (DRS) uses light transport theory in 

heterogeneous tissue to characterize the bulk scattering and absorption of different regions. 

The signal has a distinct signature of diffuse reflectance from the tissue across a broad 

spectrum of wavelength. This can be used to identify specific scattering and absorption 

properties of the sample, and subsequently attributed to different tissue constituents 

(Farrell, Patterson et al. 1992, Doornbos, Lang et al. 1999). Similarly, laser-induced 

fluorescence spectroscopy (LIFS) uses a fluorescence spectrum to differentiate between 

tissue regions; this is similar to confocal fluorescence, but wavelength-dependence is 

considered across a larger, more highly resolved spectrum (Kinsey 1977, Cothren, 

Richards-Kortum et al. 1990). 

Raman scattering spectroscopy investigates non-elastic scattering in tissue which 

occurs when scattered light interacts with high-frequency vibrations within the individual 

molecules and results in an increased or decreased wavelength, respectively (Long and 

Long 1977).  The signal is several orders of magnitude weaker than in DRS or LIFS, but 

individual molecules illicit highly specific Raman scattering spectra, which can allow more 

reliable identification of tissue constituents. Additionally, the signal can be significantly 

enhanced by utilizing surface enhancement techniques of specific nanoparticles (Nie and 

Emory 1997, Movasaghi, Rehman et al. 2007). 

The information obtained through these spectroscopic techniques using fiber 

probes reflects bulk local tissue characteristics rather than being confined to a focal 

volume. This results in generally larger lateral resolutions, which are typically defined by 

source-detector separation in the probes (approximately 100 to 1000 µ𝑚). Additionally, 

the signal is integrated along the entire axial dimension sampled, which means that the 
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axial resolution is an average measurement of reflectance or fluorescence across this 

sampling depth. Probe design can influence the depths at which the tissue is sampled; 

however, this cannot result in true optical sectioning to a specific plane, but only averaged 

depth sectioning.  

Incorporating these techniques into confocal configurations can increase sampling 

resolution and sectioning capability but is also limited by scanning considerations for 

tissue- and organ-level fields-of-view. Each of these spectroscopic modalities may be 

adapted into laser-scanning microscopy systems to provide additional quantification of 

both cellular and molecular structure and composition; however, the techniques are then 

limited by the conflict between resolution, scale, and acquisition rate. 

1.2.3.4 Optical Coherence Tomography 

Optical coherence tomography (OCT) originated in the early 1990𝑠 and has 

rapidly been adapted for clinical use and commercial systems (Huang, Swanson et al. 

1991).  Optical coherence tomography is analogous to ultrasound, although it uses light 

rather than sound as its probing mechanism.  It uses low coherence interferometry to 

identify regions of high back-scattering, which indicates interfaces within the sample.  

Axial resolution of OCT mostly relies upon the bandwidth of the laser and is normally 

around 10 to 15 µ𝑚 (Brezinski 2006).  There is a tradeoff between the lateral resolution 

and the axial field of view over which OCT can resolve an image; higher lateral resolution 

limits the depth of focus, while higher depths of focus are only achievable by 

compromising lateral resolution (71). Imaging depth is also limited by light attenuation, 

although most near-infrared wavelengths used are capable of low attenuation. Optical 

coherence tomography has been demonstrated to achieve a 6 𝑚𝑚 axial field of view while 

maintaining a 10 µ𝑚 lateral resolution (Ding, Ren et al. 2002).  Lateral field of view is 

invariably only limited by the scanning instrumentation used.   

Newer implementations of OCT, namely Fourier domain OCT, have allowed 

much higher axial scanning speed; video-rate (> 30𝐻𝑧) 3𝐷 scans with relatively large 

fields of view have been accomplished with the advent of broadband and tunable laser 
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sources (Tearney, Brezinski et al. 1997).  This has significantly impacted the incorporation 

of OCT systems into clinical environments, as it provides rapid volumetric imaging 

capability. In addition, newer lasers have allowed micro-OCT (µOCT), which is a 

technique that has been employed to improve axial resolution to < 1µ𝑚 and lateral 

resolution to < 2µ𝑚 (Drexler, Morgner et al. 1999, Liu, Gardecki et al. 2011). Optical 

coherence tomography can also be employed using fiber-optics, which allows imaging 

probes to navigate biological lumina of around 3 𝑚𝑚 in diameter (Tearney, Brezinski et 

al. 1996). The largest clinical application for OCT is in ophthalmology, in which retinal 

morphology can be easily accessed through the optically clear cornea evaluate for 

degenerative diseases.  It is also employed conveniently as an endoscopic tool, particularly 

in intraluminal imaging, for which OCT probe geometry is particularly well-suited.  

Overall, OCT is a robust, highly adaptable method for imaging tissue morphology.  

Its primary limitation is the shadowing effect, which can obscure deeper tissue regions and 

decrease contrast, although it is nevertheless suitable for many of the imaging tasks in 

which it is employed, where features near the surface of the tissue are important. It is useful 

in turbid, highly scattering tissues, and is capable of substantially higher penetration than 

confocal or non-linear techniques. It benefits from adequate resolution in both axial and 

lateral directions to resolve larger cellular structures and high speed acquisition capability 

for functional and intraoperative imaging; it can also image significantly deeper into turbid 

media while maintaining adequate resolution more effectively than most other optical 

imaging techniques. However, while recent studies in angularly resolved and polarization 

sensitive OCT have provided increased microstructural sensitivity, direct relationships 

between absolute microstructural measurements and OCT signals require further 

development to be used in a clinical environment.  

1.2.3.5 Small Angle Light Scattering 

Small angle laser light scattering (SALS) is a technique which was originally 

applied to study and characterize polymer chains suspended in solution by analyzing the 

behavior of light scattered from the medium. More recently, the technique has been adopted 
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as a means of seamlessly acquiring sample-wide soft tissue microstructure information 

(Sacks, Smith et al. 1997). Small angle laser light scattering techniques for collecting 

structural properties work by exposing samples to a non-polarized beam of low power 

(~5𝑚𝑊) laser light. Light passing through the tissue is either transmitted or scattered, such 

that the spatial distribution of scattered light (SALS pattern) represents the sum of all 

structural information within the light beam envelope (Sacks, Smith et al. 1997).  Photons 

scattered by tissue microstructural elements are characterized by two values, including 

scattering angle and azimuthal angle. The scattering angle is measured from the direction 

of the incident beam and is determined by the physical characteristics of the scattering 

structure, while the azimuthal angle is perpendicular to the orientation of the structure in 

the plane of the tissue sample, according to theories of cylindrical diffraction and 

scattering. The SALS pattern is the collection of diffracted and scattered photons by a 

photosensor or projection screen; highly aligned structures produce high eccentricity 

elliptical patterns and randomly distributed fibers yield circular patterns.  From this pattern, 

the angular distribution of microstructure fibers can be directly obtained.   

By raster scanning the sample through the path of the laser beam, microstructure 

maps with a large field-of-view can be created that denote fiber properties, including mean 

fiber direction, index of fiber alignment, and mean fiber diameter. The lateral spatial 

resolution of these maps is determined by the raster step size and the diameter of the laser 

beam. The SALS technique is capable of resolving properties from collections of fibers 

with diameters around the size of the illumination wavelength (~0.5 – 20 µm).  

Notably, unlike some imaging modalities, SALS is unable to resolve structures 

axially through the sample; SALS point-scans yield structural information that is 

inherently an average of individual fiber properties across the area of the incident beam 

and through the depth of the sample.  Additionally, because of the transmission-based 

nature of SALS, the technique requires translucent samples: If the sample is not sufficiently 

translucent, chemical clearing is required. In the case of multi-layered samples, the layer-

specific microstructure will be averaged in the transmission measurement without further 

physical sectioning of the individual layers.  
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Small angle light scattering is most appropriate when tissue-wide microstructure is 

required and damage to the sample is a non-issue; it can be used for soft tissues following 

mechanical testing or fixation under load to examine microstructure-derived mechanical 

properties or in the characterization of healthy and diseased tissue. In constitutive model 

development, SALS has proven to be an effective experimental complement to mechanical 

testing of soft tissues with the direct inclusion of these microstructure maps (Sacks 2003). 

However, the need for optically clear samples, slow imaging speeds and insensitivity to 

layered structures are major limitations.  

1.2.4 Current needs in tissue structure assessment 

It is crucial for tissue imaging systems to be able to resolve or otherwise detect the 

smallest tissue features that relate to function. Depending upon the specific tissue or feature 

of interest, the absolute sizes of structures are often variable. For the purposes of this 

dissertation, features of interest will primarily include cells and collagen fibers, which 

range between about 10 𝑛𝑚 to 100 𝜇𝑚 in size.  However, as long as microstructures can 

be detected reliably, explicitly resolving the microstructures through magnification or other 

means may not be necessary.  

Many imaging techniques require physical sectioning of the tissue, which is 

undesirable for several reasons. Hydration, loading, and temperature are merely several of 

the dynamic changes that can impact the analysis of excised tissues, which may result in 

misleading and incorrect conclusions.  Techniques which physically, chemically, or 

otherwise alter the normative physiological state of tissue during preparation or 

measurement are deemed destructive. Additionally, destructive techniques are often 

limited to experimental endpoints; therefore, the functional behavior of tissue 

microstructure over time cannot be observed. This dissertation emphasizes the need for 

samples to remain relatively undisturbed during imaging and minimize interaction with the 

tissue or its microstructure as a result of measurements. While the ultimate objective of 

non-destructive techniques may be in vivo imaging applications, immediate goals involve 
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permitting the study of tissue structure in its undisturbed or functional in vitro or in situ 

state.  

 Similarly, the rapid acquisition times of structural data are notable when 

investigating tissue function. In many imaging systems, resolution and field of view are 

inherently coupled with image acquisition time. Because most ultra-high-resolution 

imaging systems rely upon scanning a single point at a time, large fields of view require 

longer acquisition times. This is a major consideration for functional and intraoperative 

imaging: If high temporal resolution is paramount, then spatial resolution or field of view 

must be limited to compensate. Many optical imaging techniques are currently limited in 

their utility by their abilities to physically scan samples at tissue- and organ-level fields-

of-view.  

In the clinical environment, medical imaging typically serves as a guidance tool 

rather than as a diagnostic tool. Transformative clinical imaging systems integrate the 

ability of optical techniques to non-invasively probe soft tissue structure with the ability to 

quickly aid in determining accurate diagnostic or surgical decisions.  Medical applications 

of optical techniques include rapid disease screening, patient-specific therapies, and real-

time image-guided surgery. To achieve clinical relevance, imaging technologies must 

resolve or otherwise characterize in vivo or in situ tissue microstructure at large scales 

without compromising speed or becoming destructive.  The low fields-of-view and slow 

acquisition times of ultra-high-resolution optical techniques limit their appropriateness in 

many clinical settings.   

Systems that can detect signals which are indicative of tissue structure, though not 

explicitly resolving the structures themselves, may ameliorate the conflict between 

microstructural sensitivity, macroscopic scale, and temporal constraints. This dissertation 

introduces two wide-field reflectance imaging modalities, spatial frequency domain 

imaging and polarized light imaging, to rapidly measure tissue microstructures across 

meaningful spatial and temporal scales. For both techniques, this dissertation presents 

models which describe how light is scattered by certain microstructural features, including 

cells and fibers.  
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Spatial frequency domain imaging has been demonstrated to be highly sensitive to 

cellular microstructure which is representative of the physiological state of the tissue. 

Similarly, polarized light imaging is sensitive to the orientation distribution of collagen 

fibers. Sensitivity to multi-layered structures is demonstrated with a combined polarized 

light and spatial frequency domain imaging system, and is extended to study fiber 

kinematics as well as 3D fiber structure. Both techniques aim to improve current methods 

for studying and assessing tissue function and pathology by providing more rapid, wide-

field sensitivity to tissue microstructures. 

1.3 CHAPTER SUMMARIES 

Chapter 2 discusses the foundation of light transport theory, which bridges diffuse 

scattering theory and ballistic scattering events. It first outlines the relationship between 

bulk optical properties of tissue and individual tissue components and then introduces 

spatial frequency domain imaging (SFDI). Finally, it describes a novel, rapid processing 

model for sub-diffuse (sd)-SFDI measurements that demonstrates microstructural 

sensitivity, and a validation experiment demonstrates the empirical model performance. 

Chapter 3 discusses the use of the sd-SFDI model in a clinical setting, specifically 

as a surgical guidance tool for rapidly assessing tumor boundaries during Mohs 

micrographic surgeries to resect skin cancer tumors. Nodular basal cell carcinoma samples 

are imaged, and extracted optical model parameters are related to specific features in the 

tissue that correlate with those identified through expert histopathology. Finally, Chapter 

3 demonstrates a proof-of-concept experiment highlighting the discriminatory power of 

these optical model parameters to guide tumor boundary assessment. 

Chapter 4 discusses polarized light-scattering from cylindrical particles, which are 

used to model collagen fibers. It then introduces a model which allows calculation of 

absolute structural anisotropy of fibers from their relative optical anisotropy measured with 

polarized spatial frequency domain imaging (pSFDI). Electrospun fibers are used to 

validate of the model, and a simulation of a large range of physiologically relevant fiber 
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parameters are used to establish a relationship between fiber orientation distributions based 

on their resultant polarization-dependent reflectance. 

Chapter 5 addresses applications of polarized light imaging to native, 

bioprosthetic, and synthetic heart valve materials. First, it demonstrates that pSFDI can 

provide comparable fiber alignment information to an existing gold standard, SALS, at 

significantly higher speeds and with additional volumetric sampling control that allows 

measurement of specific fiber layers in native heart valve leaflets. Second, the improved 

speed of pSFDI is used to demonstrate pseudo-dynamic imaging of collagen fiber in 

bioprosthetic valve materials at multiple time points during biaxial mechanical 

deformation.  

Chapter 6 summarizes the major contributions of this dissertation. It also addresses 

limitations and forecasts directions of future work. 
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Chapter 2: Modeling and measuring sub-diffuse light scattering from 

tissue microstructure 

This chapter defines the theoretical expressions used to model light-scattering from 

spherical particles the size of cells and nuclei. First, it quantifies bulk scattering and 

absorption properties under the assumption of diffuse light propagation, which accounts 

for the average of many light-particle interactions. Second, Mie theory is applied to 

calculate the result of ballistic (single particle) scattering and absorption events. It then 

introduces spatial frequency domain imaging (SFDI), which is a technique used to measure 

optical properties of tissues across wide fields-of-view and explores how it can be used to 

investigate tissue structures at macroscopic scales. It introduces a novel empirical model 

which permits rapid processing of SFDI data and is sensitive to changes in the size of tissue 

microstructures; it also describes SFDI instrumentation and data collection extensively. 

Finally, it outlines the fabrication of tissue-mimicking phantoms with pre-determined 

optical properties and uses these phantoms to validate the conclusions about microstructure 

size from this dissertation’s system measurements and models.  

2.1 LIGHT DIFFUSION IN TURBID MEDIA 

This section’s contents are based on established light transport theory. Though it 

refers to individual photon interactions for specific examples, the theories discussed 

assume “light” to be a collection of photons within the visible electromagnetic spectrum. 

Additionally, it only considers non-polarized light transport under a steady state and elastic 

scattering conditions from spherical scatterers. Unless otherwise indicated, the majority of 

the equation forms were adapted from the following sources: (Tuchin 2007, Wang and Wu 

2012, Boas, Pitris et al. 2016). 

2.1.1 Diffuse Optical Properties 

As light propagates through biological tissues, it encounters various tissue 

components that cause it to be optically “turbid” (scattering and absorbing light). Tissue 
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structures which scatter light include cells, nuclei, and structural fibers, while the primary 

chromophores that absorb light within the visible spectrum include hemoglobin, melanin, 

lipids, and water (Jacques 2013). Scattering events occur when the direction of light 

propagation changes upon encountering a discontinuity in the refractive index. Absorption 

events are interactions that result in a decrease in the total energy of incident light, such as 

when the energy level of re-emitted photons changes (fluorescence). In terms of the 

scattering and absorption of tissue, it is useful to consider the mean-free-path (𝑴𝑭𝑷) of 

photon propagation, which describes the average distance over which light propagates 

before a scattering or absorption event occurs. For example, when light propagates through 

a volume containing some scattering or absorbing elements, as in Figure 2.1., each of the 

three volumes has a different average 𝑴𝑭𝑷 (grey) of the three available path-lengths (blue) 

for light traveling through the sample. 

 

 

Figure 2.1: Examples of changes in mean free path (𝑴𝑭𝑷) as a function of particle size 

and density.  

Distinct 𝑴𝑭𝑷s exist for absorption (𝑴𝑭𝑷𝒂𝒃𝒔) and scattering (𝑴𝑭𝑷𝒔𝒄𝒂) events in 

tissues. It is useful to quantify scattering and absorption by the inverse of their 𝑴𝑭𝑷s and 

to describe the frequency of scattering or absorption events per unit length in 𝑚𝑚−1 or 
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𝑐𝑚−1. Therefore, the scattering coefficient 𝝁𝒔 and absorption coefficient 𝝁𝒂 can be defined 

as follows: 

 
𝜇𝑠 =

1

𝑀𝐹𝑃𝑠𝑐𝑎
 

(2.1) 

 

 
𝜇𝑎 =

1

𝑀𝐹𝑃𝑎𝑏𝑠
 

(2.2) 

 

Additionally, the extinction coefficient 𝝁𝒕 is the frequency of either a scattering or 

absorption event occurring per unit distance: 

 

 𝜇𝑡 = 𝜇𝑠 + 𝜇𝑎 (2.3) 

 

The inverse of 𝝁𝒕 is the total 𝑴𝑭𝑷 of light transport in turbid media, which is the 

average distance traveled between scattering or absorption events. Figure 2.1 illustrates 

that 𝑴𝑭𝑷s are primarily dependent upon two factors, including the size of the scattering 

or absorbing elements and the number of elements per unit volume. Therefore, the 

scattering and absorption coefficients can also be defined based on these factors: 

 

 𝜇𝑠 = 𝑁𝑠𝜎𝑠𝑐𝑎 (2.4) 

 

 𝜇𝑎 = 𝑁𝑎𝜎𝑎𝑏𝑠 (2.5) 

 

Above, 𝑵𝒔 𝑎𝑛𝑑 𝑵𝒔 indicate the density of the scatterers or absorbers per unit 

volume in #/𝑐𝑚3; 𝝈𝒔𝒄𝒂 𝑎𝑛𝑑 𝝈𝒔𝒄𝒂 indicate the scattering or absorption cross-sections in 

𝑐𝑚2. However, there are many cases when the scattering or absorption cross-section is not 

equal to the geometric cross-section of the particle. The scattering and absorption cross-

sections are therefore products of the geometrical cross-section of the particle and the 

scattering or absorption efficiency of the particle: 
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 𝜎𝑠𝑐𝑎 = 𝜎𝑔𝑄𝑠𝑐𝑎 (2.6) 

 

 𝜎𝑎𝑏𝑠 = 𝜎𝑔𝑄𝑎𝑏𝑠 (2.7) 

 

Above, 𝝈𝒈 is the geometrical cross-section of the individual particles, which is 

often assumed to be spherical and is therefore equal to the circular profile created by a 

sphere (𝝈𝒈 = 𝝅𝒓𝟐). 𝑸𝒔𝒄𝒂 and 𝑸𝒂𝒃𝒔 indicate the total scattering and absorption efficiencies 

of the particles. These efficiencies depend upon numerous factors, including the dielectric 

properties of the particle, the geometry of the particle, and the size of the particle relative 

to the wavelength of the incident light. For individual interactions with single particles, 

these efficiencies can be calculated by solving approximate models of light transport or 

numerically by using the Mie solution, the latter of which Chapter 2.2 delineates. For real 

tissues, however, there are not singular types of scattering or absorbing particles: Many 

diverse tissue structures and chromophores contribute to light propagation. Therefore, the 

bulk tissue scattering and absorption are a sum of the scattering and absorption 

contributions from all of the individual particles for a sampled volume: 

 

 𝜇𝑠
𝑡𝑖𝑠𝑠𝑢𝑒 = ∑ 𝜇𝑠

𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠
 (2.8) 

 

 𝜇𝑎
𝑡𝑖𝑠𝑠𝑢𝑒 = ∑ 𝜇𝑎

𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠
 (2.9) 

 

2.1.2 The Radiative Transport Equation (RTE) 

The Boltzmann radiative transport equation (RTE) is an energy balance equation 

which can be applied to describe light transport in turbid media for differential volume, 

solid angle, and time (Case and Zweifel 1967). Light propagation in this equation is 
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quantified by radiance, 𝑳(𝒓̂, 𝒔̂, 𝒕), which corresponds with units of watts per square meter 

per steradian [𝑊 ∙ 𝑚−2 ∙ 𝑠𝑟−1] and depends upon six variables, including three for position, 

which are described in vector coordinates as 𝒓̂(𝒙, 𝒚, 𝒛), two for direction, which are 

described in polar and azimuthal angles as 𝒔̂(𝜽, 𝝋), and one for time, 𝒕. The full RTE is as 

follows: 

 

 𝑛

𝑐

𝜕𝐿(𝑟̂, 𝑠̂, 𝑡)

𝜕𝑡
+ ∇ ∙ 𝐿(𝑟̂, 𝑠̂, 𝑡)𝑠̂ =

= −𝜇𝑡𝐿(𝑟̂, 𝑠̂, 𝑡) + 𝜇𝑠 ∫ 𝐿(𝑟̂, 𝑠̂′, 𝑡)𝑝(𝑠̂ ∙ 𝑠̂′)𝑑Ω′
4𝜋

0

+ 𝑄(𝑟̂, 𝑠̂, 𝑡) 

(2.10) 

 

The first term in the RTE is the change in radiance over time, normalized to the 

speed of light in the tissue, 𝒏/𝒄. This dissertation ignores this term and only considers 

steady-state light diffusion using continuous-wave sources. The second term is the gradient 

of radiance in direction 𝒔̂, which accounts for non-scattering or absorption losses of light 

due to divergence. The third term is the radiance extinguished by either absorption within 

the differential element or the scattering out of the differential element; it is scaled by the 

bulk extinction coefficient 𝝁𝒕. The fourth term is the differential scattering cross-section, 

which describes directional light-scattering amplitude at all angles from the differential 

element. This term is scaled by the bulk scattering coefficient 𝝁𝒔 and contains the vector 

representation of scattering phase function 𝒑(𝒔̂ ∙ 𝒔̂′) (see Chapter 2.2). The fifth and final 

term accounts for sources of radiant energy injected into the differential element, such as 

that from a lamp, LED, or laser. 

2.1.3 The Diffusion Approximation 

The RTE has no readily tractable closed-form solution and is therefore solved 

numerically or approximately. Finite-difference and Monte Carlo numerical methods are 

highly accurate in calculating exact light transport for a large range of bulk optical 

properties but are often too computationally exhaustive for simulating samples with high 
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spatial heterogeneity of scattering and absorption (Carp, Prahl et al. 2004, Boas, Pitris et 

al. 2016). Instead, approximations to the RTE can be made, such that the resulting 

differential equation has a tractable closed-form solution (Ishimaru 1989, Farrell, Patterson 

et al. 1992, Star 1995). This dissertation’s modeling of light propagation in tissues will 

henceforth be conducted under the following assumptions: 

1. Scattering-dominated transport (scattering occurs significantly more often than 

absorption); 

2. Isotropic scattering (scattering is relatively equal in all directions). 

Light transport which satisfies these conditions is deemed within the diffusion 

regime, which is generally appropriate for describing light propagation in biological 

tissues. Tissues have high amounts of elastic scattering relative to absorption events, which 

satisfies assumption 1. However, assumption 2 of isotropic scattering does not apply to 

tissue, which has highly anisotropic, forward-directed scattering. The P1 approximation 

regards the scattering anisotropy 𝒈 as the first moment of the scattering phase function. It 

is calculated as the average cosine of the resultant scattering angle from the initial direction 

of propagation (discussed further in Chapter 2.2). Biological tissues have a scattering 

anisotropy of: 𝒈 ≈ 0.9. Fortunately, the scattering coefficient can be modified to a reduced 

form to account for anisotropic scattering within the diffusion approximation: 

 

 𝜇𝑠′ = (1 − 𝑔)𝜇𝑠 (2.11) 

 

In the equation above, 𝝁𝒔
′   is the reduced scattering coefficient. The modified 

transport coefficient becomes the following: 

 

 𝜇𝑡𝑟 = 𝜇𝑠
′ + 𝜇𝑎 (2.12) 

 

It is useful to understand the implications of accounting for anisotropy in the 

reduced scattering coefficient by considering the number of scattering interactions per unit 

of length. As 𝒈 increases, 𝝁𝒔
′  increases, which indicates that the number of scattering events 
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for a given unit length is higher in the case of anisotropic scattering media. When 𝒈 = 0, 

diffuse light propagation tends to adhere to a more indirect (diffuse) path. In other words, 

𝒈 acts as a proportionality factor to ensure that anisotropic scattering can be represented in 

terms of isotropic diffusion. Under these conditions, the simplified steady-state diffusion 

approximation form of the RTE can now be established: 

 

 ∇2Φ − 𝜇𝑒𝑓𝑓
2 Φ = −3𝜇𝑡𝑟𝐼 (2.13) 

 

In this equation, 𝜱 is the fluence rate, 𝑰 is a source, and 𝝁𝒆𝒇𝒇 is the effective 

transport coefficient: 

 

 𝜇𝑒𝑓𝑓 = √3𝜇𝑎𝜇𝑡𝑟 (2.14) 

 

2.1.4 Considerations of the Diffusion Regime 

Defining light propagation by the diffusion approximation in EQ 2.13 facilitates 

the measurement of the optical properties of tissue. Firstly, this form allows for any 

spatially varying source 𝑰 to be analyzed by convolving a differential point source of light 

with the beam profile of any physical source. Similarly, measurements of real fluence can 

also be calculated by summing differential fluence over any area described by a detection 

geometry that is an arbitrary distance from the source. Describing light transport in fluence 

rates [𝑊/𝑐𝑚2] is also useful because this is the irradiation that is typically measured for 

light source and detectors. Subsequently, the bulk optical coefficients of tissue can be 

measured with high accuracy using these techniques (Farrell, Patterson et al. 1992, Kienle, 

Lilge et al. 1996, Doornbos, Lang et al. 1999, O'Sullivan, Cerussi et al. 2012).  

However, some limitations are inherent to the diffusion approximation. First, for 

the reduced scattering coefficient to properly correct for anisotropic light scattering, 

measurements of light propagation must be performed after light has undergone numerous 
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scattering events sufficient to become diffuse, such that the initial direction of incidence is 

lost. The diffusion coefficient indicates that the minimum physical distance light must 

travel from a source before it can be considered appropriately diffuse and behave in terms 

of the diffusion approximation. In tissues, which are scattering-dominant and have a typical 

bulk-reduced scattering coefficient of approximately 𝜇𝑠
′  ~1 𝑚𝑚−1,  the diffusion length is 

about 1/3 𝑚𝑚. In other words, only light that is sampled outside of this distance can be 

reliably described as diffuse and adheres to the predictions of the RTE. For light sampled 

at distances shorter than the diffusion length from the source, corrections for higher orders 

of the phase function must be applied (Bevilacqua and Depeursinge 1999, Hull and Foster 

2001).  

2.2 MIE SOLUTIONS TO BALLISTIC SCATTERING FROM SPHERICAL PARTICLES 

Gustav Mie originally developed “Mie theory” in the early 1900s to explain 

wavelength-dependent scattering and absorption from gold nanoparticles of varying sizes 

(Mie 1908). The observation of distinct colors in these particle solutions, despite their 

identical molecular composition, suggested that the geometry of particles is pivotal in the 

wavelength-dependent scattering and absorption of light. Mie theory describes the solution 

to Maxwell’s equations of light incident onto a single particle with known geometry, size, 

and refractive index. It should be noted that the present discussion of the Mie solutions 

only considers elastic scattering, wherein the total number of photons (power) may change 

after partial absorption by the particle; however, the energy (and therefore wavelength) of 

the individual photons of scattered light is maintained; fluorescence events, in which 

photons of a new energy (wavelength) are emitted, have been ignored here.  Although 

several other analytical approximations of light scattering from particles exist, these 

approximations are valid exclusively under specific conditions, such as when the size of 

the particle is significantly greater or less than the wavelength of incident light. Conversely, 

the Mie solution is valid across any combination of particle size and wavelength, including 

cases when the size of the particle is comparable to the wavelength of incident light, and 

can also be derived for numerous particle geometries. This is particularly relevant in 
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biomedical optics, in which tissue microstructures of interest, including cells, nuclei, and 

fibers, span a large size range (10 𝑛𝑚 to 100 µ𝑚), which overlaps with the wavelengths 

of visible light (400 to 700 µ𝑚). Due to its versatility, Mie scattering has significantly 

impacted a wide range of fields, including astronomy, biomedical optics, and atmospheric 

sciences. 

 

 

Figure 2.2: Solutions of gold nanoparticles with increasing sizes; changes in color 

demonstrate that scattering and absorption of light depend upon particle size 

(Kondinski 2010). 

In the simplest form, the Mie solution to Maxwell’s equations for planar 

electromagnetic wave propagation is derived by enforcing a geometric surface as the 

boundary condition. The Mie solution offers a complete mathematical description of the 

resulting electromagnetic wave propagation after interaction with the particle. 

Subsequently, the solution can be used to calculate the scattering efficiency of a particle of 

any size and the scattering phase function for the particle (Hulst and Van De Hulst 1957, 

Bohren and Huffman 2008). The scattering phase function describes the far-field amplitude 



 27 

of light scattered in every direction from the particle relative to the original direction of the 

propagation of the incident light. Although this dissertation primarily focuses on light 

scattering, light absorption of the particle can also be quantified based on the Mie 

coefficients if the complex relative refractive index of the particle is known.  

Due to their geometric simplicity and symmetry, the Mie solutions for spheres are 

most commonly used to represent disperse scattering particles, unless another regular 

geometry is known. Additionally, spheres are symmetrical; therefore, the degrees of 

freedom concerning the particle orientation can be omitted from calculations. Other 

geometrically symmetrical shapes, such as ellipses and cylinders, also have analytical Mie 

solutions, although they are considerably more involved and are also highly sensitive to 

the particle orientation relative to the polarization state of incident light (See Chapter 4). 

All such solutions are open-form and must be calculated numerically. Non-geometric 

shapes typically have no open- or closed-form analytical Mie solution; therefore, it is 

necessary to assume a geometric shape when modeling real physical particles. In the case 

of tissues, a sphere is generally assumed as the average shape of the scattering particle, 

unless a specific geometric organization is known. Although this presumption may result 

in errors in the calculation of scattering phase functions for single particles, the average of 

many scattering events from a collection of many particles are typically considered, and 

these errors are subsequently less impactful. 

2.2.1 The Mie Coefficients 

The complete derivation of the Mie solution is extensive and has been exhaustively 

described in many studies. This dissertation instead begins from the direct outputs of the 

solution, the Mie coefficients 𝒂𝒏(𝒙, 𝒎) and 𝒃𝒏(𝒙, 𝒎), solved for the case of a spherical 

particle. Bohren and Huffman, among others, describe the complete derivation and 

computationally efficient methods used for calculating the Mie coefficients in this research 

(Bohren and Huffman 2008). The inputs required to solve the Mie coefficients include the 

relative index of refraction (𝒎) and the size parameter (𝒙). The relative index of refraction 

is a ratio of the index of refraction of the particle (𝒏𝒔𝒑𝒉) to the index of refraction of the 
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medium surrounding the particle (𝒏𝒎𝒆𝒅); it has both real and complex components. High 

values for the real part of m typically indicate “optical hardness” of particles, which means 

that reflections from the surface of the particle account for most of the total scattering. High 

values of the imaginary relative refractive index indicate high absorption of light by the 

particle. The size parameter, 𝒙, is an important term that describes the size of the particle 

relative to the wavelength of incident light: 

 

 
𝑥 =

2𝜋𝑛𝑚𝑒𝑑𝑟

𝜆
 

(2.15) 

 

In the equation above, 𝒓 is the radius of the (assumed spherical) particle, and 𝝀 is 

the wavelength of light in the medium (scaled by 𝒏𝒎𝒆𝒅). Scattering involving a small-size 

parameter, in which the particle is significantly smaller than the wavelength of light and 

the particle is optically “soft,” is accurately modeled by Rayleigh’s scattering theory, in 

which the directional scattering of light is isotropic (i.e., light is scattered equally in all 

directions from the particle). Conversely, scattering from optically soft particles with 

relatively large size parameters is described effectively by the van de Hulst approximation. 

However, at size parameters close to unity, when the size of the particle and wavelength of 

light are comparable, the directional scattering of light from these particles is more chaotic, 

and the Mie solution is required to accurately calculate light scattering. In the case of cells 

and nuclei, which are comparable in size to the wavelengths of visible light used to 

investigate them, this dissertation applies Mie theory to calculate scattering for our 

modeled particles. 

2.2.2 Calculating Scattering Efficiency of Spheres  

The total scattering efficiency 𝑸𝒔𝒄𝒂 describes the total amplitude of light scattered 

in all directions from a particle and is used to calculate the total scattering cross-section, as 

discussed in Chapter 2.1. The scattering efficiency can be calculated for a particle with a 

known size parameter and relative refractive index using the Mie coefficients: 
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𝑄𝑠𝑐𝑎 =

2

𝑥2
∑(2𝑛 + 1)(|𝑎𝑛(𝑥, 𝑚)|2 + |𝑏𝑛(𝑥, 𝑚)|2)

∞

𝑛=1

 
(2.16) 

 

While the exact form of the equation calls for an infinite sum, numerical 

computations converge to a solution significantly before this value. An appropriate number 

of summations has been suggested by Bohren and Huffman, such that 𝒏𝒔𝒕𝒐𝒑 = 𝒙 +

𝟒𝒙𝟏/𝟑 + 𝟐 (Bohren and Huffman 2008). Since 𝒏𝒔𝒕𝒐𝒑 is entirely dependent upon the size 

parameter, particles that are large relative to the wavelength of light are more 

computationally expensive to compute. However, the largest particles typically considered 

when modeling tissue are approximately 100 𝜇𝑚, which results in a manageable maximum 

𝒏𝒔𝒕𝒐𝒑 of around 5,000 for visible light. This suggested 𝒏𝒔𝒕𝒐𝒑 value was used as the number 

of summations for all numerical solutions in this research. 

2.2.3 Calculating Extinction and Absorption Efficiency of Spheres 

The extinction efficiency, 𝑄𝑒𝑥𝑡, describes the amount of light that is either absorbed 

or scattered by the particle. Therefore, 𝑄𝑒𝑥𝑡 contains contributions from both the scattering 

efficiency (𝑄𝑠𝑐𝑎) and the absorption efficiency (𝑄𝑎𝑏𝑠) of a particle, such that 𝑄𝑒𝑥𝑡= 𝑄𝑎𝑏𝑠+ 

𝑄𝑠𝑐𝑎. The extinction efficiency is also calculated using the Mie coefficients as follows: 

 

 
𝑄𝑒𝑥𝑡 =

2

𝑥2
∑(2𝑛 + 1)𝑅𝑒{𝑎𝑛(𝑥, 𝑚) + 𝑏𝑛(𝑥, 𝑚)}

∞

𝑛=1

 
(2.17) 

 

The absorption efficiency can then be determined by subtracting the scattering 

efficiency from the extinction efficiency. 
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2.2.4 Calculating the Scattering Phase Function 

The angular representation of the phase function 𝒑(𝜽) is a complete description of 

the far-field amplitude of light scattered in all directions (𝜽) relative to the initial direction 

of incident light. Notably, this is mathematically equivalent to the phase function in 

Chapter 2.1, although here, it is represented in a truncated angular form. The phase 

function is calculated from the Mie coefficients as follows: 

 

 
𝑝(𝜃) =

1

𝑥2
(|𝑆1|2 + |𝑆2|2) 

(2.18) 

 

Above, 𝑺𝟏 and 𝑺𝟐 are the amplitudes of the transverse components of the scattered 

electric field, yielded by the following: 

 

 
𝑆1(𝜃) = ∑

2𝑛 + 1

𝑛(𝑛 + 1)
(𝑎𝑛(𝑥, 𝑚)𝜋𝑛(Ω) + 𝑏𝑛(𝑥, 𝑚)𝜏𝑛(Ω))

∞

𝑛=1

 
(2.19) 

 

 
𝑆2(𝜃) = ∑

2𝑛 + 1

𝑛(𝑛 + 1)
(𝑏𝑛(𝑥, 𝑚)𝜋𝑛(Ω) + 𝑎𝑛(𝑥, 𝑚)𝜏𝑛(Ω))

∞

𝑛=1

 
(2.20) 

 

Above, 𝝅𝒏 and 𝝉𝒏 are recursive functions containing the Legendre polynomials, 

which describe the shape of the angular scattering. These Legendre polynomials indicate 

scattering across solid angles 𝛀. However, this shape is symmetrical over the azimuthal 

components of the solid angles in the case of unpolarized light incidents on spheres, and 

integrating over these angles results in a phase function that solely depends upon the polar 

angle (𝜽) relative to the incident angle of light. Furthermore, the resulting phase function 

is normalized such that its integral over the polar angles equals 1: 
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∫ 𝑝(𝜃)2𝜋 𝑠𝑖𝑛 𝜃 𝑑𝜃 = 1

𝜋

0

 
(2.21) 

 

Figure 2.3 illustrates the log-normalized phase functions calculated for the 

scattering of green light (𝜆 =  530𝑛𝑚) from particles with a range of physiologically-

relevant sizes (𝒓𝒔𝒑𝒉  =  100 𝑛𝑚 𝑡𝑜 10 𝜇𝑚) and relative refractive index (𝒎 =  1.03). 

Firstly, smaller size parameters tend to exhibit highly isotropic scattering, while larger size 

parameters exhibit highly anisotropic scattering in the forward direction. Secondly, there 

are highly distinctive changes to the phase functions within this physiological range of size 

parameters. Both of these observations indicate that sensitivity to angular scattering 

provides insight into the relative sizes of the scattering particles. 

 

Figure 2.3: Log-normalized scattering phase functions for different size parameters, 

calculated from Mie theory. This demonstrates a transition from isotropic 

scattering to anisotropic forward-scattering as the size parameter increases. 
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2.2.5 Scattering Phase Function Parameters 

While the phase function fully defines directional light scattering from particles, 

the degree of angular accuracy computed by the Mie solution is often excessive for 

modeling light propagation in turbid media and is also difficult to measure with high 

angular resolution from many particles. In tissues and other samples, fluctuations in actual 

particle shapes (which are not invariably perfectly spherical) and distributions of particle 

sizes and relative refractive indices cause these phase functions to “blur.” Instead, it is 

useful to utilize summary parameters to describe the general characteristics of the phase 

functions, which remain relatively constant despite the “blurring” of the phase function by 

distributions of particle shape, size, and refractive index. These summary parameters are 

typically based on mathematical moments described using Legendre polynomials, 

𝑷𝒏(𝒄𝒐𝒔𝜽). The number of Legendre moments necessary to accurately estimate the exact 

phase function is the 𝒏𝒔𝒕𝒐𝒑 value, as discussed in Chapter 2.2.2. In practice, only the first 

several Legendre moments are necessary to characterize the anisotropic scattering of 

particles, primarily due to “blurring” by particle populations, as discussed previously.   

 

 

Figure 2.4: This illustrates the first several Legendre polynomials, the moments of 

which are used to define diffuse (𝒈) and sub-diffuse (𝜸) optical anisotropy 

parameters. 
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2.2.5.1 The diffuse scattering anisotropy parameter 𝒈 

The moment of the first Legendre polynomial, 𝒈𝟏 (commonly referred to simply 

as 𝒈), describes the proportion of scattered light which maintains its propagation in the 

same direction as the incident light. Referred to as the scattering anisotropy, 𝒈 can be 

defined mathematically as follows: 

 

 
𝑔 = 𝑔1 =  ⟨𝑐𝑜𝑠(𝜃)⟩ = ∫ 𝑝(𝜃) 𝑐𝑜𝑠(𝜃) 2𝜋 𝑠𝑖𝑛(𝜃) 𝑑𝜃

𝜋

0

 
(2.22) 

 

A 𝒈 value of 0 indicates completely isotropic scattering, which typically applies to 

particles where 𝒙 <  1. A 𝒈 value of 1 indicates that all light is scattered in the forward 

direction (the same direction as the incident light). As indicated in Figure 2.5, tissues have 

high-bulk anisotropy values, typically between 0.85 𝑎𝑛𝑑 0.95, which suggests that the 

light scattering is primarily in the forward direction (Cheong, Prahl et al. 1990, Jacques 

2013).  

 

Figure 2.5: Mie calculations of the diffuse anisotropy parameter 𝒈,as a function of size 

parameter 𝒙 and relative refractive index 𝒎. Within the tissue range of 𝒙 

and 𝒎 (dashed box), 𝒈 is relatively stable.  
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In diffusion theory, the 𝑷𝟏 approximation refers to the ability to use only the 

moment (𝒈) of the first Legendre polynomial (𝑷𝟏) to predict bulk diffusion of light in 

turbid media. Chapter 2.1.3 presents a more detailed discussion of 𝒈 in the diffusion 

regime. 

2.2.5.2 The sub-diffuse scattering anisotropy parameter 𝜸 

The 𝒈 parameter was introduced as a correction factor for the transport length of 

anisotropy scattering in diffuse light propagation. However, it is more challenging to 

decouple anisotropy from the reduced scattering coefficient in reflectance measurements 

within the confines of the diffusion regime; even if it is decoupled, 𝒈 alone does not provide 

significant information about the structure of the scattering particle, as illustrated in Figure 

2.5. A second phase function term 𝜸 has been suggested to achieve additional sensitivity 

to changes in particle size (Bevilacqua and Depeursinge 1999, Chamot, Migacheva et al. 

2010). Chamot et al. present a physical interpretation the second order phase function term 

and directly relate it to the fractal dimension of the particle size distribution (Chamot, 

Migacheva et al. 2010, McClatchy, Rizzo et al. 2016). As average particle size decreases 

relative to the wavelength of incident light, the 𝜸 parameter also decreases (Figure 2.6). 

The 𝜸 parameter is calculated as a ratio of the first two Legendre moments of the phase 

function as follows: 

 

 
𝛾 =

1 − 𝑔2

1 − 𝑔1
 

(2.23) 

 

However, the 𝜸 parameter cannot be incorporated into the current model for light 

diffusion because its impact is primarily in ballistic scattering events in which high-angle 

scattering (backscattering) occurs. To measure the 𝜸 parameter, light propagation in the 

sub-diffuse regime must be considered, which requires measurements of light transport 

beyond the diffusion regime. 
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Figure 2.6: Mie calculations illustrate the sub-diffuse anisotropy parameter 𝜸 as a 

function of size parameter 𝒙 and relative refractive index 𝒎; this indicates 

that sub-diffuse scattering can be used to probe tissue ranges of 𝒙 and 𝒎. 

2.2.5.3 Higher-order Parameters 

Any number of higher-order Legendre moments can be used to describe the phase 

function with increasing degrees of accuracy, but there are diminishing returns in terms of 

both calculating and measuring these descriptors in practice. However, notable 

improvements in characterizing phase functions have been described by increasing the 

number of high-order Legendre moments (Bevilacqua and Depeursinge 1999, Hull and 

Foster 2001, Bodenschatz, Krauter et al. 2016). The 𝝈 parameter is a tractable weighted 

sum of an infinite number of Legendre moments and has been found to describe a broad 

range of phase functions models accurately. To date, the use of this parameter to quantify 

phase functions in real measurements has been minimal and confined to numerical and 

computational methods (Bodenschatz, Krauter et al. 2016). However, numerical studies 

suggest that improved accuracy in quantifying the phase function may be achieved by using 

the 𝝈 term; this should be considered for future research related to quantifying tissue 

microstructure. 
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2.3 SPATIAL FREQUENCY DOMAIN IMAGING (SFDI) 

2.3.1 SFDI Background 

Spatial frequency domain imaging (SFDI) is a wide-field structured illumination 

technique in which spatial frequency patterns are projected onto a sample and subsequently 

imaged. The manner in which the spatial frequency patterns are attenuated by the scattering 

and absorption of the sample allows the optical properties to be probed across spatial 

dimensions (Dögnitz and Wagnières 1998). This technique was first adopted in practice by 

Cuccia et al. Since then, it has spawned a substantial body of research concerning 

fundamental instrumentation and processing improvements and biomedical applications 

(Cuccia, Bevilacqua et al. 2004, Cuccia, Bevilacqua et al. 2005, Cuccia, Bevilacqua et al. 

2009, Angelo, Chen et al. 2018). Wide-field scattering and absorption maps extracted with 

SFDI enable the non-invasive quantification of tissues at tissue-level scales. Furthermore, 

scattering and absorption measured at multiple wavelengths can be used to calculate 

relative and absolute values of crucial biophysical chromophores, including hemoglobin, 

blood-oxygen saturation, and collagen and lipid content (Cuccia, Bevilacqua et al. 2009, 

Mazhar, Dell et al. 2010, Gioux, Stockdale et al. 2011).  

Spatial frequency domain imaging has been implemented in a variety of pre-clinical 

studies to monitor the biophysical conditions of live and excised tissues; this has been 

applied to pressure ulcers from diabetes and prolonged hospital stays (Yafi, Muakkassa et 

al. 2017), tumor margin assessment in breast and skin tissues (Laughney, Krishnaswamy 

et al. 2013, Rohrbach, Muffoletto et al. 2014), brain tissues (Lin, Koike et al. 2011), burn 

assessment (Mazhar, Saggese et al. 2014, Ponticorvo, Burmeister et al. 2014), and skin-

flap transplant viability (Yafi, Vetter et al. 2011, Ponticorvo, Taydas et al. 2013); it has 

been implemented via endoscope as a surgical guidance tool (Angelo, van de Giessen et 

al. 2017). In fluorescence imaging, SFDI can be used to enhance contrast and 

quantification of fluorophore concentrations (Mazhar, Cuccia et al. 2010, Yang, Sharma et 

al. 2013, Angelo, Venugopal et al. 2014, Valdes, Angelo et al. 2017). Many of these 

techniques utilize previous research concerning probe-based diffuse optical tomography 
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and spectroscopy as a theoretical basis, as both techniques utilize the same models of light 

transport. Spatial frequency domain imaging possesses the additional benefit of spatial 

sampling to provide the morphological context of these measurements. 

In addition to in vivo biological tissue research, SFDI offers immense potential for 

rapid, non-invasive cancer screening and tumor margin assessment (Laughney, 

Krishnaswamy et al. 2013). In histopathology, the gold standard for diagnosis, physicians 

search biopsied tissues for signs of abnormal cellular structure, which is often manifested 

as atypical sizes or grouping of cells and nuclei in the regions of tumors (Elston and Ellis 

1991, Madan, Lear et al. 2010). The local microstructure in the context of its global 

morphological location is crucial to identifying tumor regions (Chapter 3). The ability to 

quantitatively measure this microstructure across large fields of view of intact, non-treated 

tissues would be extremely beneficial; sectioning and staining is a major time constraint in 

the diagnostic workflow and may cause physical alterations to the native tissue state. 

For increased sensitivity to tissue microstructures, SFDI measurements must be 

considered beyond the diffusion regime in which higher orders of the scattering phase 

function can be measured. Recent research concerning SFDI for use in tumor margin 

assessment have used high spatial frequencies to probe the sub-diffuse optical properties 

of tissue, often referred to as sd-SFDI (Kanick, McClatchy et al. 2014, Bodenschatz, 

Krauter et al. 2015, Bodenschatz, Krauter et al. 2015, Bodenschatz, Krauter et al. 2016). 

McClatchy et al. were among the first to demonstrate the ability to match maps of sub-

diffuse optical properties with histopathological morphology in breast tumors (McClatchy, 

Rizzo et al. 2016, McClatchy III, Hoopes et al. 2017) and recently extended this research 

to differentiate between stromal, epithelial, and fatty tissue regions and perform automated 

segmentation of tumor margins (McClatchy, Rizzo et al. 2018). Lin et al. demonstrated 

similar results in their ability to differentiate between normal, inflamed, and cancerous 

regions in cervical tissues using high spatial frequency SFDI (Lin, Zeng et al. 2018). While 

sensitivity to absorption is lost in sd-SFDI imaging (Bodenschatz, Krauter et al. 2015), 

Laughney et al. note that chromophore identification does not meaningfully improve the 



 38 

diagnostic power of SFDI systems in differentiating breast tissue pathology relative to the 

scattering properties (Laughney, Krishnaswamy et al. 2013). 

2.3.2 Basic SFDI Theory 

Figure 2.7a illustrates the geometry of a typical SFDI system. The angle of the 

projector with respect to the optical axis is entirely confined to the 𝒀𝒁-plane; therefore, the 

spatial frequency pattern, oriented in the 𝒙-direction, is uniform across the imaging plane. 

This contrasts with Figure 2.7b, in which the spatial frequency pattern is oriented in the 

𝒚-direction. 

 

 

Figure 2.7: Spatial Frequency Domain Imaging (SFDI) system geometries in (a) typical 

orientation and (b) atypical orientation. The typical orientation ensures that 

the spatial frequency and phase do not change as a function of sample 

height, while the atypical orientation can be used to measure surface 

topography. 

Linear sinusoidal spatial frequency patterns are most commonly used, and these 

patterns are characterized as classical waveforms by their DC amplitude (𝑰𝑫𝑪), AC 

amplitude (𝑰𝑨𝑪), spatial frequency (𝒇𝒙), and phase (𝛟). The amplitude of the pattern at any 



 39 

point in the imaging plane for a sinusoidal spatial frequency pattern oriented in the x-

direction is yielded by the following equation: 

 

 𝐼(𝑥, 𝑦) =  𝐼𝐷𝐶(𝑥, 𝑦) + 𝐼𝐴𝐶(𝑥, 𝑦) cos(2𝜋𝑓𝑥𝑥 + ϕ) (2.24) 

 

The geometry of most SFDI systems (Figure 2.7a) ensures that the spatial 

frequency and phase of the pattern remain effectively constant throughout the imaging 

plane. However, in turbid samples, the scattering and absorption of light attenuates the 

amplitude of the DC and AC amplitude components. Images of the sample under patterned 

illumination represent the modulated (attenuated) reflectance components of the initial 

spatial frequency pattern. Attenuation of the 𝑰𝑫𝑪 component is related to the optical 

properties of the sample and primarily depends upon the reduced scattering and absorption 

of the sample. Attenuation of the 𝑰𝑨𝑪 component depends upon both the optical properties 

of the sample and the frequency of the spatial pattern that is projected onto the sample. 

Therefore, the modulated intensity detected by the camera is as follows: 

 

 𝑀(𝑥, 𝑦, 𝑓𝑥, 𝜑) =  𝑀𝐷𝐶(𝑥, 𝑦) + 𝑀𝐴𝐶(𝑥, 𝑦, 𝑓𝑥) cos(2𝜋𝑓𝑥𝑥 + ϕ) (2.25) 

 

By measuring the modulated reflectance at several spatial frequencies, optical 

properties of the sample can be determined using analytical fitting models or lookup tables 

(See Figure 2.8 and Chapter 2.3.3). The curve of the modulated AC reflectance illustrates 

that turbid samples act similarly to low-pass frequency-dependent reflectance filters; this 

frequency-dependence is determined by the optical properties of the sample.  
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Figure 2.8: Above, modulated diffuse reflectance as a function of spatial frequency has 

been measured experimentally (dots) and calculated using the diffusion 

approximation (lines) for a physiologically relevant range of bulk absorption 

and scattering coefficients; this demonstrates the ability to sample optical 

properties with diffuse reflectance in the spatial frequency domain (Cuccia, 

Bevilacqua et al. 2009). 

Demodulation refers to extracting the modulated reflectance components from 

spatial frequency images. Several strategies borrowed from signal processing have been 

used to demodulate the images, but this dissertation exclusively discusses the most 

commonly used technique: three-phase demodulation (Cuccia, Bevilacqua et al. 2004). For 

this technique, a sinusoidal pattern with a known spatial frequency is projected onto a 

sample, and the sample is imaged. This spatial frequency pattern is shifted in phase twice 

by 120°, and the sample is imaged at each phase, yielding three total images:  

 

 𝐼1 = 𝐼0°(𝑥, 𝑦),   𝐼2 = 𝐼120°(𝑥, 𝑦),   𝐼3 = 𝐼240°(𝑥, 𝑦) (2.26) 

 

The modulated AC and DC reflectance components can be recovered from the 

three phase images at each point through the following demodulation formulae: 
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𝑀𝐷𝐶(𝑥, 𝑦) =

𝐼1 + 𝐼2 +  𝐼3

3
 

(2.27) 

 

 

 
𝑀𝐴𝐶(𝑥, 𝑦) =

√2[(𝐼1 − 𝐼2)2 + (𝐼2 − 𝐼3)2 + ( 𝐼3 − 𝐼1)2]

3
 

(2.28) 

 

Additionally, the phase at each image location can be demodulated by the 

following: 

 

 

ϕ(𝑥, 𝑦) = 𝑎𝑡𝑎𝑛2 [
∑ 𝐼𝑛+1 𝑠𝑖𝑛 (

2𝜋𝑛
𝑁 )  𝑁−1

𝑛=0

∑ 𝐼𝑛+1 𝑐𝑜𝑠 (
2𝜋𝑛

𝑁 )𝑁−1
𝑛=0

] ,   𝑁 = 3 

(2.29) 

 

In most configurations of SFDI systems, the phase term should be constant and is 

therefore not often calculated; however, this does not indicate that the phase is unimportant. 

If the atypical system configuration in Figure 2.7b is used, then the phase will directly 

correlate with sample height and can therefore be used to reconstruct surface topology of 

the sample, as Chapter 5 demonstrates (Srinivasan, Liu et al. 1984, Zhou and Su 1994, 

Gioux, Mazhar et al. 2009). Additionally, the phase information is vital to accurately 

reconstruct the demodulated images through other demodulation techniques. Several 

advanced demodulation techniques which require only one or two images (rather than 

three) are useful for decreasing the imaging time and data storage requirements and 

allowing for video-rate imaging and real-time display of SFDI images. These techniques 

include single-snapshot SFDI (Vervandier and Gioux 2013), multi-frequency synthesis 

and extraction (Nadeau, Rice et al. 2015), Gram-Schmidt orthonormalization (Vargas, 

Quiroga et al. 2012, Lu, Li et al. 2016), and Hilbert-transform or spiral-phase demodulation 

(Nadeau, Durkin et al. 2014, Lu, Li et al. 2016). However, the primary tradeoffs in these 

techniques include the increased processing complexity and introduction of image artifacts 
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that result from Fourier domain processing. In particular, “banding” artifacts from 

demodulation at low signal levels and “ripple” artifacts from discrete 2D Fourier 

transforms are common in many single- and two-image SFDI demodulation techniques and 

diminish the final image quality (Vervandier and Gioux 2013, Nadeau, Durkin et al. 2014, 

Nadeau, Rice et al. 2015). Since most of the imaging experiments and applications outlined 

in this dissertation are early-stage and do not require rapid acquisition, these reduced-frame 

SFDI techniques are merely considered for future research. 

2.3.3 Volumetric Sampling in the Spatial Frequency Domain 

The sampling resolution of SFDI systems depends upon both the optical properties 

of the sample and the spatial frequencies used. The effective transport length (𝜹𝒆𝒇𝒇) for 

wide-field imaging under planar illumination is inversely proportional to the effective 

transport coefficient, which was derived in Chapter 2.2: 

 

 
𝛿𝑒𝑓𝑓 =

1

𝜇𝑒𝑓𝑓
=

1

√(3𝜇𝑎(𝜇𝑎 + 𝜇𝑠
′ ))

 
(2.30) 

 

This value represents the average distance over which scattering and absorption 

events are sampled. In the spatial frequency domain, a modified effective transport length 

which is sampled, 𝜹𝒆𝒇𝒇
′ , can be determined by incorporating spatially-varying sinusoidal 

illumination (EQ 2.24) as the source term in the diffusion approximation of the radiative 

transport equation (EQ 2.13) (Cuccia, Bevilacqua et al. 2009, Konecky, Mazhar et al. 

2009). The spatial frequency-dependent effective transport length is as follows: 

 

 
𝛿𝑒𝑓𝑓

′ =
1

𝜇𝑒𝑓𝑓
′ =

1

√(𝜇𝑒𝑓𝑓
2 + (2𝜋𝑓𝑥)2)

 
(2.31) 
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This modified effective transport length defines the sampling length of an SFDI 

system for a given set of sample optical properties and spatial frequencies used. Several 

important implications relate to these effective transport lengths. First, for reflectance 

measured under planar illumination, where spatial frequency 𝒇𝒙  =  0, the effective 

sampling length of the reflectance only depends upon the diffuse optical properties of the 

sample (𝜹𝒆𝒇𝒇
′ = 𝜹𝒆𝒇𝒇). As spatial frequency increases, the effective sampling length 

decreases, and the spatial frequency pattern is attenuated more rapidly by the turbidity of 

the sample (Figure 2.9). This was initially used as a form of rough tomography by Cuccia 

et al.; however, in samples with similar turbidity and thickness relative to biological tissues, 

the tomographic reconstruction capabilities are limited (Cuccia, Bevilacqua et al. 2004, 

Cuccia, Bevilacqua et al. 2005, Konecky, Mazhar et al. 2009, O'Sullivan, Cerussi et al. 

2012). However, high spatial frequency imaging can be applied to decrease the sampling 

depths of measurements and limit the reflectance measurements to fewer scattering events 

which occur near the surface of the sample.  

 

 

Figure 2.9: High spatial frequency patterns diffuse more rapidly in turbid media, such as 

tissue, relative to low spatial frequency patterns. Therefore, higher spatial 

frequency patterns sample shallower volumes near the surface of the sample  

Modified from (O'Sullivan, Cerussi et al. 2012).  
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This is particularly useful in relation to depth gating of fluorescence (Mazhar, 

Cuccia et al. 2010, Yang, Sharma et al. 2013) and polarization measurements (Yang, 

Lesicko et al. 2014, Goth, Yang et al. 2015, Yang, Lesicko et al. 2015, Goth, Yang et al. 

2016), the latter of which are used in Chapter 4.  

As multiple spatial frequencies are often utilized to construct optical property maps 

of samples, the lowest spatial frequency should be used when considering the sampling 

volume. Additionally, EQ 2.31 is only valid for spatial frequencies within the diffusion 

regime, in which 𝒇𝒙 < 𝝁𝒆𝒇𝒇/𝟑 (Chapter 2.2.4). For tissues, this limits the maximum 

spatial frequency to around 0.25 𝑡𝑜 0.33 𝑚𝑚−1, which results in an effective transport 

length of around 0.7 𝑡𝑜 1.0 𝑚𝑚.  At higher spatial frequencies, the effective sampling 

length continues to decrease but is also dependent upon the higher-order phase function 

parameters. Bodenschatz et al. provide numerical estimations of  𝜹𝒆𝒇𝒇
′  for high spatial 

frequencies by recording the maximum depth achieved by 50% of the photons (Figure 

2.10), based on the optical properties of the sample (Bodenschatz, Krauter et al. 2015). 

Hayakawa et al. performed a similar study that demonstrated substantial agreement and 

also estimated sampling depths for a variety of common tissue types (Hayakawa, Karrobi 

et al. 2018). 

A second important observation is that it is difficult to define an exact sampling 

resolution because the modified effective transport length represents a mean distance of 

photon transport. Some reflectance will represent scattering and absorption events that 

occurred over a smaller distance, and some reflectance will correspond with larger 

distances between events. As a result, defining the resolution based on the transport length 

will only provide average resolution, while actual resolution will be slightly inferior. 

Third, the shape of the sampling volume is not simply a half-sphere with a radius 

of the modified effective transport length with the center at the pixel center. If the physical 

size of a pixel in a wide-field image is less than the effective transport length of the sample 

in that area, then the reflectance sampled from that pixel will also include scattering and 

absorption information from a volume surrounding the pixel. As a result, the true effective 
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sampling length of a pixel will extend up to one effective transport length from the edge of 

the pixel.  

 

Figure 2.10: Effective mean sampling depth as a function of spatial frequency and bulk 

sample absorption, both normalized by bulk sample reduced scattering. 

Monte Carlo numerical computation by Bodenschatz et al. (Bodenschatz, 

Krauter et al. 2015). 

Finally, only homogeneous samples have been considered thus far. In the case of 

the spatial heterogeneity of optical properties, the sampling length is complicated further. 

A study of SFDI by Laughney et al. investigated axial and lateral resolution depending 

upon the contrast level between an inclusion and the surrounding media (Laughney, 

Krishnaswamy et al. 2013); their results demonstrated that within the limits of the diffusion 

regime, inclusions with around 30% contrast in reflectance as small as 1.25 𝑚𝑚 in 

diameter embedded up to 1.5 𝑚𝑚 deep in the phantom could be distinguished. 
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2.3.4 Models of Reflectance in the Spatial Frequency Domain 

To extract optical properties from modulated reflectance, the modulated reflectance 

data is fit to a model or lookup table that describes normalized reflectance (𝑹𝒅) as a 

function of the optical properties of interest and spatial frequency. Before fitting, the 

modulated reflectance curve for an unknown sample is normalized through measurements 

and model curves of a known sample: 

 

 
𝑅𝑑

𝑠𝑎𝑚𝑝𝑙𝑒(𝑥, 𝑦, 𝑓𝑥) = [
𝑀𝐴𝐶

𝑠𝑎𝑚𝑝𝑙𝑒(𝑥, 𝑦, 𝑓𝑥)

𝑀𝐴𝐶
𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒(𝑥, 𝑦, 𝑓𝑥)

] 𝑅𝑑
𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒(𝑓𝑥) 

(2.32) 

 

This step ensures that measurements and model spaces are both normalized to the 

same order of magnitude and that the system-specific modulation transfer function (MTF) 

of the system is eliminated from the measurements (Konecky, Mazhar et al. 2009).  

Reflectance models based on analytical derivations from light diffusion theory are 

ideal, although empirical and numerical models can also be used. Cuccia et al. originally 

derived an analytical model for normalized steady-state reflectance in the diffusion regime 

based on the radiative transport equation (Cuccia, Bevilacqua et al. 2009). 

 

 
𝑅𝑑(𝜇𝑎, 𝜇𝑠

′ , 𝑓𝑥) =  
3𝐴𝜇𝑠

′ 𝜇𝑡𝑟⁄

(
𝜇𝑒𝑓𝑓

′

𝜇𝑡𝑟
+ 1) (

𝜇𝑒𝑓𝑓
′

𝜇𝑡𝑟
+ 3𝐴)

 
(2.33) 

 

𝑨 is a proportionality constant which accounts for boundary conditions at the 

sample surface and is dependent upon the approximate bulk sample refractive index 

(Haskell, Svaasand et al. 1994). However, this model is limited to the diffusion regime; 

therefore, the higher-order moments of the scattering phase function are not accounted for. 

For modulated reflectance to be sensitive to higher-order moments of the scattering phase 

function, reflectance must be measured in the sub-diffuse regime, in which only scattering 

events within the first mean-free-path of the sample are considered. This can be achieved 
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using high spatial frequencies, as discussed in the previous section. A reflectance model 

which incorporates higher-order scattering phase function moments is necessary to 

appropriately fit reflectance data and extract optical properties at sub-diffuse spatial 

frequencies. One additional benefit is that in tissue, in which the mean-free-path of 

scattering is significantly less than the mean-free path of absorption, reflectance in the sub-

diffuse regime becomes primarily dependent upon scattering, and absorption can typically 

be ignored (Bevilacqua and Depeursinge 1999, Bodenschatz, Krauter et al. 2015). 

Kanick et al. developed a semi-empirical/semi-analytical model for reflectance in 

the sub-diffuse regime, derived in part from light transport theory for fiber probes with 

close source-detector separations (Kanick, McClatchy et al. 2014). This model 

incorporates 𝝁𝒔
′  and the sub-diffuse scattering parameter 𝜸: 

 

 
𝑅𝑑(𝜇𝑠

′ , 𝛾, 𝑓𝑥) =  𝜂(1 + (𝜁4𝛾−2)(𝜇𝑠
′ 𝑓𝑥

−1)(−𝜁3𝛾)) [
(𝜇𝑠

′ 𝑓𝑥
−1)(𝜁2𝛾)

𝜁1𝛾2 + (𝜇𝑠
′ 𝑓𝑥

−1)(𝜁2𝛾)
] 

(2.34) 

 

In the equation above, 𝜼 and 𝜻𝟏−𝟒 are system-specific parameters which must first 

be measured for a given SFDI system empirically. Notably, this empirical model is limited 

to typical scattering and absorption properties of tissues, with a reduced scattering range of 

𝝁𝒔
′ = 0.1 − 10 𝑚𝑚−1, a high amount of forward scattering anisotropies (𝒈 > 0.4), and 

𝜸 > 1.4. These constraints limit measurements to particle sizes above the Rayleigh regime 

of scattering, which is appropriate for most tissues. 

Lookup tables (LUTs) for normalized reflectance can also be generated by 

experimentally measuring and recording modulated reflectance for a broad range of optical 

properties (Erickson, Mazhar et al. 2010) or by applying Monte Carlo methods to 

statistically simulate light reflectance (Angelo, Vargas et al. 2016, Naglič, Pernuš et al. 

2017). While empirically-derived LUTs may suffer from experimental errors, Monte Carlo 

model accuracy is primarily only limited by the model complexity of the phase function 

which is sampled and computational requirements. Several reports of improved Monte 

Carlo models consider spatial frequency reflectance in the sub-diffuse regime (Kanick, 



 48 

McClatchy et al. 2014, Bodenschatz, Krauter et al. 2015, Bodenschatz, Krauter et al. 2016, 

Naglič, Pernuš et al. 2017); some also include polarized light propagation (Wiest, 

Bodenschatz et al. 2015). 

 

 

Figure 2.11: The graphs above illustrate modulated reflectance using sub-diffuse 

reflectance models, demonstrating the impact of the sub-diffuse scattering 

anisotropy parameter 𝜸 on reflectance at high spatial frequencies 

(McClatchy, Rizzo et al. 2016). 

2.4 NOVEL SUB-DIFFUSE SFDI EMPIRICAL MODEL 

2.4.1 Motivation 

While the time necessary for collecting sd-SFDI images greatly improves in terms 

of the sample preparation times required for traditional histopathology, the processing 

times required to extract the scattering parameters that are sensitive to microstructures for 

large images remain a limiting factor. McClatchy et al. report a processing time of 1 hour 

for a 3000 pixel image (McClatchy, Rizzo et al. 2016), or around 1 second per image pixel. 

This introduces a tradeoff in processing speed and image resolution which is non-linear: 

Processing more data points simultaneously requires additional computational time 
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(Angelo, Vargas et al. 2016). For a high-resolution (> 1 𝑚𝑒𝑔𝑎𝑝𝑖𝑥𝑒𝑙) image, the 

processing time using the Kanick semi-empirical model is around several hours. To 

improve upon existing gold standard histology workflows, the processing time of sd-SFDI 

techniques must be improved.  

Several strategies can be employed to improve the processing speed. In addition to 

parallelized-graphics processing units (GPUs), pre-calculated LUTs may be incorporated 

to allow ultra-fast, real-time processing of image data (~10−5 second per pixel) (Angelo, 

Vargas et al. 2016). However, these models have thus far only been used to extract diffuse 

optical properties and do not account for the sub-diffuse parameter 𝜸, which is pivotal in 

quantifying tissue structure. Lookup tables, neural networks, and other forms of artificial 

intelligence-based processing algorithms have been used to extract sub-diffuse optical 

properties rapidly (10−3 − 10−6  seconds per pixel); however, they have thus far only been 

considered for single-point measurements (rather than being applied to images) (Naglič, 

Pernuš et al. 2017, Ivančič, Naglič et al. 2018). Additionally, these methods have 

implemented scattering and absorption measurements across the entire optical spectrum 

with high spectral resolution, which confines their relevancy to wide-field imaging in 

which multiple-wavelength imaging requires not only exponentially increased system 

complexity and imaging times but also large data storage requirements. There is a need for 

a data processing technique to rapidly extract sub-diffuse optical properties from high-

spatial-frequency sd-SFDI data sets. 

2.4.2 Empirical Power-law sd-SFDI Model 

Current models of sd-SFDI require long fitting times due to their high degree of 

complexity and non-linearity. However, we observed a simplified power-law relationship 

between reflectance and spatial frequency when only considering reflectance in the sub-

diffuse regime. 

 

 𝑅𝑑(𝑓𝑥) =  𝛼𝑓𝑥
−𝛽

 (2.35) 
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 Extremely good agreement (𝒓𝟐  >  0.999) was observed when fitting this empirical 

power-law model with reflectance data points generated by the Kanick model at validated 

spatial frequencies greater than or equal to half of the reduced scattering coefficient (i.e., 

beyond the limits of the diffusion regime). This prompted the hypothesis that within a 

physiologically-relevant range, sub-diffuse reflectance adheres to a simplified power law 

model, which provides a significantly less computationally-taxing method for accessing 

the sub-diffuse scattering parameter 𝜸. 

 

 

Figure 2.12: The fit of the empirical power law model with points generated by the 

Kanick model demonstrated substantial agreement within the sub-diffuse 

range of spatial frequencies. 

In the simplified power-law model, 𝜶 and 𝜷 are fitting coefficients related to the 

scattering properties of the sample in the sub-diffuse regime. Initial fits of this model with 

reflectance from scattering bead phantoms of different sizes demonstrated a high degree of 

fitting accuracy and an ability to distinguish between the sizes of the scattering beads in 

each phantom with the extracted fitting terms 𝜶 and 𝜷. Importantly, the power law model 

can be linearized. The log-normalized reflectance curve for spatial frequencies is prepared 

as a vector and set equal to the log-normal of the empirical model: 
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 log(𝑅𝑑(𝑓𝑥)) = log(𝛼𝑓𝑥
−𝛽) = log(𝛼) − 𝛽 ∗ log (𝑓𝑥) (2.36) 

 

This relationship which contains the fitting coefficients is now in the form of a 

system of linear equations, which can be solved if measurements of reflectance are 

available for at least two different spatial frequencies. In the case of a fully-determined or 

over-determined system, the least-squares fit is determined through Gaussian elimination. 

This results in a substantially improved processing time for model fitting of less than 

1 second for a 5-megapixel image. 

2.4.3 Instrumentation, Calibration, and Data Processing 

A typical SFDI system configuration (Figure 2.7(a)) was applied for all sd-SFDI 

experiments in this research. A DLP Lightcrafter Evaluation Module digital micro-mirror 

device (Texas Instruments, Dallas TX) was used to project the patterns. Bandpass filters 

centered at 450 𝑛𝑚, 530 𝑛𝑚, and 620 𝑛𝑚 were utilized to achieve a set of three narrow 

spectral bandwidths (full-width half-max values < 15 𝑛𝑚). A plano-convex singlet lens 

(𝒇 = 15𝑐𝑚) was placed in front of the stock projection lens to achieve spatial frequencies 

of  𝒇𝒙 = 0 −  1.25 𝑚𝑚−1 in  0.05 𝑚𝑚−1 increments. A 5-megapixel monochrome CCD 

camera was used to collect images with an 80 𝑚𝑠 exposure (piA2400-17gm Basler, 

Ahrensburg, Germany). No polarizers were implemented in this setup to avoid gating 

ballistic photons (Wiest, Bodenschatz et al. 2015). Images were normalized for spatial and 

spectral variations in illumination, using reference images of a calibrated titanium dioxide 

reference standard (Appendix A). Prior to normalization, images of the reference standard 

were subjected to median and Gaussian filters to diminish salt and pepper noise. Individual 

pixels were then fit to the linearized empirical model.  



 52 

2.4.4 Microbead Phantom Experiment 

2.4.4.1 Methods 

Though substantial numerical agreement has been observed between the proposed 

power-law model and the semi-empirical model formulated by Kanick et al., the objective 

of this research was to experimentally test the relationships between sub-diffuse scattering 

parameters (𝝁𝒔
′ , 𝜸) and the power-law model coefficients (𝜶, 𝜷). A set of six scattering 

phantoms were constructed using three different sizes of polystyrene microspheres 

(Polysciences Inc., Warrington PA). Absorption was not used because it has been 

demonstrated that tissue-level absorption exerts minimal impact on spatially-resolved 

reflectance within the sub-diffuse regime (Bodenschatz, Krauter et al. 2015). The scattering 

cross-section 𝝈𝒔𝒄𝒂, the anisotropy parameter 𝒈, and the sub-diffuse parameter 𝜸 were then 

calculated using each of the bead mean diameters and diameter variances based on Mie 

theory. The necessary concentrations of each bead to achieve reduced scattering 

coefficients of 𝝁𝒔
′ (𝝀 = 530 𝑛𝑚) − [2.0𝑚𝑚−1, 3.0 𝑚𝑚−1] were then determined. The 

phantoms were each placed into a 2 𝑐𝑚 diameter well and imaged at each wavelength 

described in the instrumentation section; this resulted in a set of 18 unique optical property 

pairs. Table 2.1 and Table 2.2 indicate the final calculated 𝝁𝒔
′  and 𝜸 for each bead at 𝝀 =

530 𝑛𝑚 (a full description of the Mie calculations is presented in Appendix B).  

Table 2.1: Mie-calculated 𝝁𝒔
′  for each phantom at each wavelength. 

𝑾𝒆𝒍𝒍 𝝁𝒔
′ (𝝀 = 𝟒𝟓𝟎 𝒏𝒎) 𝝁𝒔

′ (𝝀 = 𝟓𝟑𝟎 𝒏𝒎) 𝝁𝒔
′ (𝝀 = 𝟔𝟐𝟎 𝒏𝒎) 

1 3.60 2.00 1.11 

2 5.39 3.00 1.67 

3 2.26 2.00 1.54 

4 3.40 3.00 2.31 

5 2.16 2.00 1.87 

6 3.25 3.00 2.80 
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Table 2.2: Mie-calculated 𝜸 for each phantom at each wavelength. 

𝑾𝒆𝒍𝒍 𝜸(𝝀 = 𝟒𝟓𝟎 𝒏𝒎) 𝜸(𝝀 = 𝟓𝟑𝟎 𝒏𝒎) 𝜸(𝝀 = 𝟔𝟐𝟎 𝒏𝒎) 

1 1.03 0.99 0.97 

2 1.03 0.99 0.97 

3 1.80 1.44 1.24 

4 1.80 1.44 1.24 

5 2.08 2.14 2.17 

6 2.08 2.14 2.17 

 

2.4.4.2 Results 

Figure 2.13. displays the raw images and extracted 𝜶 and 𝜷 model coefficients. 

These results qualitatively confirmed the strong relationship between 𝜸 and 𝜷. The 𝜶 term 

additionally appeared to depend upon both 𝜸 and 𝝁𝒔
′ . To further characterize these 

relationships, small 100𝑥100-pixel regions-of-interest (ROI) from each well were 

selected for statistical processing at each wavelength to ensure that the ROI did not overlap 

with any areas with specular reflection apparent in the picture. A linear regression was 

performed to determine the relationship between the 𝜶 and 𝜷 measured across the entire 

ROI and the known  𝜸 and 𝝁𝒔
′  values for each ROI (Figure 2.13).  

Despite the variance in wells three and four due to specular reflections and small 

banding errors at high spatial frequencies, the overall trends of the model coefficients as a 

function of 𝛾 and 𝜇𝑠
′  appeared to be consistent (Figure 2.14). The regression analysis 

indicated that 𝜶 has a weak positive correlation with 𝝁𝒔
′  (𝑟2 = 0.27) and a moderate 

negative correlation with 𝜸 (𝑟2 = 0.71). The 𝛽-fit coefficient has a strong positive 

correlation with 𝜸 (𝑟2 = 0.95) but nearly no correlation with 𝝁𝒔
′  (𝑟2 = 0.004). 
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Figure 2.13: Above are raw images of the phantoms and extracted 𝜶 and 𝜷 values from 

the power law model at 𝝀 = 530 𝑛𝑚. Although 𝜶 appeared to depend upon 

both 𝝁𝒔′and 𝜸, the 𝜷 term appeared to be primarily dependent upon γ. 
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Figure 2.14: Regression trends for 𝜶 and 𝜷 as a function of known 𝝁𝒔′and 𝜸 values 

indicated a strong linear correlation between 𝜷 and 𝜸. 

2.4.4.3 Discussion 

Although the empirical power-law model had a strong linear correlation with the 

sub-diffuse anisotropy term, further research is necessary to reliably extract absolute 

measures of sub-diffuse scattering. Firstly, it was not immediately clear that reduced 

scattering coefficients could be recovered from the empirical power-law model 

coefficients. This does not preclude rapid mapping of optical properties, since methods for 

ultra-fast LUT have previously been discussed (Angelo, Vargas et al. 2016). However, 

additional modeling determined that as the reduced scattering coefficient approaches the 
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diffuse-regime of spatial frequencies, the power-law model begins to also depend upon 

reduced scattering (Figure 2.15). Reflectance curves were constructed from the range of 

the validated Kanick semi-empirical model (𝝁𝒔
′ = [0.3 − 10 𝑚𝑚−1], 𝜸 = [1.2 − 2.4]) 

input into the semi-empirical model itself (EQ 2.34), and coefficients of the power law 

model were extracted using sampling frequencies of 𝒇𝒙 = [0.5 − 1.0 𝑚𝑚−1]. 

 

 

Figure 2.15: This figure indicates the theoretical dependence of empirical model terms 𝜶 

and 𝜷 on 𝜸 and 𝝁𝒔
′  using the Kanick semi-empirical model to produce 

reflectance curves. The observation of the limited experimental dependence 

of 𝜷 upon 𝝁𝒔
′  was likely caused by the minimal variation of 𝝁𝒔

′  that was 

considered in the experiment. 

The extracted 𝜶 values adhered to the experimental measurements in Chapter 2, 

since they were dependent upon both 𝝁𝒔
′  and 𝜸. However, the 𝜷 value also appeared to 

increasingly depend upon 𝝁𝒔
′  because it became large relative to the spatial frequency used. 

Since the scattering phantoms had relatively low variance in 𝝁𝒔
′ , this relationship was not 

observed. However, the relationship between 𝜷 and 𝜸 was nevertheless relatively well-

behaved, despite the additional apparent influence of 𝝁𝒔
′ . Future research, as discussed in 

Chapter 3, will explore the use of reflectance curves at lower spatial frequencies to extract 



 57 

𝝁𝒔
′  and the use of increasingly high spatial frequencies above 1 𝑚𝑚−1 so that the empirical 

power-law model coefficients are only dependent upon 𝜸. 

2.5 SUMMARY 

Chapter 2 outlined the mechanisms and models describing diffuse, sub-diffuse, 

and ballistic light scattering in turbid media. It also introduced spatial frequency domain 

imaging (SFDI) as a means of quantifying light transport across large sample fields of 

view. It then demonstrated the behavior of reflectance measurements with SFDI within the 

sub-diffuse scattering regime and demonstrated that single, high-angle scattering events 

become increasingly important as higher spatial frequencies are used for imaging. Finally, 

it introduced a simplified empirical model of sub-diffuse reflectance, whose coefficients 

were demonstrated mathematically and experimentally to be highly sensitive to sub-diffuse 

scattering properties. Chapter 3’s objective involves applying this empirical model to 

detect microstructure in diseased tissues and demonstrate the feasibility of sd-SFDI as a 

rapid, wide-field screening and tumor boundary assessment tool.  
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Chapter 3: Analysis of tissue microstructure in skin cancers 

Many sources were used for reference when writing this chapter (Gloster, Harris et 

al. 1996, Shriner, McCoy et al. 1998, Smeets, Kuijpers et al. 2004, Marieb and Hoehn 

2007, McGuire, Norman et al. 2009, Madan, Lear et al. 2010, Kolarsick, Kolarsick et al. 

2011, Leiter, Eigentler et al. 2014, Patton and Thibodeau 2014).  

3.1 MOTIVATION: EXPEDITING MOHS MICROGRAPHIC SURGERY  

Chapter 2 outlined methods of detecting sub-diffuse scattering properties of 

samples with sd-SFDI and described the relationship between the model coefficients and 

the size and concentration of scattering particles. This chapter demonstrates the application 

of sd-SFDI to mapping tissue microstructure. Microstructures, in the context of this 

chapter, are distilled into structures common to epithelial, stromal, and adipose tissues. 

Epithelium is composed of a variety of cell shapes and sizes depending upon the region; 

however, it can typically be characterized by a substantial number of closely-packed cells 

relative to stromal and adipose tissues. Stroma is characterized primarily by densely-

packed, irregular connective fibers with random alignment; different support cells are 

found more sparsely throughout. Adipose tissues are composed mostly of adipocytes, 

which have large storage areas for lipids and are typically significantly larger than 

epithelial cells and connective fibers; they are approximately 70 𝑡𝑜 120 𝜇𝑚 or larger.   

Histology is the study of the spatial morphology of these tissue structures in various 

tissue regions, such as the epidermis, dermis, and dermal appendages, such as hair follicles 

and sebaceous glands in the skin. Most commonly, histology involves preparing thin slices 

of tissue samples, applying various stains, and using bright-field microscopy to examine 

the morphology and organization of tissue structure. The stains provide contrast to 

cytoplasm, nuclei, or specific fibers and can subsequently be used to identify the type and 

physiological state of different tissues through trained visual examination. 

Histopathology is a specific branch of histology which concerns atypical tissue 

structure and morphology that arises from tissue damage or disease. Although cancer 
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screening methodologies vary immensely between cancer types, histopathology is the 

universal gold standard for clinical diagnosis. Suspected tumors are biopsied and examined 

by specialized histopathologists who determine the presence of atypical tissue structures 

and morphologies (dysplasia) that indicate malignancy and pathogenesis. Both the specific 

tissue structure and its spatial morphology are crucial for determining a diagnosis. For 

example, densely-packed cells in the dermal layers of skin can signify either carcinoma or 

normally occurring dermal appendages (Figure 3.1).  

 

 

Figure 3.1: Histopathology of facial tissue presenting nodular basal cell carcinoma 

(BCC) tumor among different tissue regions. The BCC regions share 

similar cellular structure to sebaceous glands and hair follicles (SH + HF). 

The large nodules of basal cell carcinoma (BCC) display similar proliferation of 

cells relative to the dermal appendages; therefore, other factors, including spatial 

morphology and local context of these structures, must also be considered for accurate 

diagnoses. Extensive training is necessary for dermatologists and other histopathologists 

to determine these diagnostic decisions.  

 In many instances, histopathological diagnoses do not have rigid temporal 

constraints; therefore, the time between resection, examination, and treatment is not 

invariably crucial to patient outcomes if it is limited to within a week. However, during 
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surgical tumor resections, in which the objective is to physically remove the entirety of a 

malignant tumor from the patient, histopathology introduces a significant bottleneck into a 

surgical workflow. In radical tumor resection techniques, histopathology is not considered 

during the procedure; instead, the boundary of the tumor is intentionally over-estimated. 

While this may provide some confidence that all malignant tumor cells are removed from 

the patient, it nevertheless does not achieve 100% sensitivity until after the surgery has 

been concluded, and the resected tumor is examined. Additionally, many tumors are found 

in locations where even minimal resection is problematic, such as the brain, breast, and 

skin of the face and head. In these cases, poor sensitivity to tumor boundaries leads to 

excess tissue resection that can have severe implications for patient outcomes. Although 

more radical resections are sometimes necessary if a cancer has metastasized, conservative 

tissue removal is practiced when possible. Contemporary surgical resections of tumors aim 

to conserve as much healthy tissue as possible while completely removing malignant tumor 

cells. However, tissue-conserving surgeries necessitate precise knowledge of tumor 

boundaries. As the gold standard for determining these boundaries, histopathology is not 

always well-suited to these types of surgical settings in which temporal constraints are 

more severe. In these cases, a more rapid method for determining tissue boundaries is 

necessary. 

Mohs micrographic surgery (MMS) is a highly effective tissue-conserving surgery 

for resecting skin cancer lesions, particularly those on the head and face, where excessive 

tissue resection can produce unwanted scarring and poor overall patient outcomes. In the 

MMS workflow, a suspicious lesion is identified by a trained dermatologist based on 

established risk criteria. Mohs micrographic surgery is an outpatient surgical procedure 

that begins with topical application of an anesthetic to the suspicious lesion. The 

dermatologist then removes tissue from a conservative estimate of the tumor boundary 

based on their training and experience. The sample is delivered directly to a histopathology 

lab, where it is mounted and frozen in tissue-freezing media. The frozen sample can then 

be sectioned into thin slices of approximately 5 𝑡𝑜 20 𝜇𝑚 and stained, typically with 

hematoxylin and eosin (H&E), which provides contrast to cell nuclei, cytoplasm, and 
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connective fibers. The sample is then examined under a microscope, typically by the same 

dermatologist performing the procedure, to determine whether any dysplasia is present near 

the boundary. This entire cycle of resecting, preparing, and examining a biopsy sample is 

commonly referred to as an MMS stage. If the tumor overlaps with the boundary of the 

initial resection, the physician returns to the patient and resects another conservative biopsy 

volume. This procedure is repeated until the dysplasia is reliably contained within the 

resection boundary, at which point the procedure is concluded, and the wound is closed 

and dressed. 

 

 

Figure 3.2: A typical MMS staging cycle, which requires about one hour for each stage, 

is repeated until no more tumor cells are found on the boundary of the 

resected tissue. Adapted from (2018). 

The MMS workflow has yielded significant improvements in terms of long-term 

patient outcomes, boasting the highest cure rates for basal cell and squamous cell 

carcinomas; it is increasingly considered for the removal of melanoma skin cancers 

(Smeets, Kuijpers et al. 2004).  However, the current workflow has significant room for 

improvement. Each MMS stage requires 30 to 60 minutes to perform, primarily because 

of the time required for physically preparing (mounting, freezing, sectioning, and staining) 

the resected sample. During this time, the patient remains in the surgical suite with only 

topical anesthetic. One study discovered that over 30% of MMS procedures required more 



 62 

than one stage to entirely resect the tumor and noted that as many as seven passes might 

need to be performed (Cook and Zitelli 1998).  

Overall, there is a clear necessity for mapping tissue microstructure and 

morphology rapidly across large (~5 𝑐𝑚2) tumor samples to determine tumor boundaries 

in a surgical setting. Several existing techniques, such as confocal-scanning Raman 

microscopy, are highly sensitive to discriminating dysplastic tissue but are slow to image 

even small areas (1 hour for 1 𝑚𝑚2); therefore, these do not improve upon the speed of 

histopathology in determining tumor boundaries. Chapter 2 illustrated the ability to 

quantify changes in tissue microstructure rapidly over relatively large fields of view with 

sd-SFDI. Additionally, the demonstrated sensitivity of sd-SFDI to changes in scattering 

particle size distribution is highly relevant to the types of tissue structures discovered in 

regions of epithelium, stroma, adipose tissue, and tumors. The densely-packed structure of 

the stroma results in largely isotropic scattering, while the large lipid voids in adipose 

tissues result in diminished overall scattering. The scattering particles in epithelial cells, 

tumor regions, and dermal appendages tend to experience both increased scattering and 

increased scattering anisotropy. sd-SFDI provides sensitivity to these changes in scattering 

related to the microstructural content across relatively large fields of view; therefore, it is 

well-suited to complimenting the gold standard histopathological assessments of tumor 

boundaries.   

However, current constraints on processing times limits the adequacy of existing 

sd-SFDI reflectance models to enhance MMS workflows in practice. This demonstration 

of a novel sd-SFDI empirical power-law model to provide sensitivity to microstructures 

via sub-diffuse scattering at rapid imaging (< 1 minute) and processing (< 2 minutes total) 

rates provides significant potential to improve the MMS workflow. This chapter extracts 

the empirical power-law model coefficients from several discarded MMS samples with 

nodular basal cell carcinoma, along with adjacent normal tissue. Histology slides were 

prepared for the same samples, and the average values and variations in model coefficients 

in regions of tumor, dermis, fat, and other tissue types were compared. Finally, the model 

data was used for a proof-of-concept method of segmenting potential tumor regions.  
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3.2 METHODS 

3.2.1 MMS Samples 

The samples collected for this study were approved by the IRB at The University 

of Texas at Austin and Seton Medical Center (Feng, Moy et al. 2018). Discarded samples 

from routine MMS procedures at the Austin Dermatologic Surgery Center were frozen and 

stored at −80℃. The top layer of the samples was sectioned and stained with H&E, and 

the remaining bulk tissue was thawed and imaged on the side adjacent to the sectioning 

using the sd-SFDI system described in Chapter 2.4.3. A board-certified dermatologist 

assisted in delineating regions of each sample and used the histology images as a guide; 

they delineated the primary tumor regions, dermis, sebaceous glands and hair follicles, 

epidermis, and fat. Two cancerous samples were examined in this study; each presented 

nodular basal cell carcinoma (BCC) tumors, along with one additional “clear” sample of 

normal tissue. One nodular BCC sample was resected from a patient’s cheek, one adjacent 

normal sample was resected from the check of the same patient, and one nodular BCC 

sample was resected from the nose of a separate patient. 

3.2.2 sd-SFDI Imaging and Processing 

The samples were placed in baths of phosphate-buffered saline (PBS) at room 

temperature for thirty minutes prior to imaging. They were then secured between glass 

slides and mounted for sd-SFDI imaging at 𝒇𝒙 = [0.0 –  1.2 𝑚𝑚−1] in 0.05 𝑚𝑚−1 

increments and at wavelengths of 𝝀 = [450 𝑛𝑚, 530 𝑛𝑚, 620 𝑛𝑚]. Only the spatial 

frequencies 𝒇𝒙 = [0.5 –  1.0 𝑚𝑚−1] were considered for processing. The sample 

reflectance was normalized to the previously-described titanium dioxide reflectance 

standard (Appendix A); no other filtering was applied to the reflectance maps prior to or 

after fitting them to the empirical power-law model. Small ROI (25𝑥25 𝑝𝑖𝑥𝑒𝑙𝑠) in areas 

demarcated by the expert dermatologist were used to compare distributions of model 

coefficients between known tissue regions. For this assessment, only the 𝝀 = 450 𝑛𝑚 
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wavelength was considered in both the coefficient mapping in Figure 3.3 and the regional 

coefficient comparisons in Figure 3.4. 

3.3 RESULTS 

3.3.1 Sub-diffuse Empirical Model Coefficient Maps and Histology Comparison 

Figure 3.3 indicates the results for three representative samples. The raw RGB 

images also display the color-coded ROI used for distribution comparisons. Maps of the 

𝜶 model coefficient appeared to be sensitive to extracellular matrix constituents, as 

demonstrated by the fibrous structures that were highlighted across each sample. Regions 

demarcated by histopathology as dermis had higher values of 𝜶. The 𝜷 model coefficient 

correlated significantly with the regions demarcated by histopathology as either tumor 

regions or sebaceous glands and hair follicles. This is consistent with the expected 

microstructural changes in these regions, which typically present higher nuclei-to-

cytoplasm ratios along with more densely-packed nuclei (Sexton, Jones et al. 1990, Wax, 

Yang et al. 2002).  As Chapter 2 demonstrated, 𝜷 is positively correlated with the sub-

diffuse scattering parameter 𝜸, which indicates a decrease in the average size of the 

scattering particles (Bevilacqua and Depeursinge 1999, Chamot, Migacheva et al. 2010). 

Additionally, this associated increase in the 𝜸 parameter in tumor regions is consistent with 

previous research (McClatchy III, Hoopes et al. 2017, McClatchy, Rizzo et al. 2018). 

Demarcated regions of fatty-dermis had low values of both 𝜶 and 𝜷. This result was also 

consistent with expectations, since subcutaneous adipose regions have previously been 

proven to exhibit more limited overall scattering (Boas, Pitris et al. 2016). The epidermal 

regions had 𝜶 values comparable to the epidermal and sebaceous gland and hair follicle 

regions; however, they had significantly lower 𝜷 values, which was unexpected for areas 

of epidermis that are typically composed of more densely-packed cells and less stroma 

(Boas, Pitris et al. 2016). However, this can potentially be explained by the low overall 

signal at the thin edges of the tissue.  
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Figure 3.3: Above are representative samples of nodular BCC tumors and adjacent 

normal tissue from the facial regions of two different patients. Extracted 

empirical model coefficients demonstrated repeatable sensitivity to tissue 

regions that aligned well with those demarcated by expert histopathologists. 
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3.3.2 Morphological Feature Comparison 

Figure 3.4 presents additional comparisons between all samples from the study. 

The trends between the samples appeared to be highly consistent: Dermis tissue had high 

𝜶 values associated qualitatively with connective tissue components; BCC tumor regions 

and sebaceous glands and hair follicles had markedly increased 𝜷 values associated with 

small, densely-packed scatterers; fatty regions had reduced 𝜶 and 𝜷 coefficients that were 

indicative of lipids. Epidermal tissue was more difficult to discriminate from the individual 

model components, since it had moderate levels of both 𝜶 and 𝜷; however, when both of 

the coefficients were considered together, it appeared to also have a unique cluster region.   

 

 

Figure 3.4: These graphs illustrate coefficient variations across different tissue regions 

compiled for all five nodular BCC tumor samples and the adjacent normal 

tissue sample; this demonstrates clear trends in different tissue regions. 
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3.4 DISCUSSION 

3.4.1 Proof-of-concept: Tumor boundary guidance 

The sd-SFDI techniques outlined in Chapter 2 demonstrated the wide-field 

sensitivity of the empirical power-law model to map tissue microstructures that correlated 

well with histopathological examinations of nodular basal cell carcinoma samples. Regions 

of high cell-proliferation, including tumor regions and dermal appendages, were 

demonstrated to be identifiable based on their sub-diffuse scattering properties; they 

provided the first demonstration of sd-SFDI to image skin cancer tissues. However, rather 

than an absolute diagnostic tool, sd-SFDI maps of tissue microstructure would most likely 

be relevant as a tool for more rapid assessment of tumor boundaries. Wirth et al. outline 

the use of fluorescent SFDI for intraoperative tumor margin assessment during surgical 

resections and note that uncertain volumetric sampling (and therefore, spatial frequency 

selection) of the system may impact the interpretation of results when the sample is not 

homogeneous (Wirth, Sibai et al. 2018). Additionally, the context of the local morphology 

of the microstructure is crucial even for the histopathological assessment of tumor regions. 

As demonstrated in the results, dermal appendages displayed similar sub-diffuse scattering 

properties relative to the tumor regions; differentiating between them requires additional 

morphological context. Therefore, sd-SFDI will likely find its most relevant use as a 

guidance tool to limit the areas to search for potential cancers in large tissue samples. One 

proposed use involves pairing sd-SFDI with a technique which has higher discriminatory 

capability (such as Raman confocal microscopy) but poor imaging speeds over large fields 

of view.  

To demonstrate this potential use, a proof-of-concept image segmentation was 

performed based on the statistical clustering regions extracted from the regional 

distributions of 𝜶 and 𝜷 coefficients. A quadratic discriminant analysis model was 

generated using two groups; one contained measures of 𝜶 and 𝜷 coefficients in the nodular 

BCC and sebaceous gland and hair follicle regions, and one group contained the measures 

for the dermis, epidermis, and fatty-dermis regions. Figure 3.5 displays the clustering 
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model applied to the spatial  𝜶 and 𝜷 values overlaid on the RGB images of the samples. 

The highlighted areas appeared to correspond with the histology images for the samples. 

This segmentation provides a significant reduction in risk areas (69 − 84%) relative to the 

total sample area, which potentially permit the use of complimentary techniques with 

slower imaging speeds but higher discriminatory power within the Mohs workflow. These 

areas could be further reduced by dermatologists who can visually reject features that are 

clearly non-malignant morphological features.  

 

 

Figure 3.5: The discriminant analysis model uses clustering groups of 𝜶 and 𝜷 to 

highlight regions that correlate with increased cell proliferation (BCC tumor 

and sebaceous glands and hair follicles). 
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Further research with a larger total sample size of tissues should be conducted to 

provide statistical confidence of variations in optical properties from similar tissue types 

discovered between different patients. A second set of 20 total samples from a related study 

displaying nodular BCC, superficial BCC, and normal tissue with and without 

inflammation has been reserved for imaging with sd-SFDI. 

3.4.2 Improvements to the empirical model 

Several improvements can be made in terms of studying sub-diffuse light scattering 

using our proposed empirical model. First, the existing semi-empirical model from Kanick 

et al. could not be applied due to issues in finding reliable system model coefficients. 

Additionally, the titanium dioxide reference phantom (Appendix A) was not appropriate 

for use as a reference phantom with this model, since the higher-order scattering properties 

of the highly dispersed size distribution were beyond the semi-empirical model range. 

Therefore, due to limitations in terms of the range and system variabilities, future research 

should utilize Monte Carlo modeling and incorporate sub-diffuse scattering as a reference 

technique for extracting the sub-diffuse properties of samples. This would allow for a more 

thorough comparison and testing of limitations of the proposed empirical model, 

particularly in terms of determining whether it is equivalent to the Kanick semi-empirical 

model under certain conditions. 

Additionally, the results in Chapter 2 indicate that while coefficients that were 

related to 𝝁𝒔
′  and the 𝜸 parameter could empirically be extracted, the contributions from 

each were not entirely decoupled. Subsequently, it was determined that 𝝁𝒔
′   could be 

extracted rapidly from measurements within the diffuse ranges of spatial frequencies; two 

strategies were developed to diminish the dependence of the model coefficients upon 𝝁𝒔
′ . 

The first involved normalizing the spatial frequency to the extracted reduced scattering 

coefficient prior to fitting to the empirical model. While this inherently requires a model to 

extract reduced scattering coefficients, this additional processing requirement can 

nevertheless fulfill the goal of improving MMS worktimes, since maps of diffuse scattering 
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properties have previously been extracted rapidly over large fields of view (Angelo, Vargas 

et al. 2016). When this normalization was performed prior to fitting the power law model 

to the Kanick semi-empirical model, the impact on the relationship between the 𝜷 model 

coefficient and the 𝜸 parameter was relatively minimal (Figure 3.7). Surprisingly, the 𝜶 

model coefficient became almost entirely dependent upon 𝜸, except at high 𝝁𝒔
′  values 

relative to the spatial frequency. 

 

 

Figure 3.6: By normalizing the spatial frequency (𝒇𝒙) to the reduced scattering (𝝁𝒔
′ ) in 

the empirical model before fitting, the 𝜷 coefficient dependence upon 𝝁𝒔
′  

remained relatively unchanged, but the 𝜶 coefficient became nearly entirely 

described by 𝜸 alone. 

The second strategy to mitigate the reduced scattering impact on the relationship 

between the model coefficients and the 𝜸 parameter involved increasing the relative spatial 

frequency. By increasing the spatial frequency range to 𝒇𝒙 = [1.0 − 2.0 𝑚𝑚−1], the 

variation in the 𝜶 model coefficient entirely disappeared, and the relationship with the 𝜸 

parameter appeared to be defined by a power law itself (Figure 3.8).  
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Figure 3.7: Increasing the spatial frequency range (𝒇𝒙) considered and normalizing 𝒇𝒙 

to reduced scattering (𝝁𝒔
′ ) prior to fitting caused 𝜶 to display a power-law 

dependence on 𝜸. 

This result suggests that when the spatial frequency used for imaging is high 

relative to the reduced scattering coefficient, the Kanick semi-empirical model in EQ 2.34 

diminishes to a simplified power-law model. Although this must be validated to produce 

more precise results (preferably applying a sub-diffuse Monte Carlo model), this 

potentially increases the robustness for the method used to rapidly extract sub-diffuse 

optical properties by utilizing higher spatial frequencies. Two primary considerations are 

important in relation to imaging at high spatial frequencies. The first is decreased signal 

level and increased sensitivity to imaging artifacts, which may be mitigated by using 

dynamic imaging exposures that increase along with spatial frequency. Additionally, the 

necessity for increased spatial frequency decreases the imaging field of view of SFDI 

systems using digital micromirror devices for pattern projection. However, since these 

devices have steadily improved in terms of pixel-mirror density in recent years, this 

requirement for super-high spatial frequency (𝒇𝒙 > 1 𝑚𝑚−1) pattern projection has 

become more tractable.    
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Chapter 4: Modeling and measuring polarized light scattering from 

tissues 

4.1 POLARIZED LIGHT 

Polarization describes the orientation of the electric field component of an 

electromagnetic wave. The electric and magnetic fields of light oscillate perpendicularly 

to one another and are both perpendicular in relation to the direction of propagation. Figure 

4.1 illustrates a polarized light wave propagating in the 𝑍-direction. In this example, the 

electric field amplitude (red) is confined to the 𝑌𝑍-plane, which indicates linearly polarized 

light with a vertical orientation. The magnetic field can be largely ignored, since Maxwell’s 

equations dictate that it will invariably be perpendicular to the electric field.  

 

 

Figure 4.1: A diagram of an electromagnetic wave traveling in the 𝑍-direction with the 

magnetic field (blue) oscillating in the 𝑋𝑍-plane and the electric field (red) 

oscillating in the 𝑌𝑍-plane, which indicates vertical linear polarization. 

The Mie solution to light scattering from spheres (Chapter 2) demonstrates that 

polarization is largely irrelevant to the orientation of spherical particles due to the 

symmetry of the particle geometry. However, if the particle geometry is non-symmetrical, 

such as in the case of cylindrical particles such as collagen fibers, the relative orientations 

of the light polarization and the scattering particle will exert a significantly greater 

influence on the scattering response. This chapter discusses the formalism used to 
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mathematically describe polarized light, the systems used to generate and detect polarized 

light, and the Mie solutions to polarized light-scattering from single cylindrical particles. 

This model is extended to describe populations of tissue fibers with varying degrees of 

alignment; the model is then validated through experimental measurements of fiber 

phantoms. The ultimate objective of this chapter is to establish and experimentally validate 

the relationship between polarization-dependent light-scattering and absolute measures of 

fiber alignment.  

4.2 POLARIMETRY 

Polarimetry generally refers to the study of relationships between polarized light 

and an optically-active medium. Optically active media cause the polarization of light to 

change as light propagates through it. These interactions can polarize, depolarize, or 

otherwise disturb the initial polarization of light. The following sources were used as 

reference in this section: (Goldstein 2003, DiMarzio 2011). 

4.2.1 Stokes Vectors 

The Stokes vector is a set of four parameters which fully describe the polarization 

state of an electromagnetic wave: 

 

 

𝑆𝑖𝑛 = (

I
𝑄
𝑈
V

) 

(4.1) 

 

The parameter 𝑰 describes the total intensity of light, and the entire vector is often 

normalized so that 𝑰 =  1. 𝑸 describes the amount of linearly polarized light in the 

horizontal and vertical vectors which are orthogonal to the direction of propagation; 𝑼 

describes the linearly-polarized light in the +/− 45° vectors. Circularly-polarized light is 

described by 𝑽; positive values indicate “right-handed” (counter-clockwise) circularly-

polarized light, and negative values indicate “left-handed” (clockwise) circularly-polarized 
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light. The 𝑸, 𝑼, and 𝑽 Stokes parameters each have a range of [−1, 1] but, when combined. 

cannot exceed the total amplitude of light, such that 𝑰2 ≥ 𝑸2 + 𝑼2 + 𝑽2. Figure 4.2 

presents several examples of the orientation of the electric field for different Stokes vectors. 

These use the same coordinate system displayed for a polarized electromagnetic wave in 

Figure 4.1. 

 

 

Figure 4.2: This figure depicts polarization states for different Stokes vectors, including 

horizontal-linear polarization (a), 45˚-linear polarization (b), vertical-linear 

polarization (c), right-hand-circular polarization (d), 45˚-linear partial-

polarization (e), and mixed-linear partial-polarization (f). 

Every individual photon possesses a distinct polarization state. Groups of many 

photons, however, can also be partially polarized or randomly polarized if the orientations 

of the individual photons are not identical. The degree of polarization (𝑫𝒐𝑷) describes the 

proportion of photons with coherent polarization: 

 

 
𝐷𝑜𝑃 =  

𝑄2 + 𝑈2 + 𝑉2

𝐼2
 

(4.2) 
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A 𝑫𝒐𝑷 of 1 indicates that the orientation of the electric fields of all individual 

photons are synchronized (coherent). Conversely, a 𝑫𝒐𝑷 of 0 describes entirely random 

(incoherent) polarization, in which the vector sum of the electric field orientations for each 

photon cancels out. Notably, 𝑫𝒐𝑷 =  0 does not imply that the amplitude of the 

electromagnetic wave experiences destructive interference; rather, it merely indicates that 

the orientation of the light is random. 

4.2.2 Mueller Matrices 

As an electromagnetic wave propagates through free space, its polarization state 

remains constant; therefore the Stokes vector does not change. Mueller matrices 

mathematically describe changes to the Stokes parameters that result from light 

propagating through an optically-active medium. A Mueller matrix consists of 16 total 

elements: 

 

 

𝑀 = [

𝑀11 𝑀12

𝑀21 𝑀22

𝑀13 𝑀14

𝑀23 𝑀24

𝑀31 𝑀32

𝑀41 𝑀42

𝑀33 𝑀34

𝑀43 𝑀44

] 

(4.3) 

 

A Mueller matrix can be used to represent any physical medium that is optically-

active, including both optical components in an imaging system (such as polarizers or 

mirrors) and unknown samples. To determine the resultant polarization of light, the 

Mueller matrix is multiplied by the initial Stokes vector, as follows: 

 

 𝑆𝑜𝑢𝑡 = 𝑀𝑆𝑖𝑛 (4.4) 

 

This operation is associative (though not commutative) for any number of media 

which the light encounters. For example, in the system depicted in Figure 4.3, the resultant 

Stokes vector 𝑺𝑜𝑢𝑡 can be calculated by multiplying the Mueller matrices (𝑴𝒏) and initial 

Stokes vector𝑺𝑖𝑛, in reverse order in relation to how the light encounters each object. This 
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formalism is used to describe the polarized light-imaging system and to derive the idealized 

Mueller matrices for fibrous samples using the Mie solution. 

 

 

Figure 4.3: The diagram above depicts polarized light propagating through three distinct 

media, each described by their own Mueller matrix. The output polarization 

state of light can be calculated if the input polarization state and Mueller 

matrices for each element are known (EQ 4.5): 

 

 𝑆𝑜𝑢𝑡 = 𝑀3𝑀2𝑀1𝑆𝑖𝑛 (4.5) 

 

4.2.3 COMMON POLARIMETRIC OPTICAL PROPERTIES 

Although the Mueller matrix elements can each be considered individually to 

characterize optically active media, it is common to quantify them in terms of diattenuation, 

retardance, and depolarization. Diattenuation indicates the polarization-dependent 

transmittance of light within media, and retardance resembles polarization-dependent 

phase change in a medium. In diattenuation, total 𝑫𝒐𝑷 remains constant or increases, while 

in retardance, total 𝑫𝒐𝑷 is preserved. Decreasing 𝑫𝒐𝑷 is characterized by depolarization. 

The Lu-Chipman decomposition method allows a Mueller matrix to be separated into these 

three distinct components. These metrics can be further refined into measures of 

biattenuance and birefringence, which describe optical activity in bulk media for a given 

differential unit depth. However, although these relative measures of polarimetric 

properties often arise from underlying sample structures, the measurements alone do not 

imply the origin or absolute value of the structural anisotropy. For example, similar 
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measures of birefringence may be discovered from ordered crystalline structures and 

anisotropic light scattering by microscopic fibers.  To infer relative structural anisotropy 

from absolute optical anisotropy measurements, some degree of a priori knowledge of the 

structure is necessary.  

4.2.4 Polarized Light Imaging of Biological Tissues 

A substantial volume of research concerns polarized light imaging and Mueller 

matrix polarimetry of biological tissues (Jacques, Roman et al. 2000, Jacques, Ramella-

Roman et al. 2002, Jacques and Ramella-Roman 2004, Ramella-Roman, Lee et al. 2004, 

Kemp, Zaatari et al. 2005, Jacques and Pogue 2008, Ghosh and Vitkin 2011, Qi and Elson 

2017). These techniques allow for the characterization of the polarimetric properties of 

tissues and have been applied to relate polarization-dependent optical properties to various 

underlying structural and physiological features. In particular, collagen fibers are a 

significant source of optical anisotropy in tissue, and are also pivotal in terms of mechanical 

tissue function. Tendons (Whittaker and Canham 1991), heart valve leaflets (Tower, 

Neidert et al. 2002, Yang, Lesicko et al. 2015), the cervix (Chue-Sang, Holness et al. 2018), 

the cornea (Pircher, Götzinger et al. 2004, Mega, Robitaille et al. 2012), skin (De Boer, 

Srinivas et al. 1999), and tumor lesions (He, Sun et al. 2014) are among the biological 

tissues imaged with polarized light to investigate collagen fiber anisotropy in relation to 

physiological conditions. 

Notably, polarized light imaging can be performed in wide-field with readily 

adjustable fields-of-view; this enables both small and large sample areas to be imaged 

rapidly near or above video-rate (Jacques, Ramella-Roman et al. 2002, Kuhn and Poenie 

2002). Additionally, it can be readily paired with many coherent and incoherent imaging 

techniques, such as bright-field microscopy, optical coherence tomography, harmonic 

generation imaging, and spatial frequency domain imaging, among others (De Boer, Milner 

et al. 1997, Kuhn and Poenie 2002, Stoller, Reiser et al. 2002, Yang, Lesicko et al. 2015).  
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4.2.5 Current Needs: Depth Gating and Absolute Measurements of Fiber Structure 

Polarization imaging systems impose two inherent challenges. Firstly, these 

techniques primarily provide polarimetric properties, such as those described in Chapter 

4.2.3, as measures of tissue structure (Chenault and Chipman 1993, Lu and Chipman 1996, 

Ghosh, Vitkin et al. 2008, Ghosh, Wood et al. 2009, Wood, Ghosh et al. 2009, Liao, Jiang 

et al. 2010, Sun, He et al. 2014). While these metrics are useful for relative comparisons of 

structural anisotropy, absolute measures of fiber orientation distributions are necessary to 

improve the accuracy of modeling soft-tissue mechanical behavior (Tower, Neidert et al. 

2002, Sacks 2003). Extracting absolute measures of fiber alignment using these techniques 

typically requires precise a priori knowledge of fiber size and optical properties at each 

image point. As a result, small changes in the fiber size may influence the interpretation of 

fiber alignment. 

Secondly, these systems do not distinguish distinct tissue layers within samples and 

are instead bulk measurements through the thickness of the sample. Transmissive 

polarization systems measure average optical anisotropy through the entire sample 

thickness, while reflective polarization systems average it through a sampling depth up to 

several millimeters deep in biological tissues (Guo, Wood et al. 2007, Guo, Wood et al. 

2008). In both cases, the multiple-scattering of the light through thick, turbid samples 

precipitates the overall depolarization of the optical signal, which results in changes in 

measured optical anisotropy as a function of sampling depth and potential 

misinterpretations of multi-layered structural anisotropy (Ghosh, Gupta et al. 2006). Serial 

sectioning and imaging are feasible but also limit measurements of fiber microstructures 

to experimental endpoints. These issues demonstrate the necessity of limiting optical 

anisotropy measurements in biological tissues to thin layers (< 500𝜇𝑚) without physical 

sectioning. The necessity of gating of imaging depth is particularly relevant to heart valve 

leaflets, which have distinct layers several hundred microns thick, which each possess 

unique fiber structures (Misfeld and Sievers 2007, Stella and Sacks 2007). 
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4.3 POLARIZED SPATIAL FREQUENCY DOMAIN IMAGING 

This section first describes the instrumentation for the polarized spatial frequency 

domain imaging (pSFDI) system. Polarized light imaging provides sensitivity to fiber 

structure, while structured illumination (discussed in Chapter 2) enables control of the 

effective imaging depth to distinguish tissue layers around several hundred microns thick. 

This section then derives the Mueller matrix formalism used to mathematically describe 

the idealized polarization system and outlines the calibration and data-processing 

techniques used to ensure repeatable measurements and rapid image analysis. 

4.3.1 Instrumentation 

The pSFDI system (Figure 4.4) is composed of three primary components, 

including pattern projection, polarization modulation, and image detection. Spatial 

frequency patterns were projected using a DLP Lightcrafter Evaluation Module digital 

micro-mirror device (Texas Instruments, Dallas TX). The projected pattern was delivered 

through a bandpass filter to produce light with a center wavelength of 529 𝑛𝑚 and a 

measured spectral full-width half-maximum of less than 15 𝑛𝑚. The spectrally-filtered 

pattern was folded with a right-angle mirror and projected onto the sample through a linear 

polarizer mounted on a Zaber high-speed rotational stage with a 2” aperture (Zaber 

Technologies Inc., Vancouver, BC, Canada). The stage rotated the linear polarizer through 

180°, and imaging was conducted at 9° increments for a total of 20 measurements. A 

CMOS camera (acA1300-60gm, Basler AG, Ahrensburg, Germany) captured an image of 

each projected spatial pattern using the same rotating linear polarizer aperture at each 

polarizer orientation. The image resolution was 1280𝑥1024 pixels, and the field of view 

was approximately 24 𝑚𝑚 𝑥 18 𝑚𝑚, although this could be increased or decreased for 

desired applications by changing the working distance of the sample. The imaging system 

used a 𝑓/1.4 variable focus imaging lens (calculated collection half-angle of 𝝍 =  15°), 

and the camera had an exposure time of 20 𝑚𝑠. The entire system was controlled through 
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a custom LabVIEW VI (National Instruments, Austin TX), and it acquired the entire wide-

field image set in under 5 seconds. 

 

 

Figure 4.4: Above is a schematic of a combined polarized light spatial frequency 

domain (pSFDI) system, which consists of a digital micromirror device 

(DMD), fold mirrors (FM1 and FM2), linear polarizer (LP), projection and 

imaging lenses (L1 and L2), bandpass filter (BP), and CMOS camera. The 

fibers in the sample are primarily distributed angularly in the 𝑋𝑌-plane 

along an angle of 𝝋, and the LP rotates in the same plane at angle 𝜽. A 

small angle of 𝜶 ≈ 10° between the fold mirrors allows the projection and 

imaging fields of view to align. The working distance from the sample is 

adjustable from 1 𝑡𝑜 20 𝑐𝑚 from the LP and can be adjusted to alter the 

system field-of-view.  
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4.3.2 Chenault and Chipman Model Derivation 

The basic mathematical form for this system has been derived from an existing 

model developed by Chenault and Chipman, who described the Mueller matrix 

representation of the rotating linear polarizer system, as outlined in the instrumentation 

section (Chenault and Chipman 1993). This model is useful because of the relative 

simplicity of the required instrumentation, the limited number of polarization states 

necessary to satisfy the sampling criteria, and the ability to linearize the model for rapid 

fitting. The basic Mueller matrix representation of the system in is expressed in EQ 4.6: 

 

 𝑆𝑜𝑢𝑡 = 𝜏𝑠𝑦𝑠𝑀𝑝𝑅𝑝(−(𝜃 ± 𝜑))𝑀𝑠𝑅𝑝((𝜃 ± 𝜑))𝑀𝑝𝑆𝑖𝑛 (4.6) 

 

𝑴𝒑 and 𝑹𝒑 represent the Mueller matrix and rotational matrix for a linear polarizer, 

and 𝑴𝒔 is the sample Mueller matrix. Appendix C presents an extended description of 

these Mueller matrices. Non-polarization dependent system efficiencies are indicated by 

𝝉𝒔𝒚𝒔, which is omitted from this point forward, since it only contributes to linear scaling of 

the final signal that is accounted for through calibration. The angle 𝜽 describes the 

orientation of the rotating polarizer in the system, and the sample orientation 𝝋 is the major 

axis of optical anisotropy in the sample (i.e., the orientation in which the reflected light 

intensity is maximized). This arrangement requires a minimum of eight polarizer 

orientations to adequately sample the signal, and the response is symmetrical over a period 

of [−90°, 90°]. Solving this system results in EQ 4.7: 

 

 𝐼(𝜃) =  𝑎0 + 𝑎2 cos(2(𝜃 ± 𝜑)) + 𝑎4 cos(4(𝜃 ± 𝜑)) (4.7) 

 

The coefficients 𝒂𝟎, 𝒂𝟐, and 𝒂𝟒 describe the amplitude of the signal response as a 

function of the polarizer angle. These are related to the Mueller matrix elements of the 

sample through the following equations: 
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 𝑎0 = (3𝑀11 + 𝑀33)/8 (4.8) 

 

 𝑎2 = 𝑀12/2 (4.9) 

 

 𝑎4 = (𝑀11 − 𝑀33)/8 (4.10) 

 

The first term, 𝒂𝟎, represents the mean value of the response, which is non-

polarization-dependent, while the 𝒂𝟐 and 𝒂𝟒 terms represent the polarization-dependent 

changes in intensity. Subsequently, the degree of optical anisotropy metric (𝑫𝑶𝑨) is 

defined as the ratio of the polarization-dependent terms to the non-polarization dependent 

reflectance: 

 

 𝐷𝑂𝐴 ≡ (𝑎2 + 𝑎4)/𝑎0 (4.11) 

 

4.3.3 Calibration and Processing 

The image data sets were processed using both custom and pre-built functions in 

Matlab. Each polarization image was first normalized to images of a Spectralon diffuse 

reference target (Labsphere, North Sutton NH) captured at each polarization state under 

planar illumination and a dark image with the illumination turned off. 

 

 
𝐼𝑟𝑒𝑓(𝑥, 𝑦, 𝜃, 𝑓𝑥) =

𝐼𝑠𝑚𝑝
𝐴𝐶 (𝑥, 𝑦, 𝜃, 𝑓𝑥) − 𝐼𝑑𝑎𝑟𝑘(𝑥, 𝑦, 𝜃)

𝐼𝑠𝑡𝑑
𝐷𝐶 (𝑥, 𝑦, 𝜃) − 𝐼𝑑𝑎𝑟𝑘(𝑥, 𝑦, 𝜃)

× 𝑟𝑒𝑓%      
(4.12) 

 

Above, 𝑰𝒔𝒎𝒑
𝑨𝑪  represents the demodulated spatial frequency image of the sample, 

𝑰𝒔𝒕𝒅
𝑫𝑪  indicates the planar reflectance image of the calibration standard, 𝑰𝒅𝒂𝒓𝒌 signifies a 

system image with no illumination, and 𝒓𝒆𝒇% is the known diffuse reflectance percentage 

of the calibration standard. This normalization was performed on a per-pixel basis at each 
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polarization angle. The 𝑰𝒔𝒕𝒅
𝑫𝑪  and 𝑰𝒅𝒂𝒓𝒌 images were also median-filtered with a 10 𝑥 10 

pixel window to reduce noise imparted by the reference measurements. 

This pre-processing routine is necessary to eliminate light pollution and inherent 

system polarization from the polarized light image set. During primary processing, each 

polarization image set for a single spatial frequency was fit on a per-pixel basis to a 

modified form of EQ 4.7. This modified form was used to allow linear fitting (Appendix 

D) and resulted in fitting speeds of over 106 pixels per second. The total processing 

duration, including loading images into memory and pre-processing steps, was merely two 

minutes for a single data set. 

4.4 MIE SOLUTION TO LIGHT SCATTERING FROM SINGLE CYLINDRICAL PARTICLES 

The model described in EQ 4.7 is valid for any sample with polarization-dependent 

optical anisotropy. This section considers a special case in which the optical anisotropy of 

the sample originates from infinitely long cylindrical scatterers, which are used here to 

represent collagen fibers (Hulst and Van De Hulst 1957, Bohren and Huffman 2008). The 

“infinitely long” assumption is valid when the cylinder length is large relative to its 

diameter; it is therefore appropriate for the tissue fibers being modelled. Figure 4.5 (a) 

indicates the geometry of this type of scattering model. Linearly polarized light is normally 

incident onto a cylinder with a fixed direction (𝝋) defined by the cylinder’s longitudinal 

axis. As the orientation of the incident linearly polarized light (𝜽) is rotated with respect to 

the longitude axis of the cylinder, the intensity of back-scattered light can be calculated 

using EQ 4.7, as demonstrated in an example intensity response in Figure 4.5 (b). The 

general form of the scattering matrix for light normally incident onto an infinitely long 

cylinder is indicated in EQ 4.13: 

 

 

𝑀𝑐𝑦𝑙 = (

𝑀11 𝑀12

𝑀12 𝑀11

0 0
0 0

0 0
0 0

𝑀33 𝑀34

−𝑀34 𝑀33

) 

(4.13) 
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Figure 4.5: (a) Geometry of light with polarization angle 𝜽 in the 𝑿𝒀-plane normally 

incident to a cylindrical scatterer with long-axis orientation 𝝋, also in the 

𝑿𝒀-plane. (b) Intensity response of back-scattered light as a function of the 

relative angle between the fiber and light polarization.  

𝑴𝟏𝟏, 𝑴𝟏𝟐, 𝑴𝟑𝟑, and 𝑴𝟑𝟒 are derived from the Mie scattering solution to the special 

case of light incident on an infinite cylindrical particle (Hulst and Van De Hulst 1957, 

Bohren and Huffman 2008). The null matrix elements and the matrix symmetry result from 

the assumption of a system geometry in which the incident light is normal relative to the 

long axis of the cylinders (i.e., the fibers are in the lateral imaging plane of the system). 

This geometry is appropriate for representing collagen fibers in membranous tissues such 

as heart valve leaflets, in which the long axis of the collagen fibers exist primarily in the 

same 2𝐷 plane being imaged. The 𝑴𝒄𝒚𝒍 elements are a result of the scattering amplitude 

components 𝑻𝟏 and 𝑻𝟐: 

 

 
𝑀11 =

1

2
(|𝑇1|2 + |𝑇2|2) 

(4.14) 

 

 
𝑀12 =

1

2
(|𝑇1|2 − |𝑇2|2) 

(4.15) 
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 𝑇33 = Re{𝑇1𝑇2
∗} (4.16) 

 

 𝑇34 = Im{𝑇1𝑇2
∗} (4.17) 

 

Notably, due to the configuration of the imaging system, the 𝑻𝟑𝟒 matrix element 

does not factor into the final detected signal. Finally, these scattering amplitude 

components can be determined from the Mie coefficients: 

 

 
𝑇1 =  𝑏0𝐼 + 2 ∑ 𝑏𝑛𝐼(𝑥, 𝑚) cos(𝑛𝛩)

∞

𝑛=1

 
(4.18) 

 

 
𝑇2 =  𝑎0𝐼𝐼 + 2 ∑ 𝑎𝑛𝐼𝐼(𝑥, 𝑚) cos(𝑛𝛩)

∞

𝑛=1

 
(4.19) 

 

The subscripts of these Mie coefficients 𝒂𝒏𝑰𝑰 and 𝒃𝒏𝑰 denote the special-case Mie 

solution for normally-incident light-scattering from infinite cylinders (Hulst and Van De 

Hulst 1957, Bohren and Huffman 2008). The inputs required to solve the cylindrical 

scattering Mueller matrix are identical to those in Chapter 2; they include the relative 

index of refraction of the particle and the surrounding media 𝒎 and the size parameter for 

the particle 𝒙, calculated here using the radius of the cylinder. In this case, however, the 

symmetry that was apparent in the sphere no longer holds. Rather than integrating over all 

azimuthal angles, only the azimuthal angles that represent the collection angle of the 

system, 𝝍, have been integrated. The method for determining the number of summations 

(𝒏𝒔𝒕𝒐𝒑) required for accurate approximation of the infinite summation is not identical to 

that described in Chapter 2; it is proportional to the size parameter of the simulated particle 

(Bohren and Huffman 2008). 
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4.5 EXTENSION TO FIBER POPULATIONS 

In any real physical sample, a fiber orientation distribution function (𝑶𝑫𝑭) 

describes the occurrence of fibers in a specific direction. The optical signal from fiber 

populations is therefore a weighted sum of the scattering contributions from each of the 

individual fibers in a specific orientation. Mathematically, this can be represented as 

summing the scattering function for a single fiber multiplied by the weights defined by the 

fiber 𝑶𝑫𝑭: 

 

 

𝐼𝑑𝑖𝑠𝑡(𝜃) =  ∫ 𝐼𝑐𝑦𝑙(𝜃)𝑂𝐷𝐹(𝜃)𝑑𝜃

𝜋

0

 

(4.20) 

 

Gaussian normal distributions are often used for describing sample populations, but 

they are not well-suited to fiber orientation distributions which are circular. Instead, the 

fiber 𝑶𝑫𝑭s are modelled and fitted using a mixed Cauchy probability density function 

(𝑷𝑫𝑭𝑴𝑪), which is described in EQ 4.21 (Courtney, Sacks et al. 2006).  

 

 

𝑃𝐷𝐹𝑀𝐶(𝜃) =  
𝑑

𝜋
+ (1 − 𝑑) [𝑐𝜋 [1 + (

𝜃 − 𝜑

𝑐
)

2

]]

−1

 

(4.21) 

 

In this function, c describes the shape of the distribution peak, 𝒅 is the ratio of 

random fibers to non-random fibers, and 𝝋 indicates the mean fiber angle. The c parameter 

is bound from [0, ∞], and 0 indicates no fiber variance. The 𝒅 parameter has bounds from 

[0, 1], and 1 indicates entirely random fibers. This modified Cauchy 𝑷𝑫𝑭 is used due to 

its robustness in fitting a broad range of 𝑶𝑫𝑭s found in real tissue and fiber samples. 

However, because the 𝒄 and 𝒅 parameters obfuscate physical meaning about the fiber 

alignment, the normalized orientation index (𝑵𝑶𝑰) is used instead to singularly describe 

the fiber variance: 



 87 

 

 
𝑁𝑂𝐼 = 100 ×

90° − Γ50%

90°
 

(4.22) 

 

Above, 𝚪𝟓𝟎%  represents the angular width of the distribution containing 50% of 

the total 𝑶𝑫𝑭 (or 𝑷𝑫𝑭). In a completely random distribution, 𝚪𝟓𝟎% = 90°, the NOI has a 

range of [0, 100]. Figure 4.6 illustrates the dependence of 𝑵𝑶𝑰 on a range of 

physiologically-relevant 𝒄 and 𝒅 parameters of the mixed Cauchy probability distribution. 

 

 

Figure 4.6: Map of 𝑵𝑶𝑰 as a function of 𝒄 and 𝒅 parameters in the mixed Cauchy 

distribution. In electron microscopy of fiber phantoms similar to tissue, the 

randomness parameter 𝒅 was typically over 0.4. 

Variations of this orientation distribution metric have been applied in several 

studies which demonstrate its utility for informing mechanical models that incorporate 

fiber structure (Courtney, Sacks et al. 2006, Gilbert, Wognum et al. 2008, Joyce, Liao et 

al. 2009, D’Amore, Stella et al. 2010, Amoroso, D’Amore et al. 2011, Carleton, D’Amore 

et al. 2015). Figure 4.7 presents an example simulation of the impact of fiber alignment, 

as characterized by NOI, on the polarized light signal. The polarization-dependent response 
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is maximized when the fibers are perfectly aligned in one direction (𝑵𝑶𝑰 =  100). 

However, as 𝑵𝑶𝑰 decreases, the polarization-dependent response is damped, as indicated 

by the decrease in the amplitude of the response curve. When the fibers are uniformly 

randomly aligned (𝑵𝑶𝑰 =  0), the polarization-dependent response disappears entirely. 

Subsequently, the extracted 𝑫𝑶𝑨 metric, which is a ratio of the polarization-dependent 

response to the non-polarization-dependent response, decreases as 𝑵𝑶𝑰 decreases. 

 

Figure 4.7: (a) Example of modified Cauchy fiber PDF as a function of normalized 

orientation index (𝑵𝑶𝑰); increasing 𝑵𝑶𝑰 corresponds with higher alignment 

of the fibers; (b) simulation of polarization-dependent scattering response to 

changes in fiber anisotropy, demonstrating the amplitude of the polarization-

dependent intensity decreasing as a function of decreasing 𝑵𝑶𝑰. 

4.6 ELUCIDATING THE RELATIONSHIP BETWEEN OPTICAL AND STRUCTURAL 

ANISOTROPY 

In the preceding sections, a mathematical model has been developed which explains 

optical anisotropy that is resultant from underlying structural anisotropy in tissue fibers. 

This section validates the model to demonstrate its predictive power and then uses the 

model to establish a relationship between structural and optical anisotropy for a broad range 

of tissue fiber sizes and relative refractive indices. The latter is crucial, since relying on 

local measures of fiber size and refractive would severely hinder the utility of the pSFDI 
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measurements. Therefore, the objective here is to demonstrate that the relationship between 

optical anisotropy (𝑫𝑶𝑨) and structural anisotropy (𝑵𝑶𝑰) is relatively stable for tissues, 

such that if general (rather than precise) a priori sizes and refractive properties of the fibers 

are known, the model remains effective.  

4.6.1 Methods 

4.6.1.1 Electrospun Fiber Phantoms 

To validate our model experimentally, electrospun fiber phantoms that varied in 

degree of fiber alignment were fabricated using a custom-made electrospinning mandrel 

(Appendix E) (Allen, Barone et al. 2017). The electrospinning process was utilized 

previously to construct tissue scaffolds with a controllable degree of microfiber alignment, 

mimicking tissue microstructure (Doshi and Reneker 1993, Deitzel, Kleinmeyer et al. 

2001, Courtney, Sacks et al. 2006, Allen, Barone et al. 2017). To create these phantoms, a 

10% [𝑤𝑡/𝑣𝑜𝑙]  solution of polycaprolactone was dissolved in hexafluoroisopropanol. This 

solution was ejected from a needle charged to 5 𝑘𝑉 onto a grounded, rotating aluminum 

mandrel. The working distance from the needle to the mandrel was 11 𝑐𝑚. Increasing the 

mandrel rotational velocity (0 − 2500 𝑅𝑃𝑀) resulted in increased fiber alignment. Six 

phantoms with a range of fiber alignments were collected by varying the rotational velocity 

of the mandrel. The samples were cut into squares approximately 1 𝑐𝑚2 in size, bathed in 

dilutions of ethanol and distilled water to diminish hydrophobicity, and then imaged with 

pSFDI in a pure distilled water bath. After pSFDI imaging, the same samples were dried 

and sputter-coated with 15 𝑛𝑚 of platinum/palladium nanoparticles. The samples were 

each imaged at nine locations evenly spaced across the entire sample surface at 1000𝑋 

magnification with a scanning electron microscope (Super40-SEM, Zeiss, Oberkochen 

Germany). The fiber orientations in the SEM images were analyzed and averaged across 

each sample using a custom image-processing routine based on a Fourier domain fiber 

orientation analysis technique developed by Mega et al. (Appendix F) (Mega, Robitaille 

et al. 2012). The analysis indicated a range of 𝑵𝑶𝑰 similar to that found in tissues 
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(10 𝑡𝑜  50) was achieved by changing the rotational speed of the collector (Figure 4.8). 

The distribution of fiber diameters was determined from the same image set, using the 

DiameterJ plugin for ImageJ (Hotaling, Bharti et al. 2015).   

 

 

Figure 4.8: (a-f) SEM images of electrospun fibers collected at different rotational 

speeds; (g) extracted orientation distribution functions (𝑶𝑫𝑭) at each 

collection speed along with calculated normalized orientation index (𝑵𝑶𝑰); 

(𝒉) distributions of fiber radii for each sample. 
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4.6.1.2 Simulations 

Two separate simulations have been performed: The first aimed to confirm the 

accuracy of the model, and the second intended to examine the relationship between fiber 

orientation distributions and optical anisotropy measured with pSFDI. In the first 

simulation, the model was used to predict 𝑫𝑶𝑨 for a set of electrospun fiber samples. The 

known fiber sizes and orientation distribution functions for each polycaprolactone fiber 

phantom determined from SEM were used as inputs into the simulation, along with the 

known refractive indices for polycaprolactone and water at a wavelength of 𝝀 =  529 𝑛𝑚 

(𝒏𝒇𝒊𝒃   =  1.45 − 1.49, 𝒏 𝒃𝒈𝒅 =  1.33) (Mark 2007). In the second simulation, expected 

𝑫𝑶𝑨 from cylindrical fibers was calculated across a large range of physiologically-

relevant size parameters (𝒙) and relative refractive indices (𝒎). The fiber sizes simulated 

were based on the expected range of collagen fiber radii discovered in recent studies of 

heart valve tissue (Ayoub, Tsai et al. 2018). The relative refractive index included a range 

relevant to hydrated collagen in interstitial fluid (𝒏𝒇𝒊𝒃   =  1.38 − 1.42, 𝒏𝒃𝒈𝒅 =  1.33 −

1.35) (Wang, Milner et al. 1996, Bashkatov, Genina et al. 2000, Jacques 2013). A 

convolution of the results was then performed with the fiber 𝑷𝑫𝑭 discussed in the previous 

section. The 𝑷𝑫𝑭 parameter ranges were based on those relevant to biological tissue as 

well as those determined for the electrospun fiber phantoms (Ayoub, Tsai et al. 2018). 

Table 4.1 indicates the parameter range for the second simulation. 

Table 4.1: Physiological polarized light-scattering model simulation parameter space. 

Parameter Minimum Maximum #  Spacing 

Fiber radii (rcyl) 50 μm 1000 μm 1173 Logarithmic 

Relative Refractive Index (m) 1.005 1.12 21 Linear 

Distribution parameter (c) 10-2 100.5 25 Logarithmic 

Randomness parameter (d) 0.4 1 25 Linear 

Normalized Orientation Index (NOI) 0 100 625 N/A 
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4.6.2 Results 

4.6.2.1 Model Validation 

Figure 4.9 (a-f) illustrates the cropped raw images of the electrospun fiber samples; 

the samples correspond with the same labels in Figure 4.8(a-f). A 200𝑥200 pixel region 

of interest, indicated by the red boxes, was utilized to compute the mean and variance of 

measured 𝑫𝑶𝑨 values for each sample. 

 

 

Figure 4.9: Raw images of the six fiber samples, with colors and letters corresponding 

with the same samples in Figure 4.8. The red box indicates the region of 

interest over which pSFDI measurements were averaged. 

The 𝑫𝑶𝑨 measured for each sample are compared with the corresponding 𝑫𝑶𝑨 

predicted by our model in Figure 4.10. Error bars in the 𝑦-axis indicate the standard 

deviations of measured 𝑫𝑶𝑨 across the region of interest for each sample depicted in 
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Figure 4.9, and error bars in the 𝑥-axis represent the standard deviations of the predicted 

𝑫𝑶𝑨 for each sample based on the range of fiber diameters used for input into the model 

(Figure 4.8). 

 

 

Figure 4.10: Measured 𝑫𝑶𝑨 from pSFDI data relative to modeled 𝑫𝑶𝑨 for the same 

samples, using known fiber properties as model inputs. Error bars illustrate 

standard deviations for the model output for the range of fiber properties 

provided for the input (𝑥-axis) and standard deviation of the measured data 

within the image region of interest (𝑦-axis). 

The modeled values demonstrated a significantly larger variation in the predicted 

𝑫𝑶𝑨 relative to the measured 𝑫𝑶𝑨, which was primarily a result of the oscillatory nature 

of scattering when the size of the scattering particle is close to the wavelength of incident 

light. However, the measurements and model suggested overall linear agreement: 

Experimental measurements of 𝑫𝑶𝑨 were all within 16% of the model-predicted values 

and were all contained within one standard deviation of the model’s predicted values. 
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4.6.2.2 Simulated relationship between DOA and NOI 

The simulation of a broad range of fiber properties and distributions demonstrated 

that 𝑫𝑶𝑨 has a strong linear dependence upon 𝑵𝑶𝑰. Figure 4.11 illustrates the simulated 

𝑫𝑶𝑨 as a function of 𝑵𝑶𝑰 for the range of fiber parameters in Table 1. The shaded area 

represents the standard deviation around mean 𝑫𝑶𝑨 at each evaluated 𝑵𝑶𝑰, which 

describes the variation of the model due to the range of fiber sizes and relative refractive 

indices within the model space. A clear linear trend (𝑫𝑶𝑨 =  𝑨 × 𝑵𝑶𝑰) characterizes the 

model space (𝒓𝟐  =  0.95). The linear model fit coefficient 𝑨 was 6.66𝑥10−3. This fit 

model was subsequently inverted to establish a linear conversion of relative 𝑫𝑶𝑨 from the 

𝒑𝑺𝑭𝑫𝑰 data to absolute 𝑵𝑶𝑰.  

 

 

Figure 4.11: Simulated 𝑫𝑶𝑨 as a function of 𝑵𝑶𝑰, for a range of physiologically-

relevant fiber distributions, sizes, and relative refractive indices. The shaded 

region is the standard deviation of simulated 𝑫𝑶𝑨 at each evaluated 𝑵𝑶𝑰 

value. The linear fit was inverted to estimate 𝑵𝑶𝑰 as a function of 𝑫𝑶𝑨. 
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4.7 DISCUSSION  

This section presents an extended analysis of polarized light reflectance from 

cylindrical scatterers that allows extraction of absolute fiber alignment, as quantified by 

the normalized orientation index (𝑵𝑶𝑰). The measurements of electrospun fiber samples 

with known fiber properties validated the model performance, with good agreement 

between modeled and measured optical anisotropy for the system. Additionally, the clear 

linear relationship between optical anisotropy (𝑫𝑶𝑨) and structural anisotropy (𝑵𝑶𝑰) 

allowed the extraction of absolute alignment information from the polarized light 

measurements. This relationship is valid for a substantial range of fiber sizes (𝒓𝑐𝑦𝑙  =  50 −

1000𝑛𝑚) and relative refractive indices (𝒎𝒓𝒆𝒍  =  1.02 –  1.12) that are relevant to both 

tissue and biomimetic tissue constructs. Therefore, the limited number of assumptions and 

only general a priori knowledge about the fibers in the sample allows fiber alignment 

between samples to be compared more accurately.  

An important finding of this study relates to the types of 𝑷𝑫𝑭s used to model the 

fiber populations for the simulation and to fit to the fiber populations from SEM. This has 

been iterated through several different types of fiber distributions while developing our 

computational model space, primarily based on the most appropriate fits of real fiber 

distributions characterized with SEM for the electrospun fiber samples and past 

experiments. Two circular distributions (wrapped Cauchy and von Mises) were initial 

candidates, but they did not fit the 𝑶𝑫𝑭s from the 𝑺𝑬𝑴 data adequately. Additionally, the 

𝒅 term, which quantifies the proportion of randomly oriented fibers in the modified Cauchy 

distribution, was demonstrated to be pivotal in the computed 𝑫𝑶𝑨 metric, and therefore in 

the relationship between the pSFDI data and extracted 𝑵𝑶𝑰. This 𝒅 term is crucial for 

model performance because it accounted for the non-polarization-dependent scattering 

from both randomly distributed cylindrical scatterers and non-cylindrical scatterers. The n 

normalization of the measurements is a common issue in extracting absolute measures of 

fiber orientation. The non-polarization-dependent reflectance component arises both from 

cylindrical and non-cylindrical scattering, and the contributions from each are nearly 
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impossible to fully decouple. Combining these terms eliminates the need to distinguish 

between fiber alignment and fiber volume fraction for a specific sample area when 

normalizing the data in the 𝑫𝑶𝑨 metric.  

One deficiency of the light scattering model is that it does not account for the 

polarization response resultant from multiple-scattering from cylinders; this is a potential 

source of error between the model and experimental data. However, co-polarized imaging 

and sub-diffuse spatial frequency domain imaging both limit the number of scattering 

interactions that the system detects, such that the signal response is primarily representative 

of light undergoing few scattering events (Jacques, Roman et al. 2000, Wiest, Bodenschatz 

et al. 2015). In addition to constraining the measurements to primarily back-scattering 

events by using high spatial frequencies, which aligns with the assumptions of the 

scattering model, the gating of reflectance to a small number of ballistic scattering events 

results in reduced sampling volumes, which further refines the lateral and axial sampling 

volumes.  
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Chapter 5: Analysis of tissue fiber structure in heart valve tissues 

5.1 MOTIVATION: QUANTIFICATION OF TISSUE STRUCTURE IN HEART VALVE TISSUES 

Heart valve disease is the one of the most common heart diseases in patients from 

developed countries, with some form affecting more than 12% of the elderly population 

(Nkomo, Gardin et al. 2006, Iung and Vahanian 2011, Osnabrugge, Mylotte et al. 2013).  

Over 90,000 moderate to highly invasive valve replacement surgeries are performed 

annually in the United States alone, and this number is expected to expand alongside 

increased aging in the population (Clark, Duhay et al. 2012). Although artificial valves can 

be either mechanical or bio-prosthetic, over 80% of contemporary procedures now use bio-

prosthetic heart valves (BHVs) derived from animal valves or pericardium because of their 

superior functional performance (Pibarot and Dumesnil 2009). However, these valves often 

suffer from premature degeneration and functional failure, thereby necessitating multiple 

subsequent surgeries to replace valves. This is particularly concerning for patients under 

40 who live many decades after their initial replacement but are faced with a 10-year valve 

failure incidence of 20% to 30% (Pibarot and Dumesnil 2009, Singhal, Luk et al. 2013).  

Among older patients, surgical intervention is inherently extremely hazardous due to these 

patients’ fragile state of health and the inherent physical strain of the surgery. Transcatheter 

valve placement as an alternative to surgery is currently reserved exclusively for cases of 

heart valve disease in which invasive surgeries are impossible, and valve integrity after 

packing into a small catheter lumen are not yet well known (Smith, Leon et al. 2011). There 

is an immediate necessity for BHVs which are longer-lasting and exhibit more robust in 

vivo functional performance. 

Several mechanisms can contribute to failure in the valves. Inflammatory and 

immune responses are generally short-term considerations that can result in scar formation 

and structural deterioration. These rejections typically occur in the first several weeks to 

months of implantation, with a typical incidence of 1 to 6% (Edmunds, Clark et al. 1996). 

Long-term failure of BHVs has traditionally been attributed to two primary causes, namely 

structural degeneration of collagen fibers and valve-stiffening due to calcification (Schoen, 
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Levy et al. 1985, Vyavahare, Ogle et al. 1999, Sacks, Schoen et al. 2009). Calcification 

was the primary cause of BHV failure until demineralization treatments were incorporated 

directly into the valves. Some degree of calcification still occurs, but at a much lower rate, 

similarly to inflammatory and immune responses. In contrast, some studies suggest that the 

structural degeneration of collagen fibers is the primary mechanism behind long-term valve 

failure, particularly since inflammation, rejection, and calcification can, in many instances, 

be mitigated (Vyavahare, Hirsch et al. 1997, Sacks and Schoen 2002, Schoen and Levy 

2005).   

Microstructural degeneration is a constant threat to the valve due to the physical 

stresses inherent to its normative function (Lee and Sacks 2016). The valve is alternatively 

pressurized while closed to restrict the regurgitation (backflow) of blood within the heart 

chambers; it is then collapsed against the wall to permit unidirectional blood flow through 

the heart (Figure 1.1). Stenosis occurs due to functional failure of the valve when the valve 

can only partially open or close; this can ultimately result in arrhythmia, heart failure, and 

death. 

 

 

Figure 5.1: Healthy and diseased aortic valves, indicating functional degradation that 

results from valve stenosis (HealthJade 2018). 

Tears around the valve cusp which anchor the leaflet to the stent wall in BHVs can 

occur after approximately five years due to the high stress levels in these areas (Walley, 



 99 

Keon et al. 1992, Vesely 2003, Singhal, Luk et al. 2013). After seven to eight years of 

implantation, changes in the tissue material structure and composition can precipitate 

functional failure. This can result from fraying of collagen fibers over time, macroscopic 

tears in the valve, and regional changes in the microstructure due to mechanical 

conditioning of the valve (Singhal, Luk et al. 2013). In any case, the overall failure of the 

valve results from the degradation of the collagen structure in BHVs, which are often 

homogeneous and regionally constant in collagen structure relative to the native valve, 

which has a well-organized, heterogeneous, and variably anisotropic collagen fiber 

structure. Since the prosthetic valves lack this organization, their lifetime expectancy is 

highly variable, and current valve manufacturing methods do not permit adequate 

screening for precursors of structural degeneration. 

Combating structural failure therefore requires two efforts, including improving the 

BHV microstructure and assessing BHV tissue for long-term functional integrity prior to 

implantation. Pre-conditioning of BHV materials through controlled loading cycles or 

biochemical treatments are common procedures for improving BHV robustness, but it is 

difficult to determine whether areas of structural weakness remain (Billiar and Sacks 2000, 

Billiar and Sacks 2000, Stella, Liao et al. 2007). To determine the probability of valve 

failure, individual valve leaflets or entire pericardial sheets are often subjected to 

mechanical failure testing analyses. These methods, however, are either simplified in such 

a manner that neglects the effect of tissue heterogeneity and variable anisotropy or are so 

exhaustive that they require weeks to complete. Additionally, these techniques result in the 

destruction of the valve material, which means that they can only be used as a random 

control for batches of valves and cannot be performed on valves which will be implanted 

(Sacks 2000, Stella and Sacks 2007). Therefore, the macroscopic heterogeneity of 

microscopic fiber structure in both native and bioprosthetic heart valves is poorly 

understood. Consequently, bioprosthetic valves with structural imperfections that will 

produce functional failure are often implanted, which leads to highly variable valve 

performance and premature valve failure. The most immediately beneficial and achievable 

solution to the problem of variable performance in BHVs is a tool for rapidly and non-
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destructively assessing their structural organization. Additionally, this organizational 

information can aid in the development of computational models which predict heart valve 

function; once validated experimentally, these can be used as in silico long-term fatigue 

analysis of valve performance (Zhang and Sacks 2017).  

Several imaging modalities have been employed as non-contact assessment 

techniques to map collagen fiber structure in BHVs, but these techniques are affected by 

several disadvantages which limit their utility. Diffusion tensor magnetic resonance 

imaging (dt-MRI) provides 3D macroscopic geometry and microstructural sensitivity but 

has relatively poor resolution (> 100 𝜇𝑚), and extremely lengthy imaging times of over 

10 hours precludes dynamic imaging (Teh, McClymont et al. 2016). Micro-computed 

tomography (μCT) has provided improved resolution in dynamic 3D surface geometry of 

heart valve tissues relative to dt-MRI and traditional CT methods but does not provide 

insights into the collagen microstructure (Badea, Fubara et al. 2005).  

Optical techniques improve image resolution and sensitivity to fiber alignment 

immensely, rather than merely enhancing direction. However, many current imaging 

systems are not well-suited to the demands of non-destructive, rapid imaging of multi-

layered tissue over tissue-level fields of view. Small angle light scattering (SALS) requires 

thin, optically-clear samples and must use either a fixation treatment, physical sectioning, 

or a combination of the two to image the BHV tissue (Sacks, Smith et al. 1997). These 

destructive preparations require the sample to be discarded after assessment. Reflectance 

techniques, such as second harmonic generation (SHG) and optical coherence tomography 

(OCT), can produce striking images of individual fibers distributed within the tissue; 

however, although these techniques are less destructive and have high resolution, they have  

minimal fields of view and are not appropriate for imaging appreciable portions of the 

entire BHV (De Boer, Milner et al. 1997, Adams, Roberts et al. 2002, Brown, McKee et 

al. 2003). Additionally, all of the discussed techniques are point-based, requiring lengthy 

scan times to acquire full image sets; this severely restricts their capability for dynamic 

functional imaging of large-scale 2𝐷 and 3𝐷 tissue geometries.   
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This chapter aims to demonstrate the use of the pSFDI system described in 

Chapter 4 to address the current need for non-destructive, rapid, wide-field mapping of 

fiber structure in multi-layered tissues. First, it demonstrates pSFDI equivalency to static 

SALS imaging of planar heart valve leaflets, along with the ability to detect microstructural 

differences in the various leaflet layers. Second, the increased imaging rate of the system 

is used to detect fiber kinematics with pSFDI during mechanical deformation of ovine 

pericardium. Finally, this chapter demonstrates 3D-pSFDI as a proof-of-concept for 

imaging leaflet microstructure in an intact BHV.  

5.2 FIBER MAPPING IN STATIC HEART VALVE LEAFLETS 

5.2.1 Objectives 

Collagen fiber structure in leaflets of the aortic valve has been well-studied. In 

addition to regional variations along the surface of the leaflets, there are multiple layers 

that have been proven to have distinct microstructure and mechanical properties (Stella and 

Sacks 2007). The fibrosa is an outer layer which is responsible for most of the structural 

integrity of the valve; a substantial number of regularly-aligned collagen fibers are oriented 

orthotropically along the circumferential direction of the valve (Figure 5.2). The second 

outer layer is the ventricularis, which also contains a significant amount of collagen but 

has less overall organization aside from transversely isotropic fiber alignment. The 

spongiosa is often described as a transition region between the two outer layers and 

primarily contains water mediated by glycosaminoglycans (GAGs). It has been 

demonstrated that the GAGs exert limited impact on the functional mechanical behavior 

of heart valve leaflets (Eckert, Fan et al. 2013).  
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Figure 5.2: Orientation, morphology, and layers of the native aortic valve leaflet. 

The existing SALS technique, which is transmissive, cannot resolve the differences 

in terms of fiber structure in these layers. Additionally, the sampling volumes of traditional 

polarization imaging systems are typically greater than the entire leaflet thickness 

(~400 𝑡𝑜 800 𝜇𝑚) This study was intended to demonstrate the similarity in overall fiber 

orientation measured using SALS and pSFDI, and the differences in fiber alignment 

revealed by the volumetric sampling control achieved using the pSFDI technique. 

5.2.2 Methods 

A fresh ovine aortic valve leaflet was excised and fixed with glutaraldehyde for 24 

hours while pressed between glass slides. The samples were then washed, placed in a bath 

of phosphate buffered saline, and imaged with pSFDI on both sides; this allowed a 

comparison of the two outermost layers of the leaflet, namely the fibrosa and the 

ventricularis. The same sample was subsequently bathed in dilutions of glycerol and water 

to optically clear the sample and then mounted again between glass slides prior to imaging 

with SALS (Sacks, Smith et al. 1997). The primary fiber orientation angle (𝝋) and 

normalized orientation index (𝑵𝑶𝑰) were extracted from the SALS data across the sample 

in 250 𝜇𝑚 steps. The images from pSFDI and SALS were all co-registered by binarizing 

the raw intensity images for each data set and using the Matlab function imregtform, which 
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limited the transformation to rotation and translation. The SALS images were additionally 

up-sampled to match the pSFDI data in pixel resolution; however, this did not result in any 

genuine increase in resolution. Any rotational transformations applied during registration 

were subsequently accounted for in the final fiber orientation maps.   

Additionally, the glutaraldehyde fixation protocol was not necessary for either 

imaging technique but was instead performed to ensure the repeatability of fiber alignment 

measurements between the two techniques. Although this treatment may alter the native 

microstructure, since the collagen fibers are cross-linked, the objective of this experiment 

was to allow a comparison between the two imaging techniques; therefore, it was necessary 

that the microstructure was fixed since the sample was transferred between systems. The 

optical clearing with glycerol, however, was required for the transmissive SALS imaging 

technique. 

5.2.3 Results 

The different configurations of pSFDI and SALS systems are visible in Figure 

5.3:a-c. The raw intensity images of the ovine aortic valve leaflet samples matched well 

among the pSFDI and SALS imaging techniques; this demonstrates effective registration 

of morphological features between the three data sets (Figure 5.3:d-f). For example, the 

tendon-like tertiary bundles of fibers in the commissure regions (top right and left corners) 

were visible in all three sets of images, although they were more readily discernable in the 

pSFDI images. The higher sampling resolution of the pSFDI images (19 𝜇𝑚) illustrated 

these morphological structures more clearly than the accompanying SALS images 

(250 𝜇𝑚). Fiber orientation (Figure 5.3:g-i) also matched properly between all image sets 

and aligned with previous studies concerning heart valve fiber orientation (Sacks, Smith et 

al. 1997, Yang, Lesicko et al. 2015).  
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Figure 5.3: Ovine aortic valve leaflet imaging results: (a-c) Imaging geometry for the results in each column; (d-f) raw-

intensity images for each technique; (g-i) extracted fiber orientation, demonstrating proper agreement between 

each technique; (j-l) extracted fiber alignment from each technique.  
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While the fiber orientations were primarily the same, suggesting overall 

consistency in fiber directionality through the thickness of the sample, the 𝑵𝑶𝑰 maps 

indicated markedly different alignment on opposite sides of the sample. The SALS data 

appeared to be approximately a summation of the results from both pSFDI data sets. This 

was expected, since SALS is a transmissive technique which is sensitive to all layers 

through the depth of the tissue, while the pSFDI technique exhibited sensitivity to only the 

outermost layers on each side.  

Overall, pSFDI demonstrated sensitivity to differences in fiber alignment between 

the leaflet layers, while the SALS system could not. Although similar features were evident 

in both the pSFDI alignment map on the ventricularis side (Figure 5.3:k) and the SALS 

transmission alignment map (Figure  5.3:l), the pSFDI alignment map displayed a marked 

increase in 𝑵𝑶𝑰 in the fibrosa. 

5.2.4 Discussion 

This research has demonstrated the ability to capture high-resolution regional 

heterogeneity in heart valve leaflet tissue structure without any destructive sample 

preparation. There were clear differences in the pSFDI images of opposite sides of the 

leaflet, indicating the ability to distinguish distinct layers of fiber structure in aortic heart 

valve leaflets which could not be captured using transmission-based techniques or 

techniques that have extended depth sampling equivalent to the sample thickness. 

Differences in fiber alignment on the fibrosa and ventricularis sides of the leaflet tissue 

were the most apparent, which confirmed the increased presence of highly-aligned collagen 

fibers in the fibrosa. This improved pSFDI technique provides an effective means for rapid, 

reflectance-based mapping of collagen fiber alignment, with an adjustable imaging depth 
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for investigating multi-layered tissues without the need for chemical treatment or physical 

sectioning.  

The pSFDI-derived 𝑵𝑶𝑰 values were determined to be higher than the 𝑵𝑶𝑰 values 

extracted with SALS in the ovine aortic valve leaflet, which was anticipated. This was 

because the SALS-derived 𝑵𝑶𝑰 values represented a summation of the different fiber 

layers throughout the thickness of the sample. This effectively averages the orientation 

metric across different populations of fibers with varying degrees of alignment and 

differing primary alignment directions, yielding an overall decrease in measured 

alignment. The pSFDI values are limited to superficial layers, which resulted in measured 

fiber alignments being confined to fiber populations representing the various layers of the 

sample. The experimental results demonstrated this, measuring markedly higher fiber 

alignment on the fibrosa side of the leaflet. 

5.3 DYNAMIC FIBER MAPPING DURING BIAXIAL DEFORMATION 

5.3.1 OBJECTIVES 

In addition to the improved spatial resolution and volumetric sampling capabilities 

of pSFDI, it also achieves a significantly higher imaging rate, requiring merely five 

seconds to capture a full data set for a single spatial frequency. This relatively fast imaging 

speed, along with the reflective imaging geometry, renders pSFDI readily capable of 

pseudo-dynamic imaging of fiber kinematics during biaxial planar deformation. The 

mechanical properties of several planar samples utilized to construct BHVs, including 

native heart valve leaflets, pericardium, and synthetic electrospun fiber mats, have been 

previously tested using planar biaxial deformation; however, typically, the fiber alignment 

in the entire sample is only measured before and after mechanical testing is concluded 

(Billiar and Sacks 2000, Billiar and Sacks 2000, Sacks 2000, Sun, Sacks et al. 2003, Stella, 
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Liao et al. 2007, Stella and Sacks 2007, Joyce, Liao et al. 2009). Fiduciary markers can be 

used to detect local strain fields, but the fiber kinematics may not be directly sampled.  

Some studies have used SALS to image the full sample suffering from potential stress-

relaxation and mechanical creep during the extensive imaging times (Billiar and Sacks 

1997). Additionally, the transmissive imaging geometry of SALS renders strain-control 

substantially more difficult, since fiduciary markers are present and block fiber content and 

limit imaging field, and the glycerol clearing necessarily alters the physical properties of 

the sample. pSFDI offers a powerful means for studying fiber kinematics directly during 

mechanical tissues deformation.  

5.3.2 Methods 

A 4 𝑐𝑚2 sample of pre-sorted ovine pericardium was mounted onto a calibrated 

biaxial stretching device (Billiar and Sacks 2000) and subjected to stress-controlled 

equibiaxial loading cycles. The sample was oriented so that fibers were aligned primarily 

in the 𝑦 −axis of the imaging system. The testing protocol consisted of taring the sample 

to a 1 𝑔 load in both axes, followed by 15 preconditioning cycles with a 20 second half-

cycle duration and a 225 𝑘𝑃𝑎 maximum load in each axis. The sample was then returned 

to tare loads of 1 𝑔 and was subsequently imaged with pSFDI in 30 steps from the tare 

load to the maximum 225 𝑘𝑃𝑎 load in each axis. A spatial frequency of 𝑓𝑥 = 0.5 𝑚𝑚−1 

was used for imaging.  

5.3.3 Results 

The tare load state, 15% load state, and maximum load state of the pericardial 

material are illustrated in Figure 5.4. Both the fiber orientation and fiber alignment maps 

demonstrated local changes in fiber alignment across the sample surface.  



 108 

 

Figure 5.4: Observation of fiber kinematics using pSFDI during stress-controlled 

biaxial deformation of pericardium; this highlights the ability to infer local 

differences in fiber recruitment and collagen uncrimping. 
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To highlight this regional heterogeneity, two ROI with similar initial orientation 

and alignment were selected for comparison. In the first ROI (maroon inset, square 

marker), the orientation was relatively constant during the loading cycle (∆𝝋̅ = 3°), while 

the mean 𝑵𝑶𝑰 increased significantly (∆𝑵𝑶𝑰̅̅ ̅̅ ̅̅ = 25). In the second ROI (orange inset, 

circular marker), the sample displayed substantial initial variation in fiber orientation, and 

the average orientation angle changed over the course of loading by over 9°. Conversely, 

the mean 𝑵𝑶𝑰 only increased modestly for the second area (∆𝑵𝑶𝑰̅̅ ̅̅ ̅̅ = 10). Additionally, 

the rate of change in terms of both orientation and alignment in the regions differed. In the 

first ROI, the maximum orientation change was achieved at 25% of the maximum stress 

load, while the second ROI continued to increase until about 90% of the maximum stress 

load. Similarly, the rate of load-dependent change of 𝑵𝑶𝑰 differed for both samples. In 

this case, the maximum 𝑵𝑶𝑰 was achieved for the second ROI more rapidly, at about 25% 

of the maximum load, relative to 40% for the first ROI.   

5.3.4 Discussion 

The local fiber kinematics quantified with pSFDI in the pericardium samples may 

be used to infer two distinct responses of the tissue to loading. The first is fiber recruitment, 

in which the fibers are re-aligned with the major axis of stress or strain. The second ROI 

appears to highlight this phenomenon: The large variance in initial fiber alignment 

decreases as a function of increased load state, and the mean fiber alignment changes 

gradually throughout the loading protocol. Additionally, this region does not experience a 

significant increase in fiber alignment, which is consistent with fibers being re-aligned 

from their preferred state.   

The second inferred kinematic phenomena is fiber-uncramping, in which collagen 

fibers are straightened from their crimped, unloaded state as a response to loads. This 
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allows an initial elastic response of tissues, primarily dictated by elastin stiffness that holds 

the crimp’s shape. After the collagen fibers are straightened, the tissues become 

significantly stiffer, since the elastic properties are dictated primarily by the relatively stiff 

collagen fibers. This appears to occur in the first ROI, in which the fibers are pre-aligned 

in the direction of local stress. Limited changes in fiber direction in this region, coupled 

with drastic changes in alignment, suggest that sensitivity to microscale changes in fiber 

crimping is induced by the loading. 

5.4 FUTURE WORK: 3D-FIBER MAPPING 

5.4.1 Objectives 

A final potential application of pSFDI entrails simultaneous extraction of fiber 

microstructure and surface topography. Previous studies have reported macroscopic BHV 

geometry during in cyclical flow loop testing to understand the dynamic behavior of the 

leaflets’ geometry. However, in these studies, the fiber alignment data can only be 

measured before the leaflets are mounted onto the BHV scaffold or after they have been 

removed from the scaffold after testing. These changes in the deformation of the leaflets 

can result in changes in the microscopic structure across the entirety of the leaflet; 

therefore, imaging the intact BHV is preferred to directly couple fiber microstructure to 

macroscopic geometry and function.  

As discussed in Chapter 2, if an atypical orientation of the spatial frequency 

patterns is used, then the resulting phase shift will directly correspond with the height of 

the sample surface. However, this compromises the sectioning capability, since the change 

in phase shift affects the measurement of modulated reflectance. However, in this case, two 

sets of measurements can still be performed in rapid succession; a first set may use the 

typical orientation to extract measures of fiber microstructure with volumetric sampling, 
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and a second set may apply the atypical orientation. Measuring topography requires only 

three additional images to be collected and does not require measurement at every 

polarization state, since the data sets are already registered. By combining these two data 

sets, the fiber alignment data can be mapped to 3D surface profiles describing the BHV 

geometry.  

5.4.2 Methods 

Using the atypical configuration of the spatial frequency patterns (Figure 2.7), a 

phase- Using the atypical configuration of the spatial frequency patterns (Figure 2.7), a 

phase-shifting profilometry technique with direct height-mapping described by Zhou and 

Su was used to reconstruct surface topography (Zhou and Su 1994). The absolute phase of 

the sample and a reference plane of known relative height were extracted using EQ 2.29 

(Figure 5.5). The relative change in phase due to changes in sample height relative to the 

reference plane was determined by subtracting the absolute phase of the sample from the 

absolute phase of the reference plane. The relative phase for two additional planes with 

known heights relative to the original reference plane was also extracted. The coefficients 

for a proportional relationship between the relative phase and relative height were then 

established using the relative phase differences of the two reference planes with known 

relative height difference; this could then be determined for every pixel location on the 

image: 

 

 1

ℎ(𝑥, 𝑦)
= 𝑎(𝑥, 𝑦) + 𝑏(𝑥, 𝑦)

1

𝜙(𝑥, 𝑦)
 

(5.1) 
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The coefficients, 𝒂(𝒙, 𝒚) and 𝒃(𝒙, 𝒚), describe the pixel-specific relationship 

between height 𝒉(𝒙, 𝒚) and phase 𝝓(𝒙, 𝒚). Subsequently, the height map for the sample 

was extracted by plugging the phase values of each location into EQ 5.1. The 3D-printed 

mockup-BHV was used for determining height resolution and demonstrated that a modest 

spatial frequency of 0.3 𝑚𝑚−1 resulted in a height resolution of < 100 𝜇𝑚. 

 

 

Figure 5.5: Demonstration of 3D-profilometry workflow using a 3D heart-valve 

mockup, achieving a height resolution of greater than 100 𝜇𝑚. 

A surgical-grade mitral BHV (Hancock II T510, size 29 𝑚𝑚, Medtronic) was 

utilized for imaging. Immediately after pSFDI imaging and phase-extraction, the 
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calibration planes were measured with known relative distances from the sample to extract 

the 𝒂(𝒙, 𝒚) and 𝒃(𝒙, 𝒚) coefficients for direct height mapping. 

5.4.3 Results 

Figure 5.6 depicts the raw BHV image from the system perspective and the 

recovered 3D topology maps. The surface profile of the sample height was rendered as a 

3D surface with a Gaussian filter applied to reduce noise. Surface shading described the 

recovered 𝑵𝑶𝑰.  

 

Figure 5.6: Extracted pSFDI and phase profilometry data, demonstrating the capability 

to extract fiber microstructure maps from an intact 3D-tissue geometry. 

Shadow artifacts suggest that multiple angles of acquisition may be 

necessary for samples with rugged geometry. 



 114 

Fiber orientation was represented by quiver plots overlaid at sparse points across 

the sample surface. The fiber alignment was high in the belly region of the valve leaflets, 

as expected, and the fibers were aligned appropriately relative to expected physiological 

orientations. In some areas of extreme height differences, shadows restricted the ability to 

extract accurate phase changes. An example of a shadow artifact that was manually 

removed is depicted in the sample. These artifacts were removed manually where possible. 

5.4.4 Discussion 

Although the preliminary results were promising, several potential improvements 

could have been implemented. Firstly, areas of shadowing occurred due to the surface 

geometry that resulted in difficulties in the recovering phase, which subsequently distorted 

the heights recovered in areas of shadow. While these were manually current for this 

sample, improvements could be enabled by imaging the sample at three different angles, 

such that in each image set, one leaflet is fully exposed to the illumination of the system.  

Secondly, the effect of surface topology on the polarized light signal should be 

investigated. Surface areas which are out-of-plane of the imaging system do not adhere to 

the assumptions of in-plane fiber geometry relative to the system geometry. Therefore, the 

extracted 𝑵𝑶𝑰 metric may be regionally inaccurate. Two potential improvements could be 

implemented to ensure that the measurements are accurate. First, a height- and surface-

angle empirical calibration could be conducted, similar to one by Gioux et al., to correct 

optical properties extracted with SFDI for uneven surface topology (Gioux, Mazhar et al. 

2009). In summary, a fiber phantom with known alignment could be imaged as its height 

and tilt in both axes is changed. Changes in the pSFDI signal could then be empirically 

corrected as a function of height and angle. A second, more exhaustive correction method 

would entail modeling a range of collection angles (Chapter 4). However, this method 
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would disallow the use of a linearized fitting model; this would result in significantly more 

computationally-expensive fitting times of approximately days for high-resolution images. 

5.5 SUMMARY 

This chapter has demonstrated the utility of pSFDI for imaging collagen structure 

in multi-layered native and bioprosthetic heart valve leaflet tissues. In static imaging, 

pSFDI provided results which are comparable to an existing gold standard (SALS) with 

additional sensitivity to layered fiber architecture. This offers a rapid method for evaluating 

the heterogeneous, multi-layered fiber microstructure in both native and bioprosthetic 

valve leaflet materials. 

The non-destructive nature of and improvements in imaging speed of pSFDI render 

the technique readily compatible with existing tissue mechanical analyses; this allows 

controlled dynamic study of local fiber kinematics across large fields of view at multiple 

time points. This research has yielded evidence of two fiber kinematic phenomena, fiber 

recruitment and collagen fiber uncrimping, which have large implications for 

understanding microstructural contributions to tissue- and organ-level scales of dynamic 

function. Additionally, changes in fiber structure near suture points in the samples provide 

insights into the boundary conditions used in the computational modeling of biaxial tissue 

mechanics.  

Finally, the 3D-pSFDI experiment provided a proof-of-concept for future research 

in assessing fiber structure in intact valves without excising the tissues. This ability 

promises tremendous impact in terms of studying the long-term fiber kinematics in BHVs, 

since fiber structure in individual BHV leaflets could be studied at multiple time points, 

rather than merely endpoints. Additionally, it could be applied to assess the changes in 

TAVR valves before and after they are packed into a small lumen for catheter delivery. 

This is a particularly important area of study which could contribute to the adoption of 

TAVR as a reliable alternative to the current gold standard invasive valve replacement 

surgeries.  
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Chapter 6: Conclusion 

This dissertation elucidates the use of light-scattering to probe tissue 

microstructures that are directly related to physiological state and condition of tissues. This 

was achieved by developing theoretical models which indicate how spatially-modulated 

and polarized light scatter from spheres and cylinders, which represent common tissue 

microstructures of interest. The primary benefits to the described models included 

increasing processing speed and more direct interpretation of light-scattering 

measurements in terms of tissue microstructure. Overall, this will allow rapid, non-

destructive mapping of tissue microstructure across tissue- and organ-level spatial and 

temporal scales.  

The novel empirical model of sub-diffuse reflectance imaged with sd-SFDI 

provides substantial speed improvements relative to existing non-linear models and lookup 

tables. This increased processing speed is crucial to incorporating sd-SFDI as a surgical 

guidance tool in tissue-conserving surgeries, in which mapping of tumor boundaries 

requires extensive tissue preparation times. This research has demonstrated the ability to 

extract model parameters that were directly sensitive to changes in the scattering particle 

size of cells and nuclei. Furthermore, this was translated into identifying regions of 

increased cellular proliferation in tissue samples from Mohs micrographic surgery, which 

matched the results from similar studies of tumors in breast tissues. To our knowledge, this 

is the first report of using sub-diffuse scattering to characterize skin cancer lesions from 

Mohs micrographic surgery. Ultimately, this technique could be used to directly determine 

tumor boundaries or as a screening tool to reduce search areas for complimentary 

diagnostic techniques so that they can improve clinical workflows.  

One of the primary limitations of the sd-SFDI work is the lack of an established 

sub-diffuse reflectance model for directly extracting the 𝜸 parameter from our 
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measurements. This was primarily due to challenges in establishing the system-specific 

coefficients required for the semi-empirical Kanick model to accurately extract optical 

properties. Fitting these coefficients was rendered difficult by the complexity of the model, 

which resulted in many local minima fits that did not allow for accurate optical property 

extraction from the microbead phantoms with known scattering properties. Due to the 

increased flexibility and optical property range, a Monte Carlo model incorporating sub-

diffuse scattering parameters has been suggested as a reference model for future research. 

Additionally, the particles used in the 𝑇𝑖𝑂2 reflectance standard were not well-

defined or easily quantified. This indicated that while the standard could be used to negate 

the impact of pixel-specific MTF of the system (such as spatial variance in illumination 

intensity), it could not be used directly as the required reference measurement that is 

generally used in inverse models. A new standard with a known scattering particle size 

distribution should be constructed for future reference measurements. Furthermore, 

research has already been initiated concerning a fixed-geometry imaging system which can 

achieve high spatial frequency ranges. An extended set of 20 MMS samples has also been 

collected for imaging and will be accompanied by more extensive demarcations of tumor 

and normal tissue regions from a trained physician. This increased number of samples and 

known sample regions will allow assessment of intra- and inter-patient variance of light 

scattering measurements from different tissue regions. Finally, a long-term objective is to 

investigate the ability of this technique to map microstructure onto in vivo tumor lesions, 

allowing tumor boundaries to be determined prior to surgical resection.   

The primary impact of our polarized light-imaging research was to allow extraction 

of absolute measures of fiber alignment from optical anisotropy. Previous methods have 

typically inferred relative fiber alignment, which limited comparisons of alignment 

measurements with single data sets. The combined pSFDI technique demonstrated multi-
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layer fiber alignment discrimination in thin (< 1𝑚𝑚) tissue samples. Additionally, the 

speed of imaging allowed the pseudo-dynamic imaging of collagen fiber kinematics during 

tissue deformation, which provided a powerful means for examining the contributions of 

local fiber microstructure to macroscopic tissue function. 

Although the imaging speed (< 5𝑠) was adequate for pseudo-dynamic imaging, 

there may be short-term fiber kinematics related to stress-relaxation and creep in the 

tissues. Improvements to the system will primarily be offered by the possibility of the 

hardware synchronization of the projector and camera, which was a major limitation to the 

imaging speed. This hardware triggering scheme is expected to achieve a total imaging 

time of less than one second based on the minimum exposure times necessary for the 

camera and projector. 

Two fiber kinematic phenomena, including fiber recruitment and collagen 

uncrimping, were inferred from data collected during dynamic tissue studies. However, 

more comprehensive studies are planned for assessing the translation of these fiber 

kinematics into mechanical performance. In addition to these insights, the pSFDI data is 

currently being utilized to provide a texture for digital image correlation (DIC) to recover 

local strain fields; this enables local microstructure and strains to be assessed in relation to 

the large-scale tissue mechanical behavior. This permits assessment of the contributions of 

microstructural heterogeneity, either from native tissue and damaged tissues, to both short-

term mechanical performance and long-term tissue remodeling. Since tissues do not need 

to be sacrificed during imaging, fiber architecture changes during accelerated wear-testing 

can be mapped at multiple times. Specifically, this technique facilitates the investigation 

of the accuracy of the affine fiber kinematic assumptions that are adopted in structural 

constitutive models of microscale fiber contributions to macroscopic tissue deformations.   



 119 

The validation of the 3D-pSFDI technique would further permit imaging of entire 

BHVs during testing without the need for sacrificing the entire valve. However, future 

research assessing the impact of surface topography on the extracted pSFDI alignment 

metrics must first be explored. This could be achieved in two ways: either by experimental 

calibration or by additional modeling. A calibration technique similar to that for single-

snapshot optical property extraction could be used to correct for sample topography 

(Gioux, Mazhar et al. 2009). However, for pSFDI, this calibration would need to be 

considerably more involved, as both the topographical information as well as the fiber 

orientation must be taken into account. Alternatively, a fiber-model with non-normal 

incidence could be considered. However, this would still necessitate the incorporation of 

both fiber orientation as well as surface topography into the inverse model to extract correct 

optical properties. Both such techniques are likely to have extensive processing times for 

each data set, which would be highly non-linear.  
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Appendices 

APPENDIX A: TITANIUM DIOXIDE (TIO2) REFERENCE STANDARD 

A.1 Fabrication 

A 13 𝑐𝑚 𝑋 13 𝑐𝑚 𝑋 3 𝑐𝑚 cuboid mold was 3𝐷 printed for the phantom to cure in. 

A full 500g bottle of Sylgard 184 PDMS Silicone (Ellsworth Adhesives, Germantown WI) 

and 1 𝑔 of 𝑑 < 5𝜇𝑚 𝑇𝑖𝑂2 particles (Sigma Aldrich, St. Louis MO) were used to create a 

2mg/g mix ratio of scattering particles to base. The particles were mixed into the silicone 

curing agent by hand in a small flask, then sonicated for 10 minutes. The cure/particle mix 

was then mixed into the silicone base for 10 minutes by hand and sonicated for another 10 

minutes. The resulting mixture was then poured into the mold and subjected to a vacuum 

of −20 𝑚𝑚𝐻𝑔 before rapidly purging to atmospheric pressure. This process was repeated 

20 times to reduced bubble formation in the mold. The mix was then cured for three days 

at room temperature conditions to further ensure bubbles had time to dissipate.  

 

 

Figure A.1: Diffuse reflectance standard mold (left) and final appearance (right). 
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After curing, the surface of the sample was sanded with 200 grit sandpaper across 

the surface, rinsed with water, and sanded with a 400 grit sandpaper to remove the majority 

of specular reflections from the surface. The standard was then washed once more, dried, 

and packing tape was used to remove any remaining free particles on the surface.  

A.2 Reflectance Characterization 

Images of a calibrated 20% reflectance standard and the 𝑇𝑖𝑂2 reflectance standard 

were captured under identical lighting conditions at 450 𝑛𝑚, 530 𝑛𝑚, and 620 𝑛𝑚 (the 

center wavelengths of the projection system LEDs). Both image sets were median filtered 

with a 25 𝑋 25 pixel window. The average diffuse reflectance was calculated for each 

wavelength, as shown in the graph and table below.  

 

 

 

Figure A.2: 𝑇𝑖𝑂2 standard mean reflectance and variance at each projector wavelength/ 
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A.3 TiO2 Particle Size Analysis 

Although we achieved good reflectance values, attempts to calculate the reduced 

scattering coefficient were hampered by the large and difficult to quantify polydispersity 

of the particle sizes, although dynamic light scattering, scanning electron microscopy, and 

tunneling electron microscopy were all considered. Scanning electron microscopy images 

highlight this issue (Figures A.3-A.5). For future studies, a reflectance standard with a 

well-defined particle size distribution would be useful for reference measurements in sd-

SFDI studies, as the Mie calculations for reduced scattering coefficients would be 

tractable.  

 

 

Figure A.3: SEM images of 𝑇𝑖𝑂2 particles, indicating high polydispersity.  
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Figure A.4: SEM images of 𝑇𝑖𝑂2 particles, indicating high polydispersity. 

 

Figure A.5: SEM images of 𝑇𝑖𝑂2 particles, indicating high polydispersity. 
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APPENDIX B: SCATTERING BEAD PHANTOM CALCULATIONS 

Mie scattering theory was used to calculate the average scattering efficiencies of 

three particle size distributions corresponding to calibrated polystyrene microspheres 

(Polysciences Inc., Warrington PA). The diameters of the beads were: 𝑑1
̅̅ ̅ =

0.0878 𝜇𝑚 (𝑆𝐷: 0.01𝜇𝑚), 𝑑2
̅̅ ̅ = 0.19 𝜇𝑚 (𝑆𝐷: 0.01 𝜇𝑚), 𝑑3

̅̅ ̅ = 0.99 𝜇𝑚 (𝑆𝐷: 0.03 𝜇𝑚). 

Using the listed concentrations for each bead distribution, two dilutions of each size bead 

in distilled water was formulated so that a reduced scattering coefficient of 

𝝁𝒔
′ (𝝀 = 530 𝑛𝑚) =  2 𝑚𝑚−1 and 3 𝑚𝑚−1 were achieved for each bead size. The reduced 

scattering coefficient, anisotropy parameter (g), and sub-diffuse anisotropy parameter (𝜸) 

were then calculated for each wavelength (𝝀 = 450 𝑛𝑚, 530 𝑛𝑚, 620 𝑛𝑚).  

 

Figure B.1: Mie calculations of ~100 𝑛𝑚 bead optical scattering parameters.  
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Figure B.2: Mie calculations of ~200 𝑛𝑚 bead optical scattering parameters.  
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Figure B.3: Mie calculations of ~1 𝜇𝑚 bead optical scattering parameters.  
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APPENDIX C: MUELLER MATRIX FORMALISM FOR CO-POLARIZATION IMAGING SYSTEM 

The full derivation of our polarized light model begins from EQ 4.6: 

 

 𝑆𝑜𝑢𝑡 = 𝜏𝑠𝑦𝑠𝑀𝑝𝑅𝑝(−(𝜃 ± 𝜑))𝑀𝑠𝑅𝑝((𝜃 ± 𝜑))𝑀𝑝𝑆𝑖𝑛 (4.7) 

 

The initial Stokes vector describing the incident light (𝑺⃗⃗⃗𝒊𝒏), along with the Mueller 

matrix components representing the polarizer (𝑴𝒑) and rotational transformations (𝑹𝒑), 

are defined as follows: 
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𝑅𝑝((𝜃 ± 𝜑)) = (

1 0
0     𝑐𝑜𝑠(2(𝜃 ± 𝜑))

0 0
    𝑠𝑖𝑛(2(𝜃 ± 𝜑)) 0

0 − 𝑠𝑖𝑛(2(𝜃 ± 𝜑))

0 0

−𝑐𝑜𝑠(2(𝜃 ± 𝜑)) 0

0 1

) (C.3) 

 

The Mueller matrix for the sample (𝑴𝒔) is given as the special case scattering 𝑻-

matrix derived for normally incident light scattering from infinitely long cylinders: 

 

 

𝑀𝑠 = [

𝑀11 𝑀12

𝑀21 𝑀22

𝑀13 𝑀14

𝑀23 𝑀24

𝑀31 𝑀32

𝑀41 𝑀42

𝑀33 𝑀34

𝑀43 𝑀44

] =
2

𝜋𝑥
[

𝑇11 𝑇12

𝑇12 𝑇11

0 0
0 0

0 0
0 0

𝑇33 𝑇34

−𝑇34 𝑇33

] (C.4) 
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The full solution for the 𝑻-matrix elements, along with efficient computational 

algorithms, has been described extensively by Bohren & Huffman. The inputs required to 

solve for 𝑻𝟏𝟏, 𝑻𝟏𝟐, 𝑻𝟑𝟑, and 𝑻𝟑𝟒are the relative refractive index of the cylinder and the 

medium (𝒎), the size parameter (𝒙), and the system collection angles (𝝍).  Plugging EQ 

C.1 – C.4 into EQ 4.6 can be shown to simplify to: 

 
 

𝑆𝑜𝑢𝑡 =
𝜏𝑠𝑦𝑠

4
[

𝑀11(1 + cos2(2(𝜃 ± 𝜑))) + 2𝑀12 cos(2(𝜃 ± 𝜑)) + 𝑀33 sin2(2(𝜃 ± 𝜑))

𝑀11(1 + cos2(2(𝜃 ± 𝜑))) + 2𝑀12 cos(2(𝜃 ± 𝜑)) + 𝑀33 sin2(2(𝜃 ± 𝜑))
0
0

] 

 

(C.5) 

 

EQ C.5 shows that the intensity response detected by the camera is now entirely 

dependent on the linear polar response, and the Stokes vector can therefore be collapsed 

into EQ 4.7. 
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APPENDIX D: LINEARIZED FITTING MODEL FOR PSFDI 

To allow more rapid fitting, a modified but mathematically identical form of EQ 

4.7 is used. Each sinusoidal term includes a non-linear phase offset. For linearized fitting, 

it is transformed using the identity 𝒂 ∙ 𝐬𝐢𝐧(𝜽) + 𝒃 ∙ 𝐜𝐨𝐬(𝜽) = 𝒄 ∙ 𝐜𝐨𝐬(𝜽 + 𝝋), where 

𝒄 =  √𝒂𝟐 + 𝒃𝟐) and 𝝋 = 𝒂𝒕𝒂𝒏𝟐(𝒂, 𝒃). This results in a Fourier expansion form of EQ 

4.7: 

 

 𝐼(𝜃) = 𝑎0 +  𝑏1 sin(2𝜃) +  𝑏2 cos(2𝜃) +  𝑏3 sin(4𝜃) +  𝑏4 cos(4𝜃) (D.1) 

 

In this form, a linearized representation of the reflectance is 𝑰 =  𝑺𝒃, where 𝑰 is the 

detected reflectance intensity, 𝑺 is the Fourier expansion representation of the model in EQ 

D.1, and 𝒃 is a vector containing the five transformed model coefficients from EQ D.1. 

Solving this system of equations by 𝒃 = 𝑺\𝑰 allows extraction of the coefficients by 

Gaussian elimination (Matlab function mldivide). Subsequently, a 1 second fitting time 

was achieved for a 1.5 −megapixel image, compared to several hours with the lsqnonlin 

fitting algorithms for the original equation containing a non-linear phase offset term. After 

fitting, the original form of the model coefficients and phase offset were recovered using 

the same identities. A custom Matlab script, PSFDI_fitting.m, will return the coefficients 

𝒂𝟎, 𝒂𝟐, 𝒂𝟒, the primary fiber direction 𝝋, and the resulting fit curve for a given input image 

data set whose first two dimensions are spatial axes (𝑿, 𝒀) and third dimension is  polarizer 

angle (𝜽).  
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APPENDIX E: CUSTOM ELECTROSPINNING MANDREL SYSTEM 

 

Figure E.1: Custom electrospinning mandrel design. 

  



 131 

APPENDIX F: FIBER ORIENTATION ANALYSIS FROM SEM IMAGES 

The process of processing SEM images of electrospun fibers to extract the 

orientation distribution function (𝑶𝑫𝑭) is outlined in Figure F.1, and is based on a method 

described by Mega et al. The custom Matlab function PSFDI_megaODF can be used to 

extract the normalized 𝑶𝑫𝑭 from any input image. The bandpass filter low frequency 

cutoff was set to  3 [1/𝑝𝑖𝑥𝑒𝑙𝑠],  the Gaussian maximum frequency cutoff was set to 4𝑋 

the low frequency cutoff, and the median filter was set to 3𝑋3 pixels for the processed data 

in this work.  

 

Figure F.1: Orientation analysis of fibers in SEM images. 



 132 

References 

Adams, S. B., M. J. Roberts, N. A. Patel, S. Plummer, J. Rogowska, D. L. Stamper, J. G. 

Fujimoto and M. E. Brezinski (2002). The use of polarization sensitive optical coherence 

tomography and elastography to assess connective tissue. Conference on Lasers and 

Electro-Optics, 2003. CLEO'03. 

Aggarwal, A., V. S. Aguilar, C.-H. Lee, G. Ferrari, J. H. Gorman, R. C. Gorman and M. S. 

Sacks (2013). Patient-specific modeling of heart valves: from image to simulation. 

International Conference on Functional Imaging and Modeling of the Heart, Springer. 

Allen, A. C., E. Barone, O. Cody, K. Crosby, L. J. Suggs and J. Zoldan (2017). 

"Electrospun poly (N-isopropyl acrylamide)/poly (caprolactone) fibers for the generation 

of anisotropic cell sheets." Biomaterials science 5(8): 1661-1669. 

Amoroso, N. J., A. D’Amore, Y. Hong, W. R. Wagner and M. S. Sacks (2011). 

"Elastomeric electrospun polyurethane scaffolds: the interrelationship between fabrication 

conditions, fiber topology, and mechanical properties." Advanced Materials 23(1): 106-

111. 

Angelo, J., C. R. Vargas, B. T. Lee, I. J. Bigio and S. Gioux (2016). "Ultrafast optical 

property map generation using lookup tables." Journal of biomedical optics 21(11): 

110501. 

Angelo, J. P., S.-J. Chen, M. Ochoa, U. Sunar, S. Gioux and X. Intes (2018). "Review of 

structured light in diffuse optical imaging." Journal of biomedical optics 24(7): 071602. 

Angelo, J. P., M. van de Giessen and S. Gioux (2017). "Real-time endoscopic optical 

properties imaging." Biomedical optics express 8(11): 5113-5126. 

Angelo, J. P., V. Venugopal, F. Fantoni, V. Poher, I. J. Bigio, L. Herve, J.-M. Dinten and 

S. Gioux (2014). "Depth-enhanced fluorescence imaging using masked detection of 

structured illumination." Journal of biomedical optics 19(11): 116008. 

Ayoub, S., K. C. Tsai, A. H. Khalighi and M. S. Sacks (2018). "The Three-Dimensional 

Microenvironment of the Mitral Valve: Insights into the Effects of Physiological Loads." 

Cellular and Molecular Bioengineering 11(4): 291-306. 

Badea, C. T., B. Fubara, L. W. Hedlund and G. A. Johnson (2005). "4-D micro-CT of the 

mouse heart." Molecular Imaging 4(2): 15353500200504187. 

Balas, C. (2009). "Review of biomedical optical imaging—a powerful, non-invasive, non-

ionizing technology for improving in vivo diagnosis." Measurement science and 

technology 20(10): 104020. 



 133 

Bashkatov, A. N., E. A. Genina, V. I. Kochubey and V. V. Tuchin (2000). Estimation of 

wavelength dependence of refractive index of collagen fibers of scleral tissue. EOS/SPIE 

European Biomedical Optics Week, International Society for Optics and Photonics. 

Bevilacqua, F. and C. Depeursinge (1999). "Monte Carlo study of diffuse reflectance at 

source–detector separations close to one transport mean free path." JOSA A 16(12): 2935-

2945. 

Billiar, K. and M. Sacks (1997). "A method to quantify the fiber kinematics of planar 

tissues under biaxial stretch." Journal of biomechanics 30(7): 753-756. 

Billiar, K. L. and M. S. Sacks (2000). "Biaxial mechanical properties of the native and 

glutaraldehyde-treated aortic valve cusp: part II—a structural constitutive model." Journal 

of biomechanical engineering 122(4): 327-335. 

Billiar, K. L. and M. S. Sacks (2000). "Biaxial mechanical properties of the natural and 

glutaraldehyde treated aortic valve cusp—part I: experimental results." Journal of 

biomechanical engineering 122(1): 23-30. 

Bloom, W., D. W. Fawcett and A. A. Maximow (1962). "Textbook of histology." 

Boas, D. A., C. Pitris and N. Ramanujam (2016). Handbook of biomedical optics, CRC 

press. 

Bodenschatz, N., P. Krauter, A. Liemert and A. Kienle (2016). "Quantifying phase function 

influence in subdiffusively backscattered light." Journal of biomedical optics 21(3): 

035002. 

Bodenschatz, N., P. Krauter, A. Liemert, J. Wiest and A. Kienle (2015). "Model-based 

analysis on the influence of spatial frequency selection in spatial frequency domain 

imaging." Applied Optics 54(22): 6725-6731. 

Bodenschatz, N., P. Krauter, S. Nothelfer, F. Foschum, F. Bergmann, A. Liemert and A. 

Kienle (2015). "Detecting structural information of scatterers using spatial frequency 

domain imaging." Journal of biomedical optics 20(11): 116006-116006. 

Bohren, C. F. and D. R. Huffman (2008). Absorption and scattering of light by small 

particles, John Wiley & Sons. 

Brakenhoff, G., H. Voort, E. Spronsen and N. Nanninga (1989). "Three‐dimensional 

imaging in fluorescence by confocal scanning microscopy." Journal of microscopy 153(2): 

151-159. 

Brenner, D. J. and C. D. Elliston (2004). "Estimated Radiation Risks Potentially Associated 

with Full-Body CT Screening 1." Radiology 232(3): 735-738. 



 134 

Brenner, D. J., C. D. Elliston, E. J. Hall and W. E. Berdon (2001). "Estimated risks of 

radiation-induced fatal cancer from pediatric CT." American journal of roentgenology 

176(2): 289-296. 

Brezinski, M. E. (2006). Optical coherence tomography: principles and applications, 

Academic press. 

Brown, E., T. McKee, A. Pluen, B. Seed, Y. Boucher and R. K. Jain (2003). "Dynamic 

imaging of collagen and its modulation in tumors in vivo using second-harmonic 

generation." Nature medicine 9(6): 796-800. 

Budnev, V., I. Ginzburg, G. Meledin and V. Serbo (1975). "The two-photon particle 

production mechanism. Physical problems. Applications. Equivalent photon 

approximation." Physics Reports 15(4): 181-282. 

Carleton, J. B., A. D’Amore, K. R. Feaver, G. J. Rodin and M. S. Sacks (2015). "Geometric 

characterization and simulation of planar layered elastomeric fibrous biomaterials." Acta 

biomaterialia 12: 93-101. 

Carp, S. A., S. A. Prahl and V. Venugopalan (2004). "Radiative transport in the delta-P1 

approximation: accuracy of fluence rate and optical penetration depth predictions in turbid 

semi-infinite media." Journal of Biomedical Optics 9(3): 632-648. 

Case, K. M. and P. F. Zweifel (1967). "Linear transport theory." 

Chamot, S., E. Migacheva, O. Seydoux, P. Marquet and C. Depeursinge (2010). "Physical 

interpretation of the phase function related parameter γ studied with a fractal distribution 

of spherical scatterers." Optics express 18(23): 23664-23675. 

Chenault, D. B. and R. A. Chipman (1993). "Measurements of linear diattenuation and 

linear retardance spectra with a rotating sample spectropolarimeter." Applied optics 

32(19): 3513-3519. 

Cheong, W.-F., S. A. Prahl and A. J. Welch (1990). "A review of the optical properties of 

biological tissues." IEEE journal of quantum electronics 26(12): 2166-2185. 

Chue-Sang, J., N. Holness, M. Gonzalez, J. Greaves, I. Saytashev, S. Stoff, A. 

Gandjbakhche, V. V. Chernomordik, G. Burkett and J. C. Ramella-Roman (2018). "Use of 

Mueller matrix colposcopy in the characterization of cervical collagen anisotropy." Journal 

of biomedical optics 23(12): 121605. 

Clark, M. A., F. G. Duhay, A. K. Thompson, M. J. Keyes, L. G. Svensson, R. O. Bonow, 

B. T. Stockwell and D. J. Cohen (2012). "Clinical and economic outcomes after surgical 

aortic valve replacement in Medicare patients." Risk management and healthcare policy 5: 

117. 



 135 

Cook, J. and J. A. Zitelli (1998). "Mohs micrographic surgery: a cost analysis." Journal of 

the American Academy of Dermatology 39(5): 698-703. 

Cothren, R., R. Richards-Kortum, M. Sivak Jr, M. Fitzmaurice, R. Rava, G. Boyce, M. 

Doxtader, R. Blackman, T. Ivanc and G. Hayes (1990). "Gastrointestinal tissue diagnosis 

by laser-induced fluorescence spectroscopy at endoscopy." Gastrointestinal Endoscopy 

36(2): 105-111. 

Courtney, T., M. S. Sacks, J. Stankus, J. Guan and W. R. Wagner (2006). "Design and 

analysis of tissue engineering scaffolds that mimic soft tissue mechanical anisotropy." 

Biomaterials 27(19): 3631-3638. 

Cuccia, D. J., F. Bevilacqua, A. J. Durkin, F. R. Ayers and B. J. Tromberg (2009). 

"Quantitation and mapping of tissue optical properties using modulated imaging." Journal 

of biomedical optics 14(2): 024012-024012-024013. 

Cuccia, D. J., F. Bevilacqua, A. J. Durkin and B. J. Tromberg (2004). Depth-sectioned 

imaging and quantitative analysis in turbid media using spatially modulated illumination. 

Biomedical Topical Meeting, Optical Society of America. 

Cuccia, D. J., F. Bevilacqua, A. J. Durkin and B. J. Tromberg (2005). "Modulated imaging: 

quantitative analysis and tomography of turbid media in the spatial-frequency domain." 

Opt. Lett 30(11): 1354-1356. 

D’Amore, A., J. A. Stella, W. R. Wagner and M. S. Sacks (2010). "Characterization of the 

complete fiber network topology of planar fibrous tissues and scaffolds." Biomaterials 

31(20): 5345-5354. 

De Boer, J. F., T. E. Milner, M. J. van Gemert and J. S. Nelson (1997). "Two-dimensional 

birefringence imaging in biological tissue by polarization-sensitive optical coherence 

tomography." Optics letters 22(12): 934-936. 

De Boer, J. F., S. M. Srinivas, B. H. Park, T. H. Pham, Z. Chen, T. E. Milner and J. S. 

Nelson (1999). "Polarization effects in optical coherence tomography of various biological 

tissues." Selected Topics in Quantum Electronics, IEEE Journal of 5(4): 1200-1204. 

Degen, C., M. Poggio, H. Mamin, C. Rettner and D. Rugar (2009). "Nanoscale magnetic 

resonance imaging." Proceedings of the National Academy of Sciences 106(5): 1313-1317. 

Deitzel, J., J. Kleinmeyer, D. Harris and N. B. Tan (2001). "The effect of processing 

variables on the morphology of electrospun nanofibers and textiles." Polymer 42(1): 261-

272. 



 136 

Denk, W., D. W. Piston and W. W. Webb (1995). Two-photon molecular excitation in 

laser-scanning microscopy. Handbook of biological confocal microscopy, Springer: 445-

458. 

Denk, W., J. H. Strickler and W. W. Webb (1990). "Two-photon laser scanning 

fluorescence microscopy." Science 248(4951): 73-76. 

Denk, W. and K. Svoboda (1997). "Photon upmanship: why multiphoton imaging is more 

than a gimmick." Neuron 18(3): 351-357. 

Dickinson, M., G. Bearman, S. Tille, R. Lansford and S. Fraser (2001). "Multi-spectral 

imaging and linear unmixing add a whole new dimension to laser scanning fluorescence 

microscopy." Biotechniques 31(6): 1272-1279. 

DiMarzio, C. A. (2011). Optics for engineers, Crc Press. 

Ding, Z., H. Ren, Y. Zhao, J. S. Nelson and Z. Chen (2002). "High-resolution optical 

coherence tomography over a large depth range with an axicon lens." Optics Letters 27(4): 

243-245. 

Dögnitz, N. and G. Wagnières (1998). "Determination of tissue optical properties by 

steady-state spatial frequency-domain reflectometry." Lasers in medical science 13(1): 55-

65. 

Doornbos, R., R. Lang, M. Aalders, F. Cross and H. Sterenborg (1999). "The determination 

of in vivo human tissue optical properties and absolute chromophore concentrations using 

spatially resolved steady-state diffuse reflectance spectroscopy." Physics in medicine and 

biology 44(4): 967. 

Doshi, J. and D. H. Reneker (1993). Electrospinning process and applications of 

electrospun fibers. Industry Applications Society Annual Meeting, 1993., Conference 

Record of the 1993 IEEE, IEEE. 

Drexler, W., U. Morgner, F. Kärtner, C. Pitris, S. Boppart, X. Li, E. Ippen and J. Fujimoto 

(1999). "< i> In vivo</i> ultrahigh-resolution optical coherence tomography." Optics 

letters 24(17): 1221-1223. 

Dunn, A. K., C. Smithpeter, A. J. Welch and R. Richards-Kortum (1996). "Sources of 

contrast in confocal reflectance imaging." Applied optics 35(19): 3441-3446. 

Eckert, C. E., R. Fan, B. Mikulis, M. Barron, C. A. Carruthers, V. M. Friebe, N. R. 

Vyavahare and M. S. Sacks (2013). "On the biomechanical role of glycosaminoglycans in 

the aortic heart valve leaflet." Acta biomaterialia 9(1): 4653-4660. 



 137 

Edmunds, L. H., R. E. Clark, L. H. Cohn, G. L. Grunkemeier, D. C. Miller and R. D. Weisel 

(1996). "Guidelines for reporting morbidity and mortality after cardiac valvular 

operations." Asian Cardiovascular and Thoracic Annals 4(2): 126-129. 

Elston, C. W. and I. O. Ellis (1991). "Pathological prognostic factors in breast cancer. I. 

The value of histological grade in breast cancer: experience from a large study with long‐
term follow‐up." Histopathology 19(5): 403-410. 

Erickson, T. A., A. Mazhar, D. J. Cuccia, A. J. Durkin and J. W. Tunnell (2010). "Lookup-

table method for imaging optical properties with structured illumination beyond the 

diffusion theory regime." Journal of biomedical optics 15(3): 036013. 

Farrell, T. J., M. S. Patterson and B. Wilson (1992). "A diffusion theory model of spatially 

resolved, steady‐state diffuse reflectance for the noninvasive determination of tissue optical 

properties invivo." Medical physics 19(4): 879-888. 

Feng, X., A. J. Moy, H. T. Nguyen, Y. Zhang, J. Zhang, M. C. Fox, K. R. Sebastian, J. S. 

Reichenberg, M. K. Markey and J. W. Tunnell (2018). "Raman biophysical markers in skin 

cancer diagnosis." Journal of biomedical optics 23(5): 057002. 

Flannery, B. P., H. W. Deckman, W. G. Roberge and K. L. D'AMICO (1987). "Three-

dimensional X-ray microtomography." Science 237(4821): 1439-1444. 

Fung, Y.-C. (1990). Biomechanics, Springer. 

Gelse, K., E. Pöschl and T. Aigner (2003). "Collagens—structure, function, and 

biosynthesis." Advanced drug delivery reviews 55(12): 1531-1546. 

Ghosh, N., P. K. Gupta, A. Pradhan and S. K. Majumder (2006). "Anomalous behavior of 

depolarization of light in a turbid medium." Physics Letters A 354(3): 236-242. 

Ghosh, N. and I. A. Vitkin (2011). "Tissue polarimetry: concepts, challenges, applications, 

and outlook." Journal of biomedical optics 16(11): 110801-11080129. 

Ghosh, N., I. A. Vitkin and M. F. Wood (2008). "Mueller matrix decomposition for 

extraction of individual polarization parameters from complex turbid media exhibiting 

multiple scattering, optical activity, and linear birefringence." Journal of biomedical optics 

13(4): 044036-044036-044014. 

Ghosh, N., M. F. Wood, S. h. Li, R. D. Weisel, B. C. Wilson, R. K. Li and I. A. Vitkin 

(2009). "Mueller matrix decomposition for polarized light assessment of biological 

tissues." Journal of biophotonics 2(3): 145-156. 



 138 

Gilbert, T. W., S. Wognum, E. M. Joyce, D. O. Freytes, M. S. Sacks and S. F. Badylak 

(2008). "Collagen fiber alignment and biaxial mechanical behavior of porcine urinary 

bladder derived extracellular matrix." Biomaterials 29(36): 4775-4782. 

Gioux, S., A. Mazhar, D. J. Cuccia, A. J. Durkin, B. J. Tromberg and J. V. Frangioni 

(2009). "Three-dimensional surface profile intensity correction for spatially modulated 

imaging." Journal of biomedical optics 14(3): 034045-034045-034011. 

Gioux, S., A. Stockdale, R. Oketokoun, Y. Ashitate, N. J. Durr, L. A. Moffitt, J. V. 

Frangioni, A. Mazhar, B. J. Tromberg and A. J. Durkin (2011). "First-in-human pilot study 

of a spatial frequency domain oxygenation imaging system." Journal of biomedical optics 

16(8): 086015. 

Gloster, J. H., K. R. Harris and R. K. Roenigk (1996). "A comparison between Mohs 

micrographic surgery and wide surgical excision for the treatment of dermatofibrosarcoma 

protuberans." Journal of the American Academy of Dermatology 35(1): 82-87. 

Goldberg, S. N., C. J. Grassi, J. F. Cardella, J. W. Charboneau, G. D. Dodd III, D. E. 

Dupuy, D. Gervais, A. R. Gillams, R. A. Kane and F. T. Lee Jr (2005). "Image-guided 

tumor ablation: standardization of terminology and reporting criteria." Journal of vascular 

and interventional radiology 16(6): 765-778. 

Goldstein, D. H. (2003). Polarized Light, revised and expanded, CRC press. 

Göppert‐Mayer, M. (1931). "Über elementarakte mit zwei quantensprüngen." Annalen der 

Physik 401(3): 273-294. 

Goth, W., J. Lesicko, M. S. Sacks and J. W. Tunnell (2016). "Optical-Based Analysis of 

Soft Tissue Structures." Annual Review of Biomedical Engineering 18(1): null. 

Goth, W., B. Yang, J. Lesicko, A. Allen, M. S. Sacks and J. W. Tunnell (2016). Polarized 

spatial frequency domain imaging of heart valve fiber structure. SPIE BiOS, International 

Society for Optics and Photonics. 

Goth, W., B. Yang, J. Lesicko, R. Stevens, M. Sacks and J. W. Tunnell (2015). Polarized 

spatial frequency domain imaging of soft tissue fiber distributions. Engineering 

Conferences International, Vail, CO. 

Guo, X., M. F. Wood and A. Vitkin (2007). "Monte Carlo study of pathlength distribution 

of polarized light in turbid media." Optics express 15(3): 1348-1360. 

Guo, X., M. F. Wood and A. Vitkin (2008). "A Monte Carlo study of penetration depth 

and sampling volume of polarized light in turbid media." Optics Communications 281(3): 

380-387. 



 139 

Haacke, E. M., R. W. Brown, M. R. Thompson and R. Venkatesan (1999). "Magnetic 

resonance imaging." Physical principles and sequence design. 

Haskell, R. C., L. O. Svaasand, T.-T. Tsay, T.-C. Feng, M. S. McAdams and B. J. Tromberg 

(1994). "Boundary conditions for the diffusion equation in radiative transfer." JOSA A 

11(10): 2727-2741. 

Hayakawa, C. K., K. Karrobi, V. Pera, D. Roblyer and V. Venugopalan (2018). "Optical 

sampling depth in the spatial frequency domain." Journal of biomedical optics 24(7): 

071603. 

He, H., M. Sun, N. Zeng, E. Du, S. Liu, Y. Guo, J. Wu, Y. He and H. Ma (2014). "Mapping 

local orientation of aligned fibrous scatterers for cancerous tissues using backscattering 

Mueller matrix imaging." Journal of biomedical optics 19(10): 106007-106007. 

HealthJade (2018). Heart Valve Stenosis. https://healthjade.com/aortic-valve-stenosis/. 

Helmchen, F. and W. Denk (2005). "Deep tissue two-photon microscopy." Nature methods 

2(12): 932-940. 

Hodgkin, D. and J. Lister (1827). "XXVI. Notice of some miscroscopic observations of the 

blood and animal tissues." The Philosophical Magazine, or Annals of Chemistry, 

Mathematics, Astronomy, Natural History and General Science 2(8): 130-138. 

Hotaling, N. A., K. Bharti, H. Kriel and C. G. Simon (2015). "DiameterJ: a validated open 

source nanofiber diameter measurement tool." Biomaterials 61: 327-338. 

Hsieh, J. (2009). Computed tomography: principles, design, artifacts, and recent advances, 

SPIE Bellingham, WA. 

Huang, D., E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, 

T. Flotte, K. Gregory and C. A. Puliafito (1991). "Optical coherence tomography." Science 

254(5035): 1178-1181. 

Hull, E. L. and T. H. Foster (2001). "Steady-state reflectance spectroscopy in the P 3 

approximation." JOSA A 18(3): 584-599. 

Hulst, H. C. and H. Van De Hulst (1957). Light scattering by small particles, Courier Dover 

Publications. 

Ishimaru, A. (1989). "Diffusion of light in turbid material." Applied optics 28(12): 2210-

2215. 

Iung, B. and A. Vahanian (2011). "Epidemiology of valvular heart disease in the adult." 

Nature Reviews Cardiology 8(3): 162-172. 

https://healthjade.com/aortic-valve-stenosis/


 140 

Ivančič, M., P. Naglič, F. Pernuš, B. Likar and M. Bürmen (2018). "Efficient estimation of 

subdiffusive optical parameters in real time from spatially resolved reflectance by artificial 

neural networks." Optics letters 43(12): 2901-2904. 

Jacques, S. L. (2013). "Optical properties of biological tissues: a review." Physics in 

medicine and biology 58(11): R37. 

Jacques, S. L. and B. W. Pogue (2008). "Tutorial on diffuse light transport." Journal of 

Biomedical Optics 13(4): 041302-041302-041319. 

Jacques, S. L. and J. C. Ramella-Roman (2004). Polarized light imaging of tissues, Royal 

Society of Chemistry: 591-607. 

Jacques, S. L., J. C. Ramella-Roman and K. Lee (2002). "Imaging skin pathology with 

polarized light." Journal of biomedical optics 7(3): 329-340. 

Jacques, S. L., J. R. Roman and K. Lee (2000). "Imaging superficial tissues with polarized 

light." Lasers in surgery and medicine 26(2): 119-129. 

Joyce, E. M., J. Liao, F. J. Schoen, J. E. Mayer Jr and M. S. Sacks (2009). "Functional 

collagen fiber architecture of the pulmonary heart valve cusp." The Annals of thoracic 

surgery 87(4): 1240-1249. 

Kaiser, W. and C. Garrett (1961). "Two-Photon Excitation in Ca F 2: Eu 2+." Physical 

Review Letters 7(6): 229. 

Kanick, S. C., D. M. McClatchy, V. Krishnaswamy, J. T. Elliott, K. D. Paulsen and B. W. 

Pogue (2014). "Sub-diffusive scattering parameter maps recovered using wide-field high-

frequency structured light imaging." Biomedical optics express 5(10): 3376-3390. 

Keller, E. and R. Goldman (2006). Light Microscopy, 8, Cold Spring Harbor Laboratory 

Press, Woodbury, NY. 

Kemp, N., H. Zaatari, J. Park, H. G. Rylander III and T. Milner (2005). "Form-biattenuance 

in fibrous tissues measured with polarization-sensitive optical coherence tomography (PS-

OCT)." Optics express 13(12): 4611-4628. 

Kienle, A., L. Lilge, M. S. Patterson, R. Hibst, R. Steiner and B. C. Wilson (1996). 

"Spatially resolved absolute diffuse reflectance measurements for noninvasive 

determination of the optical scattering and absorption coefficients of biological tissue." 

Applied optics 35(13): 2304-2314. 

Kim, K. H., C. Buehler and P. T. C. So (1999). "High-speed, two-photon scanning 

microscope." Applied optics (2004) 38(28): 6004-6009. 



 141 

Kinsey, J. L. (1977). "Laser-induced fluorescence." Annual Review of Physical Chemistry 

28(1): 349-372. 

Kolarsick, P. A., M. A. Kolarsick and C. Goodwin (2011). "Anatomy and physiology of 

the skin." Journal of the Dermatology Nurses' Association 3(4): 203-213. 

Kondinski, A. (2010). Picture of solution containing gold nanoparticles. Gold255.jpg. 

https://kondinski.webs.com. 

Konecky, S. D., A. Mazhar, D. Cuccia, A. J. Durkin, J. C. Schotland and B. J. Tromberg 

(2009). "Quantitative optical tomography of sub-surface heterogeneities using spatially 

modulated structured light." Optics express 17(17): 14780-14790. 

Kuhn, J. R. and M. Poenie (2002). "Dynamic polarization of the microtubule cytoskeleton 

during CTL-mediated killing." Immunity 16(1): 111-121. 

Laughney, A. M., V. Krishnaswamy, T. B. Rice, D. J. Cuccia, R. J. Barth, B. J. Tromberg, 

K. D. Paulsen, B. W. Pogue and W. A. Wells (2013). "System analysis of spatial frequency 

domain imaging for quantitative mapping of surgically resected breast tissues." Journal of 

biomedical optics 18(3): 036012. 

Laughney, A. M., V. Krishnaswamy, E. J. Rizzo, M. C. Schwab, R. J. Barth, D. J. Cuccia, 

B. J. Tromberg, K. D. Paulsen, B. W. Pogue and W. A. Wells (2013). "Spectral 

discrimination of breast pathologies in situ using spatial frequency domain imaging." 

Breast Cancer Research 15(4): R61. 

Lauterbur, P. C. (1973). "Image formation by induced local interactions: examples 

employing nuclear magnetic resonance." Nature 242(5394): 190-191. 

Lee, C.-H. and M. S. Sacks (2016). Fibers to organs: how collagen fiber properties 

modulate the closing behavior of the mitral valve. Structure-Based Mechanics of Tissues 

and Organs, Springer: 365-381. 

Leiter, U., T. Eigentler and C. Garbe (2014). Epidemiology of skin cancer. Sunlight, 

vitamin D and skin cancer, Springer: 120-140. 

Liao, R., X. Jiang, Y. He, H. Ma, D. Li, N. Zeng and T. Yun (2010). "Rotating linear 

polarization imaging technique for anisotropic tissues." Journal of biomedical optics 15(3): 

036014-036014-036016. 

Lin, A. J., M. A. Koike, K. N. Green, J. G. Kim, A. Mazhar, T. B. Rice, F. M. LaFerla and 

B. J. Tromberg (2011). "Spatial frequency domain imaging of intrinsic optical property 

contrast in a mouse model of Alzheimer’s disease." Annals of biomedical engineering 

39(4): 1349-1357. 

https://kondinski.webs.com/


 142 

Lin, W., B. Zeng, Z. Cao, X. Chen, K. Yang and M. Xu (2018). "Quantitative diagnosis of 

tissue microstructure with wide-field high spatial frequency domain imaging." Biomedical 

Optics Express 9(7): 2905-2916. 

Liu, L., J. A. Gardecki, S. K. Nadkarni, J. D. Toussaint, Y. Yagi, B. E. Bouma and G. J. 

Tearney (2011). "Imaging the subcellular structure of human coronary atherosclerosis 

using micro-optical coherence tomography." Nature medicine 17(8): 1010-1014. 

Long, D. A. and D. Long (1977). Raman spectroscopy, McGraw-Hill New York. 

Lu, S.-Y. and R. A. Chipman (1996). "Interpretation of Mueller matrices based on polar 

decomposition." JOSA A 13(5): 1106-1113. 

Lu, Y., R. Li and R. Lu (2016). "Fast demodulation of pattern images by spiral phase 

transform in structured-illumination reflectance imaging for detection of bruises in apples." 

Computers and Electronics in Agriculture 127: 652-658. 

Lu, Y., R. Li and R. Lu (2016). "Gram–Schmidt orthonormalization for retrieval of 

amplitude images under sinusoidal patterns of illumination." Applied optics 55(25): 6866-

6873. 

Madan, V., J. T. Lear and R.-M. Szeimies (2010). "Non-melanoma skin cancer." The 

Lancet 375(9715): 673-685. 

Marieb, E. N. and K. Hoehn (2007). Human anatomy & physiology, Pearson Education. 

Mark, J. E. (2007). Physical properties of polymers handbook, Springer. 

Mazhar, A., D. J. Cuccia, S. Gioux, A. J. Durkin, J. V. Frangioni and B. J. Tromberg 

(2010). "Structured illumination enhances resolution and contrast in thick tissue 

fluorescence imaging." Journal of biomedical optics 15(1): 010506. 

Mazhar, A., S. Dell, D. J. Cuccia, S. Gioux, A. J. Durkin, J. V. Frangioni and B. J. 

Tromberg (2010). "Wavelength optimization for rapid chromophore mapping using spatial 

frequency domain imaging." Journal of biomedical optics 15(6): 061716. 

Mazhar, A., S. Saggese, A. C. Pollins, N. L. Cardwell, L. B. Nanney and D. J. Cuccia 

(2014). "Noncontact imaging of burn depth and extent in a porcine model using spatial 

frequency domain imaging." Journal of biomedical optics 19(8): 086019. 

McClatchy, D. M., E. J. Rizzo, W. A. Wells, C. C. Black, K. D. Paulsen, S. C. Kanick and 

B. W. Pogue (2018). "Light scattering measured with spatial frequency domain imaging 

can predict stromal versus epithelial proportions in surgically resected breast tissue." 

Journal of biomedical optics 24(7): 071605. 



 143 

McClatchy, D. M., E. J. Rizzo, W. A. Wells, P. P. Cheney, J. C. Hwang, K. D. Paulsen, B. 

W. Pogue and S. C. Kanick (2016). "Wide-field quantitative imaging of tissue 

microstructure using sub-diffuse spatial frequency domain imaging." Optica 3(6): 613-621. 

McClatchy III, D. M., P. J. Hoopes, B. W. Pogue and S. C. Kanick (2017). "Monochromatic 

subdiffusive spatial frequency domain imaging provides in‐situ sensitivity to intratumoral 

morphological heterogeneity in a murine model." Journal of biophotonics 10(2): 211-216. 

McGuire, J. F., N. G. Norman and S. Dyson (2009). "Nonmelanoma skin cancer of the 

head and neck I: histopathology and clinical behavior." American journal of 

otolaryngology 30(2): 121-133. 

Mega, Y., M. Robitaille, R. Zareian, J. McLean, J. Ruberti and C. DiMarzio (2012). 

"Quantification of lamellar orientation in corneal collagen using second harmonic 

generation images." Optics letters 37(16): 3312-3314. 

Mie, G. (1908). "Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen." 

Annalen der physik 330(3): 377-445. 

Minsky, M. (1961). Microscopy apparatus, Google Patents. 

Misfeld, M. and H.-H. Sievers (2007). "Heart valve macro-and microstructure." 

Philosophical Transactions of the Royal Society of London B: Biological Sciences 

362(1484): 1421-1436. 

Movasaghi, Z., S. Rehman and I. U. Rehman (2007). "Raman spectroscopy of biological 

tissues." Applied Spectroscopy Reviews 42(5): 493-541. 

Murray, J. M. (2005). "Confocal microscopy, deconvolution, and structured illumination 

methods." Live Cell Imaging—A Laboratory Manual. RD Goldman and DL Spector, 

editors. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY: 239-279. 

Nadeau, K. P., A. J. Durkin and B. J. Tromberg (2014). "Advanced demodulation technique 

for the extraction of tissue optical properties and structural orientation contrast in the spatial 

frequency domain." Journal of biomedical optics 19(5): 056013-056013. 

Nadeau, K. P., T. B. Rice, A. J. Durkin and B. J. Tromberg (2015). "Multifrequency 

synthesis and extraction using square wave projection patterns for quantitative tissue 

imaging." Journal of biomedical optics 20(11): 116005-116005. 

Naglič, P., F. Pernuš, B. Likar and M. Bürmen (2017). "Lookup table-based sampling of 

the phase function for Monte Carlo simulations of light propagation in turbid media." 

Biomedical optics express 8(3): 1895-1910. 



 144 

Nehal, K. S., D. Gareau and M. Rajadhyaksha (2008). Skin imaging with reflectance 

confocal microscopy. Seminars in cutaneous medicine and surgery, WB Saunders. 

Nie, S. and S. R. Emory (1997). "Probing single molecules and single nanoparticles by 

surface-enhanced Raman scattering." science 275(5303): 1102-1106. 

Nkomo, V. T., J. M. Gardin, T. N. Skelton, J. S. Gottdiener, C. G. Scott and M. Enriquez-

Sarano (2006). "Burden of valvular heart diseases: a population-based study." The Lancet 

368(9540): 1005-1011. 

O'Sullivan, T. D., A. E. Cerussi, B. J. Tromberg and D. J. Cuccia (2012). "Diffuse optical 

imaging using spatially and temporally modulated light." Journal of biomedical optics 

17(7): 071311. 

Osnabrugge, R. L., D. Mylotte, S. J. Head, N. M. Van Mieghem, V. T. Nkomo, C. M. 

LeReun, A. J. Bogers, N. Piazza and A. P. Kappetein (2013). "Aortic stenosis in the elderly: 

disease prevalence and number of candidates for transcatheter aortic valve replacement: a 

meta-analysis and modeling study." Journal of the American College of Cardiology 62(11): 

1002-1012. 

Parry, D. A. (1988). "The molecular fibrillar structure of collagen and its relationship to 

the mechanical properties of connective tissue." Biophysical chemistry 29(1): 195-209. 

Patterson, G. H. and D. W. Piston (2000). "Photobleaching in two-photon excitation 

microscopy." Biophysical journal 78(4): 2159-2162. 

Patton, K. T. and G. A. Thibodeau (2014). Mosby's Handbook of Anatomy & Physiology-

E-Book, Elsevier Health Sciences. 

Pawley, J. (2010). Handbook of biological confocal microscopy, Springer. 

Pibarot, P. and J. G. Dumesnil (2009). "Prosthetic heart valves selection of the optimal 

prosthesis and long-term management." Circulation 119(7): 1034-1048. 

Pircher, M., E. Götzinger, R. Leitgeb, H. Sattmann, O. Findl and C. K. Hitzenberger 

(2004). "Imaging of polarization properties of human retina in vivo with phase resolved 

transversal PS-OCT." Optics Express 12(24): 5940-5951. 

Ponticorvo, A., D. M. Burmeister, B. Yang, B. Choi, R. J. Christy and A. J. Durkin (2014). 

"Quantitative assessment of graded burn wounds in a porcine model using spatial 

frequency domain imaging (SFDI) and laser speckle imaging (LSI)." Biomedical optics 

express 5(10): 3467-3481. 

Ponticorvo, A., E. Taydas, A. Mazhar, T. Scholz, H.-S. Kim, J. Rimler, G. R. Evans, D. J. 

Cuccia and A. J. Durkin (2013). "Quantitative assessment of partial vascular occlusions in 



 145 

a swine pedicle flap model using spatial frequency domain imaging." Biomedical optics 

express 4(2): 298-306. 

Prasad, P. N. and D. J. Williams (1991). Introduction to nonlinear optical effects in 

molecules and polymers, Wiley New York etc. 

Prasad, P. V. (2006). Magnetic resonance imaging: methods and biologic applications, 

Springer. 

Qi, J. and D. S. Elson (2017). "Mueller polarimetric imaging for surgical and diagnostic 

applications: a review." Journal of biophotonics 10(8): 950-982. 

Rajadhyaksha, M., R. Anderson and R. H. Webb (1999). "Video-Rate Confocal Scanning 

Laser Microscope for Imaging Human Tissues< i> In Vivo</i>." Applied optics 38(10): 

2105-2115. 

Ramella-Roman, J. C., K. Lee, S. A. Prahl and S. L. Jacques (2004). "Design, testing, and 

clinical studies of a handheld polarized light camera." Journal of Biomedical Optics 9(6): 

1305-1310. 

Rohrbach, D. J., D. Muffoletto, J. Huihui, R. Saager, K. Keymel, A. Paquette, J. Morgan, 

N. Zeitouni and U. Sunar (2014). "Preoperative mapping of nonmelanoma skin cancer 

using spatial frequency domain and ultrasound imaging." Academic radiology 21(2): 263-

270. 

Rubart, M. (2004). "Two-photon microscopy of cells and tissue." Circulation research 

95(12): 1154-1166. 

Sacks, M. S. (2000). "Biaxial mechanical evaluation of planar biological materials." 

Journal of elasticity and the physical science of solids 61(1-3): 199-246. 

Sacks, M. S. (2003). "Incorporation of experimentally-derived fiber orientation into a 

structural constitutive model for planar collagenous tissues." Journal of biomechanical 

engineering 125(2): 280-287. 

Sacks, M. S. and F. J. Schoen (2002). "Collagen fiber disruption occurs independent of 

calcification in clinically explanted bioprosthetic heart valves." Journal of biomedical 

materials research 62(3): 359-371. 

Sacks, M. S., F. J. Schoen and J. E. Mayer Jr (2009). "Bioengineering challenges for heart 

valve tissue engineering." Annual review of biomedical engineering 11: 289-313. 

Sacks, M. S., D. B. Smith and E. D. Hiester (1997). "A small angle light scattering device 

for planar connective tissue microstructural analysis." Annals of biomedical engineering 

25(4): 678-689. 



 146 

Sandberg, L. B., N. T. Soskel and J. G. Leslie (1981). "Elastin structure, biosynthesis, and 

relation to disease states." New England Journal of Medicine 304(10): 566-579. 

Schoen, F., R. Levy, A. Nelson, W. Bernhard, A. Nashef and M. Hawley (1985). "Onset 

and progression of experimental bioprosthetic heart valve calcification." Laboratory 

investigation; a journal of technical methods and pathology 52(5): 523-532. 

Schoen, F. J. and R. J. Levy (2005). "Calcification of tissue heart valve substitutes: progress 

toward understanding and prevention." The Annals of thoracic surgery 79(3): 1072-1080. 

Sexton, M., D. B. Jones and M. E. Maloney (1990). "Histologic pattern analysis of basal 

cell carcinoma: study of a series of 1039 consecutive neoplasms." Journal of the American 

Academy of Dermatology 23(6): 1118-1126. 

Shriner, D. L., D. K. McCoy, D. J. Goldberg and R. F. Wagner Jr (1998). "Mohs 

micrographic surgery." Journal of the American Academy of Dermatology 39(1): 79-97. 

Shung, K. K. and G. A. Thieme (1992). Ultrasonic scattering in biological tissues, CRC 

Press. 

Singhal, P., A. Luk and J. Butany (2013). "Bioprosthetic heart valves: impact of 

implantation on biomaterials." ISRN Biomaterials 2013. 

SkinCancerFoundation (2018). Mohs Surgery Step-by-Step. MohsBro-web-illo-3. 

https://www.skincancer.org/skin-cancer-information/mohs-surgery/step-by-step, Skin 

Cancer Foundation. 

Smeets, N., D. Kuijpers, P. Nelemans, J. Ostertag, M. Verhaegh, G. Krekels and H. 

Neumann (2004). "Mohs' micrographic surgery for treatment of basal cell carcinoma of the 

face——results of a retrospective study and review of the literature." British journal of 

dermatology 151(1): 141-147. 

Smith-Bindman, R., J. Lipson, R. Marcus, K.-P. Kim, M. Mahesh, R. Gould, A. B. de 

González and D. L. Miglioretti (2009). "Radiation dose associated with common computed 

tomography examinations and the associated lifetime attributable risk of cancer." Archives 

of internal medicine 169(22): 2078-2086. 

Smith, C. R., M. B. Leon, M. J. Mack, D. C. Miller, J. W. Moses, L. G. Svensson, E. M. 

Tuzcu, J. G. Webb, G. P. Fontana and R. R. Makkar (2011). "Transcatheter versus surgical 

aortic-valve replacement in high-risk patients." New England Journal of Medicine 364(23): 

2187-2198. 

Smithpeter, C. L., A. K. Dunn, A. Welch and R. Richards-Kortum (1998). "Penetration 

Depth Limits of< i> In Vivo</i> Confocal Reflectance Imaging." Applied optics 37(13): 

2749-2754. 

https://www.skincancer.org/skin-cancer-information/mohs-surgery/step-by-step


 147 

So, P. T., C. Y. Dong, B. R. Masters and K. M. Berland (2000). "Two-photon excitation 

fluorescence microscopy." Annual review of biomedical engineering 2(1): 399-429. 

Srinivasan, V., H.-C. Liu and M. Halioua (1984). "Automated phase-measuring 

profilometry of 3-D diffuse objects." Applied optics 23(18): 3105-3108. 

Star, W. M. (1995). Diffusion theory of light transport. Optical-thermal response of laser-

irradiated tissue, Springer: 131-206. 

Stella, J. A., J. Liao and M. S. Sacks (2007). "Time-dependent biaxial mechanical behavior 

of the aortic heart valve leaflet." Journal of biomechanics 40(14): 3169-3177. 

Stella, J. A. and M. S. Sacks (2007). "On the biaxial mechanical properties of the layers of 

the aortic valve leaflet." Journal of biomechanical engineering 129(5): 757-766. 

Stoller, P., K. M. Reiser, P. M. Celliers and A. M. Rubenchik (2002). "Polarization-

modulated second harmonic generation in collagen." Biophysical journal 82(6): 3330-

3342. 

Sun, M., H. He, N. Zeng, E. Du, Y. Guo, S. Liu, J. Wu, Y. He and H. Ma (2014). 

"Characterizing the microstructures of biological tissues using Mueller matrix and 

transformed polarization parameters." Biomedical optics express 5(12): 4223-4234. 

Sun, W. and P. Lal (2002). "Recent development on computer aided tissue engineering—

a review." Computer methods and programs in biomedicine 67(2): 85-103. 

Sun, W., M. S. Sacks, T. L. Sellaro, W. S. Slaughter and M. J. Scott (2003). "Biaxial 

mechanical response of bioprosthetic heart valve biomaterials to high in-plane shear." 

Journal of biomechanical engineering 125(3): 372-380. 

Tearney, G., M. Brezinski, J. Fujimoto, N. Weissman, S. Boppart, B. Bouma and J. 

Southern (1996). "Scanning single-mode fiber optic catheter–endoscope for optical 

coherence tomography." Optics Letters 21(7): 543-545. 

Tearney, G. J., M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern and 

J. G. Fujimoto (1997). "In vivo endoscopic optical biopsy with optical coherence 

tomography." Science 276(5321): 2037-2039. 

Teh, I., D. McClymont, R. A. Burton, M. L. Maguire, H. J. Whittington, C. A. Lygate, P. 

Kohl and J. E. Schneider (2016). "Resolving fine cardiac structures in rats with high-

resolution diffusion tensor imaging." Scientific reports 6: 30573. 

Tower, T. T., M. R. Neidert and R. T. Tranquillo (2002). "Fiber alignment imaging during 

mechanical testing of soft tissues." Annals of biomedical engineering 30(10): 1221-1233. 



 148 

Tranquart, F., N. Grenier, V. Eder and L. Pourcelot (1999). "Clinical use of ultrasound 

tissue harmonic imaging." Ultrasound in medicine & biology 25(6): 889-894. 

Tuchin, V. V. (2007). Tissue optics: light scattering methods and instruments for medical 

diagnosis, SPIE press Bellingham. 

Valdes, P. A., J. P. Angelo, H. S. Choi and S. Gioux (2017). "qF-SSOP: real-time optical 

property corrected fluorescence imaging." Biomedical optics express 8(8): 3597-3605. 

Vannier, M. W. and J. L. Marsh (1996). "Three-dimensional imaging, surgical planning, 

and image-guided therapy." Radiologic Clinics of North America 34(3): 545-563. 

Vargas, J., J. A. Quiroga, C. Sorzano, J. Estrada and J. Carazo (2012). "Two-step 

demodulation based on the Gram–Schmidt orthonormalization method." Optics letters 

37(3): 443-445. 

Vedrine, P., G. Aubert, F. Beaudet, J. Belorgey, J. Beltramelli, C. Berriaud, P. Bredy, P. 

Chesny, A. Donati and G. Gilgrass (2008). "The whole body 11.7 T MRI magnet for 

Iseult/INUMAC project." Applied Superconductivity, IEEE Transactions on 18(2): 868-

873. 

Vervandier, J. and S. Gioux (2013). "Single snapshot imaging of optical properties." 

Biomedical optics express 4(12): 2938-2944. 

Vesely, I. (2003). "The evolution of bioprosthetic heart valve design and its impact on 

durability." Cardiovascular Pathology 12(5): 277-286. 

Vyavahare, N., D. Hirsch, E. Lerner, J. Z. Baskin, F. J. Schoen, R. Bianco, H. S. Kruth, R. 

Zand and R. J. Levy (1997). "Prevention of bioprosthetic heart valve calcification by 

ethanol preincubation efficacy and mechanisms." Circulation 95(2): 479-488. 

Vyavahare, N., M. Ogle, F. J. Schoen, R. Zand, D. C. Gloeckner, M. Sacks and R. J. Levy 

(1999). "Mechanisms of bioprosthetic heart valve failure: fatigue causes collagen 

denaturation and glycosaminoglycan loss." Journal of biomedical materials research 46(1): 

44-50. 

Walley, V. M., C. A. Keon, M. Khalili, D. Moher, M. Campagna and W. J. Keon (1992). 

"Ionescu-Shiley valve failure I: experience with 125 standard-profile explants." The 

Annals of thoracic surgery 54(1): 111-116. 

Wang, L. V. and H.-i. Wu (2012). Biomedical optics: principles and imaging, John Wiley 

& Sons. 



 149 

Wang, X.-j., T. E. Milner, M. C. Chang and J. S. Nelson (1996). "Group refractive index 

measurement of dry and hydrated type I collagen films using optical low-coherence 

reflectometry." Journal of biomedical optics 1(2): 212-216. 

Wax, A., C. Yang, V. Backman, K. Badizadegan, C. W. Boone, R. R. Dasari and M. S. 

Feld (2002). "Cellular organization and substructure measured using angle-resolved low-

coherence interferometry." Biophysical journal 82(4): 2256-2264. 

Whittaker, P. and P. B. Canham (1991). "Demonstration of quantitative fabric analysis of 

tendon collagen using two-dimensional polarized light microscopy." Matrix 11(1): 56-62. 

Wiest, J., N. Bodenschatz, A. Brandes, A. Liemert and A. Kienle (2015). "Polarization 

influence on reflectance measurements in the spatial frequency domain." Physics in 

medicine and biology 60(15): 5717. 

Wilson, T. (1990). "Confocal microscopy." Academic Press: London, etc 426: 1-64. 

Wirth, D., M. Sibai, J. Olson, B. C. Wilson, D. W. Roberts and K. Paulsen (2018). 

"Feasibility of using spatial frequency-domain imaging intraoperatively during tumor 

resection." Journal of biomedical optics 24(7): 071608. 

Wood, M. F., N. Ghosh, E. H. Moriyama, B. C. Wilson and I. A. Vitkin (2009). "Proof-of-

principle demonstration of a Mueller matrix decomposition method for polarized light 

tissue characterization in vivo." Journal of biomedical optics 14(1): 014029-014029-

014025. 

Xing, L., B. Thorndyke, E. Schreibmann, Y. Yang, T.-F. Li, G.-Y. Kim, G. Luxton and A. 

Koong (2006). "Overview of image-guided radiation therapy." Medical Dosimetry 31(2): 

91-112. 

Yafi, A., F. K. Muakkassa, T. Pasupneti, J. Fulton, D. J. Cuccia, A. Mazhar, K. N. Blasiole 

and E. N. Mostow (2017). "Quantitative skin assessment using spatial frequency domain 

imaging (SFDI) in patients with or at high risk for pressure ulcers." Lasers in surgery and 

medicine 49(9): 827-834. 

Yafi, A., T. S. Vetter, T. Scholz, S. Patel, R. B. Saager, D. J. Cuccia, G. R. Evans and A. 

J. Durkin (2011). "Postoperative quantitative assessment of reconstructive tissue status in 

cutaneous flap model using spatial frequency domain imaging." Plastic and reconstructive 

surgery 127(1): 117. 

Yang, B., J. Lesicko, M. Sharma, M. Hill, M. Sacks and J. W. Tunnell (2014). Collagen 

Fiber Orientation Mapping with Top Layer Discrimination using Polarized Light Spatial 

Frequency Domain Imaging (pSFDI) on Native Heart Tissue. Biomedical Optics, Optical 

Society of America. 



 150 

Yang, B., J. Lesicko, M. Sharma, M. Hill, M. S. Sacks and J. W. Tunnell (2015). "Polarized 

light spatial frequency domain imaging for non-destructive quantification of soft tissue 

fibrous structures." Biomedical optics express 6(4): 1520-1533. 

Yang, B., M. Sharma and J. W. Tunnell (2013). "Attenuation-corrected fluorescence 

extraction for image-guided surgery in spatial frequency domain." Journal of biomedical 

optics 18(8): 080503. 

Zhang, W. and M. S. Sacks (2017). "Modeling the response of exogenously crosslinked 

tissue to cyclic loading: The effects of permanent set." Journal of the mechanical behavior 

of biomedical materials 75: 336-350. 

Zhou, W.-S. and X.-Y. Su (1994). "A direct mapping algorithm for phase-measuring 

profilometry." Journal of modern optics 41(1): 89-94. 

Zipfel, W. R., R. M. Williams, R. Christie, A. Y. Nikitin, B. T. Hyman and W. W. Webb 

(2003). "Live tissue intrinsic emission microscopy using multiphoton-excited native 

fluorescence and second harmonic generation." Proceedings of the National Academy of 

Sciences 100(12): 7075-7080. 

 


