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Learning Attributes of Real-world Objects by

Clustering Multimodal Sensory Data
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Supervisor: Peter Stone

The goal of this work is to propose a framework for learning attributes

of real-world objects via a clustering-based approach that aims to reduce the

amount of human effort required in the form of labels for object categorization.

Due to clustering, with just a single annotation, we can get information about

all the objects in a cluster. In the field of robotics, even though studies have

focused on the problem of object categorization, the aspect of the amount of

workload for a user has not been explored much. However, as the presence

of robots has started growing in our daily lives, it is important to reduce the

human effort required in labelling for a robot to learn about its environment.

Therefore, we propose a hierarchical clustering-based model that can learn

the attributes of objects without any prior knowledge about them. It clusters

multi-modal sensory data obtained by exploring real-world objects in an un-

supervised fashion and then obtains labels for these clusters with the help of

a human and uses this information to predict attributes of novel objects.
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Chapter 1

Introduction

Various studies in psychology have focused on the human skill of cate-

gorizing objects. Humans seem to learn this skill at a very young age [3] and

it is an important part of their mental development [5]. Various branches of

research have shown the importance of object exploration for object catego-

rization [9][26]. Most of these works have focused on categorizing objects using

only the visual domain [20][22][18] or using toy objects [23]. [7][21] show that

an only vision approach is not the best source to learn about object attributes.

Other sensory modalities such as auditory, haptic and proprioceptive are also

useful in distinguishing between several objects based on their attributes [31]

and hence we choose to use a multi-modal approach that combines sensory

data from visual, auditory, haptic and proprioceptive domains and use it to

learn attributes of 32 real-world objects.

As robots are getting more ubiquitous, object exploration and learning

about the environment is of much interest to the robotics community. How-

ever, although a robot placed in an unknown environment can go around and

explore objects and collect multi-modal sensory data, a human user is still

required to connect the data to natural language. Early works concerned with

1



object labelling and categorization using the multi-modal approach incremen-

tally learn the object labels, one at a time, and hence each attribute of the

object has to be labelled individually [31][32][11]. This is a major impediment

when it comes to large sets of objects where it’s time consuming to label each

object individually and small training data can lead to bad performance. A few

groups in the computer vision field have explored active learning [14][15][17]

and group-based learning [6][19] as solutions to reducing the amount of work-

load required from the human for labelling; however they have employed only

a vision-based approach (see Chapter 2 for more details).

To address this gap, we propose a framework that grounds the at-

tributes of the objects to the robot’s exploratory interactions with the objects.

In the first stage, following an unsupervised learning method, the robot first

clusters the data from each sensory modality separately which was obtained

via performing each of the exploratory behaviors on the objects. Then, the

robot obtains labels for these clusters from a human user, thereby reducing the

amount of human effort required to label each attribute of an object individu-

ally. More specifically, the robot is trying to ground each attribute it learns of

an object using the sensory data collected while performing a particular action.

In the end, the robot uses this grounded knowledge to predict the attributes of

new objects it has not encountered before. We assume that the robot has no

prior knowledge about which action is best for learning a particular attribute

and hence chooses to cluster and label all sensory data obtained during every

behavior and then, in the end, based on the results, deduces which one would
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be a best fit to learn a particular attribute.

The model proposed above is explained in greater detail in the follow-

ing sections. Chapter 2 discusses some of the prior work that has been done

and the inspiration for our methodology from the fields of robotics, computer

vision, psychology and cognitive science. Chapter 3 and 4 will cover our ex-

perimental methodology in greater detail. Chapter 3 discusses the robot used

for our experiment, the real-world objects used along with the attributes that

are to be learnt, the exploratory behaviors performed on those objects and the

sensory data that was collected. Chapter 4 explains the baseline experiment

implemented for our comparison and our clustering approach. Chapter 5 gives

the analysis of the results obtained and Chapter 6 concludes this thesis and

highlights some of the major takeaways and some future improvements.
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Chapter 2

Related Works

Our work focuses on reducing the amount of human effort required in

obtaining labels about attributes of objects. Research carried out in the field

of psychology and cognitive science shows that children, since a very young

age, take advantage of similar characteristics in objects to group them together

in order to remember them. We incorporate this clustering based approach

in our labelling process, so that we can obtain labels for groups instead of

single objects. From, the field of robotics and computer vision, we build upon

the idea of active learning of iteratively getting labelled data and group-based

learning where human help is required to pick out noisy data.

2.1 Psychology and Cognitive Science

The ability to categorize objects based on their similarities and dis-

similarities emerges in children at a very young age. Studies have shown that

4-to-6 year old children employed spontaneous clustering memory strategies to

remember objects. They found that the recall rate was much better when the

children first sorted the items based on conceptual or perceptual similarities

and then stored them in their memory [33]. Younger children tend to group
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objects based on color and form first and then at older stages move on to

grouping based on conceptual attributes [24]. They also found that 2-year-old

children guessed the categories correctly when the objects belonging to same

conceptual categories were placed together and they could also figure out the

odd one out [10].

The general experiment conducted for these tests are that infants are

familiarized with different pairs of objects belonging to the same categories

(exploration stage) and then in the testing phase are introduced and are al-

lowed to explore novel objects and are asked to pick the objects belonging to

the same category [25]. We implemented this same learning methodology in

our clustering-based approach where the robot first clustered the sensory data

in an unsupervised fashion that it obtained and then got labels for those clus-

ters from the human user and this knowledge was tested out on novel objects

in the testing phase.

2.2 Robotics and Computer Vision

Reducing the amount of human effort required in labelling for classifica-

tion is a rising problem that is being tackled by active learning [14][15][17] and

group-based learning [6][19] in the fields of computer vision as large amounts

of training data is required for image classification tasks. However, in the field

of robotics, this aspect has not received a lot of attention majorly because

object categorization for robots has not been explored much for large data

sets [23][31][11].
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Active learning selects a meaningful subset of the available training

data and uses it to train a classifier. However, such a system is only efficient

if there exists a subset that is good enough to train the classifiers [37]. Also

[36] mentions that active learning usually requires apriori information about

the visual concepts in order pick a good subset of the unlabelled data for

labelling and also requires prior knowledge on the number of classes present

[15]. So, active learning usually starts out with a certain amount of labelled

data [28][35][13][34] and then accordingly picks unlabelled data to better the

performance of its classifiers. On the other hand, group-based learning assigns

labels to a group of training samples. It is more efficient than active learning

but it does require more human effort and latency to remove the noisy data if

they differ from the dominating class labels [8] or exactly picking those groups

that represent a coherent label [36].

However, both of these methods are only concerned with the visual

domain and also each of them has it’s own disadvantages. Therefore, we

introduce a new clustering based-algorithm that builds on the goodness of

both active and group-based learning. Like active learning, it learns iteratively

but does not require apriori information regarding the number of classes or

concepts. Like group-based learning it picks clusters and provides labels to

entire groups but does take human help to pick out the noisy data from the

clusters that do not adhere to the dominant label. Moreover, to our knowledge,

ours is the first algorithm that does this with multi-modal data in the field of

robotics.
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Chapter 3

Experimental Methodology

3.1 Robot

The robot used in our experiment is a custom-built two-wheeled robot

that uses Segway Robotic Mobility Platform (RMP). There is a 6-DOF Kinova

Mico Arm with a two-fingered under-actuated gripper installed on the robot

which is used for manipulation purposes. We further equipped the robot with

a Asus XTION Pro USB 3.0 RGB and Depth Sensor to capture the visual

data and also a Audio-Technica U853AW cardioid microphone used to collect

the auditory feedback.

To test out our proposed framework, the robot explored a set of 32 real-

world objects. The set mostly consisted of bottles, cans, balls, boxes as shown

in Figure 3.1. The objects were chosen in such a way that they varied in color,

shape, material, size (width), height, weight, deformability and contents. The

ground truth table for all the objects is shown in Table 3.1 and the attribute

categories and ranges are shown in Table 3.2. The height and width of the

objects was measured in millimeters and the weight was measured in grams.

Some of the objects were filled with water, coffee beans, or lentils so as to

make them differ in the attributes learnt.
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Figure 3.1: 32 real-world objects used as our data set.
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Objects Color Shape Material Height Weight Deformable Width Contents

silver cappuccino maker silver cylindrical metal short heavy non-deformable wide empty
christmas red container red cylindrical metal short light non-deformable wide empty
mac and cheese box blue cuboid paper tall heavy deformable thin filled
yellow water bottle yellow cylindrical plastic tall heavy non-deformable wide filled
tin can silver cylindrical metal short light non-deformable wide empty
wooden knife stand brown cuboid wood short heavy non-deformable wide empty
dark blue sunfounder box blue cuboid paper short light deformable thin empty
red tall cup red cylindrical plastic tall light non-deformable thin empty
wooden pepper grinder brown cylindrical wood short heavy non-deformable thin empty
starbucks doubleshot hazelnut brown cylindrical metal tall light deformable thin empty
scotch tape box green cuboid paper short light deformable wide empty
stainless steel cannister silver cylindrical metal short light non-deformable thin empty
wooden melon tea box brown cuboid wood short heavy non-deformable wide filled
green water bottle green cylindrical plastic tall heavy non-deformable wide empty
pale yellow cup yellow cylindrical plastic short light deformable wide empty
big red pop can red cylindrical metal short light deformable wide empty
blue squish ball blue spherical plastic short light deformable thin empty
green tall cup green cylindrical plastic short light non-deformable thin empty
excedrin medicine box red cuboid paper short light deformable thin filled
yellow mustard bottle yellow cylindrical plastic tall light deformable thin empty
wooden cylindrical container brown cylindrical wood short light non-deformable thin empty
red ketchup bottle red cylindrical plastic tall heavy deformable thin filled
lysol container yellow cylindrical plastic tall light deformable wide empty
regular creamcheese box grey cuboid paper short light deformable thin empty
dark green sports bottle green cylindrical plastic tall heavy deformable wide filled
yellow squish ball yellow spherical plastic short light deformable thin empty
red water bottle red cylindrical plastic tall heavy non-deformable thin filled
blue salt can blue cylindrical paper short light non-deformable wide filled
tennis container split peas green cylindrical plastic tall heavy deformable wide filled
blue tall cup blue cylindrical plastic short light non-deformable thin empty
tiny metallic can silver cylindrical metal short heavy non-deformable wide filled
red bull pop can blue cylindrical metal tall light Deformable thin empty

Table 3.1: Attribute Ground Truth Table for all the objects in the dataset

Short Tall
Height (mm) <= 150 >150

Thin Wide
Width (mm) <= 61 >61

Light Heavy
Weight (g) <= 90 >90

Table 3.2: Attribute range cutoffss
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3.2 Exploratory Behaviors

The robot explored the set of 32 objects using 11 exploratory be-

haviours. These 10 actions - look, drop, grasp, hold, lift, poke, press, push,

revolve, shake and squeeze were done in a sequence, one after the other. Each

one of them is shown in Figure 3.2. These behaviors were chosen so that the

robot could obtain a grounded object representation irrespective of a particu-

lar action and even though its possible that some behaviors are not good for

learning any of the attributes, the robot did not have this information apriori.

All the behaviors except for the look behavior were programmed as joint-space

trajectories for fixed object positions on a table and executed using the Kinova

arm, while the look behavior consisted of taking 6 RGB-D snapshots of the ob-

jects from different viewpoints using the XTION RGB and Depth Sensor. All

of the 11 behaviors were performed 6 times on each object, finishing one round

on all 32 objects first and then starting the next round in order to minimize

any transient noise. So, there were a total of 2112 interactions categorized into

60 trials for each object. The whole data collection process took 12 hours in

total.
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Figure 3.2: 10 exploratory behaviors used in our framework.

3.3 Sensory Modalities

The robot explored the object set using an approach formerly imple-

mented in [30]. Table 3.3 gives a short summary of the number of features

extracted for each modality and behavior and a detailed description is provided

below.

3.3.1 Visual Feature Extraction

During each trial of the look behavior, using the segmented point clouds

of the object perceived by the robot, a 8 × 8 × 8 RGB color histogram was

extracted by binning over each channel. Due to its high-dimensionality, it was

further binned into so that the color histogram for each trial was represented

by a feature vector of size 64. The binning was done by setting the value

of each bin to the average of the values of the color histogram that fell into

that bin. Also, Fast Point Feature Histogram (fpfh) [27] from the Point Cloud
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Library [2] were used to compute shape features in a similar way. These were

represented by a vector with 308 features for each trial.

3.3.2 Auditory Feature Extraction

During each of the other 10 behaviors, auditory data was recorded

from start to end of each action in the form of a waveform via a microphone.

By calculating log-normalized Discrete Fourier Transforms (DFT), auditory

features were extracted using 65 frequency bins. Each bin represented the

intensity of each frequency bin at each time step. To reduce the dimensionality

of these features, they were down sampled via temporal binning into a 10 x

10 matrix in the same way as mentioned above. So, finally auditory features

for each trial were represented by a feature vector of size 100.

3.3.3 Haptic Feature Extraction

Haptic data was recorded for the duration of each of the behaviors

except the look behavior. The robot recorded the joint efforts values for all

6 joints at a frequency of 15Hz. To reduce the dimensionality, the data was

down sampled into 10 bins and therefore the haptic features were represented

by a feature vector of size 60.

3.3.4 Proprioceptive Feature Extraction

Prioprioceptive data was recorded in the form of joint angular positions

of the fingers of the end effector during the duration of the grasp behavior.
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This was also recorded at a frequency of 15Hz and down sampled into 10 equal

sized bins, giving a features vector of size 20.

3.4 Sensorimotor Contexts

Each valid combination of a behavior picked from the set of 11 behav-

iors performed by the robot and a modality (set of audio, visual, haptic, and

proprioceptive) formed a behavior-modality pair called a sensorimotor con-

text denoted by CBM . Let P (CBM) denote the power set of all sensorimotor

contexts. Therefore, there were a total of

10 ∗ 2 + 1 ∗ 2 + 1 = 23

as all 10 behavior except for look has both audio and visual modalities avail-

able, grasp had an additional proprioceptive modality and look had color and

fpfh (shape).

Behavior Modality

audio haptics proprioception
drop, hold,
lift, poke,
press, push,
revolve, shake,
squeeze

100 60

grasp 100 60 20

color fpfh
look 64 308

Table 3.3: Number of features extracted from a particular context for the
different sensor modalities.
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Chapter 4

Theoretical Model

4.1 Problem Formulation

In our proposed framework, the robot learns the attributes of the ob-

jects by incrementally adding objects to its training data set. Three experi-

ments were carried out with variations to show that clustering objects with the

same attribute together, minimizes the amount of human effort required in the

form of answering questions in order to learn all attributes of the objects. For

all the experiments below, we measure the amount of human effort required

in terms of questions being answered to obtain the labels for the attributes.

So to label all attributes for a single object, a total of 8 questions need to be

answered. However, for a perfect cluster, where say all objects are ”red”, to

label the color of the all objects in that cluster, only 1 question was answered.

Let QH be the number of questions answered by the human at any given point

of time.

Experiment 1 was where the robot explored the objects incrementally,

adding one object to the training set each time. This experiment serves as

the baseline for our algorithm. Experiment 2 was where the robot added

a cluster of objects with a unifying attribute to the training data set each

14



time using our proposed algorithm. Here, for each sensorimotor context, the

objects were clustered via a spectral clustering method developed by Luigi

Dragone [1] implemented for Weka [12] (Section 4.2) using methods from [29],

[16], Java and the linear algebra library named COLT developed by CERN.

This experiment goes to show that clustering the objects beforehand reduces

the number of questions asked. Experiment 2a was the automated version

(similar to getting the labels from an expert user) and Experiment 2b is a

variation where the labels are provided by different users via an interface.

This experiment was carried out to show that our algorithm still does better

than the baseline even with a lot of variations in the labels learnt and it also

serves as a way to get a variety of labels for the same set of objects.

4.2 Weka and Spectral Clustering

WEKA is an Open Source Knowledge Discovering and Data Mining

system developed by the University of Waikato in New Zealand. It contains

tools for data pre-processing, classification and clustering and therefore was

our choice for the experiments.

The spectral clustering algorithm is based on the concept of finding

similarity between two points. It clusters the data by trying to maximize the

similarity of data in one cluster and minimize the similarity of data points

between two clusters. It can be looked at as a graph-partitioning problem

where the edges of the graph represent the similarity between two points and

the goal of the algorithm is to find minimum weight cuts. The similarity is
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computed using the Euclidean distance function as shown below:

s(x, y) = exp(−d(x, y)2/(2 ∗ σ2))

where: s(x, y) represents the similarity between the points x and y

d(x, y) represents the Euclidean distance

σ represents the scaling factor.

The way it is implemented by Dragone [1] is in the form of a hierarchical

clustering algorithm which if given a set of objects, outputs a tree where the

leaves are each one single object and the parent is represented by the combined

set of objects of its children.

4.3 Learning Attributes of Objects

Let LR be the set of labels for a particular attribute, AR where R ∈

material, size, height, width, color, shape, deformable, has contents. For ex-

ample, Lheight = {short, tall} for Aheight. Let L be a label such that L ∈ LR.

P (AR) represents the power set of all possible AR. Also, let the object set be

denoted by O and the number of objects known at any given point of time be

denoted as Oknown. Oknown starts out by being a null set at the beginning of

each trial for each experiment (explained further in Section 4.4.1). The task

of the robot is to Slearn a model for each of the attributes, AR, such that the

model can classify if a feature vector for an object in a particular context, FN
C

where C ∈ CMB (contexts defined in Section 3.5) and N represents the Nth

object that is picked for testing, is a positive example or negative example for
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L ∈ LR. Let UL
O represent the positive example for a label, L provided by

object O. To solve this problem, the robot uses a supervised machine learning

approach to build a model, MC
AR

for each context which computes a probabilis-

tic estimate of whether a given FN
C holds for each L ∈  LR. Note that here we

are performing a multi-class classification, so each feature vector, FN
C serves as

a positive example for its ground truth label, L, and also serves as a negative

example for all the other labels L′ = LR−L, for an attribute, AR. Essentially,

it’s a combined classifier formed out of combining all N binary classifiers for

each of the labels L in LR:

P̂ r(ON ∈ L1|UL
O) + P̂ r(ON ∈ L2|UL

O) + · · ·+ P̂ r(ON ∈ LN |UL
O) = 1

where {L1, L2, . . . , LN} ∈ LR. In our experiments, the models MC
AR

learnt

were C4.8 Decision trees from WEKA [38] and the probabilistic distributions

given by the classifiers were the class level distributions at the leaves of the

decision trees.

4.4 Incremental Learning of Attributes of Objects

4.4.1 Interaction stage

The robot explores the object set, O via behaviors and records multi-

sensory data during each behavior in the form of feature vectors, FN
C where

C ∈ CBM and N represents the Nth object that is picked from O where

N ∈ {1, 2, 3, . . . , 32}. For all the experiments below, we did 10 test-train splits
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where each round had 27 training objects denoted by Otrain and 5 test objects

denoted by Otest. As the order in which the training objects are explored

matters and affects the performance, for each test-train split, we randomly

shuffled the training objects 10 times, giving us a total of 100 trials for each

attribute learnt, AR.

4.4.2 Clustering stage

For Experiments 2, we follow the clustering-based approach. For each

context, CBM , we input the feature vectors for the training objects and com-

pute the similarity matrix of how similar one object is to another using the

similarity function given in Section 4.2 and then perform spectral clustering

and get a hierarchical tree of the object clusters. For each context, let the

current object cluster picked be denoted by CO. We set the value of σ to 1.0

for our experiments. We stop splitting the nodes when they become clusters

of 3 or less objects and hence those become our leaves. This is because our

algorithm can handle cases of up to 2 outliers in a cluster (detailed explanation

given in Section 4.3.1 and Section 4.3.3). We only pick those clusters, denoted

by Ocls, that have 6 objects or less in them for our clustering approach.

4.4.3 Experiment 1: Incremental Learning of Object Attributes

Learning Stage: After the interaction stage, each iteration of a trial

consists of adding an object ON to the set Oknown and training the classifier

for each context, using Uknown obtained up until this point. Let Uknown be the
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full set of positive and negative example feature vectors associated with all

the labels learnt so far up until exploring object ON .Each iteration consists of

training, |CBM | classifiers, one per context. The candidate training points in

Uknown are used to update the multi-class model, MC
AR

as shown in Algorithm

1.

Performance Evaluation Stage: Later, after all the models per

context are trained, we also used a combined recognition model to test on the

5 test objects, kept aside at the beginning of the experiment. Here, WC (line 11

of Algorithm 2) refers to the reliability weight of a context, which is obtained

from performing a k-fold cross validation on the Oknown objects, where k is

equal to the number of Oknown objects for a particular iteration if Oknown is

less than 5 or else its a 5-fold cross validation.α is a normalization factor to

sum all the probabilities to 1. The combined recognition model gives us the

combined weighted kappa statistic (described in detail in Section 5) from each

context in regards to the attribute being learnt. At each iteration, the number

of questions answered, QH is recorded (line 12) to measure the human effort.
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Algorithm 1 Incremental Learning of Object Attributes

1: for a ∈ P (AR) do
2: for c ∈ P (CBM) do
3: for ON ∈ Oknown do
4: Generate UL

O using FN
C and L

5: Update Uknown using UL
O

6: train(MC
AR
, Uknown)

7: P̂ r(ON ∈ L)|Uknown) = evaluate(MC
AR
, Utest)

8: end for
9: end for
10: for c ∈ P (CBM) do
11: P̂ r(ON ∈ L)|Utest) = α

∑
Uknown∈c

WC × P̂ r(ON ∈ L)|Uknown)

12: end for
13: return kappa for

∑
C∈P (CBM )

MC
AR

and QH

14: end for

4.4.4 Experiment 2: Clustering-based Incremental Learning of Ob-
ject Attributes

There are two versions of this experiment being carried out. One is

an automated version - Experiment 2a where the labels are provided by the

expert user. The other one - Experiment 2b is where the labels are provided

by different users via an interface. Each of the Experiments, 2a and 2b, has

two variations. As the human effort is measured in terms of the number of

questions answered, in the first variation, we count a question being answered

when a cluster gets a label. If a cluster is skipped because it does not have

a unifying label for a particular attribute, we do not count that as answering

a question. The second variation counts that as a question being answered.

Here onwards, we will call the two variations as - Experiment 2a or 2b w/ Skip
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Questions and Experiment 2a or 2b w/o Skip Questions.

4.4.4.1 Experiment 2a: Labels from an Expert in Simulation

For Experiment 2a, we use the ground truth table given in Section 3.2

to simulate the expert’s answers. So the value of the labels is taken from the

ground truth table. Experiment 2a is divided in the following two stages:

Learning Stage: To get the best context that learns a particular

attribute, each context, CBM is trained to learn each attribute, AR. In each

iteration, the candidate training points in Uknown are used to update the multi-

class classifier, MC
AR

as shown in Algorithm 2. Let Oout denote the set of

outliers at any given point of time in a trial and the clusters formed from

the outliers be Cout. Oout = {} at the beginning of each trial. Each iteration

consists of training |CBM | classifiers, one per context.

Performance Evaluation: At the end of each iteration of a context

which involves getting a label for a cluster of objects, the model MC
AR

is eval-

uated with a set of objects, Otest, which, in this case, are 5 objects. The WC

used for each context and the combined weighted kappa statistic (described in

detail in Section 5) for each context in regards to the attribute being learnt, is

computed in the same way as of Experiment 1. At each iteration, the number

of questions answered, QS, denoting the count including the Skip Questions

and QNS for the count excluding them is recorded to measure the amount

of human effort. QNS and QS are initialized to 0 at the beginning of each

iteration of a context.
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Algorithm 2 Clustering-based Incremental Learning Experiment

1: for c ∈ P (CBM) do
2: Generate Ocls = {C1

O, C
2
O, . . . , C

N
O }

3: for a ∈ P (AR) do
4: for c ∈ P (CBM) do
5: Initialize QNS and QS to 0
6: for ON ∈ CO do
7: Query expert user for L
8: if ∀(ON) has L then
9: for ON ∈ CO do
10: Update Oknown with CO

11: Generate UL
O using FN

C and L
12: Update Uknown using UL

O

13: end for
14: QNS = QNS + 1
15: QS = QS + 1
16: else if ∃(O1) or ∃(O1, O2) ∈ CO have ¬L then
17: Update Oknown with CO \ {O1, O2}
18: Update Oout with (O1) or (O1, O2)
19: for ON ∈ CO \ {O1, O2} do
20: Generate UL

O using FN
C and L

21: Update Uknown using UL
O

22: end for
23: QNS = QNS + 1
24: QS = QS + 1
25: else
26: QS = QS + 1
27: getChildrenClusters(CO)
28: Repeat Steps (6-18)
29: end if
30: train(MC

AR
, Uknown)

31: evaluate(MC
AR
, Utest)

32: end for
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Algorithm 2 Clustering-based Incremental Learning Experiment (Continued)

33: Generate clusters from Oout using KMeans
34: for CO ∈ Cout do
35: Repeat Steps (6-27)
36: end for
37: end for
38: for c ∈ P (CBM) do
39: P̂ r(ON ∈ L)|Utest) = α

∑
Uknown∈c

WC × P̂ r(ON ∈ L)|Uknown)

40: end for
41: return kappa for

∑
C∈P (CBM )

MC
AR

and QNS and QS

42: end for
43: end for

The advantage of doing this experiment in simulation is that we can

do multiple runs in simulation and therefore we do not have to constrain it

to just one context being used to learn a particular attribute. However, it

also doesn’t make sense to do all combinations of contexts and attribute, for

example, we know that the clusters from look color context would definitely

not be good to learn the attribute weight efficiently. Therefore, we do a prior

experiment to get a set of contexts for every attribute which would be used to

pick the clusters from for Experiment 2a. In this experiment, for each context

we learn all 8 attributes, following the algorithm mentioned above. However,

we do not use a combined context model to train the classifiers. We only use

the data from current context to train the attribute classifiers and test on

the test objects, so as to see which context is good for learning a particular

attribute. The contexts that performed the best are tabulated in Table 4.1 and

the results are depicted in Figure 4.1. The best contexts were chosen based
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on the highest kappa co-efficient achieved at the end, after all 27 objects are

trained and tested on the 5 objects, the smoothness of the curves and also the

number of questions answered to label all objects. Rest of the graphs can be

found in Appendix 1, Section 1.3.

Attribute Chosen Sensorimotor Contexts
Color look color
Shape push audio, look shape
Height press haptics, press audio, squeeze haptics
Size grasp size, grasp haptics
Weight drop haptics, hold haptics, lift haptics,

push haptics, shake haptics
Material drop audio, push audio
Deformable revolve haptics, lift haptics
Contents shake audio, drop haptics, revolve haptics

Table 4.1: Context and Attribute Mappings from the prior experiment to be
used for Experiment 2a
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(a) look color for Color (b) push audio for Shape and Mate-
rial

(c) look shape for Shape (d) press audio for Height

(e) squeeze haptics for Height (f) press haptics for Height
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(g) grasp haptics for Size (h) grasp size for Size

(i) hold haptics for Weight (j) lift haptics for Weight and De-
formable

(k) push haptics for Weight (l) shake haptics for Weight
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(m) drop audio for Material (n) revolve haptics for Deformable

(o) drop haptics for Contents (p) shake audio for Contents

(q) revolve haptics for Contents

Figure 4.1: The results of the prior experiment carried out to map which
contexts are best to learn a particular attribute for Experiment 2a.

27



4.4.4.2 Experiment 2b: User study with Volunteers

Experiment 2b is conducted to see if our algorithm is robust enough to

be used by different users. Different users will have a different understanding

on what unifies the cluster and what constitutes a noisy cluster and therefore

we would like to see if our algorithm still manages to perform better than the

baseline of singly annotating an object in terms of the number of questions

asked. For this experiment, we had 18 volunteers (all graduate students from

UT Austin), provide us with object attribute labels via a graphical user in-

terface as shown in Figure 4.2. The graphical interface displays clusters of

objects and asks for attribute labels and follows the same algorithm as Ex-

periment 2a except for the part that after each iteration, classifiers are not

trained and tested on the test objects. This is because, the ground truth for

the test objects will vary from person to person and it does not make sense to

test it out with the expert’s ground truth. The aim of this experiment is to

get all attribute labels for all objects from different users instead of using the

expert’s ground truth table to get our object labels. We are not trying to do

classification of novel objects here. However, for the attribute labeling round

of the user study, we still do remove 5 objects from the dataset to be able to

compare the results of the user study with that of the other experiments.

The volunteers were divided into Groups A and B, each consisting of 9

participants, where Group A provided the color, material, weight and size at-

tributes and Group B provided the shape, has contents, height and deformable

attributes of the 27 objects. This grouping was done to make the user study
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feasible for the participant by reducing the time it took per person to complete

the study. Also, as users have to do this experiment in real time, we cannot do

all the experiments for every possible context-attribute combination. There-

fore, we decided to pick the 8 best contexts to learn the 8 attributes for Ex-

periment 2b. These mappings, shown in Table 4.2, were decided based on the

results from Experiment 2a. The decision is made based on the highest kappa

achieved, the total number of questions asked and also the smoothness of the

curve plotted. Plots of contexts which were chosen for a particular attribute

are shown in Figure 5.1. The graphs showcase the improvement in kappa as

more questions are answered by the expert (more clusters are labelled) for a

particular context while learning a specific attribute. Rest of the plots for

Experiment 2a can be found in Appendix 1, Section 1.2.

Figure 4.2: Snapshot of the interface used for our user study. User can either
label, mark a maximum of two outliers or skip a cluster in each iteration. The
category of the attribute label is specified on the top.
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Attribute Sensorimotor Context
Color look color
Shape push audio
Height press haptics
Size grasp size
Weight drop haptics
Material drop audio
Deformable revolve haptics
Contents shake audio

Table 4.2: Context and Attribute Mapping for Experiment 2b
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Chapter 5

Results and Analysis

Rate of Learning Object Attributes: For each of the experiments

performed, the rate at which the object attributes were learnt is shown by

plotting graphs of the mean number of questions answered against the mean

number of training objects labelled. The error bars represent one standard de-

viation of uncertainty. The results for the contexts that learnt the attributes

best are shown in Figure 5.2. These are also the contexts that were used for

Experiment 1, 2a and 2b. The rest of the graphs can be found in the Appendix

1, Section 1.1. The graphs for Experiment 1 are in blue, the ones from Exper-

iment 2a w/o Skip Questions are in orange, the ones from Experiment 2a w/

Skip Questions are in green, the ones from Experiment 2b w/o Skip Questions

are in red, the ones from Experiment 2b w/ Skip Questions are in purple. For

all contexts, our clustering-based algorithm (Experiment 2a & 2b along with

their variations) performs better that baseline of Experiment 1. The rate at

which the training objects get labelled for each question answered for Exper-

iment 2a & 2b is always much faster than Experiment 1 except for the color

attribute. For color, our algorithm still mostly fares well but not as well as the

other attributes. This might be because we use real-world objects and most

of them are multi-colored and hence its hard to build single color classifiers
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for them. Also, humans tend to classify colors into more sub-categories than

any other attribute and hence more questions are required to label all the

colors. Many of the user study participants said that they incorporated new

categories midway during attribute labelling rounds, leading to more questions

being answered and some also made mistakes in picking out outliers, but our

algorithm still does better despite that.

Measuring Human Effort: The experiments were carried out to

determine how much human effort is required in labeling to learn all attributes

for a particular set of objects. We used a multi-modal approach in contrast

to the traditional vision approach to ground what each label of each attribute

means and building multi-class classifiers for each context using the multi-

modal data obtained by the robot via exploring the objects. To measure if our

clustering-based approach (Experiment 2a & Experiment 2b) performed better

than the usual single object annotations (Experiment 1), we measured the

amount of human effort required in the form of number of questions answered

by the human during the labeling process. From Figure 5.2, it can be seen

that our algorithm learns all the attributes with lesser human effort than the

baseline Experiment 1.

To measure how well a context, CBM learned an attribute, AR, the

performance metric used was Cohen’s Kappa coefficient [4] defined as follows:

kappa =
Pr(c)− Pr(e)

1− Pr(e)

where Pr(c) is the probability that the model correctly classifies an instance
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and Pr(e) is the probability that the correct classification occurred by chance.

Therefore, Kappa here denotes the level of agreement between the ground

truth labels and the label produced by the multi-class classifier for an at-

tribute. Kappa is a better performance metric than percentage agreement or

percentage accuracy as it takes into consideration chance agreement.

The results are shown in Figure 5.1. Rest of the graphs can be found

in Appendix 1, Section 1.2. Note that, Experiment 2b is not part of the plots,

as kappa is not calculated for Experiment 2b for reasons explained in Section

4.4.4.2. The figure shows the results for the contexts that performed the best

for each attribute. and they are chosen based on the highest kappa achieved

and also the total number of questions answered to label all the objects. The

graphs obtained from Experiment 1 which showcase the baseline results for

comparing our clustering-based algorithm are in blue, the one from Experiment

2a w/o Skip Questions are in orange and the ones from Experiment 2a w/

Skip Questions are in green. The error bars provide one standard deviation

of uncertainty. In some contexts, the orange and the green graphs completely

overlap. This is because no clusters are skipped in the algorithm and hence

the count of QS = QNS. For Experiment 1, each object labelled amounts to 1

question being answered. For Experiment 2a, each cluster labelled amounts to

1 question being answered by the expert. As 100 trials were carried out for each

context, each data point refers to the mean kappa obtained from all the trials

for a particular question count. The graphs also show the standard deviation

of the kappa for each question count. Usually for most contexts, the kappa
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increases as the number of objects being trained on increases. Some attributes

are learnt better than others. For example, height and weight achieve one

of the highest kappas while color has the lowest even after training on all 27

objects. This accuracy can be improved in the future by training on more

objects and also taking in consideration the issue of having multiple colors in

the objects. Also, there is always some noise in the audio, visual and haptic

data collected by the robot in the data collection stage and steps could be

taken to remove the noise first and then using the cleaned data for clustering.

It can be seen that the clustering-based algorithm (Experiment 2a) learns the

object labels faster and with lesser human effort than the traditional method

of labelling each object (Experiment 1).

We also look at the variation of labels obtained from Experiment 2b.

The different labels obtained for each attribute are tabulated in Table 5.1 which

depicts how much they vary from the expert labels and therefore couldn’t be

used to train classifier and test against the expert’s labels. However, this is

a good way to get an understanding about how robust our algorithm is with

different users and our algorithm does fare pretty well.
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Attribute Expert Labels User Study Labels
Color silver, red, blue,

yellow, brown,
green, grey

silver, blue, yellow, green,
brown, grey, red, metal-
colored, light brown, steel-
colored, metallic, wood-
colored, tan, teal, dark green,
dark brown, light wood brown,
reddish, light blue, dark blue,
pink, copper-colored

Shape cylindrical, cuboid,
spherical, spherical

truncated cone, frustum of a
cone, sphere, cuboid, cylinder,
distorted cylinder, rectangular
prism, box, tumbler-shaped,
hourglass-shaped, rectangu-
lar, cone, conical cylinder,
open-ended cylinder, radius-
changing cylinder

Height short, tall short, tall, small, medium,
tiny, long

Size
(Width)

thin, wide long, big, small, medium, more
wide, less wide, medium wide,
least wide, narrow, fat, thick,
medium thick, thin, very thick,

Weight heavy, light very light, very heavy, light,
heavy, medium-light, medium,
slightly heavy,

Material metal, paper, plas-
tic, wood

cardboard, tin, metal, wood,
plastic, rubber, steel, foam

Deformable deformable, non-
deformable

deformable, non-deformable

Contents filled, empty filled, empty, nearly full,
nearly empty, half-full

Table 5.1: Variations in labels obtained per attribute from Experiment 2b
with the different users against expert labels used for Experiment 2a.
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(a) look color for Color (b) push audio for Shape

(c) press haptics for Height (d) grasp size for Size

(e) drop haptics for Weight (f) drop audio for Material
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(g) revolve haptics for Deformable (h) shake audio for Contents

Figure 5.1: Graphs depicting the kappa coefficient for each question answered
by the expert for a particular context to learn a particular attribute.
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(a) look color for Color (b) push audio for Shape

(c) press haptics for Height (d) grasp size for Size

(e) drop haptics for Weight (f) drop audio for Material
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(g) revolve haptics for Deformable (h) shake audio for Contents

Figure 5.2: Graphs depicting the rate of number of training objects labelled
per question count for a particular context to learn a particular attribute.
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Chapter 6

Conclusion and Future Works

The process of labelling is an essential task that is required for all

classification methods. To our knowledge, it is not possible yet to completely

take out the human from the picture and labelling remains to be a human-

intensive task. Presently, the state-of-the-art is still annotating a single object

at a time. Therefore, we introduce our clustering-based approach to reduce

the amount of human effort required in labelling. In our framework, the robot

learns all the attributes of the objects by asking fewer questions to the human

by clustering similar objects together and hence reducing the amount of human

effort required in labelling. The robot also grounded the attributes learnt via

its multi-modal sensory data and also learnt which multi-sensory context is

good for learning a particular attribute. Via the user study, we find that our

algorithm is also robust to different users and still fares much better than the

baseline.

In the future, we would like to improve the algorithm by incorporating

a way to do cluster analysis. This would involve coming up with a metric to

calculate the goodness of the clusters formed across all contexts. Currently,

there is no inter-cluster interaction when it comes to picking a cluster to be
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labelled from a human. We focus only on one context at a time. We only

make the decision based on all the clusters from one context. However, in the

future, using the cluster analysis metric, we will be able to pick the best cluster

that provides the classifier with the best training examples. This way, we need

not even use all 27 objects for training and can still get the minimal number

of labelled objects to build a good classifier, thereby reducing the amount of

human effort required even further. We would like to implement some sort

of an active learning technique where only the absolutely needed objects get

labelled and are used to do further classification of the remaining objects, an

approach similar to the one implemented for image classification in [14] and

[15].

The other thing we would like to incorporate is relative category labels.

Currently, some of the attributes that are learnt like small or big for learning

the attribute height or light or heavy for the attribute weight are usually learnt

in reference to some other objects. It is hard to say something is heavy if we

do not know what it is being compared against. There was also a general

consensus amongst the participants of our user study that relative attributes

were much harder to label. Shown a cluster, many a times, they forgot to give

a label based on all the objects in the dataset, rather than just considering

the cluster in front of them. Also, realistically, as the robot will incrementally

get labels for objects it needs to train on, all the objects will not be known

beforehand and therefore it does not make sense to base the label of a cluster

on all training objects but relative attributes do demand that. Humans are
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usually able to make a decision about a relative attribute after multiple inter-

actions with objects and in the future, we would like to incorporate that with

the robot as well to see how many interactions are required to come up with

an accurate label.
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Result’s Appendix

1.1 Training Objects VS Questions Answered Graphs

(a) look shape for Shape (b) lift haptics for Deformable

(c) revolve haptics for Contents (d) drop haptics for Contents

(e) press audio for Height (f) squeeze haptics for Height
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(g) push audio for Material (h) grasp haptics for Size

(i) hold haptics for Weight (j) lift haptics for Weight

(k) push haptics for Weight (l) shake haptics for Weight

Figure 1.1: The graphs of the all the other contexts for Experiment 1 and
Experiment 2a. The plots showcase the rate of number of training objects
labelled per question count for a particular context to learn a particular at-
tribute. The error bars give one standard deviation of uncertainty. It can be
seen that Experiment 2a performs better than the baseline of Experiment 1 in
terms of number of questions answered.
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1.2 Kappa Co-efficient VS Questions Answered Graphs

(a) look shape for Shape (b) lift haptics for Deformable

(c) revolve haptics for Contents (d) drop haptics for Contents

(e) press audio for Height (f) squeeze haptics for Height
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(g) push audio for Material (h) grasp haptics for Size

(i) hold haptics for Weight (j) lift haptics for Weight

(k) push haptics for Weight (l) shake haptics for Weight

Figure 1.2: The graphs of the all the other contexts for Experiment 1 and
Experiment 2a. The plots showcase the kappa coefficient for each question
answered by the expert for a particular context to learn a particular attribute.
The error bars give one standard deviation of uncertainty. It can be seen that
Experiment 2a performs better than the baseline of Experiment 1 in terms of
number of questions answered.
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1.3 Context and Attribute Mapping Experiment Graphs

(a) grasp audio (b) hold audio

(c) lift audio (d) poke audio

(e) revolve audio (f) poke haptics
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(g) squeeze audio

Figure 1.3: The graphs of the all the other contexts for the prior experiment
which was done to choose which contexts performed best for a particular at-
tribute. The plots showcase the kappa coefficient for each question answered
and also the total number of questions answered for each attribute. It can be
seen that these contexts did not perform well for any of the attributes and
hence were not chosen.
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