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ABSTRACT 

 

TRAINING FOR MUSCULAR POWER ADAPTATIONS: 

THE ROLE OF CONTRACTION TYPE AND VELOCITY  

by 

Michael Travis Brenneman, M.S.Kin 

 

The University of Texas at Austin, 2016 

SUPERVISOR: Edward F. Coyle 

 

 Muscular power, an integral component in most sport, is the product of force and 

velocity. Power is often viewed synonymously, yet incorrectly, with strength. Where 

power has an inherent speed component, strength is independent of movement velocity, 

and is a measure of a muscle’s ability to produce a maximal force. In a majority of 

athletic events power is requisite to success, and is often more decisive in performance 

outcomes than strength alone. Currently, results from existing research examining the 

effectiveness of differing velocities of contraction in improving maximal power are 

mixed. Common methodologies used in research settings to study muscular power 

changes are isotonic training, isokinetic training, isometric training, and plyometric 

training. However, little research has been done examining the potential efficacy of 

training using inertial loading. This report examines existing research on movement 

velocities and loads, compares the effects of training velocities for increasing maximal 
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power, identifies shortfalls and information gaps, and recommends future research in 

training for muscular power adaptations and improved athletic performance. This report 

also provides a detailed description of inertial load training and establishes a theoretical 

study design, hypothesis, and reasoning outlining why and how inertial load training may 

elicit muscular power increases and improved athletic performance. 
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INTRODUCTION  

Background 

 Power is a product of force and velocity, and is highest at approximately 1/3 of 

maximal contraction velocity [22]. Power plays an important role in many sports and 

recreational activities. While the type of power required may be different, of course, 

depending on the sport or activity performed, and the physical demands therein, training 

for muscular power is an important aspect in virtually all athletic disciplines. Therefore it 

is no surprise that power has been studied using several different methodologies 

including varied velocities of contraction and varied percentages of a participant’s one 

repetition maximum.  

 Power is often associated with strength. While the two variables can be 

interconnected they are independent performance measures. Often, and incorrectly, used 

interchangeably it is important to establish an understanding of the delineation between 

strength and power. From a performance perspective power can be viewed as the 

explosive nature of force production and carries with it a fundamental relationship with 

speed of movement [23]. Conversely, strength is a measure of force output and is 

associated with the ability of a muscle or muscle group to exert force to overcome a 

resistance independent of speed of contraction [55]. Upon further examination of the 

practical implications of these definitions one can understand that power is directly 

related to speed of movement or velocity of contraction and the resultant force. Thus, 

training for power is not synonymous with training for strength.  
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 In most athletic events power is more decisive in performance than static strength 

or even instantaneous force such as seen during isokinetic contraction [32]. In other 

words, in a majority of athletic events it may be more important to examine how much 

power an athlete can exert over a given time, and at a performance dictated velocity, vice 

how much strength can be generated, with some exception. Since power is related to 

velocity, and due to the fact most sports do not simply require one constant velocity, it 

stands to reason that velocity of contraction and speed of movement are of great 

importance to athletes, coaches, trainers, and researchers examining human performance. 

 The goal of most training programs is improving performance whether for 

competition, personal fulfillment, or health and wellness. This includes, among other 

variables, increases in power at different velocities, and encompasses muscle fiber-type 

morphology, neural adaptations such as enhanced motor unit recruitment, and increased 

proficiency in technique execution. A driving principle in improving athletic performance 

is the principle of specificity of training which dictates that greater improvements are 

obtained when training patterns mimic performance patterns. As it relates to velocity, and 

when there exists a need for high power output, this principle further indicates velocity 

specific adaptations (and subsequent transference) may best be attained when training at 

velocities similar to the performance task. This should not be mistakenly inferred as 

solely “fast” training. When focusing on performance specificity it may seem intuitive to 

an athletic population to train at fast velocities, but consider a rehabilitative setting, 

where muscular imbalance in speed and inter-limb power exist, or an elderly population 
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in which a desired result is related to health and quality of life, and it is clear fast 

velocities may not be essential for performance.  

 There are three major modes of strength training: isometric, isokinetic, and 

isotonic [12]. More recently research on plyometric training has also examined muscular 

power adaptations. Numerous studies have examined training at various velocities and 

the resultant impact on, among other variables, power generation. The majority of these 

studies involve the use of isokinetic dynamometry with set contraction speeds using 

maximal voluntary contraction (MVC). Other studies have examined and compared 

isokinetic training to isotonic training, plyometric training, and isometric training.   

 The results thus far have been mixed and remain somewhat unclear. Earlier 

findings have shown training at a higher velocity using isokinetic contractions can lead to 

power improvements at higher velocities as well as lower velocities. [13, 19] However, 

training at lower velocities has been shown to improve power only at lower velocity 

movements [36, 13]. Previous studies have utilized various methods to measure maximal 

power output as well as to conduct training in an effort to identify the ideal methods by 

which to improve maximal power output. Some studies have examined both slow and fast 

isokinetic contractions independent of each other, as well as mixed (slow and fast) 

isokinetic contractions during the same training protocol [13]. Studies have also varied 

the duration of training in regards to sets, repetitions, and overall lengths of training 

protocols [45]. However, these studies have not investigated the use of inertial load 

training, which consists of mixed velocity and mixed force during single bouts of short-

burst exercise conducted at maximal effort. 
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Purpose 

 The purpose of this report is to examine the existing literature reviewing the 

methods and results of training studies meant to induce muscular power changes. 

Common protocols used in research settings for analyzing muscular power include 

isotonic, isometric, isokinetic, and, to a lesser extent, plyometric training. The majority of 

research has examined isokinetic contractions using various speeds of movement. 

However, there is limited research examining muscular power adaptations in response to 

inertial loading. Inertial loading is accomplished by acceleration of an unloaded, 

unbraked flywheel. As force is applied and the flywheel accelerates, the amount of force 

necessary to maintain velocity is decreased until such time as maximal velocity is 

reached under minimal force. Using the inertial loading method, power output can be 

calculated by measuring the relationships between angular acceleration, angular velocity 

and torque production when inertia of the flywheel is known [39].  

 This report will identify shortfalls and information gaps in the existing literature 

and suggest and describe potential methods to be used in examining the potential efficacy 

of using inertial load training to increase muscular power output and improve athletic 

performance, while describing the possible physiological mechanisms supporting the 

veracity of the recommendations.  

 Examining the effect of inertial load training on muscular power changes is 

important due to the fact it is the only method which utilizes mixed force / mixed velocity 

contractions in a single four second bout at maximal effort. Inertial loading is reliable in 

eliciting, and accurate in measuring, maximal power [39]. Improvements in power output 
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can result from both physiological as well as neurological adaptations to the various 

training stimuli. To date no studies have been done on muscular power changes using this 

type of training. It is theorized this form of training may provide the most robust 

stimulation of the nervous system as well as the muscle itself. Therefore, another purpose 

of this report is to describe a theoretical study which would be suitable in investigating 

the effectiveness of inertial load training for increasing maximal power using only an 

inertial loaded cycle ergometer. 

 

Hypothesis and Reasoning 

 We hypothesize the use of inertial load training that would be utilized in this 

theoretical study design would improve maximal power output, as well as athletic 

performance markers, over a theoretical eight week study protocol more than previous 

training methods reported in the literature. Additionally we hypothesize there would be a 

an attenuation in percent of leg power imbalances over the course of the protocol. This 

hypothesis is supported by a number of physiological factors. First, inertial load training 

uniquely allows for the development of high force output under low velocity contractions 

in the first one to two seconds and an automatic transfer to low force output under high 

velocity contractions in the final two to three seconds. This transition is fluid and occurs 

naturally as a participant overcomes the inertia of the unloaded flywheel until traction can 

no longer be maintained under a free-spin condition. This potentially allows for a more 

robust pattern of motor unit recruitment encompassing both fast and slow twitch muscle 

fibers. Additionally, inertial load training allows for simultaneous and alternating use of 
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each leg during each repetition which may possibly have an impact on muscular power 

imbalances between right and left legs over the duration of the study. 

 Inertial load training allows for dynamic recruitment and transition during one 

singular repetition at a naturally selected rate of speed and RPM; not one directed or 

imposed by outside factors such as would be seen in isokinetic training where the rate of 

movement is manipulated. However, inertial load training does have important 

similarities to isokinetic training in that each bout of inertial load training can be 

performed at maximal effort. In this way it is similar to isokinetic training, yet has the 

unique characteristic of allowing for these maximal efforts to be conducted at natural, 

self-selected velocities and corresponding RPM, which research indicates is indicative of 

muscle fiber type predominance [24]. This may potentially further the benefit in athletic 

performance as most athletic endeavors are also executed at self-selected velocities.  

 Additionally, a novel capability of a theoretical study such as this would be its 

ability to identify and measure musculoskeletal imbalances using the inertial loaded cycle 

ergometer. The ergometer has the unique ability to measure and record instantaneous 

power for individual legs and to instantly display any differences in muscle power output 

as a percent difference between the right and left leg. These data can be examined to 

identify any trends and/or changes over the course of the proposed study in percent 

difference between individual leg power, possibly indicating any potential efficacy of 

inertial load training in a rehabilitation setting or its use to minimize and/or correct 

muscular power changes between legs. We hypothesize a decrease in percent difference 

between inter-leg power would occur over the course of the theoretical study.  
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REVIEW OF LITERATURE 

 

Isotonic Training: Overview, Methods, and Results 

 Isotonic training is movement conducted at a constant external tension during 

shortening or lengthening [49]. Examples of isotonic contractions include lifting weights, 

and a great percentage of isotonic contractions occur in the sagittal plane of motion. 

Isotonic contractions consist of both concentric and eccentric components, and is 

typically the most popular type of training for strength and power in the athletic “real-

world” training environment., although it is not as commonly studied in research lab 

environments. The three most common types of stimuli associated with isotonic 

contractions, and thus the most commonly investigated, as related to power include: high 

force, low velocity such as seen in power lifters; high force, high velocity, such as seen in 

Olympic lifters; and low force, high velocity such as seen in sprinters [41]. Research 

indicates of these three variants, contractions utilizing high force with high velocity 

typically produce greater gains in strength and power [20, 49]. This is understandable 

when applying the principle of specificity of training and remembering that power is in 

inherently related to speed of movement, and also why research suggests Olympic 

weightlifters possess more peak power than their powerlifting counterparts [49]. 

 It is important to note there is a point at which high velocity seems to have a 

diminishing return effect on improvements in muscular power. Fenn (1935) found a 

muscle produces less force as speed of shortening is increased during concentric 

contraction. This corroborates the force-velocity relationship established by Hill, (1922) 
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which showed peak power occurs at ~33% maximum contraction velocity. Above and 

below this speed, power declines to a rate of zero at 100% and 0% of maximum velocity 

in a parabolic curve. This of course is due to power being a product of force and velocity. 

This is specifically a key factor when utilizing isotonic training due to the fact the 

resistant load is held constant and only the speed of movement may be altered, depending 

on the performance task and the goal of the training itself. 

 Improvements in performance resulting from isotonic training summate from a 

combination of: early phase neural adaptations in motor unit recruitment [51]; early to 

mid-phase learning patterns regarding technique [34]; and late phase morphological 

changes such as hypertrophy [29]. Studies show improvements in strength, power, and 

torque in as little as two days with no changes in muscle morphology further 

substantiating that initial adaptations are indeed neural [18, 51]. Corroborating research 

suggests changes in muscle morphology occur later in a training program [29]. Most 

studies examining training protocols lasting fewer than six to eight weeks have noticed 

minimal, if any, fiber phenotype changes or increases in fiber size [49, 36, 56, 34, 2). 

Conversely, studies lasting longer than eight weeks have been shown to elicit these 

changes [13, 57, 29]. When compared to training at maximum velocity with no load, 

isotonic training has been shown to elicit greater gains in strength and muscle power [59]. 

These results have been corroborated when examining velocity specific training with  

constant loads as is commonly the case during resistance training [16].  
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Isometric Training: Overview, Methods, and Results 

 Isometric training is defined as increased tension of the muscle without actual 

shortening (or lengthening) of the muscle fiber(s) as seen in typical eccentric and/or 

concentric contractions [57]. There is some argument as to the validity of this 

terminology of whether or not an isometric contraction is indeed an actual “contraction” 

in terms of physiology, since there is no change in the length of the sarcomere. There is, 

however, the activation of tension-generating mechanisms within the muscle fibers. Due 

to this tension being produced without sarcomere shortening, and since the term 

“isometric contraction” is a commonly accepted label,  the terminology is used in this 

report.  

 Isometric contractions are commonly utilized as the predominant method of 

muscle contraction in research settings concerning pathophysiology and conditions 

including hypertension, cardiovascular disease (CVD), and diabetes among other acute 

and chronic pathologic conditions [50]. In cases such as these, isometric contractions are 

commonly paired with occlusion or post-exercise muscle ischemia (PEMI) and are thus 

used to examine autonomic responses such as the exercise pressor reflex [62] or other 

responses potentially impacting blood flow, blood pressure, or cardiac response. In these 

types of studies, isometric contractions are graded depending on percentage of MVC 

and/or time of contraction. Typically, the longer the contraction will be sustained the 

lower the percent MVC.  

 When examined in athletic situations, and/or used as measures of performance, 

isometric contractions are rarely used alone but in conjunction with (and in comparison 
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to) isotonic contractions [42, 59].  Studies examining the combination of isotonic and 

isometric contractions have utilized high load / high velocity movements combined with 

low load / low velocity movements in isotonic contractions and compared these to 

percentages of MVC in isometric contractions. Understandably, percentages of MVC are 

typically significantly higher when utilizing isometric training for athletic purposes than 

those utilizing in rehabilitation studies [16]. It is commonly accepted that training 

modalities utilizing solely isometric contractions are inferior to isotonic as well as 

isokinetic contractions in eliciting maximal improvements in performance and maximal 

improvements in overall muscular power [25, 27, 49, 34, 45] 

 Some results of studies comparing isotonic, isometric, and isokinetic contractions 

suggest isometric training at maximum strength (100% Fmax) may be a more effective 

form of training to increase power than training  with zero load at maximum velocity [59] 

This adheres to the theory presented by Hill (1925) regarding the force-velocity 

relationship, and the resultant disappearance of power (and force) as velocity reaches 

maximum. At maximum velocity there can be no power generated because at maximum 

velocity there is no generated force Conversely, and because of this, in order to attain 

maximum velocity there can be no resistance (mass). This makes sense when 

understanding the relationship between power, force, and velocity, and between force, 

mass, and acceleration [47]. This also indirectly corroborates the theory that isokinetic 

training is superior to isometric training when it concerns athletic performance. Isometric 

training at 100% Fmax is, for the sake of practicality, little more than an isokinetic 

contraction at zero velocity. Since velocity plays such an important role in the nature and 
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mechanisms of muscular power improvement it only makes sense to vary velocity during 

different training movements, ideally dependent upon the nature of the desired 

outcome(s), versus producing static contractions with no speed of movement, even if said 

contractions are at or near MVC over a long time domain. 

 

Isokinetic Training: Overview, Methods, and Results 

 Isokinetic training is defined as contraction(s), either eccentric, concentric, or 

both, conducted at a fixed and constant velocity [49]. These components are studied 

together or isolated and analyzed individually. Isokinetic training in research settings is 

typically done using “slow” (~24 to ~96 degrees per second) and/or “fast” (~240 to ~300 

degrees per second) velocities of contraction during knee extension. Therefore, most 

studies divide participants into two groups: a slow group; and a fast group. A few studies 

have examined groups using a combination of slow and fast contractions but at different 

time points and not mixed together during singular bouts of exercise. Additionally, some 

studies have included and analyzed responses in groups who train at what is deemed an 

“intermediate” velocity (~180 degrees per second) and the resultant effects [13, 32, 19, 

35]. In the cases of mixed training and intermediate contractions, workload is typically 

normalized such that overall amount of work is the same.  

 The purpose of studies such as these is to examine the effects of isokinetic 

training at one velocity on performance measures at a different velocity. For instance, in a 

simplified approach, will sprinting make an athlete better at jogging during a prolonged 

even such as a marathon, in terms movement patterns? Perhaps in a more tangible 
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example, will slow deliberate front squats make an Olympic weightlifter better at 

executing a very quick, explosive clean? Isokinetic training has, in some cases, been 

shown to be superior to both isotonic and isometric training in producing gains in 

strength, power, torque, and force [57, 49]. This makes sense when considering velocity 

of movement is directly influenced by the load to be moved, coupled with the stretch / 

shorten cycle found in eccentric / concentric coupling, and the subsequent absence of this 

velocity in isometric contractions. In one study, isokinetic training has also been shown 

to have a greater enhancement on strength, anthropomorphic measurements, and motor 

performance compared to isotonic training [49]. 

 There is a significant amount of research involving the use of isokinetic 

contractions and the resultant effects on performance. It may be the preferred method of 

training in research settings due to the nature of control of velocity of contraction coupled 

with the fact that practically all isokinetic training is conducted at 100% MVC and 

maximal effort. This allows for a perfect analysis of the independent variables of percent 

contraction and range of motion and the dependent variable of contraction speed.  

 Due to the large amount of studies examining isokinetic training, it is 

understandable there are contradicting findings regarding how various contraction 

velocities affect performance improvements, and transference between training velocities 

and testing velocities. Some studies indicate training at fast velocities allows for gains at 

both fast and slow testing velocities [44,10, 36, 13, 58]. Conversely, other studies show 

training at specific velocities only allow for gains at that specific velocity [10, 57, 21, 

19].  
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 Isokinetic training effects have been examined from both short, medium, and long 

term adaptations. Short term and medium duration studies include those examining 

training adaptations in as little as two days [34, 51], up to two weeks [2], and six weeks 

[36]. These studies showed varied ranges of increases in peak torque and peak power as 

well as reduced fatigability in the case of Lesmes (1978). One study consisting of two 

weeks of training showed an increase in strength, power, and force with no change in 

muscle size or enzymatic activity [2]. These results indicate the changes may be due to 

muscle contractility and neural adaptations. Prevost (1999) looked at two days of training 

and found the initial improvements were only present in the fast-velocity training group, 

further indicating the results are neural  adaptations, specific to a fast training velocity. 

This is further corroborated by the lack of hypertrophy and other morphological and 

enzymatic responses. Had muscle morphology been a factor one would expect to see a 

performance increase at all testing speeds (slow and fast). Studies examining long term 

adaptations (eight weeks and above) showed changes in muscle morphology including 

type II fiber hypertrophy in addition to the supposed neural adaptations [49, 13, 56]. 

 In addition to examining the differences in duration, several studies have 

compared contraction speed. In one study the combined effects of duration and speed 

were in line with previous results suggesting fast contraction speeds showed enhanced 

power only at the faster, but not at the slower, velocities [32]. In this same study the slow 

only training group showed performance increases at all test speeds. This study was in 

contrast to an earlier study examining high power and low power isokinetic training. The 

low power (low speed, low load) group produced increases in muscular force only at the 
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low speed. The high power (high speed, low load) group produced increases in muscular 

force at all speeds of contraction [44]. Differences in what constituted “fast” in these 

studies may have been a factor in the disputed results. 

 Confounding the issue even more, some studies have found increasing the overall 

speed at which work was performed was as effective at improving performance as was 

altering the load or resistance [25]. This gives rise to the notion that as long as overall 

work rates remain the same improvement should be seen at different rates of contractions. 

Another study related to work rate and constant speed of contraction examined short 

duration / high intensity training using different time intervals [36]. This study ensured 

overall work rate was the same by altering the number of contractions. The results, 

including increases in peak torque and peak power, indicated velocity (intensity) may 

have more to do with improvements than how long the contraction takes (volume). This 

gives credence to the ideas regarding training principles and the principle of overload, 

which includes both volume and intensity, whereby you can alter volume (in this case 

contraction time), as long as intensity (in this case velocity) remains high, you will still 

show improvements. This is part of the basis of the theory of periodized training, altering 

volume and intensity at certain time points in a training cycle [40]. 

 In an effort to delineate the speed issue and the resultant improvements of “fast” 

and “slow” contraction group, Coyle (1981) looked at a mixed velocity training program. 

For three sets the group conducted fast (~300 degrees per second) contractions and for a 

subsequent three sets the group conducted slow (~60 degrees per second) contractions. 

This was one of the first studies to utilize a mixed group in conjunction with a fast only 
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and slow only group. Furthermore, this study also utilized an “intermediate” (~180 

degrees per second) training group to examine possible effects. Results indicated the fast 

training group had the largest margin of overall improvement at all velocities. However, 

results also suggested the fast group was the only group to show significant muscle 

morphology with type II fiber hypertrophy. This may have been a causative factor, 

leaving the neurological component unanswered. One later study, which contradicted the 

former, showed a slow contraction group had the greatest improvements at different 

testing speeds [19]. One difference between the studies was the fast group in the latter 

study exercised at over 400 degrees per second compared with 300 degrees per second in 

the former. 

 Regardless of the potential differences and discrepancies in cross-over 

enhancement between various speeds, the overriding principle of specificity holds true. In 

all the referenced studies utilizing isokinetic contractions, participants had the greatest 

improvements at the specific training velocities. The groups who trained at “fast” 

velocities improved more at the higher testing velocity than did the “slow” contraction 

group. The reciprocal is also true with the participants training at “slow” velocities 

improving performance more at slow testing velocities than the fast-trained. One thing 

which should not be overlooked in isokinetic training is recovery. While fast contraction 

velocities may bring about greater improvements in strength and power, they have also 

been shown to require more recovery time, and that when adequate recovery is not 

attained, there is a subsequent decrease in performance [30]. 
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Plyometric Training: Overview, Methods, and Results 

 More recently, research has examined plyometric training and its effects on 

muscular power and strength adaptations. Plyometric training, while not as heavily 

studied as isokinetic or isometric training, has been in use in athletic training for several 

years and was initially created by Russian Scientist Yuri Verkhoshansky and has become 

synonymous with jump training [61,11]. Although not inherently dangerous, due to the 

explosive and intense nature of the ballistic and dynamic style jumps, plyometric training 

is more apt to be studied in athletic vice clinical populations such that you may see in 

isotonic, isometric, and isokinetic training.  

 Plyometric training, as mentioned is centered around jumping. This can include 

box jumps, depth jumps, squat hops, maximal vertical jumps, or any other jumping 

movement. However, plyometric training does involve more than just jumping as well 

[63, 64]. One of the more common and popular types of plyometric training is the depth 

jump. Plyometric training is unique in that it contains an eccentric, isometric, and 

concentric component within a singular repetition. Additionally, plyometric training 

relies heavily on time of execution for success in improved power and performance [43]. 

The landing portion places a heavy eccentric load on hips, knees, and ankles, while 

isometric contractions occur at the landing to stop and stabilize the involved muscles to 

prepare for the concentric return jump. Time of execution is crucial for plyometric 

training success similar to other training methods, because, of the relationship of force, 

mass, and acceleration, already established. The less time it takes to transition from 

eccentric landing to the concentric jumping, the greater the amount of force produced. In 
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other words, athletes should focusing on hitting the ground and returning to the air as 

quickly as possible, taking full advantage of the stretch-shortening cycle of contraction.  

 Most studies examining the effects of plyometric training due so on acute markers 

of performance, reaction forces, fatigue, and muscle soreness and damage. Fewer studies 

have examined the potential chronic effects of plyometric training on peak power and 

other muscular adaptations. Some of these former studies suggest that an acute bout of 

intense plyometric exercise induce time-dependent changes in performance [6]. 

Additionally, other studies indicate that plyometric training, in accordance with the 

principle of specificity of training, has its greatest effects in vertical jump height and 

power with less impact on overall peak power and other improved athletic performance 

markers [15, 28]. 

 Thus it seems that plyometric training may indeed improve power and 

performance, but these improvements appear to be limited to those movement patterns 

and time domains that closely mimic training patterns. This leads credence to the theories 

that jumping is a specific skill and as such will have little transference to other movement 

patterns that require power, force, and variances in times of execution.  
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METHODS 

Proposed Participants 

 The target participants for a proposed study of this nature examining the effect of 

inertial load training on muscular power changes would consist of a sample size of at 

least eight healthy, untrained college-aged males and females. The target participants 

would likely be aged 18-34, who will be nominally classified as active, but who are not 

currently participating in any prescribed or programmed exercise regimen(s). In a study 

of this design, exclusion criteria would likely be based on ages older than 34 and younger 

than 18, and individuals who are currently involved in a programmed or prescribed 

exercise regimen, as well as individuals currently under the care of a physician who 

advises against participation or participants currently undergoing any treatment(s) or 

rehabilitation for musculoskeletal injuries for which a study of this design would be 

contraindicated.  

 

Theoretical Study Design 

 This theoretical study would consist of an eight week training protocol in which 

participants would be asked to report to the lab three times per week for the inertial load 

training. At the initial visit, and upon completion of consent, health questionnaire, and 

descriptions of the protocol, participant height and weight would be obtained, and initial 

fitting of the seat height, pedals, handlebar positioning would occur along with 

familiarization and two “practice” sessions on the inertial load cycle ergometer.  
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 Proposed initial baseline measurements of accepted peak and anaerobic power 

tests would include a standard Wingate Anaerobic Power Test, the Margaria-Kalamen 

Power Test, and the vertical jump power test. In addition to the proposed measures of 

power, athletic performance measures would also be taken and would consist of a timed 

20-yd dash and a measured distance of horizontal standing broad jump. All baseline 

measurements would occur during the initial visit. 

 The actual inertial load training would theoretically have participants perform five 

sets of inertial load cycling per visit, all of which would be conducted at maximal effort. 

Upon each arrival to the laboratory, participants weight will be collected to normalize 

power per kilogram. Each “set” will consist of four bouts of maximal acceleration lasting 

approximately four seconds. Each “bout” will be separated by 90 seconds of resting 

recovery and each subsequent “set” will be separated by two minutes resting recovery, 

which is in accordance to accepted timelines of adenosine triphosphate (ATP) 

replenishment [4]. Each visit would thus consist of 20 overall maximal effort bouts on the 

inertial load cycle ergometer.   

 During the fourth (midpoint) and eighth (final) week of testing, proposed 

participants would again undergo the initial measurements of power and athletic 

performance as mentioned above. During these weeks there will be two training sessions 

instead of three with the third allotted session to be used for the performance markers. 

Each proposed training session would subsequently take approximately 30 minutes, with 

the initial, midpoint, and end of study assessments taking approximately 60 minutes. 
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Proposed Measurements 

 The independent variables for this theoretical research study would be the 

participants themselves, as well as the training protocol as described above. That is to 

say, the proposed participants would act as their own controls, measuring the changes 

between the initial, midpoint, and endpoint power and performance markers, as well 

as the changes in peak power from session to session over the duration of the eight 

week study. These measurements would be analyzed collectively as percent changes 

within the group. 

 The dependent variables then would be the initial, midpoint, and endpoint 

measurements themselves of maximal power from the Wingate, Margaria-Kalamen, 

and vertical jump test, as well the athletic performance markers as reflected by the 

standing broad jump and 20 yard dash.  

 
Proposed Statistical Analysis 
 
 Proposed analysis for this theoretical study would include determining the 

collective percent changes in mean peak power from session to session over the 

course of the proposed eight week protocol. Mean peak power output from the first 

session to the last session would be analyzed using a one-tailed, paired, student’s t-

test, with an established significance of p<0.05. Values would be reported as mean 

+/- standard error of the mean (SEM) and reporting standard deviation.  

 Due to the fact that a directional change would be expected, and the possibility of 

results in a negative direction would be minimal in this theoretical study, a one tailed 

t-test is justified over a two-tailed test. Additionally, since each participant would 
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train each session over the duration of the theoretical study a pairwise comparison 

would also be examined.  
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CONCLUSION 

 In addition to the aforementioned training modalities discussed herein, one topic 

not directly discussed in this report, but which is becoming of more interest as of late, is 

intention and motivation. A few studies have examined a participant’s intention as it 

relates to movement patterns. One such study presented data suggesting the principle for 

stimuli for high-velocity responses (neural) are the repeated attempts to perform these 

high-velocity contractions [5]. This has been corroborated by other research suggesting 

intentions to move rapidly may come into play even more than movements against heavy 

loads [53, 52, 14]. This is based on the premise that whenever maximum effort is used, 

independent of the load, motor unit activation patterns have been shown to be similar 

regardless of the external speed environment [53, 52, 14].. In other words, attempting, or 

intending to attempt, a high velocity contraction was enough to elicit gains in power 

compared to contractions when high velocity was actually attained. 

 Even less research has been done on inertial load training, which more uniquely 

and closely mimics an athlete’s competitive training and competition environment. 

Inertial load training is similar to isokinetic training in that both modalities require 

maximal effort of contraction; however, the speed at this maximal effort may be very 

different between the two modalities, and inertial load training allows for more dynamic 

velocities of contraction over a given period of time. As mentioned, isokinetic training is 

often viewed as the preferred method of studying movement velocity and speed of 

muscular contraction due to the very nature velocity is held constant even during MVC. 

 However, isokinetic training still has its limitations. One such limitation is 
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“machine based” isokinetic training usually involves only single-joint actions and thus 

fails to involve complex movements. Failure to examine the relationship between training 

velocity and performance velocity during athletic events is an evident downside of 

isokinetic training. As noted, typical velocities of isokinetic training range from “slow” to 

“intermediate” to “fast”. Even studies claiming to examine “fast” training velocities of up 

to 400 degrees per second are conducted at well below normal movement velocities seen 

in athletics [37]. This further corroborated by studies showing that un-resisted movement 

velocities of knee flexors reach up to 1000 degrees per second and hip angular velocities 

up to 500 degrees per second [38]. This was corroborated by a study examining the 

biomechanics of drop jumping in which researchers found contraction velocities of 880 

degrees per second [8]. Compounding this is the fact that recorded RPM values at peak 

power output range from 600 degrees per second to well over 900 degrees per second and 

the necessity to study higher contraction velocities is apparent.  

 Given that angular velocities seen in sport are generally much higher than those 

utilized in current research training, it stands to reason a program utilizing these higher 

velocities may lead to performance increases not seen in traditional training modalities as 

it relates to the principle of specificity of training. Particularly if one adheres to the 

viewpoint which postulates fast velocity training will improve performance at not only 

fast velocities but over a range of velocities.  

 Another argument against isokinetic training is the categorical assignment of 

velocities. Speed may be better analyzed when dictated by the athletic demands and not 

by the machine. Even studies examining multiple stimuli, (whether isotonic involving 
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varied forces and velocities, isometric involving varied relative contraction intensities, or 

isokinetic involving varied velocities) are still unable to pinpoint any possible discrete, 

intricate links between improvements in performance and training stimuli. The multiple 

contradictory findings contained herein support this point. 

 Considering power is dependent upon torque and revolutions per minute (RPM) 

[45], it stands to reason training for maximal power increases should be done not at static 

velocities against static resistance from repetition to repetition, but across a range of 

velocities, resistances, and forces over a given singular repetition, such as in inertial load 

training.  

 This report highlights the need for further research in inertial load training. The 

inertial load training methodology is well warranted and would be beneficial in providing 

insight into the potential mechanisms behind performance increases still unanswered by 

the existing literature. Inertial load training has the potential not only to increase peak 

power output but also to improve athletic performance, and possibly minimize 

imbalances in lower limb power output.  
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