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In this thesis we study the problem of computing Betweenness Centrality in dynamic

and distributed networks. Betweenness Centrality (BC) is a well-known measure for

the relative importance of a node in a social network. It is widely used in applications

such as understanding lethality in biological networks, identifying key actors in

terrorist networks, supply chain management processes and more. The necessity of

computing BC in large networks, especially when they quickly change their topology

over time, motivates the study of dynamic algorithms that can perform faster than

static ones. Moreover, the current techniques for computing BC requires a deeper
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understanding of a classic problem in computer science: computing all pairs all

shortest paths (APASP) in a graph. One of the main contributions of this thesis is

a collection of dynamic algorithms for computing APASP and BC scores which are

provably faster than static algorithms for several classes of graphs. We use n = |V |

and m = |E| to indicate respectively the number of nodes and edges in a directed

positively weighted graph G = (V,E). Our bounds depend on the parameter ν∗

that is defined as the maximum number of edges that lie on shortest paths through

any single vertex. The main results in the first part of this thesis are listed below.

• A decrease-only algorithm for computing BC and APASP running in time

O(ν∗ · n) that is provably faster than recomputing from scratch in sparse

graphs.

• An increase-only algorithm for computing BC and APASP that runs in O(ν∗2 ·

log n) per update for a sequence of at least Ω(m∗/ν∗) updates. Here m∗ is the

number of edges in G that lie on shortest paths. This algorithm uses O(m∗ ·ν∗)

space.

• An increase-only algorithm for computing BC and APASP that runs in O(ν∗2 ·

log n) but improves the computational space to O(m∗ · n).

• A fully dynamic algorithm for computing BC and APASP that runs in O(ν∗2 ·

log3 n) amortized time per update for a sequence of at least Ω(n) updates.

• A refinement of our fully dynamic algorithm that improves the amortized

running time to O(ν∗2 · log2 n), saving a logarithmic factor.

In the second part of this thesis, we study the case when the input graph is a

distributed network of machines and the BC score of each machine, considering its

location within the network topology, needs to be computed. In this scenario, each

node in the input graph is a self-contained machine with limited knowledge of the
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network and communication power. Each machine only knows the (virtual) location

of the neighbors machines (adjacent nodes in the input graph). The messages,

exchanged in each round between machines, cannot exceed a bounded size of at most

O(log n) bits. In this distributed model, called CONGEST, we present algorithms

for computing BC in near-optimal time for unweighted networks, and some classes

of weighted networks. Specifically, our main results are:

• A distributed BC algorithm for unweighted undirected graphs completing in at

most min(2n+O(Du), 4n) rounds, where Du is the diameter of the undirected

network.

• A distributed BC algorithm for unweighted directed graphs completing in at

most min(2n + O(D), 4n) rounds, where D is the diameter of the directed

network.

• A distributed APSP algorithm for unweighted directed graphs completing in

at most min(n+O(D), 2n) rounds.

• A distributed BC algorithm for weighted directed acyclic graphs (dag) com-

pleting in at most 2n+O(L) rounds, where L is the longest length of a path

in the dag.

• A distributed APSP algorithm for weighted dags completing in at most n +

O(L) rounds.
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Chapter 1

Introduction

In this thesis, we consider the problem of designing efficient algorithms for dynamic

and distributed networks. In particular, we focus on problems related to shortest

paths (SPs) such as computing betweenness centrality (BC) and multiple shortest

paths in dynamic and distributed networks. The problems we study are closely

related and are used in several applications.

Betweenness Centrality. The betweenness centrality BC(v) of a node v is of-

ten used as a parameter that determines the importance of v in G, relative to the

presence of v on shortest paths, and is computed for all v ∈ V . As a classical mea-

sure, BC is widely used in sociology [Fre77, Ley07], physics [KHP+07] and network

analysis [PAE+13, SG05]. In recent years, BC also had a wide impact in the anal-

ysis of social networks [GOKK03, Ram04], wireless [MK12] and mobile networks

[CFF13], P2P networks [KI12] and more. Others applications of BC include analyz-

ing social interaction networks [KAS+12], identifying lethality in biological networks

[PMW05], identifying key actors in terrorist networks [CGM04, Kre02], identify and

prevent security attacks on mobile and complex networks [QH10, HKYH02]. BC

is also used for identifying community structure in social and biological networks
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using the Girvan–Newman algorithm [GN02], and for understanding road network

patterns of traffic analysis zones [ZWZC11]. Many of the above systems are usually

represented as directed networks (see Section 7 in [MV13]), and this motivates our

interest in studying solutions for computing BC in directed graphs.

As described later, all the current techniques known for computing BC re-

quire to implicitly discover all the shortest paths for any pair of nodes in the graph.

We call this problem All Pairs All Shortest Paths (APASP), and all our results can

also be used to solve this task.

Dynamic Algorithms. Computing BC can be an expensive task in terms of

computational resources. In fact, the static algorithms are usually too slow for

very large networks, especially when the topology (of the network) quickly changes

over time because of quick updates. One approach to solve this problem is to use

dynamic algorithms. In general, dynamic algorithms are used to quickly recompute

a property of the input graph after an update changed only a local region of the

graph, and not the entire topology. The efficiency of dynamic algorithms comes

from their ability to reuse the data available before the graph was updated, in

order to recompute the graph property without processing again the entire dataset.

There is a vast literature on dynamic algorithms for shortest paths [DI04, Kin99,

FMSN00, AISN91, ACK17, BHS07, Tho04, Tho05]. For this reason, we investigate

the possibility of recomputing APASP and BC in a network experiencing dynamic

updates, without re-applying the static algorithm after each update. Our dynamic

algorithms will improve over the static ones in common classes of graphs that can

easily represents real application networks.

Distributed Model. As another avenue to explore, we study the problem when

the data set is too large to fit a single machine and each node in the networks

is considered a complete machine. These models of distributed and decentralized

2



networks are fundamental to understand modern computer systems. Their proper-

ties are well studied in the field of Computer Science, especially the computation,

required to solve global tasks, that is locally performed at each node of the net-

work [Lyn96a, Gar02, Tel01]. However, understanding only the local properties of

a distributed network is usually not sufficient to solve many problems. Important

optimization tasks such as computing shortest paths, determining the diameter of

the network etc., require the understanding of “global” properties in the sense that

the information used by the algorithm must travel to the farthest node in the net-

work. In this direction, we provide efficient algorithms for computing BC in directed

unweighted networks and some class of weighted networks. Moreover, our solutions

imply algorithms for computing APSP, Reachability, Transitive Closure and SCC

in the same class of networks.

1.1 Computational Problems and Related Works

In this section, we describe the problems studied in the first part of this thesis.

We also give a summary regarding their state-of-art, focusing only on static and

dynamic algorithms. We initially review the classic all pair shortest paths problem

which is intimately connected to the definition of BC (Section 1.1.2). Then, we focus

on the more general all pairs all shortest paths problem which is a central tool to

compute BC (Section 1.1.3), and finally we review the BC problem itself (Section

1.1.4). We defer problems, definitions and related works for the distributed models

to Chapter 7.

1.1.1 Basic Definitions

Unless specified, we refer to directed graphs (digraphs) G = (V,E), where V is the

set of nodes and E ⊆ V × V is the set of edges. Let w : E → R+ denote the

edge weight function on the edges of G. Let πst denote a path from s to t in G.

3



Define w(πst) =
∑

e∈πst w(e) as the weight of the path πst. We use d(s, t) (or δ(s, t)

when specified by the context) to denote the weight of a shortest path from s to t

in G, also called its distance. We assume d(s, t) = ∞ if there is no path from s to

t. Let E∗ be the set of edges in G that lie on shortest paths, let m∗ = |E∗| (see,

e.g., Karger et al. [KKP93]), and let ν∗ be the maximum number of edges that lie

on shortest paths through any single vertex. The length `(πst) is the number of

edges in πst. In many cases we will consider directed acyclic graphs (dags). We call

out-dag(v) the single source shortest path (SSSP) dag representing all the shortest

paths starting from v to every other node in V . Similarly, in-dag(v) is the SSSP dag

representing all the shortest paths starting from each node in V and ending in v.

Note that ν∗ also bounds the number of edges that lie on any single-source shortest

path dag. For a dag G, we call L the length of a longest (in terms of number of

edges) path in G. For a node u ∈ V we define Γin(u) = {v ∈ V | (v, u) ∈ E} as the

set of incoming neighbors of u and Γout(u) = {v ∈ V | (u, v) ∈ E} as the set of the

outgoing neighbors of u. Let UG be the undirected version of G. A digraph G is

weakly connected if UG is connected. A digraph G is strongly connected if it contains

at least one directed path u v and at least one directed path v  u for each pair

of nodes u, v ∈ V . Similarly, we can define a weakly connected component (wcc)

and strongly connected component (scc) in a digraph. All our results also apply to

undirected graphs using standard reductions (inserting two directed edges for each

indirect one). We use D to denote the diameter of the directed graph G, while if

the graph is undirected we use Du.

Discussion of the Parameter ν∗. Both ν∗ and m∗ are typically much smaller

than m in dense graphs. For instance, it is known [FG85, HZ85, KKP93, LR89]

that m∗ = O(n log n) with high probability in a complete graph where edge weights

are chosen from a large class of probability distributions, including the uniform

distribution on integers in [1, n2] or reals in [0, 1]. Since ν∗ ≤ m∗, our algorithms
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will have an amortized bound of O(n2 ·polylog(n)) on such graphs. Also, ν∗ = O(n)

in any graph with only k shortest paths, where k is a constant, between every pair

of vertices. These graphs are called k-geodetic [RMRR98], and are well studied in

graph theory [SOA88, BM84, Mul82]. In fact ν∗ = O(n) even in some graphs that

have an exponential number of SPs between some pairs of vertices. In contrast,

m∗ can be Θ(n2) even in some graphs with unique SPs, for example the complete

unweighted graphKn. Another type of graph with ν∗ � m∗ is one with large clusters

of nodes, as described by the planted `-partition model [CK01, Sch07]: consider a

graph H with k clusters of size n/k (for some constant k ≥ 1) with δ < w(e) ≤ 2δ,

for some constant δ > 0, for each edge e in a cluster; between the clusters is a sparse

interconnect. Then m∗ = Ω(n2) but ν∗ = O(n).

Note that this section contains only general definitions used in this thesis.

Additional specific definitions will be provided in each chapter in order to understand

the problems presented.

1.1.2 All Pairs Shortest Paths (APSP)

Given a weighted graph G = (V,E), with |V | = n and |E| = m, the APSP (all

pairs shortest paths) problem requires to find a shortest path between every pair of

vertices in a graph.

For undirected graphs, the problem was introduced by Shimbel [Shi53] and

solved by the author in total time of O(n4). The best available bound for undirected

graphs is given by Pettie and Ramachandran [PR05], where the authors present a

O(mn logα) algorithm for APSP (where α(m,n) is the very slowly growing inverse-

Ackerman function). For directed graphs, the best available result is given by Pettie

in [Pet04] with a O(mn+n2 log log n) algorithm. For positive integers weights, Tho-

rup [Tho99] shows a O(mn) time algorithm (assuming constant time multiplication)

for undirected graphs, while Hagerup [Hag00] gives a O(mn + n2 log log n) for di-
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rected graphs.

An interesting question is how to compute the APSP problem on dynamic

networks, without running static algorithms from scratch. The early dynamic algo-

rithms that were faster than recomputing APSP from scratch only worked on graphs

with small integer weights. Ausiello [AISN91] proposed a decrease-only APSP al-

gorithm for directed graphs with integer weights less than C, with an amortized

running time of O(Cn log n) per edge insertion. A randomized increase-only algo-

rithm for APSP, for unweighted graphs, is presented in Baswana et al. [BHS07]: it

returns (1 + ε)-approximate shortest paths in O(n lnn
ε2

+ n2
√

lnn
ε
√
m

), where ε > 0 is a

small constant. A fully dynamic algorithm (which is faster than recomputing from

scratch) for computing APSP on general graphs, with positive integer edge weights

less than C, was developed by King [Kin99]: it has running time O(n2.5
√
C log n).

Dealing with arbitrary weights required new combinatorial techniques. Deme-

trescu and Italiano presented a fully dynamic algorithm (the ‘DI’ method) for APSP

on general graphs with non-negative real weights [DI04]. The DI algorithm runs in

O(n2 log3 n) amortized time per update. A method that is faster by a logarithmic

factor was given by Thorup [Tho04] (the ‘Thorup’ method), but this algorithm is

considerably more complicated. Thorup also presented a worst case fully dynamic

algorithm [Tho05] which recomputes the complete distance matrix in Õ(n2.75). Re-

cently, the worst case time bound was improved by Abraham et al. [ACK17] with

a randomized algorithm which runs in O(n2+2/3 log4/3 n).

All the dynamic algorithms mentioned above maintains a single shortest path

for each pair of nodes. In the next section, we introduce the more general case where

all the shortest paths are required for each pair of nodes.
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1.1.3 All Pairs All Shortest Paths (APASP)

Given a directed graph G = (V,E) with positive edge weights, we consider the

problem of maintaining APASP (all pairs all shortest paths) [NPR14b], i.e., the

set of all shortest paths between all pairs of vertices. This is a fundamental graph

property, and it also enables the efficient computation of betweenness centrality (BC)

(Section 1.1.4) for every vertex in the graph. A natural way to represent APASP is

to maintain an in-dag and an out-dag for each vertex v ∈ V . We use these structures

in our algorithms to recompute BC efficiently after maintaining the APASP.

Efficient algorithms for the APASP problem were not known in dynamic

settings prior to our results which we describe below. In this thesis we will present

semi dynamic and fully dynamic algorithms for APASP (see Section 1.3 of this

Chapter).

1.1.4 Betweenness Centrality (BC)

Betweenness centrality (BC) is a widely used measure in the analysis of large com-

plex networks. Informally, the BC of a node v in a network is the fraction of all

shortest paths in the network that go through v, and this measure is often used as

an index that determines the relative importance of v in the network. Formally, is

defined as follows. Given a directed graph G = (V,E) with |V | = n, |E| = m and

positive edge weights, let σxy denote the number of shortest paths (SPs) from x to

y in G, and σxy(v) the number of SPs from x to y in G that pass through v, for

each pair x, y ∈ V . Then,

BC(v) =
∑

s 6=v,t6=v

σst(v)

σst

As in [Bra01], we assume positive edge weights to avoid the case where cycles of 0

weight are present in the graph.
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In the static case, the widely used algorithm by Brandes [Bra01] runs in O(mn +

n2 log n) on weighted graphs. We give an overview of the techniques used by Brandes

in Section 1.2 below.

Given the changing nature of the networks under consideration, it is desirable

to have algorithms that compute BC faster than computing it from scratch after

every change. A contribution in this thesis is the first set of dynamic algorithms for

computing BC after an update on an edge or on a vertex that are provably faster, on

several classes of graphs, than the widely used static algorithm by Brandes [Bra01].

1.2 Brandes’ Algorithm for BC

Brandes’ algorithm is one of the first non-trivial algorithms for computing BC.

Most of our results are based on different techniques used in this approach, thus we

carefully review them in this section.

1.2.1 Preliminaries

The following notation was developed by Brandes [Bra01]. For a source s and a

vertex v, let Ps(v) denote the predecessors of v on shortest paths from s, i.e.,

Ps(v) = {u ∈ V : (u, v) ∈ E and d(s, v) = d(s, u) + w(u, v)} (1.1)

Further, let σst denote the number of shortest paths from s to t in G (with σss = 1).

Finally, let σst(v) denote the number of shortest paths from s to t in G that pass

through v. It follows from the definition that,

σst(v) =


0 if d(s, t) < d(s, v) + d(v, t)

σsv · σvt otherwise

(1.2)
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The dependency of the pair s, t on an intermediate vertex v is defined in [Bra01] as

the pair dependency δst(v) = σst(v)
σst

.

For v ∈ V , the betweenness centrality BC(v) is defined by Freeman [Fre77]

as:

BC(v) =
∑

s 6=v,t6=v

σst(v)

σst
=

∑
s 6=v,t6=v

δst(v) (1.3)

The following two-step procedure computes BC for all v ∈ V :

1. For every pair s, t ∈ V , compute σst.

2. For every vertex v ∈ V , and for every s, t pair, compute σst(v) (Equation 1.2),

and then compute BC(v) (Equation 1.3).

Step 1 above can be achieved by n executions of Dijkstra’s single source shortest

paths algorithm. Therefore Step 1 takes time O(mn + n2 log n) time, if we use a

priority queue with O(1) amortized cost for the decrease-key operation. For every

vertex v, Step 2 takes O(n2) time, since there are O(n2) pair dependencies. This

gives a Θ(n3) time algorithm to compute BC for all vertices. Thus, the bottleneck of

the above algorithm is the second step which explicitly sums up the pair dependen-

cies for every vertex. To obtain a faster algorithm for sparse graphs, Brandes [Bra01]

defined the dependency of a vertex s on a vertex v as: δs•(v) =
∑

t∈V \{v,s} δst(v).

Brandes [Bra01] also made the useful observation that the partial sums satisfy a

recursive relation. In particular, the dependency of a source s on a vertex v ∈ V

can be written as:

δs•(v) =
∑

w:v∈Ps(w)

σsv
σsw
· (1 + δs•(w)) (1.4)

(See [Bra01] for a proof of Equation 1.4.) The above equation gives an efficient
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algorithm for computing BC described in the next section.

1.2.2 The Brandes Algorithm

We present a high level overview of Brandes’ algorithm. The algorithm begins by

initializing the BC score for every vertex to 0. Next, for every s ∈ V , it executes

Dijkstra’s SSSP algorithm. During this step, for every t ∈ V , it computes σst, the

number of shortest paths from s to t, and Ps(t), the set of predecessors of t on

shortest paths from s. Additionally, the algorithm stores the vertices v ∈ V in a

stack S in order of non-increasing value of d(s, v). Finally, to compute the BC score,

the algorithm accumulates the dependency of s. We now elaborate on this final step,

which is given in Algorithm 2 (Accumulate-dependency). This algorithm takes as

its input a source s for which Dijkstra’s SSSP algorithm has been executed and the

stack S containing vertices ordered by distance from s. The algorithm repeatedly

extracts a vertex from S and accumulates the dependency using Equation 1.4. The

time taken by Algorithm 2 is linear in the size of the DAG rooted at s, i.e., it is

O(m∗s).

Note that in Brandes’ algorithm, the set S contains vertices v ∈ V ordered

in non-increasing value of d(s, v). However, for the dependency accumulation it

suffices that S contains vertices v ∈ V ordered in the reverse topological order

of the DAG(s). Such an ordering ensures that the dependency of a vertex w is

accumulated to any of its predecessor v, only after all the successors of w in DAG(s)

have been processed. This observation is useful for our decrease-only algorithm,

since topological sort can be performed in linear time.

The static Brandes algorithm computes BC scores in a two phases process.

The first phase computes the SP out-dag for every source through n applications

of Dijkstra’s algorithm. During this phase, it also keeps track of the distances

and number of shortest paths for each pair of nodes. The second phase uses an
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accumulation technique that computes all BC scores using these SP dags in O(mn)

time. Here, we give a brief summary on the accumulation technique which is also

used in our dynamic algorithms. Brandes defined pair dependency of s, t on an

intermediate vertex v as δst(v) = σst(v)
σst

. Thus, for v ∈ V , the betweenness centrality

BC(v) is:

BC(v) =
∑

s 6=v,t6=v

σst(v)

σst
=

∑
s 6=v,t6=v

δst(v) (1.5)

Let Ps(v) denote the predecessors of v on shortest paths from s. The dependency

of a vertex s on a vertex v is δs•(v) =
∑

t∈V \{v,s} δst(v), and Brandes observed that

δs•(v) =
∑

w:v∈Ps(w)

σsv
σsw
· (1 + δs•(w)) 1 and BC(v) =

∑
s 6=v

δs•(v) (1.6)

We can accumulate the dependency δs•(v) for each node v by recursively applying

equation 1.6 starting from the most distant (from the root) node in the SSSP dag

rooted at s, and proceeding in non-increasing distance order up to the root s.

Algorithm 1 Betweenness-centrality(G = (V,E)) (from [Bra01])

1: for every v ∈ V do BC(v)← 0
2: for every s ∈ V do
3: run Dijkstra’s SSSP from s and compute σst and Ps(t),∀ t ∈ V \ {s}
4: store the explored nodes in a stack S in non-increasing distance from s
5: accumulate dependency of s on all t ∈ V \ s using Algorithm 2

In our dynamic BC algorithms we will keep phase two unchanged, although

we will apply our dynamic APASP algorithms to update dags, distances and number

of paths maintained in phase one.
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Algorithm 2 Accumulate-dependency(s, S) (from [Bra01])

Require: For every t ∈ V : σst, Ps(t)
A stack S containing v ∈ V in a suitable order (non-increasing d(s, v) in

[Bra01])
1: for every v ∈ V do δs•(v)← 0
2: while S 6= ∅ do
3: w ← pop(S)
4: for v ∈ Ps(w) do δs•(v)← δs•(v) + σsv

σsw
· (1 + δs•(w))

5: if w 6= s then BC(w)← BC(w) + δs•(w)

1.3 Dynamic BC and APASP

Computing BC (and APASP) in a real world graph using a static algorithm is not

the most efficient solutions, especially when the underlying graph topology changes

slightly over time. For this reason, algorithms are needed that quickly re-compute

the property in the modified graph. In general, algorithms that make use of previous

solutions to solve the problem faster than a recomputation from scratch, are called

dynamic graph algorithms. In our thesis, we will consider different classes of dynamic

algorithms:

• A decrease-only algorithm (or incremental algorithm) allows edge updates

where the weight of the edges can only be decreased. A more general version

allows node updates where the weights of any subset of edges incident to a

given node can only be decreased.

• An increase-only algorithm (or decremental algorithm) allows edge updates

where the weight of the edges can only be increased. Again, a more general

version allows node updates where the weights of any subset of edges incident

to a given node can only be increased.

• A fully dynamic algorithm, which is the more general case, allows node updates

where any subset of edges incident to a given node can change their weights

arbitrarily.
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In this thesis, we will present efficient algorithms in each one of the above classes

to compute BC and APASP. In Chapter 2 we present our decrease-only algorithm

for BC and APASP problems, where each update in G is exclusively decrease-only.

In Chapter 3 we present our increase-only algorithm for BC and APASP problems,

where each update in G In Chapters 5 and 6 we show two fully dynamic algorithms

for BC and APASP, which support both decrease-only and increase-only updates.

We now present a summary of the results already known for computing BC.

1.3.1 Related Results

Together with the classic Brandes algorithm, there are many previous results for

computing BC. Several BC algorithms for approximation and parallel algorithms

have been considered in [BKMM07, GSS08a, RK14] and [MEJ+09] respectively.

Heuristics for dynamic betweenness centrality with good experimental performance

are given in [GMB12, LLP+12, SGIS13], but none provably improve on Brandes.

Dynamic Algorithms. The problem of computing betweenness centrality dy-

namically has received increasing attention, and several results for decrease-only or

increase-only BC are listed in the table below in the section ‘Semi Dynamic’.

All of these results except [KWCC13] deal with unweighted graphs as opposed to

our results, which are for the weighted case. As mentioned above, BC is also widely

used in weighted networks (see [CFF13, KI12, PMW05, PAE+13]); however, only

the heuristic in Kas et al. [KWCC13], which has no worst-case bounds, addresses

this version.

In the area of fully dynamic algorithms, the results presented in [LLP+12, SGIS13]

are heuristics with no theoretical guarantees; the algorithm in [KMB14] has the same

worst case as Brandes and works only for unweighted graphs, while the algorithm

in [BM15] returns approximated BC scores.

The only exact dynamic BC algorithms that provably improve on Brandes
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Paper Year Time Weights Update Type DR/UN Result

[Bra01] 2001 O(mn) NO Static Alg. Both Exact
[Bra01] 2001 O(mn+ n2 logn) YES Static Alg. Both Exact

[GSS08b] 2007 Heuristic YES Static Alg. Both Approx.
[RK14] 2014 depends on ε YES Static Alg. Both ε-Approx.

Semi Dynamic
[GMB12] 2012 O(mn) NO Edge Inc. Both Exact

[KWCC13] 2013 Heuristic YES Edge Inc. Both Exact
NPR Chapter 2 2014 O(ν∗ · n) YES Vertex Inc. Both Exact

NPRdec Chapter 3 2014 O(ν∗2 · logn) YES Vertex Dec. Both Exact
[BMS15] 2015 depends on ε YES Batch (edges) Inc. Both ε-Approx.

Fully Dynamic
[LLP+12] 2012 Heuristic NO Edge Update UN Exact
[SGIS13] 2013 Heuristic NO Vertex Update UN Exact
[KMB14] 2014 O(mn) NO Edge Update Both Exact
[BM15] 2015 depends on ε YES Batch (edges) UN ε-Approx.

PR Chapter 5 2015 O(ν∗2 · log3 n) YES Vertex Update Both Exact
PR(FFD) Chapter 6 2015 O(ν∗2 · log2 n) YES Vertex Update Both Exact

Table 1.1: BC related results (DR stands for Directed and UN for Undirected). The
results in this thesis are highlighted in bold.

on some classes of graphs are the separate decrease-only, increase-only and fully

dynamic algorithms in [NPR14a, NPR14b, PR15b] presented in this thesis. Table 1.1

contains a summary of these results.

1.4 Distributed Algorithms

In the second part of this thesis (Chapter 7), we investigate our problem BC (and

APASP) in the CONGEST model. In this model the network is modeled as a

distributed and synchronous set of nodes, where the communication between a pair

of nodes is bounded. The challenge here is to provide algorithms which can compute

properties on the topology of the network (the input graph) in the fewest number

of rounds. All the details are deferred to Chapter 7.

14



1.5 Organization and Main Results

The overall structure of this thesis is described below. We also highlight the main

results presented in each chapter.

In Chapter 2, we give a simple decrease-only APASP algorithm (based on a joint

work with Nasre and Ramachandran [NPR14a]), the ‘NPR’ method, which updates

the in-dags and out-dags after each decrease-only update. This algorithm allows a

dynamic computation of the BC scores (for decrease-only updates) which runs in

O(ν∗ ·n) time and is provably faster than recomputing from scratch in sparse graphs.

In Chapter 3, we develop a more involved increase-only APASP algorithm (based on

a joint work with Nasre and Ramachandran[NPR14b]), the ‘NPRdec’ method, build-

ing on and extending the increase-only DI method (see Section 1.1.2) to APASP.

The algorithm runs in O(ν∗2 · log n) per update for a sequence of at least Ω(m∗/ν∗)

updates. Thus, this approach gives us a increase-only BC algorithm which is faster

than a static recomputation on some classes of graphs including the class of dense

graphs (where m is close to n2) with SSSP dags of size linear in the total number

of vertices in G (see the discussion in Section 1.1.1 for more details on these classes

of graphs).

In Chapter 4 an improved version of NPRdec is proposed (based on a joint work

with Nasre and Ramachandran), where we significantly reduce the space used by

the algorithm using a new set of data structures.

In Chapter 5, we extend our results to the fully dynamic case developing a fully

dynamic APASP algorithm (based on a joint work with Ramachandran [PR15b]),

the ‘PR’ method, which builds on [NPR14b] and is a variant of the fully dynamic DI

method [DI04] for APSP. The algorithm runs in O(ν∗2 · log3 n) amortized time per

update for a sequence of at least Ω(n) updates.

In Chapter 6, we refine our fully dynamic algorithm PR by reducing the complexity

by a logarithmic factor and introducing (based on a joint work with Ramachandran
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[PR15a]) the ‘ffd’ algorithm (for ‘faster fully dynamic’).

In the last chapter, we move to the widely studied CONGEST distributed model

and we show how to efficiently compute BC and APASP in this setting (based

on a joint work with Ramachandran) with near-optimal algorithms for unweighted

directed (and undirected) networks. For unweighted graphs, we present a distributed

BC algorithm which terminates in min{2n + O(D), 4n} rounds if G is directed

(2n+O(Du) rounds if G is undirected). We also present a directed APSP algorithm

which terminates in min{n + O(D), 2n} rounds. Finally, we give an algorithm for

computing APSP in a weighted dag in n + O(L) rounds. This algorithm is then

enhanced to compute BC scores, in a weighted dag, for each node in 2n + O(L)

rounds.
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Chapter 2

Decrease-Only Algorithm

In this chapter we present a decrease-only BC algorithm that is provably faster on

sparse graphs than current algorithms for the problem1. Our result works for both

decrease-only edge updates and decrease-only vertex updates. By a decrease-only

edge update on edge (u, v) we mean the addition of a new edge (u, v) with finite

weight if (u, v) is not present in the graph, or a decrease in the weight of an existing

edge (u, v); in a decrease-only vertex update on node v, decrease-only updates can

occur on any subset of edges incident to v, and this includes adding new edges.

2.1 Our Contributions

Recall the definitions of m∗ and ν∗ in Section 1.1.1, Chapter 1. Here is our main

result:

Theorem 1. After a decrease-only update on an edge or a vertex in a directed or

undirected graph with positive edge weights, the betweenness centrality of all vertices

can be recomputed in:

1. O(ν∗ · n) time using O(ν∗ · n) space;

1The results presented in this chapter appeared in [NPR14a].
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2. O(m∗ · n) time using O(n2) space.

Since ν∗ ≤ m∗ and m∗ ≤ m, the worst case time for both results is bounded

by O(mn + n2), which is a log n factor improvement over Brandes’ algorithm on

sparse graphs with m = o(n log n). Our results also have benefits for dense graphs

(when m = ω(n log n) but m∗ remains small) similar to the Hidden Paths algorithm

of Karger et al. [KKP93] for the APSP problem (see also McGeogh [McG95]), al-

though our techniques are different. This is through the use of ν∗ or m∗ in place of

m, and we comment more on this below. Our algorithms are simple, and only use

stack, queue and linked list data structures. Note that for the random real weights,

the first result would give O(n2) time and space since shortest paths are unique with

probability 1 in this setting, hence ν∗ = O(n).

Our paper [NPR14a] also contains an efficient cache-oblivious implementa-

tion for our decrease-only results, which avoids the high caching cost of Dijkstra’s

algorithm that is present in Alg. 1. We will not discuss the above result in this

thesis. Other cache-oblivious results for computing betweenness centrality (with a

static algorithm) can be found in [AGvW13].

We observe that Alg. 1 (Brandes) can be made to run faster: In a directed

graph, by using the Pettie [Pet04] or the Hidden Paths algorithm in place of Di-

jkstra in Step 3 of Alg. 1, we can compute BC scores in O(mn + n2 log logn)

or O(m∗n + n2 log n) time, respectively. In an undirected graph, we can obtain

O(mn · logα(m,n)) time, where α is an inverse-Ackermann function, using [PR05].

Our decrease-only bounds are better than any of these bounds for sparse graphs.

As seen in Section 1.3.1 Chapter 1, there are several results on dynamic BC

algorithms and heuristics [SGIS13, GMB12, KMB14, LLP+12], but our time bounds

are better than any of these on sparse graphs. In fact, ours is the first decrease-only

BC algorithm that gives a provable improvement over Brandes’ algorithm for sparse

graphs, which are the type of graphs that typically occur in practice. While the
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space used by our algorithms is higher than Brandes’, which uses only linear space,

our second result matches the best space bound obtained by any of these other

dynamic BC algorithms and heuristics.

We consider only decrease-only updates in this chapter. Computing increase-

only and fully dynamic updates efficiently appears to be more challenging (as is the

case for APSP [DI04]). In the following chapters, we will develop increase-only

and fully dynamic BC algorithms that build on techniques in [DI04], and run in

amortized time O(ν∗2 · polylog(n)).

Organization. Since the algorithm for a single edge update is simpler than that for

a vertex update, we first present our edge update result in Section 2.2. We describe

the O(n · ν∗) algorithm, and then the simple changes needed to obtain the second

O(n2) space result. Finally, we present the vertex update result in Section 2.3.

2.2 Decrease-Only Edge Update

In this section we present our algorithm to recompute BC scores of all vertices in a

directed graph G = (V,E) after a decrease-only edge update (i.e., adding an edge

or decreasing the weight of an existing edge). Let G′ = (V,E′) denote the graph

obtained after an edge update to G = (V,E). A path πst from s to t in G has weight

w(πst) =
∑

e∈πst w(e). Let d(s, t), σst, δs•(t) and DAG(s) denote the distance from

s to t in G, the number of shortest paths from s to t in G, the dependency of s on t

and the SSSP DAG rooted at s in G respectively; let d′(s, t), σ′st, δ
′
s•(t) and DAG′(s)

denote these parameters in G′.

Lemma 1. If weight of edge (u, v) in G is decreased to obtain G′, then for any

x ∈ V , the set of shortest paths from x to u and from v to x is the same in G and

G′, and d′(x, u) = d(x, u), d′(v, x) = d(v, x) ; σ′xu = σxu, σ′vx = σvx.

Proof. Since edge weights are positive, the edge (u, v) cannot lie on a shortest path
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to u or from v. The lemma follows.

By Lemma 1, DAG(v) = DAG′(v) after the decrease of weight on edge (u, v).

The next lemma shows that after the weight of (u, v) is decreased we can efficiently

obtain the updated values d′(s, t) and σ′st for any s, t ∈ V .

Lemma 2. Let the weight of edge (u, v) be decreased to w′(u, v), and for any given

pair of vertices s, t, let D(s, t) = d(s, u) + w′(u, v) + d(v, t). Then,

1. If d(s, t) < D(s, t), then d′(s, t) = d(s, t) and σ′st = σst.

The shortest paths from s to t in G′ are the same as in G.

2. If d(s, t) = D(s, t), then d′(s, t) = d(s, t) and σ′st = σst + (σsu · σvt).

The shortest paths from s to t in G′ are a superset of the shortest paths G.

3. If d(s, t) > D(s, t), then d′(s, t) = D(s, t) and σ′st = σsu · σvt.

The shortest paths from s to t in G′ are new (shorter distance).

Proof. Case 1 holds because the shortest path distance from s to t remains un-

changed and no new shortest path is created in this case. In case 2, the shortest

path distance from s to t remains unchanged, but there are σsu · σvt new shortest

paths from s to t created via edge (u, v). In case 3, the shortest path distance from

s to t decreases and all new shortest paths pass through (u, v).

By Lemma 2, the updated values d′(s, t) and σ′st can be computed in constant

time for each pair s, t. Once we have the updated d′(·) and σ′(·) values, we need the

updated predecessors P ′s(t) for every s, t pair for Alg. 2. The SSSP DAG(s) rooted

at a source s is the union of all the Ps(t), ∀ t ∈ V . Thus, obtaining DAG′(s) after

the edge update is equivalent to computing the P ′s(t), ∀ t ∈ V . The next section

gives a simple algorithm to maintain the SSSP DAGs rooted at every source s ∈ V ,

after a decrease-only edge update.
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2.2.1 Updating an SSSP DAG

For each pair s, t we define flag(s, t) to indicate the specific case of Lemma 2 that

is applicable.

flag(s, t) =


UN-changed if d′(s, t) = d(s, t) and σ′st = σst (Lemma 2-1)

NUM-changed if d′(s, t) = d(s, t) and σ′st > σst (Lemma 2-2)

WT-changed if d′(s, t) < d(s, t) (Lemma 2-3)

By Lemma 2, flag(s, t) can be computed in constant time for each pair s, t.

Given an input s and the updated edge (u, v), Alg. 3 (Update-DAG) constructs a

set of edges H using these flag values, together with DAG(s) and DAG(v). We will

show that H contains exactly the edges in DAG′(s). The algorithm considers edges

in DAG(s) (Steps 3–5) and edges in DAG(v) (Steps 6–8), and for each edge (a, b) in

either DAG, it decides whether to include it in H based on the value of flag(s, b).

For the updated edge (u, v) there is a separate check (Steps 9–10). The algorithm

clearly takes time linear in the size of DAG(s) and DAG(v), i.e., O(ν∗) time.

Algorithm 3 Update-DAG(s,w′(u, v))

Require: DAG(s), DAG(v), and flag(s, t), ∀t ∈ V .
Ensure: An edge set H after decrease of weight on edge (u, v), and P ′s(t),∀t ∈

V − {s}.
1: H ← ∅.
2: for each v ∈ V do P ′s(v) = ∅.
3: for each edge (a, b) ∈ DAG(s) and (a, b) 6= (u, v) do
4: if flag(s, b) = UN-changed or flag(s, b) = NUM-changed then
5: H ← H ∪ {(a, b)} and P ′s(b)← P ′s(b) ∪ {a}.
6: for each edge (a, b) ∈ DAG(v) do
7: if flag(s, b) = NUM-changed or flag(s, b) = WT-changed then
8: H ← H ∪ {(a, b)} and P ′s(b)← P ′s(b) ∪ {a}.
9: if flag(s, v) = NUM-changed or flag(s, v) = WT-changed then

10: H ← H ∪ {(u, v)} and P ′s(v)← P ′s(v) ∪ {u}.
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Lemma 3. Let H be the set of edges output by Alg. 3. An edge (a, b) ∈ H if and

only if (a, b) ∈ DAG′(s).

Proof. Since the update is a decrease-only update on edge (u, v), we note that for

any b, a shortest path π′sb from s to b in G′ can be of two types:

(i) π′sb is a shortest path in G. Therefore every edge on such a path is present in

DAG(s) and each such edge is added to H in Steps 3–5 of Alg. 3.

(ii) π′sb is not a shortest path in G. However, since π′sb is a shortest path in G′,

therefore π′sb is of the form s  u → v  b. Since shortest paths from s to u in G

and G′ are unchanged (by Lemma 1), the edges in the sub-path s  u are present

in DAG(s) and are added to H in Steps 3–5 of Alg. 3. Finally, shortest paths from

v to any b in G and G′ remain unchanged. Thus, the edges in the sub-path v  b

are present in DAG(v) and are added to H in Steps 6–8 of Alg. 3.

For the other direction, if the edge (a, b) is added to H by Step 5, this

implies that the edge (a, b) ∈ DAG(s). Thus, there exists a shortest path πsb =

s a→ b in G. We execute Step 5 when flag(s, b) = UN-changed or flag(s, b) =

NUM-changed. Thus every shortest path from s to b in G is also shortest path in G′.

Therefore, (a, b) ∈ DAG′(s). If the edge (a, b) is added to H by Step 8, then the edge

(a, b) ∈ DAG(v). Thus, there exists a shortest path πvb = v  a → b in G. Since

decreasing the weight of the edge (u, v) does not change shortest paths from v to

any other vertex, πvb is in G′. We execute Step 8 when flag(s, b) = NUM-changed

or flag(s, b) = WT-changed. Therefore, there exists at least one shortest path from

s to b in G′ that uses the updated edge (u, v). Hence the path π′sb = π′su · (u, v) · πvb
is shortest in G′, and this establishes that (a, b) ∈ DAG′(s). Finally, edge (u, v) is

added to H by Step 10 only if flag(s, v) is NUM-changed or WT-changed, and in

either case, there is at least a new shortest path from s to v through (u, v). Hence

(u, v) ∈ DAG′(s).
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2.2.2 Updating Betweenness Centrality Scores

The algorithm for updating the BC scores after an edge update (Alg. 4) is similar

to Alg. 1, but with the following changes: an extended Step 1 also computes, for

every s, t pair, the updated d′(s, t) and σ′st, as well as flag(s, t). Using Lemma 2,

we spend constant time for each s, t pair, hence O(n2) time for all pairs. In Step 3,

instead of Dijkstra’s algorithm, we run Alg. 3 to obtain the updated predecessor

lists P ′s(t), for all s, t. This step requires time O(ν∗) for a source s, and O(ν∗ · n)

over all sources. The last difference is in Step 4: we place in the stack S the vertices

in reverse topological order in DAG′(s), instead of non-increasing distance from s.

This requires time linear in the size of the updated DAG. Thus the time complexity

of Edge-Update is O(ν∗ · n).

Algorithm 4 Edge-Update(G = (V,E),w′(u, v))

Require: updated edge with w′(u, v), d(s, t) and σst, ∀ s, t ∈ V ; DAG(s), ∀ s ∈ V .
Ensure: BC′(v), ∀ v ∈ V ; d′(s, t) and σ′st ∀ s, t ∈ V ; DAG′(s), ∀ s ∈ V .
1: for every v ∈ V do BC′(v)← 0.

for every s, t ∈ V do compute d′(s, t), σ′st, flag(s, t). // use Lemma 2
2: for every s ∈ V do
3: Update-DAG(s, (u, v)). // use Alg. 3
4: Stack S ← vertices in V in a reverse topological order in DAG′(s).
5: Accumulate-dependency(s, S). // use Alg. 2

Undirected Graphs. For an undirected G, we construct the corresponding di-

rected graph GD in which every undirected edge is replaced with 2 directed edges.

A decrease-only update on an undirected edge (u, v) is equivalent to two edge up-

dates on (u, v) and (v, u) in GD. Thus, Theorem 1 holds for undirected graphs.

Space Efficient Implementation. In order to obtain O(n2) space complexity,

we do not store the SSSP DAGs rooted at every source. Instead, we only store

the edge set E∗. After a decrease-only update on edge (u, v) we first construct

the updated set E′∗ in O(m∗ · n) time as follows. For each edge (a, b) ∈ E∗, if

d′(s, b) = d(s, a) + w(a, b) for some source s ∈ V , then (a, b) ∈ E′∗. Using the up-
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dated E′∗ we can construct DAG′(s) in O(m∗) time, by using the fact that an edge

(a, b) ∈ E′∗ belongs to DAG′(s) iff d(s, b) = d(s, a) + w(a, b). Since the construction

of each updated DAG takes O(m∗) time and there are n DAGs to be constructed,

the O(m∗ · n) time complexity follows. The space used is O(m∗ + n2) to store E∗

and d(s, t), σst, for all s, t ∈ V .

2.3 Decrease-Only Vertex Update

We now consider a decrease-only update to a vertex v in G = (V,E), which allows

a decrease-only edge update on any subset of edges incoming to and outgoing from

v. In this algorithm, we use the graph G and the graph GR = (V,ER), which is

obtained by reversing every edge in G, i.e., (a, b) ∈ ER iff (b, a) ∈ E. Thus, for

every s ∈ V , we also maintain DAGR(s), the SSSP DAG rooted at s in GR. We will

obtain the same time bound as in Section 2.2.

2.3.1 Overview

Let Ei(v) and Eo(v) denote the set of updated edges incoming to v and outgoing

from v respectively. Our algorithm is a natural extension, with some new features,

of the algorithm for a single edge update, and works as follows. We process Ei(v)

in G in Step 1 to form G′, G′R, DAG′(s) and DAG′R(s); we then process Eo(v) in

G′R in a complementary Step 2 to obtain the updated G′′, DAG′′(s) and DAG′′R(s).

Step 1, which processes Ei(v), consists of two phases.

Step 1, Phase 1: Constructing the DAG′(s) for updates in Ei(v).

Since Ei(v) contains updated edges incoming to v, DAG(v) = DAG′(v) (as in the

single edge update case). In order to handle updates to several edges incoming to v,

we strengthen Lemma 2 by introducing σ̂, which keeps track of new shortest paths

from s to v that go through any of the updated edges in Ei(v). This allows us to

efficiently recompute the number of shortest paths from a source to any node in G′,
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and thus update all the DAG′(s) using an algorithm similar to Alg. 3. Parts (A),

(B), (C) in Section 2.3.2 describe Phase 1 in detail.

Step 1, Phase 2: Constructing the DAG′R(s) for updates in Ei(v).

We present an efficient algorithm to construct the DAG′R(s) for all s in G′. We

construct these reverse graphs because the edges in Eo(v) are in fact incoming edges

to v in G′R. Hence our method to maintain DAGs when incoming edges are updated

can be applied to G′R with Eo to obtain DAG′′R(s), for every s, in Phase 1 of Step 2

(and then we can obtain the DAG′′(s) in Phase 2 of Step 2).

Let (t, a) be the first edge on a shortest path from t to v in G′. Then (t, a) is

an outgoing edge from t in DAG′(t), and its reverse (a, t) is on a shortest path from

v to t in G′R. Further an edge (a, t) is on a new shortest path from v to t in G′R if and

only if its reverse is on a new shortest path from t to v in G′. These edges on new

shortest paths are the ones we need to keep track of in order to update the reverse

DAGs, and to facilitate this we define a collection of sets Rt, t ∈ V . The set Rt is

the set of (reversed) outgoing edges from t in DAG′(t) that lie on a shortest path

from t to v in G′ (see also Eqn. 2.3 in the next section). Thus, if a new shortest path

πsb is present in DAG′R(s) (πsb must pass through v), its last edge (a, b) is present

in Rb. Using the sets Rt, ∀ t ∈ V , it is possible to quickly build the DAG′R(t) after

Phase 1 as shown in part (D) in section 2.3.2.

Step 2: After applying Phase 1 and 2 on the initial DAGs using Ei to obtain the

DAG′R(s) and G′R, Step 2 re-applies Phase 1 and Phase 2 on these updated graphs

using Eo in order to complete all of the updates to vertex v. We can then apply

Alg. 2 to the DAG′′(s) to obtain the BC scores for the updated graph G′′.

2.3.2 Vertex Update Algorithm

We now give details of each phase of our algorithm starting with the graph G.

Step 1, Phase 1
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(A) Compute d′(s, v) and σ′sv for any s. We show how to compute in G′ the

distance and number of shortest paths to v from any s. Let (uj , v) ∈ Ei(v) and let

Dj(s, v) = d(s, uj)+w′(uj , v). Since the updates on edges in Ei(v) are decrease-only,

it follows that:

d′(s, v) = min{d(s, v), min
j:(uj ,v)∈Ei(v)

{Dj(s, v)}} (2.1)

Further, if d′(s, v) = d(s, v), we define:

σ̂′sv = |{π′sv : π′sv is a shortest path in G′ and π′sv uses e ∈ Ei(v)}| (2.2)

We also need to compute σ′sv, the number of shortest paths from s to v in G′. It

is straightforward to compute d′(s, v), σ′sv, and σ̂′sv in O(|Ei(v)|) time. Alg. 5 gives

the details of this step.

Algorithm 5 Dist-to-v (s, Ei(v))

Require: Ei(v) with updated weights w′.

d(s, t) and σst, ∀ s, t ∈ V .

Ensure: d′(s, v), σ′sv, σ̂
′
sv.

1: σ̂′sv ← 0, σ′sv ← σsv, D
′ ← d(s, v).

2: for each edge (ui, v) ∈ Ei(v) do

3: if D′ = d(s, ui) + w′(ui, v) then

4: σ′sv ← σ′sv + σsui .

5: σ̂′sv ← σ̂′sv + σsui .

6: else if D′ > d(s, ui) + w′(ui, v) then

7: D′ ← d(s, ui) + w′(ui, v).

8: σ′sv ← σsui .

9: d′(s, v)← D′.
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Algorithm 6 Upd-Rev-DAG(s, Ei(v))

Require: DAGR(s); Rt, f lag(s, t),∀t ∈ V .

Ensure: An edge set X after update on edges in Ei(v).

1: X ← ∅.

2: for each edge (a, b) ∈ DAGR(s) do

3: if flag(b, s) = UN-changed or flag(b, s) = NUM-changed then

4: X ← X ∪ (a, b) .

5: for each b ∈ V \ {s} do

6: if flag(b, s) = NUM-changed or flag(b, s) = WT-changed then

7: X ← X ∪Rb .

(B) Compute d′(s, t) and σ′(s, t) for all s, t. After computing d′(s, v), σ′sv and

σ̂′sv, we show that the values d′(s, t) and σ′(s, t) can be computed efficiently. We

state Lemma 4 which captures this computation. The proof of this lemma is similar

to Lemma 2 in the edge update case.

Lemma 4. Let Ei(v) be the set of updated edges incoming to v. Let G′ be the graph

obtained by applying the updates in Ei(v) to G. For any s ∈ V and t ∈ V \ {v}, let

D(s, t) = d′(s, v) + d(v, t), Σst = σst + σ̂′sv · σvt, Σ′st = σst + σ′sv · σvt.

1. If d(s, t) < D(s, t), then d′(s, t) = d(s, t) and σ′st = σst.

2. If d(s, t) = D(s, t) and d(s, v) = d′(s, v), then d′(s, t) = d(s, t) and σ′st = Σst.

3. If d(s, t) = D(s, t) and d(s, v) > d′(s, v), then d′(s, t) = d(s, t) and σ′st = Σ′st.

4. If d(s, t) > D(s, t), then d′(s, t) = D(s, t) and σ′st = σ′sv · σvt.

The value flag(s, t) for every s, t can be computed using the updated dis-

tances and number of shortest paths (flag(s, t) is UN-changed for 1, NUM-changed

for both 2 and 3, and WT-changed for 4, in Lemma 4).

(C) Compute DAG′(s) for every s. Given d′(s, t) and σ′(s, t) updated for all
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s, t ∈ V , the algorithm to compute DAG′(s) for any s ∈ V is similar to Alg. 3 in the

edge update case. The only modification we need is in Steps 9–10 where instead of

a single edge (u, v), we consider every edge (u1, v) ∈ Ei(v).

Step 1, Phase 2

(D) Compute DAG′R(s) for every s. We update DAGR(s), for every s, for which

we use Alg. 6. Recall the sets Rt,∀ t ∈ V defined as:

Rt = {(a, t) | (t, a) ∈ DAG′(t) and w′(t, a) + d′(a, v) = d′(t, v)} (2.3)

The set Rt is the set of (reversed) outgoing edges from t in DAG′(t) that lie on

a shortest path from t to v in G′. Consider an edge e = (a, b) in the updated

DAG′R(s). If e is in DAGR(s), it is added to DAG′R(s) by Steps 2–4. If e lies on a

new shortest path present only in G′R, its reverse must also lie on a shortest path

that goes through v in G′, and it will be added to DAG′R(s) by the Rb during Steps

5–7 (Rb could also contain edges on old shortest paths through v already processed

in Steps 2–4, but even in that case each edge is added to DAG′R(s) at most twice by

Alg. 6). Note that we do not need to process edges (uj , v) in Ei separately (as with

edge (u, v) in Alg. 2), because these edges will be present in the relevant Ruj . The

correctness of Alg. 6 follows from Lemma 5, whose proof is similar to Lemma 3, and

is omitted.

Lemma 5. In Alg. 6, an edge (a, b) is placed in X if and only if (a, b) ∈ DAG′R(s)

after the decrease-only update of the set Ei(v).

Step 2: To process the updates in Eo(v), we re-apply Phase 1 and 2 over G′R. Since

we are processing incoming edges in G′R, our earlier steps apply unchanged, and we

obtain modified values for d′′(·), σ′′(·), and DAG′′R(s) for every s. Then, using Alg. 6

we obtain the DAG′′(s) for every s. Finally, to compute the updated BC scores, we

apply Alg. 2.
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Performance: Computing d′(s, v), σ′sv and σ̂′sv requires time O(|Ei(v)|) = O(n) for

each s, and hence O(n2) time for all sources. Applying Lemma 4 to all pairs of

vertices takes time O(n2). The complexity of modified Alg. 3 applied to all DAGs is

again O(ν∗ · n). Creating set Rt requires at most O(E∗ ∩ {outgoing edges of t}), so

the overall complexity for all the sets is O(m∗). Finally, we bound the complexity of

Algorithm 6: the algorithm adds (a, b) in a reverse DAG edge set X at most twice.

Since
∑

s∈V |E(DAG′(s))| =
∑

s∈V |E(DAG′R(s))|, at most O(ν∗ · n) edges can be

inserted into all the sets X when Algorithm 6 is executed over all sources. Finally,

applying the updates in Eo(v) requires a symmetric procedure starting from the

reverse DAGs, the final complexity bound of O(ν∗ · n) follows.

2.4 Static betweenness centrality

In this section we present static algorithms that compute betweenness centrality

faster than the Brandes algorithm. In Brandes’ algorithm, the computation of

the predecessors list is completed during the construction of each SSSP dag using

Dijkstra. Our main idea is to decouple these two components by computing first the

set of edges on shortest paths E∗, together with all the distances in the graph (using

an APSP algorithm); and then rebuild all the SSSP dags using E∗ to efficiently

compute number of paths and predecessor lists. With this technique, we can use

faster APSP algorithms in the initial phase, obtaining a provable speed-up over the

classic Brandes algorithm.

We first consider an algorithm that is based on the Hidden Paths algorithm by

Karger et al. [KKP93] together with Brandes’ accumulation technique. The Hidden

Path algorithm runs Dijkstra’s SSSP in parallel from each vertex. It identifies all

pairs shortest paths while only examining the edges in E∗, the set of edges that

actually lie on some shortest path. A similar algorithm with the same running
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time of O(m∗n+n2 log n) was developed independently by McGeoch [McG95]; here

m∗ = |E∗|.

Our Static-BC algorithm is presented as Algorithm 7. In Step 1 we run the

Hidden Paths algorithm to compute E∗ as well as the shortest path distances for

every pair of vertices. This is the step with the dominant cost, while in Steps 2–8

the complexity is strictly related to the size of E∗. In Steps 2–4, we identify the

edges in each shortest path DAG and in each Ps(v): for every edge (u, v) ∈ E∗, if

d(s, u) + w(u, v) = d(s, v), then we add the edge (u, v) to DAG(s) and the vertex u

to Ps(v). The overall time spent for constructing the DAGs and the predecessor lists

is bounded by O(m∗n). Step 7 counts the number of shortest paths from s to v for all

v ∈ V , by traversing DAG(s) according to the topological order of its vertices, main-

tained in the double-ended queue Q (created in Step 6) used as a queue. We accumu-

late the path counts for a vertex v according to the formula σsv =
∑

(u,v)∈DAG(s) σsu.

This takes time linear in the size of DAG(s). Therefore, across all sources, we spend

time which is bounded by O(n2 +
∑

s∈V m
∗
s) = O(m̄∗n + n2). Finally in Step 8,

using Q as a stack (reverse topological order), we call Accumulate-dependency(s,Q)

(Algorithm 2) to accumulate dependencies. Thus the overall running time of this

static BC algorithm is O(m∗n+ n2 log n). The correctness of the algorithm follows

from the correctness of the Hidden Paths algorithm and the Brandes’ accumulation

technique.

Algorithm 7 Static-BC(G = (V,E))

1: Using an APSP algorithm, compute E∗, and d(s, t) for every s, t ∈ V
2: for each node s ∈ V do
3: for each (u, v) ∈ E∗ do
4: if d(s, u) + w(u, v) = d(s, v) then add (u, v) to DAG(s) and u to Ps(v)
5: for each DAG(s) do
6: compute a dequeue Q containing the nodes of DAG(s) in topological order
7: for all v ∈ V , compute σsv =

∑
(u,v)∈DAG(s) σsu by accumulating path counts

on vertices extracted from Q in queue order (topological order)
8: Accumulate-dependency(s,Q), using Q in stack order //use Algorithm 2
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Algorithm 7 can be expected to run faster than Brandes’ on many graphs

since m∗ is often much smaller than m. However, its worst-case running time is

asymptotically the same as Brandes’. We observe that if we replace the Hidden

Paths algorithm in Step 1 of Algorithm 7 with any other APSP algorithm that

identifies a set of edges E′ ⊇ E∗, we can use E′ in place of E in Step 3, and

obtain a correct static BC algorithm that runs in time O(m′n+ n2 + T ′), where

m′ = |E′| and T ′ is the running time of the APSP algorithm used in Step 1. In

particular, if we use one of the faster APSP algorithms for positive real-weighted

graphs (Pettie [Pet04] for directed graphs or [PR05] for undirected graphs) in Step 1,

we can obtain asymptotically faster BC algorithms than Brandes’ by using E′ = E.

With Pettie’s algorithm [Pet04], we obtain an O(mn+ n2 log log n) time algorithm

for static betweenness centrality in directed graphs, and with the algorithm of Pettie

and Ramachandran [PR05], we obtain a static betweenness centrality algorithm for

undirected graphs that runs in O(mn·logα(m,n)), where α is an inverse-Ackermann

function.
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Chapter 3

Increase-Only Algorithm

In this chapter we present an increase-only algorithm for the APASP problem, where

each update in G either deletes or increases the weight of some edges incident on

a vertex1. Our method is a generalization of the method developed by Demetrescu

and Italiano [DI04] (the ‘DI’ method) for increase-only APSP where only one short-

est path is needed. The DI increase-only algorithm [DI04] runs in O(n2 · log n)

amortized time per update, for a sufficiently long update sequence. This increase-

only algorithm is also extended to a fully dynamic algorithm in [DI04] that runs

in O(n2 · log3 n) time, and this result was improved to O(n2 · log2 n) amortized

time by Thorup [Tho04]; both algorithms have within them essentially the same

increase-only algorithm.

In [DI04, Tho04] the goal was to compute all pairs shortest path distances,

and hence these algorithms preprocess the graph in order to have a unique shortest

path between every pair of vertices. The unique shortest paths assumption, although

not restrictive in their case, is crucial to the correctness and time complexity of their

algorithms. We are interested in the more general problem of APASP, and this poses

several challenges in generalizing the approach in [DI04].

1The results presented in this chapter appeared in [NPR14b].
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In addition to APASP, our method gives an increase-only algorithm for com-

puting BC (Section 5.1 in Chapter 5 explains how to use the data structures intro-

duced in this chapter to compute BC scores).

Locally Shortest Paths (LSPs). For a path πxy ∈ G, we define the πxy distance

from x to y as w(πxy) =
∑

e∈πxy w(e), and the πxy length from x to y as the number

of edges on πxy. For any x, y ∈ V , d(x, y) denotes the shortest path distance from

x to y in G. A path πxy in G is a locally shortest path (LSP) [DI04] if either πxy

contains a single vertex, or every proper subpath of πxy is a shortest path in G. As

noted in [DI04], every shortest path (SP) is an LSP, but an LSP need not be an SP

(e.g., every single edge is an LSP).

The DI method maintains all LSPs in a graph with unique shortest paths, and

these are key to efficiently maintaining shortest paths under increase-only and fully

dynamic updates. The increase-only method we present here maintains all LSPs for

all (multiple) shortest paths in a graph, using a compact tuple representation.

In Chapter 2, we gave a simple decrease-only BC algorithm [NPR14a], that

provably improves on Brandes’ on sparse graphs, and also typically improves on

Brandes’ in dense graphs (e.g., in the setting of Theorem 3 below). In this chap-

ter, we complement the results in Chapter 2; however, increase-only updates are

considerably more challenging (similar to APSP, as noted in [DI04]).

The key step in the decrease-only BC algorithm (Chapter 2) is the decrease-

only maintenance of the APASP dags (achieved there using techniques unrelated to

this thesis). After the updated dags are obtained, the BC scores can be computed

in time linear in the combined sizes of the APASP dags (plus O(n2)). Thus, if we

instead use our increase-only APASP algorithm in the key step in [NPR14a], we

obtain an increase-only algorithm for BC with the same bound as APASP.

Our Results. Recall the definitions of m∗ and ν∗ in Section 1.1.1, Chapter 1. Our

main result is the following theorem, where we have assumed that ν∗ = Ω(n).
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Theorem 2. Let Σ be a sequence of increase-only updates on G = (V,E). Then, all

SP dags, all LSPs, and all BC scores can be maintained in amortized time O(ν∗2 ·

log n) per update when |Σ| = Ω(m∗/ν∗).

In many real graphs ν∗ behaves as discussed in Section 1.1.1, Chapter 1. Thus we

have:

Theorem 3. Let Σ be a sequence of increase-only updates on graphs where the

number of edges on shortest paths through any single vertex is O(n). Then, all SP

dags, all LSPs, and all BC scores can be maintained in amortized time O(n2 · log n)

per update when |Σ| = Ω(m∗/n).

Corollary 1. If the number of shortest paths for any vertex pair is bounded by a

constant, then increase-only APASP, LSPs, and BC have amortized cost O(n2 ·log n)

per update when the update sequence has length Ω(m∗/n).

x′

x

a1 a2 a3

vv1 v2

b1 b

yy1

2

4

2

Figure 3.1: Graph G

Set G (before update on v)

P (x, y) {((xa1, by), 4, 1), ((xa2, by), 4, 2),

= P ∗(x, y) ((xa3, by), 4, 1)}
P (x, b1) {(xa1, vb1), 3, 1), ((xa2, vb1), 3, 1)}
P ∗(x, b1) {((xa1, vb1), 3, 1), ((xa2, vb1), 3, 1)}
L∗(v, y1) {a1, a2}
L(v, b1y1) {a1, a2}
R∗(x, v) {b, b1}
R(xa2, v) {b, b1}

Figure 3.2: A subset of the tuple-system for G in Fig. 3.1

The DI method. Here we will use an example to give a quick review of the DI

approach [DI04], which forms the basis for our method. Consider the graph G in

Fig. 3.1, where all edges have weight 1 except for the ones with explicit weights.
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As in DI, let us assume here that G has been pre-processed to identify a

unique shortest path between every pair of vertices. In G the shortest path from a1

to b1 is 〈a1, v, b1〉 and has weight 2, and by definition, the paths p1 = 〈a1, b1〉 and

p2 = 〈a1, v1, b1〉 of weight 4 are both LSPs. Now consider an increase-only update

on v that increases w(a1, v) to 10 and w(a2, v) to 5, and let G′ be the resulting

graph (see Fig. 3.3). In G′ both p1 and p2 become shortest paths. Furthermore, a

left extension of the path p1, namely p3 = 〈x, a1, b1〉 becomes a shortest path from

x to b1 in G′. Note that the path p3 is not even an LSP in the graph G; however, it

is obtained as a left extension of a path that has become shortest after the update.

The elegant method of storing LSPs and creating longer LSPs by left and

right extending shortest paths is the basis of the DI approach [DI04]. To achieve

this, the DI approach uses a succinct representation of SPs, LSPs and their left and

right extensions using suitable data structures. It then uses a procedure cleanup to

remove from the data structures all the shortest paths and LSPs that contain the

updated vertex v, and a complementary procedure fixup that first adds all the trivial

LSPs (corresponding to edges incident on v), and then restores the shortest paths

and LSPs between all pairs of vertices. The DI approach thus efficiently maintains

a single shortest path between all pairs of vertices under increase-only updates.

Organization. In Section 3.1 we present a new tuple system which succinctly

represents all LSPs in a graph with multiple shortest paths and in Section 3.2 we

present our increase-only algorithm for maintaining this tuple system, and hence for

maintaining APASP.

3.1 A System of Tuples

In this section we present an efficient representation of the set of SPs and LSPs for

an edge weighted graph G = (V,E). We first define the notions of tuple and triple.

Tuple. A tuple, τ = (xa, by), represents the set of LSPs in G, all of which use
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the same first edge (x, a) and the same last edge (b, y). The weight of every path

represented by τ is w(x, a) + d(a, b)+w(b, y). We call τ a locally shortest path tuple

(LST). In addition, if d(x, y) = w(x, a) + d(a, b) + w(b, y), then τ is a shortest path

tuple (ST). Fig. 3.5(a) shows a tuple τ .

Triple. A triple γ = (τ, wt, count), represents the tuple τ = (xa, by) that contains

count > 0 number of paths from x to y, each with weight wt. In Fig. 3.1, the triple

((xa2, by), 4, 2) represents two paths from x to y, namely p1 = 〈x, a2, v, b, y〉 and

p2 = 〈x, a2, v2, b, y〉 both having weight 4.

Storing Locally Shortest Paths. We use triples to succinctly store all LSPs and

SPs for each vertex pair in G. For x, y ∈ V , we define:

P (x, y) = {((xa, by), wt, count): (xa, by) is an LST from x to y in G}

P ∗(x, y) = {((xa, by), wt, count): (xa, by) is an ST from x to y in G}.

Note that all triples in P ∗(x, y) have the same weight. We will use the term LST

to denote either a locally shortest tuple or a triple representing a set of LSPs, and

it will be clear from the context whether we mean a triple or a tuple.

x′

x

a1 a2 a3

vv1 v2

b1 b

yy1

2

4

2

10 5

Figure 3.3: Graph G′

Set G′ (with w(a1, v) = 10, w(a2, v) = 5)

P (x, y) {((xa2, by), 4, 1), ((xa3, by), 4, 1)}
= P ∗(x, y)

P (x, b1) {((xa1, v1b1), 5, 1), ((xa2, vb1), 7, 1),

((xa1, a1b1), 5, 1)}
P ∗(x, b1) {((xa1, v1b1), 5, 1), ((xa1, a1b1), 5, 1)}
L∗(v, y1) {a2}
L(v, b1y1) {a2}
R∗(x, v) ∅
R(xa2, v) {b1}

Figure 3.4: A subset of the tuple-system for G′
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x

a

b
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(a) tuple τ = (xa, by)

x

a

y

(b) `-tuple τ` = (xa, y)

x

b

y

(c) r-tuple τr = (x, by)

Figure 3.5: Tuples

Left Tuple and Right Tuple. A left tuple (or `-tuple), τ` = (xa, y), represents

the set of LSPs from x to y, all of which use the same first edge (x, a). The weight

of every path represented by τ` is w(x, a) + d(a, y). If d(x, y) = w(x, a) + d(a, y),

then τ` represents the set of shortest paths from x to y, all of which use the first

edge (x, a). A right tuple (r-tuple) τr = (x, by) is defined analogously. Fig. 3.5(b)

and Fig. 3.5(c) show a left tuple and a right tuple respectively. In the following, we

will say that a tuple (or `-tuple or r-tuple) contains a vertex v, if at least one of

the paths represented by the tuple contains v. For instance, in Fig. 3.1, the tuple

(xa2, by) contains the vertex v as well as the vertex v2.

ST and LST Extensions. For a shortest path r-tuple τr = (x, by), we define L(τr)

to be the set of vertices which can be used as pre-extensions to create LSTs in G.

Similarly, for a shortest path `-tuple τ` = (xa, y), R(τ`) is the set of vertices which

can be used as post-extensions to create LSTs in G. We do not define R(τr) and

L(τ`). So we have:

L(x, by) = {x′ : (x′, x) ∈ E(G) and (x′x, by) is an LST in G}

R(xa, y) = {y′ : (y, y′) ∈ E(G) and (xa, yy′) is an LST in G}.

For x, y ∈ V , L∗(x, y) denotes the set of vertices which can be used as pre-
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extensions to create shortest path tuples in G; R∗(x, y) is defined symmetrically:

L∗(x, y) = {x′ : (x′, x) ∈ E(G) and (x′x, y) is a `-tuple representing SPs in G}

R∗(x, y) = {y′ : (y, y′) ∈ E(G) and (x, yy′) is an r-tuple representing SPs in G}.

Fig. 3.2 shows a subset of these sets for the graph G in Fig. 3.1.

Key Deviations from DI [DI04]. The assumption of unique shortest paths in

[DI04] ensures that τ = (xa, by), τ` = (xa, y), and τr = (x, by) all represent exactly

the same (single) locally shortest path. However, in our case, the set of paths

represented by τ` and τr can be different, and τ is a subset of paths represented by

τ` and τr. Our definitions of ST and LST extensions are derived from the analogous

definitions in [DI04] for SP and LSP extensions of paths. For a path π = x →

a  b → y, DI defines sets L, L∗, R and R∗. In our case, the analog of a path

π = x → a  b → y is a tuple τ = (xa, by), but to obtain efficiency, we define the

set L only for an r-tuple and the set R only for an `-tuple. Furthermore, we define

L∗ and R∗ for each pair of vertices.

In the following two lemmas we bound the total number of tuples in the

graph and the total number of tuples that contain a given vertex v. These bounds

also apply to the number of triples since there is exactly one triple for each tuple in

our tuple-system.

Lemma 6. The number of LSTs in G = (V,E) is bounded by O(m∗ · ν∗).

Proof. For any LST (×a,××), for some a ∈ V , the first and last edge of any such

tuple must lie on a shortest path containing a. Let E∗a denote the set of edges that

lie on shortest paths through a, and let Ia be the set of incoming edges to a. Then,

there are at most ν∗ ways of choosing the last edge in (×a,××) and at most E∗a ∩ Ia

ways of choosing the first edge in (×a,××). Since
∑

a∈V |E∗a∩Ia| = m∗, the number

of LSTs in G is at most
∑

a∈V ν
∗ · |E∗a ∩ Ia| ≤ m∗ · ν∗.
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Lemma 7. The number of LSTs that contain a vertex v is O(ν∗2).

Proof. We distinguish three different cases:

1. Tuples starting with v: for a tuple that starts with edge (v, a), the last

edge must lie on a’s SP dag, so there are at most ν∗ choices for the last edge. Hence,

the number of tuples with v as start vertex is at most
∑

a∈V \v ν
∗ ≤ n · ν∗.

2. Similarly, the number of tuples with v as end vertex is at most n · ν∗.

3. For any tuple τ = (xa, by) that contains v as an internal vertex, both

(x, a) and (b, y) lie on a shortest path through v, hence the number of such tuples

is at most ν∗2.

3.2 Increase-Only Algorithm

Here we present our increase-only APASP algorithm. Recall that an increase-only

update on a vertex v either deletes or increases the weights of a subset of edges

incident on v. We begin with the data structures we use.

Data Structures. For every x, y, x 6= y in V , we maintain the following:

1. P (x, y) – a priority queue containing LSTs from x to y with weight as key.

2. P ∗(x, y) – a priority queue containing STs from x to y with weight as key.

3. L∗(x, y) – a balanced search tree containing vertices with vertex ID as key.

4. R∗(x, y) – a balanced search tree containing vertices with vertex ID as key.

For every `-tuple we have its right extension, and for every r-tuple its left

extension. These sets are stored as balanced search trees (BSTs) with the vertex ID

as a key. Additionally, we maintain all tuples in a BST dict, with a tuple τ = (xa, by)

having key [x, y, a, b]. We also maintain pointers from τ to R(xa, y) and L(x, by), and

to the corresponding triple containing τ in P (x, y), (and in P ∗(x, y) if (xa, by) is an
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ST). Finally, we maintain a sub-dictionary of dict called Marked-Tuples (explained

below). Marked-Tuples, unlike the other data structures, is specific only to one

update.

The Increase-Only Algorithm. Given the updated vertex v and the updated

weight function w′ over all the incoming and outgoing edges of v, the increase-

only algorithm performs two main steps cleanup and fixup, as in DI. The cleanup

procedure removes from the tuple-system every LSP that contains the updated

vertex v. The following definition of a new LSP is from DI [DI04].

Definition 1. A path that is shortest (locally shortest) after an update to vertex v

is new if either it was not an SP (LSP) before the update, or it contains v.

The fixup procedure adds to the tuple-system all the new shortest and locally

shortest paths. In contrast to DI, recall that we store locally shortest paths in P and

P ∗ as triples. Hence removing or adding paths implies decrementing or incrementing

the count in the relevant triple; thus a triple is removed or added only if its count

goes down to zero or up from zero. Moreover, new tuples may be created through

combining several existing tuples. Some of the updated data structures for the graph

G′ in Fig. 3.3, obtained after an increase-only update on v in the graph G in Fig. 3.1,

are schematized in Fig. 3.4.

3.2.1 The Cleanup Procedure

Algorithm 8 (cleanup) uses an initially empty heap Hc of triples. It also initializes

the empty dictionary Marked-Tuples. The algorithm then creates the trivial triple

corresponding to the vertex v and adds it to Hc (Step 2, Algorithm 8). For a triple

((xa, by), wt, count) the key in Hc is [wt, x, y]. The algorithm repeatedly extracts

min-key triples from Hc (Step 4, Algorithm 8) and processes them. The processing of

triples involves left-extending (Steps 5–17, Algorithm 8) and right-extending triples

(Step 18, Algorithm 8) and removing from the tuple system the set of LSPs thus
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formed. This is similar to cleanup in DI. However, since we deal with a set of paths

instead of a single path, we need significant modifications, of which we now highlight

two: (i) Accumulation used in Step 4 and (ii) use of Marked-Tuples in Step 7 and

Step 11.

Algorithm 8 cleanup(v)

1: Hc ← ∅; Marked-Tuples ← ∅
2: γ ← ((vv, vv), 0, 1); add γ to Hc

3: while Hc 6= ∅ do
4: extract in S all the triples with min-key [wt, x, y] from Hc

5: for every b such that (x×, by) ∈ S do
6: let fcount′ =

∑
i cti such that ((xai, by), wt, cti) ∈ S

7: for every x′ ∈ L(x, by) such that (x′x, by) /∈ Marked-Tuples do
8: wt′ ← wt+ w(x′, x); γ′ ← ((x′x, by), wt′, fcount′); add γ′ to Hc

9: remove γ′ in P (x′, y) // decrements count by fcount
10: if a triple for (x′x, by) exists in P (x′, y) then
11: insert (x′x, by) in Marked-Tuples
12: else
13: delete x′ from L(x, by) and delete y from R(x′x, b)
14: if a triple for (x′x, by) exists in P ∗(x′, y) then
15: remove γ′ in P ∗(x′, y) // decrements count by fcount
16: if P ∗(x, y) = ∅ then delete x′ from L∗(x, y)
17: if P ∗(x′, b) = ∅ then delete y from R∗(x′, b)
18: perform symmetric steps 5 – 17 for right extensions

3.2.2 Accumulation

In Step 4 we extract a collection S of triples all with key [wt, x, y] from Hc and

process them together in that iteration of the while loop. Assume that for a fixed last

edge (b, y), S contains triples of the form (xat, by), for t = 1, . . . , k. Our algorithm

processes and left-extends all these triples with the same last edge together. This

ensures that, for any x′ ∈ L(x, by), we generate the triple (x′x, by) exactly once.

The accumulation is correct because any valid left extension for a triple (xai, by) is

also a valid left extension for (xaj , by) when both triples have the same weight.
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Need for accumulation. In Step 5 of Algorithm 8, we consider every b such

that (x×, by) belongs to S. We also assume that we have the accumulated count

of such triples available in Step 6. An efficient method to accumulate these counts

is given below. We use this accumulated count to generate a longer LST for each

x′ ∈ L(x, by) (Step 8). (For the moment, ignore the check of a tuple being present

in Marked-Tuples.) Consider our example in Fig. 3.1 where after the increase-only

update on v, we intend to remove from the tuple system the following two paths

passing through v namely (i) p1 = 〈x′x, a1, v, b, y〉 and (ii) p2 = 〈x′, x, a2, v, b, y〉.

Note that both these paths represented by triples of the form (x′x, by). We fur-

ther remark that p1 can be generated by left extending the triple ((xa1, by), 4, 1)

whereas p2 can be generated by left extending the triple ((xa2, by), 4, 1). However,

instead of left-extending each triple individually, our algorithm accumulates the

count to obtain 2 paths represented by the r-tuple (x, by) and then generates the

triple ((x′x, by), 5, 1). We note that such an implementation is correct because any

valid left extension of triples of the form (xa1, by) is also a valid left extension of

triples of the form (xa2, by) when the triples have the same weight. Furthermore,

it is efficient since it generates the triple of the form (x′x, by) at most once. This is

the precise reason for defining the set L for an r-tuple (x, by) instead of defining it

for the tuple (xa1, by).

Accumulation technique. An efficient implementation of getting accumulated

counts can be achieved in several ways. For the sake of concreteness, we sketch an

implementation by maintaining two arrays A and B of size n each and two linked

lists La and Lb. Assume that the arrays are initialized to zero and the linked lists

are empty just before any triple with key [wt, x, y] is extracted from the heap. When

a triple γ = ((xai, bjy), wt, countij) is extracted from Hc, we add countij to A[ai]

and B[bj ]. The lists La and Lb maintain pointers to non-zero locations in the arrays
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A and B respectively. Thus, when all triples of weight wt corresponding to tuples

of the form (x×,×y) are extracted from Hc, the value in A[ai] denotes the number

of locally shortest paths of the form (xai,×y) to be updated. Similarly, the value in

B[bj ] denotes number of locally shortest paths of the form (x×, bjy) to be updated.

Using the lists La and Lb, we can efficiently access the accumulated counts as well

as reinitialize (to zero) all the non-zero values in the two arrays A and B.

3.2.3 Need for Marked-Tuples

Consider the example in Fig. 3.1 and assume that we have deleted the two paths

of the form (x′x, by) which pass through v. Furthermore, assume that we have

generated them via left extending the two triples of the form (xa1, by) and (xa2, by).

Now note that since path 〈x′, x, a2, v2, b, y〉 continues to exist in the tuple system,

x′ ∈ L(x, by) and y ∈ R(x′x, b). Thus, when we consider the triples of the form

(x′x, b) for right extension, it is possible to generate the same paths again. To

avoid such a double generation we use the dictionary Marked-Tuples. In Step 7 of

Algorithm 8, just before we create a left extension of a set of triples of the form

(x×, by) using the vertex x′ ∈ L(x, by), we check whether (x′x, by) is present in

Marked-Tuples. Recall that, Marked-Tuples is empty when the cleanup begins.

When a triple for (x′x, by) is generated for the first time (either by a left extension

or right extension), and there are additional locally shortest paths in G of the form

(x′x, by) which do not pass through v, we insert a tuple (x′x, by) in Marked-Tuples

(Step 11, Algorithm 8). Thus the data structure Marked-Tuples and the checks in

Step 7 of Algorithm 8 ensure that the paths are generated exactly once either as a

left extension or as a right extension but not by both. Note that such a marking is

not required when there are no additional paths in G which do not pass through v.

In that case, we immediately delete x′ from L(x, by) and y from R(x′x, b) (Step 13,

Algorithm 8) ensuring that a triple for (x′x, by) gets generated exactly once. This is
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the only case that can occur in DI [DI04] due to the assumption of unique shortest

paths, and therefore this book-keeping with Marked-Tuples is not required in [DI04].

Marked-Tuples. The dictionary of Marked-Tuples is used to ensure that every

path through the vertex v is removed from the tuple system exactly once and there-

fore counts of paths in triples are correctly maintained. Note that a path of the

form (xa, by) can be generated either as a left extension of (a, by) or by a right

extension of (xa, b). This is true in DI as well. However, due to the assumption of

unique shortest paths they do not need to maintain counts of paths, and hence do

not require the book-keeping using Marked-Tuples.

Correctness and Complexity.

We establish the correctness of cleanup in Lemma 8 and an upper bound on its

worst case time in Lemma 9.

Lemma 8. After Algorithm 8 is executed, the counts of triples in P (P ∗) repre-

sent counts of LSPs (SPs) in G that do not pass through v. Moreover, the sets

L,L∗, R,R∗ are correctly maintained.

Proof. To prove the lemma statement we show that the while loop in Step 3 of

Algorithm 8 maintains the following invariants.

Loop Invariant: At the start of each iteration of the while loop in Step 3 of

Algorithm 8, assume that the min-key triple to be extracted and processed from Hc

has key [wt, x, y]. Then the following properties hold about the tuple system and

Hc. We assert the invariants about the sets P , L, and R. Similar arguments can be

used to establish the correctness of the sets P ∗, L∗, and R∗.

I1 For any a, b ∈ V , if G contains cab number of locally shortest paths of weight

wt of the form (xa, by) passing through v, then Hc contains a triple γ =
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((xa, by), wt, cab). Further, cab has been decremented from the initial count in

the triple for (xa, by) in P (x, y).

I2 Let [ŵt, x̂, ŷ] be the key extracted from Hc and processed in the previous

iteration. For any key [wt1, x1, y1] ≤ [ŵt, x̂, ŷ], let G contain c > 0 number of

LSPs of weight wt1 of the form (x1a1, b1y1). Further, let cv (resp. cv̄) denote

the number of such LSPs that pass through v (resp. do not pass through v).

Here cv + cv̄ = c. Then,

(a) if c > cv there is a triple in P (x1, y1) of the form (x1a1, b1y1) and weight

wt1 representing c−cv LSPs. If c = cv there is no such triple in P (x1, y1).

(b) x1 ∈ L(a1, b1y1), y1 ∈ R(x1a1, b1), and (x1a1, b1y1) ∈ Marked-Tuples iff

cv̄ > 0.

(c) For every x′ ∈ L(x1, b1y1), a triple corresponding to (x′x1, b1y1) with

weight wt′ = wt1 + w(x′, x1) and the appropriate count is in Hc

if [wt′, x′, y1] ≥ [wt, x, y]. A similar claim can be stated for every y′ ∈

R(x1a1, y1).

I3 For any key [wt2, x2, y2] ≥ [wt, x, y], let G contain c > 0 LSPs of weight

wt2 of the form (x2a2, b2y2). Further, let cv (resp. cv̄) denote the number

of such LSPs that pass through v (resp. do not pass through v). Here

cv + cv̄ = c. Then the tuple (x2a2, b2y2) ∈ Marked-Tuples, iff cv̄ > 0 and a

triple for (x2a2, b2y2) representing cv LSPs is present in Hc.

Initialization: We show that the invariants hold at the start of the first itera-

tion of the while loop in Step 3 of Algorithm 8. The min-key triple in Hc has key

[0, v, v]. Invariant I1 holds since we inserted into Hc the trivial triple of weight 0

corresponding to the vertex v and that is the only triple of such key. Moreover,

since we do not represent trivial paths containing the single vertex, no counts need

to be decremented. Since we assume positive edge weights, there are no LSPs in G
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of weight less than zero. Thus, invariants I2(a), I2(b), and I2(c) hold trivially. In-

variant I3 holds since Hc does not contain any triple of weight > 0 and we initialized

Marked-Tuples to empty.

Maintenance: Assume that the invariants are true at the beginning of the 1 ≤

i ≤ k-th iteration of the while loop. We now prove that the claims are true at

the beginning of the (k + 1)-th iteration. Let the min-key triple at the beginning

of the k-th iteration be [wtk, xk, yk]. By invariant I1, we know that for any ai, bj ,

if there exists LSPs in G of the form (xkai, bjyk) of weight wtk, they have been

inserted into Hc and further their counts have been decremented from appropriate

triples in P (xk, yk). Now consider the set of triples with key [wtk, xk, yk] which we

extract in the set S (Step 4, Algorithm 8). We consider left-extensions of triples

in S; symmetric arguments apply for right-extensions. Consider for a particular b,

the set of triples Sb ⊆ S and let fcount′ denote the sum of the counts of the

paths represented by triples in Sb. Let x′ ∈ L(xk, byk); our goal is to generate the

paths (x′xk, byk) with count = fcount′ and weight wt′ = wtk + w(x′, xk). However,

we generate such paths only if they have not been generated by a right-extension

of another set of paths. We note that the paths of the form (x′xk, byk) can be

generated by right extending the set of triples of the form (x′xk,×b). Without loss

of generality assume that the triples of the form (x′xk,×b) have a key which is

greater than the key [wtk, xk, yk] and they are not in Hc. Thus, at the beginning

of the k-th iteration, by invariant I3, we know that (x′xk, byk) /∈ Marked-Tuples.

Steps 8–9, Algorithm 8 create a triple of the form (x′xk, byk) of weight wt′ and

decrement fcount′ many paths from the appropriate triple in P (x′, yk) and add it

to Hc. This establishes invariants I2(a) and I2(c) at the beginning of the (k+ 1)-th

iteration. In addition, if there are no LSPs in G of the form (x′xk, byk) which do not

pass through v, we delete x′ from L(xk, byk) and delete yk from R(x′xk, b) (Step 13,

Algorithm 8). On the other hand, if there exist LSPs in G of the form (x′xk, byk),
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then x′ (resp. yk) continues to exist in L(xk, byk) (resp. in R(x′x, b)). Further, we

add the tuple (x′xk, byk) to Marked-Tuples and note that the corresponding triple

is already present in Hc (Step 11, Algorithm 8). Since the invariants I2(b) and

I2(c) were true for every key < [wti, xi, yi] and by the above steps we ensure that

these invariants hold for every key = [wti, xi, yi]. Thus, invariant I2(b) is true at

the beginning of the (k + 1)-th iteration. Note that any triple that is generated

by a left extension (or symmetrically right extension) is inserted into Hc as well as

into Marked-Tuples. This establishes invariant I3 at the beginning of the (k+ 1)-th

iteration.

Finally, to see that invariant I1 holds at the beginning of the (k + 1)-th

iteration, let the min-key at the (k + 1)-th iteration be [wtk+1, xk+1, yk+1]. Note

that triples with weight wtk+1 starting with xk+1 and ending in yk+1 can be created

either by left extending or right extending the triples of smaller weight. And since

for each of iteration ≤ k invariant I2(c) holds, we conclude that invariant I1 holds

at the beginning of the (k + 1)-th iteration.

Termination: The exit condition of the while loop is when the heap Hc is empty.

Because Invariant I1 maintains in Hc the first triple to be extracted and processed,

then Hc = ∅ implies that there are no more triples containing the vertex v that need

to be left or right extended and removed from the tuple system. Moreover, since the

invariants hold for the last set of triples of weight ŵt extracted from the heap, by

I2(a), all LSPs having weight less than or equal to ŵt have been decremented from

the appropriate sets P (·). Finally, due to I2(b), the sets L and R are also correctly

maintained after the while loop terminates.

Lemma 9. For an update on a vertex v, Algorithm 8 takes O(ν∗2 · log n) time.

Proof. The cleanup procedure examines a triple γ only if the tuple in γ contains the

updated vertex v. It removes each such γ from a constant number of data structures

(P, P ∗, L, L∗, R,R∗), each with an O(log n) cost. In addition, each triple is inserted
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into Hc and extracted from it exactly once. Since the number of tuples containing

v is bounded by Lemma 7, the lemma follows.

3.2.4 The Fixup Procedure

The goal of the fixup procedure is to add to the tuple-system all new shortest and

locally shortest paths (recall Definition 1).

The fixup procedure (pseudo-code in Algorithm 9) works with a heap of

triples (Hf here), which is initialized with a candidate shortest path triple for each

pair of vertices. Recall that for a pair x, y, there may be several triples of a given

weight wt in P (x, y). Instead of inserting all min-weight triples (which are candidates

for shortest path triples), our algorithm inserts exactly one triple for every pair of

vertices into Hf . This ensures that the number of triples examined during fixup is

not too large. OnceHf is suitably initialized, the fixup algorithm repeatedly extracts

the set of triples with minimum key and processes them. The main invariant for the

algorithm (similar to DI [DI04]) is that for a pair x, y, the weight of the first set of

triples extracted from Hf gives the distance from x to y in the updated graph. Thus,

these triples are all identified as shortest path triples, and we need to extend them

if in fact they represent new shortest paths. To readily identify triples containing

paths through v we use some additional book-keeping: for every triple γ we store the

update number (update-num(γ)) and a count of the number of paths in that triple

that pass through v (paths(γ, v)). Finally, similar to cleanup, the fixup procedure

also left and right extends triples to create triples representing new locally shortest

paths.
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Algorithm 9 fixup(v,w′)

1: Hf ← ∅; Marked-Tuples ← ∅

2: for each edge incident on v do

3: create a triple γ; set paths(γ, v) = 1; set update-num(γ); add γ to Hf and to P ()

4: for each x, y ∈ V do

5: add a min-weight triple from P (x, y) to Hf

6: while Hf 6= ∅ do

7: extract in S′ all triples with min-key [wt, x, y] from Hf ; S ← ∅

8: if S′ is the first extracted set from Hf for x, y then

9: {Steps 10–17: add new STs (or increase counts of existing STs) from x to y.}

10: if P ∗(x, y) is empty then

11: for each γ′ ∈ P (x, y) with weight wt do

12: let γ′ = ((xa′, b′y), wt, count′)

13: add γ′ to P ∗(x, y) and S; add x to L∗(a′, y) and y to R∗(x, b′)

14: else

15: for each γ′ ∈ S′ containing a path through v do

16: let γ′ = ((xa′, b′y), wt, count′)

17: add γ′ with paths(γ′, v) in P ∗(x, y) and S; add x to L∗(a′, y) and y to R∗(x, b′)

18: {Steps 19–28: add new LSTs (or increase counts of existing LSTs) that extend SPs

from x to y.}

19: for every b such that (x×, by) ∈ S do

20: let fcount′ =
∑
i cti such that ((xai, by), wt, cti) ∈ S

21: for every x′ in L∗(x, b) do

22: if (x′x, by) /∈ Marked-Tuples then

23: wt′ ← wt+ w(x′, x); γ′ ← ((x′x, by), wt′, fcount′)

24: set update-num(γ′); paths(γ′, v)←
∑
γ=(x×,by) paths(γ, v); add γ′ to Hf

25: if a triple for (x′x, by) exists in P (x′, y) then

26: add γ′ with paths(γ′, v) in P (x′, y); add (x′x, by) to Marked-Tuples

27: else

28: add γ′ to P (x′, y); add x′ to L(x, by) and y to R(x′x, b)

29: perform steps symmetric to Steps 19 – 28 for right extensions.
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We now describe the steps of the algorithm. Algorithm 9 initializes Hf in

Steps 2–5 as follows. (i) For every edge incident on v, it creates a trivial triple γ

which is inserted into Hf and P . It also sets update-num(γ) and paths(γ, v) for each

such γ; (ii) For every x, y ∈ V , it adds a candidate min-weight triple from P (x, y) to

Hf (even if P (x, y) contains several min-weight triples; this is done for efficiency).

Algorithm 9 executes Steps 10–17 when for a pair x, y, the first set of triples

S′, all of weight wt, are extracted from Hf . We claim (Invariant 4) that wt denotes

the shortest path distance from x to y in the updated graph. The goal of Steps 10–

17 is to create a set S of triples that represent new shortest paths, and this step is

considerably more involved than the corresponding step in DI. In DI [DI04], only a

single path p is extracted from Hf possibly resulting in a new shortest path from

x to y. If p is new then it is added to P ∗ and the algorithm extends it to create

new LSP. In our case, we extract not just multiple paths but multiple shortest path

triples from x to y, and some of these triples may not be in Hf . We now describe

how the algorithm generates the new shortest paths in Steps 10–17.

Steps 10–17, Algorithm 9 – As mentioned above, Steps 10–17 create a set S of triples

that represent new shortest paths. There are two cases.

• P ∗(x, y) is empty: Here, we process the triples in S′, but in addition, we may

be required to process triples of weight wt from the set P (x, y). To see this,

consider the example in Fig. 3.1 and consider the pair a1, b1. In G, there is

one shortest path 〈a1, v, b1〉 which is removed from P (a1, b1) and P ∗(a1, b1)

during cleanup. In G′, d(a1, b1) = 4 and there are 2 shortest paths, namely

p1 = 〈a1, b1〉 and p2 = 〈a1, v1, b1〉. Note that both of these are LSPs in G and

therefore are present in P (a1, b1). In Step 5, Algorithm 9 we insert exactly

one of them into the heap Hf . However, both need to be processed and also

left and right extended to create new locally shortest paths. Thus, under this

condition, we examine all the min-weight triples present in P (a1, b1).
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• P ∗(x, y) is non-empty: After an increase-only update, the distance from x to

y can either remain the same or increase, but it cannot decrease. Further,

cleanup removed from the tuple-system all paths that contain v. Hence, if

P ∗(x, y) is non-empty at this point, it implies that all paths in P ∗(x, y) avoid

v. In this case, we can show (Invariant 5) that it suffices to only examine the

triples present in Hf . Furthermore, the only paths that we need to process

are the paths that pass through the vertex v.

Steps 19–29, Algorithm 9 – These steps left-extend and right-extend the triples in

S representing new shortest paths from x to y.

Fixup maintains the following two invariants. The invariant below (Invari-

ant 4) shows that for any pair x, y, the weight of the first set of the triples extracted

from Hf determines the shortest path distance from x to y. The proof of the invari-

ant is similar to the proof of Invariant 3.1 in [DI04].

Invariant 4. If the set S′ in Step 7 of Algorithm 9 is the first extracted set from

Hf for x, y, then the weight of each triple in S′ is the shortest path distance from x

to y in the updated graph.

Proof. Assume for the sake of contradiction that the invariant is violated at some

extraction. Thus, the first set of triples S′ of weight ŵt extracted for some pair

(x, y) do not represent the set of shortest paths from x to y in the updated graph.

Consider the earliest of these events and let γ = ((xa′, b′y), wt, count) be a triple in

the updated graph that represents a set of shortest paths from x to y with wt < ŵt.

The triple γ cannot be present in Hf , else it would have been extracted before any

triple of weight ŵt from Hf . Moreover, γ cannot be in P (x, y) at the beginning of

fixup otherwise γ (or some other triple of weight wt) would have been inserted into

Hf during Step 5 of Algorithm 9. Thus γ must be a new LST generated by the

algorithm. Since all edges incident on v are added toHf during Step 2 of Algorithm 9

and γ is not present in Hf , implies that γ represents paths which have at least two
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or more edges. We now define left(γ) as the set of LSTs of the form ((xa, cib), wt−

w(b, y), counti) that represent all the LSPs in the left tuple (xa, b); similarly we

define right(γ) as the set of LSTs of the form ((adj , by), wt −w(x, a), countj) that

represent all the LSPs in the right tuple (a, by). Note that since γ is a shortest path

tuple, all the paths represented by LSTs in left(γ) and right(γ) are also shortest

paths. All of the paths in either left(γ) or in right(γ) are new shortest paths and

therefore are not present in P ∗ at the beginning of fixup. Since edge weights are

positive (wt − w(b, y)) < wt < ŵt and (wt − w(x, a)) < wt < ŵt. As we extract

paths from Hf in increasing order of weight, and all extractions before the wrong

extraction were correct, the triples in left(γ) and right(γ) should have been extracted

from Hf and added to P ∗. Thus, the triple corresponding to (xa, by) of weight wt

should have been generated during left or right extension and inserted in Hf . Hence,

some triple of weight wt must be extracted from Hf for the pair (x, y) before any

triple of weight ŵt is extracted from Hf . This contradicts our assumption that the

invariant is violated.

Using Invariant 5 below we show that fixup indeed considers all of the new

shortest paths for any pair x, y. Recall that all the new shortest paths for a pair

need not be present in Hf and we may be required to consider min-weight triples

present in P (·) as well.

Invariant 5. The set S of triples constructed in Steps 10–17 of Algorithm 9 repre-

sents all of the new shortest paths from x to y.

Proof. Any new SP from x to y is of the following three types:

1. a single edge containing the vertex v (such a path is added to P (x, y) and Hf

in Step 2)

2. a path generated via left/right extension of some shortest path (such a path

is added to P (x, y) and Hf in Step 24 and an analogous step in right-extend).
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3. a path that was an LSP but not SP before the update and is an SP after the

update.

In (1) and (2) above any new SP from x to y which is added to Hf is also added

to P (x, y). However, amongst the several triples representing paths of the form (3)

listed above, only one candidate triple will be present in Hf . Thus we conclude that

for a given x, y and when we extract from Hf triples of weight wt, P (x, y) contains

a superset of the triples that are present in Hf . We now consider the two cases that

the algorithm deals with.

• P ∗(x, y) is empty when the first set of triples for x, y is extracted from Hf .

In this case, we process all the min-weight triples in P (x, y). By the above

argument, we know that all new SPs from x to y are present in P (x, y).

Therefore it suffices to argue that all of them are new. Assume for the sake of

contradiction, some path p represented by them is not new. By definition, p

does not contain v and p was a SP before the update. Therefore, clearly p was

in P ∗(x, y) before the update. However, since cleanup only removes paths that

contain v, the path p remains untouched during cleanup and hence continues

to exist in P ∗(x, y). This contradicts the fact that P ∗(x, y) is empty.

• P ∗(x, y) is not empty when the first set of triples for x, y is extracted from Hf .

Let the weight of triples in P ∗(x, y) be wt. This implies that the shortest path

distance from x to y before and after the update is wt. Recall that we are

dealing with increase-only updates. We first argue that it suffices to consider

triples in Hf . This is observed from the fact that any new SP of the form

(1) and (2) listed above is present in Hf . Furthermore, note that any path of

form (3) above has a weight strictly larger than wt since it was an LSP and

not SP before the update. Thus in the presence of paths of weight wt, none

of the paths of form (3) are candidates for shortest paths from x to y. This

justifies considering triples only in Hf .
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Finally, we note that for any triple considered, our algorithm only processes

paths through v. This again follows from the fact that only paths through v

were removed by cleanup and possibly need to be restored if the distance via

them remains unchanged after the update.

The following lemma establishes the correctness of fixup.

Lemma 10. After execution of Algorithm 9, for any (x, y) ∈ V , the counts of the

triples in P (x, y) and P ∗(x, y) represent the counts of LSPs and SPs from x to y in

the updated graph. Moreover, the sets L,L∗, R,R∗ are correctly maintained.

Proof. We prove the lemma statement by showing the invariants are maintained by

the while loop in Step 6 of Algorithm 9.

Loop Invariant: At the start of each iteration of the while loop in Step 6 of

Algorithm 9 let the min-key triple to be extracted and processed from Hf have key

= [wt, x, y]. We claim the following about the tuple-system and Hf .

I1 For any a, b ∈ V , if G′ contains cab number of LSPs of weight wt of the form

(xa, by). Further, a triple γ = ((xa, by), wt, cab) is present in P (x, y) (note

that Hf can also contain other triples from x to y with weight wt).

I2 Let [ŵt, x̂, ŷ] be the last key extracted from Hf and processed before [wt, x, y].

For any key [wt1, x1, y1] ≤ [ŵt, x̂, ŷ], let G′ contain c > 0 number of SPs of

weight wt1 of the form (x1a1, b1y1). Further, let cnew (resp. cold) denote the

number of such SPs that are new (resp. not new). Here cnew + cold = c. Then,

(a) the triple for (x1a1, b1y1) with weight wt1 in P ∗(x1, y1) represents c SPs.

(b) x1 ∈ L(a1, b1y1), x1 ∈ L∗(a1, y1), and y1 ∈ R(x1a1, b1), y1 ∈ R∗(x1, b1).

Further, (x1a1, b1y1) ∈ Marked-Tuples iff cold > 0.
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(c) If cnew > 0, for every x′ ∈ L(x1, b1y1), a triple corresponding to (x′x1, b1y1)

with weight wt′ = wt1 + w(x′x1) and the appropriate count is in

P (x1, y1) and in Hf if [wt′, x′, y1] ≥ [wt, x, y]. A similar claim can be

stated for every y′ ∈ R(x1a1, y1).

I3 For any key [wt2, x2, y2] ≥ [wt, x, y], let G′ contain c > 0 number of LSPs of

weight wt2 of the form (x2a2, b2y2). Further, let cnew (resp. cold) denote the

number of such SPs that are new (resp. not new). Here cnew + cold = c. Then

the tuple (x2a2, b2y2) ∈ Marked-Tuples, iff cold > 0 and cnew paths have been

added to Hf by some earlier iteration of the while loop.

The proof that these invariants hold at initialization and termination and are

maintained at every iteration of the while loop is similar to the proof of Lemma 8.

Complexity of Fixup.

As in DI, we observe that shortest paths and LSPs are removed only in cleanup and

are added only in fixup. In a call to fixup, accessing a triple takes O(log n) time

since it is accessed on a constant number of data structures. So, it suffices to bound

the number of triples accessed in a call to fixup, and then multiply that bound by

O(log n).

We will establish an amortized bound. The total number of LSTs at any

time, including the end of the update sequence, is O(m∗ ·ν∗) (by Lemma 6). Hence,

if fixup accessed only new triples outside of the O(n2) triples added initially to

Hf , the amortized cost of fixup (for a sufficiently long update sequence) would be

O(ν∗2 · log n), the cost of a cleanup. This is in fact the analysis in DI, where fixup

satisfies this property. However, in our algorithm fixup accesses several triples that

are already in the tuple system: In Steps 11–13 we examine triples already in P ,

in Steps 15–17 we could increment the count of an existing triple in P ∗, and in

Steps 19–28 we increment the count of an existing triple in P . We bound the costs
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of these steps in Lemma 11 below by classifying each triple γ as one of the following

disjoint types:

• Type-0 (contains-v): γ represents at least one path containing vertex v.

• Type-1 (new-LST): γ was not an LST before the update but is an LST after

the update, and no path in γ contains v.

• Type-2 (new-ST-old-LST): γ is an ST after the update, and γ was an LST

but not an ST before the update, and no path in γ contains v.

• Type-3 (new-ST-old-ST): γ was an ST before the update and continues to

be an ST after the update, and no path in γ contains v.

• Type-4 (new-LST-old-LST): γ was an LST before the update and contin-

ues to be an LST after the update, and no path in γ contains v.

The following lemma establishes an amortized bound for fixup which is the

same as the worst case bound for cleanup.

Lemma 11. The fixup procedure takes time O(ν∗2 · log n) amortized over a sequence

of Ω(m∗/ν∗) increase-only updates.

Proof. We bound the number of triples examined; the time taken is O(log n) times

the number of triples examined due to the data structure operations performed on

a triple. The initialization in Steps 1–5 takes O(n2) time. We now consider the

triples examined after Step 5. The number of Type-0 triples is O(ν∗2) by Lemma 7.

The number of Type-1 triples is addressed by amortizing over the entire update

sequence as described in the paragraph below. For Type-2 triples we observe that

since updates only increase the weights on edges, a shortest path never reverts to

being an LSP. Further, each such Type-2 triple is examined only a constant number

of times (in Steps 10–13). Hence we charge each access to a Type-2 triple to the
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step in which it was created as a Type-1 triple. For Type-3 and Type-4, we note

that for any x, y we add exactly one candidate min-weight triple from P (x, y) to Hf ,

hence initially there are at most n2 such triples in Hf . Moreover, we never process

an old LST which is not an ST so no additional Type-4 triples are examined during

fixup. Finally, triples in P ∗ that are not placed initially in Hf are not examined in

any step of fixup, so no additional Type-3 triples are examined. Thus the number

of triples examined by a call to fixup is O(ν∗2) plus O(X), where X is the number

of new triples fixup adds to the tuple system. (This includes an O(1) credit placed

on each new LST for a possible later conversion to an ST.)

Let σ be the number of updates in the update sequence. Since triples are

removed only in cleanup, at most O(σ · ν∗2) triples are removed by the cleanups.

There can be at most O(m∗ · ν∗) triples remaining at the end of the sequence (by

Lemma 1), hence the total number of new triples added by all fixups in the update

sequence is O(σ · ν∗2 + m∗ · ν∗). When σ > m∗/ν∗, the first term dominates, and

this gives an average of O(ν∗2) triples added per fixup, and the desired amortized

time bound for fixup.

3.2.5 Complexity of the Increase-Only Algorithm.

Lemma 11 establishes that the amortized cost per update of fixup is O(ν∗2 · log n)

when the increase-only update sequence is of length Ω(m∗/ν∗). Lemma 9 shows

that the worst case cost per update of cleanup is O(ν∗2 · log n). Since an update

operation consists of a call to cleanup followed by a call to fixup, this establishes

Theorem 2. The space used by our algorithm is O(m∗ · ν∗), the worst case number

of triples in our tuple system.
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Chapter 4

Improved Increase-Only

Algorithm

In Chapter 3, we presented an increase-only APASP algorithm which requires O(m∗ ·

ν∗) space. In this chapter, we show how to reduce the space complexity of the above

by designing an enhanced algorithm that uses only O(m∗ · n) space. There are two

main ideas: the first is to change the data structures used by our algorithms, while

the seconds consists in avoid the double generations of tuples using a new structure

called Marked-Pairs.

Organization. The rest of the Chapter is organized as follows: in Section 4.1, we

describe the new data structures used by our refined algorithms (some of these are

very similar to the structures already introduced in Chapter 3). In Section 4.2, we

present a refined cleanup algorithm which integrates the new tuple-system. In this

section, we also explain how to avoid the double generation problem using Marked-

Pairs. In Section 4.3, we discuss the main challenges imposed by our new tuple-

system and we also explore the limits of our tuples approach. Finally, in Section

4.4, we present a refined fixup algorithm which completes our APASP algorithm.
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4.1 Data Structures

We start by recalling the notions of a tuple, `-tuple, r-tuple and a triple, already

defined in Chapter 3. These will be used to represent a set of LSPs and SPs in G.

Tuple: A tuple, τ = (xa, by), represents the set of LSPs in G, all of which use

the same first edge (x, a) and the same last edge (b, y). The weight of every path

represented by τ is w(x, a) + d(a, b)+w(b, y). We call τ a locally shortest path tuple

(LST). In addition, if d(x, y) = w(x, a) + d(a, b) + w(b, y), then τ is a shortest path

tuple (ST). Fig. 3.5(a) shows a tuple τ . We use the notation x → a  b → y to

denote a set of paths represented by τ .

`-tuple: An `-tuple, τ` = (xa, y), represents the set of LSPs in G, all of which start

with the edge (x, a) and end at the vertex y. The weight of every path represented

by τ` is w(x, a) + d(a, y). We call τ` a locally shortest path tuple (LST) since every

path in τ is an LSP. In addition, if d(x, y) = w(x, a) + d(a, y), then τ` is a shortest

path tuple (ST). Fig. 3.5(b) shows an `-tuple τ`.

r-tuple: An r-tuple, τr = (x, by), represents the set of LSPs in G, all of which start

at the vertex x and end with the edge (b, y). The weight of every path represented

by τr is d(x, b) + w(b, y). We call τr a locally shortest path tuple (LST). In addition,

if d(x, y) = d(x, b) + w(b, y), then τr is a shortest path tuple (ST). Fig. 3.5(c) shows

a r-tuple τr.

4.1.1 New Data Structures

Here, we describe the new data structures needed to maintain our new tuple-system.

These data structures are used by the algorithms we present in the following sections.

For clarity, we refer to a tuple as a full-tuple. Although we will not use full-tuples to

store locally shortest paths, they are used during the running time analysis of our

algorithm. For every x, y, x 6= y in V , we maintain the following:
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1. P`(x, y) – a priority queue containing locally shortest `-tuples from x to y with

weight as key.

2. Pr(x, y) – a priority queue containing locally shortest r-tuples from x to y with

weight as key.

3. P ∗` (x, y) – a priority queue containing shortest `-tuples from x to y with weight

as key.

4. P ∗r (x, y) – a priority queue containing shortest r-tuples from x to y with weight

as key.

5. L(a, by) – a balanced search tree containing vertices with vertex ID as key.

6. R(xa, b) – a balanced search tree containing vertices with vertex ID as key.

7. L∗(x, y) – a balanced search tree containing vertices with vertex ID as key.

8. R∗(x, y) – a balanced search tree containing vertices with vertex ID as key.

We maintain all `-tuples and r-tuples in balanced search trees dict` and

dictr. An `-tuple τ` = (xa, y) has key [x, y, a]; analogous key is defined for an r-

tuple. We also maintain pointers from τ` to R(xa, y) and to the corresponding triple

containing τ` in P`(x, y). Finally, we maintain a set of pairs of vertices which we

call as Marked-Pairs. The usefulness of this set will be discussed later.

In Chapter 3, we implemented both cleanup and fixup using single heaps Hc

and Hf to store full-tuples. In our enhanced cleanup, we will store respectively `-

tuples and r-tuples in dedicated heaps called H`c and Hrc. Similar data structures,

calledH`f andHrf , will be used in fixup. The use of these new structures, the refined

marking scheme maintained in the new structure Marked-Pairs and the enhanced

algorithms, are the core elements for saving space during the computation. We will

now describe some properties of the new heaps.
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Heaps and their keys. Our procedures cleanup and fixup both make use of min-

heaps of triples. In fact in each of the procedures we use two heaps – the left heap

and the right heap. A left heap stores triples containing `-tuples and a right heap

stores triples containing r-tuples. For an `-triple ((xa, y), wt, count) the key in a left

heap H` is [wt, x, y]. For two tuples γ and γ′ with weights wt and wt′ respectively,

wt < wt′ implies γ < γ′. In case wt = wt′, lexicographic ordering of the end points

of the paths represented by γ and γ′ determine the ordering of the two triples. We

remark that we can have multiple triples with the same key in a particular heap.

However, our algorithms process all such triples having the same key together –

hence our definition of key suffices. The key for a r-triple in a right heap is exactly

the same as that of an `-triple.

Adding and removing paths. Recall that we store locally shortest paths in P`, Pr

and P ∗` , P
∗
r as triples. During the course of the update algorithm, we will need to add

and remove a set of paths from these data structures. Since we have stored `-tuples

and r-tuples with the counts of the paths that they represent, adding or removing

paths implies incrementing or decrementing the count in the relevant triple. Say, at

some point in the algorithm P`(x, y) contains an `-tuple ((xa, y), wt, count). Fur-

thermore, let us assume that we execute the following statement in our algorithm:

“remove ((xa, y), wt, count′) in P`(x, y)”. After the execution of the above state-

ment, P`(x, y) contains the `-triple ((xa, y), wt, count′−count). If count′−count = 0,

then the `-triple is deleted from P`(x, y). An analogous meaning is attached to the

statement “add γ in P`(x, y)”.

4.1.2 Key Deviations from Chapter 3([NPR14a])

An important difference between this version and our increase-only NPRdec algo-

rithm in Chapter 3 is to store LSPs as `-tuples and r-tuples instead of full-tuples.

As we see later, this improves the space complexity of the algorithm (as compared
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to NPRdec) while maintaining the same time complexity of NPRdec. We will discuss

other significant changes while describing our algorithms. In the rest of this section,

we estimate the maximum number of full-tuples and `-tuples, r-tuples that can be

present in any graph.

Lemma 12. The number of `-tuples (analogously r-tuples) representing locally short-

est paths in G = (V,E) is bounded by O(m∗ · n). The number of full-tuples repre-

senting locally shortest paths in G = (V,E) is bounded by O(m∗ · ν∗).

Proof. Every single edge is an LSP therefore such LSPs account for at most O(m)

many `-tuples. For any non-trivial `-tuple, the first edge can be chosen in m∗

different ways and end-point can be chosen in n different ways. Thus the number of

`-tuples (and by a symmetric argument the number of r-tuples) is at most O(m∗ ·n).

For any full-tuple (×a,××), for some a ∈ V , the first and last edge of any such tuple

must lie on a shortest path containing a. Let E∗a denote the set of edges that lie on

shortest paths through a, and let Ia be the set of incoming edges to a. Then, there

are at most ν∗ ways of choosing the last edge in (×a,××) and at most E∗a ∩ Ia ways

of choosing the first edge in (×a,××). Since
∑

a∈V |E∗a ∩ Ia| = m∗, the number of

full-tuples in G is at most
∑

a∈V ν
∗ · |E∗a ∩ Ia| ≤ m∗ · ν∗.

In the next lemma we bound the number of `-tuples, r-tuples and full-tuples

that contain a given vertex v.

Lemma 13. The number of `-tuples (analogously r-tuples) that contain a vertex v

is O(ν∗ · n). The number of full-tuples that contain a vertex v is O(ν∗2).

Proof. Number of `-tuples that start/end with v are bounded by O(n2). Number of

`-tuples that contain v as an internal vertex are bounded by O(ν∗ · n).

To bound the number of full-tuples, we consider three different cases:

1. Full-tuples starting with v: For a full-tuple that starts with edge (v, a),

the last edge must lie on a’s SP dag, so there are at most ν∗ choices for the last edge.
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Hence, the number of full-tuples with v as start vertex is at most
∑

a∈V \v ν
∗ ≤ n ·ν∗.

2. Similarly, the number of full-tuples with v as end vertex is at most n · ν∗.

3. For any full-tuple τ = (xa, by) that contains v as an internal vertex, both

(x, a) and (b, y) lie on v’s SP dag, hence the number of such full-tuples is at most

ν∗2.

4.2 The Cleanup Algorithm

This section discusses the cleanup algorithm. The cleanup procedure removes from

the tuple-system every LSP that contains the updated vertex v. The pseudo-code

for our algorithm is described in Section 4.2.1. In Section 4.2.2 we prove useful

invariants of cleanup. Finally, in Section 4.2.3 we prove the correctness of cleanup

and analyze its running time.

4.2.1 Pseudo-code

Alg. 10 (cleanup) uses two min-heaps H`c and Hrc which are initialized to empty.

It also initializes the dictionary Marked-Pairs to empty. The algorithm then creates

the trivial left and right triples corresponding to the vertex v and adds it to H`c

and Hrc respectively (Step 4, Alg. 10). The algorithm repeatedly extracts min-key

triples from H`c (Step 6, Alg. 10) and processes them. The processing of triples

involves left-extending and right-extending triples, which our algorithm achieves by

invoking Algorithm 11 process left (Step 7, Alg. 10). The triples formed by left and

right extensions are removed from the tuple system. Analogous steps are performed

for the triples present in Hrc. These steps are similar in spirit to cleanup in DI.

However, since we deal with a set of paths instead of a single path, we need the

following two significant modifications:

1. Use of two heaps from which we repeatedly extract min-key triples.
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2. Use of Marked-Pairs to ensure that the counts of the LSPs are correctly main-

tained.

Algorithm 10 cleanup(v)

1: Set H`c, Hrc and Marked-Pairs to ∅
2: γ` ← ((vv, v), 0, 1)
3: γr ← ((v, vv), 0, 1)
4: add γ` to H`c and γr to Hrc

5: while H`c 6= ∅ and Hrc 6= ∅ do
6: extract in S` all triples with same min-key from H`c

let [wt, x, y] be the min-key of H`c

7: process left(S`)
8: extract in Sr all triples with same min-key from Hrc

//the min-key of Hrc will also be [wt, x, y]
9: process right(Sr)

We now describe the Algorithm 11 (process left). The input to the algorithm

is a set S` of left triples all having the same key [wt, x, y]. Consider an `-tuple of

the form (xa, y) and let γ = ((xa, y), wt, ct) ∈ S`. Let us consider all the right-

extensions y′ of (xa, y). These extensions are present in R(xa, y). However, since

we extract and extend triples from both H`c and Hrc, we need to ensure that a

triple of the form (xa, y′) gets generated exactly once during our algorithm. In

Section 4.2.3 we characterize triples that can potentially get generated twice during

our cleanup. For the moment, assume that the set REc (in Step 9, Alg. 11) contains

all the extensions of (xa, y) that need to be processed. Our algorithm considers

every extension y′ ∈ REc (Step 9) and invokes the right extend procedure for the

triple γ and the extension y′.

We now turn our attention to Alg. 13 right extend. The algorithm takes as

its input an `-tuple γ = ((xa, y), wt, count) and a vertex y′ ∈ REc with which the

paths represented by γ are right-extended. That is, we create paths of the form

x → a  y → y′). Though the algorithm works to right-extend paths, in the

process, in Step 2 we create triples of both the types; triple γr containing `-tuple
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Algorithm 11 process left(S`)

1: for every γ in S` do
2: let γ = ((xa, y), wt, ct)
3: // Populate REc with the right extensions of γ which need to be processed.
4: if P ∗` (a, y) 6= ∅ and v 6= x then
5: add (a, y) to Marked-Pairs // marked for fixup
6: REc = {y′ | y′ ∈ R(xa, y) and w(y, y′) > w(x, a)}
7: else
8: REc ← R(xa, y)
9: for every y′ ∈ REc do

10: right extend(γ, y′)

Algorithm 12 process right(Sr)

1: for every γ in Sr do
2: let γ = ((a, yy′), wt, ct)
3: // Populate LEc with the left extensions of γ which need to be processed.
4: if P ∗r (a, y) 6= ∅ and v 6= y′ then
5: add (a, y) to Marked-Pairs // marked for fixup
6: LEc = {x | x ∈ L(a, yy′) and w(y, y′) ≤ w(x, a)}
7: else
8: LEc ← L(a, yy′)
9: for every x ∈ LEc do

10: left extend(γ, y′)

representation of the paths and triple γ` containing r-tuple representation of the

paths. The need to create triples of both types is discussed in Section 4.3.2. Step 14

adds the triples to the appropriate heaps and Step 3 removes these triples from the

appropriate data structures. Note that this corresponds to decrementing the count

of the triples. In Step 6 we check if the shortest path triples of the form (xa, y)

have been removed from P ∗` (x, y). If this is the case, it implies that in G all shortest

paths of the form x→ a y are via the updated vertex v. Thus in G, all LSPs of

the form (xa, yy′) are also via the vertex v. Thus after removal of these paths from

the appropriate data structures, it is also required to remove y′ from R(xa, y). Our

algorithm does the same in Step 6–7 of Alg.13. Symmetric steps are performed for

checking if x needs to be removed from L(a, yy′). Finally, if the triple generated
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represents shortest paths from x to y′ then the corresponding entries are removed

from the data structures P ∗, L∗ and R∗ (in steps 8–13).

Algorithm 13 right extend(γ = ((xa, y), wt, count), y′)

1: wt′ ← wt+ w(x, y);
2: γr ← ((x, yy′), wt′, ct); γ` = ((xa, y′), wt′, ct);
3: remove γr in Pr(x, y

′); remove γ` in P`(x, y
′)

4: if a triple for (xa, y) does not exist in P ∗` (x, y) then
5: delete y′ from R(xa, y)
6: if a triple for (a, yy′) does not exist in P ∗r (a, y′) then
7: delete x from L(a, yy′)
8: if the shortest path distance from x to y′ is wt′ then
9: remove γr in P ∗r (x, y′); remove γ` in P ∗` (x, y′)

10: if a triple for (x, yy′) does not exist in P ∗r (x, y′) then
11: delete y′ from R∗(x, y)
12: if a triple for (xa, y′) does not exist in P ∗` (x, y′) then
13: delete x from L∗(a, y′)
14: add γr to Hrc; add γ` to H`c

4.2.2 Invariants of cleanup

We now state some simple but useful invariants of the cleanup algorithm (Alg. 10).

Invariant 6. If a triple with key k = (wt, x, y) is extracted from either H`c or

Hrc for processing during Step 6 or Step 8 of Alg. 10 then all triples of key strictly

smaller than k have been extracted and processed from both H`c and Hrc.

Proof. We note that once we extract a set of triples with key k = (wt, x, y) from

H`c in Step 6, we extract all triples with the same key from Hrc in Step 8 before

extracting any higher key triples from H`c. Furthermore the algorithms process left

(Step 7) and process right (Step 9) add triples with keys strictly larger than k to

H`c and Hrc. Thus the invariant holds throughout the algorithm.

We have an immediate corollary of the above invariant.
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Corollary 2. At Step 5 of Alg. 10 both the heaps H`c and Hrc have the same min-

key.

Before we move to the analysis, we state and prove the following lemma

which characterizes the pairs of vertices which are present in Marked-Pairs at the

end of cleanup procedure. The set Marked-Pairs is used in fix-up to avoid generating

the same set of paths twice.

Lemma 14. A pair (a, y) belongs to Marked-Pairs at the end of cleanup procedure

iff all of the following hold:

• In G there exists an SP from a to y which contains the updated vertex v.

• In G there exists an SP from a to y which avoids the updated vertex v.

• In G there exists an LSP either of the form x→ a y (here x 6= v) or of the

form a y → y′ (here y′ 6= v).

Proof. Let (a, y) be a pair which belongs to Marked-Pairs at the end of cleanup.

We show that all the three conditions listed above are met. Observe that a pair

gets added to Marked-Pairs at the Step 5 of Alg. 11 while processing a set of locally

shortest paths of the form x → a  y. (An analogous step in process right also

adds pairs to Marked-Pairs.) In either of the cases, we note that G contains an

LSP of the form x → a  y or a  y → y′ respectively. Since cleanup procedure

considers only LSPs that contain the vertex v, it must be the case that there exists

a shortest path from a to y which contains the updated vertex v. To see this, recall

that every proper sub-path of a locally shortest path is a shortest path. Finally, in

Step 4 of Alg. 11 (just before adding (a, y) to Marked-Pairs) our algorithm checks

whether P ∗` (a, y) is non-empty. Since we are processing a triple containing `-tuples

(xa, y), all shorter weight LSPs (and SPs) from a to y have been processed. That is,

all LSPs from a to y of strictly smaller weight and containing v have been removed
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from the tuple system. Thus, at this stage if P ∗` (a, y) is non-empty, then it implies

that there is at least one shortest path from a to y which avoids the updated vertex

v. This completes the if part of the proof.

To see the other direction, assume that a pair (a, y) satisfies all the three

conditions of the lemma statement. We claim that (a, y) must belong to Marked-

Pairs at the end of cleanup. W.l.o.g. assume that G contains an LSP of the form

x → a  y. Since cleanup processes all LSPs containing the updated vertex v, a

triple γ containing this path gets extracted at Step 6 of Alg. 10 at some point during

cleanup. We note that since G contains an SP from a to y that avoids v, therefore

P ∗` (a, y) will continue to remain non-empty even after completion of cleanup. Thus

when γ is processed at Step 2–6 of Alg. 11, the if condition in Step 4 is satisfied and

the pair (a, y) is inserted into Marked-Pairs. An analogous argument proves it for

the case when an LSP of the form a y → y′ is present in G.

4.2.3 Analysis of cleanup

In this section we prove the correctness of the cleanup procedure and analyze its

running time. We argue that at the end of cleanup procedure, the LSPs that contain

the vertex v have been removed from the data structures, while all the others LSPs

are maintained in the tuple-system. This is achieved by changing the counts in the

respective triples. Furthermore the left and the right extension sets L,L∗, R,R∗ are

correctly maintained. Before we prove the main lemma in this section (Lemma 17),

we discuss the need for additional book-keeping in our case since we deal with a set

of paths instead of a single path (as in DI). In fact without the careful book-keeping,

it is possible that the same set of paths are generated twice during the cleanup (as

well as later during fixup). Below we discuss when a set of paths can potentially get

generated twice the checks in our algorithm that avoids the same.
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Tuples Generated Twice

Consider any set of LSPs of the form x→ a y → y′ in G. Any such set of paths

contributes to the counts of two different triples in our tuple system – a triple γ`

containing the left-tuple (xa, y′) and a triple γr containing the right tuple (x, yy′).

For the moment assume that none of x, a, y and y′ is equal to the updated vertex

v. This set of paths can be generated either by right-extending (xa, y) or by left-

extending (a, yy′). Note that this is true for every set of paths and is also true in case

of DI. Let us consider the case of DI, that is, when there is a unique shortest path

between any pair of vertices. Assume that the tuple (xa, y) is considered for right

extension during cleanup and the LSP of the form (xa, yy′) is generated. Now the

path x→ a y → y′ is deleted from the respective P`, Pr and P ∗` , P
∗
r (if the path is

a shortest path). However, note the subtle but important point. Due to the unique

shortest path assumption, this is the only LSP of the form (xa, by). Therefore once

we delete the LSP x→ a y → y′ from the tuple system, x is deleted from L(a, yy′)

as well as y′ is deleted from R(xa, y). Thus, at a later point in the algorithm, when

the tuple (a, yy′) is considered for left extension, x is no longer present in L(a, yy′).

Thus, the path (xa, by) gets generated exactly once under the DI assumption.

Now consider the general case when x → a  y → y′ represents a set of

paths instead of a single path. Since this set of paths is generated during cleanup, it

implies that at least one of these paths contains the updated vertex v. We consider

two cases that can arise:

1. All the paths represented by x → a  y → y′ use the updated vertex v. We

note that when any of one x, a, y, y′ is equal to the updated vertex v we are

in this case. But we may fall in this case despite none of x, a, y, y′ being equal

to the updated vertex v.

2. A subset of paths represented by x → a  y → y′ use the updated vertex v

whereas a subset of the paths avoid the updated vertex v.
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We show below that Case (1) is similar to the unique shortest paths assump-

tion and therefore the set of paths get generated exactly once during cleanup. In

Case (2) we can potentially generate the set of paths twice but we show that our

algorithm avoids this by making a simple check in Step 4 of Alg. 11.

Lemma 15. Let γ = ((xa, y), wt, ct) be a triple in S` that is input to Alg. 11

and let y′ ∈ R(xa, y) before the start of cleanup. Furthermore, let wt(x → a  

y) < wt(a  y → y′). Then, y′ ∈ REc at Step 9, Alg. 11 (process left) and

x /∈ LEc at an analgous step in process right. That is, during cleanup the triple

γ′ = ((xa, yy′), wt + wt(y, y′), ct) is generated as a right extension only and does

not get generated as a left extension.

Proof. We divide the proof into two cases depending on the shortest paths from a

to y in G.

• In G, all shortest paths from a to y use v: In this case, it is clear that

all LSPs of the form x → a  y → y′ use v. Note that the assumption

that all shortest paths from a to y are via v and that cleanup has processed

every triple of strictly smaller weight than wt imply that at Step 4 of Alg. 11

we must have P ∗(a, y) = ∅. Thus the set REc contains the complete set of

right extensions of (xa, y) and therefore contains y′. Thus, in Step 10 the set

of paths x → a  y → y′ get generated as right extension. It remains to

argue that these paths do not get generated as a left-extension. For this, we

examine steps that get executed due to the call to the function right extend

(γ, y′) in Step 10 of Alg. 11. Steps 1–5 of Alg. 13 (right extend) generate the

appropriate left and right triples for the set of paths x → a  y → y′ and

delete them from the relevant P and P ∗. Since all shortest paths from a to y

use the updated vertex v, it must be the case that after right extending (a×, y)

all paths of the form (a  y → y′) must have been deleted from the tuple

system. Thus at Step 7 of Alg. 13 our algorithm will delete x from L(a, yy′).
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Therefore when the triple of the form (a, yy′) is extracted from the heap Hrc,

the vertex x no longer belongs to L(a, yy′) and hence the paths do not get

generated as a left extension.

• In G, there exists at least one shortest path from a to y via v and

at least one shortest path from a to y that avoids v: In this case we

note that, when the execution of cleanup reaches Step 4 of Alg. 11, it must

be the case that P ∗(a, y) 6= ∅. This is because the shortest paths from a to

y that do not use the vertex v continue to exist in P ∗(a, y). However, due

to the assumption that wt(x → a  y) < wt(a  y → y′), it must be the

case that wt(x, a) < wt(y, y′). Therefore y′ ∈ REc. Thus, it is clear that the

set of paths get generated as a right extension. To see that the paths do not

get generated as a left extension, we consider Alg. 12 process right. When

invoked with the triple of the form (a, yy′) for left extension, in Step 4, the

set P ∗r (a, y) 6= ∅ and y′ 6= v. Here, the algorithm checks whether x needs to

be added to LEc. However, since w(x, a) < w(y, y′), the vertex x does not get

added to the set LEc. Thus, our algorithm does not generate the set of paths

as a left-extension.

This completes the proof of the lemma.

Correctness

Using Lemma 16 we show that at the end of cleanup procedure the extension sets

are correctly maintained. In Lemma 17 we show that at the end of cleanup all paths

containing v have been deleted from the tuple system and the counts of triples are

correctly maintained.

Lemma 16. The L and R sets as well as the L∗ and R∗ sets are correctly maintained

at the end of cleanup.
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Proof. We argue about the sets L; symmetric arguments apply for the sets R. We

show that at the end of cleanup:

• x ∈ L(a, yy′) if and only if there exists an LSP in G of the form (xa, yy′) that

avoids the updated vertex v.

We note that if G contains LSPs of the form (xa, yy′), then before the execution of

cleanup x ∈ L(a, yy′) and y′ ∈ R(xa, y). Let wt be the weight of LSPs represented

by (xa, yy′). We break our proof into 3 cases depending on whether v lies on none

of the paths, a non-empty subset of the paths or all of the paths represented by

(xa, yy′).

Case 1: Before cleanup, the vertex v lies on none of the paths represented by

(xa, yy′): In this case, x continues to belong to L(a, yy′) at the end of cleanup. This

is because cleanup does generate any path of the form (xa, yy). Thus x ∈ L(a, yy′)

remains unmodified.

Case 2: Before cleanup, the vertex v lies on a non-empty proper subset of the paths

represented by (xa, yy′): In this case, our goal is to show that x continues to belong

to L(a, yy′) at the end of cleanup. We remark that the only steps in cleanup that

delete vertices from the sets L and R are Step 5 and Step 7 in Alg. 13 (right extend)

(and symmetric steps in left extend). In particular, x can be deleted from L(a, yy′)

during the right extension of the triple (xa, y) using the vertex y′. We show below

that this deletion is not possible.

In this case at least one, but not all of the LSPs represented by (xa, yy′)

use the updated vertex v. This implies that in G there exists at least one LSP of

the form (xa, yy′) which avoids the vertex v. This in-turn implies that in G there

exists at least one SP of the weight wt1 = wt − w(x, a) and of the form (a, yy′)

which avoids the vertex v. The r-triple corresponding to (a, yy′) continues to exist

in P ∗r (a, y′) even after cleanup has removed LSPs (and SPs) of weight wt1. Now

consider the call of right extend (Alg. 13) with the triple of the form (xa, y) with
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the vertex y′. The check at Step 6, Alg. 13 fails (since P ∗r (a, y′) contains the triple

corresponding to (a, yy′) ) and therefore x does not be deleted from L(a, yy′).

Case 3: Before cleanup, the vertex v lies on all of the paths represented by (xa, yy′):

In this case, our goal is to show that x does not belong to L(a, yy′) at the end of

cleanup. Our assumption that all LSPs of the form (xa, yy′) use the updated vertex

v, implies that

• all shortest paths from a to y in G pass through the updated vertex v.

• all shortest paths from x to y of the form (xa, y) in G pass through the updated

vertex v.

• all shortest paths from a to y′ of the form (a, yy′) in G pass through the

updated vertex v.

Thus, after cleanup removes all LSPs (in fact SPs) of weight strictly smaller than

wt, we are guaranteed that :

(i) the sets P ∗` (a, y) and P ∗r (a, y) are empty.

(ii) the triple corresponding to (xa, y) has been deleted from P ∗` (x, y).

(iii) the triple corresponding to (a, yy′) has been deleted from P ∗r (a, y′).

Assume for the sake of contradiction, that x is not deleted from the set

L(a, yy′). Furthermore, assume that this the first set for which our algorithm makes

an error. We now observe that the either the call to right extend (xa, y) with the

vertex y′ or the call to left extend(a, yy′) with vertex x must happen during the

course of the algorithm. To see this, assume w.l.o.g. that wt(x, a) < wt(y, y′).

Since (by assumption), all the L and R sets are maintained correctly upto this

point, it is clear that y′ ∈ R(xa, y) (since it was present at the start of the cleanup

algorithm). Consider the call to process left (Alg. 11) which includes the triple
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corresponding to (xa, y). The check at Step 4 of 11, fails (since P ∗` (a, y) is empty

by (i) above). Thus, the set REc is set to R(xa, y). This ensures that right extend

(xa, y) with the vertex y′ is invoked.

Now consider the call of right extend (Alg. 13) with the triple of the form

(xa, y) with the vertex y′. The check in the if condition at Step 6, Alg. 13 passes

(since P ∗r (a, y′) does not contain the triple corresponding to (a, yy′) by (iii) above)

and therefore x gets deleted from L(a, yy′). This contradicts our assumption that x

does is not deleted from L(a, yy′).

Lemma 17. At the end of cleanup, the counts of triples in P`, Pr (P ∗` , P ∗r ) represent

the number of LSPs (SPs) in G that do not pass through v.

Proof. We argue about the correctness of `-triples, a similar argument holds for

r-triples. Furthermore, since a subset of triples in P` are present in P ∗` , it suffices to

argue correctness of counts for P`. We begin by noting that at the end of cleanup,

the counts of LSPs containing a single edge are correct. If, for an edge (x, y), neither

of x or y is equal to v, then the count in the corresponding triple remains unmodified

by cleanup (the count is equal to 1 before and after cleanup). If x or y is equal to v,

the count of the triple (which was orignially 1) is decremented by 1 and hence the

triple gets deleted from Pxy.

Assume for the sake of contradiction that for some LSP containing more

than one edge, the corresponding triple has an incorrect count at the end of cleanup.

W.l.o.g. let (x, yy′) be the first such triple for which cleanup made an error. Assume

that before cleanup, the number of LSPs in G of the form (x, yy′) is c. In addition,

assume that in G the number of LSPs of the form (x, yy′) which pass through v are

cv (where cv ≤ c). Since the count is incorrect after cleanup, let the count after

cleanup be c′ 6= c − cv. We note that the triple cannot represent a trivial path of

zero or one edges. Therefore assume that the paths represented by (x, yy′) contain

two or more edges. Let A = {a1, a2, . . . , ak} be a set of vertices such that for ai ∈ A,
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(xai, yy
′) are LSPs in G. Note that the only way to generate paths of the form

(x, yy′) is either by left extending (ai, yy
′) or right extending (xai, y). Assume that

before cleanup, cai denotes the number of LSPs in G of the form (xai, yy
′) and cvai

denotes the number of LSPs in G of the form (xai, yy
′) that pass through v. This

implies that c =
∑

ai∈A cai and cv =
∑

ai∈A c
v
ai . We now note the following:

(i) For each ai ∈ A, for the triples corresponding to (xai, y) the counts are cor-

rectly maintained, since (x, yy′) is the first time the algorithm makes an error.

Thus, for each ai ∈ A, cai paths are decremented from the triple (xai, y) and

the triple ((xai, y), wt, cvai) is added to H`c for extension.

(ii) The paths of the form (xai, yy
′) are generated by cleanup either by left-

extension or by right extension but not both. This follows from Lemma 3.5.

(iii) The sets L and R are correctly maintained during cleanup. This follows from

Lemma 3.6.

Assume w.l.o.g. for each ai, the paths (xai, yy
′) are generated by right ex-

tension. We consider the call to right extend (Alg. 13) for (xai, y) with the vertex

y′. Step 2 generates the triple of the form (xai, yy
′) with count cvai and this count

is decremented from Pr(x, yy
′). Since this holds for every ai,

∑
ai∈A c

v
ai = cv gets

decremented from c due to these extensions. We finally remark that these are the

only triples that can generate paths of the form (x, yy′) and hence the count of

triple corresponding to (x, yy′) is correctly decremented by cv during cleanup. This

contradicts our assumption that at the end of cleanup the count is not equal to

c− cv.

Time Complexity

In this section we bound the complexity of cleanup.

Lemma 18. For an update on a vertex v, Alg. 10 takes O(ν∗2 · log n) time.

75



Proof. The cleanup algorithm processes `-triples or r-triples each of which contain

the updated vertex v. However, note that during the execution of cleanup, an `-

triple (symmetrically r-triple) of the form (xa, y) may get updated multiple times

(counts being modified) due left-extension of r-triples of the form (a, bjy). Thus the

overall processing done in the algorithm can be charged to full-tuples that contain

the updated vertex v. By Lemma 13, the number of full-tuples containing v are

bounded by O(ν∗2). Accounting for a O(log(n)) for data-structure operations, we

conclude that the running time of cleanup is O(ν∗2 · log n) time.

4.3 Challenges for Multiple Paths

In this section, we will discuss the challenges and limitations posed due to dealing

with multiple paths. In order, we show why a set of paths could be generated

twice (Section 4.3.1), why our algorithms need to create `-tuple and r-tuple out of a

single extension (Section 4.3.2), and finally the limits of our tuple-system approach

(Section 4.3.3).

4.3.1 Generating a set of paths twice

As seen in cleanup, a set of paths can get generated twice, once via left extension

and the second time via right extension. This happens because an `-tuple (xa, y)

representing a set of paths (unlike a single path as in DI) can contain a subset of

paths which use the updated vertex v and the remaining subset of paths avoid the

vertex v. In Section 4.2.3 we have discussed how cleanup ensures that a set of paths

gets generated exactly once. We will show later in fixup that the data-structure

Marked-Pairs, populated during cleanup, avoids double generation of paths.
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4.3.2 Need to create `-tuple and r-tuple both during extension

We first remark that the tuple-system used in this version of the paper is different

from the one in the conference version [NPR14a]. In the current version, a set of

paths of the form x→ a b→ y contribute to the counts of an `-tuple (xa, y) and

an r-tuple (x, by). On the other hand, in [NPR14a], the paths contributed to counts

of the full-tuple (xa, by). The modified representation is used due to the ability to

significantly reduce the space used by our algorithms. It also allows us to avoid the

accumulation of tuples [NPR14a] sharing either the same first or the same last edge.

x

v

a

b

c

Operation extn. tuple extn. tuple

Initialization (vv, v) (v, vv)

1 extension a ∈ R(vv, v) (v, va) x ∈ L(v, vv) (xv, v)

2 extensions x ∈ L(v, va) (xv, a) a ∈ R(xv, v) (x, va)

3 extensions b ∈ R(xv, a) (x, ab) L(x, va) = ∅ –

4 extensions L(x, ab) = ∅ –

Figure 4.1: Evolution of triples removed during an incorrect ‘cleanup’ phase per-
formed on v, in graph G which is a path on 5 vertices. Note that after 4 extensions,
both branches cannot generate additional triples. Thus, the path from x to c is
never generated in such an approach although it is a shortest path in the graph.

We now consider extending paths in the `-tuple, r-tuple system. Consider

an `-triple containing (xa, y) which is extended using y′ (see for example Step 1–

2, Alg. 13). Our algorithm creates two triples one containing the `-tuple (xa, y)

and another containing the r-tuple (x, yy′). A rather simplified approach is to only

right-extend left triples and left-extend right triples. Here, we show that this natural

approach does not suffice and some paths will never get generated. Consider a graph

which is a simple path x → v → a → b → c. Let v be the vertex on which the

increase-only update happens. During cleanup H`c and Hrc get initialized with the

trivial triples corresponding to v, namely (vv, v) and (v, vv). Let us assume that we

only right-extend `-tuples and left-extend r-tuples, during cleanup. The paths that
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get generated during such extensions are shown in Table 4.1.

Thus the path x  c never gets generated if we only right-extend `-tuples

and left-extend r-tuples. This is precisely the reason why we generate both the

`-triple and r-triple even when right-extending an `-tuple (as in Step 2 of Alg. 13)

and later in fixup algorithm as well.

4.3.3 Limits of the tuple-system

In this section we construct an explicit counterexample and a worst case increase-

only update sequence. Observe that all the dynamic algorithms presented in chap-

ters 3,4,5 and 6, generate full tuples in order to maintain shortest paths of the same

weight. We will show that there exists a pathological graph where a single increase-

only update is able to delete and create Θ(n4) distinct SPs where Θ(n4) = Θ(ν∗2).

Moreover, each one of these SPs must be handled by a unique full tuple. In fact

our lower bound applies to any APASP algorithm which generates full tuples during

its execution in order to update multiple SPs. With this counter example we have

reached the limits of our tuple-system approach, where our Õ(ν∗2) amortized results

are near-optimal, and can only be improved by a polylogarithmic factor. We start

by defining an explicit graph as showed in figure 4.2.

The graph G = (V,E) (Figure 4.2) consists of n+ 1 vertices. Let k = n
4 . For

convenience, we divide the graph in two parts: the left portion which is the subgraph

induced on vertices with subscripts from 1 up to k
2 (included) together with v, and

the right portion which is the subgraph induced on vertices with subscripts from

k
2 + 1 to k together with v. We now describe the edge set with its initial weights

(see also the caption of Fig. 4.2). The edge set of G is defined as follows:

• Edges for which weights do not change:

– Left-Short (LS) edges: Set of edges where, for all 1 ≤ p ≤ k/2 and

1 ≤ q ≤ k/2, there is an edge for each pair (xp, aq), and an edge for each
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x1 x2
x k

2

x k
2

+1
xk

a1 aiaj ak

b1 bibj bk

y1 y2 y k
2 y k

2
+1

yk

v

1 1 1 1

1 1 1 1

2 2 1 1

2 2 1 1

2

2

2

2

Figure 4.2: A worst case example for the number of tuples generated. Here |V | =
n+ 1 and k = n/4. The initial set-up for the edge set is defined as follows: For all
1 ≤ p ≤ k/2 and 1 ≤ q ≤ k/2 there is an edge for each pair (xp, aq) with w(xp, aq) =
1, and an edge for each pair (bp, yq) with w(bp, yq) = 1. For all k/2 < p ≤ k and
k/2 < q ≤ k there is an edge for each pair (xp, aq) with w(xp, aq) = 1, and an edge
for each pair (bp, yq) with w(bp, yq) = 1. These edges will never change weights. The
remaining edges (represented with dashed lines) will change because of the updates
on v. They are defined as follows: for 1 ≤ i ≤ k

2 , both the edges (ai, v) and (v, bi)
have weight 2; while for all k/2 < j ≤ k, both the edges (aj , v) and (v, bj) have both
weight 1. Finally, for all 1 ≤ p ≤ k, both the edges (xp, v) and (v, yp) have weight
2. The graph undergoes a sequence of alternating α-updates and β-updates.

pair (bp, yq); all these edges have weight 1.

– Right-Short (RS) edges: Set of edges where, for all k/2 < p ≤ k and

k/2 < q ≤ k, there is an edge for each pair (xp, aq), and an edge for each

pair (bp, yq); all these edges have weight 1.

These weights on these edges never change throughout the update sequence.

• Edges for which weights change: The remaining edges (represented with

dashed lines in Fig. 4.2) change weights due to increase-only updates on vertex
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v. The dashed edges and their initial weights are as follows:

– Left-Medium (LM) edges: Set of edges where, for all 1 ≤ i ≤ k/2,

there is an edge for each pair (ai, v), and an edge for each pair (v, bi);

these edges start with weight 2.

– Right-Medium (RM) edges: Set of edges where, for all k/2 < j ≤ k,

there is an edge for each pair (aj , v), and an edge for each pair (v, bj);

these edges start with weight 1.

– Left-Long (LL) edges: Set of edges where, for all 1 ≤ i ≤ k/2, there

is an edge for each pair (xi, v), and an edge for each pair (v, yi); these

edges start with weight 2.

– Right-Long (RL) edges: Set of edges where, for all k/2 < j ≤ k, there

is an edge for each pair (xj , v), and an edge for each pair (v, yj); these

edges start with weight 2.

Let eLS be an edge e ∈ E that is also in the set LS. In a similar way, we can define

eRS , eLM , eRM , eLL and eRL. To compute the value of v∗, we observe that all the

edges (except for the set LS) are on a shortest path through v. Thus, we have:

ν∗ = |RS|+ |RM |+ |RL|+ |LM |+ |LL| = 2 ·
(n

8

)2
+ 4 ·

(n
4

)
= Θ(n2)

The overall idea is to show that a bad update sequence can force Θ(n4)

SPs to switch from the left portion to the right portion and vice versa after each

increase-only update. Moreover, each one of these SPs is maintained in a different

full tuple.

Note that, in its initial state, G contains more than (n/8)4 SPs through

v in its right portion (that is Θ(ν∗2) in our example), defined by edges in the sets
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{RS,RM}. These SPs are contained in the induced subgraph of G on the set of ver-

tices {xj , aj , v, bj , yj | for all k/2 < j ≤ k}. Each path has the form 〈eRS , eRM , eRM , eRS〉

and can be distinguished in G by the first and last edge. This implies that each

one of the (n/8)4 SPs will be contained in a separate full tuple. (There are other

shortest paths in the right portion, but they are not relevant for our lower bound.)

The left portion of G has only Θ(n2) SPs through v, defined by edges in the set

LL and they are contained in the induced subgraph of G on the set of vertices

{xi, v, yi | for all 1 ≤ i ≤ k/2}. Each path is of the form 〈eLL, eLL〉.

Our update progression consists of an infinite sequence of an α-update fol-

lowed by a β-update, defined as follows:

1. α-update. The vertex v undergoes the following increase-only changes: for all

1 ≤ p ≤ k, we increase by 1 the weight of (xp, v) and (v, yp) (the LL and RL

edges). For all k2 + 1 ≤ j ≤ k, we increase by 2 the weight of (aj , v) and (v, bj)

(the RM edges).

2. β-update. The node v undergoes the following increase-only changes: for all

1 ≤ p ≤ k, we increase by 1 the weight of (xp, v) and (v, yp) (the LL and RL

edges). For all 1 ≤ i ≤ k
2 , we increase by 2 the weight of (ai, v) and (v, bi) (the

LM edges).

After an α update the set of (n/8)4 SPs in the right portion shifts to the left portion

of the graph, and it is constituted by edges in the sets {LS,LM}. These SPs are con-

tained in the induced subgraph ofG on the set of vertices {xi, ai, v, bi, yi | for all 1 ≤ i ≤ k/2}

which contains the Θ(n4) SPs. Each path is of the form 〈eLS , eLM , eLM , eLS〉 and, as

in the previous case, can be distinguished in G by the first and last edge. Similarly,

a β update restores the previous scenario where the set of Θ(n4) SPs are in the right

portion. The value of ν∗ does not change after an α or β update, since the set of

Θ(n4) SPs moves from one portion of G to the other simply mirroring the previous

layout of the paths. In general, after t combined updates (where a combined update
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consists of an α-update followed by a β-update), the weight of each dashed edge will

increase by 2t over its initial weight.

After each α or β update, Θ(n4) = Θ(ν∗2) distinct SPs completely change

their location and weight. Hence, any APASP algorithm that correctly maintains

SPs via full tuples (or needs to generate full tuples to update multiple SPs) must

access and modify the memory for at least each distinct SP. This enforces at least

Θ(ν∗2) operations per update.

4.4 The Fixup Algorithm

The goal of the fixup procedure is to add all new SPs and new LSPs to the tuple-

system (recall Definition 1). The SPs and LSPs which do not contain the updated

vertex v continue to remain in the tuple-system with correct weight and count. In

Section 4.4.1 we give an overview of the fixup algorithm. We then give the detailed

pseudo-code for fixup in Section 4.4.2. Section 4.4.3 discusses the invariants of fixup.

In Section 4.4.4 we prove the correctness of fixup and analyze its running time.

4.4.1 Overview of Fixup

As in cleanup, the fixup procedure (pseudo-code in Alg. 14) works with two heaps

of triples H`f and Hrf , which are initialized with candidate shortest path triples for

each pair of vertices. The algorithm repeatedly extracts from these heaps the set

of triples with minimum key and processes them. The main invariant (similar to

DI [DI04]) is that the weight of the first set of triples, for a pair x, y, extracted from

each heap gives the shortest path distance from x to y in the updated graph. Thus,

these triples are all identified as shortest path triples and we need to extend them

if in fact they represent new shortest paths. Note that, if triples do not contain

new shortest paths, their extensions are correctly maintained and we do not need

to process them.
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Since we deal with a set of paths, it is sometimes necessary in fixup to address

only the new paths going through the updated vertex v. This happens when the

shortest distance for a given pair of nodes does not increase after the update. To

readily identify triples containing paths through v we use additional book-keeping:

for every triple γ examined during the fixup phase, we store the update number

(update-num(γ)) and a count of the number (paths(γ, v)) of paths in that triple

that pass through v. These allow us to easily identify shortest triples containing v

that will be extended to LSTs, and the corresponding number of shortest paths that

pass through v. New shortest triples are added to the appropriate data structures by

Alg. 15; moreover, the same algorithm identifies the exact number of new shortest

paths within a triple that will be extended in the next step.

Finally, similar to cleanup, the fixup procedure also left and right extends

triples to create new locally shortest triples. This task is performed by Alg. 16. As in

cleanup, we need to avoid generating the same triple twice, in order to maintain the

correct count of paths. In Section 4.4.4 we prove that we indeed generate every path

(including new shortest paths) exactly once. In fact, during fixup, we avoid double

generation of paths by using the data-structure Marked-Pairs populated during the

cleanup phase. The fixup algorithm (Alg. 14) invokes fixup process left (Alg. 15)

which in turn invokes fixup right extend (Alg. 16). Below, we give a full description

of this algorithm.

4.4.2 Pseudo-code

Alg. 14 (fixup) begins by initializing the heapH`f in Steps 3–9 as follows (symmetric

steps are performed for Hrf ): For every edge incident on v, it creates a trivial `-

triple γ` which is inserted into H`f and the corresponding P`(·). For example,

for edge (u, v) we create (uv, v) and (u, uv) and we insert them in the respective

data structures. It also sets update-num(γ`) and paths(γ`, v) for each generated γ`.
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Then, for every x, y ∈ V , it adds a single candidate min-weight triple from P`(x, y)

to H`f (even though P`(x, y) may contain several min-weight triples; this is done

for efficiency).

The main while loop in Step 10 of Alg. 14 extracts all the min weight triples

from both H`f and Hrf . These will be processed by fixup process left (Alg. 15)

which will add new shortest triples to the P ∗` and P ∗r , updating L∗ and R∗ cor-

responding data structures, and will create a set S` of new shortest triples to be

extended.

Algorithm 14 fixup(v,w′)

1: H`f ← ∅; Hrf ← ∅; Marked-Tuples ← ∅
2: let round← current update number
3: for each edge incident on v do
4: create triples γ` and γr
5: set paths(γ`, v)← 1; update-num(γ`)← round ; add γ` to H`f and to P`(·)
6: set paths(γr, v)← 1; update-num(γr)← round ; add γr to Hrf and to Pr(·)
7: for each x, y ∈ V do
8: add a min-weight triple from P`(x, y) to H`f

9: add a min-weight triple from Pr(x, y) to Hrf

10: while H`f 6= ∅ and Hrf 6= ∅ do
11: extract in S′` all triples with same min-key from H`f ;

let [wt, x, y] be the min-key of H`f ; S` ← ∅
12: fixup process left(S′`)
13: extract in S′r all triples with same min-key from Hrf ;

the min-key of Hrf will also be [wt, x, y]; Sr ← ∅
14: fixup process right(S′r)

fixup process left – Alg. 15 checks whether for the pair x, y, the set S′` is the first

set of triples (all of weight wt) extracted from H`f . We claim (Invariant 7) that wt

denotes the shortest path distance from x to y in the updated graph. (Note that,

if S′` is not the first extraction for the pair x, y we do not process it.) The goal of

steps 4–11 in Alg. 15 is to add the new paths, collected for a pair of nodes during the

first extraction from Hrc and H`c (Steps 11 and 13, Alg. 14), to the corresponding

P ∗` and P ∗r , to update the sets L∗ and R∗ accordingly, and to create a set S` of
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triples that represent new shortest paths which will be extended to LSTs. Note that

this step is considerably more involved than the corresponding step in DI. In DI,

only a single path p is extracted from H`f possibly resulting in a new shortest path

from x to y. If p is new then it is added to P ∗` and P ∗r , thus the algorithm extends

it to create new LSPs. In our case, we extract not just multiple paths but several

shortest path triples from x to y, and not all of these triples need to be in H`f .

We now describe how our algorithm handles the new shortest paths in Steps 4–11.

Note that in DI, for each pair of nodes, only a single path is extracted/processed

and eventually added as a new shortest path to their dataset.

Handling new shortest paths – As mentioned above, the challenging task of Alg. 15

is to create a set S` of triples that represent the new shortest paths. There are two

cases to consider.

• P ∗` (x, y) is empty: Here, we process the triples in S′`, but in addition, we may

be required to process triples of weight wt from the set P`(x, y). To see this,

consider the example in Fig. 3.1 and consider the pair a1, b1. In G, there is one

shortest path 〈a1, v, b1〉 which is removed from P`(a1, b1) and P ∗` (a1, b1) during

cleanup. In the updated graph G′, where w(a1, v) = 10 and w(a2, v) = 5, the

distance d(a1, b1) = 4 and there are 2 shortest paths, namely p1 = 〈a1, b1〉

and p2 = 〈a1, v1, b1〉. Note that both of these are LSPs in G and therefore are

present in P`(a1, b1). In Step 8, Alg. 14 we insert exactly one of them into

the heap H`f . However, both need to be processed and also left and right

extended to create new locally shortest paths. Thus, under this condition,

we examine all the min-weight triples present in P`(a1, b1). We will show in

invariant 8 that the additional triples added from P` are in fact new shortest

triples.

• P ∗(x, y) is non-empty: After an increase-only update, the shortest distance

from x to y can either remain the same or increase, but it cannot decrease.
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Further, cleanup removed from the tuple-system all paths that contain v.

Hence, if P ∗` (x, y) is non-empty at this point then all the paths in P ∗` (x, y)

avoid v. In this case, we show (Invariant 8) that it suffices to only examine

the triples present in H`f . Furthermore, the only paths that we need to process

are the paths that pass through the vertex v.

Algorithm 15 fixup process left(S′`)

1: if S′` is the first extracted (shortest) set of tuples from H`f for x, y then
2: S` ← ∅
3: {Steps 4–11: add new STs (or increase counts of STs) from x to y to S`.}
4: if P ∗` (x, y) is empty then
5: for each γ′` ∈ P`(x, y) with weight wt do
6: let γ′` = ((xa′, y), wt, count′)
7: add γ′` to P ∗` (x, y) and S`; add x to L∗(a′, y)
8: else
9: for each γ′` ∈ S′` containing a path through v do

10: let γ′` = ((xa′, y), wt, count′)
11: add γ′` with paths(γ′`, v) in P ∗` (x, y) and S`; add x to L∗(a′, y)
12: fixup right extend(S`)

fixup right extend – Alg. 16 gets as its input the set S` of STs all having the same

key. The goal is to right extend these triples to generate LSPs of larger weight.

The loop at Step 2 (Alg. 16) considers every triple γ` ∈ S` and extends it using

appropriate extensions. As in cleanup, we need to guard against the possible double

generation of paths. Steps 4–8 build the set RE∗f which contains the extensions that

will be used to right extend the triple under consideration. Here we make use of the

data structure Marked-Pairs which was populated during cleanup. In particular,

consider a triple (xa′, y), wt, count′) being right extended during Step 9, Alg. 16.

In case, (a′, y) ∈ Marked-Pairs we select in RE∗f only those y′ ∈ R∗(a′, y) which

satisfy the property that w(y, y′) > w(x, a′). In case, (x, a′) does not belong to

Marked-Pairs, RE∗f is equal to the set R∗(a′, y). We prove in Section 4.4.4 that this

selection of vertices ensures that every set of paths is generated exactly once. Note
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that the conference version [NPR14a] follows a different approach, which correctly

maintains the tuple-system but requires more space in the worst case. The rest

of Alg. 16 proceeds similarly to DI by inserting the newly generated LST into the

corresponding data structures P,L and R, with the notable difference that now for

a generated LST (xa′, yy′) we populate both Pr(x, y
′) with a right-tuple (x, yy′) and

P`(x, y
′) with a left-tuple (xa′, y′).

Algorithm 16 fixup right extend(S`)

1: {Steps 2–21: add new LSTs (or increase counts of existing LSTs) that extend
SPs from x to y.}

2: for every γ` ∈ S` do
3: γ` = ((xa′, y), wt, count′);
4: if (a′, y) ∈ Marked-Pairs then
5: RE∗f = { y′ | y′ ∈ R∗(a′, y) and w(y, y′) > w(x, a′) }
6: {Note that this step in fixup left extend(Sr) is slightly different. We place

in LE∗f all x′ ∈ L∗(x, b′) such that w(x′, x) ≥ w(b′, y).}
7: else
8: RE∗f ← R∗(a′, y)
9: for every y′ in RE∗f do

10: wt′ ← wt+ w(y, y′);
11: γ′` ← ((xa′, y′), wt′, count′) ; γ′r ← ((x, yy′), wt′, count′)
12: set update-num(γ′`); paths(γ

′
`, v)← paths(γ, v); add γ′ to H`f

13: perform symmetric steps for γ′r
14: if a triple for (xa′, y′) exists in P`(x, y

′) then
15: add γ′` with paths(γ′`, v) in P`(x, y

′)
16: else
17: add γ′` to P`(x, y

′); add x to L(a′, yy′) and y′ to R(xa′, y)
18: if a triple for (x, yy′) exists in Pr(x, y

′) then
19: add γ′r with paths(γ′r, v) in Pr(x, y

′)
20: else
21: add γ′r to Pr(x, y

′); add x to L(a′, yy′) and y′ to R(xa′, y)

4.4.3 Invariants

Fixup maintains the following invariants. Invariant 7 is proved similarly to Invari-

ant 3.1 in [DI04]. The proof of Invariant 8 requires a careful analysis of various cases
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to show that indeed all new shortest paths are inserted into the set S.

Invariant 7. If the set S′` in Step 11 of Alg. 14 is the first extracted set from H`f

for x, y, then the weight of each triple in S′` is the shortest path distance from x

to y in the updated graph. (A symmetric proof holds for S′r extracted from Hrf in

Step 13 of Alg. 14)

Proof. Assume for the sake of contradiction that the invariant is violated at some

extraction. Thus, the first set of triples S′` of weight ŵt extracted for some pair (x, y)

does not contain shortest paths from x to y in the updated graph. Consider the

earliest of these events and let γ = ((xa, y), wt, count) be a `-triple in the updated

graph that represents a set of shortest paths from x to y with wt < ŵt. The triple

γ cannot be present in H`f , else it would have been extracted before any triple of

weight ŵt from H`f . Moreover, γ cannot be in P`(x, y) at the beginning of fixup

otherwise γ (or some other `-triple of weight wt) would have been inserted into H`c

during Step 8 of Alg. 14. Thus γ must be a new locally shortest `-triple generated

by the algorithm.

Since all edges incident on v are added to H`f during Step 5 of Alg. 14 and

γ is not present in H`f , implies that γ represents paths which have at least two or

more edges. For 1 ≤ i ≤ k, we define left(γ) as the set of locally shortest `-tuples

of the form ((xa, bi), wt − w(bi, y), counti) that, when right extended to y, would

generate γ; similarly we define right(γ) as the set of locally shortest r-tuples of the

form ((a, biy), wt−w(x, a), counti) that, when left extended to x, would generate γ.

Note that since γ is a shortest path tuple, all the paths represented in left(γ) and

right(γ) are necessarily shortest paths. Moreover, since γ is a new triple generated by

the algorithm, all of the paths in either left(γ) or right(γ) are new shortest paths and

therefore not present in P ∗` or P ∗r at the beginning of fixup. Since edge weights are

positive (wt−w(bi, y)) < wt < ŵt (for all i in left(γ)) and (wt−w(x, a)) < wt < ŵt.

As we extract triples from H`f and Hrf in increasing order of weight (Steps 11 and
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13, Alg. 14), and all extractions before the wrong extraction were correct, the triples

in left(γ) (or right(γ)) should have been extracted from H`f (or Hrf ) and added

respectively to P ∗` (or P ∗r ) in Step 7, Alg. 15. Thus, the triple corresponding to

(xa, by) of weight wt should have been generated during a right (or left) extension

of the above triples and inserted in H`f as an `-tuple (xa, y) with weight wt (Step

12, Alg. 16). Hence, some `-triple of weight wt must be extracted from H`f for the

pair (x, y) before any triple of weight ŵt is extracted from H`f . This contradicts

our assumption that the invariant is violated.

Using Invariant 8 below we show that fixup indeed considers all of the new

shortest paths for any pair x, y.

Invariant 8. The set of triples S` constructed in Steps 4–11 of Algorithm 15 repre-

sents all of the new shortest paths from x to y, added to P ∗` in the above steps. (A

symmetric proof holds for the set of triples Sr)

Proof. Any new SP from x to y is of the following three types:

1. a single edge incident to v (such a path is added to P`(x, y), Pr(x, y), H`f and

Hrf by the for loop at Step 3 of Alg. 14) (these paths trivially contain the

updated node v),

2. a path that was an LSP but not SP before the update and is an SP after the

update (this path does not contain the updated node v),

3. a path generated via left/right extension of some shortest path (such a path

is added to P`(x, y), Pr(x, y), H`f and Hrf in Steps 12, 13 and 14–21 Alg. 16

and analogous steps in fixup left extend) (this path could be an extension of

a shortest path containing the updated node v or not).

In (1) and (3) above any new SP from x to y which is added to H`f is also added to

P`(x, y) (Steps 14–17, Alg. 16) (same for Hrf and Pr(x, y)). However, amongst the
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several triples representing paths of the form (2) listed above, only one candidate

triple will be present in H`f or Hrf . In this case, for a given x, y, when we extract

from H`f (Hrf ) triples of weight wt, P`(x, y) (Pr(x, y)) could contain other triples

with same weight wt which differ from the ones extracted from H`f (Hrf ). We now

consider the two cases that the algorithm deals with. For simplicity we only study

the case for `-tuples, noting that the same arguments apply to r-tuples.

• P ∗` (x, y) is empty when the first set of triples for x, y is extracted from H`f

(Steps 5–7, Alg. 15). Here, all the shortest paths from x to y were passing

through v. In this case, we process all the min-weight triples in P`(x, y). By the

above argument, we know that all new SPs from x to y are present in P`(x, y).

Therefore it suffices to argue that all of them are new. Assume for the sake of

contradiction, some path p represented by them is not new. By definition, p

does not contain v and p was a SP before the update. Therefore, clearly p was

in P ∗` (x, y) before the update. However, since cleanup only removes paths that

contain v, the path p remains untouched during cleanup and hence continues

to exist in P ∗` (x, y). This contradicts the fact that P ∗` (x, y) is empty.

• P ∗` (x, y) is not empty when the first set of triples for x, y is extracted from H`f

(Steps 9–11, Alg. 15). Here, some of the shortest paths from x to y remained in

the tuple-system after the cleanup phase. Let the weight of triples in P ∗` (x, y)

be wt. This implies that the shortest path distance from x to y before and

after the update remains wt. Recall that we are dealing with increase-only

updates. We first argue that it suffices to consider triples in H`f . This is

observed from the fact that any new SP of the form (1) and (3) listed above

is present in H`f . Furthermore, note that any path of form (2) above has

a weight strictly larger than wt, since it was an LSP and not an SP before

the update. Thus in the presence of paths of weight wt, none of the paths

of form (3) are new candidates for shortest paths from x to y. This justifies
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considering triples only in H`f .

Finally, we note that for any triple considered, in the case when P ∗` (x, y) is not

empty, our algorithm only processes paths through v. This again follows from

the fact that only paths through v were removed by cleanup and possibly need

to be restored if the distance via them remains unchanged after the update.

4.4.4 Analysis of Fixup

In this section we prove the correctness of the fixup procedure and analyze its

running time. In the next section, we first give the complete characterization of

LSPs that could be generated twice during fixup. Then, we proceed by proving

correctness in Section 4.4.5, and the complexity of our algorithm in Section 4.4.6.

Tuples generated twice

In this section we give the characterization of LSPs that can potentially get gener-

ated twice during fixup.

Lemma 19. Assume that none of x, a, y, y′ is equal to the updated vertex v. If G′

contains new LSPs of the form (xa, yy′), then during fixup these paths get generated

either as a right extension of the triple (xa, y) or as a left extension of the triple

(a, yy′) but not as both.

Proof. We break the proof into two parts.

The pair (a, y) ∈ Marked-Pairs: As (a, y) ∈ Marked-Pairs, by Lemma 14, the

shortest path distance from a to y remains unchanged from G and G′, and further

in G some SPs from a to y use the vertex v whereas some SPs from a to y avoid

the vertex v. In addition, we claim that the graph G (before update on v) also

contains LSPs of the form (xa, yy′). This is because G′ contains LSPs of the form
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(xa, yy′), and the weights of (x, a) and (y, y′) have not been altered by the update

on v. This implies that x ∈ L∗(a, y) and y′ ∈ R∗(a, y) at the beginning of cleanup.

Since (a, y) ∈ Marked-Pairs, these extensions continue to exist even at the end of

cleanup procedure and the beginning of fixup. Now assume w.l.o.g. that wt(x, a) <

wt(y, y′). Then at Step 5 of Alg. 16, we note that y′ gets added to RE∗f . Thus the

paths of the form (xa, yy′) get generated as right extension. In addition, it is easy to

see that in the symmetric procedure fixup left extend (of Alg. 16), the corresponding

check at Step 5 fails and therefore x /∈ LE∗f . Thus, the set of paths get generated

as a right extension and not as a left extension in this case. A symmetric argument

proves that when wt(x, a) ≥ wt(y, y′) the paths get generated as a left extension

only and not as a right extension.

The pair (a, y) /∈ Marked-Pairs: We note that we fall in this case when either (i)

the shortest path distance from a to y strictly increases between G and G′ or (ii) the

shortest path from a to y remains unchanged between G and G′ but all the shortest

paths from a to y use the updated vertex v. Thus, just after cleanup x /∈ L∗(a, y)

and y′ /∈ R∗(a, y). This case is similar to the unique shortest paths case in DI. Thus,

when the smaller amongst the two paths (xa, y) and (a, yy′) is extracted from the

corresponding heap, the LSPs of the form (xa, yy′) do not get generated. Hence,

the LSPs of the form (xa, yy′) get generated exactly once when the larger of the two

paths is identified as a set of shortest paths.

4.4.5 Correctness

Lemma 20. After execution of Alg. 14, for any (x, y) ∈ V , the counts of the triples

in P`, Pr (P ∗` , P ∗r ) represent all the LSPs (SPs) in G from x to y in the updated

graph. Moreover, the sets L,L∗, R,R∗ are correctly maintained.

Proof. We prove the lemma statement by showing the invariants are maintained by

the while loop in Step 10 of Algorithm 14.
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Loop Invariant: At the start of the t-th iteration of the while loop in Step 10 of

Algorithm 14 let the min-key triples to be extracted and processed from H`f have

key [wt, x, y]. We claim the following about the tuple-system and H`f (a symmetric

proof holds for Hrf and r-triples).

I1 For any a ∈ V , if G′ contains ca number of LSPs of weight wt of the form

(xa, y), then an `-triple γ = ((xa, y), wt, ca) is present in P`(x, y) (note that

H`f can also contain other `-triples from x to y with weight wt).

I2 Let [ŵt, x̂, ŷ] be the last key extracted from H`f and processed before [wt, x, y].

For any key [wt1, x1, y1] ≤ [ŵt, x̂, ŷ], let G′ contain c > 0 number of SPs of

weight wt1 of the form (x1a1, y1), and let B = {b1, b2, . . . , bk} be the set of the

last nodes, before y1, on these shortest paths. Further, let cnew (resp. cold)

denote the number of such SPs of the form (x1a1, y1) that are new (resp. not

new). Here cnew + cold = c. Then,

(a) the `-triple ((x1a1, y1), wt1, c) is in P ∗` (x1, y1) representing c SPs.

(b) for all b ∈ B, x1 ∈ L(a1, by1) and y1 ∈ R(x1a1, b). Moreover x1 ∈

L∗(a1, y1).

(c) If cnew > 0, for every right extension y′ ∈ R(x1a1, y1), an `-triple cor-

responding to (x1a1, y
′) with weight wt′ = wt1 + w(y1, y

′) and the

appropriate count is in P`(x1, y
′) and in H`f if [wt′, x1, y

′] ≥ [wt, x, y]. A

similar claim can be stated for an r-tuple (x1, y1y
′) with weight wt′ in

Pr(x1, y
′) and in Hrf .

I3 For any key [wt2, x2, y2] ≥ [wt, x, y], if any path of the form (x2a2, b2y2) and

weight wt2 is generated either as a left or right extension but not both. Fur-

thermore, a single `-triple of the form (x2a2, y2) and appropriate count will

be inserted in the heap H`f (and similarly an r-triple of the form (x2, b2y2) in

Hrf ).
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The proof that these invariants hold at initialization and termination, and

are maintained at every iteration of the while loop, are shown below.

Initialization: We initialize the heaps H`f and Hrf with the set of edges incident to

v (Steps 3–6, Alg. 14). Moreover, a min-weight triple for each pair x, y is inserted in

both H`f and Hrf (Steps 8 and 9, Alg. 14). The first extraction (with key [wt, x, y])

from H`f is a min-weight edge in the graph. Thus I1 is easily verified. Since there

is no key smaller than [wt, x, y] already extracted, I2 is also true at initialization.

Moreover, since there is no key yet, bigger than [wt, x, y] and generated by the fixup

and inserted in H`f , I3 holds at initialization.

Maintenance: Given that the min-key triple in H`f is [wt, x, y] with weight wt, let

(xa, y) be any of the `-triples in H`f ready to be extracted. Let B = {b1, b2, . . . , bk}

be the set of the last nodes, before y on the paths represented by (xa, y). We

consider the following triples:

• For each j = 1, . . . , k, LSPs of the form (a, bjy) of weight wta = wt−wt(x, a).

The count of these paths is exactly cabj .

• For each j = 1, . . . , k, LSPs of the form (xa, bj) of weight wtb = wt−wt(bj , y).

The count of these paths is exactly cabj .

Note that, the above two cases are the only set of triples which are able to gen-

erate the `-tuple (xa, y). Since wta and wtb are strictly smaller than wt, the loop

invariant holds when both the heaps have min-key [wta, a, y] or [wtb, x, bj ]. Consider

the iteration where min-key in the heaps is [wta, a, y]. Since Invariant I3 holds at

the end of that iteration, we are guaranteed that for each i = 1, . . . k, the triple

((a, bjy), wt, cabj ) is left-extended to generate LSPs of the form (xa, bjy) (having

correct counts) each of which contribute to the `-triple (xa, y). Thus the triple

((xa, y), wt, ca) is added in H`c (Step 12, Alg.16), as well as added to P (x, y) (Steps

15 or 19, Alg.16). This establishes I1. If an `-triple (xa, y) is generated by a right

extension of the `-triple (xa, b), an analogous argument establishes I1. Note that,
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since a full triple is only generated once during fixup (Invariant I3), the count of

paths is correct by induction.

To prove that Invariant I2 holds, we note that Invariant I1 holds for the

`-tuple (x1a1, y1); hence, there is an `-triple γ = ((x1a1, y), wt1, c) in P`(x1, y1). If

γ was not modified during the fixup (thus it is not in H`f and c = cold), and since

wt1 is a shortest distance from x1 and y1, then I2(a) immediately holds. Otherwise

if γ is also present in H`f then (cnew > 0), it has been already extracted from the

heap and processed. Since wt1 is a shortest distance, then γ is contained within the

first set of `-triples extracted for x1 and y1. Moreover, γ contains cnew new paths

and they are added to P ∗` (x1, y1) (Steps 4–11, Alg. 15). Thus I2(a) holds also in

this case. For I2(b), recall that in x1 is also added to L∗(a1, y1) when γ is processed

as a shortest `-triple (Steps 7 or 11, Alg. 15). Moreover, each LSP represented in

γ was added to H`f only because LSP of the form (x1a1, by1), with b ∈ B were

formed during previous fixup iterations (in Alg. 16 and the symmetric). In that

case, for all b ∈ B, x1 was placed in L(a1, by1) and y1 in R(x1a1, b) (Steps 17 and

21, Alg. 16). Finally, for I2(c), when γ contains new paths (cnew > 0), then it is

inserted into S` (Steps 7 or 11, Alg. 15) and processed by Alg. 16. During this

last phase γ is extended to every y′ ∈ REf (which represents the set of valid right

extensions to avoid double generations) to generate the tuples (x1a1, y1y
′). These

are finally inserted in H`f , P`(x1, y
′), Hrf and Pr(x1, y

′) (Steps 9 – 21, Alg. 16).

This completes the proof of Invariant I2.

To prove that Invariant I3 holds, we note that a tuple is generated only as

a left extension of an r-tuple or as a right extension of a `-tuple. In both cases,

Lemma 19 shows that a tuple is only generated once during fixup. Thus every tuple

generated and inserted into H`f and Hrc, after the current min-key, is the result of

a left-extension od a right-extension but not both.

Termination: The exit condition of the while loop is when the heap H`f (and Hrc)
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is empty. Because Invariant I1 maintains in H`f the first triple to be extracted

and processed, then H`f = ∅ implies that there are no more triples that need to

be processed and eventually left or right extended. Moreover, since the invariants

hold for the last set of triples of weight ŵt extracted from the heap, by I2(a), all

LSPs having weight less than or equal to ŵt have been processed and inserted in the

appropriate sets P (·) and P ∗(·) if SPs. Finally, due to I2(b), the sets L,R, L∗,R∗

are also correctly maintained after the while loop terminates.

4.4.6 Complexity of Fixup

We bound the number of accesses to `-triples during the course of the fixup algorithm

(a symmetric bound applies for the accesses to r-triples). We note that an `-triple

is accessed when the corresponding `-tuple is created (for the first time), deleted

or its count is modified. An `-triple is accessed if and only if a smaller `-triple

or r-triple is extended to generate the corresponding full-tuple. For example, the

`-triple ((xa, y), wt, count) can only be accessed because of full-tuples of the form

(xa, biy) and weight wt, created as right extesion of `-tuples of the form (xa, bi) or as

left extensions of r-tuples of the form (a, biy). Thus, we will charge all the accesses

to `-triples and r-triples to the full-tuples that are causing them. Note that fixup

generates only new `-triples outside of the O(n2) `-triples added initially to H`f .

Lemma 21 below is similar in spirit to the complexity analysis presented in Chapter

3, however new ideas are used for the charging mechanism. Below we classify each

`-triple γ (and similarly each r-triple) as one of the following disjoint types. The

same classification was also applied to full-tuples in Chapter 3.

• Type-0 (contains-v): γ represents at least one path containing vertex v.

• Type-1 (new-LST): γ was not an LST before the update but is an LST after

the update, and no path in γ contains v.
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• Type-2 (new-ST-old-LST): γ is an ST after the update, and γ was an LST

but not an ST before the update, and no path in γ contains v.

• Type-3 (new-ST-old-ST): γ was an ST before the update and continues to

be an ST after the update, and no path in γ contains v.

• Type-4 (new-LST-old-LST): γ was an LST before the update and contin-

ues to be an LST after the update, and no path in γ contains v.

The following lemma establishes an amortized bound for fixup which is the

same as the worst case bound for cleanup.

Lemma 21. The fixup procedure takes time O(ν∗2 · log n) amortized over a sequence

of Ω(m∗/ν∗) increase-only updates.

Proof. We bound the total number of accesses to `-triples (a similar argument ap-

plies to r-triples); for each access the time taken is O(log n) due to the data structure

operations performed on a triple. The initialization in Steps 1–9 of Alg. 14 access

at most O(n2) `-triples. We now consider the number of accesses performed on the

triples examined after Step 9 of Alg. 14.

As mentioned before, we charge an access to an `-triple to the corresponding

full-tuple. We address the Type-0, Type-3 and Type-4 `-triples first. The number

of accesses performed on Type-0 triples is bounded by the number of full-tuples

containing the updated vertex v. By Lemma 13, the number of full-tuples containing

v is O(ν∗2). Thus the number of accesses to Type-0 triples is bounded by O(ν∗2).

For Type-3 and Type-4, we note that for any x, y we add exactly one candidate

min-weight `-triple from P`(x, y) to H`f (Steps 8–9 of Alg. 14), hence initially there

are at most n2 such triples in H`f . Moreover, we never process/access an old LST

which is not an ST so no additional Type-4 triples are accessed during fixup. Finally,

`-triples in P ∗` that are not placed initially in H`f are not accessed in any step of

fixup, so no additional Type-3 triples are examined.
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We now argue about the Type-1 and Type-2 triples. The number of accesses

performed on Type-1 triples is addressed by amortizing over the entire set of Type-1

full-tuples generated during the update sequence as described in the last paragraph

below. To analyze the Type-2 triples we recall that our updates are increase-only.

Thus an `-tuple (xa, y) with weight wt, which was not an LST, can become an LST

after an update, at a later point can become an ST (after another vertex update)

and finally cease to be an ST (after yet another vertex update). However, never in

future for any update will (xa, y) with weight wt become an LST again. We use

this fact crucially to charge the accesses to the Type-2 triple to the corresponding

full-tuples that made this an LST for the first time. We also argue, in the following

argument, that the full-tuples which are paying for those accesses are indeed Type-1

full-tuples. Consider an `-triple γ = ((xa, y), wt, count) of Type-2 which is moved

into S` from P`(x, y) during step 7 of Alg. 15. Here γ was never an ST before the

current update; thus every access performed to γ is paid for by a full-tuple of the

form (xa, biy) that was generated (as a left or right extension of some triple) for the

first time as an LST (Steps 12 and 13, Alg. 16 in a previous update). This is the

exact definition of Type-1 full-tuple. Further, each Type-1 full-tuple is generated

only once during the entire update sequence.

Thus the number of accesses on `-triples by a call to fixup is O(ν∗2) plus

O(X), where X is the number of new full-tuples that fixup generates during its

execution. Each Type-1 `-triple is a new triple added to the tuple-system and, by

Lemma 12, we cannot have more than O(m∗ · n) of them. However, to bound the

total cost of accessing these triples we need to amortize the number of full-tuples

generated by our algorithm. Let σ be the number of updates in the update sequence.

During cleanup, at most O(σ · ν∗2) full-tuples are generated and removed from G.

There can be at most O(m∗ ·ν∗) full tuples remaining at the end of the sequence (by

Lemma 12), hence the total number of new full tuples generated by all fixups in the
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update sequence is O(σ · ν∗2 +m∗ · ν∗). When σ > m∗/ν∗, the first term dominates,

and this gives an average of O(ν∗2) full-tuples generated per fixup phase, and the

desired amortized time bound for fixup.

Space Analysis

Both cleanup and fixup algorithms only store `-tuples or r-tuples in our tuple-

system. These are bounded by Lemma 12 and there are no more than O(m∗ · n) of

them, at any time in G. During cleanup and fixup, a set S` of `-tuples (and Sr for r-

tuples) is prepared for extension. However, tuples in S` are extended and processed

one at a time generating a single full-tuple for each extension: In cleanup, Alg. 13

generates the full-tuple (xa, yy′) for each extension y′ of (xa, y) (Step 9, Alg. 11);

similarly in fixup, Alg. 16 generates the full-tuple (xa′, yy′) for each extension y′ of

(xa′, y) (Step 9, Alg. 16). In both cases, the full-tuples are immediately removed

after the corresponding `-tuple and r-tuple are updated with the correct count.

Moreover, Marked-Pairs only marks pairs of nodes and it can be stored as a O(n2)

binary matrix. All the other data structures have only linear size. Thus, the overall

space complexity is bounded by O(m∗ · n).
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Chapter 5

Fully Dynamic Algorithm

In this chapter we present a fully dynamic algorithm for the APASP problem, where

each update in G is either decrease-only or increase-only1. A decrease-only update

either inserts a new vertex along with incident edges of finite weight, or decreases the

weights of some existing edges incident on a vertex. An increase-only update deletes

an existing vertex, or increases the weights of some edges incident on a vertex.

We presented a simple decrease-only APASP algorithm [NPR14a] in Chap-

ter 2, and a more involved increase-only APASP algorithm [NPR14b] in Chapter

3. Neither of these algorithms is correct for the fully dynamic case. The fully dy-

namic methods that we present in this chapter build on the techniques presented

in Chapter 3, and also incorporate a variant of the fully dynamic methods devel-

oped by Demetrescu and Italiano [DI04] (the DI method) and Thorup [Tho04] (the

Thorup method) for APSP where only one shortest path is maintained for each

pair of vertices. The DI algorithm runs in O(n2 · log3 n) amortized time per up-

date, where n = |V |. The Thorup algorithm is faster by a logarithmic factor but

is considerably more complicated, even for the unique shortest paths case. The

algorithms in both [DI04] and [Tho04] use the unique shortest paths assumption

1The results presented in this chapter appeared in [PR15b].
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crucially, and need considerable enhancements even to maintain a small number of

multiple shortest paths correctly.

Here we present two fully dynamic algorithms for APASP, which maintain

all of the multiple shortest paths for every pair of vertices. Our basic algorithm

(presented in this Chapter) is as simple as the DI method (though somewhat differ-

ent) when specialized to unique shortest paths. In fact, it matches the DI bound for

graphs with a constant number of (or unique) shortest paths, while being applicable

to the more general APASP problem. Moreover, it provides a new amortized anal-

ysis for the fully dynamic DI algorithm if our ‘dummy sequence’ replaces the one

used in DI. Our second algorithm improves the amortized bound by a logarithmic

factor using data structures and techniques that are considerably more complicated.

The results in this chapter are mainly for fully dynamic APASP, which is

an important graph-theoretic property of independent interest. However, we show

that our fully dynamic APASP algorithms give fully dynamic BC algorithms with

the same bounds.

Our Results. Recall the definitions of ν∗ in Section 1.1.1, Chapter 1. Our main

results are the following theorems, where we assume for convenience ν∗ = Ω(n).

We present two algorithms: fully-dynamic (basic) and ffd (faster fully dynamic)

with bounds stated in the following theorem.

Theorem 9. Let Σ be a sequence of Ω(n) fully dynamic APASP updates on an

n-node graph G = (V,E). Then,

1. algorithm fully-dynamic mantains APASP and all BC scores in amortized

time O(ν∗2 · log3 n) per update,

2. algorithm ffd mantains APASP and all BC scores in amortized time O(ν∗2 ·

log2 n) per update (in Chapter 6),

where ν∗ bounds the number of distinct edges that lie on shortest paths through any
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given vertex in any of the updated graphs or their vertex induced subgraphs.

Our algorithms are provably faster than Brandes on dense graphs with suc-

cinct single-source SP dags. Our techniques rely on recomputing BC scores using

certain data structures related to shortest paths extensions (see Section 5.1). These

are generalizations of structures introduced by Demetrescu and Italiano [DI04] for

fully dynamic APSP and Thorup, where only one SP is maintained for each pair of

vertices. Our generalizations build on the tuple-system introduced in Chapter 3 for

increase-only APASP (see Section 3.1, Chapter 3), which is a method to succinctly

represent all of the multiple SPs for every pair of vertices. Additionally, in algo-

rithm ffd, one of the main challenges we address is to generalize the ‘level graphs’

of Thorup to the case when different SPs for a given vertex pair can be distributed

across multiple levels.

Of independent interest is a new amortized analysis for the fully dynamic DI

algorithm which we obtain using a new ‘dummy updates’ sequence in our fully-

dynamic algorithm.

In many real graphs ν∗ behaves as discussed in Section 1.1.1, Chapter 1. In all

such cases our improved algorithm ffd will run in amortized O(n2 log2 n) time per

update. Thus we have:

Theorem 10. Let Σ be a sequence of Ω(n) updates on graphs with O(n) distinct

edges on shortest paths through any single vertex in any vertex-induced subgraph.

Then, APASP and all BC scores can be maintained in amortized time O(n2 · log2 n)

per update.

Corollary 3. If the number of shortest paths through any single vertex is bounded

by a constant, then fully dynamic APASP and BC have amortized cost O(n2 · log2 n)

per update if the update sequence has length Ω(n).

Both our algorithms use Õ(m · ν∗) space, extending the Õ(mn) DI result for APSP.
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Brandes uses only linear space, but all known dynamic algorithms require at least

Ω(n2) space.

Overview of the Chapter. In Section 5.1 we describe a very simple method to

obtain a fully dynamic BC algorithm using a fully dynamic APASP algorithm. The

rest of the thesis will focus only on obtaining efficient algorithms for APASP. In Sec-

tion 5.2 we briefly review the NPRdec increase-only APASP algorithm and the fully

dynamic DI algorithm. In Section 5.3 we describe our basic fully dynamic APASP

algorithm fully-dynamic, its properties and complexity analysis. Pseudocode and

correctness are in Section 5.4. Finally, our analysis appears in Section 5.4.3.

5.1 Fully Dynamic Betweenness Centrality

The static Brandes algorithm [Bra01] computes BC scores in a two phase process.

The first phase computes the SP out-dag for every source through n applications

of Dijkstra’s algorithm. The second phase uses an ‘accumulation’ technique that

computes all BC scores using these SP dags in O(n · ν∗) time.

In our fully dynamic algorithm, we will leave the second phase unchanged.

In the first phase, we implicitly maintain the SP dags with some of the structures

maintained by our algorithms. In contrast, a different approach was previously used

in the decrease-only BC algorithm in Chapter 2, where the SP dags were explicitly

maintained. In the NPRdec algorithm the SP dags are also implicitly maintained.

We now describe a very simple method to construct the SP dags from the

following structures. For every vertex pair x, y, consider the following sets R∗(x, y),

L∗(x, y):

- R∗(x, y) contains all nodes y′ such that every shortest path x  y in G can be

extended with the edge (y, y′) to generate another shortest path x y → y′.

- L∗(x, y) contains all nodes x′ such that every shortest path x  y in G can be

extended with the edge (x′, x) to generate another shortest path x′ → x y.

103



These sets were introduced in DI and allow us to construct the SP dag for each

source s using the following simple algorithm build-dag.

Algorithm 17 build-dag(G, s,w, D) (w is the weight function; D is the distance matrix)

1: for each t ∈ V do
2: for each u ∈ R∗(s, t) do
3: if D(s, t) + w(t, u) = D(s, u) then add the edge (t, u) to dag(s)

Our fully dynamic algorithms will maintain the R∗ and L∗ sets. More pre-

cisely, in our algorithms R∗ and L∗ will be supersets of the exact collections of

nodes defined above, but the check in Step 3 will ensure that only the correct SP

dag edges are included. The combined sizes of these R∗ and L∗ sets is Õ(n · ν∗) in

our algorithms, hence the amortized time bound for the overall fully dynamic BC

algorithm is dominated by the time bound for computing fully dynamic APASP. In

the rest of this chapter, we will present our fully dynamic APASP algorithms.

5.2 Background

Our fully dynamic APASP algorithms build on the approach used in the elegant

fully dynamic APSP algorithm of Demetresu and Italiano [DI04] for unique shortest

paths (the ‘DI’ method). Initially, the DI method solves the increase-only APSP

problem. Then, the authors extend it to a fully dynamic algorithm. For APASP, in

Chapter 3 we presented a increase-only algorithm (the ‘NPRdec’ method). However,

its extension to a fully dynamic algorithm for APASP presents several challenges

that we address in our results. We now briefly review these two methods (DI and

NPRdec), and then we give an overview of our methods for fully dynamic APASP.

5.2.1 The NPRdec Increase-Only APASP Algorithm

The NPRdec algorithm maintains all STs and LSTs in the current graph, and for

each tuple, it maintains the L, R, L∗ and R∗ sets. To execute a new update to a
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vertex v, NPRdec (similar to DI) first calls an algorithm cleanup on v which removes

all STs and LSTs that contain v. This is followed by a call to algorithm fixup on v

which computes all STs and LSTs in the updated graph that are not already present

in the system. The overall algorithm update consists of cleanup followed by fixup.

If the updates are all increase-only then NPRdec maintains exactly all the SPs and

LSPs in the graph in O(ν∗2 · log n) amortized time per update. Several challenges

to adapting the techniques in the DI increase-only method to the tuple-system are

addressed in Chapter 3. The analysis of the amortized time bound is also more

involved since with multiple shortest paths it is possible for the dynamic APASP

algorithm to examine a tuple and merely change its count; in such a case, the DI

proof method of charging the cost of the examination to the new path added to or

removed from the system does not apply.

5.2.2 The DI Fully Dynamic APSP Algorithm

The DI method first gives an increase-only APSP algorithm, and shows that this is

also a correct, though inefficient, fully dynamic APSP algorithm. The inefficiency

arises because under decrease-only updates the method may maintain some old SPs

and their combinations that are not currently SPs or LSPs; such paths are called

historical shortest paths (HPs) and locally historical paths (LHPs). To obtain an

efficient fully dynamic algorithm, the DI method introduces ‘dummy updates’ into

the update sequence. A dummy update performs cleanup and fixup on a vertex that

was updated in the past. Using a strategically chosen sequence of dummy updates,

it is established in [DI04] that the resulting APSP algorithm runs in amortized time

O(n2 · log3 n) per real update. The DI method continues to use the notation P ∗, L∗,

etc., even though these are supersets of the defined sets in a fully dynamic setting.

We will do the same in our fully dynamic algorithms.
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5.3 Basic fully-dynamic APASP Algorithm

A natural approach to obtain a fully dynamic APASP algorithm would be to convert

the NPRdec increase-only APASP algorithm to an efficient fully dynamic APASP

algorithm by using dummy updates, similar to DI. There are two steps in this

process, and each has challenges (the second step is more challenging).

Step 1: Converting NPRdec increase-only algorithm to a correct (but inefficient)

fully dynamic APASP algorithm. In [DI04], the authors initially show an increase-

only algorithm for APSP which is also correct for fully dynamic updates. However,

this initial approach is generally inefficient and requires several enhancements to

achieve efficiency.

For APASP, the NPRdec method gives an increase-only algorithm which, in

this case, is not correct for fully dynamic updates. In Section 5.3.1 we describe

algorithm fully-update which is a correct fully dynamic APASP algorithm that

maintains a superset of all STs and LSTs in the current graph. This algorithm

is very similar to NPRdec but contains several changes to ensure correctness under

fully dynamic updates. In fact, additional features are required for the NPRdec data

structures to ensure correctness when we deal with fully dynamic updates (see the

beginning of Section 5.3.1). However, fully-update is not very efficient since it

may add, remove, and examine a large number of tuples. This is similar to the

DI increase-only algorithm when used as a fully dynamic algorithm without any

additional features.

Step 2: Obtaining a good ‘dummy sequence’ for efficient fully dynamic APASP. In

Section 5.4.3 we present Algorithm fully-dynamic, which calls fully-update not

only on the current update, but also on a sequence of vertices updated at suitable

previous time steps. This is similar to the dummy updates used in DI, however we

use a different dummy update sequence. We now describe the DI dummy update

sequence and its limitations for APASP. Then, we introduce our new method (whose
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full details are in Section 5.4.3).

The DI method uses ‘dummy updates’, where a vertex updated at time t is

also given a ‘dummy’ update at steps t+2i, for each i ≥ 0 (this update is performed

along with the real update at step t + 2i). The effect of a dummy update on a

vertex v is to remove any HP or LHP that contains v, thereby streamlining the

collection of paths maintained. A useful property when SPs are unique (as in DI)

is that each HP in P ∗(x, y), for a given pair x, y, will have a different weight. An

O(log n) bound on the number of HPs in a P ∗(x, y) is established in DI as follows.

Let the current time step be t, and consider an HP τ last updated at t′ < t. Let us

denote the smallest i such that t′ + 2i > t as the dummy-index for τ . By observing

that different HPs for x, y must have different dummy-indices, it follows that their

number is O(log t), which is O(log n) since the data structure is reconstructed after

O(n) updates.

5.3.1 Algorithm fully-update for APASP

We first extend the notions of historical and locally historical paths [DI04] to tuples

and triples. In the following definition, we will consider a tuple τ over an interval

of time [t′, t]. If τ becomes an ST, after its creation at time t′, it will remain an HT

until it is completely removed from the tuple-system.

Note that tuples are used instead of triples in the definition below. This

distinction is relevant in our algorithm because during cleanup or fixup, a (historical)

triple could change its count without losing its property of being an historical tuple.

A similar behavior could also affect a locally historical tuple. With our definition,

we can immediately refer to it without specifying the count of its associated triple.

Definition 2 (HT, THT, LHT, and TLHT). Let τ be a tuple in the tuple-system at

time t. Let t′ ≤ t denote the time at which τ was originally added for the first time

in the tuple-system. Then τ is a historical tuple (HT) at time t if τ was an ST at
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least once in the interval [t′, t]; τ is a true HT (THT) at time t if it is not an ST

in the current graph. A tuple τ is a locally historical tuple (LHT) at time t if either

it only contains a single vertex or every proper sub-path in it is an HT at time t; a

tuple τ is a true LHT (TLHT) at time t if it is not an LST in the current graph.

The above definition is used extensively in our proof of correctness (see Sec-

tion 5.4, lemmas 22 and 25). In particular, in the cleanup loop inveriant (Lemma

22), we show how each TLHT (and THT) is representing only paths that avoids the

updated node v. Moreover, in the fixup loop invariant (Lemma 25), we require that

each HT (LHT) maintains the correct count of HPs (LHPs) in the graph after the

fixup phase.

In order to correctly extend `-tuple and r-tuple under fully-dynamic updates, we

extend the following data structures from NPRdec.

L(x, by) = {(x′, wt′) : (x′, x) ∈ E(G) and (x′x, by) is an LHT of weight wt′ in G}

R(xa, y) = {(y′, wt′) : (y, y′) ∈ E(G) and (xa, yy′) is an LHT of weight wt′ in G}

L∗(x, y) = {(x′, wt′) : (x′, x) ∈ E(G) and (x′x, y) is an `-tuple of weight wt′

representing HPs in G}

R∗(x, y) = {(y′, wt′) : (y, y′) ∈ E(G) and (x, yy′) is an r-tuple of weight wt′

representing HPs in G}

Note that L∗, R∗, L and R are now kept in a stack order, thus giving priority to the

nodes that are inserted more recently. Another important data structure introduced

for the cleanup phase is the combined history CH(γ) of a triple γ. The combined

history for γ is an array of updates, and each update t contains the number of paths

that joined γ during the t-th update. To efficiently implement CH we also maintain
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the update number associated to each node. The structure CH is initialized with

update-num(v) that is the last update in which v was updated before this cleanup

phase, associated with the value 1 representing the trivial tuple (vv, vv). Additional

data structures will be suggested in the description of the algorithm (see Section

5.4), but they are only implementation oriented.

Note that, if we try to apply the DI dummy sequence to APASP, we are

faced with the issue that a new ST for x, y (with the same weight) could be created

at each update in a long sequence of successive updates. Then, a decrease-only

update could transform all of these STs into HTs. If this happens, then several HTs

for x, y, all with the same weight, could have the same dummy-index (in DI only

one HP can be present for this entire collection due to unique SPs). Thus, the DI

approach of obtaining an O(log n) bound for the number of HPs for each vertex pair

does not work for HTs in our tuple-system.

Our method for Step 2 is to use a different dummy sequence, and a com-

pletely different analysis that obtains an O(log n) bound for the number of different

‘PDGs’ (a PDG is a type of derived graph defined in Section 5.4.3) that can con-

tain the HTs. Our new dummy sequence is inspired by the ‘level graph’ method

introduced in Thorup [Tho04] (see Chapter 6, where we generalize this approach

to multiple shortest paths in our ffd algorithm) to improve the amortized bound

for fully dynamic APSP to O(n2 · log2 n), saving a log factor over DI. This method

is complex because it maintains O(log n) levels of data structures for suitable ‘level

graphs’. Our algorithm fully-dynamic does not maintain these level graphs. In-

stead, fully-dynamic performs exactly like the fully dynamic algorithm in DI, ex-

cept that it uses this alternate dummy update sequence, and it calls fully-update

for APASP instead of the DI update algorithm for APSP. Our change in the update

sequence requires a completely new proof of the amortized bound which we present

in Section 5.4.3. We consider this to be a contribution of independent interest: If
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we replace fully-update by the DI update algorithm in fully-dynamic, we get

a new fully dynamic APSP algorithm which is as simple as DI, with a new analysis.

fully-update is given in the two-line Algorithm 18. It calls fully-cleanup

and fully-fixup in sequence, on the updated vertex v (see Section 5.4 for the

complete pseudocode). This is similar to the update procedure in the increase-only

and fully dynamic algorithms for unique paths in DI [DI04] and in the increase-only

algorithm in Chapter 3.

The cleanup procedure removes from the tuple-system every HPs and LHPs

containing v by decrementing the count of triples which represent them. Thus, each

TLHT (and THT) containing the updated vertex v is updated in the tuple-system

with its correct count even if some of its represented paths avoid v. To achieve this

property for THTs, we use the new data structure CH during the cleanup phase.

fully-cleanup works by repeatedly extracting triples from a heap Hc, generated

as extensions of the updated node v using the data structures of the tuple-system.

The fixup phase adds to the tuple-system a superset of LSPs generated in

the graph by the update: if a new LSP discovered during the fixup phase is of the

form x → a  b → y and weight wt, fully-fixup will increase the count of the

tuple τ = ((xa, by), wt) by one (creating τ itself if not in the tuple-system). Also

in this case, triples are extracted from a heap Hf , added to the system, and finally

extended to candidate triples to be processed in future steps.

Algorithm 18 fully-update(v,w′)

1: fully-cleanup(v)

2: fully-fixup(v,w′)

In fully-update, the sets P ∗(x, y) and P (x, y) will contain HTs (including all

STs) and LHTs (including all LSTs), respectively, from x to y. It was observed

in [DI04] that the increase-only algorithm they presented for the unique SP case

is a correct algorithm when decrease-only updates are interleaved with increase-
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only ones. However here, in contrast to DI, the increase-only APASP algorithm

in Chapter 3 (the NPRdec algorithm) needs to be refined before it becomes correct

for a fully dynamic sequence, and this is due to the presence of multiple shortest

paths. Consider, for instance, a THT τ = (xa, by) with weight wt which is currently

an LST. Using the NPRdec algorithm, since τ is a THT it will be present in P ∗(x, y)

(but not as an ST). Suppose a new set of paths represented by a new triple τ ′ =

((xa, by), wt, count′), with the same weight wt, is added to the count of this tuple τ .

We cannot simply add count′ to τ in P ∗(x, y) because its extensions were performed

using the old count, and if τ is restored as an ST in P ∗(x, y), these extensions will

not have the correct count. (With unique SPs this situation can never occur.) Our

solution here is to have τ in P (x, y) with the larger correct count (thus including

count′), and to leave the corresponding τ in P ∗(x, y) with its original count. Should

τ later be restored as an ST then the difference in counts between τ in P ∗(x, y) and

the corresponding τ in P (x, y) will trigger left and right extensions of τ with the

correct count even though τ is currently in P ∗(x, y) (see points [F.1] and [F.2] in

Section 5.4.2).

There are additional subtleties. During fully-cleanup starting from the

current updated vertex v, we may reach a triple γ = (τ, wt, count) in P through say,

a left extension, while the triple in P ∗ for τ with weight wt is γ′ = (τ, wt, count′),

with count′ < count (the extreme case being that count′ = 0, in which case there

is no γ′ in P ∗). This is an indication that the paths in γ − γ′ were formed after γ′

became a THT. Moreover, the number of paths going through v in γ′ ∈ P ∗ could be

different from the number of paths going through v in γ ∈ P , posing an interesting

dilemma on the correct number of paths to be removed from γ′ ∈ P ∗.

We address this situation in fully-cleanup by using the CH(γ) data struc-

ture for the triple γ in cleanup. In fact, we can easily check the last time t that γ′

was updated, and remove from it only the paths in CH(γ) that were created before
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or during update t. This technique guarantees that only the paths going through v

but truly represented by γ′ are removed from P ∗.

The full pseudocodes for fully-cleanup and fully-fixup are given in th

next section with the main new features highlighted. Recall that fully-update is

simply an execution of fully-cleanup followed by fully-fixup. The correctness

of this algorithm is argued by noting that our method ensures that when an ST in

P ∗ is processed during fully-fixup without further extensions, it has the correct

weight and count and all of its extensions have been performed with that count;

every ST and LST is generated starting with singleton edges, min-weight tuples

from the P sets, and correct STs from the P ∗ sets, hence the counts of the tuples

identified as STs and LSTs are maintained correctly.

5.4 Pseudocode and Correctness of fully-dynamic Al-

gorithm

Here we give the full pseudocode for fully-cleanup (Algorithm 19) and fully-

fixup (Algorithm 20). They are similar to the corresponding pseudocode cleanup

and fixup in Chapter 3, and we have marked the steps changed from these algorithms

with a • at the end of the line. A description of the new features of the algorithms is

given below, while a detailed description is available in Chapter 3. The other steps

in Algorithm 20 are described in Chapter 3, as are the two parameters paths(γ, v),

which gives the number of paths containing the node v that are represented by the

triple γ, and update-num(γ), which is a timestamp that indicates the last update in

which the triple γ is involved. Then, the correctness of the algorithms is established.

The only changes from Chapter 3 in Algorithm 19 are in steps 7, and 15

where we decrement any THT we encounter during cleanup, while extending from

the updated node v, using the new data structure CH. More specifically, in step
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Algorithm 19 fully-cleanup(v)

1: Hc ← ∅; Marked-Tuples ← ∅
2: γ ← ((vv, vv), 0, 1); add γ to Hc

3: while Hc 6= ∅ do
4: extract in S all the triples with min-key [wt, x, y] from Hc

5: for every b such that (x×, by) ∈ S do
6: let fcount′ be the number of deleted paths of the form ((xai, by), wt)
7: for every (x′, wt′) ∈ L(x, by) such that ((x′x, by), wt′) is an LHT not in

Marked-Tuples do
8: γ′ ← ((x′x, by), wt′, fcount′); add γ′ to Hc

9: remove γ′ in P (x′, y) // decrements its count in P by fcount′

10: if a triple for ((x′x, by), wt′) exists in P (x′, y) then
11: insert ((x′x, by), wt′) in Marked-Tuples
12: else
13: delete (x′, wt′) from L(x, by) and delete (y, wt′) from R(x′x, b)
14: if a triple γ′′ for ((x′x, by), wt′) exists in P ∗(x′, y) with count paths then
15: let fcount′′ be the number of deleted paths of the form ((x′x, by), wt′)

created during an update smaller (older) than update-num(γ′′) •
16: remove γ′ in P ∗(x′, y) // decrements count by fcount′′

17: if P ∗(x, y) doesn’t contain triples of weight wt then delete (x′, wt′)
from L∗(x, y)

18: if P ∗(x′, b) doesn’t contain triples of weight wt′ −w(b, y) then delete
(y, wt′) from R∗(x′, b)

19: perform symmetric steps 5 – 18 for right extensions

7, we use the weight associated with the extension to avoid the creation of cycles.

An implementation to achieve this is the following: for a left extension x′, let ldc

be the set of paths of the form (x′x,×b) and weight w′ −w(b, y) removed from P ∗

during this cleanup phase (note that these paths can pe maintained in a temporary

data structure of size O(mn)). Similarly, let rdc be a the set of paths of the form

(x×, by) and weight w′ − w(x′, x) removed from P ∗ during this cleanup. If the

updated node v 6 y we set fcount = max(ldc, rdc), alias we only count all the locally

historical paths of (x′x, by) that are formed by a valid l-tuple and r-tuple both in

P ∗ at the beginning of the cleanup phase and now removed. Thus no cycle path is

ever considered because, no cycle is ever created during the fixup phase and placed
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in P ∗. In step 7, we deal with the delicate task of correctly decrementing an HT

from the tuple-system. As discussed in Section 5.3.1, when we deal with a THT γ′′

in P ∗ we could only delete a subset of paths identified by the cleanup algorithm for

its respecting LHT γ in P (note that if γ′′ is a ST then we trivially subtract the

same number fcount of paths substracted from γ, since they have the some count).

To address this issue, we use the new CH(γ′) data structure (in the algorithm γ′

is the triple to be deleted from the tuple-system): let t = update-num(γ′′) be the

most recent update in which γ′′ was updated in P ∗; in CH(γ′) we sum all the paths

up to time t, we call this value fcount′′. Finally, we decrement fcount′′ paths from

γ′′ ∈ P ∗. Now, we only need to address how to efficiently build CH for a given triple

γ′. Let us assume that γ′ is a left extension to node x′ for a set of k triples of the form

x×, by. Each one of the non-extended triples has its own CHj data structure built

from a previous cleanup iteration, with j ≤ k. Then, for a given CHj , for each pair

(updnum, count) in CHj we add the pair (max(update-num(x′), updnum), count)

to CH(γ′). Note that, if such pair is already present in CH(γ′) with count′, we

increment it by count. The complexity analysis for this implementation is given in

Corollary 4.

Algorithm 20 introduces new features to achieve correctness and efficiency.

We observe that we may revert an HT from, say, x to y, back to an ST during an

update, and this happens only if the shortest path distance from x to y increases.

This condition translates into the new check in Step 9 of Algorithm 20. Here we

proceed as in NPRdec keeping in mind that an LHT extracted from P as an ST

(Step 10, Algorithm 20) may or may not be in P ∗. If the LHT is not in P ∗ (Step 13,

Algorithm 20) we add the triple to the tuple-system as in NPRdec. If the LHT is

already in P ∗ with a different count (Step 16, Algorithm 20), we replace the count

of the triple in P ∗ with count′ from the triple in P and we add the triple to S

(Step 17, Algorithm 20). In step 10, Algorithm 20 we check the bit β associated
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with the triple γ. Since P is a priority queue, we will process only the triples in

P with min-key [wt, 0], so we avoid examining the triples that are already in P ∗

with a correct count. We set β to 1 for any triple added to or updated in P ∗ with

the correct count (Steps 18 and 23, Algorithm 20). Also, for an LHT updated in

P and not P ∗, we set β = 0 (Step 34, Algorithm 20). Finally, we use the L∗ and

R∗ stacks to generate only LHT that are not cycles. We pop the extensions from

the stack in reversed order of update time. This is because the newest extensions

always refers to STs, while older extensions may refer to THTs. Whenever, we

encounter an extension that does not satisfy the distance check at step 26, we know

that the extensions left in the stack are associated to tuples that are even older

than the current one; thus we can skip them. A possible implementation to avoid

cycles is the following: for each triple γ′ = (x′x, by) that ff-fixup generates with

an extension (x′, wt′) to the left, we check if P ∗(x′, b) contains a triple of the form

(x′x,×b) and weight w < wt′. If this is the case, we do not extend to x′ because it

will create a cycle. A symmetric check is applied to the right extensions.

5.4.1 Correctness of fully-dynamic

In this section, we establish the correctness of Algorithm 19 and 20.

We assume that all the local structures are correct before the update, and

we will show the correctness of them after the update. fully-cleanup works with

a heap Hc of triples. The algorithm maintains the loop invariant that any triple

inserted into Hc has already been deleted from the tuple-system: only its extensions

remain to be processed and deleted. We prove the following lemma:

Lemma 22. After Algorithm 19 (fully-cleanup) is executed, for any (x, y) ∈ V ,

the STs in P ∗(x, y) (LSTs in P (x, y)) represent all the SPs (LSPs) from x to y in

G that do not pass through v. Moreover, every THT (TLHT) present in the tuple-

system represents a collection of HPs (LHPs) in G that contains only paths that do
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Algorithm 20 fully-fixup(v,w′)

Hf ← ∅; Marked-Tuples ← ∅
for each edge incident on v do

create a triple γ; set paths(γ, v) = 1; set update-num(γ); add γ to Hf and to P
for each x, y ∈ V do

add a min-key triple from P (x, y) to Hf

while Hf 6= ∅ do
extract in S′ all triples with min-key [wt, x, y] from Hf ; S ← ∅
if S′ is the first extracted set from Hf for x, y then

if P ∗(x, y) increased min-weight after cleanup • then
for each γ′ ∈ P (x, y) with min-key [wt, 0] • do

let γ′ = ((xa′, b′y), wt, count′)
{Next step check if γ′ is completely missing from P ∗}
if γ′ is not in P ∗(x, y) then

add γ′ in P ∗(x, y) and S; add (x,wt) to L∗(a′, y) and (y, wt) to R∗(x, b′)
{Next step check if γ′ is in P ∗ with a different count}

else if γ′ is in P (x, y) and P ∗(x, y) with different counts • then
replace the count of γ′ in P ∗(x, y) with count′ and add γ′ to S •

set β for γ′ ∈ P (x, y) to 1 •
else

for each γ′ ∈ S′ containing a path through v do
let γ′ = ((xa′, b′y), wt, count′)
add γ′ with paths(γ′, v) in P ∗(x, y) and S; add (x,wt) to L∗(a′, y) and (y, wt)
to R∗(x, b′)
set β for γ′ ∈ P (x, y) to 1 •

for every b such that (x×, by) ∈ S do
let fcount′ =

∑
i cti such that ((xai, by), wt, cti) ∈ S

for every (x′, wt′) in L∗(x, b) such that ((x′x, by), wt′) is an LHT do
if ((x′x, by), wt′) /∈ Marked-Tuples then
wt′ ← wt+ w(x′, x); γ′ ← ((x′x, by), wt′, fcount′)
set update-num(γ′); paths(γ′, v)←

∑
γ=(x×,by) paths(γ, v); add γ′ to Hf

if a triple for ((x′x, by), wt′) exists in P (x′, y) then
add γ′ with paths(γ′, v) in P (x′, y)

else
add γ′ to P (x′, y); add (x′, wt′) to L(x, by) and (y, wt′) to R(x′x, b)

set β for γ′ ∈ P (x′, y) to 0 •
add ((x′x, by), wt′) to Marked-Tuples

perform symmetric steps 24 – 35 for right extensions

not pass through v. Finally, the sets L,L∗, R,R∗ are correctly maintained.

Proof. The lemma is established with the following loop invariant.

Loop Invariant: At the start of each iteration of the while loop in Step 3 of
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Algorithm 19 the following properties hold about the tuple-system and Hc. Assume

that the first triple to be extracted from Hc and processed has min-key = [wt, x, y].

1. Any LHP going through the update node v, which is contained in a triple γ

already processed, is removed from the tuple-system. For any a, b ∈ V , if G

contains cab LHPs of weight wt of the form (xa, by) passing through v, then Hc

contains a triple γ = ((xa, by), wt, cab) with key [wt, x, y] already processed:

the cab LHPs through v are cleaned from the system.

2. For each triple γ = ((xa, by), wt, count) already processed by the algorithm,

γ represents the exact set of LHPs of the form x → a  b → y of weight wt

which avoid v. Moreover if count = 0 the triple γ is correctly removed from all

the data structures in the tuple-system associated to it. Finally, γ has been

placed in Hc for future extensions.

Let [ŵt, x̂, ŷ] be the last key extracted from Hc and processed before [wt, x, y].

For any key [wt1, x1, y1] ≤ [ŵt, x̂, ŷ], let G contain c > 0 number of LHPs

of weight wt1 of the form (x1×, b1y1). Further, let cv (resp. cv̄) denote the

number of such LHPs that pass through v (resp. do not pass through v).

Here cv + cv̄ = c. For every extension (x′, wt′) ∈ L(x1, b1y1), let let wt′ =

wt1 + w(x′, x1) be the weight of the extended triple (x′x1, b1y1). Then, (the

following assertions are similar for (y′, wt′) ∈ R(x1a1, y1))

(a) if c > cv there is a triple in P (x′, y1) of the form (x′x1, b1y1) and weight

wt′ representing c−cv LHPs. If c = cv there is no such triple in P (x′, y1).

(b) If a triple of the form (x′x1, b1y1) and weight wt′ is present as an HT in

P ∗(x′, y1), then it represents the exact same number of LHPs c − cv of

the corresponding triple in P (x′, y1). This is exactly the number of HPs

of the form (x′x1, b1y1) and weight wt′ in G− {v}.
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(c) (x′, wt′) ∈ L(x1, b1y1), (y1, wt
′) ∈ R(x′x1, b1) and (x′x1, b1y1) ∈ Marked-

Tuples iff cv̄ > 0. If the triple (x′x1, b1y1) is an HT, a similar state-

ment holds for (x′, wt′) ∈ L∗(x1, y1) iff there is a triple of weight wt1

in P ∗(x1, y1), and (y1, wt
′) ∈ R∗(x′, b1) iff there is a triple of weight

wt′ −w(b1, y1) in P ∗(x′, b1).

(d) A triple corresponding to (x′x1, b1y1) with weight wt′ and counts cv is in

Hc. A similar assertion holds for y′ ∈ R(x1a1, y1).

3. Any triple γ in Hc, which is longer than the last triple processed, is also in

Marked-Tuples if and only if it contains at least one path not passing through

v. For any key [wt2, x2, y2] ≥ [wt, x, y], let G contain c > 0 LHPs of weight

wt2 of the form (x2a2, b2y2). Further, let cv (resp. cv̄) denote the number

of such LHPs that pass through v (resp. do not pass through v). Here

cv + cv̄ = c. Then the tuple (x2a2, b2y2) ∈ Marked-Tuples, iff cv̄ > 0 and a

triple for (x2a2, b2y2) is present in Hc

Initialization: We start by showing that the invariants hold before the first loop

iteration. The min-key triple in Hc has key [0, v, v]. Invariant assertion 1 holds since

we inserted into Hc the trivial triple of weight 0 corresponding to the vertex v and

that is the only triple of such key. Moreover, since we do not represent trivial paths

containing the single vertex, no counts need to be decremented. Since we assume

positive edge weights, there are no LHPs in G of weight less than zero. Thus all

the points of invariant assertion 2 hold trivially. Invariant assertion 3 holds since

Hc does not contain any triple of weight > 0 and we initialized Marked-Tuples to

empty.

Maintenance: Assume that the invariants are true before an iteration k of the

loop. We prove that the invariant assertions remains true before the next iteration

k + 1. Let the min-key triple at the beginning of the k-th iteration be [wtk, xk, yk].

By invariant assertion 1, we know that for any ai, bj , if there exists a triple γ of
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the form (xkai, bjyk) of weight wtk representing count paths going through v, then

it is present in Hc. Now consider the set of triples with key [wtk, xk, yk] which we

extract in the set S (Step 4, Algorithm 19). We consider left-extensions of triples

in S; symmetric arguments apply for right-extensions. Consider for a particular b,

the set Sb ⊆ S of triples of the form (xk×, byk) and let fcount′ denote the sum of

the counts of the paths represented by triples in Sb. Let (x′, wt′) ∈ L(xk, byk) be a

left extension; our goal is to generate the triple (x′xk, byk) with count fcount′ and

weight wt′ = wtk+w(x′, xk). However, we generate such triple only if it has not been

generated by a right-extension of another set of paths. We observe that the paths

of the form (x′xk, byk) can be generated by right extending to yk the set of triples

of the form (x′xk,×b). Without loss of generality assume that the triples of the

form (x′xk,×b) have a key which is greater than the key [wtk, xk, yk]. Thus, at the

beginning of the k-th iteration, by invariant assertion 3, we know that (x′xk, byk) /∈

Marked-Tuples. Steps 8–9, Algorithm 19 create a triple of the form (x′xk, byk) of

weight wt′. The generated triple can be an LST or a TLHT in P . In both cases the

condition at step 9, Algorithm 19 holds and we remove γ′ by decrementing fcount′

many paths from the appropriate triple in P (x′, yk). Moreover, if the generated

triple is also contained in P ∗(x′, yk), we check if it is an ST or a THT using step 15,

Algorithm 19. In the case of an ST we normally decrement fcount′ paths from the

appropriate triple in P ∗(x′, yk), otherwise we decrement the THT from P ∗(x′, yk) in

step 16, Algorithm 19 removing only the paths going through the updated node v

that are contained in the THT, by using the new data structure CH. This establishes

invariant assertions 2a and 2b. In addition, if there are no LSPs in G of the form

(x′xk, byk) which do not pass through v, we delete (x′, wt′) from L(xk, byk) and

delete (yk, wt
′) from R(x′xk, b) (Step 13, Algorithm 19). On the other hand, if there

exist LSPs in G of the form (x′xk, byk), then x′ (resp. yk) continues to exist in

L(xk, byk) (resp. in R(x′xk, b)). Further, we add the tuple (x′xk, byk) to Marked-
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Tuples and observe that the corresponding triple is already present in Hc (Step 11,

Algorithm 19). Similarly, if the generated triple (x′xk, byk) is an HT, then we check if

P ∗(xk, yk) does not contain any triple of weight wtk, and similarly P ∗(x′, b) does not

contain any triple of weight wt′−w(b, yk), in order to delete (x′, wt′) from L∗(xk, yk)

and (yk, wt
′) from R∗(x′, b). By the loop invariant, invariant assertions 2c and 2d

were true for every key < [wtk, xk, yk] and by the above steps we ensure that these

invariant assertions hold for every key = [wtk, xk, yk]. Thus, invariant assertions 2c

and 2d are true at the beginning of the (k + 1)-th iteration. Note that any triple

that is generated by a left extension (or symmetrically right extension) is inserted

into Hc as well as into Marked-Tuples. This establishes invariant assertion 3 at the

beginning of the (k + 1)-th iteration.

Finally, to see that invariant assertion 1 holds at the beginning of the (k+1)-

th iteration, let the min-key at the (k+1)-th iteration be [wtk+1, xk+1, yk+1]. Observe

that triples with weight wtk+1 starting with xk+1 and ending in yk+1 can be created

either by left extending or right extending the triples of smaller weight. And since

for each of iteration ≤ k, invariant assertion 2 holds for any extension, we conclude

that invariant assertion 1 holds at the beginning of the (k + 1)-th iteration. This

finishes our maintenance step.

Termination: The condition to exit the loop is Hc = ∅. Because invariant assertion

1 maintains inHc all the triples already processed, thenHc = ∅ implies that there are

no other triples to extend in the graph G that contain the updated node v. Moreover,

because of invariant assertion 1, every triple containing the node v inserted into

Hc = ∅, has been correctly decremented from the tuple-system. Finally, for invariant

assertion 2c, the stacks L,L∗, R,R∗ are correctly maintained. This completes the

proof.

For fully-fixup , we first show that Algorithm 20 computes the correct

distances for all the SPs in the updated graph G′ (Lemma 23). Moreover, we
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process all the new SPs in G′ (Lemma 24). Finally, we show that data structures

and counts are correctly maintained after the algorithm (Lemma 25). Here we use

the notion of a fresh LHT for a triple that represents at least one path that is in P

but not in P ∗. We will consider fresh triples in Lemma 24 and Observation 13.

Invariant 11. During the execution of Algorithm 20, for any pair (x, y), consider

the first extraction from Hf of a set of triples from x to y, and let their weight be

wt. Then wt is the shortest path distance from x to y in the updated graph G′.

Lemma 23. Algorithm 20 maintains Invariant 11.

Proof. Suppose for a contradiction that the invariant is violated at some extraction.

Consider the earliest event in which the first set of triples S′ of weight ŵt, extracted

for some pair (x, y), does not contain STs in G′. Let γ = ((xa, by), wt, count) be

a triple in G′ that represents at least one shortest path from x to y in G′, with

wt < ŵt. The triple cannot be in P (x, y) at the beginning of fixup otherwise it (or

another triple with same weight wt) would have been inserted in Hf during step 5 of

Algorithm 20. Moreover, γ cannot be in Hf otherwise it would have been extracted

before any triple of weight ŵt in S′; hence γ must be a new LST generated by

the algorithm. Since all the edges incident to v are added to Hf during step 3 of

Algorithm 20, then γ must represent SPs of at least two edges. We define left(γ)

as the set of LSTs of the form ((xa, cib), wt−w(b, y), countci) that represent all the

LSPs in the left tuple ((xa, b), wt−w(b, y)); similarly we define right(γ) as the set

of LSTs of the form ((adj , by), wt−w(x, a), countdj ) that represent all the LSPs in

the right tuple ((a, by), wt−w(x, a)).

Observe that since γ is an ST, all the LSTs in left(γ) and right(γ) are

also STs. A triple in left(γ) and a triple in right(γ) cannot be present in P ∗

together at the beginning of fixup. In fact, if at least one triple from both sets

is present in P ∗ at the beginning of fixup, then the last one inserted during the

fixup triggered by the previous update, would have generated an LST of the form
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((xa, by), wt) automatically inserted and thus present in P at the beginning of fixup

(a contradiction). Thus either there is no triple in left(γ) in P ∗, or there is no triple

in right(γ) in P ∗.

Assume w.l.o.g. that no triple in right(γ) is in P ∗. Since edge weights are

positive, wt − w(x, a) < wt < ŵt, and because all the extractions before γ were

correct, then the triples in right(γ) were correctly extracted from Hf and placed in

P ∗ before the wrong extractions in S′. If at least one triple in left(γ) is in P ∗ then

the fixup would generate the tuple ((xa, by), wt) and place it in P and Hf (Steps 24–

35, Algorithm 20). Otherwise, since wt −w(b, y) < wt < ŵt, the triples in left(γ)

were discovered by the algorithm before the wrong extractions in S′. Moreover the

algorithm would generate the tuple ((xa, by), wt) (as right extensions) and place it

in P and Hf (because at least one triple in right(γ) is already in P ∗). Thus, in both

cases, a tuple ((xa, by), wt) should have been extracted from Hf before any triple

in S′. A contradiction.

Invariant 12. The set S of triples constructed in Steps 9–23 of Algorithm 20 rep-

resents all the new shortest paths from x to y.

Lemma 24. Algorithm 20 maintains Invariant 12.

Proof. Any new SP from x to y is of the following three types:

1. a single edge containing the vertex v (such a path is added to P (x, y) and Hf

in Step 3)

2. a path generated via left/right extension of some shortest path previously

extracted from Hf during the execution of Algorithm 20 (this generated path

is added to P (x, y) and Hf in Step 29 and an analogous step in right-extend).

3. a path that was an LSP but not an SP before the update and is an SP after

the update.

122



In type (1) and (2) above any new SP from x to y which is added to Hf is also

added to P ∗(x, y). However, amongst the several triples representing paths of the

type (3) listed above, only one candidate triple will be present in Hf . Thus we

conclude that, for a given x, y, when we extract from Hf a type (3) triple of weight

wt, P (x, y) could contain a superset of triples with the same weight wt that are not

present in Hf . We now consider the two cases the algorithm deals with.

• P ∗(x, y) increased its min-weight, when the first set of triples for x, y is ex-

tracted from Hf . This is the only case where we could restore historical triples,

or process fresh triples from scratch because they are not yet in P ∗ or they

are present in P ∗ with a lower count than the corresponding triple in P (note

that this condition is triggered only by increase-only updates). Note that we

process all the min-weight triples in P (x, y), but before we really add a triple

in S for further extensions, we check if it is present in P ∗ with a lower count

(Step 16, Algorithm 20), or it is not present in P ∗ (Step 13, Algorithm 20).

By the above argument, we consider all the new STs from x to y present in

P (x, y). Therefore it suffices to argue that all of them contains new shortest

paths to be processed. Suppose for contradiction that some triple γ does not

contains new shortest paths. Thus, γ was a ST before the update and already

in P ∗ with at least one path not going through v. However, since cleanup

only removes paths that contain v, the triple γ remained in P ∗(x, y) after the

fully-cleanup phase. This contradicts the fact that P ∗(x, y) increased its

min-weight.

• P ∗(x, y) didn’t change its min-weight when the first set of triples for x, y is

extracted from Hf . Let the weight of triples in P ∗(x, y) be wt. This implies

that the shortest path distance from x to y before and after the update is wt.

Both in the case of decrease-only and increase-only updates, all the new paths

that we need to consider from x to y are going through the updated node v.
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By construction of the Algorithm 20, every triple containing the updated node

v is always placed into Hf . Thus it suffices to consider only triples in Hf .

Observation 13. During the execution of Algorithm 20, consider a THT τ that

becomes shortest. If τ ’s corresponding triple in P is not fresh, then it is simply

restored (not processed); otherwise τ ’s count is replaced with the updated count from

P and it is extended anew.

Proof. When we restore an existing HT τ from P ∗, we always check if its correspond-

ing triple in P contains more paths (Step 16, Algorithm 20) or the counts match.

In the first case τ in P ∗ is carrying an obsolete number of SPs and is therefore

replaced with the correct count in P and extended anew (Step 17, Algorithm 20).

Otherwise it is still representing the correct number of SPs to be restored and it is

not processed.

Lemma 25. After the execution of Algorithm 20 (fully-fixup), for any (x, y) ∈ V ,

the STs in P ∗(x, y) (LSTs in P (x, y)) represent all the SPs (LSPs) from x to y in

the updated graph. Also, the sets L,L∗, R,R∗ are correctly maintained.

Proof. Loop Invariant: At the start of each iteration of the while loop in Step 6

of Algorithm 20, assume that the first triple in Hf to be extracted and processed

has min-key = [wt, x, y]. Then the following properties hold about the tuple-system

and Hf .

1. If G contains cab SPs of form (xa, by) and weight wt, then Hf contains a triple

of form (xa, by) and weight wt to be extracted and processed. For any a, b ∈ V ,

if G′ contains cab SPs of form (xa, by) and weight wt, then Hf contains a triple

of form (xa, by) and weight wt to be extracted and processed. Further, a triple

γ = ((xa, by), wt, cab) is present in P (x, y).
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2. Let [ŵt, x̂, ŷ] be the last key extracted from Hf and processed before [wt, x, y].

Every SP in G, with an associated key [wt1, x1, y1] ≤ [ŵt, x̂, ŷ], is represented

by a triple γ in the tuple-system having the correct count. Moreover, the

tuple-system contains all the valid extensions derived by γ, and any extension

of γ itself is present in Hf as a candidate triple. For any key [wt1, x1, y1] ≤

[ŵt, x̂, ŷ], let G′ contain c > 0 number of LHPs of weight wt1 of the form

(x1a1, b1y1). Further, let cnew (resp. cold) denote the number of these LHPs

that are new (resp. not new). Here cnew + cold = c. If cnew > 0 then,

(a) there is an LHT in P (x1, y1) of the form (x1a1, b1y1) and weight wt1 that

represents c LHPs.

(b) If a triple of the form (x1a1, b1y1) and weight wt1 is present as an HT in

P ∗, then it represents the exact same count of c HPs of its corresponding

triple in P . This is exactly the number of HPs of the form (x1a1, b1y1)

and weight wt1 in G′.

(c) (x1, wt1) ∈ L(a1, b1y1), (y1, wt1) ∈ R(x1a1, b1), and if the triple of the

form (x1a1, b1y1) and weight wt1 is also shortest then (x1, wt1) ∈ L∗(a1, y1),

(y1, wt1) ∈ R∗(x1, b1). Further, (x1a1, b1y1) ∈ Marked-Tuples iff cold > 0.

(d) If cnew > 0, for every (x′, wt′) ∈ L(x1, b1y1), an LHT corresponding to

(x′x1, b1y1) with weight wt′ = wt1 + w(x′, x1) ≥ wt and counts equal

to the sum of new paths represented by its constituents, is in Hf and P .

A similar assertion holds for (y′, wt′) ∈ R(x1a1, y1).

3. Any triple γ in Hf , which is longer than the last triple processed, is also in

Marked-Tuples if and only if it contains at least one old LHP (generated by

a previous update) and a new LHP added to Hf during a previous step of

the current update. For any key [wt2, x2, y2] ≥ [wt, x, y], let G′ contain c > 0

number of LHPs of weight wt2 of the form (x2a2, b2y2). Further, let cnew
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(resp. cold) denote the number of such LHPs that are new (resp. not new).

Here cnew + cold = c. Then the tuple (x2a2, b2y2) ∈Marked-Tuples, iff cold > 0

and cnew paths have been added to Hf by some earlier iteration of the while

loop.

Initialization and Maintenance for the 3 invariant assertions are similar to

the proof of Lemma 22.

Termination: The condition to exit the loop is Hf = ∅. Because invariant assertion

1 maintains in Hf the first triple to be extracted and processed, then Hf = ∅ implies

that there are no triples, formed by a valid left or right extensions, that contain new

SPs or LSPs, that need to be added or restored in the graph G. Moreover, because

of invariant assertions 2a and 2b, every triple containing the node v, extracted and

processed before Hf = ∅, has been added or restored with its correct count in the

tuple-system. Finally, for invariant assertion 2c, the stacks L,L∗, R,R∗ are correctly

maintained. This completes the proof of the loop invariant.

By Lemma 24, all the new SPs in G′ are placed in Hf and processed by

the algorithm and hence are in P ∗ after the execution of Algorithm 20. Moreover,

for a pair (x, y), the check in Step 9 of Algorithm 20 would fail if the distance

from x to y doesn’t change after the update. Thus the old SPs from x to y will

remain in P ∗(x, y). Hence, after Algorithm 20 is executed, every SP in G′ is in its

corresponding P ∗.

Since every LST of the form (xa, by) in G′ is formed by a left extension of a

set of STs of the form (a×, by) (Steps 24–35, Algorithm 20), or a right extension of

a set of the form (xa,×b) (analogous steps for right extensions), and all the STs are

correctly maintained by the algorithm, then all the LSTs are correctly maintained

at the end of the fixup algorithm. This completes the proof of the Lemma.

126



5.4.2 Analysis and Properties of fully-update

As discussed in the previous sections, both fully-cleanup and fully-fixup are

similar to the corresponding pseudocode cleanup and fixup in Chapter 3, but they

require some important changes to ensure correctness and efficiency. In this section,

we highlight several new components that will be relevant for proving the properties

of fully-update presented in this section.

New Components in fully-cleanup relative to NPRdec

C.1 fully-cleanup decrements THT using the new data structure CH. More

specifically, a THT γ′ = ((xa, by), wt, count′) is decremented only by count

paths, where count is the number of paths, going through the updated node

v, in CH(γ) and generated during the updates at times t ≤ update-num(γ′).

The structure CH is initialized with update-num(v) associated with the value

1 representing the trivial tuple (vv, vv).

New Components in fully-fixup relative to NPRdec

F.1 A triple γ is now inserted in P with a key [wt, β], instead of just wt. Here β

is a control bit that is set during the fixup phase and indicates if γ is present

in P ∗ with the correct count (β = 1), or if γ has the correct count only in P

(β = 0). In the latter case γ could be also present in P ∗ but with a wrong

count.

F.2 Before processing a triple γ, we check the bit β associated with it. In fact,

since P is a priority queue, we will process only the triples in P with min-key

[wt, 0], thus avoiding the triples that are already in P ∗ with a correct count.

F.3 Reverting an HT from, say x to y, back to an ST during an update happens

only if the shortest path distance from x to y increases.
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We now establish some basic properties of algorithm fully-update based

on the high-level description we have given above. We start with a general bound

on the running time.

Lemma 26. Consider a sequence of r calls to fully-update on a graph with n

vertices. Let C be the maximum number of tuples in the tuple-system that can

contain a path through a given vertex, and let D be the maximum number of tuples

that can be in the tuple-system at any time. Then fully-update executes the r

updates in O((r · (n2 + C) +D) · log n) time.

Proof. We bound the cost of fully-update by classifying each triple γ as one of

the following disjoint types:

• Type-0 (contains-v): γ represents at least one path containing vertex v.

• Type-1 (new-LHT): γ was not an LHT before the update but is an LHT

after the update, and no path in γ contains v.

• Type-2 (new-HT-old-LHT): γ is an HT after the update, and γ was an

LHT but not an HT before the update, and no path in γ contains v.

• Type-3 (renew-ST): γ was a THT before the update and it is restored as a

ST after the update, and no path in γ contains v.

• Type-4 (new-LHT-old-LHT): γ was an LHT before the update and con-

tinues to be an LHT after the update, and no path in γ contains v.

The number of Type-0 triples, processed by fully-fixup is at most C. The number

of Type-1 triples, processed by fully-fixup is addressed by amortizing over the

entire update sequence as described in the paragraph below. For a Type-2 triple

processed by fully-fixup, we observe that after such a triple becomes an HT, it is

not removed from P ∗ unless a real or dummy update is triggered on a vertex that
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lies in it. But in such an update this would be counted as a Type-0 triple. Further,

each such Type-2 triple is examined only a constant number of times fully-fixup,

because after they are inserted into P ∗ the bit β associated changes to 1 and they

will not be processed again by fixup, unless the number of paths they represent is

changed (fact[F.2]). Hence we charge each access to a Type-2 triple to the step

in which it was created as a Type-1 triple. For Type-3 triples, we distinguish two

cases: if γ didn’t change its count in P after it became a THT then its flag is β = 1

and it is present in P ∗ with the correct count (fact[F.1]). Thus the fixup algorithm

will not process it. If γ changed its count in P while it was a THT then its flag is

β = 0 and we can charge the processing of γ (if extracted from Hf ) to the sub-triple

γ′ generated from the updated node that increased the count of γ; in other words

there was an ST γ′, created in a previous update, whose extensions added to the

count of γ. Observe that, triples in P ∗ that are not placed initially in Hf and have

β = 1 in P (no additional path was added to that triple) are not examined in any

step of fixup (fact[F.2]), so no additional Type-3 triples are examined. For Type-4,

we note that for any x, y we add exactly one candidate min-key triple from P (x, y)

to Hf , hence initially there are at most n2 such triples in Hf , any of which could

be Type-4. Moreover, we never process an old LHT which is not a new HT so no

additional Type-4 triples are examined during fixup. Thus the number of triples

examined by a call to fixup is C plus X, where X is the number of new triples fixup

adds to the tuple system. (This includes an O(1) credit placed on each new LHT

for a possible later conversion to an HT.)

Let r be the number of updates in the update sequence. Since triples are

removed only in cleanup, at most O(r ·C) triples are removed (or decremented) by

the cleanups. There can be at most D triples remaining at the end of the sequence,

hence the total number of new triples added by all fixups in the update sequence

is O(r · C +D). Since the time taken to access a triple is O(log n) due to the data
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structure operations, and we examine at least n2 triples at each round, the total

time spent by fixup over r updates is O((r · (n2 + C) +D) · log n).

In Section 5.4.3, we will use the algorithm fully-update within algorithm

fully-dynamic, that performs a special sequence of ‘dummy’ updates, to obtain

a fully dynamic APASP algorithm with an O(ν∗2 log3 n) amortized cost per up-

date; we obtain this amortized bound by establishing suitable upper bounds on the

parameters C and D in Lemma 26 when algorithm fully-dynamic is used. We

conclude this section with some lemmas that will be used in the analysis of the

amortized time bound of Algorithm 21.

Lemma 27. At each step t, the tuple-system for Algorithm fully-update main-

tains a subset of HTs and LHTs that includes all STs and LSTs for step t. Fur-

ther, for every LHT triple ((xa, by), wt, count) in step t, there are HTs (a∗, by) and

(xa, ∗b) with weights wt− w(x, a) and wt− w(b, y) respectively, in that step.

Proof. For the first part see correctness in Section 5.4.1 (Lemmas 22 and 25). For

the second part, if a triple γ = ((xa, by), wt, count) is present in step t, then γ

was generated during fully-fixup of some step t′ ≤ t. By the construction of our

algorithm, at the end of step t′, the tuple-system contains at least one HT of the

form (a∗, by) and one of the form (xa, ∗b) with weights wt−w(x, a) and wt−w(b, y)

respectively. W.l.o.g. suppose that the set S of all the HTs of the form (a∗, by)

and weight wt − w(x, a) are removed during fully-cleanup at some step t′′ ≤ t,

then since these HTs are the right constituents of γ, when S is left extended to x

in fully-cleanup then exactly count paths will be removed from γ making the

triple disappear from the tuple-system. Thus at step t, at least one HT of the form

(a∗, by) with weight wt−w(x, a) must be in P ∗. Similarly, there must be an HT of

the form (xa, ∗b) with weight wt− w(b, y) in P ∗ at step t.
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Lemma 28. If fully-update is called on vertex v at step t, then at the end of

step t any TLHT (xa, by) in the tuple-system that contains a path through v, has

the vertex v as one of the endpoints x or y.

Proof. By Lemma 27, any LHT in the tuple-system is formed by combining two

HTs that are in the tuple-system. Now consider the TLHT (xa, by) that contains v.

Since by definition of TLHT, (xa, by) is not an LST in the current graph, assume

w.l.o.g. that (xa, b) is the subtuple that is not an ST when an end edge is deleted

from (xa, by). But this is not possible since any tuple HT (xa, ∗b) that contains v

must be an ST. The lemma follows.

Lemma 29. Let G be a graph after a sequence of calls to fully-update, and sup-

pose every HT in the tuple-system is an ST in one of z different graphs H1, · · · , Hz,

and every LHT is formed from these HTs. If n and m bound the number of vertices

and edges, respectively, in any of these graphs, and if ν∗ bounds the maximum num-

ber of edges that lie on shortest paths through any given vertex in any of the these

graphs, then:

1. The number of LHTs in G’s tuple-system is at most O(z ·m · ν∗).

2. The number of LHTs that contain the newly updated vertex v in G is O(z ·ν∗2).

3. Let u be any vertex in G, and suppose that the HTs that contain u lie in z′ ≤ z

of the graphs H1, · · · , Hz. Then, the number of LHTs that contain the vertex

u is O((z + z′2) · ν∗2).

Proof. For part 1, we bound the number of LHTs (xa, by) (across all weights) that

can exist in G. The edge (x, a) can be chosen in m ways, and once we fix (x, a), the

r-tuple (a, by) must be an ST in one of the Hj . Since (b, y) must lie on a shortest

path through a in the graph Hi that contains the r-tuple (a, by) of that weight, the

number of different choices for (b, y) that will then uniquely determine the tuple
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(xa, by), together with its weight, is z · ν∗. Hence the number of LHTs in G ‘s

tuple-system is O(z ·m · ν∗).

For part 2, the number of LHTs that contain v as an internal vertex is

simply the number of LSTs in the current graph by Lemma 28, and using Lemma 7

(Chapter 3), this is O(ν∗2). We now bound the number of LHTs (va, by). There are

n− 1 choices for the edge (v, a) and z · ν∗ choices for the r-tuple (a, by), hence the

total number of such tuples is O(z · n · ν∗). The same bound holds for LHTs of the

form (xa, bv). Since ν∗ = Ω(n), the result in part 2 follows.

For part 3, we observe that each LHT that contains u as an internal vertex

must be composed of two HTs, each of which is an ST in one of the z′ graphs that

contain v. Thus, there are O(z′2 · ν∗2) such tuples. For an LHT, say τ = (ua, by),

that contains u as an end vertex, the analysis remains the same as above in part 2:

there are n − 1 choices for the edge (u, a) and z · ν∗ choices for the r-tuple (a, by),

hence the total number of such tuples is O(z ·n·ν∗). This gives the desired result.

5.4.3 The Overall Algorithm fully-dynamic

Algorithm fully-update in Section 5.3.1 is a correct fully dynamic algorithm for

APASP, but it is not a very efficient algorithm, since C and D in Lemma 26 could

be very large. We now present our overall fully dynamic algorithm for APASP. As

in [DI04, Tho04] we build up the tuple-system for the initial n-node graphG = (V,E)

with n inserts starting with the empty graph (and hence n decrease-only updates),

and we then perform the first n updates in the given update sequence Σ. After these

2n updates, we reset all data structures and start afresh.

Consider a graph G = (V,E) with weight function w in which a decrease-

only or increase-only update is applied to a vertex u. Let w′ be the weight function

after the update, hence the only changes to the edge weights occur on edges incident

to u. Algorithm 21 gives the overall fully dynamic algorithm for the t-th update to a
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vertex v with the new weight function w′. This algorithm applies fully-update to

vertex v with the new weight function, thus it will be correct if we executed only the

first step, but not necessarily efficient. To obtain an efficient algorithm we execute

‘dummy updates’ on a sequence N of the most recently updated vertices as specified

in Steps 2-5. The length of this sequence of vertices is determined by the position k

of the least significant bit set to 1 in the bit representation B = br−1 · · · b0 of t. We

denote k by set-bit(t).

Algorithm 21 fully-dynamic(G, v,w′, t)

fully-update(v,w′)
k ← set-bit(t) (i.e., if the bit representation of t is br−1 · · · b0, then bk is the least
significant bit with value 1)
N ← set of vertices updated at steps t− 1, · · · , t− (2k − 1)
for each u ∈ N in decreasing order of update time do
fully-update(u,w′) (dummy updates)

Properties of N . Consider the current update step t, with its bit representation

B = br−1 · · · b0 and with set-bit(t) = k. We say that index i is a time-stamp for t

if bi = 1 (so r − 1 ≥ i ≥ k), and for each such time-stamp i, we let timet(i) be the

earlier update step t′ whose bit representation has zeros in positions bi − 1, · · · , 0,

and which matches B in positions br−1 · · · bi. In other words, timet(i) = t′, where t′

has bit representation br−1 · · · bi+1bi0 · · · 0. We do not define timet(i) if bi = 0. We

define Prior-times(t) be the set of timet(i) where i is a time-stamp for t, and we

also include in Prior-times(t) the initial time t0 = 0. Note that |Prior-times(t)| ≤

r + 1 = O(log n), since r ≤ log(2n).

Let Gt be the graph after the t-th update is applied, t ≥ 1, with the initial

graph being G0 (at time t0 = 0). Thus, the input graph to Algorithm 21 is Gt−1,

and the updated graph is Gt.

Lemma 30. For every vertex v in Gt, the step tv of the most recent update to v is

in Prior-times(t).
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Proof. Let the bit representation of t be B = br−1 · · · b0, let set-bit(t) = i, and let

j1 > j2 > · · · > js = i be the time-stamps for t. Let tu = timet(bju), thus the bit

representation of tu is the same as B, with all bits in positions less than ju set to

zero; let t0 = 1. Then, we observe that during the execution of Algorithm 21 for the

tu-th update, the vertex for update tu will be updated in Step 1, and the vertices

updated in steps tu−1 + 1, · · · , tu − 1 will be updated in Steps 4-5 of Algorithm 21.

Hence all vertices updated in [tu−1 + 1, tu] are more recently updated in step tu.

Thus the most recent update step for every vertex in Gt is one of the O(log n) steps

in Prior-times(t).

5.4.4 Analysis of Algorithm fully-dynamic

The analysis in this section incorporates many elements from Thorup algorithm [Tho04].

However, these are present only in the analysis, and the only component of that

rather complicated algorithm that we use is the form of the dummy update se-

quence in Step 3 of Algorithm 21. Our Algorithm 21 is about as simple as the DI

algorithm when specialized to unique shortest paths since in that case it suffices to

use the update algorithm in DI instead of the more elaborate fully-update we

use here.

The Prior Deletion Graph (PDG)

Let t′ < t be two update steps, and let W be the set of vertices that are updated in

the interval of steps [t′+ 1, t]. We define the prior deletion graph (PDG) Γt′,t as the

induced subgraph of Gt′ on the vertex set V (Gt′) −W . If t is the current update

step, then we simply use Γt′ instead of Γt′,t.

We say that a path p is present in both Gt′ and Gt if no call to fully-update

is made on any vertex in p during the update steps in the interval [t′ + 1, t].

Lemma 31. Let tuple τ represent a collection of paths in Gt′.Then,
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1. If τ is an ST in Gt′ then τ continues to be an ST in every PDG Γt′,t with

t ≥ t′ in which τ is present.

2. For any t̂ ≥ t′, if τ is an ST in Gt̂ then τ is an ST in every PDG Γt′,t′′, t
′′ ≥ t̂,

in which τ is present.

Proof. As observed in NPRdec (and in [DI04] for unique shortest paths), an ST in

a graph remains an ST after a weight increase on any edge that is not on it. This

establishes the first part since an increase-only updates does not affect the weight

of existing STs that avoid the updated node. For the second part, we observe that

Γt′,t̂ can be viewed as being obtained from Gt̂ by deleting the vertices updated in

[t′ + 1, t̂]. Since τ is an ST in Gt̂, it continues to be an ST in the graph Γt′,t̂, which

can be obtained from Gt̂ through a sequence of increase-only updates that do not

change the weight of any edge on τ . Finally since τ is an ST in Γt′,t̂, it must be an

ST in any Γt′,t′′ in which it appears, for t′′ > t̂.

PDGs for Update t: We will associate with the current update step t, the set

of PDGs Γt′ , for t′ ∈ Prior-times(t). These PDGs are similar to the level graphs

maintained in Thorup algorithm [Tho04] (our ffd algorithm in Chapter 6 general-

izes this approach to multiple shortest paths), but we choose to give them a different

name since we use them here only to analyze the performance of our algorithm.

Lemma 32. Consider a sequence of fully dynamic updates performed using Algo-

rithm 21. Let the current update step be t. Then, each HT in the tuple-system for Gt

is an ST in at least one of the Γt′, where t′ ∈ Prior-times(t). Further z = O(log n)

in Lemma 29 for Gt.

Proof. Consider an HT τ = (xa, by) in Gt. Let the most recently updated vertex in

τ be v, and let its update step be tv ≤ t. By definition of HT, τ is an ST in some

t′ ≤ t. If t′ < tv then trivially τ is an ST in Γtv . Otherwise if t′ in [tv, t] then, by

part 2 of Lemma 31, using t̂ = t′ = tv and t′′ = t, τ is an ST in Γtv . By Lemma 30,
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tv ∈ Prior-times(t). Finally, since |Prior-times(t)| ≤ log n for any t, z = O(log n)

in Lemma 29.

Recall that CH is the combined history of a triple γ (as defined in Section 5.3.1).

Here, we bound its space complexity.

Corollary 4. The size of CH is O(log n) for each THT processed during cleanup.

Thus the additional processing time for a triple in cleanup is O(log n) and, by Lemma

29 part 2, the overall space of the CH structures is Õ(ν∗2).

Proof. From lemma 32, a single THT γ can exist in at most z = O(log n) PDG (with

different counts). Moreover, all the paths joining γ in a specific PDG Γt can only

be generated by the node updated at time t. Thus, the combined history CH(γ)

contains at most O(log n) entries.

We will use the above lemma to obtain our amortized time bound in Lemma 33

in the next section. It is not clear that a similar result can be obtained with the DI

dummy update sequence.

Amortized Cost of Algorithm fully-dynamic

We will now bound the amortized cost of an update in a sequence Σ of n real updates

on an initial n-node graph G = (V,E). As mentioned earlier, in our method this

will translate to a sequence Σ′ of 2n real (as opposed to dummy) updates: there is

an initial sequence of n updates, starting with the empty graph, which inserts each

of the n vertices in G along with incident edges that have not yet been inserted.

Following this is the sequence of n real updates in Σ. Each of these 2n updates in

Σ′ will make a call to Algorithm 21. As before, let ν∗ be a bound on the number of

edges that lie on shortest paths through any given vertex in any of Gt. The following

lemma establishes our main Theorem 9.
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Lemma 33. Algorithm 21 executes a sequence Σ of n real updates on an n-node

graph in O(ν∗2 · log3 n) amortized time per update.

Proof. Let n′ = 2n, and as described above, let Σ′ be the sequence of n′ calls to

Algorithm 21 used to execute the n updates in Σ. We first observe that Algorithm 21

performs O(n′ log n′) dummy updates when executing these n′ calls. This is because

there are n′/2k real updates for update steps t with set-bit(t) = k, and each such

update is accompanied by 2k − 1 dummy updates. So, across all real updates there

are O(n′) dummy updates for each position of set-bit, adding up to O(n′ log n′) in

total, across all set-bit positions.

We now use Lemma 26 to bound the time needed to execute the d = n′ log n′

dummy updates and n′ real updates. We need to bound the parameters C and D

in Lemma 26. We first consider D. For this we will use part 1 of Lemma 29. By

Lemma 32, z = O(log n) for any t. Hence by Lemma 29 the maximum number of

tuples that can remain at the end of the update sequence is D = O(m · ν∗ · log n).

Now we bound the parameter C, for which we will obtain separate bounds, C1

for the real updates, and C2 for the dummy updates. For each real update we have

z = z′ = O(log n) in part 3 of Lemma 29, hence the number of tuples that contain

a path through the updated vertex is O(ν∗2 · log2 n), thus C1 = O(ν∗2 · log2 n).

Now consider a dummy update on a vertex u in Step 5 of Algorithm 21, and

let u be in some level i (note the i must be less than the current level k). At the

time this call is made, all vertices that were updated after u was last updated in

the graph (i.e., after time(i)) are now in the newest level k. Thus, any LHT that

contains u lies in either Γtime(i) or in Gt = Γt. Hence z′ = 2 in part 3 of Lemma 29

for any vertex u undergoing a dummy update. Thus C2 = O(ν∗2 · log n).

Hence the total time taken by Algorithm 21 for its d = n′ log n′ dummy

updates and the n′ real updates is, by Lemma 26, O( (n′ ·(n2 +C1)+(n′ log n′)·(n2 +

C2)+D)·log n) = O(n′ ·ν∗2 ·log2 n+(n′ ·log n′)·ν∗2 ·log n+D log n) = O(n·ν∗2 ·log3 n)
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(the n2 and D terms are dropped since ν∗ = Ω(n), hence m = O(n · ν∗)).

It follows that the amortized cost of each of the n updates in Σ is O( 1
n · n

′ ·

ν∗2 · log3 n) = O(ν∗2 · log3 n).

5.4.5 Experimental Results

For evaluation purpose, we also designed an implementable pseudocode for our

fully-dynamic APASP algorithm. Russell F. McQueeney, an undergraduate stu-

dent whose research was supervised by Prof. Ramachandran, implemented this

pseudocode to obtain a working prototype of the algorithm presented in this chap-

ter.

Russell tested his code on several graphs showing interesting experimental re-

sults when compared to an already implemented version of the DI algorithm [DI06].

In these experiments, we only used input graphs with unique shortest paths in or-

der to match the requirements of DI. Recall that, in the presence of unique shortest

paths, our fully-dynamic algorithm is just DI enhanced with our new PR dummy

sequence (described in Section 5.4.3). Thus, for our experiments, we decided to

use the DI algorithm enhanced with our dummy sequence, and compare it with an

implementation of the standard DI algorithm based on [DI06], which was provided

to us by the authors. Here, we present the results obtained by Russell when testing

our PR and the DI algorithms on the Maryland road network (Figure 5.1), and on a

pathological graph (Figure 5.2). All the graphs and plots were obtained by Russell

for his undergraduate research.

In the first three graphs in Fig.5.1 and 5.2, we study the behavior of the

number of LHPs added, deleted and maintained in the data structures (y axis), at

each update (x axis). Then, in graphs 4 and 5, we look at the cumulative addition

and deletion of LHPs (y axis) over a sequence of 1024 updates (x axis). Finally, in

the last graph, we look at the raw running time of the algorithms over a sequence of
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Figure 5.1: Results on the Maryland road network
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Figure 5.2: Results on a pathological graph

1024 updates. The third line plotted in each graph, named null in the figures, is for

an implementation of DI which does not use the dummy sequence at all. The null

algorithm is used in our experiments because it was showed in [DI06] that the best

performances, in real-world graphs, are obtained by ignoring the dummy sequence

(as shown in Fig.5.1). However, ignoring the dummy sequence when a pathological

graph is processed can dramatically slow down the algorithm (see Fig.5.2).

The improvements obtained by our algorithm in Russell’s experiments are

clearly associated with the PR dummy sequence, that is used to keep under control

the number of LHPs in the system. When our dummy sequence is used, the average
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number of LHPs in the data structures, at any one time, is significantly less than

the number of LHPs maintained by DI. This is accomplished with fewer dummy

updates as well. However, this improvement comes at the cost of local space: the

PR dummy sequence allows many LHPs to accumulate before removing them with

a sequence of dummy updates. This is sometime a problem on pathological graphs

(see [DI04]), where the number of LHPs and HPs is large. As observed in the

experimental results our approach outperforms DI although, in real-world graphs,

skipping dummy updates remains the fastest solution.

Russell also developed a working implementation of our fully-dynamic

algorithm for computing APASP, which we could not test against DI given its unique

shortest path requirement. However, this implementation was extensively tested for

correctness and provided important insights for rewriting an improved and more

readable pseudocode for our APASP algorithm.
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Chapter 6

Faster Fully Dynamic Algorithm

In this chapter we present our improved algorithm ffd for computing APASP, which

uses new techniques and data structures (see Section 6.1.1)1. Our approach is based

on the results obtained in [Tho04], for which we give a brief introduction in the

following section. We then discuss the new data structures involved in our result

(Sections 6.1.1), new features not present in [Tho04], that arise from having multiple

SPs (Sections 6.1.2), and an overall description of the ffd algorithm and its new

components (Sections 6.1.3). The complexity of ffd is discussed in Section 6.3,

while the pseudocode and correctness are available in Section 6.2. The chapter ends

with a conclusion in Section 6.4.

The Thorup Fully Dynamic APSP Algorithm: In [Tho04], Thorup improves

by a logarithmic factor over DI (for unique shortest paths) by using a level system

of increase-only graphs. The shortest paths and locally shortest paths are generated

level by level leading to a different complexity analysis from DI. When a node is

removed from the current graph, it is also removed from every older level graph

that contains it. The implementation of the Thorup APSP algorithm is not fully

1The results presented in this chapter appeared in [PR15b].
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specified in [Tho04]. For our ffd algorithm, we present generalizations of the data

structures sketched in Thorup together with new data structures required to achieve

efficiency (see Section 6.1 for a summary of these data structures).

6.1 Data Structures for Algorithm ffd

Our algorithm ffd requires several data structures. Some of these are already

present in NPRdec and Thorup, while others are newly defined or generalized from

earlier ones. We will use components from our basic algorithm such as the abstract

representation of the level system using PDGs (see Section 6.1.1) and the flag bit

β for a triple, the Marked-Tuples scheme introduced in NPRdec (see Chapter 3 for

more details), and the maintenance of level graphs from Thorup.

In the following sections, we describe all data structures used by our algo-

rithm. In Table II we summarize the structures we use, including those inherited

from [NPR14b, Tho04]. The new components we introduce in this chapter to achieve

efficiency for fully dynamic APASP, are described in section 6.1.1 and listed in Table

II, Part D.

6.1.1 A Level System for Centered Tuples

Algorithm ffd uses the PDGs defined in 5.4.4 as real data structures similar to

Thorup for APSP. This is done in order to generate a smaller superset of LSTs

than fully-dynamic, and it is the key to achieving the improved efficiency. Here

we describe the level system and the data structures we use in ffd, with special

attention to the new elements we introduce.

As in [DI04, Tho04] we build up the tuple-system for the initial n-node

graph G = (V,E) with n insert updates (starting with the empty graph), and we

then perform n updates according to the update sequence Σ. After 2n updates, we

reset all data structures and start afresh.
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Our level system is a generalization of Thorup to fully dynamic APASP. For

an update at step t, let k be the position of the least significant bit with value

1 in the binary representation of t. Then the t-th update activates level k, and

deactivates all levels j < k by folding these levels into level k. These levels are

considered implicitly in our basic result, and using the same notation, we will say

that time(k) = t, and level(t) = k; moreover Gt indicates the graph after the t-th

update. Note that the largest level created before we start afresh is r = log 2n.

Centering vertices and tuples/triples As in Thorup, each vertex v is centered

in level k = level(t), where t is the most recent step in which v was updated. A

path p in a tuple is centered in level k′ = level(t′), where t′ is the most recent

step in which p entered the tuple system (within some tuple) or was modified by a

vertex update. Hence, in contrast to Thorup, a triple can represent paths centered

in different levels. Thus, for a triple γ = ((xa, by), wt, count) we maintain an array

Cγ where

Cγ [i] = number of paths represented by γ that are all centered in level i

It follows that
∑

iCγ [i] = count. The level center of the triple γ is the smallest (i.e.,

most recent level) i such that Cγ [i] 6= 0.

Level graphs (PDGs) In our basic result, the PDGs (introduced in 5.4.4) are

used only in the analysis, and are not maintained by the algorithm. Here, in ffd,

we will maintain a set of local data structures for each PDG that is relevant to the

current graph; also, in a small change of notation, we will denote a level graph for

time t′ ≤ t as Γk′ , where k′ = level(t′) rather than the our previous notation of

Γt′ . These graphs are similar to the level graphs in Thorup. As in Thorup, only

certain information for Γk is explicitly maintained in its local data structures: the
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STs centered in level k plus all the extensions that can generate STs in Γk. The data

structures used by our algorithm to maintain triples are Global and Local, which

we now describe.

Notation Data Structure Appears

Part A :: Global Data Structures (for each pair of nodes (x, y))

P (x, y) all (centered) LHT s from x to y with weight as key [DI04] for paths
[NPR14b] for LSTsP ∗(x, y) all (centered) HT s from x to y with weight as key

L(x, by) {x′ : (x′x, by) denotes a (centered) LHT} [NPR14b] for LSTs
R(xa, y) {y′ : (xa, yy′) denotes a (centered) LHT} [NPR14b] for LSTs

Marked-Tuples global dictionary for Marking scheme [NPR14b]

Part B :: Local Data Structures (for each active level i, for each pair of nodes (x, y))

P ∗i (x, y) STs from x to y centered in level i

sketched in [Tho04]
for paths

L∗i (x, y) {x′ : (x′x, y) denotes an `-tuple for SPs centered in level i}
R∗i (x, y) {y′ : (x, yy′) denotes an r-tuple for SPs centered in level i}
LC∗i (x, y) the subset {x′ ∈ L∗i (x, y) : x′ is centered in level i}
RC∗i (x, y) the subset {y′ ∈ R∗i (x, y) : y′ is centered in level i}
dicti dictionary of pointers from local STs to global P and P ∗ new

Part C :: Inherited Data Structures

β(γ) flag bit for the (centered) triple γ basic algorithm
level(t) level activated during t-th update basic algorithm
time(k) most recent update in which level k is activated basic algorithm
N nodes (centered in levels) deactivated in the current step basic algorithm
Γk level graph (PDG) created during time(k)-th update [Tho04] for paths

Part D :: New Data Structures

Cγ distribution of all paths in triple γ among active levels new
DL(x, y) linked-list containing the history of distances from x to y new

LN(x, y, wt) the set {b : ∃ (xa, by) of weight wt in P (x, y)} new
RN(x, y, wt) the set {a : ∃ (xa, by) of weight wt in P (x, y)} new

Table 6.1: Notation summary

Global Structures The global data structures are P ∗, P , L and R (see Table II,

Part A).

• The structures P ∗(x, y) and P (x, y) will contain HTs (including all STs) and

LHTs (including all LSTs), respectively, from x to y. They are priority queues

with the weights of the triple and a flag bit β as key. For a triple γ in P , the

flag bit β(γ) = 0 if the triple γ is in P but not in P ∗, and β(γ) = 1 if the

triple γ is in P and P ∗.
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• The structure L(x, by) (R(xa, y)) is the set of all left (right) extension vertices

that generate a centered LHT in the tuple-system.

Local Structures The local data structures we introduce in this chapter are

L∗i , R
∗
i , LC

∗
i and RC∗i (see Table II, Part B). These are generalization of the data

structures sketched in Thorup for unique SPs in the graph. For every pair of nodes

(x, y):

• The structure P ∗i (x, y) contains the set of STs from x to y centered in Γi. It

is implemented as a set.

• The structure L∗i (x, y) (R∗i (x, y)) contains all left (right) extensions that gen-

erate a shortest `-tuple (r-tuple) centered in level i. It is implemented as a

balanced search tree.

• The structure LC∗i (x, y) (RC∗i (x, y)) contains left (right) extensions centered

in level i that generate a shortest `-tuple (r-tuple) centered in level i. It is

implemented as a balanced search tree.

• A dictionary dicti, contains STs in P ∗i using the key [x, y, a, b] and two pointers

stored along with each ST. The two pointers refer to the location in P (x, y)

and P ∗(x, y) of the triple of the form (x, a, b, y) contained in P ∗i (x, y).

In order to recompute BC scores (see Section 5.1) we will consider R∗(x, y) =⋃
iR
∗
i (x, y) and similarly L∗(x, y) =

⋃
i L
∗
i (x, y).

New Structures

We introduce two completely new data structures, not used in previous results [DI04,

Tho04, NPR14b], which are essential to achieve efficiency for our ffd algorithm.

Both are needed to address the Partial Extension Problem (PEP) which does not

occur in Thorup for fully dynamic APSP (see section 6.1.2).
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Distance History Matrix The distance history matrix is a matrix DL where

each entry is a pointer to a linked list: for each x, y ∈ V , the linked list DL(x, y)

contains the sequence of different pairs (wt, k), where each one represents an SP

weight wt from x to y, along with the most recent level k in which the weight wt

was the shortest distance from x to y in the graph Γk. The pair with weight wt in

DL(x, y) is double-linked to every triple from x to y with weight wt in the system.

Precisely, when a new triple γ from x to y of weight wt is inserted in the algorithm,

a link is formed between γ and the pair (wt, k) in DL(x, y). With this structure, the

ffd algorithm can quickly check if there are still triples of a specific weight in the

tuple-system, especially for example when we need to remove a given weight from

DL. Note that the size of each linked list is O(log n).

Historical Extension (HE) Sets RN and LN Another important type of

structure we introduce are the sets RN and LN . These structures are crucial

to select efficiently the set of restored historical tuples that need to be extended

(see Section 6.2.2). RN(x, y, wt) (LN(x, y, wt) works symmetrically) contains all

nodes b such that there exists at least one tuple of the form (x×, by) and weight

wt in P (x, y). Similarly to DL, every time a new triple γ of this form is inserted

in the tuple-system, a double link is created between γ and the occurrence of b in

RN(x, y, wt) in order to quickly access the triple when needed.

The total space used by DL, RN and LN is O(n2 log n). This is dominated by the

overall space used by the algorithm to maintain all the triples in the tuple-system

across all levels (see Lemma 40, Section 6.3).

6.1.2 New Features in Algorithm ffd

In this section, we discuss two challenges that arise when we attempt to generalize

the level graph method used in Thorup (for APSP with unique SPs) to a fully

dynamic APASP algorithm. Both are addressed by the algorithms in Section 6.2.
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Figure 6.1: The bit β feature

The bit β feature The control-bit β is introduced (and only briefly described)

in our basic result to avoid the processing of untouched historical triples. Here, we

elaborate on this technique in more details and we also describe how it helps in the

more complex setting of the level tuple-system.

Consider figure 6.1. The ST γ = ((xa, by), wt, count) is created in level k

(Fig. 6.1(a)). At time(k), we have γ ∈ P ∗ and also γ ∈ P with β(γ) = 1. In a more

recent level j < k, a shorter triple γ′ = ((xv, vy), wt′, count′), with weight wt′ < wt,

that goes trough an updated vertex v is generated (Fig. 6.1(b)). Thus at time(j),

we have γ′ ∈ P ∗ and also γ′ ∈ P with β(γ′) = 1; but γ still appears in both P ∗

and P as a historical triple. Finally, a new LST γ′′ = ((xa′, b′y), wt, count′′), with

the same weight as γ, is generated in level i < j (Fig. 6.1(c)). Note that γ′′ is

only in P with β(γ′′) = 0 and not in P ∗, as is the case of every LST that is not

an ST. When an increase-only update removes v and the triple γ′, the algorithm

needs to restore all the triples with shortest weight wt. But while γ is historical and

does not require any additional extension, γ′′ is only present in P and needs to be

processed. Our ffd algorithm achieve this by checking the bit β associated to each

of these triples. The algorithm will extract and process all the triples with β = 0

from P (x, y). These guarantees that a triple only present in P , or present in P and

P ∗ with different counts is never missed by the algorithm.
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Figure 6.2: PEP instance (only centered STs are kept in each level) – all edge weights
are unitary

The partial extension problem (PEP) Consider the update sequence de-

scribed below and illustrated in figure 6.2. Here the STs γ = ((xa, by), wt, count) and

γ̂ = ((xa, cy), wt, count′) are created in level k (Fig. 6.2(a)). Later, a left-extension

to x′ generates the STs γ′ = ((x′x, by), wt′, count) and γ̂′ = ((x′x, cy), wt′, count′)

in level j < k (Fig. 6.2(b)). Note that γ, γ̂, γ′ and γ̂′ are all present in P ∗ and

P at time(j). In a more recent level i < j, a decrease-only update on v gener-

ates a shorter triple γs = ((xv, vy), wts, counts) from x to y, with wts < wt going

through v. In the same level, the triple γs is also extended to x′ generating a triple

γ′′ = ((x′x, vy), wt′′, counts) shorter than γ′ and γ̂′ (Fig. 6.2(c)). Thus at time(i), γ,

γ̂, γ′ and γ̂′ remain in P ∗ as historical triples. Then, in level h < i, an update on x′′

inserts the edges (x′′, x) and (x′′, c). This update generates an ST γ′′′ = ((x′′c, cy))

(shorter than (x′′x, vy)) and also inserts x′′ ∈ LC∗h(x, b)) since (x′′, x) is on a shortest

path from x′′ to b; but it should not generate the triple of the form (x′′x, by) because

b is not on a shortest path from x to y at time(h) (Fig. 6.2(d)).

When an increase-only update removes v and the shortest triple γs from x

to y, the algorithm needs to restore all historical triples with shortest weights from

x to y. When γ and γ̂ are restored, we need to perform suitable left extensions as
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follows. An extension to x′′ is needed only for γ: in fact γ̂ should not be extended

to x′′ because the `-tuple of the newly generated tuple is not an ST in the graph.

On the other hand, no extension to x′ is needed since both γ′ and γ̂′ will be restored

(from HT to ST). Our algorithm needs to distinguish all of these cases correctly and

efficiently.

In order to maintain both correctness and efficiency in this scenario for

APASP, we use two new data structures (described in Section 6.1.1): (1) the his-

torical distance matrix DL that allow us to efficiently determine the most recent

level graph in which an HT was an ST, and (2) the HE sets LN and RN that allow

us to efficiently identify exactly those new extensions that need to be performed.

The methodology of these data structures is fully discussed in the description of

ff-fixup (Section 6.2.2). Note that, the PEP doesn’t arise in Thorup because of

the unique SP assumption: in fact when only a single SP of a given length is present

in the graph for each pair of nodes, the algorithm can check for all the O(n2) paths

maintained in each level and decide which one should be extended. Given the pres-

ence of multiple SPs in our setting, we cannot afford to look at each tuple in the

tuple-system .

6.1.3 An Overview of the ffd Algorithm

We now give an overall summary of the ffd algorithm. A detailed description of

its sub-procedures can be found in the next section.

Algorithm ffd is similar to our basic fully dynamic algorithm and its overall

description is given in Algorithm 22. The main difference is the introduction of the

notion of levels as described in Section 6.1, and their activation/deactivation as in

Thorup. At the beginning of the t-th update (with k = level(t)), we first activate

the new level k and we perform ff-update (Alg. 23) on the updated node v. As

in our basic algorithm and shown in Table II - Part C, the set N consists of all

150



vertices centered at these lower deactivated levels. All vertices in N are re-centered

at level k during the t-th update (Alg. 22, Step 5), and ‘dummy’ update operations

are performed on each of these vertices. Note that N contains the 2k − 1 most

recently updated vertices in reverse order of update time (from the most recent to

the oldest). Procedure ff-update is invoked with the parameter k representing

the newly activated level. Finally, all levels j < k are deactivated (Alg. 22, Step 6).

Algorithm 22 ffd(G, v,w′, k)

1: activate the new level k
2: ff-update(v,w′, k)
3: generate the set N
4: for each u ∈ N in decreasing order of update time do
5: ff-update(u,w′, k) {dummy updates}
6: deactivate all levels lower than k

ff-update As in DI, NPRdec and our basic algorithm, the update of a node occurs

in a sequence of two steps: a cleanup phase and a fixup phase. Both ff-cleanup

and ff-fixup are more involved algorithms than their counterparts in our basic

result, and the resulting algorithm will save a O(log n) factor over the amortized

cost. Note that ff-fixup is called with the additional argument k which indicates

the current active level.

Algorithm 23 ff-update(v,w′, k)

1: ff-cleanup(v)
2: ff-fixup(v,w′, k)

We now highlight some new components of our cleanup and fixup algorithms

that will be helpful to prove the lemmas in the next section.

New Components in ff-cleanup relative to fully-cleanup

FF–C.1 For each triple γ processed by ff-cleanup, the array Cγ can be updated
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with the new centers in time O(z′), where z′ is the number of active levels

that contains the updated vertex v.

FF–C.2 Each triple requires constant time to be linked and unlinked from structures

DL, RN and LN .

New Components in ff-fixup relative to fully-fixup

FF–F.1 For each triple γ processed by ff-fixup, the array Cγ can be updated with

the new centers in time O(z′), where z′ is the number of active levels that

contain the triple γ.

FF–F.2 Each triple requires constant time to be linked and unlinked from structures

DL, RN and LN .

FF–F.3 ff-fixup only processes a triple γ with β = 1 if it has a centered extensions

in some active level younger than then the level in which γ was shortest for

the last time.

We will establish in Section 6.3 that ffd correctly updates the data structures with

the amortized bound given in Theorem 9.

6.2 The ffd Algorithm for APASP

6.2.1 Description of ff-cleanup

ff-cleanup removes all the LHPs going through the updated vertex v from all the

global structures P , P ∗, L and R, and from all local structures in any active level

graph Γj that contains these triples. This involves decrementing the count of some

triples or removing them completely (when all the paths in the triple go through v).

The algorithm also updates local dictionaries and the DL, RN and LN structures.
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Algorithm ff-cleanup is a natural extension of the NPRdec cleanup. An extension

of the NPRdec cleanup is used also in our basic algorithm but in a different way.

Algorithm 24 ff-cleanup(v)

1: Hc ← ∅; Marked-Tuples ← ∅
2: γ ← [(v, v), 0, 1]; Cγ [center(v)] = 1; add [γ,Cγ ] to Hc

3: while Hc 6= ∅ do
4: extract in S all the triples with the same min-key [wt, x, y] from Hc

5: ff-cleanup-`-extend(S,[wt, x, y]) (see Algorithm 25)
6: ff-cleanup-r-extend(S,[wt, x, y])

ff-cleanup starts as in the NPRdec algorithm. We add the updated node

v to Hc (Step 2 – Alg. 24) and we start extracting all the triples with same min-key

(Step 4 – Alg. 24). The main differences from NPRdec start after we call Algorithm

25. As in Chapter 3, we start by forming a new triple γ′ to be deleted (Steps 5

– Alg. 24). A new feature in Algorithm 25 is to accumulate the paths that we

need to remove level by level using the array C ′. This is inspired by Thorup where

unique SPs are maintained in each level. However, our algorithm maintains multiples

paths spread across different levels using the Cγ arrays associated to LSTs, and the

technique used to update the Cγ arrays is significantly different and more involved

than the one described in Thorup. Step 6 - Alg. 25 calls ff-cleanup-centers

(Alg. 26) that will perform this task.

ff-cleanup-centers takes as input the generated triple γ′ of the form

(x′x, by) which contains all the paths going through the updated node v to be

removed, and the set of triples Sb of the form (x×, by) that are extended to x′ to

generate γ′. This procedure has two tasks: (1) generating the Cγ′ vector for the

triple γ′ that will be reinserted in Hc for further extensions, and (2) updating the

Cγ′′ vector for the tuple γ′′ in P (x′, y) (note that γ′′ is the corresponding triple in

P of γ′, before we subtract all the paths represented by γ′ level by level).

(1) - This task, which is more complex than the second task (which is a single step
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Algorithm 25 ff-cleanup-`-extend(S, [wt, x, y])

1: for every b such that (x×, by) ∈ S do
2: let Sb ⊆ S be the set of all triples of the form (x×, by)
3: let fcount′ be the sum of all the counts of all triples in Sb
4: for every x′ in L(x, by) s.t. (x′x, by) /∈ Marked-Tuples do
5: wt′ ← wt+ w(x′, x); γ′ ← ((x′x, by), wt′, fcount′)
6: Cγ′ ← ff-cleanup-centers(γ′, Sb)
7: add [γ′, Cγ′ ] to Hc

8: remove γ′ in P (x′, y) // decrements count by fcount′

9: set new center for γ′′ = ((x′x, by), wt′) in P (x′, y) as argmini(Cγ′′ [i] 6= 0)
10: if a triple for (x′x, by) exists in P (x′, y) then
11: insert (x′x, by) in Marked-Tuples
12: else
13: delete x′ from L(x, by) and delete y from R(x′x, b)
14: if no triple for ((x′−, by), wt′) exists in P (x′, y) then
15: remove b from RN(x′, y, wt′)
16: if no triple for ((x′x,−y), wt′) exists in P (x′, y) then
17: remove x from LN(x′, y, wt′)
18: if a triple for ((x′x, by), wt′) exists in P ∗(x′, y) then
19: remove γ′ in P ∗(x′, y) // decrements count by fcount′

20: if γ′ /∈ P ∗(x′, y) then
21: remove the element with weight wt′ from DL(x′, y) if not linked to

other tuples in P ∗(x′, y)
22: for each i do
23: decrement Cγ′ [i] paths from γ′ ∈ P ∗i (x′, y)
24: if γ′ is removed from P ∗i (x′, y) then
25: if x′ is centered in level i then
26: if ∀ j ≥ i, P ∗j (x, y) = ∅ then
27: remove x′ from L∗i (x, y) and remove x′ from LC∗i (x, y)
28: else if P ∗i (x, y) = ∅ then
29: remove x′ from L∗i (x, y)
30: if y is centered in level i then
31: if ∀ j ≥ i, P ∗j (x′, b) = ∅ then
32: remove y from R∗i (x

′, b) and remove y from RC∗i (x′, b)
33: else if P ∗i (x′, b) = ∅ then
34: remove y from R∗i (x

′, b)
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Algorithm 26 ff-cleanup-centers(γ′, Sb)

1: let γ′ = ((x′x, by), wt′, fcount′) (the triple of the form ((x′x, by), wt′) that con-
tains all the paths through v to be removed)

2: let γ′′ = ((x′x, by), wt′, fcount′′) (the triple of the form ((x′x, by), wt′) in P (x′, y).
Note that γ′ represents a subset of γ′′)

3: j ← argmaxj(Cγ′′ [j] 6= 0) // This is the oldest level in which a path in γ′′

appeared for the first time
4: C ′ ←

∑
γ∈Sb Cγ [r − 1, . . . , 0] // This is the sum (level by level) of the triples of

the form (xai, by) that go through v and are extending to γ′ during this stage
5: create a new center vector Cγ′ for the triple γ′ as follows
6: for all the levels m > j we set Cγ′ [m] = 0
7: for the level j we set Cγ′ [j] =

∑r−1
k=j C

′[k]
8: for all the levels i < j we set Cγ′ [i] = C ′[i]
9: Cγ′′ [r − 1, . . . , 0] ← Cγ′′ [r − 1, . . . , 0] − Cγ′ [r − 1, . . . , 0] // We update the C

vector for γ′′ ∈ P (x′, y)
10: return Cγ′ // We return the correct vector for the generated γ′ triples

in the algorithm, see point (2) below), is accomplished in steps 4 to 8, Alg. 26 and

uses the following technique. In step 4 – Alg. 26, we store into the log n-size array

C ′ the distribution over the active levels for the set of triples in Sb that generates

γ′ using the left extension to x′. In order to generate the correct vector Cγ′ (to

associate with the triple γ′), we need to reshape the distribution in C ′ according

to the corresponding distribution of the triple γ′′ ∈ P . The reshaping procedure

works as follows: we first identify the oldest level j in which the triple γ′′ appeared

in P for the first time (Step 3 – Alg. 26). Recall that we want to remove γ′ paths

containing v from γ′′, and γ′′ does not exist in any level older than j. Vector C ′

is the sum of Cγ for all γ ∈ Sb (Step 4 – Alg. 26). Those triples are of the form

(xai, by) and they could exist in levels older, equal or more recent than j. But the

triples in Sb that were present in a level older than j, were extended to γ′′ in P for

the first time in level j. For this reason, step 7 - Alg. 26 aggregates all the counts

in C ′ in levels older or equal j in Cγ′ [j]. Moreover, for each level i < j, if a triple

γ ∈ Sb is present in the level graph Γi with count paths centered in level i, then Γi
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also contains its extension to x′ that is a subtriple of γ′′ located in level i with at

least count paths. Thus for each level i < j step 8 - Alg. 26, copies the number of

paths level-wise. This procedure allows us to precisely remove the LHPs only from

the level graphs where they exist. After C ′ is reshaped into Cγ′ (steps 5 to 8 - Alg.

26), the algorithm returns this correct array for γ′ to Alg. 25.

(2) - This task is performed by the simple step 9, Alg. 26, which is a subtraction

level by level of LHPs.

After adding the new triple γ′ to Hc (Step 7 - Alg. 25), the algorithm

continues as the NPRdec (Steps 7 to 13 – Alg. 25) with some differences: we need

to update centers, local data structures, DL, RN and LN . We update the center

of γ′ using Cγ′ (Step 9 - Alg. 25). If γ′ is a shortest triple, we decrement the count

of γ′ ∈ P ∗(x′, y) (Step 19 - Alg. 25). If γ′ is completely removed from P ∗(x′, y)

and DL(x′, y, wt′) is not linked to any other tuple, we remove the entry with weight

wt′ from DL(x′, y) (Step 21 - Alg. 25). Moreover, we subtract the correct number

of paths from each level using the (previously built) array Cγ′ (Step 23 - Alg. 25).

Finally for each active level i, if γ′ is removed from P ∗i (x′, y), we take care of the

sets L∗i and R∗i (Steps 24 to 34 - Alg. 25). In the process, we also update LC∗i and

RC∗i in case the endpoints of γ′ are centered in level i. If γ′ is completely removed

from P (x′, y), using the double links to the node b in RN(x′, y, wt′), we check if

there are other triples that use b in P (x′, y) (Step 14 - Alg. 25): if not we remove b

from RN(x′, y, wt′). A similar step handles LN(x′, y, wt′).

6.2.2 Description of ff-fixup

ff-fixup is an extension of fully-fixup rather than NPRdec. This is because of

the presence of the control bit β (defined in Section 6.1), and the need to process

historical triples (that are not present in NPRdec). Algorithm ff-fixup will effi-

ciently maintain exactly the LSTs and STs for each level graph in the tuple-system.
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This is in contrast to fully-fixup, which can maintain LHTs that are not LSTs

in any level graph (PDG). ff-fixup maintains a heap Hf of candidate LHTs to

be processed in min-weight order. The main phase (Alg. 27) is very similar to the

fixup in our basic algorithm. The differences are again related to levels, centers and

the new data structures.

We start describing Algorithm 27. We initialize Hf by inserting the edges

incident on the updated vertex v with their updated weights (Steps 2 to 7 – Alg.

28), as well as a candidate min-weight triple from P for each pair of nodes (x, y)

(Step 10 – Alg. 28). Then we process Hf by repeatedly extracting collections of

triples of the same min-weight for a given pair of nodes, until Hf is empty (Steps

3 to 10 – Alg. 27). We will establish that the first set of triples for each pair (x, y)

always represents the shortest path distance from x to y (see Lemma 35), and the

triple extracted are added to the tuple-system if not already there (see Alg. 29

and Lemma 36). For efficiency, among all the triples present in the tuple-system

for a pair of nodes, we select only the ones that need to be extended: this task is

performed by Algorithm 29 (this step is explained later in the description). After

the triples in S are left and right extended by Algorithm 30, we set the bit β(γ′) = 1

for each triple γ′ that is identified as shortest in S, since γ′ is correctly updated

both in P ∗(x, y) and P (x, y) (Step 9 – Alg. 27). Finally, we update the DL(x, y)

structure by inserting (or updating if an element with weight wt is already present)

the element with weight wt and the current level at the end of the list (Step 10 –

Alg. 27). This concludes the description of Algorithm 27.

We now describe Algorithm 29 which is responsible to select only the triples

that have valid extensions that will generate LHTs in the current graph. In Algo-

rithm 29, we distinguish two cases. When the set of extracted triples from x to y

contains at least one path not containing v (Step 2 – Alg. 29), then we process all

the triples from P (x, y) of the same weight. Otherwise, if all the paths extracted go
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through v (Step 18 – Alg. 29), we only use the triples extracted from Hf .

Algorithm 27 ff-fixup(v,w′, k)

1: Hf ← ∅; Marked-Tuples ← ∅
2: ff-populate-heap(v,w′, k)
3: while Hf 6= ∅ do
4: extract in S′ all the triples with min-key [wt, x, y] from Hf

5: if S′ is the first extracted set from Hf for x, y then
6: S ← ff-new-paths(S′, P (x, y))
7: ff-fixup-`-extend(S,[wt, x, y]) (see Algorithm 30)
8: ff-fixup-r-extend(S,[wt, x, y])
9: for every γ ∈ S set β(γ) = 1

10: add an element with weight wt and level k to DL(x, y) or update the level
in the existing one

Algorithm 28 ff-populate-heap(v,w′, k)

1: for each (u, v) do
2: w(u, v) = w′(u, v)
3: if w(u, v) <∞ then
4: γ = ((uv, uv),w(u, v), 1); Cγ [k]← 1
5: update-num(γ) ← curr-update-num; num-v-paths(γ) ← 1
6: add [γ,Cγ ] to Hf and P (u, v)
7: add u to L(−, vv) and v to R(uu,−)
8: for each (v, u) do
9: symmetric processing as Steps 2–7 above

10: for each x, y ∈ V do
11: add a min-key triple [γ,Cγ ] ∈ P (x, y) to Hf

Both cases have a similar approach but here we focus on the former which is

more involved than the latter. As soon as we identify a new triple γ′ we compute its

center j by using its associated array Cγ′ (Step 4 – Alg. 29). This is straightforward

if compared to ff-cleanup where we first need to update the center arrays. We

add this triple to P ∗(x, y) and to S, which contains the set of triples that need to

be extended. We also add γ′ to P ∗j (x, y) (Steps 10 and 21 – Alg. 29). We update

dictj to keep track of the locations of the triple in the global structures. A similar

sequence of steps takes place when all the extracted paths go through v (Steps 18
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Algorithm 29 ff-new-paths(S′, Pxy)

1: S ← ∅; let i be the min-weight level associated with DL(x, y)
2: if P ∗(x, y) increased min-weight after cleanup then
3: for each γ′ ∈ S with-key [wt, 0] do
4: let γ′ = ((xa′, b′y), wt, count′) and j = argminj(Cγ′ [j] 6= 0)
5: if γ′ is not in P ∗(x, y) then
6: add γ′ in P ∗(x, y) and S; add x to L∗(a′, y) and y to R∗(x, b′)
7: add b′ to RN(x, y, wt); place a double link between γ′ and DL(x, y, wt)
8: else if γ′ is in P (x, y) and P ∗(x, y) with different counts then
9: replace the count of γ′ in P ∗(x, y) with count′ and add γ′ to S

10: add γ′ to P ∗j (x, y) and dictj
11: add x to L∗j (a

′, y) and y to R∗j (x, b
′)

12: add x to LC∗j (a′, y) (y to RC∗j (x, b′)) if x (y) is a level i center
13: add γ′ in S
14: for each b′ ∈ RN(x, y, wt) do
15: if ∃h < i : L∗h(x, b′) 6= ∅ then
16: add any γ′ of the form (x×, b′y) and weight wt in P ∗(x, y) with β(γ′) = 1

to S
17: else
18: for each γ′ ∈ S′ containing a path through v do
19: let γ′ = ((xa′, b′y), wt, count′) and k the current level
20: add γ′ with paths(γ′, v) to P ∗(x, y), and [γ′, Cγ′ ] to S
21: add γ′ to P ∗k (x, y) and dictk, x to L∗k(a

′, y) and y to R∗k(x, b
′)

22: add x to LC∗k(a′, y) (y to RC∗k(x, b′)) if x (y) is a level k center
23: return S
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to 22 – Alg. 29). The only difference is that the local data structures to be updated

are only the Γk data stuctures (Steps 21 and 22 – Alg. 29).

A crucial difference from fully-fixup and this algorithm is the way we

collect the set S of triples to be extended. Here we require the new HE data

structures RN and LN (see Section 6.1.1) because of PEP instances (see Section

6.1.2). Let i be the min-weight level associated with DL(x, y). For each node

b ∈ RN(x, y, wt) we check if L∗h(x, b) contains at least one extension, for every h < i

(Steps 14 to 16 – Alg. 29). In fact we need to discover all tuples with β = 1 that

are inside a PEP instance. In this instance, the triples restored as STs may or may

not be extended. We cannot afford to look at all of them, thus our solution should

check only the triples with an available extension. Moreover, all the extendable

triples with with β = 1 have extension only in levels younger than the level where

they last appear as STs. Thus, we check for extensions only in the levels h < i.

Using the HE sets, is the key to avoid an otherwise long search of all the

valid extensions for the set of examined triples with β = 1. In particular, without

the HE sets, the algorithm could waste time by searching for extensions that are

not even in the tuple-system. Correctness of this method is proven in section 6.3.

After the algorithm collects the set S of triples that can be extended, ff-fixup calls

ff-fixup-`-extend (Alg. 30).

Here we describe the details of algorithm 30. Its goal is to generate LHTs

for the current graph G by extending HTs. Let h be the center of Sb defined as the

most recent center among all the triples in Sb, and let j be the level associated to

the first weight wt′ larger than wt in DL(x, y). The extension phase for triples is

different from fully-fixup: in fact, the set of triples Sb could contain only triples

with β(γ) = 1. In fully-fixup, the corresponding set Sb contains only triples with

β(γ) = 0. We address two cases:

(a) – If Sb contains at least one triple γ with β(γ) = 0, we extend Sb using the sets
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Algorithm 30 ff-fixup-`-extend(S,[wt, x, y])

1: for every b such that (x×, by) ∈ S do
2: let Sb ⊆ S be the set of all triples of the form (x×, by)
3: let fcount′ be the sum of all the counts of all triples in Sb; let h be the

center(Sb)
4: if ∃ γ ∈ Sb : β(γ) = 0 then
5: let j be the level associated to the minweight wt′ > wt in DL(x, y)
6: for every active level h ≤ i < j do
7: for every x′ in L∗i (x, b) do
8: if (x′x, by) /∈ Marked-Tuples then
9: wt′ ← wt+ w(x′, x); γ′ ← ((x′x, by), wt′, fcount′)

10: Cγ′ ← ff-fixup-centers(Sb); add γ′ to Hf

11: if a triple γ′′ for ((x′x, by), wt′) exists in P (x′, y) then
12: update the count of γ′′ in P (x′, y) and Cγ′′ = Cγ′′ + Cγ′

13: add (x′x, by) to Marked-Tuples
14: else
15: add [γ′, Cγ′ ] to P (x′, y); add x′ to L(x, by) and y to R(x′x, b)
16: set β(γ′) = 0; set update-num(γ′)
17: for every level i < h do
18: for every x′ in LC∗i (x, b) do
19: execute steps 8 to 16
20: else
21: let j be the level associated to the minweight wt in DL(x, y)
22: for every level i < j do
23: for every x′ in LC∗i (x, b) do
24: execute steps 8 to 16

Algorithm 31 ff-fixup-centers(Sb)

1: let C ′ =
∑

γ∈Sb Cγ be the sum (level by level) of the new paths that are found
shortest

2: let j be argmaxj(C
′[j] 6= 0), and k = center(x′)

3: if k < j then
4: for all the levels i < k we set Cγ′ [i] = C ′[i]
5: for the level k we set Cγ′ [k] =

∑r−1
q=k C

′[q]
6: for all the levels m > k we set Cγ′ [m] = 0
7: else
8: Cγ′ = C ′

9: return Cγ′
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L∗i and R∗i with h ≤ i < j (Steps 7 to 16 – Alg.30). In fact, the set Sb contains at

least one new path that was not extended in the previous iterations when wt was the

shortest distance from x to y (because of the β(γ) = 0 triple). The LST generated

in this way remains centered in level h. Moreover we extend Sb also using the sets

LC∗i and RC∗i with i < h (Steps 17 to 19 – Alg.30). This ensures that every LST

generated in a level i lower than h is centered in i thanks to the extension node

itself. This technique guarantees that each LHT generated by Algorithm 30 is an

LST centered in a unique level.

(b) – In the case when there is no triple γ in Sb with β(γ) = 0, then there is at

least one extension to perform for Sb and it must be in some level younger than the

level where wt stopped to be the shortest distance from x to y (this follows from

the use of the HE sets in Alg. 29). To perform these extensions we set j as the

level associated with the min-weight element in DL(x, y), and we extend Sb using

the sets LC∗i and RC∗i with i < j (Steps 21 to 24 – Alg.30). Again, every LHT

generated is an LST centered in a unique level. Finally, every generated LHT is

added to P and Hf and we update global L and R structures.

Observation 14. Every LHT generated by algorithm ff-fixup is an LST centered

in a unique level graph.

Proof. As described in (a) and (b) above, every LHT is generated using two triples

which are shortest in the same level graph Γi. Moreover, since at least one of them

must be centered in level i, the resulting LHT is an LST centered in level i.

The last novelty in the algorithm is updating center arrays (Alg. 31 called

at step 10 – Alg. 30) in a similar way of ff-cleanup: Algorithm 31 identifies the

oldest level j related to the triples contained in Sb (Step 2 – Alg. 31). If j > k then

we reshape the distribution for γ′ similarly to ff-cleanup (Steps 4 to 6 – Alg. 31).

Otherwise γ′ is completely contained in level k and no reshaping is required (Step

8 – Alg. 31).
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6.2.3 Correctness of ffd

For the correctness, we assume that all the global and local data structures are

correct before the update, and we will show the correctness of them after the update.

Correctness of Cleanup The correctness of ff-cleanup is established in Lemma

34. We will prove that all paths containing the updated vertex v are removed from

the tuple-system. Moreover, the center of each triple is restored, if necessary, to the

level containing the most recently updated node on any path in this triple. Note

that (as in [DI04, NPR14b]) at the end of the cleanup phase, the global structures

P and P ∗ may not have all the LHTs in G \ {v}.

Lemma 34. At the end of the cleanup phase triggered by an update on a vertex

v, every LHP that goes through v is removed from the global structures. Moreover,

in each level graph Γi, each SP that goes through v is removed from P ∗i . For each

level i, the local structures L∗i , R
∗
i , RC

∗
i and LC∗i contain the correct extensions;

the global structures L and R contain the correct extensions, for each r-tuple and

`-tuple respectively, and the structures RN and LN contain only nodes associated

with tuples in P . The DL structure only contains historical distances represented

by at least one path in the updated graph. Finally, every triple in P and P ∗ has the

correct updated center for the graph G \ {v}.

Proof. The lemma is established with the following loop invariant.

Loop Invariant: At the start of each iteration of the while loop in Step 3 of

Algorithm 24, assume that the first triple to be extracted from Hc and processed

has min-key = [wt, x, y]. Then the following properties hold about the tuple-system

and Hc.

1. For any a, b ∈ V , if G contains cab LHPs of weight wt of the form (xa, by)

passing through v, then Hc contains a triple γ = ((xa, by), wt, cab) with key
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[wt, x, y] already processed: the cab LHPs through v are not present in the

tuple-system.

2. Let [ŵt, x̂, ŷ] be the last key extracted from Hc and processed before [wt, x, y].

For any key [wt1, x1, y1] ≤ [ŵt, x̂, ŷ], let G contain c > 0 number of LHPs

of weight wt1 of the form (x1×, b1y1). Further, let cv (resp. cv̄) denote the

number of such LHPs that pass through v (resp. do not pass through v). Here

cv + cv̄ = c. For every extension x′ ∈ L(x1, b1y1), let wt′ = wt1 + w(x′, x1) be

the weight of the extended triple (x′x1, b1y1). Then, (the following assertions

are similar for y′ ∈ R(x1a1, y1))

Global Data Structures:

(a) if c > cv there is a triple in P (x′, y1) of the form (x′x1, b1y1) and weight

wt′ representing c− cv LHPs. Moreover, its center is updated according

to the last update on any path represented by the triple. If c = cv there

is no such triple in P (x′, y1).

(b) If a triple of the form (x′x1, b1y1) and weight wt′ is present as an HT in

P ∗(x′, y1), then it represents the exact same number of LHPs c − cv of

the corresponding triple in P (x′, y1). This is exactly the number of HPs

of the form (x′x1, b1y1) and weight wt′ in G \ {v}.

(c) x′ ∈ L(x1, b1y1), y1 ∈ R(x′x1, b1), and (x′x1, b1y1) ∈ Marked-Tuples iff

cv̄ > 0.

(d) A triple corresponding to (x′x1, b1y1) with weight wt′ and counts cv is in

Hc. A similar assertion holds for y′ ∈ R(x1a1, y1).

(e) The structure RN(x′, y1, wt
′) contains a node b iff at least one path of the

form (x′×, by1) and weight wt′ is still represented by a triple in P (x′, y1).

A similar assertion holds for a node a in LN(x′, y1, wt
′).
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(f) If there is no HT of the form (x′x, b1y1) and weight wt′ in P ∗(x′, y1) then

the entry DL(x′, y1) with weight wt′ does not exists.

Local Data Structures: for each level j, let cj be the number of LSPs of

the form (x′x1, b1y1) and weight wt′ centered in Γj and let cj(v) be the ones

that go through v. Thus c =
∑

j cj and cv =
∑

j cj(v). Then,

(g) the value of Cγ [j], where γ is the triple of the form (x′x1, b1y1) and weight

wt′ in P (x′, y1), is cj − cj(v).

(h) If a triple γ of the form (x′x1, b1y1) and weight wt′ is present as an HT

in P ∗, then P ∗j (x′, y1) represents only cj − cj(v) paths. If cj − cj(v) = 0

then the link to γ is removed from dictj . Moreover, x′ ∈ L∗j (x1, y1)

(respectively LC∗j (x1, y1) if x′ is centered in Γj) iff x′ is part of a shortest

path of the form (x′x1,×y1) centered in Γj . A similar statement holds

for y1 ∈ R∗j (x′, b1) (respectively RC∗j (x′, b1) if y1 is centered in Γj).

3. For any key [wt2, x2, y2] ≥ [wt, x, y], let G contain c > 0 LHPs of weight

wt2 of the form (x2a2, b2y2). Further, let cv (resp. cv̄) denote the number

of such LHPs that pass through v (resp. do not pass through v). Here

cv + cv̄ = c. Then the tuple (x2a2, b2y2) ∈ Marked-Tuples, iff cv̄ > 0 and a

triple for (x2a2, b2y2) is present in Hc

Initialization: We start by showing that the invariants hold before the first loop

iteration. The min-key triple in Hc has key [0, v, v]. Invariant assertion 1 holds since

we inserted into Hc the trivial triple of weight 0 corresponding to the vertex v and

that is the only triple of such key. Moreover, since we do not represent trivial paths

containing the single vertex, no counts need to be decremented. Since we assume

positive edge weights, there are no LHPs in G of weight less than zero. Thus all

the points of invariant assertion 2 hold trivially. Invariant assertion 3 holds since
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Hc does not contain any triple of weight > 0 and we initialized Marked-Tuples to

empty.

Maintenance: Assume that the invariants are true before an iteration k of the

loop. We prove that the invariant assertions remain true before the next iteration

k + 1. Let the min-key triple at the beginning of the k-th iteration be [wtk, xk, yk].

By invariant assertion 1, we know that for any ai, bj , if there exists a triple γ of

the form (xkai, bjyk) of weight wtk representing count paths containing v, then it

is present in Hc. Now consider the set of triples with key [wtk, xk, yk] which we

extract in the set S (Step 4, Algorithm 24). We consider left-extensions of triples

in S; symmetric arguments apply for right-extensions. Consider for a particular b

the set Sb ⊆ S of triples of the form (xk−, byk), and let fcount′ denote the sum

of the counts of the paths represented by triples in Sb. Let x′ ∈ L(xk, byk) be

a left extension; our goal is to generate the triple γ′ of the form (x′xk, byk) with

count fcount′ and weight wt′ = wtk + w(x′, xk), and an associated vector C(γ′)

that specifies the distribution of paths represented by γ′ level by level. These paths

will be then removed by the algorithm. However, we generate such triple only if it

has not been generated by a right-extension of another set of paths by checking the

Marked-Tuples structure: we observe that the paths of the form (x′xk, byk) can be

generated by right extending to yk the set of triples of the form (x′xk,×b). Without

loss of generality assume that the triples of the form (x′xk,×b) have a key which is

greater than the key [wtk, xk, yk]. Thus, at the beginning of the k-th iteration, by

invariant assertion 3, we know that (x′xk, byk) /∈ Marked-Tuples. Step 5, Alg. 24

creates a triple γ′ of the form (x′xk, byk) of weight wt′ and fcount′.

The set of triples in Sb can have different centers and we are going to remove

(level by level) paths represented by γ′. To perform this task we consider the

vector Cγ′′ : it contains the full distribution of the triple γ′′ ∈ P (x′yk) of the form

((x′xk, byk), wt
′) and indicates the oldest level j in which γ′′ was generated for the
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first time. This level is exactly argmaxj(Cγ′′ [j] 6= 0) and it is identified in Step 3 -

Alg. 25. All the paths represented in Sb that are centered in some level m older or

equal to j were extended for the first time in level j to generate γ′′. Moreover, each

path centered in a level i younger than j was extended in level i itself. Thus, we

can compute a new center vector Cγ′ (according to the distribution in Cγ′′) of the

paths containing v that we want to delete at each active level, as in steps 5 to 8 -

Alg. 26. In step 9 - Alg. 26 the vector Cγ′′ is updated: the paths are removed level

by level according to the new distribution. This establishes invariant assertion 2g.

The triple γ′ is immediately added to Hc with Cγ′ for further extensions

(Step. 7 - Alg. 25). This establishes invariant assertions 2d. Thus we reduce the

counts of γ′ in P (x′, yk) by fcount (Step. 8 - Alg.25) and we set the new center for

the remaining tuple γ′′ in P (x′, yk) establishing invariant assertion 2a. Steps 10 to

13 - Alg. 25 check if there is any path of the form (x−, by) that can use x′ as an

extension. In this case we add γ′ to the Marked-Tuples. If not, we safely remove the

left and right extension (x′ and y) from the tuple-system. This establishes invariant

assertion 2c. If γ′ is an HT in P ∗(x′, yk), we decrement its count (Step. 19 - Alg.25)

establishing invariant assertion 2b. In steps 14 to 17 - Alg. 25, we use the double

links between b ∈ RN(x′, yk, wt
′) and tuples to efficiently check if there are other

triples linked to b; if not we remove b from RN(x′, yk, wt
′) establishing invariant

assertion 2e. Using a similar double link method with the structure DL(x′, yk), we

establish invariant assertion 2f after step 21 - Alg. 25.

To operate in the local data structures we require γ′ to be an HT in P ∗(x′, yk).

Using the previously created vector Cγ′ , we reduce the count associated with γ′ ∈

1P ∗i (x′, yk) for each level i (Step 23 - Alg. 25). After the above step, if there are

no paths left in P ∗i (x′, y1) then there are no STs of the form (x′x1, by1) centered in

level i. In this case we remove the extension x′ and yk from the local structures

of level i. This is done in steps 24 to 34 -Alg. 25: in case x′ is not centered in
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level i, then any path in γ′ centered in level i is generated by a node centered in

level i located between xk and yk. Thus if any SP from x′ to yk (that uses (x′, xk)

as a first edge) remains in in Γi, it must be also counted in P ∗i (xk, yk). Thus, we

remove x′ from L∗i (xk, yk) only if P ∗i (xk, yk) is empty. In the case x′ is centered in

level i and P ∗i (xk, yk) is empty, x′ could still be the extension of other paths from

xk to yk centered in levels older than i. The algorithm checks them all and if they

do not exist in older levels we can safely remove x′ from LC∗i (xk, yk) (Step 32, Alg.

25). A similar argument holds for the right extension y1. This establishes invariant

assertion 2h and completes claim 2.

When any triple is generated by a left extension (or symmetrically right

extension), it is inserted into Hc as well as into Marked-Tuples. This establishes

invariant assertion 3 at the beginning of the (k + 1)-th iteration.

Finally, to see that invariant assertion 1 holds at the beginning of the (k+1)-

th iteration, let the min-key at the (k+1)-th iteration be [wtk+1, xk+1, yk+1]. Observe

that triples with weight wtk+1 starting with xk+1 and ending in yk+1 can be created

either by left extending or right extending the triples of smaller weight. And since

for each of iteration ≤ k, invariant assertion 2 holds for any extension, we conclude

that invariant assertion 1 holds at the beginning of the (k + 1)-th iteration. This

concludes our maintenance step.

Termination: The condition to exit the loop is Hc = ∅. Because invariant assertion

1 maintains inHc all the triples already processed, thenHc = ∅ implies that there are

no other triples to extend in the graph G that contain the updated node v. Moreover,

because of invariant assertion 1, every triple containing the node v inserted into Hc

has been correctly decremented from the tuple-system. Remaining triples have the

correct update center because of invariant 2a. Finally, for invariant assertions 2g

and 2h, the structures L∗i , LC
∗
i , R

∗
i , RC

∗
i are correctly maintained for every active

level i and the paths are surgically removed only from the levels in which they are
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centered. This completes the proof.

Correctness of Fixup For the fixup phase, we need to show that the triples

generated by our algorithm are sufficient to maintain all the ST and LST in the

current graphG. As in our basic algorithm, we first show in the following lemma that

ff-fixup computes all the correct distances for each pair of nodes in the updated

graph. Finally, we show that data structures and counts are correctly maintained

at the end of the algorithm (Lemma 36).

Lemma 35. For every pair of nodes (x, y), let γ = ((xa, by), wt, count) be one of

the min-weight triples from x to y extracted from Hf during ff-fixup. Then wt is

the shortest path distance from x to y in G after the update.

Proof. Suppose that the lemma is violated. Thus, there will be an extraction from

Hf during ff-fixup such that the set of extracted triples S′, of weight ŵt is not

shortest in G after the update. Consider the earliest of these events when S′ is

extracted from Hf . Since S′ is not a set of STs from x to y, there is at least one

shorter tuple from x and y in the updated graph. Let γ′ = ((xa′, b′y), wt, count)

be this triple that represents at least one shortest path from x to y, with wt < ŵt.

Since S′ is extracted from Hf before any other triple from x to y, γ′ cannot be

in Hf at any time during ff-fixup. Hence, it is also not present in P (x, y) as an

LST at the beginning of the algorithm, otherwise it (or another triple with the same

weight) would be placed in Hf by step 2 - Alg. 27. Moreover, if γ′ is a single

edge (trivial triple), then it was already an LST in G present in P (x, y) before

the update, and it is added to Hf by step 10 - Alg. 28; moreover since all the

edges incident to v are added to Hf during steps 2 to 7 of Alg. 28, then γ′ must

represent SPs of at least two edges. We define left(γ′) as the set of LSTs of the

form ((xa′, cib
′), wt−w(b′, y), countci) that represent all the LSPs in the left tuple

((xa′, b′), wt−w(b′, y)); similarly we define right(γ′) as the set of LSTs of the form
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((a′dj , b
′y), wt − w(x, a′), countdj ) that represent all the LSPs in the right tuple

((a′, b′y), wt−w(x, a′)).

Observe that since γ′ is an ST, all the LSTs in left(γ′) and right(γ′) are also

STs. A triple in left(γ′) and a triple in right(γ′) cannot be present in P ∗ together at

the beginning of ff-fixup. In fact, if at least one triple from both sets is present in

P ∗ at the beginning of ff-fixup, then the last one inserted during the fixup phase

triggered during the previous update, would have generated an LST of the form

((xa′, b′y), wt) automatically inserted, and thus present, in P at the beginning of

the current fixup phase (a contradiction). Thus either there is no triple represented

by left(γ′) in P ∗, or there is no triple represented by right(γ′) in P ∗.

Assume w.l.o.g. that the set of triples in right(γ′) is placed into P ∗ after

left(γ′) by ff-fixup. Since edge weights are positive, wt − w(x, a′) < wt < ŵt,

and because all the extractions before γ were correct, then the triples in right(γ′)

were correctly extracted from Hf and placed in P ∗ before the wrong extraction of

S′. Let i be the level in which left(γ′) is centered, and let j be the level in which

right(γ′) is centered. By the assumptions, all the triples in left(γ′) are in P ∗ and

we need to distinguish 3 cases:

1. if j = i, then ff-fixup generates the tuple ((xa′, b′y), wt) in the same level

and place it in P and Hf .

2. if i > j, the algorithms ff-fixup extends the set right(γ′) to all nodes in

L∗i (a
′, b′) for every i ≥ j (see Steps 7 to 16 - Alg. 30). Thus, since left(γ′)

is centered in some level i > j, the node x is a valid extension in L∗i (a
′, b′),

making the generated γ′ an LST in Γj that will be placed in P (x, y) and also

into Hf (during Step 10 - Alg. 30).

3. if j > i, then x was inserted in a level younger than i. In fact, all the paths

from a′ to b′ must be the same in right(γ′) and left(γ′) otherwise the center of
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right(γ′) should be i. Hence, the only case when j > i is when the last update

on left(γ′) is on the node x in a level i younger than j. Thus x ∈ LC∗i (a′, b′).

But ff-fixup extends right(γ′) to all nodes in LC∗i (a′, b′) for every i < j,

placing the generated LST γ′ in P (x, y) and also into Hf (see Steps 17 to 19

- Alg. 30).

Thus the algorithm would generate the tuple ((xa′, b′y), wt) (as a left exten-

sion) and place it in P and Hf (because all the triples in left(γ′) are already in P ∗).

Therefore, in all cases, a tuple ((xa′, b′y), wt) should have been extracted from Hf

before any triple in S′. A contradiction.

Lemma 36. After the execution of ff-fixup, for any (x, y) ∈ V , the sets P ∗(x, y)

(P (x, y)) contains all the SPs (LSPs) from x to y in the updated graph. Also, the

global structures L,R and the local structures P ∗i , L
∗
i , R

∗
i , LC

∗
i , RC

∗
i and dicti for each

level i are correctly maintained. The structures RN and LN are updated according

to the newly identified tuples. The DL structure contains the updated distance for

each pair of nodes in the current graph. Finally, the center of each new triple is

updated.

Proof. We prove the lemma statement by showing the following loop invariant. Let

G′ be the graph after the update.

Loop Invariant: At the start of each iteration of the while loop in Step 3 of ff-

fixup, assume that the first triple in Hf to be extracted and processed has min-key

= [wt, x, y]. Then the following properties hold about the tuple-system and Hf .

1. For any a, b ∈ V , if G′ contains cab SPs of form (xa, by) and weight wt, then Hf

contains a triple of form (xa, by) and weight wt to be extracted and processed.

Further, a triple γ = ((xa, by), wt, cab) is present in P (x, y).

2. Let [ŵt, x̂, ŷ] be the last key extracted from Hf and processed before [wt, x, y].

For any key [wt1, x1, y1] ≤ [ŵt, x̂, ŷ], let G′ contain c > 0 number of LHPs of
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weight wt1 of the form (x1a1, b1y1). Further, let cnew (resp. cold) denote the

number of these LHPs that are new (resp. not new). Here cnew + cold = c. If

cnew > 0 then,

Global Data Structures:

(a) there is an LHT γ in P (x1, y1) of the form (x1a1, b1y1) and weight wt1

that represents c LHPs, with an updated center defined by the last update

on any of the paths represented by the LHT.

(b) If a triple of the form (x1a1, b1y1) and weight wt1 is present as an HT in

P ∗, then it represents the exact same count of c HPs of its corresponding

triple in P . This is exactly the number of HPs of the form (x1a1, b1y1)

and weight wt1 in G′. Its control bit β is set to 1.

(c) x1 ∈ L(a1, b1y1), y1 ∈ R(x1a1, b1). Further, (x1a1, b1y1) ∈Marked-Tuples

iff cold > 0.

(d) If β(γ) = 0 or β(γ) = 1 and there is an extension x′ ∈ L∗j (x1, y1) that gen-

erates a centered LST in a level j, an LHT corresponding to (x′x1, b1y1)

with weight wt′ = wt1 + w(x′, x1) ≥ wt and counts equal to the sum

of new paths represented by its constituents, is in Hf and P . A similar

assertion holds for an extension y′ ∈ R∗j (x1, y1).

(e) The structure RN(x1, y1, wt1) contains a node b iff at least one path of

the form (x1×, by1) and weight wt1 is represented by a triple in P (x1, y1).

A similar assertion holds for a node a in LN(x1, y1, wt1).

(f) The entry DL(x1, y1) with weight wt1 is updated to the current level.

Local Data Structures: for each level j, let cj be the number of SPs of the

form (x1a1, b1y1) and weight wt1 centered in Γj and let cj(n) be the new ones

discovered bythe algorithm. Thus c =
∑

j cj and cnew =
∑

j cj(n). Then,
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(g) the value of Cγ [j], where γ is the triple of the form (x1a1, b1y1) and weight

wt1 in P (x1, y1), is cj .

(h) If a triple γ of the form (x1a1, b1y1) and weight wt1 is present as an

HT in P ∗, then P ∗j (x1, y1) represents cj paths. A link to γ in P is

present in dictj . Moreover, x1 ∈ L∗j (a1, y1) (respectively LC∗j (a1, y1) if

x1 is centered in Γj). A similar statement holds for y1 ∈ R∗j (x1, b1)

(respectively RC∗j (x1, b1) if y1 is centered in Γj).

3. For any key [wt2, x2, y2] ≥ [wt, x, y], let G′ contain c > 0 number of LHPs

of weight wt2 of the form (x2a2, b2y2). Further, let cnew (resp. cold) denote

the number of such LHPs that are new (resp. not new). Here cnew + cold = c.

Then the tuple (x2a2, b2y2) ∈ Marked-Tuples, iff cold > 0 and cnew paths have

been added to Hf by some earlier iteration of the while loop.

Initialization and Maintenance for the invariant assertions above are similar

to the proof of Lemma 34.

Termination: The condition to exit the loop is Hf = ∅. Because invariant assertion

1 maintains in Hf the first triple to be extracted and processed, then Hf = ∅ implies

that there are no triples, formed by a valid left or right extension, that contain new

SPs or LSPs, that need to be added or restored in the graph G. Moreover, because

of invariant assertions 2a and 2b, every triple containing the node v, extracted and

processed before Hf = ∅, has been added or restored with its correct count in

the tuple-system. Finally, for invariant assertions 2c and 2h, the sets L,R and

L∗, LC∗, R∗, RC∗ for each level, are correctly maintained. This completes the proof

of the loop invariant.

By Lemma 35, all the SP distances in G′ are placed in Hf and processed by the

algorithm. Hence, after Algorithm 27 is executed, every SP in G′ is in its corre-

sponding P ∗ by the invariant of Lemma 36. Since every LST of the form (xa, by)

in G′ is formed by a left extension of a set of STs of the form (a×, by) (Step 7 -
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Algorithm 27), or a right extension of a set of the form (xa,×b) (analogous steps

for right extensions), and all the STs are correctly maintained and extendend (by

the invariant of Lemma 36), then all the LSTs are correctly maintained at the end

of ff-fixup. This completes the proof of the Lemma.

6.3 Complexity of ffd Algorithm

In this section we will prove the complexity bounds of our ffd algorithm. The

correctness is addressed in Section 6.2.3. The complexity analysis is similar to that

for our basic algorithm. We highlight the following new elements:

1. Every triple created by ff-fixup is an LST in the level graph (PDG) in which

is centered (see Observation 14), and by the increase-only properties of level

graphs, it will continue to be an LST in that level graph until it is removed. In

contrast, our basic algorithm can create LHTs by combining HTs not centered

in any PDG. This results in an additional Θ(log n) factor in the amortized

bound there.

2. We can bound the number of LHTs that contain a given vertex u as O(z′ ·ν∗2),

where z′ is the number of active level graphs that contain vertex u and tuples

passing through u (by Corollary 5). Given our level tuple-system, z′ is clearly

O(log n). In our basic result, this bound is (z + z′2) where z is the number of

active PDGs, and z′ is the number of PDGs that contain v.

3. We can show that the number of accesses to RN and LN , outside of the newly

created tuples, is worst-case O(n · ν∗) per call to ff-update. The overhead

given by the level data structures is O(log n) for each access (see Lemma 41).

These structures are not used in our basic algorithm.

All the algorithms referenced in the following lemmas are described in Section 6.2.
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Lemma 37. Let G be a graph after a sequence of calls to ff-update. Let z be the

number of active level graphs (PDGs), and let z′ ≤ z be the number of level graphs

that contain a given vertex v. Suppose that every HT in the tuple-system is an ST

in some level graphs, and every LHT is an LST in some level graph. If n and m

bound the number of vertices and edges, respectively, in any of these graphs, and if

ν∗ bounds the maximum number of distinct edges that lie on shortest paths through

any given vertex in any of the these graphs, then:

1. The number of LHTs in G’s tuple-system is at most O(z ·m · ν∗).

2. The number of LHTs that contain a vertex v in G is O(z′ · ν∗2).

Proof. For part 1, we bound the number of LHTs (xa, by) (across all weights) that

can exist in G. The edge (x, a) can be chosen in m ways, and once we fix (x, a), the

r-tuple (a, by) must be an ST in one of the Γj . Since (b, y) must lie on a shortest path

through a centered in a graph Γi, that contains the r-tuple (a, by) of shortest weight

in Γi, the number of different choices for (b, y) that will then uniquely determine

the tuple (xa, by), together with its weight, is z · ν∗. Hence the number of LHTs in

G’s tuple-system is O(z ·m · ν∗).

For part 2, the number of LHTs that contain v as an internal vertex is simply

the number of LSTs across the z′ graphs that contains v, and this is O(z′ · ν∗2). We

now bound the number of LHTs (va, by). There are n− 1 choices for the edge (v, a)

and z′ · ν∗ choices for the r-tuple (a, by), hence the total number of such tuples is

O(z′ ·n ·ν∗). The same bound holds for LHTs of the form (xa, bv). Since ν∗ = Ω(n),

the result in part 2 follows.

Corollary 5. At a given time step, let B be the maximum number of tuples in the

tuple-system containing a path through a given vertex in a given level graph. Then,

B = O(ν∗2).
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Lemma 38. (a) - The cost for an ff-cleanup call on a node v when z′ active

levels contain triples through v is O(z′ · ν∗2 · log n).

(b) - The cost for a real ff-cleanup call is O(ν∗2 · log2 n)

(c) - The cost for a dummy ff-cleanup call is O(ν∗2 · log n).

Proof. (a) - Since the number of LHTs containing the updated vertex v, processed

by ff-cleanup, is bounded by B at each level (by Corollary 5), the total cost is

O(z′ · B log n) where z′ is the number of active levels that contain triples through

v. The worst-case cost for update an array Cγ within an ff-cleanup phase is

O(z′) (point [FF–C.1]). Note that a triple can be processed by a constant number

of priority queues among z′ different active levels. Moreover, for the structures

DL, RN and LN each triple spends a constant time to be unlinked and eventually

to update the structures (point [FF–C.2]). Since, priority queue operations have

a O(log n) cost and the number of triples examined is bounded by O(z′ · ν∗2),

the complexity of ff-cleanup that operates on z′ active levels requires at most

O(z′ · ν∗2 · log n).

(b) - Since the active levels are bounded by z ≤ log 2n, the cost for a real ff-

cleanup call is O(ν∗2 · log2 n) (by part (a)).

(c) - For a dummy cleanup on a vertex w, ff-cleanup only needs to clean the

local data structures in level center(w), where w is centered, and in the current

level graph. In fact, let t be the current update step; in the dummy cleanup phase,

we start with the node u that was updated at time t − 1 (the most recent update

before the current one). The node u received an update in the previous phase, thus

it disappeared from all the levels older than level(t − 1) and, with it, all the LSTs

containing u in these levels. Hence, all the triples containing u in the tuple-system

must be LSTs in level(t− 1). We have at most B of them and ff-cleanup spends

O(B · log n) (considering the access to the data structures) to remove them. Then,

the dummy update reinserts u only in the current graph. The next phase moves on
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the node u′ updated at time t− 2. Again, all the tuples containing u′ must be LSTs

in level(t− 2) and eventually the current graph if they were inserted because of the

previous dummy update on u.

Suppose in fact that there is a tuple γ that contains u′ in another level

(except the current graph). The tuple γ cannot be in a level older than level(t− 2)

because when u′ was updated at time (t−2), the cleanup algorithm removed all the

tuples containing u′ from any level older than t − 2. Moreover, a tuple containing

u′ present in a level younger than level(t − 2) could appear if and only if it was

generated by any update more recent of t− 2 (in this case only the dummy update

on u performed in the current graph). Thus a contradiction.

This argument can be recursively applied to every other node in the sequence:

in fact for the node u′′ updated at time (t− i) all the nodes updated in the interval

[t − i + 1, t − 1] will be already processed by ff-cleanup, leaving all the tuples

containing u′′ only in level(t− i) and t. It follows that, for a dummy update, z′ = 2.

Thus the cost for a dummy ff-cleanup call is O(ν∗2 · log n) (by part (a)).

Lemma 39. The cost for a dummy ff-fixup call on a node v is O(ν∗2 · log n).

Proof. Consider a dummy ff-fixup applied to a vertex v in N . We only need to

bound the cost for accessing the entries in the P ∗(x, y) and the cost of re-adding

LSTs containing v, previously removed by the dummy ff-cleanup but still in the

current graph after the dummy update. In fact the vertex v is removed by an earlier

dummy ff-cleanup, and while this removes all the HPs containing the vertex v, it

does not change any LST centered in any Γj that does not contain v. Hence these

other LSTs will be present in the tuple-system with unchanged weight and count,

when dummy ff-fixup is applied to v. Since for any pair x, y, the SP distance

will not change after the dummy update, the dummy ff-fixup will only insert in

the set S triples containing the node v for additional extension. Hence, only the

LSTs containing v in the current level(t) graph will be processed and added to the
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tuple-system, and there are at most B of them (by Corollary 5). Thus a dummy

ff-fixup for any v needs to access P ∗ for each pair of nodes, and reinsert at most

B tuples (containing v) in the current graph. Hence the overall complexity for a

dummy ff-fixup is O((n2 +B) · log n) = O(ν∗2 · log n).

We now address the complexity of a real ff-fixup call. We first define the

concept of a triple pair that will be used in lemma 41 to establish the bound for

a real ff-fixup call. Finally, we complete our analysis by presenting a proof of

Theorem 9.

Definition 3. If Cγ [i] ≥ 1 then (γ, i) is a triple pair in the tuple-system. If (γ, i)

is not a triple pair in the tuple-system at the start of step t but is a triple pair after

the update at time step t, then (γ, i) is a newly created triple pair at time step t.

Lemma 40. At a given time step, let D be the number of triple pairs in the level

tuple-system. Then,

1. The value of D is at most O(m · ν∗ · log n).

2. The space used is O(m · ν∗ · log n).

Proof. 1. Every Cγ [i] ≥ 1 represents a distinct LST in Γi, hence the result follows

since the number of levels isO(log n) and the number of LSTs in a graph is O(ν∗·m∗).

2. Since every triple is of size O(1), the memory used by our ffd algorithm is

dominated by D, and result follows from 1.

Lemma 41. The cost for a real ff-fixup call is O(ν∗2 · log2 n+X · log n) , where

X is the number of newly created triple pairs after the update step.

Proof. Recall that, for the structures DL, RN and LN each triple spends a con-

stant time to be unlinked and eventually to update the structures (fact[FF–F.2]);

moreover, updating an array Cγ with the new centers requires only additional
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O(z′ ≤ 2 log n) time (fact[FF–F.1]). Thus, a triple is accessed only a constant num-

ber of time during ff-fixup with a total cost of O(log n), and it suffices to establish

that the number of existing triples accessed during the call is O(ν∗2 · log n).

There are only O(n2) accesses to triples to initialize ff-fixup since O(n2)

entries in the global P ∗(x, y) structures are accessed to populate Hf (a shortest triple

for each pair (x, y)). This takes O(n2 · log n) time after considering the O(log n) cost

per data structure operation. We now address the accesses made in the main loop.

We will distinguish two cases and they will be charged to X as follows.

1: β(γ) = 0 – Any triple γ that is accessed with β(γ) = 0 is an LST at some level i

where it is not identified as an ST in Γi. In this case, if the distance for the endpoints

of γ did not change, γ is added as an ST in level i, and will never be removed as an

ST for level i until it is removed from the tuple system (due to the fact that Γi is a

purely increase-only graph). Since γ with β(γ) = 0 is a newly added triple to level

i, then the pair (γ, i) is a newly created triple pair at step t. Hence, we can charge

(γ, i) to X in this call of ff-fixup.

2: β(γ) = 1 – We now consider triples accessed that have β = 1. This is the most

nontrivial part of our analysis since even though any such triple γ must exist with

the same count in every level in both P and P ∗, we may still need to form some

extensions since the triple may have been an HT when extension vertices were

updated, and hence these extension may not have been performed. Here is where

the LN and RN sets are accessed, and we now analyze the cost of these accesses.

Let j be the most recent level in which γ was an ST in G and assume we

are dealing with left extensions (right extensions are symmetrical). Now that γ is

restored, the only case in which we need to process it is when there exists a left

extension for the `-tuple of γ to a node x′ centered in a level i more recent than j.

In fact, the LST generated by this extension will appear for the first time centered

in level i, hence the pair (γ, i) is a newly created triple pair at step t and we can
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charge its creation to X. We now show how our HE sets efficiently handle this

case. ff-fixup only processes a restored triple γ with β(γ) = 1 when it has at

least one centered extension in some active level younger than the level in which γ

was shortest for the last time (fact[FF–F.3]). We can bound the total computation

for these steps as follows: for a given x, RN(x, y, wt) contains a node b for every

incoming edge to y in one of the SSSP dags (historical and shortest) rooted at x.

Since we can extend in at most O(log n) active levels during any update and the

size of a single dag is at most ν∗, these steps take time O(ν∗ · n log n) throughout

the entire update computation.

We can now establish the proof of our main theorem.

Proof of Theorem 9. Consider a sequence Σ of r = Ω(n) calls to algorithm

ffd. Recall that the data structure is reconstructed after every 2n steps, so we

can assume r = Θ(n). These r calls to ffd make r real calls to ff-update, and

also make additional dummy updates. As in our basic algorithm, across the r real

updates in Σ, the algorithm performs O(r log n) dummy updates. This is because

r/2k real updates are performed at level k during the entire computation, and each

such update is accompanied by 2k − 1 dummy updates. So, across all real updates

there are O(r) dummy updates per level, adding up to O(r log n) in total, across

the O(log n) levels.

When ff-cleanup is called on a vertex v for a dummy update, z′ = 2 since

v can be present only in the most recent current level and the level at which it is

centered. (This is because every vertex that was centered at a more recent level than

v has already been subjected to a dummy update, and hence all of these vertices

are now centered in the current level.) Thus, by Lemma 38, each ff-cleanup for

a dummy update has cost O(B · log n). By Lemma 39, a call to ff-fixup for a

dummy update has cost O(ν∗2 · log n). Thus the total cost is O((ν∗2 · log n) · r log n)

across all dummy updates. Also, the number of tuples accessed by all of the dummy

180



update calls to ff-cleanup, and hence the number of tuples removed by all dummy

updates, is O(r · ν∗2 · log n).

For the real calls to ff-fixup, let Xi be the number of newly added triple

pairs in the ith real call to ff-fixup. Then by Lemma 41, the cost of this ith call is

O(ν∗2 · log2 n+Xi · log n). Let X =
∑r

i=1Xi. Hence the total cost for the r real calls

to ff-fixup is O(r · ν∗2 · log2 n+X · log n). We now bound X as follows: X is no

more than the maximum number of triples that can remain in the system after Σ is

executed, plus the number of tuples Y removed from the tuple-system. Tuples are

removed only in calls to ff-cleanup. The total number removed by r log n dummy

calls is O(r · log n · ν∗2) (by Lemma 38). The total number removed by the r real

calls is O(r · ν∗2 · log n) (by Lemma 38). Hence Y = O(r · ν∗2 · log n). Clearly the

maximum number of triples in the tuple-system is no more than D, which counts

the number of triple pairs, and we have D = O(m · ν∗ · log n) = O(n2 · ν∗ · log n) (by

Lemma 40). Since r = Θ(n), we have D = O(r ·n · ν∗ · log n), and this is dominated

by Y since ν∗ = Ω(n). Hence the cost of the r calls to ffd is O(r · ν∗2 · log2 n)

(after factoring in the O(log n) cost per tuple access), and hence the amortized cost

of each call to ff-update is O(ν∗2 · log2 n).

6.4 Discussion

We have presented efficient fully dynamic algorithms for APASP (Chapters 5 and

6). Our algorithms store a superset of the STs and LSTs in the current graph in

two priority queues P ∗(x, y) and P (x, y) for each vertex pair x, y. To generate all

shortest paths from all other vertices to x, we construct the shortest path in-dag

rooted at x in O(ν∗) time. Then, the shortest paths ending in x can be enumerated

in a traversal of this dag, starting from x. This query time is output-optimal, and

takes time proportional to the number of edges on these paths.

Our basic algorithm (Chapter 5), when specialized to fully dynamic APSP
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(i.e., for unique SPs), is a variant of the DI method [DI04], and it uses a different

‘dummy update sequence’ from the one in DI, with different properties. Our dummy

update sequence is inspired by the updates performed on ‘level graphs’ in [Tho04],

though our algorithm is considerably simpler (but is also slower by a logarithmic

factor). As noted in Section 5.4.4, our analysis is tailored to the dummy update

sequence we use, and a different analysis would be needed if the DI update sequence

is to be used.

Our faster fully dynamic algorithm (Chapter 6) for APASP runs in amortized

O(ν∗2 · log2 n) time, which is a log factor faster than the basic result. This algorithm

is considerably more involved and adapts the Thorup method [Tho04] to the APASP

problem by maintaining the PDGs explicitly. An additional complexity in this

fully dynamic APASP algorithm (beyond that present in Thorup) is the need to

maintain several different time-stamps for each tuple in the data structures, since

the component paths in a tuple may have been updated at different time steps.

6.4.1 Open Problems

It would be interesting to investigate if one could stay with our method here of

only performing dummy updates and not maintaining the PDGs explicitly, but still

obtain the improved bound in our ffd algorithm (and in Thorup for unique shortest

paths). This would give a reasonably simple fully dynamic APASP algorithm and it

would lead to a simpler fully dynamic APSP algorithm with O(n2 · log2 n) amortized

time than Thorup algorithm. One appealing approach is to only form LSTs in the

current graph during the fixup phase (instead of forming all LHTs). It is not difficult

to see that this would reduce the cost of the cleanup phase by a logarithmic factor.

However, if an HT τ becomes an ST at a later step, we would then have no guarantee

that all of its extensions have been generated. Hence, if this approach is to succeed,

a modified algorithm is needed.
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Another avenue would be to understand if it is possible to reduce the space

complexity by applying a similar data representation as in Chapter 4. Given the

fully dynamic nature of the updates, different techniques should by developed to

maintain paths as r-tuples and `-tuples in our algorithms. Some non-trivial obstacles

to achieve the space reduction are (but not limited to):

• adjusting the marking scheme to handle historical tuples,

• correctly identify which tuples could be generated twice,

• adjust the new tuple-system to handle historical tuples.
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Chapter 7

Distributed Algorithms

Many real-world networks are very large and unlikely to be represented and pro-

cessed on a single machine. Computing BC, APASP and even the classic APSP

solutions becomes prohibitive in such scenarios. Distributed models of computa-

tions aim to solve this problem by considering each node in the network as a stan-

dalone machine, that can communicate only with its neighbors. In this case, the

distributed network will compute BC, APASP or APSP on the graph represented

by the network itself, and not on an arbitrary graph.

In this chapter, we consider problems over distributed networks reviewed

in the next section. We adopt the widely used CONGEST model (reviewed in

Section 7.1.1) to study our problems. Path problems in graphs have received con-

siderable attention in the CONGEST model, and there has been substantial work

on distributed algorithms for undirected graphs in this model. However, as we

note in Section 7.2.1, to the best of our knowledge, only few distributed algorithms

are known for path problems in directed graphs. There has been a considerable

amount of research on designing distributed algorithms on networks, for various

properties of the graph represented by the network [Lyn96b, GKP98, PR00, Elk06,

Pel00, LPS13a, Nan14], with the goal to minimize the number of rounds used by
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the distributed algorithm.

In this chapter, we present several distributed algorithms for computing BC

in unweighted graphs in near-optimal round complexity (see Section 7.3). These

improve over the current state of art algorithms for undirected graphs, while they

provide new techniques for directed graphs. Moreover, we present the first n+O(L)-

round algorithm for APSP in weighted directed acyclic graphs (dags). This result

implies an 2n + O(L)-round algorithm for computing BC in weighted dags (see

Section 7.5). Here L is the length of a longest hop path in the dag. Finally, we

show a simplified 2n-round algorithms for transitive closure and strongly connected

components, and an interesting property of unilateral graphs (see Sections 7.6).

7.1 Distributed Networks

In the basic model, a network of processors is generally modeled by an undirected

unweighted graph G = (V,E), with |V | = n nodes and |E| = m edges. When

required by the problem, a positive integer weight function w : E → {1, . . . ,poly(n)}

is associated to the set of edges; moreover, when specified, the graph can be directed

instead of undirected. In contrast to the real edge weights used in the dynamic

settings, we use integer weights for distributed network. Each node (processor) in

the network has a unique ID in the range {1, . . . ,poly(n)} and infinite computational

power. The topological knowledge of each node is limited: a node v ∈ V only knows

the set of its neighbors Γ(v). The network activity is determined by rounds. In a

single round each node can act in different ways:

• A node v ∈ V can remain silent.

• A node v ∈ V can send a message of B bits along a subset of its incident

edges.

• A node v ∈ V can send a message of B bits along every incident edge (broad-
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cast).

We will consider only synchronous[AFL83] models in this proposal, where all the

processors run using the same clock (messages are exchanged in a lockstep in each

round). The common measure used to analyze the running time in distributed

networks is defined as the number of rounds used by the distributed algorithm to

complete its task. An important measure used in the analysis of distributed systems

is the diameter D of the network. Note that is always possible to compute n in O(D)

rounds.

7.1.1 The Models

Here, we discuss the main models adopted for distributed networks and we sum-

marize the state of the art regarding shortest paths (SPs) related algorithms and

betweenness centrality (BC, see Section 1.1.4) in each model.

The LOCAL Model: In the LOCAL model, each node in the network can

send/receive messages of unbounded size (i.e. B = ∞) during a round. For any

problem, a simple algorithm can collect the entire topology of the network in a

single node (aggregate the network or aggregation technique) in O(D) rounds, and

then compute the result using the infinite computational power of the node. For a

survey on local algorithms refer to [Suo13].

The CONGEST Model: The (synchronous) CONGEST model reflects a more

realistic scenario where the size of the messages is bounded: each node can send on

each channel at most B bits, where usually B = O(log n). If B 6= O(log n), we call

the model CONGEST(B). Given the limit on the data that can be transferred on

each channel, this model takes into account congestion issues: when a long queue

of different messages is scheduled to be sent by the same node on the same edge.

The round complexity in this model has been studied extensively in distributed
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computing [Pel00]. All the exact results for shortest paths problem in the general

CONGEST model are trivial application of the aggregation technique (see Section

7.1.1) or derive from the Bellman-Ford algorithm [Bel58, For56]. If each pair of

the n nodes in the network can communicate in each round, the model is called

CONGEST clique [CHKK+15a]: a pair of nodes can communicate even if is not

adjacent in the graph G. The CONGEST clique model provides more bandwidth

for the communication focusing less on the distance of the nodes in G.

7.1.2 Directed Graphs

In this chapter, we consider algorithms in the CONGEST model for a directed graph

G = (V,E). There has been very little work in this area, and a recent paper [GU15]

considers it “an interesting subarea of distributed graph algorithms which deserves

more attention”. For the directed case we assume that the communication channels

(edges in G) are bidirectional, even though the graph G represented in the model is

directed. Thus, the communication network is represented by the undirected graph

UG. For convenience we will also assume that G is weakly connected.

7.2 Our Results

We present the following results for path problems on directed graphs in the CON-

GEST model (see Table 1).

• Unweighted Directed Graphs:

Theorem 15. Let D be the directed diameter in a directed graph and let Du be

the diameter of an undirected graph. Given an unweighted directed (undirected)

graph G on n vertices,

1. Algorithm 34 computes BC scores of all nodes in min{2n + O(D), 4n}
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Graph Problem
Number of Rounds

Previous Results Our Results

APSP and BC for unweighted directed graph
APSP: 2n [HW12]
BC: O(m) (trivial)

APSP: min{n+O(D), 2n}
BC: min{2n+O(D), 4n}

BC for unweighted undirected graph O(n) ( ≥ 6n) [HFA+16] min{2n+O(Du), 4n}

APSP and BC for weighted dag O(m) (trivial)
APSP: n+O(L)
BC: 2n+O(L)

Table 7.1: A summary of our results in the CONGEST model. Here D (Du) is
the directed (undirected) diameter of a directed (undirected) graph (if it is finite),
and L is the longest length of a path in a dag. All the algorithms are determin-
istic and compute exact values. (Note: The 2n round APSP algorithm in [HW12]
was presented for undirected graphs, but it also works for directed graphs; their
improvement to n+O(Du) does not work for directed graphs.)

rounds if G is directed (2n + O(Du) rounds if G is undirected) in the

CONGEST model.

2. Algorithm 32 computes directed APSP in min{n + O(D), 2n} rounds in

the CONGEST model (improved from 2n rounds in [LP13]).

• Weighted Directed Acyclic Graphs:

Theorem 16. Let L be the number of edges in a longest finite path in a

directed acyclic graph (dag). Given a weighted dag on n vertices,

1. Algorithm 36 computes APSP in n + O(L) rounds in the CONGEST

model.

2. Algorithm 37 computes BC scores of all nodes in 2n + O(L) rounds in

the CONGEST model.
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7.2.1 Related Work

Path problems on undirected graphs have been studied extensively in distributed

computing ([Pel00]). All of the results described below are for the CONGEST

model.

We recall that for a weighted undirected (or directed) graph, the exact APSP

problem can be trivially solved in the CONGEST model in O(m) rounds using the

aggregation technique, where the entire network is aggregated at a single node.

However, no faster algorithms are known. For undirected graphs, if we allow ap-

proximations, an Õ(n)-round APSP algorithm was proposed in [LPS13b] for an

O(1) approximation factor, later improved to a 1 + o(1) factor in [Nan14]. For ex-

act SSSP, the classic Bellman-Ford [Bel58] which runs in O(n) rounds is still the

fastest, but an improved O(n3/4 +Du) algorithm with 1+o(1) approximation factor

is given in [Nan14] for undirected graphs, further improved to O(n1/2+o(1) +D
1+o(1)
u )

rounds in [HKN16]. Here Du is the diameter of the undirected graph. Nanongkai

results [Nan14] include tools such as h-hop SSSP and using shortcuts to reduce

shortest paths diameter. The results presented by Lenzen and al. [CHKK+15a]

work in the CONGEST clique model: they show a fast exact algorithm and a better

approximation algorithm for APSP using algebraic methods such as distributed ma-

trix multiplication. Table 7.2 contains a summary of the current results for weighted

undirected graphs in the CONGEST model.

For an unweighted undirected graph, a lower bound of Ω
(

n
logn

)
for comput-

ing diameter was established in [FHW12], which implies a lower bound for solving

APSP. Two nearly optimal algorithms for this problem, running in O(n) rounds,

were given in [HW12] and [PRT12]. Then, the Ω(n/ log n) lower bound was recently

matched in [HFQ+16] with a O(n/ log n)-round algorithm for APSP, which uses a

multiplexing technique over the communication channels.

For unweighted directed graphs, we are not aware of published results that
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Problem Topology Rounds Approximation References Year

SSSP
General

O(n) exact [Bel58, For56] 1956-58

Õ(n1/2+1/2k +D) 8kdlog(k + 1)e − 1 [LPS13b] 2013

Õ(n3/4 +D) 1 + o(1) [Nan14] 2014

Clique
Õ(n1/k) 2k − 1 [BS07] 2007

Õ(n1/2) exact [Nan14] 2014

APSP

General
O(m) exact Trivial -

Õ(n) O(1) [LPS13b] 2013

Õ(n) 1 + o(1) [Nan14] 2014

Clique

Õ(n1/k) 2k − 1 [BS07] 2007

Õ(n1/2) 2 + o(1) [Nan14] 2014

O(n1/3 logn) exact [CHKK+15a] 2015

O(n1−2/w) 1 + o(1) [CHKK+15a] 2015

APASP/BC General O(m) exact Trivial -

Table 7.2: CONGEST models results summary for weighted undirected graphs,
where w < 2.3728639 is the matrix multiplication exponent [LG14]. Õ notation
hides polylogarithmic factors. k is a positive integer.

claim exact APSP in O(n) rounds, but we were recently aware [Pel] that the APSP

algorithm claimed for undirected graphs in [LP13] in fact works for directed graphs.

We observe that the bound on the number of rounds is 2n, and the improved n +

O(D) bound obtained there for undirected graphs does not hold for directed graphs.

(This O(n) round result is not widely known, and even one of the authors of [LP13]

was unaware of its applicability to directed graphs until informed of this by us

recently [Pel].) In other works on directed graphs, a randomized algorithm for

single source reachability with Õ(Du +
√
nD

1/2
u ) complexity was given in [Nan14],

and recently improved in [GU15] to Õ(Du+
√
nD

1/4
u ) rounds with an algorithm that

also works for directed graphs; here Du is the diameter of the underlying undirected

graph. This last result gets closer to the lower bound of Ω̃(Du +
√
n) established in

[DSHK+11]. Except for the APSP and reachability results in [LP13, Nan14, GU15]

and [CHKK+15b] (for the CONGEST clique model), we are unaware of additional

literature targeting directed graphs. A randomized algorithm for computing APSP

in weighted graphs in O(n5/4) rounds has recently appeared in FOCS’17.

Betweenness centrality has recently received attention in the distributed set-
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ting [WT13, YTQ17, HFA+16]. While the problem is approached from a practical

prospective in [WT13] and [YTQ17], very recently in [HFA+16] the authors give an

O(n)-round algorithm for computing BC for unweighted undirected graphs in the

CONGEST model. They also show an Ω( n
logn+D)-round lower bound for computing

BC and give a method to handle an exponential number of shortest paths.

Organization of the Chapter. The rest of the chapter is organized as follows.

In Section 7.3 we review the distributed BC algorithm in [HFA+16] and we high-

light our new techniques. In Section 7.4 we describe our distributed BC algorithm

for unweighted graphs; this section assumes some familiarity with Brandes’ algo-

rithm [Bra01] (see Chapter 1). Section 7.5 presents our APSP algorithm for weighted

dags and a distributed BC algorithm with the same round complexity. Section 7.6

presents a simple algorithm for reachability, transitive closure, and scc.

7.3 Betweenness Centrality

Betweenness centrality has been already experimentally studied in distributed mod-

els, but recently a first theoretical approach for undirected unweighted graphs was

published in [HFA+16]. In this section, we quickly review the BC algorithm from

[Bra01] (note that a full description can be found in Chapter 1); then we provide

an overview of the results in [HFA+16].

Brandes’ algorithm consists in the following steps: for each source s compute the

SSSP dag DAG(s) rooted at s (Alg. 1), for each DAG(s) compute σsv for each

v ∈ DAG(s) (Alg. 1) and, for each DAG(s) starting from the leaves, apply equation

1.4 up to the root (Alg. 2).

The structure of the above algorithm can be naturally adapted into a dis-

tributed algorithm. However, some challenges must be addressed to allow us to

efficiently compute BC in a directed graph. We describe them section 7.4.
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7.3.1 BC in Undirected Unweighted Graphs [HFA+16]

Recently, a distributed BC algorithm for unweighted undirected graphs which termi-

nates in O(n) rounds in the CONGEST model was presented in [HFA+16], together

with a lower bound of Ω(n/ log n) rounds for computing BC. This algorithm com-

putes the predecessor lists and the number of shortest paths (Step 3 in Alg. 1) by

a natural extension of the unweighted undirected APSP algorithm in [HW12] (see

also [PRT12]). The undirected APSP algorithm in [HW12] starts concurrent BFS

computations from different sources scheduled by a pebble that performs a DFS

traversal of a spanning tree for G. Each time the pebble reaches a new node v, it

pauses for one round before activating BFS(v) and then proceeds to the next un-

explored node. At each node v, all messages for a given BFS (say started at source

s) reach v at the same round, and the updated distance is sent out from v in the

next round. Hence, before v broadcasts its distance from s to adjacent nodes, it

can readily compute and store Ps(v) and σsv using the incoming messages related to

BFS(s) in this round. It is well known that this approach does not work in directed

graphs, since the APSP algorithm in [HW12] could create congestion (see Figure

7.1).

Since the pebble pauses at each node and a DFS traversal backtracks over Θ(n) nodes

before activating the last BFS, this distributed algorithm for step 3 in Algorithm 1

completes in 3n+O(D) rounds.

The distributed algorithm in [HFA+16] for Algorithm 2 is described in the

next section. It uses the triangle inequality for its proof of correctness, which does

not apply to the directed case (since the pebble backtracks along DFS edges in

this algorithm). The algorithm in [HFA+16] also handles the issue that a graph

could have an exponential number of shortest paths which would cause the σst

values to have a linear number of bits. Since the CONGEST model allows only

messages of size O(log n), they use a floating point representation with O(log n) bits
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s(t0) u1(t1)u2(t2)u3(t3)u4(t4)u5(t5)

v(t6)

w(t7)

Figure 7.1: Counterexample for the APSP algorithm in [HW12] for directed graphs.
Here BFS(v) and BFS(w) will congest at node u4. Value tj represents the round
when the pebble P starts the BFS from the corresponding node, with ti < tj iff
i < j. In this example BFS(v) will start at round t6 = 21, while BFS(w) will start
at round t7 = 24. They will both reach u4 at the beginning of round 25 creating a
congestion for the next round.

to approximate the σst values. We review this method in Section 7.3.1. We will

use this same method in our algorithms since it works without change for directed

graphs and for weighted graphs.

Accumulation Phase for Undirected BC [HFA+16]

The distributed method for Algorithm 2 in [HFA+16] first computes and broadcasts

the diameter Du of the network during the APSP algorithm. Then, each node v

sets its accumulation broadcast time for each source s to Ts(v) = Ts +Du − d(s, v),

where Ts is the absolute time when BFS(s) started in the APSP algorithm. The

global clock is reset to 0 and each node v sends its accumulation value for s at time

Ts(v). Since Du− d(s, v) ≥ 0, this approach completes in at most 3n rounds. Thus,

overall BC algorithm in [HFA+16] runs in 6n+O(Du) rounds.

In Section 7.4 we present another simple method which works for our algo-

rithm and can also replace the above algorithm in [HFA+16].
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Handling Exponential Values [HFA+16]

Given the O(log n) bits restriction in the CONGEST model, [HFA+16] maintains

approximate values of the σst values using a floating point representation, and guar-

antee a relative error for the computed BC which is only O(n−c) (where c is a

constant). In other words the approximated BC score B̂C(v) will be bounded by

(see [HFA+16], Theorem 1)

(
1

1 + n−c

)
BC(v) ≤ B̂C(v) ≤ (1 + n−c)BC(v) (7.1)

Since this technique in [HFA+16] works for both undirected and directed graphs

(weighted or unweighted), we will use the same method in our algorithms in order

to handle exponential counts of paths.

For completeness, we briefly describe this techniques. To express large (ex-

ponential) values with a linear number of bits, an integer value a can be represented

as a = y · 2x, where y ∈ [0, 1] and x ∈ Z. If we allow 2L bits to store the values

of x and y, it is possible to bound any integer value b ∈ [2−2L+1+L, 22L−1] with

an estimated ceiling value a such that the relative error between b and a is (see

[HFA+16], Lemma 1) ∣∣∣a
b
− 1
∣∣∣ ≤ 2−L+1 = η

Thus, when we encounter an exponential value for σsv, we will instead use an ap-

proximated value σ̂sv (using the floating point formulation above) where

(
1

1 + η

)
σsv ≤ σ̂sv ≤ (1 + η)σsv

In order to bound the error in the accumulation phase, another clever technique is

used in [HFA+16]. A new parameter ψs(v) = δs•(v) is used to redefine Equation 1.4
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as

ψs(v) =
∑

w:v∈Ps(w)

1

σsw
+ ψs(w)

The advantage is that ψs(v) =
∑

q:q∈Rs(v) 1/σsq where Rs(v) is the set of all de-

scendants of v in the SSSP rooted at s (see [HFA+16], Lemma 2). This allows to

compute an approximate ψ̂s(v) =
∑

q:q∈Rs(v) 1/σ̂sq which, once multiplied for σsv,

will provide an approximate accumulation value for BC(v) within the bounds in

Equation 7.1.

7.3.2 Our Techniques

Our algorithm for betweenness centrality (BC) for directed unweighted graphs (Sec-

tion 7.4) is again a distributed implementation of Brandes’ sequential algorithm for

BC (Algorithm 1). But it differs from the distributed algorithm in [HFA+16] due

to the fact that we work with a directed graph. In particular, in the algorithm

in [HFA+16] for the undirected case it is straightforward to propagate the number

of shortest paths (as reviewed in Section 7.3.1), but in the directed case propa-

gating the number of shortest paths (see Step 3, Alg. 1) is not immediate, since

the directed APSP algorithm we use does not wait to hear from all predecessors of

a node v before broadcasting the shortest distances stored at v. We describe our

method in Section 7.4.2. For the accumulation phase for BC (Step 5, Alg. 1 which

calls Alg. 2), the method in [HFA+16] for undirected graphs was tailored to the

undirected APSP algorithm they use, and it does not work for our method. We give

a simple time reversing technique in Section 7.4.3 which works for our algorithm,

and can also replace the accumulation technique used in [HFA+16], to improve the

round complexity by a constant factor. However, an even faster solution for the

unweighted undirected case is to simply use our unweighted directed algorithm.

Our weighted APSP algorithm for a dag (Section 7.5) initially constructs

a longest length tree (LLT) using a ‘delayed’ BFS. The level of a node in this
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tree guides the global delay that the node will introduce for its outgoing messages.

These global delays guarantee that a node has received its shortest path from a

given source before it sends out shortest path information along outgoing edges of

the graph. This allows to efficiently compute BC in 2n+ O(L) rounds in weighted

dags by using techniques which are already known for undirected graphs and our

accumulation procedure.

7.4 BC in Unweighted Directed Graphs

In this section, we present our algorithm for computing betweenness centrality in

unweighted directed graphs in the CONGEST model. In Section 7.4.1 we give a

short review of the Lenzen-Peleg distributed unweighted APSP algorithm [LP13].

In Section 7.4.2 we present our enhanced distributed APSP algorithm for unweighted

directed graphs. Section 7.4.3 gives our simple distributed algorithm for the accu-

mulation phase (Alg. 2) in Brandes’ algorithm, and our overall BC algorithm.

7.4.1 Directed APSP Algorithm in [LP13]

The Lenzen-Peleg algorithm [LP13] consists of lines 2–3, 5–8, 13–15 and 17 in Alg.

32. (The overall Alg, 32 is our enhanced algorithm and is described in Section 7.4.2;

the new lines introduced by us are marked by a • to indicate they are not part of

the algorithm in [LP13].)

Using the notation in [LP13], Lv is an ordered list at node v which stores

pairs (ds, s), where s is a source and ds is the current best upper bound received

at v for δ(s, v) (the shortest distance from s to v). These pairs are stored on Lv

in lexicographically sorted order, with (dq, q) < (ds, s) if either dq < ds, or dq = ds

and q < s. Initially each node v has just the pair (0, v) on Lv and this pair has

status set to ready (Step 3, Alg. 32). Let Lrv be the state of Lv at the beginning

of round r, and let `
(r)
v (ds, s) be the index of the pair (ds, s) in Lrv. In round r,
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each node v sends along its outgoing edges the pair with smallest index in Lrv which

has its status still set to ready, and then sets the status of this pair to sent (Steps

6–8, Alg. 32). If v receives (dx, x) in the current round for possible placement on

Lv (Step 13, Alg. 32), it places this pair on Lv in sorted order if no entry for x is

already present (Steps 14–15 and 17, Alg. 32). If there is an entry (d′x, x) on Lv

then if d′x ≤ dx the new pair is discarded while if d′x > dx, the old pair is discarded,

and (dx, x) is placed on Lv in sorted order (Steps 14–15 and 17, Alg. 32).

It is shown in [LP13] that this computation completes in 2n rounds and

correctly computes shortest path distances to v, from each node s that has a path

to v. Although this is claimed in [LP13] only for undirected APSP the result holds

for directed APSP as well. The above algorithm is enhanced to an n+O(Du) round

algorithm in [LP13] by using the fact that in undirected graphs the height of any

BFS tree is a 2-approximation to the diameter. However, this result does not apply

to directed graphs since a directed BFS tree height can be much smaller than the

directed diameter.

In Section 7.4.2 we present a method to improve the number of rounds from

2n to n + O(D) that works for both directed and undirected unweighted graphs.

Further, since we are interested in computing BC, we enhance the APSP algorithm

to also compute for each node v the set Ps(v) of predecessors of v in the shortest

path dag rooted at each source s, and the number of shortest paths σsv from s to

v. In the undirected BC algorithm in [HFA+16], the computation of shortest paths

(using the associated APSP algorithm) proceeds level by level in each BFS, so Ps(v)

and σs(v) are readily computed along with δ(s, v), but in the algorithm we consider

here for directed graphs, a node v could receive the messages from its predecessors at

different time steps. In [LP13], since only APSP is of interest, a node forwards only

the first shortest path message it receives from a predecessor in its shortest path

dag. But here we need to monitor messages from all incoming edges to identify the
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shortest path predecessors and to compute the number of shortest paths for each

source. These enhancements are made in Algorithm 32, together with a call to our

new Algorithm 33 to reduce the number of rounds to n+O(D) (when D is finite);

this is described in the next section. We will use the output of Algorithm 32 to

compute directed BC in Algorithm 34 in Section 7.4.3.

7.4.2 Improved Directed APSP Algorithm

In our improved algorithm (Alg. 32) we enhance the APSP algorithm in [LP13] to

compute the number of shortest paths and the set of predecessors through the steps

marked with a • in Algorithm 32, which we discuss next in Section 7.4.2. We also

reduce the number of rounds to n + O(D) when the directed diameter D is finite

using Algorithm 33, which will be described in Section 7.4.2.

Predecessors and Number of Shortest Paths

As noted in Section 7.4.1, the shortest path messages from the predecessors of a

vertex v in the shortest path dag for a source s can arrive at different rounds in

the algorithm in [LP13], and this is the case in Algorithm 32 as well. At the same

time, the algorithm cannot afford to wait to receive all of the shortest path values

before propagating the distance since it is possible that a source may not even have a

path to some of the predecessors. It was established in [LP13] that the shortest path

distance from s to v is finalized in Lv at round no later than round r = δ(s, v)+`v(s)

by their algorithm. We enhance this result to show that in Algorithm 32 the correct

σsv value and the predecessor list Ps(v) are finalized by round r, and this σsv value

is sent out by v (Steps 9 – 11, Alg. 32), even though it might have sent out the

δ(s, v) value earlier. If the estimated distance dsv (from s to v) is updated at v

to a smaller value before round δ(s, v) + `v(s), then Algorithm 32 starts afresh by

resetting the predecessors list and the number of shortest paths (Step 16, Alg. 32).
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This is necessary because our algorithm sends the current best estimate for the

distance from a source in Step 8, similar to the algorithm in [LP13], even if this

value is not known be the correct shortest path distance and could be updated later

to a smaller value. At the same time, we also accumulate predecessors and number

of paths from all neighbors that reach v with the current value computed for the

shortest distance from source s (Steps 18 – 20, Alg. 32). (Steps 1 and 12 in Alg. 32

will be discussed in Section 7.4.2 and Step 10 will be discussed in Section 7.4.3.)

Algorithm 32 may need to send more than one message from a vertex v in a

round (e.g., in both Steps 8 and 11, or because the parallel computation of Step 1),

but it never sends more than a constant number of messages. In such cases, v will

combine all these messages into a single O(log n)-bit message in that round.

We now establish the correctness of Algorithm 32. For convenience, in

Lemma 42 we will use (dsv, s) to denote the pair (ds, s) in Lv. We recall that

`
(r)
v (ds, s) is the index of the pair (ds, s) in Lrv.

Lemma 42. For any source s from which node v is reachable, Algorithm 32 sends

the correct shortest distance message (δ(s, v), s) to all nodes in Γout(v) no later than

round r = `
(r)
v (dsv, s) + ds and the correct σsv value in a message in round r. Also,

Ps(v) contains the correct predecessors of v in s’s shortest path dag at round r.

Proof. The fact that v sends the correct shortest distance message (δ(s, v), s) to all

nodes in Γout(v) no later than round r = `
(r)
v (dsv, s) + ds is shown in [LP13], so here

we establish correctness of the σsv value in the message (ds,s, σsv) sent by v in round

r (Step 11 in Alg. 32). The σsv values for all s, v such that (s, v) is an edge are

correctly set as 1 at v by the initialization in Step 4 and the update in Step 20 in

round 1 (and never updated further), and hence the σsv values sent out in Step 11

are correct when δsv = 1. Consider round r = `
(r)
v (dsv, s) + ds and assume that the

messages sent out in Step 11 by all nodes have the correct values up to round r− 1.

Let u be any predecessor of v in s’s shortest path dag, and for Lu consider the round
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Algorithm 32 Directed-APSP(G)

1: compute (in parallel with Step 5) a BFS tree B rooted node v1; each node u
computes its set of children Cu and its parent pu in B • {This will be used in
Alg. 33}

2: for each node v in G do
3: Lv ← ((0, v)); set status((0, v)) = ready; set flag fv ← 0 {Initialize}
4: for each source s in G do if s = v then σvv ← 1 else σsv ← 0; Ps(v)← ∅ •
5: for rounds 1 ≤ r ≤ 2n do {Step 12 could cause termination before round

2n}
6: if ∃ (ds, s) ∈ Lv with status((ds, s)) = ready then
7: let (ds, s) the lexic. smallest message in Lv with status((ds, s)) = ready
8: send (ds, s) to all outgoing edges of v; set status((ds, s)) = sent
9: if r = ds + `rv(ds, s) • then

10: Tsv ← r • {This will be used in Alg. 34}
11: send (ds, s, σsv) to all nodes in Γout(v) •
12: run APSP-Finalizer(v, pv, Cv) • {See Alg. 33}
13: for a received (ds, s) from an incoming neighbor (u, v) do
14: if @ (d′s, s) ∈ Lv with d′s ≤ ds + 1 then
15: remove the message of the form (·, s) from Lv
16: set Ps(v)← ∅ and σsv ← 0 •
17: add (ds, s) to Lv; set status((ds, s)) = ready
18: for a received (ds, s, σsu) from an incoming neighbor (u, v) • do
19: if ∃ (d′s, s) ∈ Lrv with d′s = ds + 1 • then
20: node v updates σsv ← σsv + σsu; Ps(v)← Ps(v) ∪ {u} •

r′ = δ(s, u) + `r
′
u (δ(s, u), s) when u sends σsu in the message sent by it in Step 11.

For convenience, let i = `r
′
u (δ(s, u), s). If r′ < r, then by our assumption (that all

messages sent out before round r have the correct value) u will have sent the correct

value of σsu to v before round r. But r′ must be less than r since δ(s, u) = δ(s, v)−1,

and further, the i − 1 entries in Lu ahead of (δ(s, u), s) (at the start of round r′)

were sent by u before round r′, since they must all have had status sent at start of

round r′. All of these i − 1 messages from Lu will be in Lv with distance value at

most one greater than the value in Lu (the distance value could be smaller if it were

decreased by a message received at v from a predecessor other than u). But since

(dsv, s) is added to Lv with value dsv = dsu+1 in round r′, all of these i−1 messages
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from u will be ahead of it in Lv and hence (dsv, s) is placed at index i or greater

in Lv in round r′. But this implies δ(s, v) + `rv(δ(s, ), s) ≥ δ(s, u) + 1 + i = r′ + 1.

Hence r > r′, i.e, v receives the correct σsu value from u before round r. This holds

for every predecessor of v in s’s shortest path dag. Further all of these σsu values

are added to (an initially zero-valued) σsv in Step 20, so v sends out the correct σsv

value in round r. Finally, since the predecessor list Ps(v) is updated each time σsv

is updated, this list is also correct by the above argument.

Improving the Round Complexity

When the diameter D ≤ n/3, Algorithm 33 guarantees that all nodes stop their

activity after at most n + O(D) rounds. Moreover, it broadcasts D to all nodes

in G. In the case where D > n/3, Algorithm 32 will terminate no later than 2n

rounds, because of its for loop in step 5.

We now describe Algorithm 33. Let B be the tree created in Step 1, Alg. 32.

Note that B will be completely defined after D rounds, and the activity of Alg. 33

for a node v becomes relevant only after n rounds. In the first step, the algorithm

checks if v has received the diameter D from its parent pv in B. In this case, v

broadcasts D to all its children in Cv and it stops. Otherwise, the algorithm checks

if v has received one estimate finite distance from every node in G (Step 2, Alg. 33).

(The flag fv is used to avoid the repetition of steps 3–12 after they are performed

once.) These distances will be correct at rounds r ≥ maxs(ds + `
(r)
v (ds, s)) (see

Lemma 42), and Algorithm 33 proceeds by distinguishing two cases: if a node v is

a leaf in the tree B (Step 3, Alg. 33), it computes the maximum shortest distance

d∗v from any other node s and broadcasts d∗v to its parent pv in B (Step 4, Alg.

33). Then, v will wait up to round 2n for the diameter D from its parent pv in B

(because of the check in step 1, Alg. 33).

In the second case, when v is not a leaf (and not v1), if it has collected (for
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the first time) the distances d∗c from all its children in Cv (Step 6, Alg. 33), it

will execute the following steps only once (thanks to the flag fv initialized to 0 in

Alg. 32, and updated to 1 in Step 10, Alg. 33): v computes the maximum shortest

distance d∗v from any other node s (Step 7, Alg. 33), then it computes the largest

distance value d∗Cv received from its children in Cv (Step 8, Alg. 33). Thus, v sends

the largest value among d∗v and d∗Cv to its parent pv (Step 10, Alg. 33), and it waits

for D from pv as in the first case. Finally, when v is in fact v1, after receiving the

distances from all its children, it broadcasts the diameter D to its children in Cv1

(Step 12, Alg. 33).

Algorithm 33 APSP-Finalizer(v, pv, Cv) B pv, Cv computed in Step 1, Alg. 32

Ensure: Compute and broadcast the network directed diameter D, if D ≤ n/3
1: if v receives diameter D from parent pv in round r < 2n, it broadcasts D to all

nodes in Cv and stops
2: if |Lrv| = n and fv = 0 then

3: if r = maxs(ds + `
(r)
v (ds, s)) and Cv = ∅ then {v is a leaf in the BFS tree B}

4: d∗v ← maxs(ds); send d∗v to parent pv; fv ← 1

5: if r ≥ maxs(ds + `
(r)
v (ds, s)) then {completed only once}

6: if v has collected distances d∗x from all children x ∈ Cv then
7: d∗v ← maxs(ds)
8: d∗Cv ← maxx∈Cv(d

∗
x)

9: if v 6= v1 then
10: send max(d∗v, d

∗
Cv

) to parent pv; fv ← 1
11: else {when v = v1}
12: broadcast D = max(d∗v1 , d

∗
Cv1

) to Cv1 ; stop

It is readily seen that Algorithm 33 broadcasts the correct diameter to all

nodes in G. In fact, after round r = maxs(ds + `
(r)
v (ds, s)) the value ds cannot

decrease at v for any source s since this would violate Lemma 42. Hence the ds

values at v after this round are the correct shortest path lengths to v. Moreover,

since maxs(ds + `
(r)
v (ds, s)) > n when |Lrv| = n, Step 1 of Alg. 32 is completed and

each node v knows its parent and its children in B. Thus, the value sent by v to its

parent in Step 10 of Alg. 33 is the largest shortest path length to any descendant

202



of v in B, including v itself. Thus, node v1 computes the correct diameter of G in

Step 12, Alg. 33.

Lemma 43. The execution of Algorithm 32 requires at most min{2n, n + 3D}

rounds.

Proof. Step 1 of Alg. 32 can be completed in D rounds using standard techniques,

and it is executed in parallel with the loop in step 5, Alg. 32. Moreover, when

D =∞ each node stops after 2n rounds because of step 5 of Alg. 32.

When D is bounded, each v ∈ V will have |Lrv| = n at some round r. In Alg.

33 (called in Step 12, Alg. 32), the longest shortest path value reaches v1 within

D rounds after the last node computes its local maximum value. At this point v1

computes the diameter D and broadcasts it to all nodes v in at most D steps. In

addition to these 2D steps, the last extraction from a set Lv (for any v) is performed

no later than step maxv maxs{ds + `
(r)
v (ds, s)} ≤ n+D. Thus, the total number of

rounds is at most n+ 3D. The lemma is proved.

7.4.3 Accumulation Technique and BC Computation

In Algorithm 34 we present a simple distributed algorithm to implement the accu-

mulation phase in the Brandes algorithm (Alg. 2). Recall that in Algorithm 32,

in the round when node v broadcasts its finalized message (dsv, s, σsv) on its out-

going edges in step 11, it also notes the absolute time of this round in Tsv. Also,

by Lemma 43, Alg. 32 completes in round R = min{n + 3D, 2n}. Alg. 34 sets the

global clock to 0 in Step 3 after these R rounds complete in Alg. 32. In Step 5 each

node v computes its accumulation round Asv as R − Tsv. Then, v computes δs•(v)

and broadcasts 1+δs•(v)
σsv

to its predecessors in Ps(v) in round Asv (Steps 6–8, Alg.

34).

Although we have described the Alg. 34 specifically as a follow-up to Algo-

rithm 32, it is a general method that works for any distributed BC algorithm where
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Algorithm 34 BC(G)

1: run Algorithm 32 on G; let R be the termination round for Alg 32
2: {Recall that Tsv is the round when v broadcasts (ds, σsv) to Γout(v) in Step 11,

Alg. 32}
3: set absolute time to 0
4: for each node v in G do
5: for all s do Asv = R− Tsv
6: for round 0 ≤ r ≤ R do {Each iteration of the for loop is a round}
7: if r = Asv then send m = 1+δs•(v)

σsv
to v’s predecessors in Ps(v)

8: for a received m from an outgoing neighbor in Γout(v) do δs•(v)← δs•(v)+
m

each node can keep track of the round in which step 3 in Algorithm 1 (Brandes’

algorithm) is finalized for each source. This is the case not only for Algorithm 32

for both directed and undirected unweighted graphs, but also for our BC algorithm

for weighted dags in the next section, and for the BC algorithm in [HFA+16] for

undirected unweighted graphs (though our Algorithm 32 uses a smaller number of

rounds). On the other hand, the distributed accumulation phase in [HFA+16] is tied

to the start times of the shortest path computations at each node in the first phase

of the undirected APSP algorithm they use, and hence is specific to their method.

Lemma 44. In Algorithm 34 each node v computes the correct value of δs•(v) at

round Asv = R − Tsv, and the only message it sends in round Asv is m = 1+δs•(v)
σsv

,

which it sends to its predecessors in the SSSP dag for s.

Proof. We first show that at time Asv, node v has received all accumulation values

from its successors in DAG(s). This follows from the fact that, in the forward

phase, each successor w of v will send its message for source s to nodes in Γout(w)

in round Tsw, which is guaranteed to be strictly greater than Tsv. Thus, since

Asw < Asv, node v will receive the accumulation value from every successor in the

dag for s before time Asv, and hence computes the correct values of δs•(v) and

1+δs•(v)
σsv

. Further, since the timestamps Asv are different for different sources s, only
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the message for source s is sent out by v in round Asv.

7.5 APSP and BC in Weighted DAGs

We now consider the case when the input graph G = (V,E) is a directed acyclic

graph (dag), where each edge (x, y) has an O(log n) bit weight w(x, y). For simplic-

ity, we will assume that the dag has a single source s. If the dag contains multiple

sources (s1, . . . , sk), we will assume a virtual source ŝ which is connected with a

direct edge to the real sources. The procedures we present can be readily adapted

to the multiple sources using such a virtual source.

We start with some definitions. Given a path π in G, the length `(π) will

denote the number of edges on π and the weight w(π) will denote the sum of the

weights on the edges in π. The shortest path weight from x to y will be denoted by

δ(x, y).

Definition 4. A longest length tree (LLT) Ts for a dag G is a directed spanning

tree rooted at its source s where, for each node v, the path in Ts from s to v has the

maximum length (number of edges) of any path from s to v in G. The level `(v) of

a node v is the length of the path from s to v in Ts. An edge (u, v) ∈ E is a crossing

edge if u is not an ancestor of v in Ts.

We can similarly define an LLdag, and compute it with a slight extension to

Algorithm 35. However, for our results an LLT suffices.

7.5.1 APSP in a Weighted DAG

Our distributed algorithm LLT(G) (Alg. 35) uses a delayed-BFS algorithm to com-

pute an LLT for dag G. It starts a BFS from the (virtual) source s (Step 2, Alg.

35), and it delays the BFS extension from each node v until each incoming node

u ∈ Γin(v) has propagated its longest length `(u) from s to v. Then node v will
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finalize the longest length received, maxu∈Γin(v)(`(u) + 1), as its level `(v) (Steps 4

– 6, Alg. 35) and it will broadcast `(v) to all outgoing nodes x ∈ Γout(v) (Step 8,

Alg. 35).

Algorithm 35 LLT(G)

1: set `(v)← 0, π(v)← NIL for all v ∈ G
2: start a BFS from the (virtual) source s, broadcasting `(s) = 0 to all nodes in

Γout(s)
3: for each node v ∈ V do {actions of each node during the BFS}
4: for each message `(u) received from node u ∈ Γin(v) do
5: if `(u) + 1 > `(v) then
6: `(v)← `(u) + 1; π(v)← u
7: if v has just received a message from the last node in Γin(v) then
8: v broadcasts `(v) to all nodes in Γout(v)

The proof of the following lemma is straightforward.

Lemma 45. Algorithm LLT computes the parent pointers π(·) for an LLT tree Ts

of dag G in L rounds, where L is the length of a longest finite directed path in G.

Observation 17. For an LLT Ts, every edge (u, v) has `(u) < `(v).

The above observation readily follows from the fact that, given the edge (u, v), `(v)

can be made at least one larger than `(u) by taking a longest path from s to u and

following it with edge (u, v).

To compute APSP in the weighted dag G, we assume the vertices are num-

bered 1 to n, and we construct the SSSP dags for all sources by using a predetermined

schedule based on nodes IDs and levels in the LLT of G. Algorithm 36 presents

the overall weighted dag APSP algorithm. For each node v, the SSSP at node v

starts at absolute time IDv + `(v) (Step 3, Alg. 36), where a message containing

the source v, the distance (0) and the number of shortest paths (1), is sent to each

outgoing node w of v. In general, messages for SSSP(x) will leave node y at absolute

time txy = IDx + `(y) (Steps 5 – 11, Alg. 36), where `(y) is the level of y in the
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LLT of G (see Fig. 7.2). After y receives all the distances (from a source x) from

its incoming nodes, it updates its shortest distance δ(x, y) as the minimum value

received (Step 7, Alg. 36). Moreover, for a node y we also compute in the set Px(y),

the predecessors of y in the SSSP dag rooted at x (Step 9, Alg. 36), and the number

of shortest paths from x to y in σxy (Step 10, Alg. 36). These values are computed

for each source x from which y is reachable, and they are crucial since we will use

this algorithm in the next section to compute BC.

Algorithm 36 Weighted dag-APSP(G)

1: compute a directed LLT Ts rooted at source s of G and the level `(v) of each
vertex v using algorithm LLT (Alg.35)

2: set absolute time to 0
3: for each node v do start SSSP(v) at absolute time IDv + `(v) by sending

(v, 0, σvw = 1) to each node w ∈ Γout(v)
4: for each pair of vertices x, y with `(x) < `(y) do
5: schedule the following at node y at absolute time txy = IDx+`(y) for SSSP(x)

:
6: for each u ∈ Γin(y) let (x, δ(x, u), σsu) be the message received by y for

SSSP(x) from u
7: compute δ(x, y) as minu∈Γin(y) δ(x, u) + w(u, y) (if at least one value δ(x, u)

is received), otherwise set δ(x, y)←∞
8: if δ(x, y) 6=∞ then
9: Px(y)← {u ∈ Γin(y) such that δ(x, u) + w(u, y) = δ(x, y)}

10: σxy ←
∑

u∈Px(y) σxu
11: send message (x, δ(x, y), σxy) to z for each z ∈ Γout(y)

Complexity. We establish correctness and round complexity of Algorithm 36 with

the following two lemmas.

Lemma 46. The value δ(x, y) computed in Step 7 is the correct shortest path dis-

tance from x to y.

Proof. Since every edge (u, v) in G has `(u) < `(v) (see Observation 17), any path

from x to y in G has length at most `(y)−`(x). The SSSP(x) starts at x at absolute

time IDx+`(x), and hence the value sent on every path from x to y in G arrives at y
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at absolute time IDx+`(y) or less. Since δ(x, y) is computed as the minimum of the

values received at time IDx + `(y), this is the correct x–y shortest path weight.

Lemma 47. Each node transmits a message for at most one SSSP in each round.

Proof. Consider a node x and let u and v be any two nodes from which x is reachable.

Node x will transmit the message for SSSP(u) in round IDu+`(x), and the message

for SSSP(v) in round IDv + `(x). Hence, these messages will be transmitted on

different rounds. Hence the message for at most one SSSP dag will be sent out by

x in each round.

Finally, since IDx+`(y) ≤ n+L for all x, y ∈ V , the round complexity of computing

APSP in a weighted dag is n+O(L).

s
`(s) = 0

u`(u) = 4

v`(v) = 5

w
`(w) = 8

Figure 7.2: Example of SSSP distributed execution from u and v. Snake lines
represent the LLT Ts path. Dotted lines are shortest paths. SSSP(u) and SSSP(v)
will leave w at different times IDu + 8 and IDv + 8. Moreover the two SSSP(u)
paths u  w and u  v  w could reach w at different time steps, but they will
be processed (only the shortest path will be propagated) at the same absolute time
IDu + 8.

7.5.2 BC in a Weighted DAG

We can now use Algorithm 34 to compute betweenness centrality in a weighted dag

G using the round numbers txy computed in Algorithm 36 to schedule the accumu-
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lation step at node y for source x. As seen from step 5 of Algorithm 36, txy is the

round when node y broadcasts δ(x, y) and σxy to all its outgoing nodes (Steps 5–11,

Alg. 36). Thus, similarly to Alg. 34, in the accumulation round Axy = 2n − Txy

where Txy = txy (Step. 5, Alg. 34), node y will receive all the accumulation val-

ues from every successor in the dag for x, and it will compute the correct value of

δx•(y). The overall dag BC algorithm is in Algorithm 37. It uses double the number

of rounds as the dag APSP algorithm, and hence runs in 2n+O(L) rounds.

Algorithm 37 Weighted dag-BC(G)

1: run Algorithm 36 on G
2: for all s, v, Tsv ← tsv, where tsv is from Step 5 in Algorithm 36
3: set absolute time to 0
4: run steps 4–8 of Algorithm 34 on G

7.6 A Simple Transitive Closure Algorithm

Algorithm Reachability (Algorithm 38) maintains for each node v in G an ar-

ray Av[1..n], initially with all positions unmarked, which at termination will have

marked every A[y] where v has a path from v to y. In this algorithm each vertex

v initializes a queue Qv with v and marks v in Av. In each round every node v in

the graph dequeues an element from its queue and broadcasts it along its out-edges,

i.e., to the nodes in Γout(v). For each node ID y that v obtains along an in-edge,

it checks if Av[y] is unmarked, and if so, it marks Av[y] and then enqueues y. This

computation proceeds for 2n rounds and then terminates. Clearly the algorithm

runs in O(n) rounds.

Correctness. We now show that this algorithm correctly marks in Av exactly those

positions y such that v is reachable from y. Since any node x is eventually broad-

casted over all the outgoing edges, and is blocked only if the current node already
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Algorithm 38 Reachability(G)

1: for each v ∈ V do initialize Qv ← 〈v〉 and mark Av[v]
2: for each node v in parallel for 2n rounds do
3: v dequeues an element x from Qv (if nonempty)
4: v broadcasts x to its outgoing nodes Γout(v)
5: for each y received by v from a node in Γin(v) do
6: if Av[y] is unmarked then
7: v marks Av[y] and enqueues y in Qv

processed it, it will eventually reach every other node y for which there is a path

x y in G.

So, we only need to show that 2n rounds suffice to correctly identify all nodes y

from which v is reachable, for each v ∈ V . For this we first define the notion of a

clean path. A directed path πxy = (x, v1, v2, . . . , vj , y) is a clean path from x to y if

for each vertex v in πxy other than x, Av[x] is unmarked when x arrives at v along

an edge in πxy.

Lemma 48. For any pair of nodes x, y such that y is reachable from x, there exists

a clean path π̂xy from x to y.

Proof. We show the existence of π̂xy by constructing it, starting from the last node

y. Let v be the node in Γin(y) that sent x to y at the earliest time step (breaking ties

arbitrarily). If v = x we are done. Otherwise, we repeat this process by checking

in Γin(v) the node that sent x to v in the earliest round. At any time, let πt be the

current path built so far that ends in y. We claim that every time we extend πt

to the left we either reach x or we add a node that does not already appear in the

path. To see this, we observe that if we extend to a node u already in πt, we form a

cycle of the form C = (u, . . . , u) where each node pushed x to its successor for the

first time. But since all the nodes in C must be different from x, the node x was

sent into C for the first time by a node outside C. A contradiction.

The clean path π̂xy is used in the proof of the next lemma.
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Lemma 49. Let π̂xy be the clean path from x to y in G. Then the message contain-

ing node x, propagated by Algorithm 38, will reach y in at most n− 1 + |π̂xy| < 2n

rounds.

Proof. Let us consider the traversal τ of x along the clean path π̂xy. If the queue

at every vertex v in π̂xy is empty when x reaches v along τ , then x will reach y in

at most |π̂xy| rounds since there is no delay in τ . In general, some of the queues for

vertices in π̂xy will be nonempty when x arrives. We now claim that if R is the set of

distinct vertices that are sent along some edge in the path π̂xy ahead of x’s traveral

τ , then the delay that τ can incur in the worst case is |R|. To see this, consider

any vertex u in R and let v be the earliest vertex on π̂xy where u is added to the

queue before x. If u is dequeued from Qv before x is enqueued at Qv then u will

not delay x at v, but let us assume the worst case situation where every vertex in R

that was placed on a queue for a vertex in π̂xy is in fact present in that queue when

x is added to the queue. In this case u will delay x by one round at v. Further,

u will proceed along each succeeding vertex on π̂xy, but if no other instance of u

arrives at these succeeding vertices, then u does not delay x further, since both u

and x will proceed in a pipelined manner along these vertices.

In the case when other instances of u arrive at some of the succeeding vertices

(these arrivals will occur along edges not on π̂xy), we claim that there is no further

delay to x: If another copy of u arrives at a vertex w on π̂xy later than this first

copy of u that x encountered at v then Aw[u] will be marked when this other copy

arrives, and it will not be added to the queue and will not impact x; if this other

copy of u arrives at w earlier than the first copy of u, then the first copy of u will not

queued, but this other copy will be enqueued even earlier than the latter’s arrival,

which will cause it to exit ahead of x with the same pipelined property as the first

copy.

Thus each distinct vertex that is enqueued at a vertex on π̂xy ahead of x
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can delay x in the traversal τ by at most one round. Further x will not encounter

another copy of x along π̂xy since it is a clean path. Hence the message containing

x sent along the clean path π̂xy reaches y in at most |R|+ |π̂xy| rounds, giving the

desired result.

Transitive Closure and SCC. To obtain at v an array A+
v [1..n] where all nodes

x that are reachable from v are marked, we can repeat this algorithm treating each

directed edge as reversed (run the algorithm on the transpose graph of G). Then,

each vertex knows all vertices in its strongly connected component (scc), and can

label it consistently with the minimum ID of the vertices in the scc.

7.7 Conclusion

We have presented several distributed algorithms in the CONGEST model for com-

puting BC and path problems in directed graphs. The sub-area of distributed algo-

rithms for directed graphs is still in early development, and our work has presented

several new results and techniques. A useful observation highlighted by our re-

search is that global delay techniques can in fact cooperate to improve the efficiency

of distributed algorithms for directed graphs.

An important avenue for further research in the CONGEST model is to find

O(n)-round algorithms for computing APSP and BC in general weighted graphs.

We have made a first step in this direction with our O(n) round algorithms for

weighted dags, but for general graphs these problems are open for both undirected

and directed graphs.
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