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Abstract 

Energy from biological materials addresses a number of key energy and environmental issues, 

including climate change, energy security, and replacement of carbon-intensive energy sources. 

This thesis assesses the feasibility of using three types of biological material for U.S. electricity 

generation: wood chips, biofuels, and organic waste. To evaluate economic feasibility, this paper 

examines system design, feedstock availability, and other advantages and disadvantages of 

alternative biological feedstocks. It also discusses three cost-benefit studies evaluating wood 

chips, biofuels, and waste-to-energy. This thesis recommends that the U.S. electricity sector 

consider investing in additional use of wood chips and organic waste and continue developing 

research for next-generation biofuel. Wood chips can cost less than heating oil. Municipal solid 

waste as a fuel could manage and reduce carbon. Although next-generation biofuels are more 

expensive in terms of capital and operating costs than conventional biofuel and fossil fuels, their 

use could mitigate food security and environmental concerns. All three technologies are used 

globally, proving technical feasibility. The availability of wood and waste in the U.S. offers 

another incentive for feedstock. Additional funding and research remain challenges for next-

generation biofuel. Future research in bioenergy could include cost-benefit and carbon emission 

analyses that incorporate additional production pathways, comparisons to current renewable 

feedstocks, and recommended sites for the three technologies this paper addresses. 
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RENEWABLE ENERGY FOR ELECTRICITY GENERATION 
 

Renewable energy is defined as energy collected from sources that can be replenished 

continually or annually (International Energy Agency, 2016). It can be used to generate 

electricity, heat or cool air or water, transport people or materials, or provide off-grid (rural) 

services (Renewable Energy Policy Network for the 21st Century, 2010). This discusses 

electricity generation from renewable energy fuels. 

Although fossil fuels remain the primary fuel source to produce electrical power within 

the U.S. and worldwide, clean and renewable sources, such as hydroelectric, wind, solar, 

geothermal, and bioenergy, have become more widespread. Some notable U.S. government 

policies that support this process include the Energy Independence and Security Act (EISA) of 

2007, America’s Clean Energy and Security Act (ACES) of 2009, and the Recovery and 

Reinvestment Act (2009). These policies were passed to create clean energy jobs, enable energy 

independence, promote research, increase energy efficiency and performance, reduce greenhouse 

gas (GHG) emissions, and transition to a clean energy economy. 

Current sources of U.S. electricity generation include coal (39 percent), natural gas (27 

percent), nuclear (19 percent), renewables (13 percent), and petroleum (1 percent). Renewables 

are composed of 48 percent hydro, 34 percent wind, 8 percent wood, 4 percent waste, 3 percent 

geothermal, and 3 percent solar (see Figure 1) (U.S. Department of Energy, Energy Information 

Administration, 2015b). This paper will focus on bioenergy, which includes wood, waste, and 

biofuel. 

According to the International Energy Agency (IEA), bioenergy, renewable energy 

produced by organic matter, provides 10 percent of the world’s primary energy supply, making it 

the largest renewable energy source. In some poor developing countries, biological material 
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remains a common fuel source for heat and space heating (IEA, 2006). However, bioenergy has 

become a viable and close to carbon neural option for electricity generation in developed 

countries like the United States. Bioenergy can be converted into different forms (solid, liquid, 

and gas) from local and often abundant resources. Harvesting and using the many different types 

of biological material have benefits that range from stabilizing soil fertility to managing waste 

disposal. Because of these reasons as well as growing interest in this area of research, the utilities 

sector should consider including more bioenergy into the electrical fuel mix. 

Different sources of bioenergy (i.e. wood chips, biofuels, etc.) require distinct technical 

methods to convert the raw material to electricity. These processes will be discussed for each 

source. Studies that conduct a cost-benefit analysis will be used to examine economic parameters 

(cost, resource availability, etc.), technical feasibility (design, potential production scale), and 

environmental impacts. If the net economic benefits of using one or more of these processes are 

favorable compared to fossil fuels, bioenergy for electricity generation should be a feasible 

option. 
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Figure 1. U.S. Electricity Generation Mix, 2014 

 

Source: Reprinted from “Electric Power Monthly” by the U.S. Department of Energy, Energy 
Information Administration, 2015, Retrieved from 
https://www.eia.gov/electricity/monthly/epm_table_grapher.cfm?t=epmt_1_1  
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BIOLOGICAL MATERIAL AND BIOENERGY 

Biological materials refer to substances derived from living organisms that can be 

harnessed to produce bioenergy. Bioenergy can be generated through biomass (solid), biogas 

(gas), or biofuel (liquid). To generate energy, all three undergo thermochemical processes and 

follow a similar chemical equation (Carnegie Mellon University, 2003): 

Biomaterial + Oxygen  Carbon Dioxide + Water + Heat    Equation 1 

Biomass originates from organic material, which may include wood, manure, crops, 

garden waste, or other agricultural byproducts (Guo, 2014). The energy in organic materials 

comes from sunlight harvested via photosynthesis, the process where light energy is used to 

convert water and carbon dioxide into oxygen and organic compounds. The energy not used in 

chemical reactions is stored as chemical bonds that can release energy when broken (McKendry, 

2002). The process of harnessing energy from biomass can be compared to the generation of heat 

from burning coal. During combustion, biomaterial and oxygen are combined in a high 

temperature environment to produce carbon dioxide, water vapor, and thermal energy. The 

approximate chemical equation for biomass is as follows (Ciolkoszv, 2014):  

CH1.44O0.66 + 1.03 O2  0.72 H2O + CO2 + heat     Equation 2 

The amount of generated heat depends on many factors, such as climate and biomaterial species, 

although it generally falls within 20 Megajoules of heat energy per kilogram of fuel substrate 

(Ciolkosz, 2014). Moisture in biomaterial can lower the heat content because fuels burn best 

when dry. For the best combustion, the water content for biomass should not exceed 20 percent 

(Ciolkosz, 2014). Processing biomass by grinding or drying material can make it more suitable 

for combustion. The types of bioenergy used for electricity production may depend on the 
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region, such as forest byproducts in the United States, sugarcane in Brazil, or rice husks in 

Southeast Asia (Urban, 2011).  

Biogas derives from the breakdown of biomass under anaerobic conditions. Biogas 

sources include agricultural waste in the natural environment, municipal solid waste, landfill, or 

sewage. Fermentation, another type of anaerobic digestion, can also generate biogas. Biogas 

contains mostly methane (55-90%) but can include carbon dioxide and hydrogen sulfide 

depending on its source (Ghenai, 2015). This flammable mixture may be used as a fuel, such as 

ethanol from sugar canes; it can also be purified to a natural gas equivalent (98% methane). Each 

cubic meter of methane contains approximately 50 MJ of energy, or 4-7 kWh of heat energy in 

one cubic meter of biogas (Alveo Water and Sanitation, n.d.). When combusted, the gas or fuel 

releases this energy for electrical, transportation, heating, or power generation. The following 

represents the chemical equation for the combustion of methane (Carnegie Mellon University, 

2003). 

CH4 + 2O2  CO2 + 2H2O + heat       Equation 3 

Methane is a potent greenhouse gas. However, its extraction from waste such as landfills and its 

use for electricity generation reduces direct atmospheric emissions (Mohseni, 2011).  

Biofuel derives from both biomass and biogas sources and includes biodiesel, methanol, 

butanol, and ethanol, with the latter two as the most common sources. Although fermentation via 

lignocellulosic material can produce bioethanol, most biofuels originate or are converted from 

once-living organisms through agricultural processes or anaerobic digestion (Rubin, 2008). 

These processes can occur naturally or in a laboratory or industrial setting. Each chemical 

equation for biofuel varies by the source. For example, ethanol combustion follows 

(Biofuel.org.uk, 2011): 
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C2H5OH + 3O2  2CO2 + 3H2O       Equation 4 

while butanol combustion follows (Biofuel.org.uk, 2011): 

2C4H9OH + 5O2  8CO2 + 10H2O.       Equation 5 

The energy content of biofuel varies by fuel source but produces around 20 Megajoules of 

energy per liter for ethanol and 34 Megajoules per liter for biodiesel, values that change 

depending on the plant species and their specific energies. Biofuel is widely used for 

transportation, but this paper only discusses biofuel for electricity production. 

Humans have burned biomass such as wood, hay, dung, and straw for space heating, 

lighting, and cooking as early as 350,000 years ago. Archaeological evidence shows that the 

habitual use of fire began in Israel’s Tabun Cave (Shimelmitz, 2014). Prior to 1840, these 

biological materials were the predominant energy source around the world. In developing 

countries today this still holds true, with almost 40 percent of the global population relying on 

firewood for cooking and space heating (IEA, 2006). Burning wood and raw plant material, 

however, can release hazardous emissions.  

During the Industrial Revolution, fossil fuel energy surpassed bioenergy. Within the last 

two decades, however, bioenergy has been on the rise (Guo, 2014). While firewood and charcoal 

consumptions have remained constant, wood chips and pellets for renewable electricity 

generation have doubled in the last decade and some analysts predict biomass use to increase 

(Guo, 2014). Commercial production of cellulosic ethanol is also projected to expand, especially 

under U.S. government regulations (Rubin, 2008). Renewable energy research has sought to 

optimize biofuel production, identifying plant species with high oil yield potential, parameters 

and guidelines for producing desired fuel qualities, and determining oil characteristics to control 

quality. From 2000 to 2013, world production of biodiesel, or biofuel intended as a substitute for 
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diesel, increased from 213 million gallons to 6.29 billion gallons, with Germany, France, Brazil, 

Spain, and the U.S. as some of the top producing countries (U.S. DOE, EIA, 2014). In 2015, the 

U.S. produced over one billion gallons of biodiesel (Atadashi, 2011). Further bioenergy research 

has also focused on recovering energy from waste such as municipal solid waste, food, and 

sewage.  

One can expect to see a trend in new technologies that focus on improving combustion, 

energy, and production efficiencies of bioenergy. Although current fossil fuel prices do not make 

bioenergy production economically advantageous, the World Energy Council predicts that 

bioenergy consumption could increase three-fold by 2050, displacing a quarter of global natural 

gas consumption and possibly meeting 30 percent of the world’s energy demand, a projection 

that provides reason to enhance research and development of bioenergy (Guo, 2014). The next 

chapter will explore these technological processes. 
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TECHNOLOGIES THAT PRODUCE BIOENERGY 

Bioenergy can be produced from many sources of biological material. This section will 

focus on the technology behind three types of feedstock: wood chips, biofuels, and organic 

waste.  

The process of converting biological material into energy begins with harvesting and 

processing, followed by a thermochemical procedure where heat energy and chemical catalysts 

convert biological material into intermediate compounds. There are three common 

thermochemical processes: (1) combustion, which requires sufficient oxygen for oxidation; (2) 

gasification, which requires insufficient oxygen to prevent complete oxidation; and (3) pyrolysis, 

which occurs in the absence of oxygen. 

THERMOCHEMICAL PROCESSES 

Combustion of biomass refers to burning fuel in a boiler or stove to produce heat that can 

be utilized as hot air, hot water, steam or directly as electricity. Burning is the most widely used 

and simplest technology with a conversion efficiency into electricity at 20 to 30 percent. Wood 

and municipal solid waste are the most common feedstocks for combustion, although the 

moisture content must be low for efficiency. Combustion requires high temperatures for ignition, 

sufficient turbulence to mix the biological components with an oxidant, and time to complete the 

oxidation reaction (Equation 1). The final products of biomass are hydrogen, carbon monoxide, 

carbon dioxide, methane, and other hydrocarbons. CO2 and H2O result from complete 

combustion, and the burning of solid charcoal releases CO and CO2. The release of hot gases 

during combustion contain about 85 percent of the fuel’s potential energy; this heat can be used 

directly or indirectly through a heat exchanger, such as through a boiler to produce steam. Steam 

can be used to generate electricity, mechanical energy, or heat (Basu, 2010). 
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Pyrolysis refers to the heating and decomposition of biomass in anaerobic conditions, or 

conditions without oxygen. It is especially useful in decomposing and fractionating biomass such 

as cellulosic fibers, lignin, and sugars. Its products include bio-charcoal or gases and bio-oil from 

the volatile fraction of biomass. The process begins with raising the temperature to release 

volatiles and form charcoal (Basu, 2010). Once various reactions occur, pyrolysis gas is formed. 

Slow pyrolysis, which occurs geologically over thousands of years with temperatures that reach 

500 degrees Celsius, produces charcoal. Fast pyrolysis, or the rapid heating of material, can 

occur in anaerobic conditions at 450 to 600 degree Celsius, produces mainly bio-oil (60-75%) 

with other products including solid charcoal (15-25%) and noncondensable gases (10-20%). 

However, bio-oils must be further processed to lower oxygen content or filtered for particulates 

and alkali. Once produced, bio-oil can be used as fuel for combustion or refined into 

transportation fuel (U.S. DOE, Office of Energy Efficiency and Renewable Energy, 2012). 

Gasification is a technique that heats biomass, converting it into combustible gas, 

volatiles, and ash. The technology behind gasification may vary based on the gasification agent 

or the reactor, but it is often more demanding because of feedstock specifications. Waste, such as 

municipal solid waste and agricultural residues, is a common feedstock. Gasification occurs in 

two endothermic steps. Biomass is first heated to over 700 degrees Celsius, which vaporizes 

volatiles such as hydrogen, CO, CO2, and other hydrocarbon gases. The byproducts that remain 

are charcoal and ash. In the second step, the charcoal is gasified when it reacts with oxygen, 

steam, and hydrogen at high temperatures. The main gasification products include synthesis gas 

(syngas), bio-charcoal, and tar. The specific amount of each depends on the feedstock, oxidizing 

agent, and the process conditions (Basu, 2010). Syngas, which consists of CO, CH4, and other 

hydrocarbons, can be utilized for heating or electricity generation as fuel for a Combined Heat 
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and Power (CHP) generator, as well as production of ethanol, diesel, and chemical feedstocks 

(U.S. DOE, Office of EERE, n.d.). Because gasification processes have a higher conversion 

efficiency, they are more suited for 10 MW power plants or larger to achieve full potential. 

Combustion, pyrolysis, and gasification have many similarities but differ in their end uses 

and product ratios. When choosing a suitable mechanism for energy production, one must 

consider the desired final products, such as gas, bio-char, or only heat, and their end uses, such as 

electricity generation, heat, or transportation fuel. 

The sections below describe commonly used biological materials and the technologies 

employed to produce bioenergy. The biological materials to be considered are woodchips, 

biofuel, and organic waste. 

	
WOOD CHIPS 

Woodchipping describes the process of cutting, or chipping, large pieces of wood to 

produce smaller, solid material of approximately 5-50 mm long. Although this procedure is often 

associated with mulch for gardening or landscaping, woodchips can also be used as fuel from 

biomass. In a process that is comparable to pulverizing conventional fossil fuels such as coal, 

wood chips are burned to produce steam, which powers the turbines that generate electricity. 

Compared to logs or planks, mechanically chipped wood has a large surface area to volume ratio. 

This makes the wood easier to feed steadily into a conversion system where it can be burned 

more uniformly and efficiently. 

Wood fuel has several advantages because, as a renewable resource, it originates from a 

sustainable local supply. Although the combustion process (Equation 2) generates carbon 

dioxide, biomass in a cycle is generally considered close to carbon neutral. New biomass growth 

absorbs emitted carbon dioxide, and this life cycle will repeat. Recent studies have indicated that 
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burning biomass may not actually be carbon neutral (McKendry, 2002). However, when 

compared to fossil fuels, wood fuel emits less carbon dioxide per heating unit during 

combustion. The entire process is closer to carbon neutral than combustion of oil, natural gas, or 

coal. Wood fuel does not contain the heavy metals or sulfur associated with coal or heavy oil, 

which leads to pollution and acid rain. Burning wood fuel from wood wastes prevent methane 

production, which lower potential greenhouse gas production (Li, 2014). 

The production process begins by clearing or collecting raw materials from forest owners 

or forest management specialists (Figure 2). Raw materials can derive from forest wood, waste 

wood, pulpwood, or residues from construction, sawmills, logging, or landscaping. Ideally, these 

materials should be sourced as locally as possible to benefit the local economy. Once harvested, 

wood is delivered to a combustion site after the material is fed through a woodchipper machine. 

There are several types of chippers used in the industry, each with its own constraints based on 

the wood to be processed. These chippers are defined by well-researched factors, including 

operating parameters (such as angle of the chipper plate and the direction of cutting) and chip 

geometry (the shape and thickness of the wood chip) (Hellstrom, 2010). 

Following the chipping process, the wood chips are delivered to a heating plant. These 

plants vary in size and may be small-scale, generating 20 to 200 kWh of heat energy, or large-

scale. The type of heating plant chosen depends on the location in which electricity will be 

generated as well as the original raw material. For example, timber products and felled trees are 

more suitable for small-scale heating plants that power rural locations. In contrast, treetops and 

construction waste can be sent to large heating plants that power urban cities. These plants use 

larger feeders that can process and manage rough material and impurities (Small Giant of 

Bioenergy, n.d.). 
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At the heating plant, the chips may be combusted, gasified, cogenerated, or cofired. 

Combustion (Equation 2) refers to the burning of wood chips, where the heat is transferred to a 

hot water boiler. Steam turbines then convert the steam to electrical power. Gasification is the 

heating of wood in an anaerobic environment, which releases pyrolysis gases such as carbon 

monoxide and hydrogen. This type of wood fuel is used for internal combustion engines, gas 

turbines, and microturbines. Cogeneration diverges from the traditional steam turbine method by 

simultaneously producing heat and electricity from wood fuel through a combined heat and 

power (CHP) system. Cofiring uses biomass as a supplementary energy source in coal plants, a 

low-cost option that reduces greenhouse gases (USDA Forest Products Laboratory, 2004). 

Because of the multiple steps during production, the measurement units for wood chips 

change by location. Wood merchants that harvest from forest owners describe wood by volume, 

such as solid or loose cubic meters. To describe the energy potential of fuels, hauling operators 

use “tons” and heating plants use “MWh” (Central Baltic INTERREG IV A Programme & EU, 

2013). A hectare of trees produces approximately 30 m3 of felled trees, 75 m3 of wood chips, 60 

MWh of energy, or 6000 liters of fuel oil. A loose cubic meter of wood chips is approximately 

equal to 0.8 MWh of energy, or 80 liters of fuel oil. A solid cubic meter of felled trees equals 2.5 

cubic meters of wood chips and 2 MWh of energy (Small Giant of Bioenergy, n.d.).  

Several physical parameters define the efficiency of the woodchipping process. The first 

one is uniform quality of chips and absence of long thin pieces, or slivers. Wood chips of 

uniform quality allow for undisturbed function. Slivers could cause bridging or blockage when 

chips are fed into the system. Another parameter to consider is maximum moisture content. This 

also affects feed blockages but can play a role in combustion efficiency as well. Depending on 

the region, fresh-cut trees can have moisture contents of over 50 percent, when the advisable 
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content should not exceed 20 percent (SEAI, n.d.c). Moist wood chips lower the quality of the 

fuel and the efficiency of the process by requiring a more considerable amount of energy to heat 

the water associated with the wood. The lower heating efficiency can cause higher energy 

consumption for the system, higher risk of backburn and discharge, and even problems in 

preserving fuel for storage (Buchmayr et al., 2015). As a result, fresh-cut material for 

woodchipping is often left to dry naturally; artificial drying is another option that can be costly 

because it requires energy expenditure. A third parameter to consider is the level of contaminant 

content in wood, which may increase emissions. Further parameters of interest are tree species, 

amount of dust and fungal spores, ash content, and even wood storage. Any of these factors can 

also affect the quality of the chips and the wood fuel produced (Biomass Energy Centre, n.d.).  

Wood chips are traditionally used as solid fuel for electrical power or heating buildings. 

In some cases, coal power plants have been converted to run on wood chips; this can be a 

straightforward process because both can use the same type of steam turbine engines. Countries 

like Sweden and Finland have already increased the use of domestic wood and wood byproducts 

for electricity production. In Sweden, logging residues are used to generate energy for district 

heating companies, and the amount of this energy has increased over the years (Central Baltic 

INTERREG IV A Programme & EU, 2013). Finland—where 76 percent of land is forested—

became the global leader in forest bioenergy in 2012, when over 24 percent of its energy 

consumption came from domestic wood and byproducts. This value was greater than the amount 

of energy produced from oil, making wood fuel the most used source of energy in Finland for the 

first time (Statistics Finland, 2013). Finland and Sweden’s success with wood chips for fuel 

shows the potential this process has in the U.S. 
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Figure 2. Wood Chip Production Process 

 

Source: Reprinted from “Comparative cost evaluation of heating oil and small-scale wood chips 
produced from Euro-Mediterranean forests” by B. Esteban, et al., 2015, Renewable Energy, 74, 
p. 568-575.  
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BIOFUELS 

Biofuel is a liquid energy fuel that can be produced from biomass conversion or carbon 

fixation through photosynthesis. The feedstock comes directly from plants and microalgae or 

indirectly from agricultural, commercial, or industrial wastes. In contrast, fossil fuels originate 

through geological processes as plants and animals in the ground decompose over millions of 

years. The two most popular types of biofuel include bioethanol, alcohol made by fermentation, 

and biodiesel, oil based from long-chain alkyl esters. Bioethanol derives from crops such as 

wheat, woody crops, and sweet sorghum, and biodiesel derives from oil crops such as rapeseed 

and camelina (SEAI, n.d.b). 

The most common form of biofuels today are conventional, or first-generation biofuels, 

made from arable crops that produce sugar, starch, and oils. Corn is the chosen material in the 

U.S. due to commercial-scale experience with a proven fermentation process and support from 

government mandates, subsidies, and tariffs. Other methods around the world use different 

feedstock for biofuel, such as sugarcane in Brazil and biodiesel in Argentina and Europe (U.S. 

DOE, National Renewable Energy Laboratory, 2015). In the U.S., gasoline is blended with 

bioethanol. There are multiple ways to produce biofuel, but the process generally includes 

chemical reactions, fermentation, and heat to break down plant sugars and starch. Products are 

then refined into a usable fuel.  

Biofuel production cycle begins with photosynthesis. Solar energy and carbon dioxide are 

converted into chemical energy in biomass. Farmers then harvest the crops, which are sent to 

pre-treatment. There are several conversion processes but the most common are biochemical, 

thermochemical, and photobiological (U.S. DOE, Office of EERE, 2013). 
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Biochemical processes use enzyme and microorganisms as catalysts to convert biomass 

into desirable products. This could include breaking down carbohydrates and cellulose 

(hydrolysis) or fermenting and distilling sugars into ethanol (Figure 3). Many plant and animal 

fat oils contain triglycerides that must be separated via transesterification, a process commonly 

used for biodiesel (Figure 3). Transesterification reacts these triglycerides with alcohol to form 

esters and glycerols (Equation 6) (University of Strathclyde Engineering, n.d.). 

     (Equation 6) 

Following the breakdown of cellulose, additional microbes ferment sugars into liquid 

fuels (Figure 3). Remaining coproducts are converted into biobased products, such as plastics, 

solvents, intermediates, acids, and lubricants. Given the nature of the carbon cycle, the net 

carbon released during the biofuel production cycle should be close to zero (University of Illinois 

at Urbana-Champaign, n.d.). However, there are energy inputs throughout the conversion 

process, such as fossil fuels for fertilization, to power refineries, and for transportation.  

Photobiological processes use natural photosynthetic activity to produce biofuels, now 

termed as advanced, or second-generation biofuels. Second-generation biofuels use diverse 

sources of biomass, which can include bacteria, algae, agricultural wastes and residues, and 

lignocellulosic biomass from woody crops and energy grasses such as switchgrass. Lipids 

converted from sugars can also become biodiesel through chemical reactions such as 

esterification and hydrogenation (British Petroleum, 2015). Algal biofuel production has become 

a popular method that both government and private companies have begun funding. The process 
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begins with genetic engineering by selecting choice algae. Once the algae are cultivated, 

harvested, and separated via chemical solvents, they can be processed and refined into useable 

products (U.S. DOE, Office of EERE, 2014). Although second-generation biofuels have many 

positive features, they are not without challenges within the infrastructure and manufacturing 

process that complicate their integration into the energy economy and market. For example, 

many high-energy advanced biofuels require labs and technical processes that are costly and 

complex in order to generate fuel or extract cells, with commercial manufacturing facility costs 

ranging from $100 million to $300 million (Solecki et al., 2013).  

Some governments now encourage biofuel production through economic incentives, 

policies, mandates, subsidies, or tax credits (U.S. DOE, EIA, 2015c). For example, the U.S. 

Energy Independence and Security Act (EISA) of 2007 suggests a volumetric expansion to 36 

billion gallons per year of renewable fuel by 2022: 15 billion from corn and 21 billion from 

advanced biofuels (Environmental Protection Agency, 2007). Currently, biofuels provide 3.5 

percent of road transport fuels in the world (IEA, n.d.). Global biofuel supply is expected to 

increase; scientists project that 140 billion liters of biofuel will be produced in 2018 (Figure 4), 

which would provide 4 percent of global road transport fuel demand (IEA, 2013c). By 2020, 

biofuels may provide up to 27 percent of world transportation fuel. The uncertainties and risks of 

biofuel production will be discussed below. 
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Figure 3. Classical Approach to Biofuel Production 

 

Source: Jennifer Den at The University of Texas at Austin, 2015, unpublished. 
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Figure 4. Global Supply of Biofuel From 2006-2018 

 

Source: Reprinted from “Market Trends and Projections to 2018” by the International Energy 
Agency, 2013, Retrieved from 
https://www.iea.org/publications/freepublications/publication/2013MTRMR.pdf 
 
 

 

 

 

 

 

 

 

 

 

ORGANIC WASTE (MUNICIPAL SOLID WASTE, SEWAGE, LIVESTOCK MANURE) 
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Municipal solid waste (MSW), sewage sludge (a byproduct of wastewater treatment), and 

livestock manure can be sources of biogas energy, and it is unlikely that they will deplete, as 

there will always be waste generated across any civilization. For example, Americans generated 

254 millions ton of garbage, or MSW, and recycled about 87 millions tons in 2013 (Figure 5) 

(U.S. DOE, EPA, 2016). 

Waste-to-energy has become more attractive due to its relatively low air and water 

pollution rates, useful byproducts, feasibility in both large and small-scale industries, and the 

production process’s allowance of high water content, which is not the case for many conversion 

technologies such as combustion (IEA, 2013a). The energy conversion process for organic waste 

uses anaerobic digestion, a biochemical conversion technique. Anaerobic digestion is a naturally 

occurring microbial method that occurs when organic material decomposes in the absence of 

oxygen to release biogas. This process converts unstable pathogens and nutrient rich substrates 

into more stable material. Dried leftover substrate can be used as fertilizer or composted and 

reused as bedding material. The biogas produced in this process is composed of approximately 

65 percent methane, 35 percent carbon dioxide, and the rest as trace gases (Ileleji et al., 2008). 

There are four stages to produce biogas from anaerobic digestion: hydrolysis, 

acidogenesis, acetogenesis, and methanogenesis (Figure 6). Hydrolysis is the process where 

specific bacteria split long chain organic compounds into simple compounds, such as proteins 

into amino acids or carbohydrates into sugars. The products of hydrolysis are then sent to the 

acidogenesis phase, where acid-forming bacteria break these products into short chain fatty 

acids. This process is used in digesting manure. Some of the products from acidogensis include 

acetic acid, hydrogen, and carbon dioxide, which act as initial products for methane formation. 

The third phase is acetogenesis, or the use of acetic-forming bacteria to break down organic acids 
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and alcohols into more acetic acid, hydrogen, and carbon dioxide. The last phase, 

methanogenesis, also used in manure digestion, converts the acetogenesis products into biogas 

via mioorogranisms (SEAI, n.d.a). Anaerobic digestion of biomass varies by temperature, which 

can influence speed and stability of the process. There are two temperature ranges: mesophilic 

(32-45 degrees Celsius) or thermophilic (50 to 65 degrees Celsius). As optimum growth for 

methane bacteria occurs at the mesophilic range, many biogas facilities operate at this 

temperature for high gas yields and process stability. Thermophilic digestion is most 

advantageous when using animal byproducts or agricultural wastes. Although this temperature 

produces higher gas yields, the process is more sensitive to disturbances. 

Tables 1-4 list some of the many sources of waste material: MSW, agricultural waste, 

manure, and energy crops and their associated methane yields (Appels et al, 2011). Most sources 

follow the general process mentioned above, but MSW and manure will be further described, as 

there are additional techniques involved. 

Municipal Solid Waste  

Source separation is an important first step that removes compounds such as heavy 

metals not suitable for anaerobic digestion to produce a higher quality end product. However, the 

composition of MSW’s organic fraction may vary based on location, season, and the type or 

quality of waste. For example, rural areas produce higher biodegradable waste, whereas urban 

areas would have a higher percentage of plastic (Appels et al., 2011).  

 Anaerobic digestion technology for MSW can be classified according to the content of 

total solids to be digested in wet or dry digestion. Low solid contents (less than 12 percent) 

undergo wet digestion, while high solid contents (22-40 percent) undergo dry digestion (IEA, 

2013a). Wet digestion, established in Europe during the 1980s, begins with homogenizing 
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material in a mixing unit. A spiral press then separates the material into a liquid and solid phase. 

The liquid matter goes into digestion, whereas the solid fraction is processed for composting. 

The main limitation to this technique is the large amount of water used, which results in 

expensive post-treatment technology and high reactor volume. Wet digesters can operate as co-

digestion plants; other liquid or solid material such as sewage sludge can be digested at the same 

time as MSW (IEA, 2013b). 

 There are three common dry digestion processes, also developed in the 1980s: Dranco, 

Kompogas, and Valorga (IEA, 2013a). The Dranco reactor passes feedstock vertically through a 

reactor and the digestate is recycled. The Kompogas process uses a horizontal flow, where the 

digester is mixed with a paddle stirrer. The Valorga digester is vertical but the feedstock enters 

from the bottom (Figure 7).  

Following digestion, the MSW can then be treated and converted to energy. The three 

types of thermochemical procedures can be applied for treatment of waste: combustion, 

gasification, and pyrolysis. While combustion furnaces are the most commonly used technology, 

pyrolysis plants exist in both Japan and Germany, demonstrating their potential application in the 

U.S. For example, approximately 30,000 tons of MSW are treated annually in a pyrolysis plant 

in Burgau, Germany (IEA, 2013b). 

 Landfill gas (LFG) contains 50-60 percent methane and 40-50 percent carbon dioxide and 

is another alternative source of MSW energy that allows facilities to be built nearby or onsite. 

Landfills are the most widespread method of solid waste disposal in the world, responsible for 

approximately 8 percent of methane emissions. Waste may take years to decompose and soluble 

constituents may leach into and pollute soil and groundwater. A common option is waste 



  Den 23

incineration, but like all combustion processes, it can release harmful gases to the atmosphere, 

such as nitrogen oxides and carbon dioxide (Tsai, 2007).  

 Landfill gas (LFG) is created when organic waste in a MSW landfill decomposes. Instead 

of escaping into air, LFG can be captured and converted into energy (Environmental Protection 

Agency, n.d.). Collection is accomplished through trenches or wells that are installed into the 

waste. The gas is then piped to be treated or flared. Flaring removes gas that does not warrant 

direct use or electricity generation and can also control excess gas extraction spikes. During 

treatment, impurities, condensates, and particulates are removed from LFG. Treatment systems 

may be divided into multiple processing systems if the gas will be used for electricity generation: 

primarily to remove moisture and secondarily to clean up constituents such as sulfur compounds. 

For electricity generation, gas turbines or internal combustion engines are employed. If the gas is 

used directly, which usually means within five miles of the landfill, boilers, dryers, or process 

heaters are used. This process is most similar to that of using natural gas. Although LFG is much 

cheaper than natural gas, it also holds only half of its heating value (Tsai, 2007). 

Sewage Sludge 

Wastewater treatment facilities generate sewage sludge as a byproduct during treatment. 

By using anaerobic digestion, facilities can treat sludge and reduce almost 40 percent of the 

overall load of biosolids to be disposed. Anaerobic digestion, now widely considered as both 

economical and environmentally friendly, stabilizes sludge and reduces pathogenic 

microorganisms. The anaerobic digestion of sewage sludge is said to yield the highest biogas 

production capacity worldwide, generating large amounts of methane. However, the methane 

yield of the sludge depends on its composition (Appels et al., 2011). 
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There are two phases of wastewater sludge treatment. In the first step, all incoming flows 

of sludge are combined and the mixture is heated to accelerate biological conversion for 10-20 

days. The mixture undergoes further digestion without mixing to promote separation. This 

process generates its own heat as the digested sludge begins to settle. Following treatment, the 

sludge is dewatered, thickened, and stabilized to reduce pathogen levels and odors. The entire 

anaerobic digestion procedure, especially secondary-treatment of sludge, generates biogas by 

breaking down organic matter into carbon dioxide and methane for energy use (Nazaroff & 

Alvarez-Cohen, n.d.). 

For example, the Albert Lea facility in Minnesota processes 12 million gallons of sewage 

per day, with 4.5 million gallons treated into sludge. It produces 75,000 cubic feet of biogas and 

the four microturbines at the facility each generates 30 kW. At peak production, this facility can 

produce 2,500 kWh/day of energy and 28,000 Btu/day of heat. For a renewable resource, this is a 

significant portion of energy when one considers that an average residential customer uses 

approximately 30 kWh/day (Nazaroff & Alvarez-Cohen, n.d.). 

Manure 

Key states in the U.S. with large amounts of agricultural residues and manure include 

Iowa with 31 million tons, Arkansas with 10.3 million tons, Texas with 9.8 million tons, and 

California with 9.2 million tons. Figure 8 shows the projected agricultural residues and manure 

availability by county in 2030. The most abundant agricultural residues and manure resources 

(500,000 to 1.2 million dry tons) are located in the upper Midwest and central California. Several 

other agricultural regions across America also have potential to produce bioenergy. 

The methane potential of manure includes both the animal feces and the bedding 

material. Due to its high nitrogen content, manure is suitable for the development of anaerobic 
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microorganisms. Manure is frequently co-digested with other wastes with low nitrogen 

concentration to reduce ammonia content, which may inhibit the digestion process. Natural 

degradation of manure leads to uncontrolled methane emission, which has an undesirable effect 

on the climate. By controlling this degradation via anaerobic digestion in a facility, facilities can 

reduce methane discharge (Appels et al., 2011). 

The general process of anaerobic digestion of manure begins with liquefaction of the 

organic substrate by bacteria. This is followed by acidogenesis, or acid production via acid-

forming bacteria, and methanogenesis, or methane production via methane-producing bacteria 

(Figure 9). The effluent can often be further separated into solid and liquid fractions. For 

example, solid fraction from cow manure may be recycled as bedding. Its improved nutrient 

availability, reduced acidity, and reduced odor also allow digested manure to be used as fertilizer 

(Illeleji et al., 2008).  

 Poorly managed waste can produce residuals that can affect human health, environment, 

and the economy. It often results in downstream costs higher than what it would have cost to 

manage the waste appropriately from the beginning. Waste can contribute to greenhouse gas 

emissions from methane release during biodegradation (IEA, 2013b). However, properly 

managed waste coupled with clean energy or electricity generation is a way to reduce waste and 

greenhouse gases with one process. Even in developing countries, biogas projects can help small 

farmers and villages by producing electricity with reduced fuel crops. For example, biogas has 

long been used in small pig farms in Asian countries and Latin America (IEA, 2013b). Not only 

does this enhance the incomes of pig farmers, but it also captures methane for on-farm use and 

treats effluent so there is safe water for irrigation and drinking. The methane can be captured and 

ignited for cooking and heating. In more developed countries, small-scale or medium-sized 
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operations can also find additional revenue by selling bioenergy to clients or reducing their own 

on-site energy costs.  

 

This section shows that through different technologies, bioenergy can be generated from 

many sources of biological material. These technologies employ thermochemical processes such 

as combustion, pyrolysis, and gasification, which are techniques that can also vary product ratios 

and determine a feedstock’s end use. Wood chips are harvested, processed and chipped, and 

heated for energy. Biofuel crops are harvested and treated with enzymes and microorganisms to 

undergo chemical reactions and biochemical processes. Once cellulosic breakdown has occurred, 

plant sugars are fermented into liquid fuel. Organic waste comes in many different forms but is 

processed in one of two ways, using heat (incinerating material) or anaerobic digestion 

(producing biogas from anaerobic enzymes). The following section will reference three cost-

benefit studies that analyze these technologies. 

   

 

 

 

 

 

 

 

 

 



  Den 27

Figure 5. Total Municipal Solid Waste Generation in 2013 By Material 

 
Source: Reprinted from “Municipal Solid Waste” by the U.S. DOE Environmental Protection 
Agency, 2014, Retrieved from https://www3.epa.gov/epawaste/nonhaz/municipal/ 
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Figure 6. Anaerobic Digestion Process 

 

Source: Reprinted from “Four phases to produce biomass” by the Sustainable Energy Authority 
of Ireland, n.d., Retrieved from 
http://www.seai.ie/Renewables/Bioenergy/Bioenergy_Technologies/Anaerobic_Digestion/The_P
rocess_and_Techniques_of_Anaerobic_Digestion/ 

 

 

 

 

 

 

methane (CH4,) carbon dioxide (CO2), hydrogen sufide (H2S), etc.

BIOGAS

acetic acid (CH3COOH),

carbon dioxide (CO2), hydrogen (H2), etc.

short-chain organic acids 

(e.g. propionic acids)

alcohols

fatty acids, amino acids, sugars

(short-chain polymer and dimers)

SUBSTRATES

fats, proteins, carbohydrates (long-chain polymers)



  Den 29

Table 1. Methane Yield for MSW 
Type of MSW    Methane Yield (m3/kg Organic Dry Substance) 

Mechanically sorted (fresh)    0.22 
Mechanically sorted (dried)    0.22 
Hand sorted    0.21 
Grass    0.21 
Leaves    0.12 
Branches    0.13 
Mixed Yard Waste    0.14 
Office Paper    0.37 
Corrugated Paper    0.28 
Printed Newspaper    0.10 

 

Table 2. Methane Yield for Fruit & Vegetable Waste 
Types of Fruit & Vegetable Waste    Methane Yield (m3/kg Organic Dry Substance) 

Mango peels    0.37‐0.52 
Banana peels    0.24‐0.32 
Orange peels    0.46 
Orange pressings    0.50 
Mandarin peels    0.49 
Mandarin pressings    0.43 
Whole mandarins (rotten)    0.50 
Lemon pressings    0.47 
Grape pressings    0.28 
Pomegranate peels    0.31 
Tomatoes (rotten)    0.21‐0.38 
Onion exterior peels    0.40 
Garden beet leaves    0.23 
Carrot leaves    0.24 
Cabbage leaves    0.31 

 

Table 3. Methane Yield for Manure 
Type of Manure    Methane Yield (m3/kg Organic Dry Substance) 

Pig    0.36 
Sow    0.38 
Dairy cattle    0.15 

 

Table 4. Methane Yield for Energy Crops 
Crop  Crop Yield  

(ton /hectare) 
Methane Yield (m3/kg Organic Dry Substance) 

Sugar beet  40‐70  0.39‐0.41 
Fodder beet  80‐120  0.40‐0.42 
Maize  40‐60  0.29‐0.34 
Corn cob mix  10‐15  0.35‐0.36 
Wheat  30‐50  0.35‐0.38 
Triticale  28‐33  0.32‐0.34 
Sorghum  40‐80  0.29‐0.32 
Grass  22‐31  0.29‐0.32 
Red clover  17‐25  0.30‐0.35 
Sunflower  31‐42  0.23‐0.30 
Wheat grain  6‐10  0.37‐0.40 
Rye grain  4‐7  0.30‐0.41 

 
Source: Reprinted from “Anaerobic digestion in global bio-energy production: Potential and 
research challenges” by L. Appels, et al., 2011, Renewable and Sustainable Energy Reviews, 15, 
p. 4295-4301.  
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Figure 7. Dry (Solid Waste) Digestion Processes 

 

Source: Reprinted from “Waste to Energy” by the International Energy Agency, 2013, Retrieved 
from http://www.ieabioenergy.com/wp-content/uploads/2014/03/ExCo71-Waste-to-Energy-
Summary-and-Conclusions-28.03.14.html  
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Figure 8. Agricultural Residues and Manure Availability by County in 2030 

 

Source: Reprinted from “Turning Agricultural Residues and Manure into Bioenergy” by the 
Union of Concerned Scientists, 2014, Retrieved from 
http://www.ucsusa.org/sites/default/files/legacy/assets/documents/clean_vehicles/Agricultural-
Residue-Ranking.html  
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Figure 9. Anaerobic Digestion of Manure 

 

Source: Reprinted from “Basics of energy production through anaerobic digestion of livestock 
manure” by K. Illelji, et al., 2008, Retrieved from 
https://www.extension.purdue.edu/extmedia/ID/ID-406-W.html  
 

 

 

 

 

 

 

 

 

 

 


