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There are numerous frequentist statistics variable selection methods

such as Stepwise regression, AIC and BIC etc. In particular, the latter two

criteria include a penalty term which discourages overfitting. In terms of the

framework of Bayesian variable selection, a popular approach is using Bayes

Factor (Kass & Raftery 1995), which also has a natural built-in penalty term

(Berger & Pericchi 2001). Zellner’s g prior (Zellner 1986) is a common prior

for coefficients in the linear regression model due to its computational speed

of analytic solutions for posterior. However, the choice of g is a problem

which has attracted a lot of attention. (Zellner 1986) pointed out that if g is

unknown, a prior can be introduced and g can be integrated out. One of the

prior choices is Hyper-g Priors proposed by (Liang et al. 2008). Instead of

proposing a prior for g, we will assign a fixed value for g based on controlling

the Type I error for the test based on the Bayes factor. Since we are using
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Bayes factor to do model selection, the test statistic is Bayes factor. Every

test comes with a Type I error, so it is reasonable to restrict this error under

a critical value, which we will take as benchmark values, such as 0.1 or 0.05.

This approach will automatically involve setting a value of g. Based on this

idea, a fixed g can be selected, hence avoiding the need to find a prior for g.

KEY WORDS: Model selection; Bayes factor; BIC; Zellner’s g prior; Type I

error
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Chapter 1

Model Selection

1.1 Linear Model

Regression analysis is arguably the most widely used dependence tech-

nique, applicable in various areas of decision making. The objective of linear

regression analysis is to measure the relationship between a dependent vari-

able and one or more independent variables (Hair 2010). For example, does

protein power help people gain muscle? Or what are the features of the drilling

process that affect gas production?

In linear regression, a set of weighted independent variables form the

regression equation, which is a linear combination of the independent variables

that best predict the dependent variable (Christensen 2011). In other words,

the dependent/response variable is modeled through the linear combination of

independent/explanatory variables and error.

This linear model is given by

Y = Xβ + ε,

where

Y = (y1, . . . , yn)′

1



is the response variable, n represents the number of observations. Here

X =

 x11 · · · x1p
...

...
xn1 · · · xnp


is the design matrix with size of n× p,

β = (β1, . . . , βp)
′

is the parameter vector to be estimated and

ε = [ε1, . . . , εn]′ ∼ N(0, σ2I),

where σ2 is the variance of each εi. εi is the error term which adds noise

to the relationship between the dependent variable and the predictors. The

conditional expectation of dependent variable E[Y |X] is therefore equal to Xβ.

σ is assumed to be fixed in this report.

The Ordinary Least Squares estimate of β is given by

β̂ = (X ′X)−1X ′Y. (1.1)

It is referred to as Best Linear Unbiased Estimator of β. We have

E[β̂] = β

and

V ar[β̂] = σ̂2(X ′X)−1,

where

σ̂2 =
(Y −Xβ̂)′(Y −Xβ̂)

n− 2

2



(Christensen 2011).

In this report, for the sake of convenience and ease of exposition, I will

use two predictors in the linear regression model, so for i = 1, . . . , n

yi = x1iβ1 + x2iβ2 + εi. (1.2)

Without loss of generality, we can assume that
n∑
i=1

x2
1i =

n∑
i=1

x2
2i = 1

and
n∑
i=1

x1i · x2i = ρ.

An important problem in linear regression is variable selection. The

aim of this procedure is to reduce the whole set of predictors to a best sub-

set. Identifying the predictors that significantly affect the response variable is

crucial (Christensen 2011); it is also necessary since the redundant covariates

need be removed so that the model can be precise, simple and can provide

accurate predictions. To be more specific, the problem of collinearity can arise

if two or more predictors are explaining the same thing.

In other words, in terms of likelihood, we would expect that the like-

lihood value will increase as the number of predictors goes up, i.e., the com-

plexity of the model becomes bigger. The problem is that a model with more

predictor variables will always do better than the simpler model. But this

leads to a problem called “overfitting”, which will destroy the prediction ac-

curacy. Hence, a good variable selection strategy is as crucial as the problem

of variable selection itself.
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A traditional frequentist method is Stepwise regression from (Efroym-

son 1960). One of the main approaches is Forward selection, which starts

without any covariates in the model, importing each additional predictor into

the model, testing whether it improves the model by F-test or t-test and re-

moves any predictor which becomes insignificant as a result of introducing the

new predictor, repeating this process until it reaches a equilibrium point where

including a new variable will not draw a significant improvement of the model.

(Kadane & Lazar 2004) mentioned that the selected model does not have to be

the best, it is only the result of the algorithm applied to the particular dataset.

The reason is the stepwise methods do not correspond to some specific criteria

(Weisberg 1985). There are some other classical approaches or criteria such

as Cp by (Mallows 1964), Akaike Information Criterion by (Akaike 1973), and

Bayesian Information Criterion proposed by (Schwartz 1978). Mallows’s Cp

addresses the issue of overfitting while it is subject to selection bias (Mallows

1995). Recent work from (Boisbunon et al. 2014) showed that Cp and AIC are

equivalent in the special case of Gaussian linear regression. Both AIC and BIC

take the penalty terms into account, which penalize against the complexity of

the model.

1.2 Bayes Factor

A common approach in Bayesian statistics is using Bayes Factor (Kass

& Raftery 1995). Denote the model,

M = {f(y|θ), π(θ)} ,

4



where f(y|θ) is the probability density function and π(θ) is the prior for the

parameters. Suppose two models are of interest to us, M0 and M1. Typically,

we usually assume

P (M1) = P (M2) =
1

2
.

P (Y |M) is denoted as the marginal likelihood. So by Bayes Theorem,

P (M1|Y ) =
P (Y |M1)P (M1)

P (Y |M1)P (M1) + P (Y |M0)P (M0)

and so

P (M0|Y )

P (M1|Y )
=
P (Y |M0)

P (Y |M1)
× P (M0)

P (M1)
.

So in words,

the posterior odds =
P (Y |M0)

P (Y |M1)
× prior odds

and

B =
P (Y |M0)

P (Y |M1)

is known as the Bayes factor. Notice that the key to update of the odds is the

Bayes factor.

For example, if we want to test two candidate models, M0 (Log-normal) against

M1 (Weibull). Θ0 is denoted as the parameter space for M0 and Θ1 is denoted

as the parameter space for M1. So this is testing

H0 : data comes fromM0 against H1 : data comes fromM1.

5



The Bayes factor is calculated by

B10(Y ) =

´
Θ1
π(θ1|M1)P (Y |θ1,M) dθ1´

Θ0
π(θ0|M0)P (Y |θ0,M0) dθ0

,

where π(θ|M) is the conditional prior for the parameter and P (Y |θ,M)

is the likelihood function. Notice that larger B10 supports the model on the

numerator.

6



Chapter 2

Zellner’s g prior

2.1 Zellner’s g prior

In normal linear multiple regression model, (Zellner 1986) in his paper

mentioned that assessing the informative prior distribution for the coefficient

parameters is important. He proposed a reference informative prior called “g

prior” which is easy to evaluate the prior covariance for the elements of β. As

Zellner mentioned, this g prior is relatively simple to use.

The g prior for β is given by

β|σ2 ∼ N
(
β0, σ

2g(X ′X)−1
)
.

Notice that typically, β0 = 0. This conjugate prior yields the Gaussian

posterior for β, which is given by

β|σ2, X, Y ∼ N(Σ−1a,Σ−1), (2.1)

where

Σ =
1

g

(
σ2(X ′X)−1

)−1
+

1

σ2
X ′X,

and

a =
1

g

(
σ2(X ′X)−1

)−1
β0 +

1

g
X ′Y.

7



Recall that

β̂ = (X ′X)−1X ′Y.

Hence, the posterior is

β|Y, σ2, X ∼ N

(
1

g + 1
(β0 + gβ̂),

gσ2

g + 1
(X ′X)−1

)
.

So the posterior mean

E[β|Y, σ2, X] =Σ−1a

=
1

1 + g
β0 +

g

1 + g
(X ′X)−1X ′Y

=
1

1 + g
β0 +

g

1 + g
β̂.

Zellner’s informative g prior intuitively determines how much the prior

distribution of β contributes to the posterior. For instance, if g = 0, the

posterior mean fully shrinkages to the prior mean; if g = 1, the posterior mean

shrinkages 50% to the prior mean; if g goes to ∞, the prior is a diffuse prior

(Geinitz 2009).

Zellner’s g prior is popular in variable selection. It provides a closed

form for the marginal likelihood and an explicit expression for Bayes factor,

which ensures a fast computation. However, the choice of g is problematic.

(Zellner 1986) himself mentioned that g can depend on the sample size n, e.g.,

g ∝ 1
n

or put a prior on g, and g can be integrated out. g could be chosen by

finding the maximum posterior probability and corresponding to some popular

selection criteria mentioned above, such as BIC and AIC. (George & Foster
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2000) proposed the empirical Bayes selection criteria which have dimension-

ality penalties depending on the data. (Liang et al. 2008) proposed Hyper-g

priors, which provides robustness to misspecification of g while maintaining

the computational efficiency.

2.2 Choice for g

In terms of this two variables setting, I will implement the calibration

idea that equalizing BIC and posterior probability to find the value for g.

2.2.1 Bayesian Information Criterion

A frequentist statistics strategy for model selection is called BIC (Bayesian

Information Criterion) (Schwarz 1978). The model with the lowest BIC is pre-

ferred.

The BIC is formally defined as

BIC = −2 · log(L̂) + k · log(n),

where n is the number of observations, k is the number of parameters and L̂

is the maximized value of the likelihood function of the model with respect to

the parameter θ.

9



2.2.2 Model Selection Using Posterior Probabilities

Assume the prior for each model is the same, we are interested in the

posterior probability of each model M given the data, so we have

P (M|Y ) =
P (Y |M) · P (M)∑4
i=1 P (Mi) · P (Y |Mi)

,

where the denominator is the normalizing constant that is same for all of the

four models.

In terms of the numerator, we can write p(Y |M) as
´
p(Y |M, β)π(β) dβ.

Assume that P (M1) = p(M2) = p(M3) = P (M4). We are left with figuring

out the integral.

For the basic model,

p(Y |M1) =

ˆ
p(Y |M1, β)π(β) dβ =

(
1

σ
√

2π

)n
· exp

[
−1

2

∑n
i=1 y

2
i

σ2

]
and

p(M1|Y ) ∝p(M1) · p(y|M1) ∝ p(M1) ·
(

1

σ
√

2π

)n
· exp

[
−1

2

∑n
i=1 y

2
i

σ2

]
For model with X1,

p(M2|Y ) ∝p(M2) ·
(

1

σ
√

2π

)n
· 1√

1 + g
· exp

[
1

2σ2

a2

1 + 1
g

]
· exp

[
− 1

2σ2

n∑
i=1

y2
i

]
(2.2)

Similarly, for model with X2,

p(M3|Y ) ∝p(M3) ·
(

1

σ
√

2π

)n
· 1√

1 + g
· exp

[
1

2σ2

b2

1 + 1
g

]
· exp

[
− 1

2σ2

n∑
i=1

y2
i

]

10



For the full model,i.e., model with both variables,

p(M4|Y ) ∝p(M4) ·
(

1

σ
√

2π

)n
· 1

1 + g
· exp

[
1

2σ2
· a

2 + b2 − 2abρ

(1− ρ2)(1 + 1
g
)

]

· exp

[
− 1

2σ2

n∑
i=1

y2
i

]
(2.3)

2.2.3 Model Selection Using BIC

The basic model is the one without any independent variables. That is

to say, yi = εi, for i = 1, . . . , n.

Assume
∑n

i=1 x1iyi = a,
∑n

i=1 x2iyi = b. Since we have two predictors,

we will have four different candidate models which are the basic model, i.e.,

the one without any predictors, the model with only one predictor and the full

model, i.e., the one with both predictors.

Without any predictors,

BIC1 = n log(2π) + 2n log(σ) +

∑n
i=1 y

2
i

σ2
(2.4)

With only X1 in the model,

BIC2 = n log(2π) + 2n log(σ) +

∑n
i=1 y

2
i

σ2
− a2

σ2
+ log(n) (2.5)

With only X2 in the model,

BIC3 = n log(2π) + 2n log(σ) +

∑n
i=1 y

2
i

σ2
− b2

σ2
+ log(n) (2.6)

With both X1 and X2 in the model,

BIC4 = n log(2π) + 2n log(σ) +

∑n
i=1 y

2
i

σ2
− a2 + b2

(1− ρ2)σ2
+

2abρ

(1− ρ2)σ2
+ 2 log(n)

(2.7)
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2.2.4 Choose g to Make Both Criteria Equivalent

In this section, four models are compared to see what condition needs

be met to select the most appropriate one. And how g needs to be chosen to

make both criteria equivalent to each other.

1. If the null model M1 is most preferred, i.e., BIC1 is the lowest,
a2

σ2 − log(n) < 0
b2

σ2 − log(n) < 0
a2−2abρ+b2

(1−ρ2)σ2 − 2 log(n) < 0

=⇒


a2 < σ2 log(n)
b2 < σ2 log(n)

a2+b2−2abρ
1−ρ2 < 2σ2 log(n)

Equivalently, from Bayesian perspective, P (M1|Y ) must be the biggest

to make M1 the preferred model. So,
exp[ 1

2σ2 · a2

1+1/g
] · 1√

1+g
< 1

exp[ 1
2σ2 · b2

1+1/g
] · 1√

1+g
< 1

exp[ 1
2σ2 · a

2+b2−2abρ

(1−ρ2)(1+ 1
g

)
] · 1

1+g
< 1

=⇒


a2 < σ2(1 + 1

g
) log(1 + g)

b2 < σ2(1 + 1
g
) log(1 + g)

a2+b2−2abρ
1−ρ2 < 2σ2(1 + 1

g
) log(1 + g)

2. If the model with X1 is most preferred, i.e., BIC2 is the lowest,
a2 > σ log(n)

a2 > b2

(ρa−b)2
1−ρ2 < σ2 log(n)

Equivalently, P (M2|Y ) is believed to be the biggest to make M2 the

selected one, that is,
a2 > σ2(1 + g) log(1 + g)

a2 > b2

(ρa−b)2
1−ρ2 < σ2(1 + 1

g
) log(1 + g)

12



3. Similarly, in terms of model M3, From classic point of view,
b2 > σ2 log(n)

b2 > a2

(ρb−a)2

(1−ρ2)
< σ2 log(n)

From Bayesian point of view,
b2 > σ2(1 + 1

g
) log(1 + g)

b2 > a2

(ρb−a)2

1−ρ2 < σ2(1 + 1
g
) log(1 + g)

4. If the full model M4 is most preferred, we have
a2−2abρ+b2

1−ρ2 > 2σ2 log(n)
(ρa−b)2

1−ρ2 > σ2 log(n)
(ρb−a)2

1−ρ2 > σ2 log(n)

and 
a2−2abρ+b2

1−ρ2 < 2σ2(1 + 1
g
) log(1 + g)

(ρb−a)2

1−ρ2 < σ2(1 + 1
g
) log(1 + g)

(ρa−b)2
1−ρ2 < σ2(1 + 1

g
) log(1 + g)

It is obvious to see that if (1+ 1
g
) log(1+g) is set to log(n), posterior probability

selection criterion will get the same results as BIC.

13



Chapter 3

Hypothesis Testing

3.1 Statistical Hypothesis Testing

The statistical hypothesis is a testable assumption about the unknown

parameters in the model. A statistical hypothesis testing is a procedure that

is used to decide whether rejecting or not rejecting the hypothesis.

There are two hypotheses in statistical hypothesis testing, null hypothe-

sis and alternative hypothesis. The null hypothesis is that there is no difference

or relationship between the two measured quantities. The alternative hypoth-

esis is the rival opponent or opposite counterpart against the null hypothesis.

3.2 Type I Error

The type I error happens when you falsely reject the null while it is

true. The probability of making the type I error is usually denoted by α. For

example, testing β = 0 against β 6= 0, the type I error in this case is rejecting

β = 0 while the truth is β = 0.

In this report, σ is set to 1, a constant. The test statistics for model

selection is Bayes factor, here the type I error is incorrectly rejecting the basic

14



model when the basic model is the true model. Assume

(1 +
1

g
) log(1 + g) = λ(g)

and

A = {(a, b)|a2 < λ(g), b2 < λ(g),
a2 + b2 − 2abρ

(1− ρ2)
< 2λ(g)}.

So,

PM1 [P (M1|Y ) > P (M2|Y ), P (M1|Y ) > P (M3|Y ), P (M1|Y ) > P (M4|Y )]

(3.1)

=PM1

[
a2 < λ(g), b2 < λ(g),

a2 + b2 − 2abρ

(1− ρ2)
< 2λ(g)

]
=1− α.

3.3 Finding A

The idea is to find the value of g to get the probability given by (3.1).

Hence, all the three inequalities must be met simultaneously. Notice that (3.1)

can be also written as

ˆ ˆ
A

f(a, b) dadb,

where A is the constraints area in which a and b satisfy all the inequalities.

f(x, y) is the probability density function of the bivariate normal distribution,

namely,

f(a, b) =
1√

1− ρ2
· 1√

2π
exp

[
−1

2
× 1

1− ρ2
[a2 + b2 − 2abρ]

]
.

15



There are two ways to get the probability, one approach is to express the

probability explicitly by calculating out the integral, and the other approach

is by simulation. In this report, the second approach is applied to solve for g.

3.3.1 Visualization of Constraints

The boundary of the first two inequalities in (3.1) is a square, we have

(1 +
1

g
) log(1 + g) = λ(g).

Here I take λ(g) as 5 for illustration. Since σ is fixed, the constraints change

only as ρ changes. See Figure (3.1), (3.2) and (3.3).

3.3.2 Simulation

The other approach to get the value of g with controlling type I error

under the predetermined level is through simulation. We know that (a, b) is

bivariate normally distributed. Next, one thousand i.i.d. samples of (ai, bi) are

generated and a vector from 0.1 to 300 of g is set, so

P(A) ≈
1000∑
i=1

1

1000
× 1 [(ai, bi) ∈ A] .

That is calculating the ratio of the points that meet all inequalities and the

total points to estimate the true probability.

As we can see from both the table and the graph, the type I error

decreases as g gets larger, which makes sense because as g goes up, the area

of the constraints gets larger, there are more points tend to land in it. Notice

16



that the increasing speed of 1−α gets slower as g increases, this simply results

from the probability cannot be bigger than 1. In the graph, the horizontal

coordinate of the point where the red line crosses the blue line is the value of

g that satisfies our condition. See Table (3.1), Figure (3.4) and (3.5).

Table 3.1: Choice of g under different type I error and ρ

ρ Type I Error Value of g

0.20 0.20 11.5
0.15 18.5
0.10 41.2
0.05 178.7

0.50 0.20 11.0
0.15 20.1
0.10 38.9
0.05 232.6

-0.50 0.20 8.0
0.15 14.8
0.10 30.8
0.05 150.4

-0.75 0.20 6.9
0.15 12.5
0.10 32.2
0.05 148.4

0.00 0.20 10.0
0.15 18.3
0.10 42.9
0.05 148.1
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(a) Plot of constraints when ρ = 0 (b) Plot of constraints when ρ = 1

Figure 3.1: Plots of constraints when ρ is 0 or 1

(a) Plot of constraints when ρ = −0.5 (b) Plot of constraints when ρ = −0.75

Figure 3.2: Plots of constraints when ρ is negative

(a) Plot of constraints when ρ = 0.5 (b) Plot of constraints when ρ = 0.2

Figure 3.3: Plots of constraints when ρ is positive
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(a) Plot of g when ρ = −0.5 (b) Plot of g when ρ = −0.75

Figure 3.4: Plots of g when ρ is negative

(a) Plot of g when ρ = 0.5 (b) Plot of g when ρ = 0.2

Figure 3.5: Plots of g when ρ is positive
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Chapter 4

Data Analysis and Conclusion

4.1 Data Analysis

In this part, the technique of selecting g proposed in the previous chap-

ter will be used accordingly to do data analysis. I use the Boston housing

dataset which is from UC Irvine Machine Learning Repository. The response

variable is Median value of owner-occupied homes in $1000′s. Two predictors

are weighted distances to five Boston employment centers and crime rate by

town respectively. Equal prior probability is assigned to each model. After

normalizing the predictors, ρ is found to be 0.169 and σ2 is estimated to be

155.46 by OLS estimation. Since g depends on ρ and σ, we get g = 177.1

through simulation by making the α to be 0.05. We can see from the following

Figure (4.1).

The Bayes factor is the same as posterior odds. The log ratio of it

is calculated by plugging in 177.1 for g. M1 is the basic model without any

predictors. M2 is the model with predictor “crime ratio”, while M3 is the

model with predictor “weighted distance” and M4 is the full model. The

estimate of β under Zellner’s g prior is

β = (44.205, 458.239)′
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while under OLS estimation,

β = (44.454, 460.826)′.

Recall that the model with the biggest posterior probability is preferred

and the model with the lowest BIC is preferred. So, as we can see from

the following Table (4.1), the full model is preferred in each model selection

criterion. However, the comparison result between M3 and M1 has stronger

evidence under the posterior probability criterion than under BIC. So does

the comparison between M2 and M3. We can also see that there is not much

difference when deciding to choose an appropriate model between M4 and M2.

Figure 4.1: Plots of g when ρ = 0.169, σ2 = 155.46
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Table 4.1: Model comparison under different criterion

Candidate models Log ratio of posterior probability Ratio of BIC

M3&M1 45.40259 0.9957683
M2&M3 15.39491 0.8623403
M4&M2 1.005076 0.9984994

4.2 Conclusion

In this report, a new way of determining g is proposed. Instead of

trying to assign a prior on g and maintain the good properties at the same

time, g can be easily found by controlling the type I error of the test. A test is

a test, it always has a type I error. It is intuitive to come up with a value for g

through the type I error. We usually do not consider type I error in Bayesian

hypothesis test, people just calculate the Bayes factor and make conclusions

based on that. Here I incorporate the type I error and calculate the Bayes

factor. It is a mixture of Bayesian and frequentist methods. For convenience,

only two predictors are allowed in the linear regression equation. However,

simulation speed may go down when dealing with more and more predictors;

when σ2 is unknown, a prior on it should be given.
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Appendix A

Derivation of Posterior Probability for β

For (2.1)

P (β|σ2, X, Y ) ∝ P (Y |X, β, σ2) · P (β|σ2, X)

∝ exp

[
−(Y −Xβ)′(Y −Xβ)

2σ2

]
· exp

[
−(β − β0)′(X ′X)(β − β0)

2σ2g

]
∝ exp

[
−
β′X ′Xβ − 2β′X ′Y + 1

g
β′X ′Xβ − 2

g
β0X

′Xβ

2σ2

]

∝ exp

[
−1

2

[
β − (β0 + g(X ′X)−1X ′Y )

1 + g

]′
X ′X
σ2g
1+g

[
β − (β0 + g(X ′X)−1X ′Y )

1 + g

]]
.

So

β|σ2, X, Y ∼ N

(
β0 + g(X ′X)−1X ′Y

1 + g
,
X ′X
σ2g
1+g

)
.
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Appendix B

Derivation of BIC

For (2.4)

BIC1 = −2 · log(L̂) + 0 · log(n)

= −2 · log

[(
1√

2π · σ

)n
· exp

(
−
∑n

i=1 y
2
i

2σ2

)]
= −2 ·

[
−n

2
log(2π)− n log(σ)−

∑
i = 1ny2

i

2σ2

]
= n log(2π) + 2n log(σ) +

∑n
i=1 y

2
i

σ2
.

For (2.5)

BIC2 = −2 · log(L̂) + 1 · log(n)

= −2 · log

[(
1√

(2π) · σ

)n

· exp

(
−
∑n

i=1(yi − β̂1x2i)
2

2σ2

)]
+ log(n). (B.1)

The oridnary least square estimate from (1.1) for β1 is

β̂1 = (X
′

1X1)−1 ·X ′1 · Y =

∑n
i=1 x1iyi∑n
i=1 x

2
1i

,

which is equivalent to the maximized likelihood estimate for β1, see (Chris-

tensen 2011). Plug it into (B.1), we have
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BIC2 = n log(2π) + 2n log(σ) + log(n) +

∑n
i=1

(
yi −

∑n
i=1 x1iyi∑n
i=1 x

2
1i
· x1i

)2

σ2

= n log(2π) + 2n log(σ) + log(n) +

∑n
i=1 y

2
i − 2·a2∑n

i=1 x
2
1i

+
∑n

i=1 x
2
1i · a2

(
∑n

i=1 x
2
1i)

2

σ2

= n log(2π) + 2n log(σ) + log(n) +

∑n
i=1 y

2
i

σ2
− a2∑n

i=1 x
2
1i · σ2

= n log(2π) + 2n log(σ) + log(n) +

∑n
i=1 y

2
i

σ2
− a2

σ2
.

Similarly, for (2.6),

BIC3 = −2 · log

[(
1√

(2π) · σ

)n

· exp

(
−
∑n

i=1(yi − β̂2x2i)
2

2σ2

)]
+ log(n)

= n log(2π) + 2n log(σ) + log(n) +

∑n
i=1 y

2
i

σ2
− b2

σ2
.

For (2.7),

BIC4 = −2 · log(L̂) + 2 · log(n) (B.2)

= n log(2π) + 2n log(n) +

∑n
i=1(yi − x1i · β̂1 − x2i · β̂2)2

σ2
+ 2 log(n).

Notice that

X ′X =

[
1 ρ
ρ 1

]
(X ′X)−1 =

1

1− ρ2

[
1 −ρ
−ρ 1

]
|(X ′X)−1| = 1

|X ′X|
=

1

1− ρ2
.
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So

β̂1 =
n∑
i=1

(
1

1− ρ2
xi1yi −

ρ

1− ρ2
xi2yi),

and

β̂2 =
n∑
i=1

(
1

1− ρ2
xi2yi −

ρ

1− ρ2
xi1yi).

(B.2) can be rewritten as

BIC4 = n log(2π) + 2n log(n) +

∑n
i=1 y

2
i

σ2
+

[∑n
i=1( 1

1−ρ2xi1yi −
ρ

1−ρ2xi2yi)
]2

σ2
+[∑n

i=1( 1
1−ρ2xi2yi −

ρ
1−ρ2xi1yi)

]2

σ2
−

2
∑n

i=1 xi1yi

[∑n
i=1( 1

1−ρ2xi1yi −
ρ

1−ρ2xi2yi)
]

σ2

−
2
∑n

i=1 x2iyi

[∑n
i=1( 1

1−ρ2xi2yi −
ρ

1−ρ2xi1yi)
]

σ2
+ 2 log(n)

= n log(2π) + 2n log(n) + 2 log(n) +

∑n
i=1 y

2
i

σ2
− a2 − 2abρ+ b2

(1− ρ2)σ2
.
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Appendix C

Derivation of Posterior Probability for

Different Models

For (2.2)

p(M2|Y ) ∝ p(M2) · p(Y |M2)

∝P (M2) ·
ˆ (

1

σ
√

2π

)n
exp

[
− 1

2σ2
·

n∑
i=1

(yi − x1iβ1)2

]
·

exp

[
− 1

2σ2
β2

1 ·
1

g

]
· 1√

2πσ
√
g
dβ

∝p(M2) ·
(

1

σ
√

2π

)n
· 1√

2πσ
√
g
·
ˆ

exp

[
1

2σ2
· (1 +

1

g
) · (β1 −

a

1 + 1
g

)2

]
dβ·

exp

[
1

2σ2
· a2

1 + 1
g

]
· exp

[
− 1

2σ2

n∑
i=1

y2
i

]

=p(M2) ·
(

1

σ
√

2π

)n
· 1√

2πσ
√
g
·
√

2πσ√
1 + 1

g

· exp

[
1

2σ2
· a2

1 + 1
g

]

· exp

[
− 1

2σ2

n∑
i=1

y2
i

]

=p(M2) ·
(

1

σ
√

2π

)n
· 1√

1 + g
· exp

[
1

2σ2

a2

1 + 1
g

]
· exp

[
− 1

2σ2

n∑
i=1

y2
i

]
.
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For (2.3)

p(M4|Y ) ∝ p(M4) · p(Y |M4)

=p(M4) ·
ˆ (

1

σ
√

2π

)n
· exp

[
− 1

2σ2

n∑
i=1

(yi − x1iβ1 − x2iβ2)2

]

· exp

[
− 1

2σ2

β′(X ′X)β

g

]
· 1

2π
√

(σ2g)2|(X ′X)−1|
dβ

=P (M4) ·
(

1

σ
√

2π

)n
·
ˆ

exp

[
−

[(Y −Xβ)′(Y −Xβ) + β′(X′X)β
g

]

2σ2

]
dβ

· 1

2π(σ2g)
√
|(X ′X)−1|

=P (M4) ·
ˆ

exp

[
−

[Y ′Y − Y ′Xβ − β′X ′Y + β′X ′Xβ + 1
g
β′X ′Xβ]

2σ2

]
dβ

·
(

1

σ
√

2π

)n
· 1

2π
√

(σ2g)2|(X ′X)−1|

=P (M4) ·
ˆ

exp

−(1 + 1
g
)(β − (X′X)−1X′Y

1+ 1
g

)′(X ′X)(β − (X′X)−1X′Y

1+ 1
g

)

2σ2

 dβ

·
(

1

σ
√

2π

)n
· exp

[
1

2σ2

Y ′X(X ′X)−1X ′Y

1 + 1
g

]
· 1

2πσ2g
√
|(X ′X)−1|

· exp

[
− 1

2σ2

n∑
i=1

y2
i

]

=P (M4) ·
(

1

σ
√

2π

)n
· 1

1 + g
· exp

[
1

2σ2

Y ′X(X ′X)−1X ′Y

1 + 1
g

]

· exp

[
− 1

2σ2

n∑
i=1

y2
i

]

∝p(M4) ·
(

1

σ
√

2π

)n
· 1

1 + g
· exp

[
1

2σ2
· a

2 + b2 − 2abρ

(1− ρ2)(1 + 1
g
)

]

· exp

[
− 1

2σ2

n∑
i=1

y2
i

]
.
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