
Copyright

by

Christopher Garrett Kennedy

2018

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UT Digital Repository

https://core.ac.uk/display/211332782?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

The Dissertation Committee for Christopher Garrett Kennedy
certifies that this is the approved version of the following dissertation:

Fast High Dimensional Approximation via Random

Embeddings

Committee:

Rachel Ward, Supervisor

François Baccelli

Andrew Blumberg

Eric Price

Fast High Dimensional Approximation via Random

Embeddings

by

Christopher Garrett Kennedy

DISSERTATION

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

THE UNIVERSITY OF TEXAS AT AUSTIN

December 2018

Acknowledgments

First and foremost, I thank my advisor Rachel Ward for her continu-

ous support throughout my graduate career. I also thank my committee for

agreeing to supervise this thesis, and for the time and feedback they dedicated

to it.

I thank my parents Tom and Diana, for their unending guidance. Thank

you to all the friends who have made my days better in every way.

Many UT staff have been invaluable and timely throughout this process,

I would especially like to thank Elisa Armendariz, Dan Knopf, Sandra Catlett,

and Tim Perutz.

Lisa, nothing in my life would be possible without you.

iv

Fast High Dimensional Approximation via Random

Embeddings

Publication No.

Christopher Garrett Kennedy, Ph.D.

The University of Texas at Austin, 2018

Supervisor: Rachel Ward

In the big data era, dimension reduction techniques have been a key

tool in making high dimensional geometric problems tractable. This thesis

focuses on two such problems - hashing and parameter estimation. We study

locality sensitive hashing(LSH), which is a framework for randomized hashing

that efficiently solves an approximate version of nearest neighbor search. We

propose an efficient and provably optimal hash function for LSH that builds

on a simple existing hash function called cross-polytope LSH. In the context

of parameter estimation, we focus on regression, for which the well-known

LASSO requires precise knowledge of the unknown noise variance. We provide

an estimator for this noise variance when the signal is sparse that is consistent

and faster than a single iteration of LASSO. Finally, we discuss notions of

distance between probability distributions for the purposes of quantization

and propose a distance metric called the Rényi divergence, that achieves both

large and small scale bounds.

v

Table of Contents

Acknowledgments iv

Abstract v

List of Tables viii

List of Figures ix

Chapter 1. Introduction 1

1.1 Nearest Neighbor Search . 3

1.2 Regression . 5

1.3 Robust Quantization . 8

1.4 Main Results . 10

1.4.1 Fast Cross-Polytope LSH 10

1.4.2 Regression . 11

1.4.3 Quantization . 13

Chapter 2. Background 16

2.1 Dimension Reduction Techniques 16

2.1.1 Restricted Isometry Property/Connections 17

2.2 Regression and the LASSO . 19

Chapter 3. Variance Estimation for the LASSO 22

3.1 Standard Methods . 23

3.2 Greedy Variance Estimation – The Orthonormal Case 23

3.3 Greedy Variance Estimation – RIP Design Matrix 26

3.4 LASSO Experiments . 28

3.4.1 Optimal Window Size 30

3.4.2 High Dimension . 33

vi

3.4.3 Orthogonal Design Matrix 33

3.4.4 Dense Signal . 37

3.5 Real Data . 39

3.6 LASSO Proofs . 41

3.6.1 Proof Ingredients . 41

3.6.2 Proof of Theorem 16 . 44

3.6.3 Proof of Theorem 17 . 46

Chapter 4. Locality Sensitive Hashing 50

4.1 LSH Schemes . 52

4.1.1 Fast cross-polytope LSH with optimal asymptotic sensi-
tivity . 55

4.1.2 Fast cross-polytope LSH with optimal asymptotic sensi-
tivity and few random bits 56

4.2 LSH Results . 58

4.3 Theorem 29 Proof Outline . 60

4.3.1 Proof of Theorem 29 Part (ii-) 62

4.4 Theorem 30 Proof Outline . 64

4.5 Proofs of Lemmas . 66

4.5.1 Proof of Lemma 31 . 66

4.5.2 Proof of Lemma 32 . 67

4.5.3 Proof of Lemma 35 . 68

4.6 LSH Numerics . 70

Chapter 5. Distributional Robustness of Quantization Error 76

5.1 Rényi Divergences . 80

5.2 Finite Sample Bounds . 83

5.3 Future Work . 84

Bibliography 86

Vita 98

vii

List of Tables

3.1 Optimal window sizes as a function of α, ‖β‖2. 33

3.2 σ and λ values for real data sets. 40

4.1 Various LSH Families and corresponding Hash Functions. 58

viii

List of Figures

3.1 LASSO estimators with window size based on inflection point. 31

3.2 LASSO estimators with optimal window size. 32

3.3 LASSO estimators in the high dimensional regime. 34

3.4 LASSO estimators with orthogonal design matrix. 36

3.5 LASSO estimators with dense signal. 38

3.6 MSE for 10-fold CV LASSO using data from [57], with the λ
value given by the estimator from Algorithm 2 marked in magenta. 41

3.7 MSE for 10-fold CV LASSO using data from [5]. 42

3.8 MSE for 10-fold CV LASSO using data from [27]. 43

4.1 LSH collision probabilities, d = 128, d′ = 128 72

4.2 LSH collision probabilities, d = 128, d′ = 64 72

4.3 LSH collision probabilities, d = 128, d′ = 32 72

4.4 LSH collision probabilities, d = 256, d′ = 256 73

4.5 LSH collision probabilities, d = 256, d′ = 128 73

4.6 LSH collision probabilities, d = 256, d′ = 64 73

4.7 LSH collision probabilities by dimension, R = 0.4 74

4.8 LSH collision probabilities by dimension, R = 0.7 74

4.9 LSH collision probabilities by dimension, R = 1 75

4.10 LSH collision probabilities by dimension, R = 1.3 75

ix

Chapter 1

Introduction

Often for problems involving large amounts of data in very high dimen-

sion, computing even simple properties of the data set, for example pairwise

distances, can be prohibitively expensive to compute and store. To illustrate

this, consider a collection of 1 billion vectors of length 10000 (for example, a

database of images). Computing the distance between two vectors in MAT-

LAB on my laptop takes roughly 3 ∗ 10−5 seconds, which seems fast, but to

even find the nearest neighbor (by computing all pairwise distances with a

point) would take 5 and a half hours. There are two fundamental approaches

to dealing with these kinds of bottlenecks:

• Develop a better algorithm to the problem or a relaxation of the problem

that doesn’t require brute force computation.

• Reduce the dimensionality of the data to improve storage and computa-

tion time.

In this work we explore applications of both these techniques using modern

tools from random matrix theory. The main problems we are solving, detailed

below, are nearest neighbor search and regression. In both cases we assume

1

the dimension of the data is very high and, in the case of nearest neighbor

search, there are a lot of data points.

Common techniques for reducing the dimensionality of data include

principal components analysis (PCA) and all of its’ variants, as well as non-

linear methods such as self-organizing maps, autoencoders, kernel-PCA, etc.

However, these methods suffer from inefficiency on high-dimensional data, ei-

ther in the preprocessing or embedding step. In this work, we use subsampled,

fast matrices such as the Fast Fourier Transform (FFT). Although this choice

of matrix is classical and well-studied, the theory behind its’ use as a tool

in dimension reduction is much more recent. We also employ the following

principle, from [37], which extends the use of these matrix ensembles:

Reducing the dimension of a finite point set and reducing the dimension of

the set of all sparse vectors, while preserving pairwise distances, are “nearly”

equivalent.

“Nearly” has a precise quantitative meaning which we will see later. This

principle allows us to use fast dimension reducing matrices like subsampled

FFTs in problems like regression, where the underlying structure of some

estimator is sparse. In particular, we use the (fast) matrix ensembles used in

compressed sensing because they preserve distances on sparse vectors, can also

be used as dimension reducing matrices. This allows us to show our methods

are both (i-) provably efficient and (ii-) provably work for their corresponding

geometric problems.

2

1.1 Nearest Neighbor Search

Suppose we are given a set of points P = {x1, ..., xn} ⊂ X in a metric

space (X,D). The fundamental task we are trying to solve is to find the

nearest neighbor in our dataset.

Definition 1. (Exact Nearest Neighbor) Given a query point p ∈ P ,

return the point q ∈ P that minimizes

q := argminp0∈RD(p0, p).

The naive algorithm simply computes the pairwise distances D(p0, p)

for every p0 ∈ P and keeps a running index of the minimum. For euclidean dis-

tance in X = Rd, this algorithm runs in time O(nd) and becomes prohibitively

expensive when n, d � 0. The typical problem that occurs when trying to

improve this bound, in other words to achieve sublinear query time, is that

the storage requirements scale on the order of nO(d). This exponential growth

is suspected to be unavoidable except in problems with additional structure

(i.e.if the data lies in a low-dimensional manifold), and is a manifestation of

the “curse of dimensionality.”

In order to circumvent this, one needs to relax the problem we are trying

to solve. Specifically we replace the exact nearest problem with approximate

nearest neighbor search. The meaning of “approximate” can vary, but for our

purposes it means the following.

3

Definition 2. (Approximate Nearest Neighbor) Given p ∈ P and c, R >

0 and suppose that ∃p0 ∈ P s.t. D(p0, p) < R. Return (with high probability)

q ∈ P s.t. D(p, q) < cR.

It should be clear that this problem is a relaxation of nearest neighbor

search in the case that c > 1, and in general the performance of any algorithm

should degrade as c↘ 1. In fact, for c = 1, one can formulate an algorithm for

nearest neighbor search by varying R > 0. For now, we fix our metric space

X ⊂ Rd with the Euclidean metric.

One way to approach approximate nearest neighbors is to instead do a

preprocessing step that involves randomly hashing each point in P , then look-

ing for collisions in the hash maps. This requires careful choice of hash map,

because for this algorithm to work we need the hash function to be more likely

to map close points to the same hash value - so called Locality Sensitive

Hashing (LSH). The cost for improved query time is in precomputing the

hash values of every point.

From the above discussion, it should be clear that there is a tradeoff

between:

(i-) Query time

(ii-) Number of hash computations for each point

(iii-) Time to hash individual points.

4

Items (i-) and (ii-), as we will see later, can be simultaneously minimized using

a parameter called “sensitivity,” which quantifies how well our hash function

detects whether points are close. In fact, hash functions have been constructed

that achieve the (asymptotically) optimal lower bound in terms of sensitivity,

as d → ∞, but they are either hard to implement or have inefficient hash

computations.

As suggested in the first section, our approach to develop a more ef-

ficient algorithm for LSH is to project our points via some FFT-type matrix

M : Rd → Rm where m � d, then hash our points in dimension m in such a

way that the sensitivity is preserved. The main advantage is that we replace a

typically dense matrix from Rd → Rd with a fast, structured projection matrix.

This allows us to do the hashing operation on m-dimensional points, which is

significantly faster when m = O(polylog d). Our algorithm is adapted from a

previously studied scheme called cross-polytope LSH. It is easy to implement

and has properties that a straightforward to analyze using results on high-

dimensional Gaussians. This allows us to bootstrap our analysis on previous

results in a very straightforward way.

1.2 Regression

We now turn to the problem of regression analysis. In it’s simplest

form, the problem is the following.

Definition 3. Given y ∈ Rn, X ∈ Rn×p known and some unknown signal

β ∈ Rp such that y = Xβ + η where η ∈ Rn is noise of unknown variance,

5

return β̂ that minimizes

β̂ := argminβ0∈Rp ‖β − β0‖r,

for some r.

Obviously if the noise is unknown the above problem is in general in-

tractable. We make the simplifying assumption that η ∼ N(0, σ2) is Gaussian

with small variance. Of course when n ≤ p, r = 2, and there is no noise, the

problem can be solved exactly as β̂ = X†y, where X† := (XTX)−1XT is the

pseudoinverse.

We work in the case where p� n, where least squares is less effective.

Note that least squares cannot distinguish between solutions modulo the null

space of X, and can potentially lose a lot of information about the desired β.

For the problem to be more tractable, we make the assumption that β ∈ Rp

is s-sparse. We can think of s as having very small growth compared to the

other variables in the problem. Typical methods for solving the regression

problem when p� n need an accurate estimation of the variance of the noise.

Intuitively, this estimate should tell the algorithm how much it should try to

fit the estimate β to the transformed signal y. The LASSO solves a convex

optimization problem that balances fitting the signal and a regularization term

(typically some norm of the estimated β) to prevent overfitting. In particular,

we minimize

β̂ = argminβ ‖Xβ − y‖2
2 + λ‖β‖1, (1.1)

6

where λ is tuned according to the variance of the noise. If the exact noise level

is known, there are a large class of results called oracle inequalities that

provide bounds on ‖β̂− β‖r (where β̂ is the solution to the LASSO objective)

for various values of r ≥ 1.

Recall that β is s-sparse (with unknown level of sparsity), so ideally

we would use the `0 norm in (1.1) to promote sparsity. However, even if the

level of sparsity is known this penalization requires checking all O(ns) possi-

ble supports of β, which is intractable for even moderately sized s. On the

other hand, we can replace the `1 norm with ‖β‖2
2, which actually leads to a

closed form solution. This is called ridge regression or Tikhonov regulariza-

tion. However, as we will see later, the solution to this penalization also has

undesirable properties. There is a variant of ridge regression that uses a linear

combination of the `2 and `1 penalty terms, called the elastic net [73].

Our approach deviates from the LASSO penalization, and seeks to ex-

ploit the sparse structure of β using short, fast matrices typically used for

dimension reduction. We first compute XTy (where X is the design matrix

from above) and then take averages of the small entries of the resulting vec-

tor. The hope is that, provided the matrix XT behaves “well” with respect to

the sparse vector β, the small entries capture information about the variance

(remember the above assumption that the noise variance is small compared to

the signal). The bulk computational step is a simple matrix/vector multiplica-

tion. This is beneficial both because it is extremely simple to implement and

also because this operation is highly optimized in most languages and easily

7

parallelizable.

1.3 Robust Quantization

For the above problems, we are attempting to recover simple geomet-

ric information based on incoming data. In the case of LASSO, we want to

recover the variance of the noise in the received vector, and in LSH we want

to efficiently recover nearest neighbors from a given query point. Typically we

want to evaluate the performance of the algorithm - in the case of LASSO, the

variance and corresponding λ parameter, and for LSH the randomized hash

maps. In this section we generalize this framework to evaluate the performance

of a pre-trained algorithm on some incoming data set.

The algorithmic framework we use that is very natural in the geomet-

ric setting is quantization. Formally, quantization will partition the space into

various regions and hash it according to this partition, mapping the contin-

uous space to a discrete set of partition elements. We make the additional

simplifying assumption that our partition scheme is a Voronoi partition, i.e.

that each partition element is the set of points closest to a given point accord-

ing to some metric. Thus, a quantization scheme corresponds to an indexed

set of pairs Q = {(Pi, wi)} ⊂ Rd × Rd, where each wi is a point in Rd and

Pi = {x ∈ Rd : D(x,wi) ≤ D(x,wj) ∀j}.

Fix our distance to be the Euclidean metric, and assume our quantiza-

tion scheme is well adapted to some distribution P1. To quantify this, define

8

the quantization error

EP1,Q :=

∫
Rd
`(x, argminwi ‖x− wi‖2)dP1(x),

for some loss function `. This is enough to guarantee a hash function based on

a voronoi partition (as is common in LSH) is well-adapted to a distribution P1.

In addition to this global geometric property, we would like to also capture

local bounds on small probability events.

Suppose we receive samples qi ∼ P2 from a new distribution P2. There

are two fundamental questions we investigate:

• What notion of closeness between P1 and P2 will make the quantization

scheme Q have low error for both distributions (also, can we extend these

to finite sample bounds).

• What notion of closeness will ensure that small probability events ac-

cording to P1 will also have small probability in P2, i.e. scale invariant

bounds.

Note that the second item above allows for analysis of nearest neighbors in

the context of a quantization scheme.

There are various divergence and transportation based distance metrics

between probability distributions. Among the most popular are the Wasser-

stein distance and the Kullback-Leibner(KL) divergence. We will see in sec-

tion 5, both of these notions are insufficient for satisfying both conditions

9

listed above. Instead, we use a generalized KL divergence known as the Rényi

divergence,

Rα(P1‖P2) :=
1

α− 1
ln

(
EP2

dP1

dP2

α)
.

It can be shown that this approaches the Rényi divergence in the limit α ↓ 1.

This notion of distance turns out to be appropriate for all of the purposes

outlined above, and classifies proximity between the distributions P1 and P2

in both global and local properties.

1.4 Main Results

1.4.1 Fast Cross-Polytope LSH

There are many choices of hash functions in LSH that have various

advantages/disadvantages many of which we will mention later. One that we

will focus on because it has optimal asymptotic sensitivity and a very simple

formulation is cross-polytope LSH:

h(x) = argmin
u={±ei}

∥∥∥∥ Gx

‖Gx‖2

− u
∥∥∥∥

2

. (1.2)

Here, G ∈ Rd×d is a Gaussian matrix with i.i.d. N(0, 1) entries, so that x

is rotated uniformly at random, then rounded to the nearest ± unit vector

ei. This function has the obvious disadvantage that it takes time O(d2) to

compute. We replace the matrix G with a fast alternative G′ : Rd → Rd′

which supports matrix/vector multiplication in time O(d ln d). Our new hash

function becomes

h(x) = argmin
u={±ei}

∥∥∥∥ G′x

‖G′x‖2

− u
∥∥∥∥

2

. (1.3)

10

The choice of d′ can vary and can be tuned for desired sensitivity/runtime,

but for now we choose d = d′. Our main result about this version of cross-

polytope LSH is the following.

Theorem 4. Consider the hash family H defined by (1.3). Then, H has

the optimal rate of convergence in sensitivity as d → ∞ and supports time

O(d ln d) hash computation.

Using a construction from [33], we can replace our subsampled FFT

with a matrix that has only O(polylog d) random bits. With this and a similar

construction, we can extend our result.

Theorem 5. There is a hash family Ĥ that has the optimal rate of convergence

in sensitivity as d → ∞, supports time O(d ln d) hash computation, and only

requires O(polylog d) bits of randomness.

One big omission thus far is the precise meaning of sensitivity, and

also the optimal rate of convergence. These definitions, as well as proofs of

theorems 4 and 5 will be given in section 4. In section 4.6, we illustrate the

collision probability of our scheme compared to regular cross-polytope LSH for

various distances. We also highlight the collision probabilities by dimension,

versus the optimal rate mentioned above.

1.4.2 Regression

Our estimator for noise variance has a very simple formula for the case

where p = n and X ∈ Rp×p is orthogonal. Note that for the purposes of

11

estimating the noise variance, X is the identity w.l.o.g., so that we receive a

noisy signal y = β + η. We state the orthogonal estimator here because of it’s

simplicity:

1: Compute the window estimators Sj = 1
L

∑
i∈Ωj
|yi|2, j ∈ {1, 2, . . . , p/L}.

2: Let σ̂2 = (1 + 1
log(p)

)2L
p

∑p/(2L)
j=1 S(j), where {S(j)}j is a non-decreasing ar-

rangement of {Sj}j.

The above estimator is extremely efficient to compute, in fact the most

expensive step is computing the window estimators (assuming the number of

Ωj is relatively small, so that sorting is cheap). Additionally, it works well in

typical regimes.

Theorem 6. Suppose y = Xβ+η where X ∈ Rp×p is orthogonal, ηj ∼ N(0, σ2)

are independent and β is s-sparse. For window size

L = O(polylog(p)) and sufficiently small s, the above variance estimator sat-

isfies

|σ̂2 − σ2| ≤ 6σ2

log p
,

with probability 1− 2
p
.

We can extend our estimator to the case where p > n. In this case,

the estimator is nearly identical, but first we preprocess the vector y via mul-

tiplication by XT where X is the design matrix, and then apply the above

method. As we will see in section 3, assuming X is sufficiently “nice” we can

use this preprocessing step to exploit the sparsity of β. This is additionally

a use of the principle mentioned earlier this section, that matrices typically

12

used for dimension reduction also preserve distance of sparse vectors. For this

estimator, we have the following result.

Theorem 7. Suppose y = Xβ + η where X ∈ Rn×p is sufficiently well-

behaved, ηj ∼ N(0, σ2) are independent and β is s-sparse. For window size

L = O(polylog(p)), n ≥ L and sufficiently small s, then the generalized vari-

ance estimator satisfies

|σ̂2 − σ2| ≤ Cδ,β,p
log(p)

(σ2 + 1).

We hide the constant Cδ,β,p in the above theorem for simplicity, but it

approaches 0 at a rate of O(1/ polylog(p)) in typical regimes.

The full version of the above estimator and theorem will be given in sec-

tion 3. The proofs rely on combining properties of the matrix XT when applied

to the sparse vector β, and standard concentration results. We also provide

an empirical comparison to other standard variance estimators in section 3.4

as well as results on well known genomics data sets.

1.4.3 Quantization

Using the Rényi divergence mentioned above, we can formulate our first

result, a scale invariant bound between two probability distribution P1 and

P2. Note that for the Rényi divergence to exist, P1 and P2 must be mutually

absolutely continuous, but this is a necessary property for such a bound. Our

first result in the follow.

13

Proposition 8. Suppose P1 and P2 are probability distributions that are mu-

tually absolutely continuous. Then, for all events E,

P2(E)(α−1)/α exp[−(α− 1)Rα(P2‖P1)] ≤ P1(E)

≤ P2(E)α/(α−1) exp[(α− 1)Rα(P1‖P2)].

This result also implies a multiplicative bound between the quantization

error of P2, EP2,Q and the quantization error of P1, EP1,Q according to some

scheme P2 (we drop the subscript Q in our notation and assume this scheme

is fixed):

exp[−(α− 1)Rα(P2‖P1)]EP2 ≤ EP1 ≤ exp[(α− 1)Rα(P1‖P2)]EP2 .

Making a further assumption that the distributions are supported in a

ball of radius R > 0, we can use concentration inequalities to get finite sample

bounds on the quantization error of an incoming set of point qi ∼ P2.

Proposition 9. Suppose that P1 and P2 are mutually absolutely continuous,

such that

Rα(P1‖P2), Rα(P2‖P1) ≤ δ, for some α > 1, δ > 0. Suppose also that we have

some fixed quantization scheme Q with error EP1 < ε on distribution P1 and

ε > 0 small, and we receive {qi}Ni=1 ∼ P2. Then,

P2(|ÊP2 − EP1| ≥ t+ CR,δ,ε,α) ≤ 2 exp

(
−2Nt2

R2

)
. (1.4)

The constant CR,δ,ε,α → 0 as δ → 0. Roughly, the proposition says that

the sample quantization error of points from P2 approaches the true sample

14

error as the number of points goes to infinity, and the Rényi divergence between

the distributions goes to 0.

We note that these results can be leveraged to achieve bounds on more

precise events, such as the probability that the k nearest neighbors land in

the same Voronoi cell (i.e. partition element of the quantization scheme) for

some k, but the parameters become unmanageable. These considerations are

beyond the scope of this work.

15

Chapter 2

Background

2.1 Dimension Reduction Techniques

A key technique throughout this work and a common theme across all

high-dimensional data analysis is to first reduce the dimension of the data

while preserving some important property of the data set (pairwise distances,

ordering, etc). Typically, given a set of points P = {x1, ..., xn} ⊂ Rd, one finds

a linear map A : Rd → Rm where m = O(polylog(n)) that is sufficiently “nice”

for practical purposes, for example

(1− δ)‖xi − xi‖2
2 ≤ ‖A(xi − xj)‖2

2 ≤ (1 + δ)‖xi − xj‖2
2, ∀i 6= j. (2.1)

We call a map satisfying the above property a Johnson-Lindenstrauss (JL)

Transform. This property is especially important when the problem we are

solving involves some geometrical property of the data, since pairwise distances

are approximately preserved. The most natural map we can choose is to take

A to be a uniformly random projection onto an n-dimensional subspace of Rd.

A typical way to do this is to generate a matrix G ∈ Rn×d with i.i.d. N(0, 1)

entries and then compute A = UV T , where G = UΣV T is the SVD of G. In

particular, we have the following deterministic result:

16

Theorem 10. [32] For any 0 < δ < 1/2, any point set P ⊂ Rd of size n, and

m = O(log(n)δ−2) there is a map A : Rd → Rm such that (2.1) holds.

Moreover, there is a construction where the map f is linear and the

choice m = O(log(n)δ−2) is optimal over all linear maps ([4], [38]). Much

work has gone into finding fast JL-transforms that get as close as possible to

this bound. Following a strong line of work ([1], [2], [37], among others), a

fast JLT can be constructed as follows:

A = HSDb.

Here, Db : Rd → Rd is diagonal with i.i.d. Rademacher entries on the diagonal,

and HS ∈ Rm×d is a partial Hadamard matrix restricted to a uniformly random

subset of |S| = m rows. Many versions of this transform occur in the literature,

sometimes replacing the Hadamard matrix with a different orthogonal matrix

(fast fourier tranform, e.g.), replacing the row subset with a sparse Gaussian,

and without or without the diagonal Rademacher matrix.

2.1.1 Restricted Isometry Property/Connections

We now develop a distinct but related notion, the Restricted Isometry

Property. As the name suggests, this property ensures our matrix is a near

isometry on a restricted subset of Rd, notably all sparse vectors up to a certain

order.

Definition 11. A matrix X ∈ Rm×d satisfies the Restricted Isometry

17

Property of (integer) order s0 > 0 and level δ > 0 if

(1− δ)‖x‖2 ≤ ‖Ax‖2
2 ≤ (1 + δ)‖x‖2

2 for all s0-sparse x ∈ Rd.

It should be clear that in general, we can’t say that a RIP matrix

will be a near isometry on any given point set (this would imply it is an

isometry on the whole space). However, if instead our matrix comes from a

distribution that satisfies RIP of some order/level with high probability, then

it is a probabilistic JL-transform. Specifically, we say a matrix A ∈ Rm×d

sampled from some distribution is a probabilistic JL-transform if

P
[
(1− δ)‖x‖2

2 ≤ ‖Ax‖2
2 ≤ (1 + δ)‖x‖2

2)
]
≥ 1− 2 exp(−c0δ

2m), (2.2)

for fixed x ∈ Rn and some constants c0,δ > 0 (c0 may have mild dependencies

on the other parameters). Note that this statement can easily be translated

to a concentration inequality over a set of points via union bounds. We now

have the following deep result from [11].

Theorem 12. (Theorem 5.2 from [11]) Fix m, d, δ > 0. Suppose that A ∈

Rm×d comes from a distribution satisfying 2.2 for some c0 > 0. Then, there

are absolute constants c1, c2 such that with probability 1 − 2 exp(−c2δ
2m) the

matrix A satisfies RIP of order s0 ≤ c1δ
2m/ ln(d/s0) and level δ > 0.

Thus, the probabilistic JL condition satisfies RIP with high probability.

There is also a partial converse:

Theorem 13. (Theorem 1.3 from [37]) Fix η, δ > 0 and some finite set

E ⊂ Rd of cardinality |E| = p. Suppose that A satisfies RIP of order s0 ≤

18

40 ln(4p/η) and level δ. Let b ∈ {−1, 1}d be an i.i.d. Rademacher sequence.

Then, with probability ≥ 1− η,

(1− δ/4)‖x‖2
2 ≤ ‖ADbx‖2

2 ≤ (1 + δ/4)‖x‖2
2

for all x ∈ E.

This theorem should give justification to the construction in the pre-

vious section, since a Hadamard matrix restricted to a uniformly random row

subset satisfies RIP with high probability, thus multiplying it by a diagonal

matrix with i.i.d. signs on the diagonal makes it also act as a JL transform

on some fixed subset with high probability. These two theorems give a precise

quantitative version of the principle from the introduction, that reducing the

dimension of a finite point set and the set of all sparse vectors are “nearly”

equivalent.

2.2 Regression and the LASSO

Consider the following setting: suppose β ∈ Rp is s-sparse, and that

we are given a noisy, transformed version of this signal,

y = Xβ + η.

Here η ∈ Rn has i.i.d. Gaussian entries ηj ∼ N(0, σ2) and X ∈ Rn×p is a

known design matrix. The regression problem is to find an estimator β̂ that

minimizes the mean squared error (MSE),

MSE(β̂) := Eβ̂
[
‖Xβ̂ − y‖2

2

]
. (2.3)

19

A key observation is that the above error can be decomposed into bias and

variance terms,

MSE(β̂) = Var(Xβ̂) + Bias(Xβ̂) + σ2. (2.4)

Minimizing both terms simultaneously is a classical problem in statistics - we

don’t want to overfit by minimizing bias and get a high variance estimator, or

underfit by minimizing variance resulting in higher bias.

Suppose, in the above setting, that p ≤ n, so that our matrix X ∈ Rn×p

is potentially overdetermined. In this case we can directly minimize the bias,

β̂ = argminβ ‖Xβ − y‖2
2 = X†y,

where X† = (XTX)−1X is the pseudoinverse of X. The obvious drawback of

the above method is that the variance of this estimator can be large, and also if

p > n, it is not uniquely defined. Instead, it is common to add a regularization

term to prevent overfitting:

β̂ = argminβ ‖Xβ − y‖2
2 + λf(β). (2.5)

The parameter λ > 0 is tuned to the amount of counterbalance we want, and

the function f can vary based on application. In general, this problem no

longer has a closed form solution, and for some choices of f it can be highly

non-convex. We focus on the case where f(β) = ‖β‖1 so that the above objec-

tive is convex, and the minimization is called LASSO (least absolute shrinkage

and selection operator). In the vein of many ideas from Compressed Sensing,

20

one can think of the choice of `1 norm as a proxy for the `0 norm to promote

sparsity (however, choosing f(β) = ‖β‖0 makes the problem intractable). In-

tuitively, the LASSO is selecting the “important” entries of β that will improve

generalization error.

Remark 14. (Ridge Regression) If instead we take f(β) = ‖β‖2
2, the resulting

minimization is called ridge regression or Tikhonov regularization. Instead

of promoting sparsity, the euclidean norm imposes a large penalty for large

entries, which shrinks the entries of β to prevent overfitting. However, unlike

the LASSO this method doesn’t tell us which entries are important (useful in

the case where p� n), which makes the resulting estimator less interpretable.

21

Chapter 3

Variance Estimation for the LASSO

This section is based on work that appears in the preprint [35]. Recall

that LASSO attempts to recover a noisy, transformed signal Y = Xβ + η

where η ∈ Rn has i.i.d. Gaussian entries ηj ∼ N(0, σ2), X ∈ Rn×p is known,

and β ∈ Rp is s-sparse, using the following minimization,

β̂ = argminβ ‖Xβ − y‖2
2 + λ‖β‖1.

The standard analysis of the LASSO is conditioned on the event {λ :

λ/4 ≥ ‖XTη‖∞/n} (see [14]). In particular, for the case that η is Gaussian

with variance σ2 and X ∈ Rn×n is orthogonal, with high probability we have

‖XT‖∞/n = Θ(σ2 log(n)/n). Thus, with the choice λ = 4σ2 log(n)/n, the

LASSO will provably produce a good estimate β.

However, in applications, the variance σ, and hence a proper choice

of λ, is not known a priori. We consider the case where σ is not known in

advance, and needs to be estimated from the signal y. It should be clear from

the above observations that precision in estimating the parameter σ improves

recovery of the true signal.

22

3.1 Standard Methods

A good review of variance estimators for LASSO is given in [53], where

variance estimation using cross-validated LASSO is highlighted as particu-

larly strong in many sparsity regimes. This method typically uses 5 or 10-fold

cross-validation to train the hyperparameters in LASSO and analysis relies

on the restricted eigenvalue condition on the design matrix. The above work

was later complemented by a theoretical analysis of a slightly modified vari-

ant of cross-validated LASSO in [18] (see also [23] [29], e.g.). The method

of moments (see [21]) is a reasonable alternative to cross-validated LASSO.

It relies on the assumption that the design matrix is Gaussian and exploits

statistical properties to formulate an estimator. It is consistent with a good

rate of convergence [21], but the design matrix has to be Gaussian which is

restrictive. We should also mention a variant of the LASSO - the square-root

LASSO (see [13]) - whose penalty level doesn’t depend on the variance of the

noise. However, the resulting estimator is formulated as a conic programming

problem which can be inefficient in practice and is beyond the scope of this

work.

3.2 Greedy Variance Estimation – The Orthonormal
Case

For the moment we focus on the case where X ∈ Rp×p is an orthonormal

matrix (p = n) and the problem reduces to recovering the noisy signal y = β+η

(by rotational invariance of the Gaussian). In this regime, the LASSO has the

23

closed form solution

β̂i = sign(yi)(|yi| − λ)+,

where β̂i = β̂i(λ) implicitly depends on λ. A standard approach is to minimize

the cross-validation error:

min
λ
‖y − β̂(λ)‖2,

which has nice practical and theoretical properties (see [36] e.g.). Moreover,

given the optimal λ one can infer a good estimate of the variance as ‖β̂−y‖2/p.

However, this approach still requires one to compute the LASSO minimizer

over a range of λ values, whereas one would like to perform a single computa-

tion to estimate the variance (and thus optimal λ). We formulate a method

to estimate the variance which only needs a single pass over the input y.

Algorithm 1 Greedy Variance Estimator – Orthonormal Design Matrix

1: Compute the window estimators Sj = 1
L

∑
i∈Ωj
|yi|2, j ∈ {1, 2, . . . , p/L}.

2: Let σ̂2 = (1 + 1
log(p)

)2L
p

∑p/(2L)
j=1 S(j), where {S(j)}j is a non-decreasing ar-

rangement of {Sj}j.

The basic idea behind the above algorithm is that we want to capture a noise

estimator that avoids the entries of y affected by signal (hence in the second

step we take the average of the smaller 50% of the window estimates). We

multiply the resulting estimator by 1+ 1
log(p)

to correct the downward bias that

results from averaging only over the smallest windows.

Remark 15. (Total variation denoising) Suppose we receive image-type data

and instead of taking the LASSO minimizer we want to instead want to regu-

24

larize by the total variation seminorm:

β̂ = arg min
β
‖β − y‖2

2 + 2λTV(β), (3.1)

where TV(β) :=
∑

n ‖βn−βn−1‖. The typical assumption in this model is that

the discrete derivative of true signal is sparse, which is promoted by the above

objective. In this case, we can apply our estimator to the discrete derivative

(which as observed is essentially a sparse signal plus noise) to get a reasonable

estimate of the variance of the noise in this setting. This approach originally

appeared in [56] and statistical guarantees on the resulting estimator β̂ have

been developed in [44], [47], [67], culminating most recently in [30]. These

papers give a framework that allows one to generalize the estimator (3.1) to

when the signal is 2-D image data. We note that our estimators can also

be easily adapted to 2-D image data by replacing window estimates with box

estimates.

We have the following result which guarantees accuracy of the estimator σ̂2.

Theorem 16. Suppose y = Xβ + η where X ∈ Rp×p is orthonormal, ηj ∼

N(0, σ2) are independent, and β is s-sparse. Consider window size L ≥

log3(p), and suppose that s ≤ p
2L

. Then the Greedy Variance Estimator pro-

duced by Algorithm 1 satisfies

|σ̂2 − σ2| ≤ 6

log p
σ2,

with probability 1− 2
p
.

25

3.3 Greedy Variance Estimation – RIP Design Matrix

We now turn to the more general case where the design matrix X ∈

Rn×p is possibly underdetermined n ≤ p, but satisfies the Restricted Isometry

Property with the appropriate constants (indeed this is a more general case,

as an orthonormal matrix satisfies the RIP with constant δ = 0). We define

the regularized design matrix as Z := [ZΩ1 , ..., ZΩp/L] where each ZΩi ∈ Rn×L,

ZΩi := UiIn×LVi such that (3.2)

XΩi = UiΣiVi is the SVD of XΩi .

Then, we run a conditioning step based on the (block orthonormal) matrix Z

and then run the algorithm similar to the orthonormal case:

Algorithm 2 Greedy Variance Estimator

1: Compute ỹ = ZTy.
2: Compute the window estimators Sj = 1

L

∑
i∈Ωj
|ỹi|2, j ∈ {1, 2, . . . , n/L}.

3: Let σ̂2 = (1 + 1
log(p)

)2L
p

∑p/(2L)
j=1 S(j), where {S(j)}j is a non-increasing ar-

rangement of the window estimators {Sj}j.

In practice, we use the matrix X instead of Z, however using Z allows

us to do a more streamlined theoretical analysis. To see why this should work

intuitively, assume that we precondition just on X that satisfies RIP for a large

enough sparsity level s0. Note that XTy = XTXβ+XTη, so the obstruction to

estimating the noise is the XTX term. Then, ‖Xβ‖2 = ‖XΩββ‖2 ≈ ‖β‖2, and

if we assume our window set Ωj is disjoint from Ωβ, RIP implies the restricted

26

matrices XT
Ωj

, XΩβ satisfy ‖XT
Ωj
XΩβ‖ ≤ δ for δ > 0 small. Thus, for a “good”

window estimator, we only see the noise XTη.

Theorem 17. Suppose y = Xβ + η, X ∈ Rn×p, ηj ∼ N(0, σ2) are i.i.d., and

β is s-sparse. Assume that L ≥ log3(p), n ≥ L, s ≤ n
2L

, and that X satisfies

(RIP) with order s0 = 2 max{L, s} and level δ > 0. Then, the variance

estimator from the above algorithm satisfies

∣∣σ̂2 − σ2
∣∣ ≤

(1 +
1

log(p)
)

(
2δ
‖β‖2

L
+

6σ2

log(p)
+

1

L
max(4σ2 log(p), 8

√
δσ‖β‖2

√
log(p))

)
with probability 1− 4

p
.

Remark 18. The constants in Theorem 17 are chosen for neatness of presen-

tation and are in no way optimized.

Remark 19. Although the right hand side of Theorem 17 contains factors

involving ‖β‖2 (as opposed to ‖β‖1 which one finds in typical LASSO results),

we do not expect this to be a problem in practice. In particular, one can assume

cσ ≤ |βj| ≤ Cσ for all j and some absolute constants C, c > 0. If the |βj| are

below this threshold, they are essentially noise and difficult to detect in general

(this is called the beta-min assumption). On the other hand, one can naturally

expect the entries of β to have a uniform upper bound even as the problem

size goes to infinity. Since ‖β‖2 ≤ s
√
Cσ, we just need that δ < 1

s
which will

hold for our sparsity regime and standard matrix models (i.i.d. normalized

Gaussian entries, for example) with high probability.

27

3.4 LASSO Experiments

Our experimental methodology is based off of the results in [53]. In

particular, we generate a design matrix X ∈ Rn×p with i.i.d. entries Xij ∼

N(0, n−1/2) so that X satisfies RIP with sufficiently small constants with high

probability. The sparsity level s = dnαe, with α < 1, and the non-zero entries

of β (chosen uniformly at random) are distributed according to a Laplace(1)

distribution. The resulting β is scaled to have the specified norm. The exper-

iments are over the following grid of parameter values, where n = 100 in all

experiments.

• p = 100, 200, 500, 1000,

• ‖β‖2 = 0.1, 1, 2, 5, 10,

• α = 0.1, 0.3, 0.5, 0.7, 0.9.

We use the following estimators in our analysis:

• oracle: the oracle estimator β̂ = ‖η‖2/
√
n.

• window: the standard window estimator with the transformation ỹ =

XTy.

• window-svd: the theoretical window estimator with the transformation

ỹ = ZTy where Z is given by (3.2).

• cv-lasso: 10-fold cross-validated LASSO (computed using the R package

glmnet [24]).

28

• moment: method of moments estimator (see [21]).

We include the cross-validated LASSO because it was shown to be the most

robust to changes in sparsity/dimension by [53] and the method of moments

estimator because it aims to be a fast replacement for cv-LASSO.

Remark 20. The glmnet package mentioned above ([24]) uses a version of

cyclic coordinate descent instead of vanilla gradient descent. Consequently, it

doesn’t share the type of theoretical result contained in this paper, that also

holds for regular cv-LASSO. Nonetheless, it performs well in practice, and

scales to a problem size appropriate for comparing to our estimators.

The window size is chosen based on an inflection point in the values of

the estimator for a specific set of parameters as the window size varies.

Figure 3.1 shows performance for our estimators with window size based on

an inflection point, p = 1000. Signal-less (‖β‖ = 0), low SNR (α = 0.1,

‖β‖ = 1), medium SNR (α = 0.1, ‖β‖ = 5), high SNR (α = 0.1, ‖β‖ = 10)

are shown respectively, top to bottom. As we can see in Figure 3.1, the window

and window-svd estimators have reasonable performance compared to the cv-

LASSO with slightly larger biases. In particular, we do quite well for α = 0.1,

β = 1, performing similarly to cv-Lasso, and with a much smaller variance

than the method of moments.

Remark 21. We only include results for α = 0.1 because the algorithm per-

forms similarly for α ≤ 0.5. Moreover our theory only covers up to roughly

29

α = 0.5 for reasonable choices of window size. The performance for dense

signal α = 0.9 is covered in its own section below.

3.4.1 Optimal Window Size

It is notable to see how well our method can perform when the window

size is optimized. Here, we give some representative plots (Figure 3.2) to show

what happens to performance when replacing the window size with the optimal

window size using prior knowledge of the variance. In all experiments, n=100

and p=1000. For the low SNR regimes, we see a similar downward bias to the

oblivious choice of window size, although with a smaller bias. Similarly, for

high SNR, the upward bias is also smaller than when choosing an oblivious

window size. Table 3.1 shows optimal window sizes as a function of α and

‖β‖2 for p = 200. The optimal window size was found by a grid search over all

possible window sizes using knowledge of the true variance. We note that the

optimal window size is generally decreasing as a function of both the signal to

noise ratio and the sparsity. Moreover, choosing the maximal window size is

optimal in modest regimes.

Figure 3.2 shows the various lasso estimators with optimal window size, p =

1000. Top to bottom: Signal-less (‖β‖ = 0), low SNR (α = 0.1, ‖β‖ = 1),

high SNR (α = 0.1, ‖β‖ = 10) respectively.

30

oracle window window-svd moment cv-lasso

0.4

0.6

0.8

1

1.2

1.4

1.6

oracle window window-svd moment cv-lasso

0.4

0.6

0.8

1

1.2

1.4

1.6

oracle window window-svd moment cv-lasso

-0.5

0

0.5

1

1.5

2

2.5

Figure 3.1: LASSO estimators with window size based on inflection point.

31

oracle window window-svd moment cv-lasso

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

oracle window window-svd moment cv-lasso

0

0.5

1

1.5

2

oracle window window-svd moment cv-lasso

0.4

0.6

0.8

1

1.2

1.4

1.6

Figure 3.2: LASSO estimators with optimal window size.

32

‖β‖2

0.1 1 2 5 10

α

0.1 100 100 100 20 4
0.3 100 100 100 22 4
0.5 100 100 100 18 4
0.7 100 100 100 18 4
0.9 100 100 100 14 3

Table 3.1: Optimal window sizes as a function of α, ‖β‖2.

3.4.2 High Dimension

In this section we highlight the regime in which our estimator is most

useful - when p� n is large. In particular, we chose n = 100, p = 100000 in all

experiments. In this regime, it is inefficient to even compute an optimal box

size based on an inflection point in the value of the estimator, so instead the

choice L = 25 was fixed for all experiments. The results are shown in Figure

3.3, p = 100000 L = 25. Top to bottom: Signal-less (‖β‖ = 0), low SNR

(α = 0.1, ‖β‖ = 1), high SNR (α = 0.1, ‖β‖ = 10) respectively. Although

the bias remains, the estimator performs well, especially in low SNR regimes.

This is likely due to the strength of the compressed sensing properties for the

design matrix as the dimension grows. The bias increases with higher SNR,

however our estimator maintains a lower variance than cv-LASSO.

3.4.3 Orthogonal Design Matrix

We find our estimator performs quite well in the case where the design

matrix is orthogonal, as shown in Figure 3.4, p = n = 200. Top to bottom:

Signal-less (‖β‖ = 0), low SNR (α = 0.1, ‖β‖ = 1), high SNR (α = 0.1,

33

oracle window window-svd cv-lasso

0.2

0.4

0.6

0.8

1

1.2

1.4

oracle window window-svd cv-lasso

0.2

0.4

0.6

0.8

1

1.2

oracle window window-svd cv-lasso

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Figure 3.3: LASSO estimators in the high dimensional regime.

34

‖β‖ = 10) respectively. In all experiments, the window size is chosen via

inflection point in the value of the estimator. The method of moments still

performs reasonably well, but suffers a strong upwards bias for large SNR. We

note that in all regimes, our estimator performs better than cross-validated

LASSO. Moreover, it is more robust to changes in SNR than when the design

matrix is RIP (but not necessarily orthogonal).

35

oracle window window-svd moment cv-lasso

0

0.5

1

1.5

oracle window window-svd moment cv-lasso

0

0.5

1

1.5

oracle window window-svd moment cv-lasso

0

0.5

1

1.5

Figure 3.4: LASSO estimators with orthogonal design matrix.

36

3.4.4 Dense Signal

Our theory does not cover high sparsity levels (α ≥ 0.9), but nonethe-

less our estimator performs well. Although more prone to high levels of SNR,

we are still competitive with cv-LASSO in low SNR regimes as seen in Figure

3.5. p = 200, top to bottom: Low SNR (α = 0.9, ‖β‖ = 1), medium SNR

(α = 0.9, ‖β‖ = 5), high SNR (α = 0.9, ‖β‖ = 10), respectively.

37

oracle window window-svd moment cv-lasso

0.4

0.6

0.8

1

1.2

1.4

1.6

oracle window window-svd moment cv-lasso

0.4

0.6

0.8

1

1.2

1.4

1.6

oracle window window-svd moment cv-lasso

-0.5

0

0.5

1

1.5

2

2.5

Figure 3.5: LASSO estimators with dense signal.

38

3.5 Real Data

In this section we report results on real data sets well suited for LASSO.

Typical data sets where p � n involve genetics data, where the amount of

genetic data recorded is much larger than the number of patients sampled.

The first data set is from [57] and corresponds to gene expression data.

It is presented as a 102x6033 matrix, where each row is a sample from a single

subject, and the columns are expression levels. We defer to the original paper

for how precisely these values were computed. This data is regressed against

a length 102 vector with 52 cancer patient (1) and 50 healthy patients(0). We

also consider the well-know Golub data set [27], which is a gene expression data

set from subjects with human acute myeloid(AML) and acute lymphoblastic

leukemias(ALL). It is represented as 3571 expression levels over 72 patients,

with 47 ALL subjects and 25 AML. The final data set is from Alon et al. [5],

a 62x2000 matrix of gene expression data from colon tissue, 40 tumor 22

normal. Note that in all cases we have a small number of subjects (< 102)

and thousands of gene expressions for each subject.

Since we have no knowledge of the true noise of the variance in real

world data, we instead compare the noise variance computed for 10 fold CV-

LASSO to that of our estimators, as well as the resulting λ parameter. These

results are tabulated in table 3.2. We note that with the refined version of

our scheme, the estimated variance and resulting λ parameter are close to the

corresponding λ value for 1 standard error in CV-LASSO.

39

Data σ CV-LASSO σ GVE σ Fast-GVE λ 1-SE λ GVE
[57] 0.4854 0.7254 105.279 0.05295 0.00429
[27] 0.8132 0.6772 375.82 0.0637 0.0276
[5] 0.7788 1.212 8.31E+09 0.1503 0.0861

Table 3.2: σ and λ values for real data sets.

We also plot, in figures 3.6-3.8 the corresponding curves for the mean

squared error of the LASSO solution, using the λ parameters from table 3.2.

40

10
-2

10
-1

Lambda

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

M
S

E
LambdaGVE MSE with Error Bars

LambdaMinMSE

Lambda1SE

Figure 3.6: MSE for 10-fold CV LASSO using data from [57], with the λ value
given by the estimator from Algorithm 2 marked in magenta.

3.6 LASSO Proofs

3.6.1 Proof Ingredients

Proposition 22. (Lemma 1 in [39]) Suppose Z has a chi-squared distribution

with d degrees of freedom. Then,

Pr[d− 2
√
dt ≤ Z ≤ d+ 2

√
dt+ 2t] ≥ 1− 2e−t ∀t ≥ 0. (3.3)

Proposition 23. (Proposition 2.5 in [52]) Suppose Ωu ∩ Ωv = ∅, and that

X ∈ Rn×p satisfies RIP of order s0 and level δ > 0 with s0 = |Ωu| + |Ωv|.

Then,

‖XT
ΩuXΩv‖2→2 ≤

√
δ (3.4)

41

10
-1

Lambda

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

M
S

E

LambdaGVE

MSE with Error Bars

LambdaMinMSE

Lambda1SE

Figure 3.7: MSE for 10-fold CV LASSO using data from [5].

42

10
-1

Lambda

0

0.05

0.1

0.15

0.2

M
S

E

LambdaGVE

MSE with Error Bars

LambdaMinMSE

Lambda1SE

Figure 3.8: MSE for 10-fold CV LASSO using data from [27].

43

Proposition 24. (Equation (5.5) in [63]) Let X be a Gaussian random vari-

able with mean 0, variance σ. Then,

Pr[|X| > t] ≤ 2e−t
2/2σ2

, t ≥ 1.

3.6.2 Proof of Theorem 16

Consider the window estimators

Sj =
1

L

∑
i∈Ωj

|yi|2

=
1

L

∑
i∈Ωj

|βi + ηi|2

=
1

L

∑
i∈Ωj

|βi|2 +
1

L

∑
i∈Ωj

|ηi|2 + 2
1

L

∑
i∈Ωj

βiηi.

Set Ej := 1
L

∑
i∈Ωj
|ηi|2. Ej is a sum of L independent squares of N(0, σ2)

random variables. Then Ej concentrates strongly around its expected value,

E(Ej) = σ2.

Note that Ej has a chi-squared distribution with L degrees of freedom, so by

(3.3) with the choice t = log(p)2 and after a union bound over all p/L windows,

we get that with probability at least 1− 2
p
,(

1− 5

log(p)

)
σ2 ≤ Ej ≤

(
1 +

5

log(p)

)
σ2,

holds uniformly for all j ∈ {1, 2, . . . , p/L}, assuming that L ≥ log3(p).

Since L ≤ p
2s

by assumption, the pigeon hole principle implies that at

least p
2L

windows do not overlap Ωβ. On any such “good” window k we have

44

‖βk:k+L−1‖2
2 = 0 and hence

|Sk − σ2| ≤ 5σ2

log(p)
. (3.5)

Thus, if S is the average over a subset of the good windows, then also |S−σ2| ≤
5σ2

log(p)
.

Now, to bound the estimator above on any window, we need some

control on the cross term
∑

i∈Ωj
βiηi. Note that this quantity is just a sum

of i.i.d. Gaussians with mean zero and with variance ‖βΩj∩Ωβ‖2
2σ

2; thus, by

concentration, we have that with probability at least 1 − 2/p, the following

holds uniformly over all windows:∑
i∈Ωj

βiηi ≤
2σ‖βΩj∩Ωβ‖2

√
log(p)

L
. (3.6)

Hence, for any any window,

Sj ≥
1

L
‖βΩj∩Ωβ‖2

2 + Ej −
2

L

∑
i∈Ωj∩Ωβ

βiηi

≥ 1

L
‖βΩj∩Ωβ‖2

2 +

(
1− 5

log(p)

)
σ2 −

‖βΩj∩Ωβ‖2√
L

2σ
√

log p√
L

≥
(

1− 5

log(p)

)
σ2 − σ2 log(p)

L
(3.7)

≥
(

1− 6

log(p)

)
σ2,

where the final inequality holds because log2(p) ≤ L.

Now, consider the surrogate estimator σ̂2
S = 2L

p

∑p/(2L)
j=1 S(j). By con-

struction, σ̂2
S ≤ S, where S is the average over any p/(2L) “good” windows.

From the above analysis, we have that with probability exceeding 1− 4
p
,

45

|σ̂2
S − σ

2| ≤ 6

log(p)
σ2.

Thus, for our final estimator, σ̂2
S = (1 + 1

log(p)
)σ̂2, we have

|σ̂2 − σ2| ≤
(

7

log(p)
+

6

(log(p))2

)
σ2

3.6.3 Proof of Theorem 17

Recall that ỹ := ZTy ∈ Rp. Consider the window estimate

Sj =
1

L

∑
i∈Ωj

|ỹi|2

=
1

L

∑
i∈Ωj

|(ZTXβ)i|2 +
1

L

∑
i∈Ωj

|ZT
i η|2 +

2

L

∑
i∈Ωj

(ZTXβ)i(Z
Tη)i

=
1

L
‖ZT

Ωj
XΩββ‖2

2 +
1

L
‖ZT

Ωj
η‖2

2 +
2

L

∑
i∈Ωj

(ZTXβ)i(Z
Tη)i (3.8)

The first term is small if Ωj and Ωβ have disjoint support, since X has the RIP,

the center term gets close to its expectation σ2 due to standard concentration

inequalities, and the third term is also small due to standard concentration in-

equalities. More concretely, if we assume that Sj is a “good” window, meaning

that Ωj and Ωβ have disjoint support, by equation (3.4)

1

L
‖XT

Ωj
XΩββ‖2

2 ≤
δ‖β‖2

2

L
. (3.9)

46

All of the diagonal entries of Σj are in the range [
√

1− δ,
√

1 + δ], hence by

(3.9)

1

L
‖ZT

Ωj
XΩββ‖2

2 ≤
1 + δ

L
‖XT

Ωj
XΩββ‖2

2

≤ δ(1 + δ)‖β‖2
2

L

≤ 2δ‖β‖2
2

L
(3.10)

For the center term, note that ‖ZΩjη‖2
2 = ‖PLη‖2

2 where PL is projection

onto the first L coordinates. Next, we know that ‖PLη‖2
2 has a chi-squared

distribution with L degrees of freedom, so by (3.3) with t = log(p2),

Pr
[
|‖PLη‖2

2 − Lσ2| ≤ 2σ2
(√

L log(p) + log(p)
)]
≥ 1− 2

p2
.

Hence by a union bound, with probability at least 1 − 2
p
, the following holds

uniformly over all windows:

|‖ZT
Ωj
η‖2

2/L− σ2| = |‖PLη‖2
2/L− σ2|

≤ 2σ2

√
log(p)

L
+ 2σ2 log(p)

L

≤ 5σ2

log(p)
(3.11)

For the final term in 3.8, note that 2
L

∑
i∈Ωj

(ZTXβ)i(Z
Tη)i is a Gaus-

sian random variable with variance 2σ‖ZΩjXββ‖2/L. Thus, by Proposition 24

and (3.10), the following holds uniformly over all windows with probability at

47

least 1− 1
p
:

2

L

∑
i∈Ωj

(ZTXβ)i(Z
Tη)i ≤

4σ‖ZΩjXββ‖2

√
log(p)

L
(3.12)

≤
8
√
δσ‖β‖2

√
log(p)

L
, (3.13)

Thus, averaging over any set of p/2L “good” windows, using (3.10)

(3.11) and (3.13) we have∣∣∣∣∣2Lp ∑
j

Sj − σ2

∣∣∣∣∣ ≤ 2δ‖β‖2
2

L
+

5σ2

log p
+

8
√
δσ‖β‖2

√
log p

L
(3.14)

with probability at least 1 − 4
p
. Thus, by construction, the estimator σ̂2

S =

2L
p

∑
j S(j) also satisfies

σ̂2
S ≤ σ2 +

2δ‖β‖2
2

L
+

5σ2

log p
+

8
√
δσ‖β‖2

√
log p

L
.

It remains to show that the window estimator σ̂2
S cannot be too small.

The inequalities (3.12) and (3.11) hold uniformly over all windows, not just

good windows; hence, for any window Sj,

Sj ≥
1

L
‖ZT

Ωj
XΩββ‖2

2 +
1

L
‖ZT

Ωj
η‖2

2 −
2

L
‖ZT

Ωj
XΩββ‖2‖XT

Ωj
η‖2

≥ 1

L
‖XT

Ωj
XΩββ‖2

2 + σ2 − 5σ2

log(p)
−

8σ‖XT
Ωj
XΩββ‖2

√
log p

L

≥ σ2 − 5σ2

log(p)
− 4σ2 log(p)

L
.

48

Combining the bounds,

− 5σ2

log(p)
− 4σ2 log(p)

L
≤ 2L

p

∑
j

S(j) − σ2

≤ 2δ‖β‖2
2

L
+

5σ2

log p
+

8
√
δσ‖β‖2

√
log p

L

For our final estimator σ̂2 = (1 + 1
log(p)

)σ̂2
S, we have

|σ̂2 − σ2| ≤

(1 +
1

log(p)
)

(
2δ
‖β‖2

L
+

6σ2

log(p)
+

1

L
max(4σ2 log(p), 8

√
δσ‖β‖2

√
log(p))

)

49

Chapter 4

Locality Sensitive Hashing

This section is based on work that appears in the publication [34].

Nearest neighbor search (NN) is a recently popular task of retrieving the

nearest point in some point set to a given query point. The typical regime of

this problem is that there are many points and they are in very high dimen-

sion. To be more precise: given a metric space (X,D) and a set of points P =

{x1, ..., xn} ⊂ X, for a query point x ∈ P find y = argminxi∈P\{x}D(xi, x).

Typically, X = Rd, Sd−1, or Fn2 and D is some `p, cosine similarity, or χ2

distance. The above problem is also known as exact nearest neighbor search,

because we want to know the single minimal nearest neighbor in P . In partic-

ular, it was shown in [68] that when d is large, popular partioning/clustering

techniques are outperformed by brute force search (that is, computing the

pairwise distance of every point to the query point).

In order to improve performance, it is often enough in practice to

solve an approximate version of nearest neighbor search named (R, c) nearest

neighbor search ((R, c)-NN): given a query point x ∈ P and the assurance

of a point y′ ∈ P such that D(y′, x) < R, find y ∈ P such that D(y, x) < cR.

Note that instead of solving the exact nearest neighbors problem (which de-

50

grades to linear search in high dimensions), by solving approximate nearest

neighbor search we can achieve sublinear query time using locality sensitive

hashing (LSH). The idea in LSH is to specify a function from the domain X

to a discrete set of hash values – a hash function – which sends closer points to

the same hash value with higher probability than points which are far apart.

Then, for a set of points P = {x1, ..., xn} ⊂ X and a query point x ∈ P, search

within its corresponding hash bucket for a nearest neighbor.

The above discussion begs the obvious question: what makes LSH good

for (R, c)-NN, and how can we quantify this? First we need a notion of sensi-

tivity for our hash functions.

Definition 25. For r1 ≤ r2 and p2 ≤ p1, a hash family H is (r1, r2, p1, p2)-

sensitive if for all x, y ∈ Sd−1,

• If ‖x− y‖2 ≤ r1, then PrH[h(x) = h(y)] ≥ p1.

• If ‖x− y‖2 ≥ r2, then PrH[h(x) = h(y)] ≤ p2.

Intuitively, this measures how often a hash function maps close points

to the same value, and far points to different values. The more sensitive a

hash function is (i.e. p1 is close to 1, p2 is close to 0 for some fixed r1, r2),

the more effective it should be for the (R, c)-NN problem. We primarily care

about the case where r1 = R, r2 = cR, in which case we study the parameter

ρ =
ln(p−1

1)

ln(p−1
2)

, (4.1)

51

which quantifies sensitivity. The key result, which directly links the sensitivity

of a hash family to how well it performs for (R, c)-NN search is the following

(a result of this type first appeared in [31] but we use a more recent version

with improved bounds).

Theorem 26. (Theorem 1 in [20]) Given an (R, cR, p1, p2)-sensitive hash fam-

ily H, then there exists an algorithm that solves (R, c) − NN with constant

probability, using O(dn+n1+ρ) space, with query time O(nρ), and O(nρ ln1/p1 n)

evaluations of hash functions from H.

The above algorithm stores L hash tables from the family G, where

each g ∼ G is given by g(x) = (h1(x), ..., hk(x)), and hi ∼ H, i = 1...k. Then,

given a query point x ∈ X, the algorithm looks for collisions in the buckets

g1(x), ..., gL(x). The choice of parameters k = nρ, L = ln1/p1 n ensure that the

algorithm solves (R, c)-NN with constant probability.

4.1 LSH Schemes

It should be clear from above that the correlation between ρ and R is

a key feature in determining how effective a hash function is for LSH. To see

this in a simple example, consider the hash function for X = Sd−1, D is the

angular distance, defined by

h(x) = sign(〈G, x〉),

where G ∈ Rd×d is a random Gaussian matrix with i.i.d. N(0, 1) entries (equiv-

alently, A could be chosen according to the Haar measure on the rotation group

52

SO(d)). This rounding map traces back to Goemans and Williamson [26] and

was introduced in the context of LSH by Charikar [17]. It has the advantage

of being incredibly easy to implement, however has two main drawbacks: the

O(d2) matrix/vector multiplication is slow, and it has suboptimal sensitivity.

To see this, observe that the above hash function is equivalent to if we first

project onto a random 2-dimensional hyperplane, then hash to a line with

uniformly random angle with the x-axis. We can compute

Pr[h(x) = h(y)] = 1− θ(x, y)/π,

where θ(x, y) is the angular distance between x and y. Consequently, for this

scheme, if ‖x− y‖2 = R and for fixed c > 0,

ρ =
ln(1−R)

ln(1− cR)
≤ 1

c
. (4.2)

Moreover, ρ ↑ 1
c

as R → 0. However, for the case of the unit sphere with

euclidean metric, the optimal sensitivity ρ = 1
c2

is given in [48]. Spherical

lsh ([8], [9]) has been shown to satisfy this, however the corresponding hash

functions are not practical to compute. The work [7] showed the existence of

an LSH scheme with optimally sensitive hash functions which are practical to

implement; namely, the cross-polytope LSH scheme which has been previously

proposed in [58] (see also [10], [48], [46]). Given a Gaussian matrix G ∈ Rd×d

with i.i.d. N(0, 1) entries, the cross polytope hash of a point x ∈ Sd−1 is

defined as

h(x) = argmin
u={±ei}

∥∥∥∥ Gx

‖Gx‖2

− u
∥∥∥∥

2

, (4.3)

53

where {ei}di=1 is the standard basis for Rd. Specifically, the name “cross poly-

tope” arises (as with a few other hashing schemes) as the convex hull of the

vertex set {±ei}di=1. A recent paper of Andoni, Indyk, Laarhoven, and Razen-

shteyn [7] gives the following collision probability for cross-polytope LSH.

Proposition 27 (Theorem 1 in [7]). Suppose x, y ∈ Sd−1 are such that ‖x−

y‖2 = R, with 0 < R < 2, and H is the hash family defined in (4.3). Then,

ln

(
1

PrH[h(x) = h(y)]

)
=

R2

4−R2
ln d+ OR(ln(ln d)). (4.4)

Consequently,

ρ =
1

c2

4− c2R2

4−R2
+ o(1).

Remark 28. The above proposition that cross-polytope LSH is asymptotically

optimal with respect to ρ. In fact, the coefficient 4−c2R2

4−R2 < 1 for every choice

of c > 1 and 0 < R < 2, but this does not break the lower bound given in [48]

since the lower bound ρ = 1
c2

only holds for a particular sequence R = R(d).

For cross-polytope LSH and the schemes that follow, any sequence R(d) → 0

suffices.

Still, this scheme is limited in efficiency by the O(d2) computation re-

quired to compute a dense matrix-vector multiplication in (4.3). To reduce

this computation, [7] proposed to to use a pseudo-random rotation in place of

a dense Gaussian matrix, namely,

h(x) = argminu={±ei} ‖HDbHDb′HDb′′x− u‖2 , (4.5)

54

where H ∈ Rd×d is a Hadamard matrix and Db, Db′ , Db′′ ∈ Rd×d are indepen-

dent diagonal matrices with i.i.d. Rademacher entries on the diagonal. This

scheme has the advantage of computing hash functions in time O(d ln d), and

was shown in [7] to empirically exhibit similar collision probabilities to cross-

polytope LSH, but provable guarantees on the asymptotic sensitivity of this

fast variant of the standard cross-polytope LSH remain open.

4.1.1 Fast cross-polytope LSH with optimal asymptotic sensitivity

While we do not prove theoretical guarantees regarding the asymptotic

sensitivity of the particular fast variant (4.5), we construct a different variant

of the standard cross-polytope LSH (defined below in (4.6)) which also enjoys

O(d ln d) matrix-vector multiplication, and for which we are able to prove

optimal asymptotic sensitivity ρ = 1
c2

:

hF (x) = argmin
u={±ei}

∥∥∥∥ G(HSDbx)

‖G(HSDbx)‖2

− u
∥∥∥∥

2

; (4.6)

Here, Db : Rd → Rd is a diagonal matrix with i.i.d. Rademacher entries on

the diagonal, HS ∈ Rm×d is a partial Hadamard matrix restricted to a random

subset S ⊂ [d] of |S| = m = O(log(d)) rows, and G : Rm → Rd′ is a Gaussian

matrix that lifts and rotates in dimension d′ in the range m ≤ d′ ≤ d. There

is nothing special about lifting to dimension d, and indeed one could lift to

dimension d′ > d, but if d′ grows faster than d, the hash computation no longer

takes time O(d ln d).

The embedding HSDbx acts as a Johnson-Lindenstrauss (JL) trans-

55

form1, and embeds the points in dimension m ≈ ln d.

It is straightforward that the hash computation x → hF (x) takes

O(d′m) time from the Gaussian matrix multiplication and O(d ln d) time from

the JL transform. We will show that optimal asymptotic sensitivity is still

achieved without lifting, d′ = m, but we observe both empirically and theoret-

ically that the rate of convergence to the asymptotic sensitivity improves by

lifting to higher dimension; taking d′ closer to d results in empirically closer re-

sults to the standard cross-polytope scheme (see section 4.6 for more details).

Moreover, our scheme achieves the lower bound given by Theorem 2 in [7] for

the fastest rate of convergence among all hash families which has to d′ values.

4.1.2 Fast cross-polytope LSH with optimal asymptotic sensitivity
and few random bits

Aiming to construct a hash family with similar guarantees which also

uses as little randomness as possible, we also consider a discretized version

of the fast hashing scheme (4.6) in which the Gaussian matrix G ∈ Rd′×m is

replaced by a matrix Ĝ ∈ Rd′×m whose entries are i.i.d. discrete approximations

of a Gaussian; in place of the “standard” fast JL transform HSDb, we consider

Z ∈ Rd×m a low-randomness JL transform that we will clarify later. Then,

the discrete fast hashing scheme we consider is

1Formally, given a finite metric space (X, ‖ · ‖) ⊂ Rd, a JL transform is a linear map
Φ : Rd → Rm such that for all x ∈ X, (1 − δ)‖x‖2 ≤ ‖Φx‖2 ≤ (1 + δ)‖x‖2, with m � d
close to the optimal scaling m = Cδ−2 ln(|X|) [32] [4] [38].

56

hD(x) = argmin
u={±ei}

∥∥∥∥∥ Ĝ(Zx)

‖Ĝ(Zx)‖2

− u

∥∥∥∥∥
2

. (4.7)

Also for this scheme, the hash computation x → h(x) takes O(d′m)

time from the Gaussian matrix multiplication and O(d ln d) time from the

JL transform. Our scheme has several advantages, due to the fact that the

choice of d′ in the range d ≤ d′ ≤ m is flexible: To summarize our main

contributions, we prove for both the fast cross-polytope LSH and the fast

discrete cross-polytope LSH,

• For each d′ in the range m ≤ d′ ≤ d, this scheme achieves the asymptot-

ically optimal ρ. Moreover, for d′ = d, the rate of convergence to this ρ

is optimal over all hash families with d hash values.

• With the choice d′ = d, the scheme computes hashes in time O(d ln d)

and performs well empirically compared to the standard cross-polytope

with dense Gaussian matrix.

• With the choice d′ = m, and by discretizing the Gaussian matrix, we

arrive at a scheme that has only O(ln9(d)) bits of randomness and still

has optimal asymptotic sensitivity.

Table 4.1 contains the construction of the original cross-polytope LSH

scheme, our fast cross-polytope scheme, as well as the discretized version.

57

Table 4.1: Various LSH Families and corresponding Hash Functions.

LSH Family Hash Function

Cross-Polytope LSH
h(x) = argmin

u={±ei}

∥∥∥ Gx
‖Gx‖2 − u

∥∥∥
2
,

G ∈ Rd×d

Fast
Cross-Polytope LSH

hF (x) = argmin
u={±ei}

∥∥∥ G(HSDbx)
‖G(HsDbx)‖2 − u

∥∥∥
2
,

G ∈ Rd′×m

Fast Discrete
Cross-Polytope LSH

hD(x) = argmin
u={±ei}

∥∥∥ Ĝ(Zx)

‖Ĝ(Zx)‖2
− u
∥∥∥

2
,

Ĝ ∈ Rd′×m

4.2 LSH Results

We now formalize the intuition about how our scheme behaves relative

to cross-polytope LSH.

Theorem 29. Suppose H is the family of hash functions defined in (4.6)

with the choice m = O(ln5(d) ln4(ln d)), and ρ is as defined in (4.1) for this

particular family. Then we have

(i-)

ρ =
1

c2

4− c2R2

4−R2
+ o(1).

and this hashing scheme runs in time O(d ln d).

Moreover, we have the optimal rate of convergence,

(ii-)

ρ =
1

c2

4− c2R2

4−R2
+ O

(
1

ln d′

)
.

The lower bound given by Theorem 2 in [7] verifies the above rate of

58

convergence is in fact optimal. We remark that when hashing n points simul-

taneously, the embedded dimension m picks up a factor of ln(n). Assuming

that n is polynomial in d, the result in Theorem 29 still holds simultaneously

over all pairs of points.

In addition to creating a fast hashing scheme, one can reduce the

amount of randomness involved. In particular, we show that a slight alter-

ation of the scheme still achieves the optimal ρ-value while using only O(ln9 d)

bits of randomness. The idea is to replace the Gaussian matrix by a matrix

of i.i.d. discrete random variables. Some care is required in tuning the size of

this matrix so that the correct number of bits is achieved. As a consequence

the number of hash values for this scheme is of order O(m) (i.e. we lift up to a

smaller dimension), which lowers performance in practice, but does not affect

the asymptotic sensitivity ρ. We additionally use a JL transform developed

by Kane and Nelson [33] that only uses O(ln(d) ln(ln d)) bits of randomness.

Specifically, the hash function for this scheme is

hD(x) = argmin
u={±ei}

∥∥∥∥∥ Ĝ(Zx)

‖Ĝ(Zx)‖2

− u

∥∥∥∥∥
2

where Ĝ ∈ Rd′×m is a matrix with i.i.d. copies of a discrete random variable

X which roughly models a Gaussian, and Z ∈ Rd×m is the JL transform

constructed in [33]. Our analysis allows us to pick the threshold value d′ = m

to minimize the number of random bits.

Theorem 30. There is a hash family H with O(ln9 d) bits of randomness that

59

achieves the bound

ρ =
1

c2

4− c2R2

4−R2
+ o(1),

and runs in time O(d ln d).

4.3 Theorem 29 Proof Outline

First we state an elementary limit result that we will apply to the proofs

of both Theorem 29 and Theorem 30.

Lemma 31. Suppose md(a),md(b) are positive functions, limd→∞md(a) = a,

limd→∞md(b) = b, and that f(d), g(d) are also positive,

limd→∞ f(d) = limd→∞ g(d) =∞, limd→∞
f(d)
g(d)

=∞. Then,

lim
d→∞

md(a)f(d) + g(d)

md(b)f(d) + g(d)
=
a

b

Proceeding to the proof of Theorem 29, the key observation is that for

x, y ∈ Sd−1, Gx̃ = G0

[
x̃
0

]
, where G0 ∈ Rd′×d′ is a square Gaussian matrix.

Thus,

Pr[hf (x) = hf (y)] = Pr

[
h

([
x̃
0

])
= h

([
ỹ
0

])]
,

recalling that hf is the fast cross-polytope hash function and h is the standard

version. It then follows that, provided the distance between x̃ and ỹ is close to

the distance between x and y, we can apply proposition 27 to control the above

probability. We start with a lemma for our chosen JL transform that combines

a recent improvement on the restricted isometry property (RIP) for partial

60

Hadamard matrices [28] with a reduction from RIP to Johnson-Lindenstrauss

transforms in [37]; we defer the proof to the sequel.

Lemma 32. Suppose γ > 0, x, y ∈ Sd−1, x̃ = HSDbx, ỹ = HSDby and

HS ∈ Rm×d is such that m = O(γ ln4(d) ln4(ln d)). Then with probability

1− O(d−γ), (
1− 1

ln d

)
≤ ‖x̃‖2

2 ≤
(

1 +
1

ln d

)
, (4.8)(

1− 1

ln d

)
≤ ‖ỹ‖2

2 ≤
(

1 +
1

ln d

)
, (4.9)(

1− 1

ln d

)
‖x− y‖2

2 ≤ ‖x̃− ỹ‖2
2 ≤

(
1 +

1

ln d

)
‖x− y‖2

2 (4.10)

We apply the above lemma with the choice γ = ln d to get that

‖x− y‖2
2(

1− 1
ln d

) − 5

ln d− 1
≤
∥∥∥∥ x̃

‖x̃‖2

− ỹ

‖ỹ‖2

∥∥∥∥2

2

≤ ‖x− y‖
2
2(

1 + 1
ln d

) +
5

ln d+ 1
. (4.11)

with probability 1−O(d− ln d). Combining this fact with proposition 27 we get

that

Pr[hf (x) = hf (y)] = C(d′)
−R̃2

4−R̃2 ln−1(d′),

where R̃ = ‖x̃ − ỹ‖2 (by equation (4.11)) goes to R as d → ∞, and C is

bounded in the dimension. We then apply lemma 31 to see that

ρ =

R̃2

4−R̃2 ln(d′) + ln ln(d′) + C

c2R̃2

4−c2R̃2 ln(d′) + ln ln(d′) + C

=
1

c2

4− c2R2

4−R2
+ o(1).

61

4.3.1 Proof of Theorem 29 Part (ii-)

Let ρR,c be the exponent for standard cross-polytope lsh in dimension

d′, and ρfastR,c be the exponent for fast cross-polytope lsh lifted to dimension d′.

Suppose that

ρR,c −
1

c2

4− c2R2

4−R2
≤ C(R, c)F (d′),

where F (d′)→ 0 as d′ →∞ and C(r, c) is constant in the dimension d′.

Assume that HsDb : Rd → Rm is a δ-isometry on x− y, i.e.

||x− y||22 ≤ R2 =⇒ ||x̃− ỹ||22 ≤ (1 + δ)R2 (4.12)

||x− y||22 ≥ c2R2 =⇒ ||x̃− ỹ||22 ≥ (1− δ)c2R2. (4.13)

The next observation is that hf (x) applies the standard cross-polytope lsh

scheme on HsDbx, so conditioned on HsDbx being a δ-isometry, we can analyze

the fast scheme in terms of the standard scheme as follows:

ρfastR,c ≤ ρR′,c′ ,

where R′ = R
√

1 + δ, c′ =
√

1−δ
1+δ

c. Now, we can say

ρfastR,c −
1

c2

4− c2R2

4−R2
≤ [ρfastR,c − ρR′,c′] +

[
ρR′,c′ −

1

(c′)2

4− (c′)2(r′)2

4− (R′)2

]
+

[
1

(c′)2

4− (c′)2(R′)2

4− (R′)2
− 1

c2

4− c2R2

4−R2

]
≤ C(R′, c′)F (d) +

[
1

(c′)2

4− (c′)2(R′)2

4− (R′)2
− 1

c2

4− c2R2

4−R2

]
.

62

The difference in the last equation can be bounded as

1

(c′)2

4− (c′)2(R′)2

4− (R′)2
− 1

c2

4− c2R2

4−R2

=

(
1 + δ

c2(1− δ)

)
4− (1− δ)c2R2

4− (1− δ)R2
− 1

c2

4− c2R2

4−R2

≤ (1 + δ)(4− (1− δ)c2R2)(4−R2)− (4− c2R2)(1− δ)(4− (1− δ)R2)
c2

2
(4−R2)2

= δO(R, c) +
(1 + δ)(4− c2R2)(4−R2)− (1− δ)(4− c2R2)(4−R2)

c2

2
(4−R2)2

= δD(R, c),

so it follows that ρfastR,c − 1
c2

4−c2R2

4−R2 ≤ δD(R, c) + C(R′, c′)F (d′) conditioned on

the fact that HsDb is a δ-isometry on x − y. Note that for d′ large enough,

C(R′, c′) is bounded above by a constant independent of the dimension. We

can make the choice δ = 1
ln(d)

, so that the isometry condition holds with

probability 1−O(d− ln d), so if ρ is the true exponent without conditioning, we

get that

ρ ≤ p1

p2 + C ln (1− d− ln d)

≤ p1

p2 − Cd− ln d

≤ p1

p2

(1 + Cd− ln d/p1),

where C > 0 is an constant that changes by line but is independent of the

dimension. From this expression it is easy to see that the error term decays

at least like 1/ ln d′ (recall that d′ ≤ d).

Finally, provided F (d′) decays as fast as than 1
ln(d′)

, the result will hold. This

follows from Theorem 1 in [7].

63

4.4 Theorem 30 Proof Outline

We will use the following result (formulated as an analogue to lemma

32) , due to Kane and Nelson, that reduces the amount of randomness required

to perform a JL transform.

Proposition 33. (Theorem 13 and Remark 14 in [33]) Suppose γ > 0, x, y ∈

Sd−1. Then, there is a random matrix Z ∈ Rd×m with m = O(γ ln3(d)) and

sampled with O(γ ln2(d)) random bits such that with probability 1− O(d−γ),(
1− 1

ln d

)
≤ ‖Zx‖2

2 ≤
(

1 +
1

ln d

)
,(

1− 1

ln d

)
≤ ‖Zy‖2

2 ≤
(

1 +
1

ln d

)
,(

1− 1

ln d

)
‖x− y‖2

2 ≤ ‖Z(x− y)‖2
2 ≤

(
1 +

1

ln d

)
‖x− y‖2

2

Now we want to construct a hash scheme that uses a Gaussian rotation

with which to compare our discretized scheme. Define

h′D(x) = argmin
u={±ei}

∥∥∥∥ G′Zx

‖G′Zx‖2

− u
∥∥∥∥

2

, (4.14)

where G′ ∈ Rm×m is a standard i.i.d. Gaussian matrix. The following elemen-

tary lemma gives us a suitable replacement for each Gaussian in the matrix

G′.

Lemma 34. Suppose g ∼ N(0, 1). Then, there is a symmetric, discrete ran-

dom variable X taking 2b values such that for any x ∈ R,

Pr[g ≤ x] = Pr[X ≤ x] + O(2−b) (4.15)

64

The discretized scheme can now be constructed by

hD(x) = argmin
u={±ei}

∥∥∥∥∥ ĜZx

‖ĜZx‖2

− u

∥∥∥∥∥
2

, (4.16)

where the entries of Ĝ ∈ Rd′×m are i.i.d. copies of the random variable X in

Lemma 34. Note that each discrete random variable has b bits of randomness,

so the hashing scheme has minimial randomness when d′ = m, thus there are

m×m× b+ O(γ ln2(d)) = O(γ2 ln6(d)b+ γ ln2(d)) bits of randomness. As we

will see, we can choose γ and b to be a power of ln(d) while still achieve the

optimal asymptotic ρ. For this we have the following lemma.

Lemma 35. Let x, y ∈ Rd be such that ‖x − y‖2 = R, x̃ = Zx, and let h, h′

be as defined in (4.16) and (4.14) respectively with m = O(ln4(d)), b = log2(d)

where R̃ = ‖x̃− ỹ‖2. Then,

ln(Pr[hD(x) = hD(y)]) = ln(Pr[h′D(x) = h′D(y)]) + OR̃(1) (4.17)

We defer the proof of lemma 35 to the sequel, but the idea is as follows.

We can first write

Pr[h′D(x) = h′D(y)] = 2d′Pr[h′D(x) = h′D(y) = e1].

Note that the set {h′D(x) = h′D(y) = e1} = {(G′x̃)1 ≥ |(G′x̃)2|, (G′ỹ)1 ≥

|(G′ỹ)2|}, which is the Gaussian measure of a convex polytope, so we can write

the above probability as the integral over m intervals of the m-dimensional

Gaussian probability distribution. We can then use equation (4.15) to replace

65

the Gaussian pdf with the discrete Gaussian pdf in each coordinate succesively,

and (keeping track of parameters), the lemma follows.

We now run the same argument as in Theorem 29 by setting γ = ln d,

so combining lemma 35 and proposition 27 applied to h′D(x), we have that

ρ =
ln(Pr[hD(x) = hD(y)])

ln(Pr[hD(cx) = hD(cy)])

=
ln(Pr[h′D(x) = h′(y)]) + OR̃(1)

ln(Pr[h′D(cx) = h′(cy)]) + OR̃(1)

=

R2
+

4−R2
+

ln(d′) + ln ln(d′) + C + OR̃(1)

c2R2
−

4−c2R2
−

ln(d′) + ln ln(d′) + C + OR̃(1)

=

R2
+

4−R2
+

ln(d′) + ln ln(d′) + C

c2R2
−

4−c2R2
−

ln(d′) + ln ln(d′) + C

=
1

c2

4− c2R2

4−R2
+ o(1), by lemma 31.

Finally, by our choice of γ and b in the above lemma, we know that there are

O(ln9(d)) bits of randomness.

4.5 Proofs of Lemmas

4.5.1 Proof of Lemma 31

We know that for any ε > 0 and d large enough, md(b) ≥ b− ε, so that

lim
d→∞

g(d)

md(b)f(d) + g(d)
≤ lim

d→∞

g(d)

(b− ε)f(d) + g(d)

= lim
d→∞

1

(b− ε)f(d)
g(d)

+ 1
= 0,

66

and by positivity the inequality is an equality. This implies that

lim
d→∞

md(a)f(d) + g(d)

md(b)f(d) + g(d)
= lim

d→∞

md(a)f(d)

md(b)f(d) + g(d)
.

The same argument on the reciprocal shows that

lim
d→∞

md(a)f(d)

md(b)f(d) + g(d)
= lim

d→∞

md(a)f(d)

md(b)f(d)
=
a

b

4.5.2 Proof of Lemma 32

Define the event

Ev,δ := {v ∈ Rn : (1− δ)‖v‖2 ≤ ‖ṽ‖2 ≤ (1 + δ)‖v‖2}.

Combining Theorem 4.5 of [28] and Theorem 3.1 of [37], we know that for any

η ∈ (0, 1), any s ≥ 40 ln(12/η), some C0 > 0, and provided

m = O(δ−2 ln2(1/δ)s ln2(s/δ) ln(d)),

Pr[Ex,δ ∩ Ey,δ ∩ Ex−y,δ] ≥ (1− η)(1− 2−C0 ln(d) ln(s/δ))

Setting δ = 1/ ln(d), η = d−γ, s = 40C ln(12d), we get

Pr[Ex,δ ∩ Ey,δ ∩ Ex−y,δ] ≥ (1− d−γ)(1− 2−C0 ln(d) ln(40γ ln(12d) ln(d))),

and the lemma follows.

67

4.5.3 Proof of Lemma 35

Note that since the entries of Ĝx̃ are symmetric and i.i.d., the proba-

bility of hashing to one value is equal for all hash values, so we get

Pr[hD(x) = hD(y)] = 2d′Pr[hD(x) = hD(y) = e1]

= 2d′Pr[∩d′j=2(Ĝx̃)1 ≥ |(Ĝx̃)j|, (Ĝỹ)1 ≥ |(Ĝỹ)j|]

= 2d′E(Ĝx̃)1,(Ĝỹ)1
(Pr[(Ĝx̃)1 ≥ |(Ĝx̃)2|, (Ĝỹ)1 ≥ |(Ĝỹ)2|]d

′−1). (4.18)

Our goal is to bound the probability Pr[(Ĝx̃)1 ≥ |(Ĝx̃)2|, (Ĝỹ)1 ≥ |(Ĝỹ)2|]

in terms of the probability Pr[(G′x̃)1 ≥ |(G′x̃)2|, (G′ỹ)1 ≥ |(G′ỹ)2|]. Define

EG′ = {(G′x̃)1 ≥ |(G′x̃)2|, (G′ỹ)1 ≥ |(G′ỹ)2|} and similarly for Ĝ. Since EG′ is a

convex polytope, we can write

Pr[EG′] =

∫
I1

∫
I2(x1)

...

∫
Im(x1,x2,...,xm−1)

1

(2π)m
e−(x21+...+x2m)/2dxm...dx1,

where each Ij(x1, ..., xj) is a (possibly unbounded) interval. By construction

of X, ∫
Ij(x1,...,xj)

1

2π
e−x

2
j+1/2dxj+1 =

∫
Ij(x1,...,xj)

pX(xj+1)dxj+1 + O(2−b)

where pX(x) is the pdf of X. This implies that

Pr[EG′]

=

∫
I1

...

∫
Im(x1,...,xm−1)

1

(2π)m−1
e−(x21+...+x2m−1)/2pX(xm)dxm...dx1 + O(2−b)

... =

∫
I1

...

∫
Im(x1,...,xm−1)

pX(x1)...pX(xm)dxm...dx1 + O(m2−b)

= Pr[E
Ĝ
] + O(m2−b).

68

Plugging this into (4.18), we get

Pr[hD(x) = hD(y)] = 2d′E(Ĝx̃)1,(Ĝỹ)1
(Pr[EG′] + O(m2−b)))d

′−1

= 2d′E(Ĝx̃)1,(Ĝỹ)1

[
d′−1∑
k=1

(
d′ − 1

k

)
Pr[EG′]

k(O(m2−b))d
′−1−k

]
.

We now make the choice m = C ln4(d), b = log2(d) ln(d), so that the above

summation becomes

d′−1∑
k=1

(
d′ − 1

k

)
Pr[EG′]

d′−1−k(C ln4(d)d− ln(d))k

=
d′−1∑
k=1

(
d′ − 1

k

)
Pr[EG′]

d′−1−k(C ln4(d)d− ln(d))k

This first term in the summation is the main term Pr[EG′]
d′−1 and the other

terms can be bounded using Sterling’s approximation as follows,(
d′ − 1

k

)
Pr[EG′]

d′−1−k(C ln4(d)d− ln(d))k ≤
(
d′e

k

)k
(C ln4(d)d− ln(d))k.

For k ≥ 1 this is certainly bounded by O(d− ln(d)+1), and we have

d′−1∑
k=1

(
d′ − 1

k

)
Pr[EG′]

d′−1−k(C ln4(d)d− ln(d))k

= Pr[EG′]
d′−1 + O(d− ln(d)+2)

We note that the last asymptotic approximation is very rough but sufficient

for our purposes. This means that

Pr[hD(x) = hD(y)] = 2d′E(Ĝx̃)1,(Ĝỹ)1
(Pr[EG′]

d′−1) + O(md− ln(d)+2). (4.19)

69

Using the same technique as above where we replace the Gaussian density

function with PX(x), we have

Pr[h′D(x) = h′D(y)] = 2d′E(G′x̃)1,(G′ỹ)1(Pr[EG′]
d′−1)

= 2d′E(Ĝx̃)1,(Ĝỹ)2
(Pr[EG′] + O(m2−b))d

′−1

= 2d′E(Ĝx̃)1,(Ĝỹ)2
(Pr[EG′]

d′−1) + O(md− ln(d)+2)

Finally, plugging this into (4.19), we get

Pr[hD(x) = hD(y)] = Pr[h′D(x) = h′D(y)] + O(md− ln(d)+2)

= Pr[h′D(x) = h′D(y)] + O(d− ln(d)+3).

Now, we know that by Theorem 27,

ln(Pr[hD(x) = hD(y)]) = − R̃2

4− R̃2
ln(d′) + OR̃(ln(ln d′)),

so provided d is large enough that ln(d)− 2 > R̃2

4−R̃2
, the lemma follows.

4.6 LSH Numerics

To illustrate our theoretical results in the low dimensional case, we

ran Monte Carlo simulations to compare the collision probabilities for regular

cross-polytope LSH as well as the fast and discrete versions for various values

of the original and lifted dimension. We refer to [7] for an in depth comparison

of run times for cross-polytope LSH and other popular hashing schemes.

The experiments were run with N = 20000 trials. The discretized

scheme used 10 bits of randomness for each entry. The fast, discrete, and

70

regular cross-polytope LSH schemes exhibit similar collision probabilities for

small distances, with fast/discrete cross-polytope having marginally higher

collision probabilities for larger distances. It is clear that as the lifted dimen-

sion decreases, the fast and discrete versions have higher collision probabilities

at further distances, which decreases the sensitivity of those schemes.

The following figures illustrate the rate of convergence to the optimal

collision probability as d → ∞, as well as various lines that illustrate the

optimal rate of convergence C/ ln(d), where C varies for illustrative purposes.

The experiments were run with varying distances and clearly show the same

rate of convergence for the collision probability between the standard and fast

cross-polytope schemes. We note that at low dimensions, the schemes behave

even more similarly because the embedded dimension is much closer to the

original dimension in this case.

71

Distance

0.2 0.4 0.6 0.8 1 1.2 1.4

C
o

lli
s
io

n
 P

ro
b

a
b

ili
ty

10
-2

10
-1

10
0

Standard

Fast

Fast Discrete

Figure 4.1: LSH collision
probabilities, d = 128, d′ = 128

Distance

0.2 0.4 0.6 0.8 1 1.2 1.4
C

o
lli

s
io

n
 P

ro
b

a
b

ili
ty

10
-2

10
-1

10
0

Standard

Fast

Fast Discrete

Figure 4.2: LSH collision
probabilities, d = 128, d′ = 64

Distance

0.2 0.4 0.6 0.8 1 1.2 1.4

C
o

lli
s
io

n
 P

ro
b

a
b

ili
ty

10
-2

10
-1

10
0

Standard

Fast

Fast Discrete

Figure 4.3: LSH collision probabilities, d = 128,
d′ = 32

72

Distance

0.2 0.4 0.6 0.8 1 1.2 1.4

C
o

lli
s
io

n
 P

ro
b

a
b

ili
ty

10
-2

10
-1

10
0

Standard

Fast

Fast Discrete

Figure 4.4: LSH collision
probabilities, d = 256, d′ = 256

Distance

0.2 0.4 0.6 0.8 1 1.2 1.4
C

o
lli

s
io

n
 P

ro
b

a
b

ili
ty

10
-2

10
-1

10
0

Standard

Fast

Fast Discrete

Figure 4.5: LSH collision
probabilities, d = 256, d′ = 128

Distance

0.2 0.4 0.6 0.8 1 1.2 1.4

C
o

lli
s
io

n
 P

ro
b

a
b

ili
ty

10
-2

10
-1

10
0

Standard

Fast

Fast Discrete

Figure 4.6: LSH collision probabilities, d = 256,
d′ = 64

73

0 100 200 300 400 500

Dimension

0.2

0.3

0.4

0.5

0.6

0.7

0.8
C

o
lli

s
io

n
 P

ro
b
a
b
ili

ty

Fast Cross-Polytope

Cross-Polytope

Optimal

Figure 4.7: LSH collision probabilities by dimension, R = 0.4

0 100 200 300 400 500

Dimension

0.1

0.2

0.3

0.4

0.5

C
o
lli

s
io

n
 P

ro
b
a
b
ili

ty

Fast Cross-Polytope

Cross-Polytope

Optimal

Figure 4.8: LSH collision probabilities by dimension, R = 0.7

74

0 100 200 300 400 500 600

Dimension

0

0.05

0.1

0.15

0.2

0.25

0.3

C
o
lli

s
io

n
 P

ro
b
a
b
ili

ty

Fast Cross-Polytope

Cross-Polytope

Optimal

Figure 4.9: LSH collision probabilities by dimension, R = 1

0 100 200 300 400 500 600

Dimension

0

0.02

0.04

0.06

0.08

0.1

0.12

C
o
lli

s
io

n
 P

ro
b
a
b
ili

ty

Fast Cross-Polytope

Cross-Polytope

Optimal

Figure 4.10: LSH collision probabilities by dimension, R = 1.3

75

Chapter 5

Distributional Robustness of Quantization

Error

Recall our setting: we have a partition (a.k.a. quantization scheme)

Q := {(Pi, wi)}Wi=1 ⊂ Rd × Rd adapted to a probability distribution P1 over

Rd. For this section, Q will be fixed. Here, {Pi}i is the Voronoi partition with

centroids {wi}i and “adapted” means that the quantization error,

EP1,Q :=

∫
Rd
`(x, argmin{wi}i ‖x− wi‖2)dP1(x), (5.1)

is small. ` is some loss function that we fix to be squared euclidean distance

`(x, y) = ‖x−y‖2
2. Since Q is fixed, in the sequel we shorten the above notation

to EP1 . If we assume the distribution P1 admits a probability density function

p(x) : Rd → R, then we can rewrite

EP1 =
W∑
i=1

∫
Pi

p(x)‖x− wi‖2
2dx. (5.2)

We now receive samples {y1, ..., yn} ∼ P2, and want to know the appropriate

notion of distance between the distributions P1 and P2 such that the quan-

tization error of P2, using the scheme {(Pi, wi)}i, is small. It turns out that

there is a natural notion of distributional distance which guarantees this, the

76

Wasserstein distance (for some cost function c : P1 × P2 → R),

Wc(P1,P2) := inf
M∈Π(P1,P2)

EM [c(P1,P2)] . (5.3)

This distance computes the minimal expected cost between P1 and P2 among

all join probability distributions M ∈ Π(P1,P2) with marginals are P1 and

P2. For this reason, it is often called the optimal transport distance where M

is the transport map. With c(x, y) = ‖x − y‖2
2, the following proposition is

immediate.

Proposition 36.

sup
{P2:Wd(P1,P2)≤ρ}

EP2 ≤ EP1 + ρ. (5.4)

Proof. Follows immediately from duality [65],

Wd(P,Q) = supf :Lip1(f)≤1

∫
fdP−

∫
fdQ.

Proposition 36 tells us Wasserstein distance is precisely what we need

to achieve bounds on quantization error - so why doesn’t the story end here?

It turns out Wasserstein distance is insufficient for detecting local properties

of our quantization scheme. For this purpose, we would like bounds of the

form

P1(E)α0C0 ≤ P2(E) ≤ P1(E)α1C1, (5.5)

simultaneously for all events E. The following proposition shows that Wasser-

stein distance is insufficient for getting scale invariant bounds.

77

Proposition 37. For any N > 0 and some fixed constant C > 0, there are

distributions P1 and P2, and an event E (all depending on N > 0), such that

Wd(P1,P2) ≤ 1/N and |P1(E)− P2(E)| ≥ C.

In particular, this shows that no matter how small the Wasserstein

distance is, the probability of some event under P1 can be a fixed amount

from it’s probability in P2.

Before we prove this counterexample which will be constructed using

discrete distributions, we characterize a formulation of Wasserstein distance

between two discrete distributions. Suppose that P1 is supported on {pi}mi=1

and P2 is supported on {qi}ni=1. Then, a probability measure on the product

space P1×P2 with marginals P1 and P2 is precisely a set of indices {λi,j} such

that the marginal sums
∑m

i=1 λi,j = qj for all j and
∑n

j=1 λi,j = pi for all i.

Defining the set

C := {λ ∈ Rm×n :
m∑
i=1

λi,j = qj,
n∑
j=1

λi,j = pi, λi,j ≥ 0 ∀i, j},

it follows that we can write the Wasserstein distance as the following linear

program:

Wd(P1,P2) = min
λ∈C

m∑
i=1

n∑
j=1

λi,jd(pi, qj). (5.6)

Remark 38. Although the above formulation is for finite discrete distributions,

it extends naturally to discrete distributions with countably infinite support,

where all the sums become infinite sums and the optimization is over an infinite

dimensional space.

78

Note that in the set C, the condition that the marginals are P1 and P2

ensures that the product distribution λ is in fact a probability distribution.

The above formulation has the advantage that is is computationally tractable

using standard LP solvers, although solving a full LP in the product space

is highly inefficient for computing distances. This allows us to formulate the

simple counterexample given by Proposition 37.

Proof. (Proposition 37)

For simplicity assume d = 1 (the argument extends trivially to higher di-

mensions). Let P1 be the dirac distribution at 0, and let P2 be such that

P2(0) = 1−C, and P2(iN) = C for some in to be chosen later. Note first that,

since P1 is supported at the origin, using (5.6), the marginal conditions force

λi = P2(i) for all i > 0, thus

Wd(P1,P2) =
∞∑
i=1

P2(i)i

= CiN .

By construction, P1({0}) = P2({0}) = C, and choosing i = 1
CN

we are done.

Remark 39. As the above counterexample suggests, Wasserstein distance will

measure distance between probability distributions supported on disjoint low-

dimensional manifolds, which necessarily precludes scale invariant bounds. For

a continuous example, if P1 is the uniform distribution on {0} × [0, 1] and P2

is the uniform distribution on {θ} × [0, 1], then Wd(P1,P2) = θ, whereas for

scale-invariant bounds this should necessarily be 0.

79

5.1 Rényi Divergences

Comparing a quantization scheme fitted to distribution P1 to incoming

samples P2 suggest using the Kullback-Leibner(KL) divergence, a standard

metric for comparing probability distributions. Suppose that P1 is absolutely

continuous with respect to P2 (so that the Radon-Nikodym derivative dP1

dP2

exists). Then, the KL-divergence from P2 to P1 is defined as

DKL(P1‖P2) := EP1

[
ln
dP1

dP2

]
. (5.7)

For discrete distributions over the integers, this simplifies to DKL(P1‖P2) =∑
i P1(i) ln P1(i)

P2(i)
.

It should be noted that the fact that the KL-divergence exists (from

P1 to P2 and P2 to P1) implies that the distributions P1 and P2 have the same

support. Although this condition is stringent, it is also necessary to achieve

bounds of the form (5.5) over all events. However, even the KL-divergence is

still insufficient.

Proposition 40.

Instead, we use a notion of distance called the α-Rényi divergence, for

α > 1,

Rα(P1‖P2) :=
1

α− 1
ln

(
EP2

dP1

dP2

α)
. (5.8)

Note that this converges to the KL-divergence as α ↓ 1. We can now prove

scale-invariant bounds about our probability distributions.

80

Proposition 41. Suppose P1 and P2 are probability distributions such that P1

is absolutely continuous w.r.t. P2 and P2 is absolutely continuous w.r.t. P1.

Then, for all events E,

P2(E)(α−1)/α exp[−(α− 1)Rα(P2‖P1)] ≤ P1(E)

≤ P2(E)α/(α−1) exp[(α− 1)Rα(P1‖P2)].
(5.9)

This immediately implies the following.

Corollary 42. Suppose P1 and P2 are as in proposition 41. Then for any

quantization scheme Q,

exp[−(α− 1)Rα(P2‖P1)]EP2 ≤ EP1 ≤ exp[(α− 1)Rα(P1‖P2)]EP2 (5.10)

Proof. (Proposition 41 + Corollary 42)

The proposition follows from the following simple computation.

P1(E) = EP2

[
1E
dP1

dP2

]
definition of Radon-Nikodym derivative

≤ P2(E)α/(α−1)

(
EP2

dP1

dP2

)α
Holder’s Inequality

≤ P2(E)α/(α−1)EP2

dP1

dP2

α

Jensen’s inequality

= P2(E)α/(α−1) exp[(α− 1)Rα(P1‖P2)].

Now, returning to the quantization error, in order to compare EP2 and

81

EP1 we fix any choice of centroids {wi}i,

∑
i

∫
Pi

‖x− wi‖2
2dP1(x) =

∫
Pi

2

(∫ ‖x−wi‖2
0

tdt

)
dP1(x)

=
∑
i

2

∫ ∞
0

t

(∫
Pi:t<‖x−wi‖2

dP1(x)

)
dt Fubini

=
∑
i

2

∫ ∞
0

tP1(x ∈ Pi ∩ ‖x− wi‖2 > t)dt

≤
∑
i

2 exp[(α− 1)Rα(P1‖P2)

∫ ∞
0

tP2(x ∈ Pk ∩ ‖x− wi‖2 > t)α/(α−1)dt

≤
∑
i

2 exp[(α− 1)Rα(P1‖P2)]

∫ ∞
0

tP2(x ∈ Pk ∩ ‖x− wi‖2 > t)dt

= exp[(α− 1)Rα(P1‖P2)]
∑
i

∫
Pi

‖x− wi‖2
2dP2(x)

= exp[(α− 1)Rα(P1‖P2)]EP2 .

The lower bound follows by symmetry.

It follows that Rényi divergences measure both quantization error and

scale-invariant probability bounds and are only slightly suboptimal to KL-

divergence for the former (note that Corollary 42 approaches the bound for

KL-divergence as α ↓ 1). The following table illustrates the similarities and

differences between the different distributional distances we’ve presented so

far.

Distance Small Event Pr Quantization Bounds

Wasserstein None supP2:Wd(P1,P2)≤ρEP2 ≤ EP1 + ρ

KL Divergence None None
Rényi Divergence (5.9) (5.10)

82

5.2 Finite Sample Bounds

In order to make use of standard concentration inequalities, assume

for this section that the distributions P1 and P2 have support bounded in a

ball of radius R > 0. Fix a quantization scheme Q = {(Pi, wi)}Wi=1 and after

receiving N samples qi ∼ P2, define the empirical quantization error to be

ÊP2 :=
∑N

i=1
1
N
‖qi − h(qi)‖2, where h(x) = argminwi ‖x− wi‖2. Note that the

empirical quantization error has expectation equal to EP2 ,

EP2

[
ÊP2

]
= EP2 .

Therefore, using concentration inequalities we immediately have the following.

Proposition 43. Suppose that P1 and P2 are mutually absolutely continuous,

such that

Rα(P1‖P2), Rα(P2‖P1) ≤ δ, for some α > 1, δ > 0. Suppose also that we have

some fixed quantization scheme Q with error EP1 < ε on distribution P1 and

ε > 0 small, and we receive {qi}Ni=1 ∼ P2. Then,

P2(|ÊP2 − EP1| ≥ t+ Cδ,αε) ≤ 2 exp

(
−2Nt2

R2

)
, (5.11)

where Cα,δ := max{|1− exp[(α− 1)δ]|, |1− exp[−(α− 1)δ]}.

Proof. Note that using the observation EP2

[
ÊP2

]
= EP2 , we have by Hoeffd-

ing’s inequality,

P2(|ÊP2 − EP2| ≥ t) ≤ 2 exp

(
−2Nt2

R2

)
.

83

Now, observe from proposition 42 that

|ÊP2 − EP1| ≤ |ÊP2 − EP2|+ |EP2 − EP1|

≤ |ÊP2 − EP2|+ Cα,δEP1 ,

and the proposition follows.

5.3 Future Work

Given our notion of Rényi divergence, which we showed is a good mea-

sure of how close two distributions are for the purpose of quantization, a

natural question is how do we improve a quantization scheme Q adapted to

P1, to work well for P2 given Rα(P1,P2) >> 0 for all α ≥ α0 > 0 (note that

Rα(P1,P2) is an increasing functions of α, for fixed P1,P2). We could also im-

pose conditions on P1 and P2 so that we still achieve small probability bounds

and quantization error but don’t require such a strict distance metric.

Another consideration is that quantization error is not a universal in-

dicator of quality for a quantization scheme. There are many other desirable

properties:

• Uniform number of data points in each partition element.

• Ability to detect interesting (non-linear) partitions of the data.

• k-Nearest Neighbor recall.

The first condition roughly means that the probability of an point p ∼ P1

lands in a given partition element Pi is roughly 1/W (recall W is the number

84

of partition elements). This property is much more difficult to track even for

a simple scheme like a Voronoi partition, and does not seem to admit a simple

analysis.

The second condition is beyond the scope of Voronoi partitions, and as such

we can longer exploit this strict structure. This class includes a large breadth

of classification algorithms, and the quality is heavily dependent on the un-

derlying (unknown) distribution of the data.

Finally, the third condition points to a particular application of quantization

schemes, to hash nearby points to the same partition element (similar to LSH).

This condition is closely related to small event probabilities, in particular near

the boundaries of the partition elements.

85

Bibliography

[1] Nir Ailon and Bernard Chazelle. The fast Johnson-Lindenstrauss trans-

form and approximate nearest neighbors. SIAM J. Comput., 39(1):302–

322, May 2009.

[2] Nir Ailon and Edo Liberty. An almost optimal unrestricted fast johnson-

lindenstrauss transform. ACM Transactions on Algorithms (TALG),

9(3):21, 2013.

[3] Nir Ailon and Holger Rauhut. Fast and rip-optimal transforms. Discrete

& Computational Geometry, 52(4):780–798, 2014.

[4] Noga Alon. Problems and results in extremal combinatorics. Discrete

Mathematics, 273:31–53, 2003.

[5] Uri Alon, Naama Barkai, Daniel A Notterman, Kurt Gish, Suzanne Ybarra,

Daniel Mack, and Arnold J Levine. Broad patterns of gene expression re-

vealed by clustering analysis of tumor and normal colon tissues probed by

oligonucleotide arrays. Proceedings of the National Academy of Sciences,

96(12):6745–6750, 1999.

[6] Alexandr Andoni and Piotr Indyk. Near-optimal hashing algorithms

for approximate nearest neighbor in high dimensions. In Proceedings of

the 47th Annual IEEE Symposium on Foundations of Computer Science,

86

FOCS ’06, pages 459–468, Washington, DC, USA, 2006. IEEE Computer

Society.

[7] Alexandr Andoni, Piotr Indyk, Thijs Laarhoven, Ilya Razenshteyn, and

Ludwig Schmidt. Practical and optimal lsh for angular distance. In

Proceedings of the 28th International Conference on Neural Information

Processing Systems, NIPS’15, pages 1225–1233, Cambridge, MA, USA,

2015. MIT Press.

[8] Alexandr Andoni, Piotr Indyk, Huy L Nguyen, and Ilya Razenshteyn. Be-

yond Locality-Sensitive Hashing. In Proceedings of the Twenty-Fifth An-

nual ACM-SIAM Symposium on Discrete Algorithms, pages 1018–1028.

SIAM, 2014.

[9] Alexandr Andoni and Ilya Razenshteyn. Optimal data-dependent hash-

ing for approximate near neighbors. In Proceedings of the Forty-Seventh

Annual ACM on Symposium on Theory of Computing, STOC ’15, pages

793–801, New York, NY, USA, 2015. ACM.

[10] Alexandr Andoni and Ilya Razenshteyn. Tight Lower Bounds for Data-

Dependent Locality-Sensitive Hashing. ArXiv e-prints, July 2015.

[11] Richard Baraniuk, Mark Davenport, Ronald DeVore, and Michael Wakin.

A simple proof of the restricted isometry property for random matrices.

Constructive Approximation, 28(3):253–263, 2008.

87

[12] Anja Becker and Thijs Laarhoven. Efficient (ideal) lattice sieving using

cross-polytope lsh. Cryptology ePrint Archive, Report 2015/823, 2015.

http://eprint.iacr.org/.

[13] Alexandre Belloni, Victor Chernozhukov, and Lie Wang. Square-root

lasso: pivotal recovery of sparse signals via conic programming. Biometrika,

98(4):791–806, 2011.

[14] Peter Bickel, Ya’acov Ritov, and Alexandre B Tsybakov. Simultaneous

analysis of lasso and dantzig selector. The Annals of Statistics, pages

1705–1732, 2009.

[15] Emmanuel Candes and Mark A Davenport. How well can we esti-

mate a sparse vector? Applied and Computational Harmonic Analysis,

34(2):317–323, 2013.

[16] Emmanuel Candes and Terence Tao. Decoding by linear programming.

IEEE transactions on information theory, 51(12):4203–4215, 2005.

[17] Moses S Charikar. Similarity estimation techniques from rounding algo-

rithms. In Proceedings of the thiry-fourth annual ACM symposium on

Theory of computing, pages 380–388. ACM, 2002.

[18] Sourav Chatterjee and Jafar Jafarov. Prediction error of cross-validated

lasso. arXiv preprint arXiv:1502.06291, 2015.

[19] Anirban Dasgupta, Ravi Kumar, and Tamás Sarlós. Fast locality-sensitive

hashing. In Proceedings of the 17th ACM SIGKDD international confer-

88

ence on Knowledge discovery and data mining, pages 1073–1081. ACM,

2011.

[20] Mayur Datar, Nicole Immorlica, Piotr Indyk, and Vahab Mirrokni. Lo-

cality sensitive hashing scheme based on p-stable distributions. In Pro-

ceedings of the twentieth annual Symposium on Computational Geometry.

New York, pages 253–262, 2004.

[21] Lee Dicker. Variance estimation in high-dimensional linear models.

Biometrika, 101(2):269–284, 2014.

[22] David L Donoho and Jain M Johnstone. Ideal spatial adaptation by

wavelet shrinkage. biometrika, 81(3):425–455, 1994.

[23] Jianqing Fan, Shaojun Guo, and Ning Hao. Variance estimation using

refitted cross-validation in ultrahigh dimensional regression. Journal of

the Royal Statistical Society: Series B (Statistical Methodology), 74(1):37–

65, 2012.

[24] Jerome Friedman, Trevor Hastie, and Robert Tibshirani. Regularization

paths for generalized linear models via coordinate descent. Journal of

Statistical Software, 33(1):1–22, 2010.

[25] Aude Genevay, Marco Cuturi, Gabriel Peyré, and Francis Bach. Stochas-

tic optimization for large-scale optimal transport. In Advances in Neural

Information Processing Systems, pages 3440–3448, 2016.

89

[26] Michel X Goemans and David P Williamson. Improved approximation

algorithms for maximum cut and satisfiability problems using semidefinite

programming. Journal of the ACM (JACM), 42(6):1115–1145, 1995.

[27] Todd R Golub, Donna K Slonim, Pablo Tamayo, Christine Huard, Michelle

Gaasenbeek, Jill P Mesirov, Hilary Coller, Mignon L Loh, James R Down-

ing, Mark A Caligiuri, et al. Molecular classification of cancer: class

discovery and class prediction by gene expression monitoring. science,

286(5439):531–537, 1999.

[28] Ishay Haviv and Oded Regev. The restricted isometry property of sub-

sampled fourier matrices. In Proceedings of the Twenty-Seventh Annual

ACM-SIAM Symposium on Discrete Algorithms, SODA ’16, pages 288–

297, Philadelphia, PA, USA, 2016. Society for Industrial and Applied

Mathematics.

[29] Darren Homrighausen and Daniel McDonald. The lasso, persistence,

and cross-validation. In International Conference on Machine Learning,

pages 1031–1039, 2013.

[30] Jan-Christian Hütter and Philippe Rigollet. Optimal rates for total vari-

ation denoising. In Conference on Learning Theory, pages 1115–1146,

2016.

[31] Piotr Indyk and Rajeev Motwani. Approximate nearest neighbors: To-

wards removing the curse of dimensionality. In Proceedings of the Thirti-

90

eth Annual ACM Symposium on Theory of Computing, STOC ’98, pages

604–613, New York, NY, USA, 1998. ACM.

[32] William B Johnson and Joram Lindenstrauss. Extensions of lipschitz

mappings into a hilbert space. Contemporary mathematics, 26:189–206,

1984.

[33] Daniel M. Kane and Jelani Nelson. Sparser johnson-lindenstrauss trans-

forms. J. ACM, 61(1):4:1–4:23, January 2014.

[34] Christopher Kennedy and Rachel Ward. Fast cross-polytope locality-

sensitive hashing. 8th Innovations in Theoretical Computer Science,

67(53):16, 2017.

[35] Christopher Kennedy and Rachel Ward. Greedy variance estimation for

the lasso. arXiv preprint arXiv:1803.10878, 2018.

[36] Ron Kohavi. A study of cross-validation and bootstrap for accuracy

estimation and model selection. In Ijcai, volume 14, pages 1137–1145,

1995.

[37] Felix Krahmer and Rachel Ward. New and improved Johnson-Lindenstrauss

embeddings via the restricted isometry property. SIAM Journal on Math-

ematical Analysis, 43(3):1269–1281, 2011.

[38] Kasper Green Larsen and Jelani Nelson. The johnson-lindenstrauss

lemma is optimal for linear dimensionality reduction. arXiv preprint

arXiv:1411.2404, 2014.

91

[39] Beatrice Laurent and Pascal Massart. Adaptive estimation of a quadratic

functional by model selection. Annals of Statistics, pages 1302–1338,

2000.

[40] Jia Li and James Z Wang. Real-time computerized annotation of pic-

tures. IEEE transactions on pattern analysis and machine intelligence,

30(6):985–1002, 2008.

[41] Yue Lin, Rong Jin, Deng Cai, Shuicheng Yan, and Xuelong Li. Com-

pressed hashing. In Proceedings of the 2013 IEEE Conference on Com-

puter Vision and Pattern Recognition, CVPR ’13, pages 446–451, Wash-

ington, DC, USA, 2013. IEEE Computer Society.

[42] Ting Liu, Andrew W. Moore, Ke Yang, and Alexander G. Gray. An inves-

tigation of practical approximate nearest neighbor algorithms. In L. K.

Saul, Y. Weiss, and L. Bottou, editors, Advances in Neural Information

Processing Systems 17, pages 825–832. MIT Press, 2005.

[43] Karim Lounici, Massimiliano Pontil, Sara Van De Geer, Alexandre B

Tsybakov, et al. Oracle inequalities and optimal inference under group

sparsity. The Annals of Statistics, 39(4):2164–2204, 2011.

[44] Enno Mammen, Sara van de Geer, et al. Locally adaptive regression

splines. The Annals of Statistics, 25(1):387–413, 1997.

[45] Nicolai Meinshausen and Bin Yu. Lasso-type recovery of sparse repre-

sentations for high-dimensional data. The Annals of Statistics, pages

92

246–270, 2009.

[46] Rajeev Motwani, Assaf Naor, and Rina Panigrahi. Lower bounds on

Locality Sensitive Hashing. In Proceedings of the Twenty-second Annual

Symposium on Computational Geometry, SCG ’06, pages 154–157, New

York, NY, USA, 2006. ACM.

[47] Deanna Needell and Rachel Ward. Near-optimal compressed sensing

guarantees for total variation minimization. IEEE transactions on image

processing, 22(10):3941–3949, 2013.

[48] Ryan O’Donnell, Yi Wu, and Yuan Zhou. Optimal lower bounds for

Locality-Sensitive Hashing (except when Q is tiny). ACM Trans. Com-

put. Theory, 6(1):5:1–5:13, March 2014.

[49] Andrei Osipov. A Randomized Approximate Nearest Neighbors Algo-

rithm. PhD thesis, Yale University, New Haven, CT, USA, 2011. AAI3467911.

[50] David Pollard. Quantization and the method of k-means. IEEE Trans-

actions on Information theory, 28(2):199–205, 1982.

[51] Garvesh Raskutti, Martin J Wainwright, and Bin Yu. Minimax rates

of estimation for high-dimensional linear regression over `q-balls. IEEE

transactions on information theory, 57(10):6976–6994, 2011.

[52] Holger Rauhut. Compressive sensing and structured random matrices.

Theoretical foundations and numerical methods for sparse recovery, 9:1–

92, 2010.

93

[53] Stephen Reid, Robert Tibshirani, and Jerome Friedman. A study of

error variance estimation in lasso regression. Statistica Sinica, pages

35–67, 2016.

[54] Alfréd Rényi et al. On measures of entropy and information. In Proceed-

ings of the Fourth Berkeley Symposium on Mathematical Statistics and

Probability, Volume 1: Contributions to the Theory of Statistics. The

Regents of the University of California, 1961.

[55] Mark Rudelson and Roman Vershynin. On sparse reconstruction from

fourier and gaussian measurements. Communications on Pure and Ap-

plied Mathematics, 61(8):1025–1045, 2008.

[56] Leonid I Rudin, Stanley Osher, and Emad Fatemi. Nonlinear total vari-

ation based noise removal algorithms. Physica D: nonlinear phenomena,

60(1-4):259–268, 1992.

[57] Dinesh Singh, Phillip G Febbo, Kenneth Ross, Donald G Jackson, Judith

Manola, Christine Ladd, Pablo Tamayo, Andrew A Renshaw, Anthony V

D’Amico, Jerome P Richie, et al. Gene expression correlates of clinical

prostate cancer behavior. Cancer cell, 1(2):203–209, 2002.

[58] Kengo Terasawa and Yuzuru Tanaka. Spherical LSH for approximate

nearest neighbor search on unit hypersphere. In Algorithms and Data

Structures, pages 27–38. Springer, 2007.

94

[59] Robert Tibshirani. Regression shrinkage and selection via the lasso.

Journal of the Royal Statistical Society. Series B (Methodological), pages

267–288, 1996.

[60] Sara A Van de Geer. High-dimensional generalized linear models and the

lasso. The Annals of Statistics, pages 614–645, 2008.

[61] Sara A Van De Geer, Peter Bühlmann, et al. On the conditions used

to prove oracle results for the lasso. Electronic Journal of Statistics,

3:1360–1392, 2009.

[62] Tim Van Erven and Peter Harremos. Rényi divergence and kullback-

leibler divergence. IEEE Transactions on Information Theory, 60(7):3797–

3820, 2014.

[63] Roman Vershynin. Introduction to the non-asymptotic analysis of ran-

dom matrices. arXiv preprint arXiv:1011.3027, 2010.

[64] Nicolas Verzelen et al. Minimax risks for sparse regressions: Ultra-

high dimensional phenomenons. Electronic Journal of Statistics, 6:38–90,

2012.

[65] Cédric Villani. Optimal transport: old and new, volume 338. Springer

Science & Business Media, 2008.

[66] Martin J Wainwright. Information-theoretic limits on sparsity recovery

in the high-dimensional and noisy setting. IEEE Transactions on Infor-

mation Theory, 55(12):5728–5741, 2009.

95

[67] Yu-Xiang Wang, James Sharpnack, Alex Smola, and Ryan Tibshirani.

Trend filtering on graphs. In Artificial Intelligence and Statistics, pages

1042–1050, 2015.

[68] Roger Weber, Hans-Jörg Schek, and Stephen Blott. A quantitative

analysis and performance study for similarity-search methods in high-

dimensional spaces. In Proceedings of the 24rd International Conference

on Very Large Data Bases, VLDB ’98, pages 194–205, San Francisco, CA,

USA, 1998. Morgan Kaufmann Publishers Inc.

[69] Fei Ye and Cun-Hui Zhang. Rate minimaxity of the lasso and dantzig

selector for the lq loss in lr balls. Journal of Machine Learning Research,

11(Dec):3519–3540, 2010.

[70] Jianbo Ye, Panruo Wu, James Z Wang, and Jia Li. Fast discrete distribu-

tion clustering using wasserstein barycenter with sparse support. IEEE

Transactions on Signal Processing, 65(9):2317–2332, 2017.

[71] Cun-Hui Zhang and Jian Huang. The sparsity and bias of the lasso

selection in high-dimensional linear regression. The Annals of Statistics,

pages 1567–1594, 2008.

[72] Tong Zhang et al. Some sharp performance bounds for least squares

regression with l1 regularization. The Annals of Statistics, 37(5A):2109–

2144, 2009.

96

[73] Hui Zou and Trevor Hastie. Regularization and variable selection via the

elastic net. Journal of the Royal Statistical Society: Series B (Statistical

Methodology), 67(2):301–320, 2005.

.

97

Vita

Christopher Garrett Kennedy was born in Tucson, Arizona in 1991

and attended Catalina Foothills High School, where he graduated in 2009.

He was interested in mathematics throughout high school and continued to

pursue a degree in mathematics with a minor in computer science at Princeton

University. Christopher graduated from Princeton in the spring of 2013, and

immediately began attending graduate school at the University of Texas at

Austin that fall.

Permanent address: 2314 Camino La Zorrela
Tucson, Arizona 85718

This dissertation was typeset with LATEX† by the author.

†LATEX is a document preparation system developed by Leslie Lamport as a special
version of Donald Knuth’s TEX Program.

98

