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Navigation is an invisible utility that is often taken for granted with

considerable societal and economic impacts. Not only is navigation essential

to our modern life, but the more it advances, the more possibilities are cre-

ated. Navigation is at the heart of three emerging fields: autonomous vehicles,

location-based services, and intelligent transportation systems.

Global navigation satellite systems (GNSS) are insufficient for reliable

anytime, anywhere navigation, particularly indoors, in deep urban canyons,

and in environments under malicious attacks (e.g., jamming and spoofing).

The conventional approach to overcome the limitations of GNSS-based naviga-

tion is to couple GNSS receivers with dead reckoning sensors. A new paradigm,

termed opportunistic navigation (OpNav), is emerging. OpNav is analogous

to how living creatures naturally navigate: by learning their environment.

OpNav aims to exploit the plenitude of ambient radio frequency signals of
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opportunity (SOPs) in the environment. OpNav radio receivers, which may

be handheld or vehicle-mounted, continuously search for opportune signals

from which to draw position and timing information, employing on-the-fly sig-

nal characterization as necessary. In collaborative opportunistic navigation

(COpNav), multiple receivers share information to construct and continuously

refine a global signal landscape.

For the sake of motivation, consider the following problem. A number

of receivers with no a priori knowledge about their own states are dropped in

an environment comprising multiple unknown terrestrial SOPs. The receivers

draw pseudorange observations from the SOPs. The receivers’ objective is to

build a high-fidelity signal landscape map of the environment within which

they localize themselves in space and time. We then ask: (i) Under what

conditions is the environment fully observable? (ii) In cases where the en-

vironment is not fully observable, what are the observable states? (iii) How

would receiver-controlled maneuvers affect observability? (iv) What is the de-

gree of observability of the various states in the environment? (v) What motion

planning strategy should the receivers employ for optimal information gather-

ing? (vi) How effective are receding horizon strategies over greedy for receiver

trajectory optimization, and what are their limitations? (vii) What level of

collaboration between the receivers achieves a minimal price of anarchy?

This dissertation addresses these fundamental questions and validates

the theoretical conclusions numerically and experimentally.
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Chapter 1

Introduction

Where am I? Where am I heading? How long will I take to reach

my desired destination? These are probably the first questions that puzzled

mankind since we found ourselves on this planet. Position determination has

been always associated with the concept of navigation. Navigation is defined

as the art and science of directing the movement of a person or a craft expedi-

tiously and safely from one point to another. The close relationship between

navigation and position determination is attributed to the navigator’s need to

know the position and velocity at all times in order to steer safely and correctly

from one place to another.

1.1 Future Navigation Systems

Not only is navigation essential to our modern life, but the more it

advances, the more possibilities are created. Imagine a world in which hu-

mans and autonomous vehicles could navigate anytime, anywhere reliably and

accurately. In such a world, emergency responders, whether humans or au-

tonomous robots, could navigate hazardous environments, such as buildings

after earthquakes or explosions, to perform rescue missions. In such a world,
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people could find the most efficient course to navigate any indoor environment,

such as airports, hospitals, shopping malls, and campus buildings. In such a

world, humans do not have to drive their vehicles anymore, since they could

request their own autonomous chauffeur. By tapping their smartphone, the

closest autonomous vehicle is directed to the requester’s location for pick-up,

and later drops-off the requester at the desired destination. During the ride,

the requester could relax or perform some productive activity, knowing that

the autonomous vehicle is taking the safest and most efficient route. A fu-

turistic Volkswagen (VW) concept autonomous vehicle is illustrated in Figure

1.1. All of this, and more, can only be made possible with the realization of

reliable and accurate anytime, anywhere navigation.

Figure 1.1: Futuristic VW concept autonomous vehicle
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1.2 Evolution of Navigation Systems

Navigation has come a long way since the days when the Phoenician

and Greek traders surfed the Mediterranean Sea and beyond using basic navi-

gational techniques to travel from one port to another. Over the years, various

tools were developed to provide more accurate navigational information. By

the mid-eighteenth century, astronomical observations with a sextant and a

chronometer could establish a ship’s position to within a few kilometers. In

the twentieth century, refined maps and charts were produced. In addition,

radio positioning systems (e.g., Loran-C) as well as electronic navigation sys-

tems, such as inertial navigation systems (INS) comprising a computer, motion

sensors (e.g., accelerometers), and rotation sensors (e.g., gyroscopes), were de-

veloped [1].

From a navigation perspective, the most significant achievement has

been the development of the global positioning system (GPS) by the United

States Department of Defense in 1973. GPS revolutionized position determi-

nation over land, sea, air, and even space. The system with its global coverage

is available 24 hours a day every day, providing the navigator with a highly

accurate tool, which operates in all weather conditions. The receiver, on the

other hand, is compact and relatively inexpensive, allowing its use by anyone

from a hiker to an airplane pilot. The GPS also inspired the development of

other satellite-based navigation systems, such as the Russian Globalnaya Nav-

igatsionnaya Sputnikovaya Sistema (GLONASS), the European Galileo, and

the Chinese Beidou (Compass).
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1.3 GNSS Impact

Global navigation satellite system (GNSS) is an invisible utility that is

often taken for granted. The aviation, shipping, agriculture, and transporta-

tion industries need GNSS to function. The telecommunications, energy, and

financial markets depend on GNSS for precision timing and synchronization

[2–4]. GNSS has considerable societal and economic impacts. The Euro-

pean Commission determined that close to $1T of the European economy to

be dependent on precision navigation or timing from GPS [5]. The Euro-

pean GNSS Agency (GSA) predicted that GNSS-enabled devices will reach

7B devices worldwide by 2022– almost one for every person on the planet [6].

Location-based services (LBS) worldwide market, which is driven by applica-

tions like mapping, public safety, discovery and infotainment, location ana-

lytics, location-based advertising, social networking, tracking, and augmented

reality and gaming is expected to grow to close to $40B by 2019 [7].

1.4 GNSS Limitations

Despite the extraordinary advances in GNSS technology, the weakness

of their space-based signals renders GNSS insufficient for reliable and accurate

anytime, anywhere navigation, particulary indoors, in deep urban canyons,

and in environments under malicious attacks (e.g., jamming and spoofing).
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1.4.1 Navigation in Indoors Environments

In outdoor GNSS working conditions, typical values of carrier-to-noise

ratios C/N0 ≥ 44 dB-Hz are commonly encountered. For indoor scenarios,

and depending on the building materials and the receiver location within the

building, attenuation losses ranging from tens to more than 40 dB can be

experienced [8]. At such low C/N0, GNSS receivers may not acquire nor track

GNSS signals, and subsequently may not produce a navigation solution. This

is particulary problematic for emergency responders as more than 70% of E911

calls originate indoors [9].

1.4.2 Navigation in Deep Urban Canyons

A recent study demonstrated that less than 50% of Hong Kong’s dense

urban environment to have GPS coverage [10]. This is problematic for future

intelligent transportation systems (ITS), which require reliable, consistent,

tamper-proof, and highly accurate positioning for vehicle-to-vehicle (V2V)

communication protocols [11].

1.4.3 Navigation in Environments Under Malicious Attacks

In 2009, a truck driver who had installed a GPS jammer on his truck

and traveled along the nearby New Jersey Turnpike (I-95) caused brief daily

breaks in reception in the navigation system at Newark Liberty International

Airport (EWR) [12]. In addition, civilian GNSS signals are unencrypted,

unauthenticated, and specified in publicly-available documents [13]. In 2012,

5



The University of Texas at Austin Radionavigation Laboratory demonstrated

a spoofing attack on an unmanned aerial vehicle (UAV), in which counter-

feit GNSS signals were generated for the purpose of manipulating the UAV’s

reported position, velocity, and time [14].

1.5 Integrated Navigation Systems

The most common approach to overcome the limitation of GNSS-based

navigation is to integrate GNSS receivers with dead-reckoning systems. These

integrated navigation systems typically use a fusion of multiple, heterogeneous

sensors, in particular, GNSS receivers, INS, digital map databases, and dif-

ferent signal processing algorithms [15–18]. Such integration assumes a fixed

number of well-modeled sensors, which are fused together through a nonlin-

ear estimator [19, 20]. Current trends in integrated navigation systems in-

clude vision-based navigation [21], map- and power-matching [22–25], three-

dimensional mapping [26], opportunism [27, 28], and collaboration [29–31].

1.6 Collaborative Opportunistic Navigation

Motivated by the plenitude of ambient radio frequency signals in GNSS-

challenged environments, a new paradigm to overcome the limitations of GNSS-

based navigation is emerging. This paradigm, termed opportunistic navigation

(OpNav), is analogous to how living creatures naturally navigate: by learn-

ing their environment. OpNav radio receivers exploit ambient radio frequency

signals of opportunity (SOPs) from which they draw navigation and timing
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information, employing on-the-fly signal characterization as necessary [32].

Signals from discovered SOPs are downmixed and sampled coherently, yield-

ing a tight coupling between signal streams that permits carrier-phase-level

fusion of observables from the various streams within a single or distributed

state estimator. SOPs include cellular phone signals [32–36], television sig-

nals [37, 38], AM/FM radio signals [39, 40], WiFi signals [41, 42], Iridium

satellite signals [43, 44], XM
TM

satellite signals [45], ultra-wideband (UWB)

orthogonal frequency division multiplexed (OFDM) radar signals [46], and

light-emitting diode (LED) signals [47, 48]. In collaborative opportunistic nav-

igation (COpNav), multiple OpNav receivers share information to construct

and continuously refine a global signal landscape within which the receivers

localize themselves in space and time [49]. Figure 1.2 illustrates a system-level

vision of COpNav, in which receivers on a UAV, an unmanned ground vehicle

(UGV), and in a handheld device share their observations of various SOPs over

a communications network. The shared data is processed at a cloud-hosted

signal landscape map database and a fusion center, whose role is to maintain

the signal landscape map. Information is fed-back from the fusion center to

aid signal tracking at each receiver.

The GPS control segment routinely solves an instance of the COpNav

problem: the location and timing offsets of GPS ground stations are simul-

taneously estimated with orbital and clock parameters of GPS satellites [50].

Compared to the general COpNav problem, the GPS control segment’s prob-

lem enjoys the constraints imposed by accurate prior estimates of site locations
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Figure 1.2: A system-level vision of COpNav

and satellite orbits. Moreover, estimation of clock states is aided by the pres-

ence of highly-stable atomic clocks in the satellites and at each ground station.

In contrast, a COpNav receiver entering a new signal landscape may have less

prior information and cannot assume atomic frequency references for itself or

for the SOPs. The GPS control segment example highlights the essentially

collaborative nature of COpNav.
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1.7 OpNav–SLAM Analogy

In its most general form, OpNav treats all ambient signals as potential

SOPs, from conventional GNSS signals to communications signals never in-

tended for use as timing or positioning sources. Each signal’s relative timing

and frequency offsets, transmit location, and frequency stability, are estimated

on-the-fly as necessary, with prior information exploited when available. At

this level of generality, the OpNav estimation problem is similar to the so-

called simultaneous localization and mapping (SLAM) problem in robotics

[51, 52]. Both imagine an agent which, starting with incomplete knowledge of

its location and surroundings, simultaneously builds a map of its environment

and locates itself within that map.

In traditional SLAM, the map that gets constructed as the agent (typi-

cally a robot) moves through the environment is composed of landmarks (e.g.,

walls, posts, etc) with associated positions. OpNav extends this concept to

radio frequency signals, with SOPs playing the role of landmarks [53]. In con-

trast to a SLAM map [54, 55], the OpNav signal landscape is dynamic and

more complex. For the case of pseudorange-only OpNav, where observables

consist solely of signal time-of-arrival measurements, one must estimate, be-

sides the position and velocity of each SOP transmitter’s antenna phase center,

each SOP’s time offset, rate of change of time offset, and some parameters that

characterize the SOP’s reference oscillator stability. Even more SOP param-

eters are required if both pseudorange and carrier phase measurements are

ingested into the estimator [32]. In addition to the SOP states, the OpNav
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receiver’s own position, velocity, clock bias, and clock drift must be estimated.

Metaphorically, the signal landscape map can be thought of as a “jello map,”

with the jello firmer as the oscillators are more stable.

1.8 Dissertation Contributions

The ideas in SOP-based navigation have been inchoate. This disserta-

tion formulates the theoretical framework and answerers fundamental analysis

and synthesis questions pertaining to COpNav. Two classes of problems are

tackled in this dissertation: (i) observability and estimability analyses and (ii)

motion planning for optimal information gathering. Below is a list of questions

this dissertation addresses.

Observability and estimability analyses

1. Under what conditions is a COpNav environment comprising mul-

tiple receivers and multiple SOPs fully-observable?

2. For cases where the environment is not fully-observable, what are

the observable states, if any?

3. How do receiver-controlled maneuvers affect COpNav observability?

4. What is the degree of observability, also known as estimability, of

the various states in the COpNav environment?

10



Motion planning for optimal information gathering

1. What metric is appropriate for optimizing the receiver’s motion for

optimal information gathering?

2. What convexity properties can be stated for the receiver motion

planning optimization problems?

3. What is the level of superiority of receding horizon, i.e., multi-step

look-ahead, motion strategies over greedy, i.e., one-step look-ahead,

strategies, and what are the limitations of such superiority?

4. What decision making and information fusion architecture achieves

a minimal price of anarchy in collaborative signal landscape map-

ping with multiple receivers?

The refereed publications resulting from this dissertation are given next.

Journal Publications

[J1] Kassas, Z., & Humphreys, T. (2014). Observability analysis of collabora-

tive opportunistic navigation with pseudorange measurements. IEEE Trans-

actions on Intelligent Transportation Systems, (15)1, 260–273.

[J2] Kassas, Z., & Humphreys, T. (2014). Receding horizon trajectory op-

timization in opportunistic navigation environments. IEEE Transactions on

Aerospace and Electronic Systems, submitted.
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[J3] Kassas, Z., Arapostathis, A., & Humphreys, T. (2014). Greedy motion

planning for simultaneous signal landscape mapping and receiver localization.

IEEE Journal of Selected Topics in Signal Processing, submitted.

Conference Publications

[C1] Kassas, Z., & Humphreys, T. (2012). Observability analysis of oppor-

tunistic navigation with pseudorange measurements. Proceedings of AIAA

Guidance, Navigation, and Control Conference (pp. 4760–4775). Minneapo-

lis, MN.

[C2] Kassas, Z., & Humphreys, T. (2012). Observability and estimability of

collaborative opportunistic navigation with pseudorange measurements. Pro-

ceedings of ION Global Navigation Satellite Systems Conference (pp. 621–

630). Nashville, TN.

[C3] Kassas, Z., & Humphreys, T. (2013). Motion planning for optimal infor-

mation gathering in opportunistic navigation systems. Proceedings of AIAA

Guidance, Navigation, and Control Conference (pp. 4551-4565). Boston, MA.

[C4] Kassas, Z., Bhatti, J., & Humphreys, T. (2013). Receding horizon tra-

jectory optimization for simultaneous signal landscape mapping and receiver

localization. Proceedings of ION Global Navigation Satellite Systems Confer-

ence (pp. 1962–1969). Nashville, TN.

[C5] Kassas, Z., & Humphreys, T. (2013). The price of anarchy in active signal

landscape map building. Proceedings of IEEE Global Conference on Signal and

Information Processing (pp. 165–168). Austin, TX.
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[C6] Kassas, Z., Bhatti, J., & Humphreys, T. (2013). A graphical approach

to GPS software-defined receiver implementation. Proceedings of IEEE Global

Conference on Signal and Information Processing (pp. 1226–1229). Austin,

TX.

Magazine Publications

[M1] Kassas, Z. (2013, June). Collaborative opportunistic navigation. IEEE

Aerospace and Electronic Systems Magazine, (28)6, 38–41.

1.9 Dissertation Outline

This dissertation is organized as follows.

Chapter 2: This chapter presents the receiver and SOP dynamical model as

well as the model of observations made by a receiver on an SOP.

Chapter 3: This chapter analyzes the observability of a number of scenar-

ios that a typical COpNav environment could exhibit. Subsequently,

the minimal conditions under which the COpNav environment is fully-

observable are established. For cases where the environment is not fully-

observable, the observable states are specified. Moreover, the effects of

allowing receiver-controlled maneuvers on observability are studied. In

addition, the degree of observability (estimability) of the various envi-

ronment states is assessed with particular attention paid to the most

and least observable directions in the state space. The theoretical con-
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clusions are validated via numerical simulations and an experimental

demonstration.

Chapter 4: This chapter synthesizes receiver motion planning algorithms for

optimal information gathering in COpNav environments. To this end,

several classical information-based optimization criteria are derived and

novel innovation-based optimization criteria are proposed. The perfor-

mance of information-based and innovation-based criteria are compared

analytically and numerically. Moreover, it is shown that the innovation-

based criteria possess strong convexity properties making the solutions of

their associated optimization problems computationally efficient. In ad-

dition, the superiority and limitations of receding horizon motion plan-

ning strategies over greedy are assessed. Finally, collaborative signal

landscape mapping with multiple receivers is studied, and several deci-

sion making and information fusion architectures are synthesized. It is

demonstrated that a hierarchical strategy achieves a minimal price of

anarchy.

Chapter 5: This chapter summarizes the contributions of this dissertation

and highlights the major discoveries.

Chapter 6: This chapter outlines a number of future research directions that

build upon this dissertation.
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Chapter 2

Collaborative Opportunistic Navigation

Environment Model Description

This chapter describes the COpNav environment model. Section 2.1

presents the receiver and SOP dynamical model, whereas Section 2.2 specifies

the model of the pseudorange observations made by a receiver on an SOP.

2.1 Dynamics Model

2.1.1 Clock Dynamics Model

The receiver and SOP clock error dynamics will be modeled according

to the two-state model composed of the clock bias δt and clock drift δ̇t, as

depicted in Figure 2.1. The clock error states evolve according to

ẋclk(t) = Aclk xclk(t) + w̃clk(t),

xclk =

[

δt

δ̇t

]

, w̃clk =

[

w̃δt

w̃δ̇t

]

, Aclk =

[

0 1
0 0

]

,

where the elements of w̃clk are modeled as zero-mean, mutually indepen-

dent white noise processes and the power spectral density of w̃clk is given

by Q̃clk = diag
[

Sw̃δt
, Sw̃

δ̇t

]

. The power spectra Sw̃δt
and Sw̃

δ̇t
can be related to

the power-law coefficients {hα}
2
α=−2, which have been shown through labora-

tory experiments to be adequate to characterize the power spectral density of
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the fractional frequency deviation y(t) of an oscillator from nominal frequency,

which takes the form Sy(f) =
∑2

α=−2 hαf
α [56, 57]. It is common to approxi-

mate the clock error dynamics by considering only the frequency random walk

coefficient h−2 and the white frequency coefficient h0, which lead to Sw̃δt
≈ h0

2

and Sw̃
δ̇t
≈ 2π2h−2 [58, 59].

+

+w̃
δ̇t

w̃δt

δ̇t
δt

∫ ∫

Figure 2.1: Clock error states dynamical model

2.1.2 Receiver Dynamics Model

The receiver’s position and velocity will be assumed to evolve according

to a controlled velocity random walk dynamics. An object moving as such in

a generic coordinate ξ has the dynamics

ξ̈(t) = uξ(t) + w̃ξ(t),

where uξ is the control input in the form of an acceleration command and w̃ξ

is a zero-mean white noise process with power spectral density q̃ξ, i.e.,

E [w̃ξ(t)] = 0, E [w̃ξ(t)w̃ξ(τ)] = q̃ξ δ(t− τ),

where δ(t) is the Dirac delta function. Note that in the absence of the control

input, the above model reduces to a velocity random walk.
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The receiver’s state vector will be defined by augmenting the receiver’s

planar position rr and velocity ṙr with its clock error states xclk,r to yield the

continuous-time (CT) state space realization

ẋr(t) = Ar xr(t) +Br ur(t) +Dr w̃r(t), (2.1)

where xr =
[

rT

r , ṙ
T

r , xclk,r

]T

, rr = [xr, yr]
T, w̃r =

[

w̃x, w̃y, w̃δtr , w̃δ̇tr

]T

, ur =

[u1, u2]
T, and

Ar=





02×2 I2×2 02×2

02×2 02×2 02×2

02×2 02×2 Aclk



 , Br=





02×2

I2×2

02×2



 , Dr=

[

02×4

I4×4

]

.

The receiver’s dynamics in (2.1) is discretized at a constant sampling

period T . Assuming zero-order hold of the control inputs, i.e., {u(t) = u(kT ),

kT ≤ t < (k + 1)T }, and dropping T in the sequel for simplicity of notation

yields the discrete-time (DT) model [60]

xr (k + 1) = Fr xr(k) +Gr ur(k) +wr(k), k = 0, 1, 2, . . . (2.2)

where wr =
[

wT

pv, w
T

clk,r

]T

is a DT zero-mean white noise sequence with co-

variance Qr, and

Fr=





I2×2 T I2×2 02×2

02×2 I2×2 02×2

02×2 02×2 Fclk



 , Gr=





T 2

2
I2×2

T I2×2

02×2



 , Fclk=

[

1 T
0 1

]

, Qr =

[

Qpv 04×2

02×4 Qclk,r

]

Qpv =











q̃x
T 3

3
0 q̃x

T 2

2
0

0 q̃y
T 3

3
0 q̃y

T 2

2

q̃x
T 2

2
0 q̃xT 0

0 q̃y
T 2

2
0 q̃yT











, Qclk,r=

[

Sw̃δtr
T+Sw̃

δ̇tr

T 3

3
Sw̃

δ̇tr

T 2

2

Sw̃
δ̇tr

T 2

2
Sw̃

δ̇tr
T

]

.

17



2.1.3 SOP Dynamics Model

The SOP will be assumed to emanate from a spatially-stationary ter-

restrial transmitter whose state consists of its planar position rs and clock

error states xclk,s. Hence, the SOP’s dynamics is described by the state space

model

ẋs(t) = As xs(t) +Dsw̃s(t), (2.3)

where xs =
[

rT

s , xclk,s

]T

, rs = [xs, ys]
T, w̃s =

[

w̃δts , w̃δ̇ts

]T

, and

As =

[

02×2 02×2

02×2 Aclk

]

, Ds =

[

02×2

I2×2

]

.

Discretizing the SOP’s dynamics (2.3) at a sampling interval T yields the

DT-equivalent model

xs (k + 1) = Fs xs(k) +ws(k), (2.4)

where ws = wclk,s is a DT zero-mean white noise sequence with covariance

Qs, and

Fs = diag [I2×2, Fclk] , Qs = diag [02×2, Qclk,s] ,

where Qclk,s is identical to Qclk,r, except that Sw̃δtr
and Sw̃

δ̇tr
are now replaced

with SOP-specific spectra, Sw̃δts
and Sw̃

δ̇ts
, respectively.

2.2 Observation Model

The observation made by a receiver on a particular SOP is assumed to

be a pseudorange observation. To properly model a pseudorange observation,
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one must consider three different time systems. The first is true time, denoted

by t, which can be considered equivalent to GPS system time. The second

time system is that of the receiver’s clock and is denoted tr. The third time

system is that of the SOP’s clock and is denoted ts. The three time systems

are related to each other according to

t = tr − δtr(t), t = ts − δts(t), (2.5)

where δtr(t) and δts(t) are the amount by which the receiver and SOP clocks

are different from true time, respectively.

The pseudorange observation made by the receiver on a particular SOP

is made in the receiver time and is modeled according to

ρ(tr) = ‖rr [tr − δtr(tr)]− rs [tr − δtr(tr)− δtTOF]‖2 +

c . {δtr(tr)− δts [tr − δtr(tr)− δtTOF]}+ ṽρ(tr), (2.6)

where c is the speed of light, δtTOF is the time of flight of the signal from the

SOP to the receiver, and ṽρ is the error in the pseudorange measurement due

to modeling and measurement errors. The error ṽρ is modeled as a zero-mean

white Gaussian noise process with power spectral density r̃ [61]. In (2.6), the

clock offsets δtr and δts were assumed to be small and slowly changing, in

which case δtr(t) = δtr [tr − δtr(t)] ≈ δtr(tr). The first term in (2.6) is the

true range between the receiver’s position at time of reception and the SOP’s

position at time of transmission of the signal, while the second term arises due

to the offsets from true time in the receiver and SOP clocks.

19



The observation model in the form of (2.6) is inappropriate for our

upcoming analysis and synthesis as it suffers from two shortcomings: (i) it is

in a time system that is different from the one considered in deriving the system

dynamics, and (ii) the observation model is a nonlinear function of the delayed

system states. The first shortcoming can be dealt with by converting the

observation model to true time. The second problem is commonly referred to

as the output delay problem, in which the observations (outputs) are a delayed

version, deterministic or otherwise, of the system state. A common approach

to deal with this problem entails discretization and state augmentation [62, 63].

For simplicity, and in order not to introduce additional states in our model,

proper approximations will be invoked to deal with the second shortcoming.

To this end, the pseudorange observation model in (2.6) is converted

to true time by invoking the relationship (2.5) to get an observation model for

ρ[t+ δtr(t)]. The resulting observation model is delayed by δtr(t) to get an ob-

servation model for ρ(t). Assuming the receiver’s position to be approximately

stationary within a time interval of δtr(t), i.e., rr [t− δtr(t)] ≈ rr(t), and us-

ing the fact that the SOP’s position is stationary, i.e., rs [t− δtr(t)− δtTOF] =

rs(t), yields

ρ(t) ≈ ‖rr(t)− rs(t)‖2 + c . {δtr(t)− δts [t− δtr(t)− δtTOF]}+ ṽρ(t).

Next, it is argued that δts [t− δtr(t)− δtTOF] ≈ δts (t). The validity of this

argument depends on the size of δtr and of δtTOF and on the rate of change

of δts. For ground-based SOP transmitters up to 1 km away, the time of
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flight δtTOF is less than 3.34µs. Likewise, the offset δtr can be assumed to be

on the order of microseconds. It is reasonable to assume the SOP clock bias

δts to have an approximately constant value over microsecond time intervals.

Therefore, the pseudorange observation model can be further simplified and

expressed as a nonlinear function of the state as

z(t) = ρ(t) , y(t) + ṽρ(t)

≈ ‖rr(t)− rs(t)‖2 + c · [δtr(t)− δts(t)] + ṽρ(t), (2.7)

where y is the noise-free observation. Discretizing the observation equation

(2.7) at a constant sampling interval T yields the DT-equivalent observation

model

z(k) = y(k) + vρ(k) (2.8)

= ‖rr(k)− rs(k)‖2 + c · [δtr(k)− δts(k)] + vρ(k),

where vρ is a DT zero-mean white Gaussian sequence with variance r = r̃/T

[60].

It is worth noting that the main sources of error affecting pseudorange

observations include uncertainties associated with the propagation medium

(path delay and loss), receiver noise, multipath propagation, non-line of sight

(NLOS) propagation, multiple access interference, and near-far effects. The

effects of such error sources and mitigation methods are beyond the scope of

this dissertation, but relevant discussions can be found in [8, 33, 35, 36, 64]

and the references therein.

21



Chapter 3

Observability and Estimability Analyses

This chapter analyzes the observability and estimability of COpNav en-

vironments. The objective of the observability analysis is threefold: (i) deter-

mine the conditions under which the COpNav environment is fully-observable,

(ii) whenever the environment is not fully-observable, determine the observable

states, if any, and (iii) determine the effects of receiver-controlled maneuvers

on observability. The objective of the estimability analysis is to assess the

degree of observability of the various states with particular attention paid to

the most and least observable directions in the state space.

This chapter is organized as follows. Section 3.1 summarizes various

observability notions of dynamical systems, which are of relevance in analyz-

ing COpNav environments. Section 3.2 analyzes the observability of a sim-

plified environment through nonlinear, linear, and linear piecewise constant

system (PWCS) observability tools and describes the misapplication of the

linear PWCS test encountered in the literature. Section 3.3 discusses receiver

trajectories that yield observability singularity. Section 3.4 outlines a num-

ber of scenarios, which a typical COpNav environment could exhibit, whose

observability is analyzed. Sections 3.5 and 3.6 analyze the observability of
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COpNav environments through linear and nonlinear observability tools, re-

spectively. Section 3.7 presents simulation results to assess the estimability of

the observable COpNav scenarios. Section 3.8 presents experimental results

illustrating an important outcome of the observability analysis.

3.1 Theoretical Background: Observability of Dynami-

cal Systems

Conceptually, observability of a dynamical system is a question of solv-

ability of the state from a set of observations that are linearly or nonlinearly

related to the state, and where the state evolves according to a set of linear

or nonlinear difference or differential equations. In particular, observability

is concerned with determining whether the state of the system can be consis-

tently estimated from a set of observations taken over a period of time.

3.1.1 Observability of Nonlinear Systems

For the sake of clarity, various notions of nonlinear observability are

defined in this subsection [65]. Two fundamental contrasts between observ-

ability of nonlinear and linear systems are [66]:

(i) Choice of inputs. In the linear case, if any input u makes the system

observable, then every input does so; hence, it suffices to consider the case

u ≡ 0. In nonlinear systems, this is not the case. Specifically, there may exist

certain inputs that could turn an observable system into unobservable. Hence,

sensing and actuation in nonlinear systems may be coupled, and they need to

23



be studied simultaneously.

(ii) Length of observations. For observable CT linear systems, observing the

outputs y over any arbitrary time interval is sufficient. In nonlinear systems,

it may be necessary to observe y over a long, even infinite, time intervals.

Definition 3.1.1. Consider the CT nonlinear dynamical system

ΣNL :

{

ẋ(t) = f [x(t),u(t)] , x(t0) = x0

y(t) = h [x(t)] ,
(3.1)

with solution x(t) = g (t,x0,u), where x ∈ Rn is the system state vector,

u ∈ Rr is the control input vector, y ∈ Rm is the observation vector, and

x0 is an arbitrary initial condition. Two states x1 and x2 are said to be

indistinguishable if h[g (t,x1,u)] = h[g (t,x2,u)], ∀t ≥ 0 and ∀u. The set of

all points indistinguishable from a particular state x is denoted as I(x).

Definition 3.1.2. Let N be a subset (neighborhood) in the state space Rn

and x1,x2 ∈ N. Two states x1 and x2 are said to be N-indistinguishable

if every control u, whose trajectories from x1 and x2 both lie in N, fails to

distinguish between x1 and x2. The set of all N-indistinguishable states from

a particular state x is denoted as IN(x).

Definition 3.1.3. The system ΣNL is said to be observable at x0 if I(x0) =

{x0}. The system ΣNL is said to be observable if I(x0) = {x0}, ∀x0 ∈ Rn.

Note that observability is a global concept. It might be necessary to

travel a considerable distance or for a long period of time to distinguish be-

tween initial conditions in Rn. Moreover, observability of ΣNL does not imply

that every input u distinguishes initial conditions in Rn.
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Definition 3.1.4. The system ΣNL is said to be locally observable at x0 if

IN(x0) = {x0} for every open neighborhood N of x0.

Note that local observability is stronger than observability. Local ob-

servability requires distinguishability of the initial conditions without going

too far. In particular, trajectories need to lie in any open subset of Rn.

Definition 3.1.5. The system ΣNL is said to be weakly observable at x0 if

there exists a neighborhood N such that I(x0)
⋂

N = {x0}.

Note that weak observability is weaker than observability. Weak ob-

servability requires the existence of an open subset in Rn within which the

only initial condition that is indistinguishable from x0 is x0 itself. Note that

in weakly observable systems, trajectories may need to travel far enough for

distinguishability of the initial conditions.

Definition 3.1.6. The system ΣNL is said to be locally weakly observable

at x0 if there exists an open neighborhood N of x0 such that for every open

neighborhood M of x0 with M ⊂ N, IM(x0) = {x0}.

Intuitively, ΣNL is locally weakly observable if x0 can be instantaneously

distinguished from its neighbors. The various notions of observability are

related to each other according to the following relationships

locally observable ⇒ observable

⇓ ⇓

locally weakly observable ⇒ weakly observable.
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For nonlinear systems, establishing global system properties, such as

observability, is typically difficult to achieve. Hence, local properties are typi-

cally sought. An algebraic test exists for establishing local weak observability

of a specific form of the nonlinear system ΣNL in (3.1), known as the control

affine form [67], given by

ΣNL,a :

{

ẋ(t) = f 0 [x(t)] +
∑r

i=1 f i [x(t)] ui, x(t0) = x0

y(t) = h [x(t)] .
(3.2)

This test is based on constructing the so-called nonlinear observability

matrix defined next.

Definition 3.1.7. The first-order Lie derivative of a scalar function h with

respect to a vector-valued function f is

L
1
fh(x) ,

n
∑

j=1

∂h(x)

∂xj

fj(x) = 〈∇xh(x), f(x) 〉 , (3.3)

where f (x) , [f1(x), . . . , fn(x)]
T. The zeroth-order Lie derivative of any

function is the function itself, i.e., L
0
fh(x) = h(x). The second-order Lie

derivative can be computed recursively as

L
2
fh(x) = Lf

[

L
1
fh(x)

]

=
〈[

∇xL
1
fh(x)

]

, f (x)
〉

. (3.4)

Higher-order Lie derivatives can be computed similarly. Mixed-order Lie

derivatives of h(x) with respect to different functions f i and f j, given the

derivative with respect to f i, can be defined as

L
2
f ifj

h(x) , L
1
f j

[

L
1
f i
h(x)

]

=
〈[

∇xL
1
f i
h(x)

]

, f j(x)
〉

.
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The nonlinear observability matrix, denoted ONL, of ΣNL,a defined in (3.2) is

a matrix whose rows are the gradients of Lie derivatives, specifically

ONL ,

{

∇T

x

[

L
p
f i,...,fj

hl(x)
]

∣

∣

∣

∣

∣

i, j = 0, . . . , p; p = 0, . . . , n− 1; l = 1, . . . , m

}

,

where h(x) , [h1(x), . . . , hm(x)]
T.

The significance of the nonlinear observability matrix is that it can be

employed to furnish necessary and sufficient conditions for local weak observ-

ability [65]. In particular, if ONL is full-rank, then the system ΣNL,a is said to

satisfy the observability rank condition.

Theorem 3.1.1. If the nonlinear system in control affine form ΣNL,a satisfies

the observability rank condition, then the system is locally weakly observable.

Theorem 3.1.2. If a system ΣNL,a is locally weakly observable, then the ob-

servability rank condition is satisfied generically.

The term “generically” means that the observability matrix is full-rank

everywhere, except possibly within a subset of the domain of x [66]. Therefore,

if ONL is not of sufficient rank for all values of x, the system is not locally

weakly observable [68].

3.1.2 Observability of Linear Systems

For linear time-invariant (LTI) systems, the four notions of nonlinear

observability are equivalent. Observability of linear time-varying (LTV) sys-

tems is defined next [69].
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Definition 3.1.8. Consider the DT LTV dynamical system

ΣL :

{

x(k + 1) = F(k)x(k) +G(k)u(k), x(k0) = x0

y(k) = H(k)x(k), k ∈ [k0, kf ],
(3.5)

where F ∈ Rn×n, G ∈ Rn×r, and H ∈ Rm×n. The LTV system ΣL is said

to be observable in a time interval [k0, kf ], if the initial state x0 is uniquely

determined by the zero-input response y(k) for k ∈ [k0, kf−1]. If this property

holds regardless of the initial time k0 or the initial state x0, the system is said

to be completely observable.

Observability of LTV systems ΣL is typically established through study-

ing the rank of either the so-called observability Grammian or the observability

matrix. The following theorem states a necessary and sufficient condition for

observability of LTV systems through the l-step observability matrix [69].

Theorem 3.1.3. The LTV system ΣL is l-step observable if and only if the

l-step observability matrix, defined as

OL(k, k + l) ,











H(k)
H(k + 1)Φ(k + 1, k)

...
H(k + l − 1)Φ(k + l − 1, k)











(3.6)

is full-rank, i.e., rank [OL(k, k + l)] = n. The matrix function Φ is the DT

transition matrix, defined as

Φ(k, j) ,

{

F(k − 1)F(k − 2) · · ·F(j), k ≥ j + 1;
I, k = j.
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Linear observability tools may be applied to nonlinear systems by ex-

pressing the nonlinear system in its linearized error form. In this formulation,

the state vector ∆x, control input vector ∆u, and observation vector ∆y, are

defined as the difference between the true and nominal states, between the

true and nominal inputs, and between the true and nominal observations, re-

spectively. The discretized version of the linearized error form of ΣNL in (3.1)

is given by
∆x (k + 1) = F(k)∆x (k) +G(k)∆u (k)

∆y(k) = H(k)∆x (k) ,
(3.7)

where F, G, and H are the dynamics, input, and observation Jacobian matri-

ces, respectively, evaluated at the nominal states and inputs. The observability

results achieved in this case are only valid locally.

3.1.3 Observability of Linear Piecewise Constant Systems

Another test to to establish observability of the LTV system ΣL can

be derived if the LTV system is piecewise constant. Observability of linear

PWCSs has been analyzed for CT and DT systems [70] and is summarized

next.

Definition 3.1.9. An LTV system

ΣL,pwcs :

{

x(k + 1) = Fj(k)x(k) +Bj(k)u(k), x(0) = x0

y(k) = Hj(k)x(k),
(3.8)

where j = 1, . . . , s, is said to be piecewise constant if for every time segment

j, the matrices Fj , Bj, and Hj are constant, i.e., Fj(k) = Fj , Bj(k) = Bj,

and Hj(k) = Hj. These matrices may vary from one segment to another.
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Definition 3.1.10. The instantaneous observability matrix of the PWCS

ΣL,pwcs in segment j is defined as

Oj =















Hj

HjFj

HjF
2
j

...
HjF

n−1
j















. (3.9)

Definition 3.1.11. The total observability matrix (TOM) of the PWCS ΣL,pwcs

up to segment s is defined as

OTOM(s) =















O1

O2F
n−1
1

O3F
n−1
2 Fn−1

1
...

OsF
n−1
s−1F

n−1
s−2 · · ·F

n−1
1















. (3.10)

Theorem 3.1.4. The DT PWCS system ΣL,pwcs is observable if and only if

the TOM is full-rank, i.e., rank [OTOM(s)] = n.

3.1.4 Stochastic Observability via Fisher Information

From an estimation theoretic point of view, the Fisher information ma-

trix (FIM) quantifies the maximum existing information in observations about

the system’s random state. A singular FIM implies that the Cramér-Rao lower

bound does not exist, as the FIM’s inverse has one or more infinite eigenvalues,

which means total uncertainty in a subspace of the state space. This amounts

to the information being insufficient for the estimation problem under consid-

eration [58]. Under Gaussian assumptions and minimum mean squared error

estimation, the FIM is the inverse of the estimation error covariance matrix.
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Hence, another assessment of observability can be achieved by analyzing the

information form of the Kalman filter (KF). If the system is observable, then

the information matrix will eventually become invertible.

3.1.5 Degree of Observability: Estimability

Whereas the notion of observability is a Boolean property, i.e., it spec-

ifies whether the system is observable or not; for estimation purposes, the

question of estimability is of considerable importance. Estimability assesses

the “degree of observability” of the various states. Estimability can be assessed

by the condition number of the FIM, thus measuring whether an observable

system is poorly estimable due to the gradient vectors comprising the FIM

being nearly collinear [58].

An alternative method for assessing estimability of the different states

was proposed in [71]. This method is based on analyzing the eigenvalues

and eigenvectors of a normalized estimation error covariance matrix of the

KF. The normalization of the estimation error covariance serves two pur-

poses. First, it forces the transformed estimation error vector to be dimension-

less. This dimensional homogeneity makes comparison among the eigenvalues

meaningful. Such transformation can be accomplished through the congruent

transformation

P
′

(k|k) =
[

√

P(0| − 1)
]−1

P(k|k)
[

√

P(0| − 1)
]−1

,

where P(0|−1) is the initial estimation error covariance and P(k|k) is the pos-

terior estimation error covariance. Second, it sets a bound for the eigenvalues
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such that they are bounded between zero and n. This can be accomplished

through

P
′′

(k|k) =
n

tr [P′(k|k)]
P

′

(k|k). (3.11)

The largest eigenvalue of P
′′

(k|k) corresponds to the variance of the

state or linear combination of states that is poorly observable. On the other

hand, the state or linear combination of states that is most observable is

indicated by the smallest eigenvalue. The appropriate linear combination of

states yielding the calculated degree of observability is given by the respective

eigenvectors. Of course, there are cases where the eigenvalues distribution

is uninteresting and nothing startling is revealed by this method. However,

wide dispersion of the eigenvalues indicate cases of exceptionally good or poor

observability of certain linear combinations of the states [71].

3.2 Motivating Example

A study of COpNav observability benefits from the COpNav-SLAM

analogy. Although the question of observability was not addressed for more

than a decade after SLAM was introduced, the recent SLAM literature has

come around to considering fundamental properties of the SLAM problem,

including observability [72–82]. The effects of partial observability in planar

SLAM with range and bearing measurements were first analyzed via lineariza-

tion in [72, 73]. These papers came to the counterintuitive conclusion that the

two-dimensional planar wold-centric (absolute reference frame) SLAM problem

is fully-observable when the location of a single landmark is known a priori.
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With a nonlinear observability analysis, this result was subsequently disproved

and it was shown that at least two anchor landmarks with known positions

are required for local weak observability [75]. Later analysis of the SLAM

problem’s FIM confirmed the result of the nonlinear analysis [76]. However,

an apparent discrepancy between linear and nonlinear SLAM observability re-

emerged in [77], where it was shown that a linear analysis based on PWCS

theory again predicted global planar SLAM observability in the case of a sin-

gle known anchor landmark, whereas a nonlinear analysis in the same paper

indicated that two known anchor landmarks were required for local weak ob-

servability. However, no explanation for the reasons behind such discrepancies

were offered. The linear PWCS result appears flawed, since an observability

test based on linearization should never predict observability in a case where

a nonlinear test indicates lack of observability.

Next, the nonlinear, linear, and linear PWCS observability tests dis-

cussed in Subsections 3.1.1, 3.1.2, and 3.1.3, respectively, will be applied to a

simplified environment whose observability can be readily assessed via physical

intuition. The objective of this motivating example is to explain the observ-

ability discrepancies reported in the SLAM literature.

Consider an environment with one unknown receiver and one fully-

known anchor SOP, i.e., an SOP with a known initial state vector. Assume

that the receiver and SOP clocks are perfect, in which case the environment’s

state vector consists of the receiver’s position and velocity and the SOP’s

position, namely x = [xr, yr, ẋr, ẏr, xs,a, ys,a]
T. The observation in this case
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is the true range between the receiver and the SOP. Hence, the observation

vector has the form y(t) = [xs,a(t), ys,a(t), ‖rr(t)− rs,a(t)‖2 ]
T, where the two

fictitious observations xs,a and ys,a were augmented to the observation vector

to indicate knowledge of the position of the anchor SOP.

First, the nonlinear observability analysis is considered. The nonlin-

ear observability matrix ONL for this environment has rank 5. Since ONL is

rank-deficient, then by Theorem 3.1.2 we conclude that the environment is

unobservable. Even though the notion of an “unobservable subspace” cannot

be strictly defined for this system, by examining the physical interpretation

of the basis of O⊥
NL, i.e., the basis of the unobservable subspace, we will gain

useful information. A basis for the subspace O
⊥
NL is given by

O
⊥
NL = span

[ −yr+ys,a
ẋr

xr−xs,a

ẋr
− ẏr

ẋr
1 0 0

]T

.

The fact that the last two elements are zeros imply that the states xs,a and

ys,a are orthogonal to the unobservable subspace; hence, they are observable,

which is true by construction.

To employ the linear observability tools, the environment model will

be expressed in its linearized error form described in (3.7). Next, the LTV ob-

servability analysis through the l-step observability matrix OL(k, k+ l) is con-

sidered. Performing such analysis yields a 1-step observability matrix OL(0, 1)

whose rank is 3, a 2-step observability matrix OL(0, 2) whose rank is 4, and a

3-step observability matrix OL(0, 3) whose rank is 5. Adding more time-steps

does not improve the observability any further, and the l-step observability
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matrix will always be rank-deficient by 1, suggesting that the system is un-

observable. In fact, the resulting null-space of OL(0, l), ∀l ≥ 3, is identical to

the subspace O
⊥
NL.

Third, the observability analysis based on linear PWCS theory is con-

sidered. Performing such analysis yields a TOM for the first time segment

OTOM(1) whose rank is 4. The null-space for such matrix is given by

N [OTOM(1)] = span

[

0 0 − yr−ys,a+T ẏr
xr−xs,a+T ẋr

1 0 0

− yr−ys,a+T ẏr
xr−xs,a+T ẋr

1 0 0 0 0

]

T

.

Adding a second time segment results in a full-rank OTOM(2); hence, according

to Theorem 3.1.4, the system is observable. Not only this conclusion contra-

dicts the nonlinear and LTV observability analyses, but it also defies physical

intuition.

For this simple environment, from physical intuition we know that the

environment is fully-observable with the knowledge of at least two known an-

chor SOPs. Indeed, performing the nonlinear and the LTV observability tests

with two known anchor SOPs results in full-rank ONL and OL(k, k + l), re-

spectively, which indicates that the receiver’s state vector could be determined

from the observations. Such determination will, however, be ambiguous, since

there exists two indistinguishable initial conditions that would result in the

same observations.

As a concrete example, consider the scenario depicted in Figure 3.1.

Here, SOP1 and SOP2 are of known positions and the receiver is moving along
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the dashed line according to velocity random walk dynamics. In this case, a re-

ceiver that starts from the initial state (xr(0), yr(0)) and one that starts from

the initial state (xr(0),−yr(0)) will produce identical range measurements.

Hence, these initial conditions are indistinguishable given the range measure-

ments made by the receiver on both SOPs. In fact, it can be demonstrated

that as long an estimator, e.g., extended Kalman filter (EKF), is initialized

with an initial estimate that lies in the same half-plane (y > 0 or y < 0) as

the true initial state, the estimate will converge to the true state trajectory,

whereas if the initial estimate is set to be in the opposite half-plane, it will

converge to the opposite (incorrect) trajectory.

×

×

(xr(0), yr(0))

(xr(0),−yr(0))

SOP1 SOP2

x

y

Figure 3.1: Environment with an unknown receiver and two fully-known an-
chor SOPs

In particular, consider an environment with xr(0) = [250, 250,−10, 0]T,

xs,a1(0) = [0, 0]T, xs,a2(0) = [500, 0]T, q̃x = q̃x = 0.01 (m
s2
)2, r̃ = 25m2, and

T = 0.1 s. Figure 3.2(a) shows the estimation error x̃(k|k) , x(k) − x̂(k|k)
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along with the estimation error variances achieved through an EKF with an

initial state estimate x̂(0| − 1) = [150, 150,−5, 5]T and an initial estimation

error covariance P(0| − 1) = (103) I4×4. Note that the estimates converged to

the true state trajectories and that the estimation errors remained bounded. In

contrast, initializing the initial state estimate at x̂(0|−1) = [150,−150,−5, 5]T

yielded the estimation error trajectories illustrated in Figure 3.2(b). Note that

while the estimation error trajectory ỹ(k|k) converged and remained bounded,

it converged to an incorrect trajectory– one corresponding to a receiver with

an initial condition xr(0) = [250,−250,−10, 0]T.

Of course, adding a third fully-known SOP resolves this ambiguity.

Why are the nonlinear and linear observability analyses revealing that only

two fully-known anchor SOPs are needed? On one hand, the nonlinear observ-

ability analysis only guarantees weak local observability, namely the existence

of a neighborhood within which the initial states are distinguishable. For the

scenario depicted in Figure 3.1, such neighborhood turns out to be a half-plane

around the initial condition. On the other hand, the fact that we are lineariz-

ing the nonlinear observations first implies that the LTV observability results

are only valid locally, i.e., in the neighborhood where the linearizations are

valid.

Another important conclusion from this motivating example is that

the observability analysis through the linear PWCS theory, as applied, is not

appropriate for analyzing COpNav environments. The confusion arising from

the observability conclusions of this theory, which is demonstrated in this
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simple example, are similar to the ones encountered in the SLAM literature

[72–77]. The reason behind these discrepancies is that one cannot simply

take the time segment j to coincide with the discretization instant k. Rather,

each time segment j must contain at least n measurement samples during

the collection of which the Jacobian matrices F, G, and H can be accurately

modeled as constant.

x̃
r
(k
|k
)

ỹ
r
(k
|k
)

˙̃ x
r
(k
|k
)

˙̃ y r
(k
|k
)

Time (s) Time (s)

±2σyr

ỹr
±2σxr

x̃r

±2σẋr

˙̃xr
±2σẏr

˙̃yr

x̃
r
(k
|k
)

ỹ
r
(k
|k
)

˙̃ x
r
(k
|k
)

˙̃ y r
(k
|k
)

Time (s) Time (s)

±2σyr

ỹr
±2σxr

x̃r

±2σẋr

˙̃xr
±2σẏr

˙̃yr

(a)

(b)

Figure 3.2: Estimation error trajectories for the environment depicted in Fig-
ure 3.1 with initial state estimate (a) x̂(0| − 1) = [150, 150,−5, 5]T and (b)
x̂(0| − 1) = [150,−150,−5, 5]T
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3.3 Receiver Trajectory Singularity

In the upcoming analysis, it is assumed that the receiver is not sta-

tionary, specifically ẋr(0) 6= 0 and ẏr(0) 6= 0. Moreover, it is assumed that

the receiver’s trajectory is not collinear with the vectors connecting the re-

ceiver and any of the SOPs. Specifically, it is assumed that ∄ α ∈ R such that

ẋr(k + 1) = α [xr(k)− xs(k)] and ẏr(k + 1) = α [yr(k)− ys(k)]. This ensures

that the bearing angle between the receiver and the SOPs is never constant

along the receiver trajectory. This assumption ensures that the observability

matrix will not lose rank due to the receiver’s motion path.

To illustrate why this case must be excluded, consider a simplified sce-

nario in which the receiver and SOP clocks are ideal, i.e., with no bias nor

drift, such that the observations are given by y(k) = ‖rr(k) − rs(k)‖2. In

this case, the environment state vector is given by x =
[

rT

r , ṙ
T

r , r
T

s

]T

and the

corresponding observability matrix is given by

O(0, l) =











hT

a,r,s(0) 01×2 −hT

a,r,s(0)
hT

a,r,s(1) ThT

a,r,s(1) −hT

a,r,s(1)
...

...
...

hT

a,r,s(l − 1) T (l − 1)hT

a,r,s(l − 1) −hT

a,r,s(l − 1)











,

where hT

a,r,s(k) ,
[

xr(k)−xs(k)
‖rr(k)−rs(k)‖2

, yr(k)−ys(k)
‖rr(tk)−rs(k)‖2

]

. An alternative expression for

hT

a,r,s(k) is given by hT

a,r,s(k) = [ cos θr,s(k), sin θr,s(k) ], where θr,s(k) is the

angle between the x-axis and the range vector connecting the receiver and

the SOP at time instant k. In this representation, it is obvious that OL(0, l)

has a rank of 3, since O1 = −O5, O2 = −O6, and
∑4

i=1 αi Oi = 0, with
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α1 ,
−yr(0)+ys(0)

ẋr(0)
, α2 ,

xr(0)−xs(0)
ẋr(0)

, α3 ,
−ẏr(0)
ẋr(0)

, and α4 , 1, where Oi is the ith

column of OL(0, l). The null-space of OL(0, l) for l ≥ 3 can be shown to be

N [OL(0, l)] = span
[

a1 a2 a3

]

,

a1 , e1 + e5, a2 , e2 + e6, a3 ,

4
∑

i=1

αiei,

where ei is the standard basis vector consisting of a 1 in the ith element and

zeros elsewhere. However, when the receiver’s motion path is collinear with the

SOP, the rank of OL(0, l) drops to 2, since in this case θr,s(0) = · · · = θr,s(l−1).

3.4 Scenarios Overview

The various scenarios considered in the observability analysis are out-

lined Table 3.1, where n,m ∈ N. In Table 3.1, unknown means that no a

priori knowledge about any of the states is available, whereas fully-known

means that all the initial states are known. Thus, a fully-known receiver is

one with known xr(0), whereas a fully-known SOP is one with known xs(0).

On the other hand, partially-known means that only the initial position states

are known. Thus, a partially-known receiver is one with known rr(0), whereas

a partially-known SOP is one with known rs(0). For the cases of multiple

SOPs, it is assumed that the SOPs are not colocated. Moreover, it is as-

sumed that each SOP’s classification, whether unknown, partially-known, or

fully-known, is known to any receiver making use of that SOP.
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Table 3.1: COpNav observability analysis scenarios considered

Case Receiver(s) SOP(s)

1 1 Unknown 1 Unknown
2 1 Unknown m Partially-known
3 1 Unknown 1 Fully-known
4 1 Unknown 1 Fully-known & 1 Partially-known
5 n Partially-known 1 Unknown
6 n Partially-known m Partially-known
7 1 Partially-known 1 Fully-known
8 1 Fully-known 1 Unknown

3.5 Linear Observability Analysis

This section analyzes the observability of the scenarios outlined in Table

3.1 for receivers with velocity random walk dynamics, i.e., u = 0 in (2.2),

through the linear observability test discussed in Subsection 3.1.2 [83, 84].

3.5.1 Preliminary Facts

The following facts will be invoked in the upcoming linear observability

proofs. The rank of an arbitrary matrix A ∈ Rm×n is the maximal number of

linearly independent rows or columns; more specifically, rank[A] ≤ min {m,n}.

In a COpNav environment comprising n receivers and m SOPs, the

state transition matrix raised to the kth power can be shown to be

Fk = diag
[

Fk
r1
, . . . ,Fk

rn
,Fk

s1
, . . . ,Fk

sm

]

, (3.12)

where Fri and Fsj are the state transition matrices for the ith receiver and

jth SOP, respectively.
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Moreover, it can be readily verified that

eT

i F
k
r =







eT

i + kTeT

i+2, i = 1, 2;
eT

i + kTeT

i+1, i = 5;
eT

i , i = 3, 4, 6
(3.13)

eT

i F
k
s =

{

eT

i , i = 1, 2, 4;
eT

i + kTeT

i+1, i = 3.
(3.14)

The Jacobian vector of the observation corresponding to the pseudor-

ange measurement made by receiver i on SOP j will have the structure

H(k) =
[

0 · · · 0 hT

b,ri,sj
(k) 0 · · · 0 hT

c,ri,sj
(k) 0 · · · 0

]

(3.15)

hT

b,ri,sj
(k) ,

[

hT

a,ri,sj
(k) 01×2 c 0

]

hT

c,ri,sj
(k) ,

[

−hT

a,ri,sj
(k) −c 0

]

,

where hT

a,ri,sj
(k) =

[

xri
(k)−xsj

(k)

‖rri
(k)−rsj

(k)‖2
,

yri(k)−ysj (k)

‖rri
(k)−rsj

(k)‖2

]

. It can be readily verified

that

hT

b,ri,sj
(k)Fk

r = hT

d,ri,sj
(k) (3.16)

hT

c,ri,sj
(k)Fk

s = hT

e,ri,sj
(k) (3.17)

hT

d,ri,sj
(k) ,

[

hT

a,ri,sj
(k) kThT

a,ri,sj
(k) c kT

]

hT

e,ri,sj
(k) ,

[

−hT

a,ri,sj
(k) −c −kT

]

.

3.5.2 Linear Observability Results

Theorem 3.5.1. A COpNav environment with one unknown receiver and one

unknown SOP is unobservable. Moreover, the observability matrix OL(0, l) is

rank-deficient by 5, ∀ l ≥ 5.
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Proof. The state vector for this case is given by x =
[

xT

r , x
T

s

]T

. Invoking

(3.12) and (3.15)-(3.17), it can be seen that the rank of OL(0, l) is one at the

first time segment, and the rank increments by one as each additional time

segment is appended up to l = 5, since the corresponding additional rows

are linearly independent. At the fifth time segment, rank[OL(0, 5)] = 5, and

the rank never increases further, since only Oi, i = 1, 2, 3, 5, 6, are linearly

independent, ∀l ≥ 5. This can be shown by noting that O1 = −O7, O2 =

−O8, O5 = −O9, O6 = −O10, and
∑4

i=1 αi Oi = 0, with α1 ,
−yr(0)+ys(0)

ẋr(0)
,

α2 ,
xr(0)−xs(0)

ẋr(0)
, α3 ,

−ẏr(0)
ẋr(0)

, and α4 , 1. The null-space of OL(0, l) for l ≥ 5

can be shown to be

N [OL(0, l)] = span
[

n1 n2 n3 n4 n5

]

,

n1 , e6 + e10, n2 , e5 + e9, n3 , e2 + e8, n4 , e1 + e7, n5 ,

4
∑

i=1

αiei.

The structure of N [OL(0, l)] reveals the following conclusions. First,

the absence of a row of zeros in the matrix of null-space basis vectors {ni}
5
i=1

indicates that none of the states is orthogonal to the unobservable subspace,

which means that all the states lie within the unobservable subspace. There-

fore, none of the states is directly observable. Second, a shift of the receiver

and SOP positions by εx units in the x-direction and εy units in the y-direction,

where εx, εy ∈ R, is unobservable, since this shift, denoted as λ = εyn3+ εxn4

lies in the null-space of OL(0, l). The same interpretation can be made with
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respect to a shift in the δt-δ̇t space being unobservable as a result of n1 and

n2. Third, a rotation by an angle φ around the SOP is unobservable. To see

this, without loss of generality, assume that the SOP is located at the origin.

A rotation at an angle φ will transform the coordinate frame from (x, y) to

(x′, y′). Therefore, the position and velocity states in the new coordinate frame

can be computed from

[

r′
r

ṙ′
r

]

=

[

T(φ) 0
0 T(φ)

] [

rr

ṙr

]

, T(φ) ,

[

cosφ − sinφ
sin φ cos φ

]

.

For small φ, the small angle approximations cosφ ≈ 1 and sinφ ≈ φ can be

invoked in the rotation matrix T(φ). Consequently, it can be readily shown

that the transformed state vector can be expressed as x′ = x+ φ

ẋr(0)
n5. Since

n5 ∈ N [OL(0, l)], then
φ

ẋr(0)
n5 ∈ N [OL(0, l)], and such term will be unobserv-

able from the measurements.

Theorem 3.5.2. A COpNav environment with one unknown receiver and

m partially-known SOPs is unobservable. Moreover, the observability matrix

OL(0, l) is rank-deficient by 3 for m = 1, ∀ l ≥ 5, and rank-deficient by 2 for

m ≥ 2, ∀ l ≥ 4.

Proof. The state vector for this case is given by x =
[

xT

r , x
T

s1
, . . . , xT

sm

]T

.

Knowledge of the SOPs’ positions is equivalent to having an observation Ja-

cobian matrix of the form

44



H(k) =



























hT

b,r,s1
(k) hT

c,r,s1
(k) 0 · · · 0

hT

b,r,s2
(k) 0 hT

c,r,s2
(k) · · · 0

...
...

...
. . .

...
hT

b,r,sm
(k) 0 0 · · · hT

c,r,sm
(k)

0 [I2×2 02×2] 0 · · · 0
0 0 [I2×2 02×2] · · · 0
...

... 0
. . .

...
0 0 0 · · · [I2×2 02×2]



























.

Noting that H(k) ∈ R(3m)×(4m+6) and invoking (3.12)-(3.17), it can be be

seen that rank [OL(0, 1)] = 3m, ∀m, since all the rows are linearly indepen-

dent. Adding a second time segment results in an observability matrix with

rank [OL(0, 2)] = 4m, ∀m, since the first 4m rows are linearly independent,

while rows m + 1, . . . , 3m are identical to rows 4m + 1, . . . , 6m, respectively.

Adding a third time segment results in an observability matrix with

rank [OL(0, 3)] =

{

5m, m ≤ 3;
4m+ 4, m > 3.

(3.18)

For m ≤ 3, (3.18) can be shown by noting that rows 1, . . . , 4m and 6m + i,

where i = 1, 2, . . . , m are linearly independent, while rows m + 1, . . . , 3m are

identical to rows 4m + 1, . . . , 6m and rows 7m + 1, . . . , 9m, respectively. For

m > 3, (3.18) can be shown by noting that columns 1, . . . , 4m+ 4 are linearly

independent, while the last 2 columns are linearly dependent, namely O4m+5 =

−
∑m−1

i=0 O4i+5 and O4m+6 = −
∑m−1

i=0 O4i+6. Adding a fourth time segment

results in an observability matrix with

rank [OL(0, 4)] =

{

6, m = 1;
4m+ 4, m ≥ 2.

(3.19)
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For m = 1, (3.19) can be shown by noting that rows 1, 2, 3, 4, 7, 10 are linearly

independent, while rows 2 + 3i and rows 3 + 3i, for i = 0, 1, 2, 3 are identical.

For m ≥ 2, (3.19) can be shown by noting that columns 1, . . . , 4m + 4 are

linearly independent, while the last 2 columns are linearly dependent, namely

O4m+5 = −
∑m−1

i=0 O4i+5 and O4m+6 = −
∑m−1

i=0 O4i+6. Form ≥ 2, adding more

time segments does not improve the rank any further as the last two columns

will always be linearly dependent on the previous columns. However, form = 1

a fifth time segment increases the rank by one, while adding additional time

segments beyond 5 does not improve the rank any further. This can be shown

by noting that Oi, i = 1, 2, 3, 5, 6, 7, 8, are linearly independent, while O5 =

−O9, O6 = −O10, and
∑4

i=1 αi Oi = 0.

For m = 1, the null-space of OL(0, l), l ≥ 5, can be shown to be

N [OL(0, l)] = span
[

n1 n2 n5

]

.

For m ≥ 2, the null-space of OL(0, l), l ≥ 4, can be shown to be

N [OL(0, l)] = span
[

n6 n7

]

,

n6 ,
[

nT

6,r nT

6,s1
nT

6,s2
· · · nT

6,sm

]T

n7 ,
[

nT

7,r nT

7,s1
nT

7,s2
· · · nT

7,sm

]T

nT

6,r , γeT

5 − µeT

6 , nT

7,r , µeT

5 + γeT

6

nT

6,si
, γeT

3 − µeT

4 , nT

7,si
, µeT

5 + γeT

6 , i = 1, 2, . . . , m

γ ,
−yr(0) +

∑m
i=1 ysi(0)

ẏr(0)
, µ ,

xr(0)−
∑m

i=1 xsi(0)

ẋr(0)
.
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The structure of N [OL(0, l)] reveals that for m = 1, none of the states

is directly observable except xsi and ysi, which are observable by construction.

However, for m ≥ 2, the receiver’s position and velocity states, xr, yr, ẋr, and

ẏr, become observable, but the receiver and SOPs clock bias and drift states,

δtr, δ̇tr, δtsi , and δ̇tsi, remain unobservable.

Theorem 3.5.3. A COpNav environment with one unknown receiver and one

fully-known SOP is unobservable. Moreover, the observability matrix OL(0, l)

is rank-deficient by 1, ∀ l ≥ 5.

Proof. The state vector for this case is given by x =
[

xT

r , x
T

s

]

T

. Full knowl-

edge of the SOP is equivalent to having an observation Jacobian matrix

H(k) =

[

hT

b,r,s(k) hT

c,r,s(k)
0 I4×4

]

. (3.20)

Invoking (3.12)-(3.17), it can be be seen that rank [OL(0, l)] = 5 at the first

time segment, since the rows are linearly independent. The rank increments

by one as each additional time segment is appended up to l = 5, since rows 2,

3, 4, and 5 are identical to rows 2 + 5(l − 1), 3 + 5(l − 1), 4 + 5(l − 1), and

5 + 5(l − 1), respectively, while the first five rows are linearly independent of

rows 1+5(l−1). The rank stops improving at the fifth time segment, whereat

rank[OL(0, 5)] = 9. The rank never increases further, since O4 = −
∑3

i=1 αi Oi.

The null-space of OL(0, l), l ≥ 5, can be shown to be

N [OL(0, l)] = span
[

n5

]

.
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The structure of N [OL(0, l)] reveals that of the receiver’s states, only

the receiver clock bias δtr and clock drift δ̇tr are observable as they are or-

thogonal to the unobservable subspace, while SOP states are observable by

construction.

Theorem 3.5.4. A COpNav environment with one unknown receiver, one

fully-known SOP, and one partially-known SOP is observable, ∀ l ≥ 4.

Proof. The state vector for this case is given by x =
[

xT

r , x
T

s1
,xT

s2

]T

. Full

knowledge of one SOP and partial knowledge of the other is equivalent to

having an observation Jacobian matrix of the form

H(k) =









hT

b,r,s1
(k) hT

c,r,s1
(k) 0

hT

b,r,s2
(k) 0 hT

c,r,s2
(k)

0 I4×4 0
0 0 [I2×2 02×2]









. (3.21)

Invoking (3.12)-(3.17), it can be seen that the observability matrix OL(0, l) has

a rank of 8 at the first time segment, since all the rows are linearly independent.

The rank keeps increments by two as each additional time segment is appended

up to l = 4. Adding a fourth time segment results in an observability matrix

whose rank is 14 (full-rank). This can be shown by noting that the first 8 rows

are linearly independent along with rows 9+8(l− 2) and 10+8(l− 2), for l =

2, 3, 4. Moreover, rows i+8(l− 1) for i = 3, 4, 6, 7, 8 and l = 1 are identical to

the corresponding rows for l = 2, 3, . . .. Finally, OT

13+8(l−2) = O
T

5 +T (l−1)OT

6 ,

for l = 2, 3, . . ., where O
T

i is the ith row of the corresponding observability

matrix OL(0, l).
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Theorem 3.5.5. A COpNav environment with n partially-known receivers

and one unknown SOP is unobservable. Moreover, the observability matrix

OL(0, l) is rank-deficient by 2, ∀ l ≥ 3.

Proof. The state vector for this case is given by x =
[

xT

r1
, . . . , xT

rn
, xT

s

]

T

.

Partial knowledge of the n receivers is equivalent to having an observation

Jacobian matrix of the form

H(k) =















hT

b,r1,s
(k) 0 · · · 0 hT

c,r1,s
(k)

[I2×2 02×4] 0 · · · 0 0
...

...
. . .

...
...

0 0 · · · hT

b,rn,s
(k) hT

c,rn,s
(k)

0 0 · · · [I2×2 02×4] 0















.

Noting that H(k) ∈ R(3n)×(6n+4) and invoking (3.12)-(3.17), it can be be

seen that rank [OL(0, 1)] = 3n and rank [OL(0, 2)] = 6n, since in both cases

all rows are linearly independent. Adding more time segments results in

rank [OL(0, l)] = 6n + 2, ∀ l ≥ 3, since columns 1, 2, . . . , 6n + 2 are linearly

independent, whereas the last two columns are linearly dependent. In par-

ticular, O6n+3 = −
∑n

i=1O6i+5 and O6n+4 = −
∑n

i=1O6i+6. The null-space of

OL(0, l), l ≥ 3, can be shown to be

N [OL(0, l)] = span
[

n8 n9

]

,

n8 ,
[

nT

8,r1
nT

8,r2
· · · nT

8,rn
nT

8,s

]T

n9 ,
[

nT

9,r1
nT

9,r2
· · · nT

9,rn nT

9,s

]T

nT

8,ri
, ξeT

5 − ηeT

6 , nT

9,ri
, ηeT

5 + ξeT

6 , i = 1, 2, . . . , n

nT

8,s , ξeT

3 − ηeT

4 , nT

9,s , ηeT

3 + ξeT

4
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ξ ,
− [
∑n

i=1 yri(0)] + ys(0)
∑n

i=1 ẏri(0)
, η ,

[
∑n

i=1 xri(0)]− xs(0)
∑n

i=1 ẋri(0)
.

The structure of N [OL(0, l)] reveals that the receivers velocity states

and the SOP’s position states are observable. However, the receivers’ and the

SOP’s clock bias and drift states are not observable. Recall that the receivers’

position states are observable by construction.

Theorem 3.5.6. A COpNav environment with n partially-known receivers and

m partially-known SOPs is unobservable. Moreover, the observability matrix

OL(0, l) is rank-deficient by 2, ∀ l ≥ 2.

Proof. The state vector for this case is given by x =
[

xT

r1
, . . . ,xT

rn
,xT

s1
, . . . ,xT

sm

]T

.

Partial knowledge of the receivers and SOPs is equivalent to having an obser-

vation Jacobian matrix of the form

H(k) =



















Hb,r1,s 0 0 Hc,r1,s 0 0

0
. . .

... 0
. . . 0

0 · · · Hb,rn,s 0 · · · Hc,rn,s

0 · · · 0 [I2×2 02×2] 0 0
...

. . .
... 0

. . .
...

0 · · · 0 0 · · · [I2×2 02×2]



















Hb,ri,s(k) ,











hT

b,ri,s1
(k)

...
hT

b,ri,sm
(k)

I2×2 02×4











, Hc,ri,s(k) ,











hT

c,ri,s1
(k)

...
hT

c,ri,sm
(k)

02×4











, i = 1, . . . , n.

Noting that H(k) ∈ R(mn+2n+2m)×(6n+4m) and invoking (3.12)-(3.17), it can be

seen that rank [OL(0, 1)] = 3n + 3m − 1. This can be shown by noting that

the columns of O(0, 1) have the following properties:
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• linearly independent columns: O1+6i, O2+6i, O5+6i, O6n+1+4j , O6n+2+4j ,

and O6n+3+4(l−1); with i = 0, 1, . . . , n, j = 0, 1, . . . , m, and l = 1, 2, . . . , j.

• columns of zeros: O3+6i, O4+6i, O6+6i, O6n+4+4j ; with i = 0, 1, . . . , n,

and j = 0, 1, . . . , m

• linearly dependent columns: O6n+3+4j = −
[

∑n
l=1O6l−1 +

∑j−1
l=0 O6n+3+4l

]

;

with j = 0, . . . , m

Next, it is noted that OL(0, l) ∈ R[l(mn+2n+2m)]×(6n+4m); hence the rank of

OL(0, l) will be determined by the number of linearly independent columns,

since the matrix will have more rows than columns ∀l ≥ 2. It can be seen that

rank [OL(0, l)] = 6n+4m−2, ∀l ≥ 2, i.e. the l-step observability matrix is rank-

deficient by 2. This can be shown by noting that the first 6n+4m−2 columns

are linearly independent, while the last two columns are linearly dependent,

such that

O6n+4m−q = −

[

n
∑

l=1

O6l−q +

j−1
∑

l=0

O6n+4−q+4l

]

,

where q = 0, 1 and j = 0, 1, . . . , m. The null-space of OL(0, l), l ≥ 3, can be

shown to be

N [OL(0, l)] = span
[

n10 n11

]

,

n10 ,
[

nT

10,r1
· · · nT

10,rn nT

10,s1
· · · nT

10,sm

]T

n11 ,
[

nT

11,r1
· · · nT

11,rn nT

11,s1
· · · nT

11,sm

]T

nT

10,ri
, βeT

5 − ζeT

6 , nT

9,ri
, ζeT

5 + βeT

6 , i = 1, 2, . . . , n

nT

11,sj
, βeT

3 − ζeT

4 , nT

9,sj
, ζeT

3 + βeT

4 , j = 1, 2, . . . , m
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β ,
− [
∑n

i=1 yri(0)] +
[

∑m

j=1 ysi(0)
]

∑n

i=1 ẏri(0)
, ζ ,

[
∑n

i=1 xri(0)]−
[

∑m

j=1 xsi(0)
]

∑n

i=1 ẋri(0)
.

The structure of N [OL(0, l)] reveals that the receivers velocity states

are observable. However, the receivers’ and SOPs’ clock bias and drift states

are not observable. Recall that the receivers’ position states are observable by

construction.

Theorem 3.5.7. A COpNav environment with one partially-known receiver

and one fully-known SOP is observable, ∀ l ≥ 2.

Proof. The state vector for this case is given by x =
[

xT

r ,x
T

s

]T

. Partial

knowledge of the receiver and full knowledge of the SOP is equivalent to having

an observation Jacobian matrix of the form

H(k) =





hT

b,r,s(k) hT

c,r,s(k)
[I2×2 02×4] 0

0 I4×4



 . (3.22)

Invoking (3.12)-(3.17), it can be be seen that rank [OL(0, 1)] = 7, since all

the rows are linearly independent. Adding more time segments yields a full-

rank OL(0, l), namely rank [OL(0, l)] = 10, ∀l ≥ 2, since the first ten rows are

linearly independent, while rows 4 + 7(l − 1), 5 + 7(l − 1), and 7 + 7(l − 1)

for l = 1 are identical to the corresponding rows for l = 2, 3, . . ., and rows

O
T

6+7(l−1) are linearly dependent, such that OT

6+7(l−1) = O
T

6 + T (l − 1)OT

7 .

Theorem 3.5.8. A COpNav environment with one fully-known receiver and

one unknown SOP is observable, ∀ l ≥ 4.
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Proof. The state vector for this case is given by x =
[

xT

r ,x
T

s

]T

. Full knowl-

edge of the receiver is equivalent to having an observation Jacobian matrix of

the form

H(k) =

[

hT

b,r,s(k) hT

c,r,s(k)
I6×6 0

]

. (3.23)

Invoking (3.12)-(3.17), it can be be seen that the observability matrix OL(0, l)

has a rank of 7 at the first time segment, since all the rows are linearly inde-

pendent. The rank increments by one as each additional segment is appended

up to l = 4. Adding a fourth time segment results in an observability matrix

whose rank is 10 (full-rank). This can be shown by noting that the first 7 rows

are linearly independent along with rows 8+7(l−2), for l = 2, 3, 4. Moreover,

rows i + 7(l − 1) for i = 4, 5, 7 and l = 1, 2, . . . , are identical, respectively.

Finally, OT

9+7(l−2) = O
T

2 + T (l − 1)OT

4 , O
T

10+7(l−2) = O
T

3 + T (l − 1)OT

5 , and

O
T

13+7(l−2) = O
T

6 + T (l − 1)OT

7 , for l = 2, 3, . . .

The results concluded from theorems 3.5.1–3.5.8 are summarized in Ta-

ble 3.2, where observable states refer to those in an orthogonal complement to

the unobservable subspace, and time-step l refers to the time-step at which the

observability matrix rank reaches a steady-state value. It is worth noting that

the observability results for the scenarios considered in Table 3.1 constitute

the minimal set of observability requirements in the sense that knowing the

results for these scenarios, one can predict the observability of an arbitrary

scenario with n receivers and m SOPs and any type of prior knowledge (none,

partial, or full) for the receivers and SOPs.
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Table 3.2: Linear COpNav observability analysis results

Case Observable? Observable States Time-Step l

1 no none 5
2 no m = 1: none 5

m ≥ 2: xr, yr, ẋr, ẏr 4

3 no δtr, δ̇tr 5
4 yes all 4
5 no ẋri , ẏri, xs, ys, i = 1, . . . , n 3
6 no ẋri , ẏri, i = 1, . . . , n 2
7 yes all 2
8 yes all 4

3.6 Nonlinear Observability Analysis

For nonlinear systems, it is more appropriate to analyze the observabil-

ity through nonlinear observability tools rather than linearizing the nonlinear

system and applying linear observability tools. This is due to two reasons:

(i) nonlinear observability tools capture the nonlinearities of the dynamics

and observations, and (ii) while the control inputs are never considered in

the linear observability analysis, they are explicitly taken into account in the

nonlinear observability analysis.

This section analyzes the observability of the scenarios outlined in Table

3.1 for receivers with controlled velocity random walk dynamics, i.e., u 6= 0

in (2.2), through the nonlinear observability test discussed in Subsection 3.1.1

[85, 86].
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3.6.1 Preliminary Facts

The following facts will be invoked in the nonlinear observability proofs

corresponding to Table 3.1. First, when constructing ONL, one can stop calcu-

lating further derivatives of the output function at the first instance of linear

dependence among the gradients, since after this point additional rows will not

affect the rank of ONL. Second, the observable states in a COpNav environ-

ment, if any, can be found by computing the basis vectors spanning the null

space of ONL, denoted N [ONL], and arranging the basis vectors into a matrix.

The presence of a row of zeros in this matrix indicates that the corresponding

state element is observable, since this state element is orthogonal to the unob-

servable subspace. Third, having prior knowledge about some of the COpNav

environment states is equivalent to augmenting the observation vector with

fictitious observations that are identical to these known states. For instance,

an environment with a partially-known receiver and an unknown SOP can be

associated with an observation vector y = [xr, yr, ρ]
T.

The remainder of this subsection discusses pertinent properties of the

rows of ONL in preparation for the nonlinear observability proofs that will

follow. Consider an environment with one receiver making a pseudorange

observation on one SOP. The vectors {f i}
r

i=0 corresponding to ΣNL,a in (3.2)

become f 0 = ẋre1+ ẏre2+ δ̇tre5+ δ̇tse9, f1 = e3, and f2 = e4, where ei is the

standard basis vector consisting of a 1 in the ith element and zeros elsewhere.

Consider the vector h =
[

xr, yr, ẋr, ẏr, δtr, δ̇tr, xs, ys, δts, δ̇ts, ρ
]T

.

It can be shown that the gradients of the zeroth-order Lie derivatives
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of {hl(x)}
11
l=1 with respect to f i are given by

∇T

x

[

L
0
f i
hl(x)

]

=

{

g01 ·(e
T

1 − eT

7 ) + g02 ·(e
T

2 − eT

8 ) + c·(eT

5 − eT

9 ), l = 11;
eT

l , otherwise;

for i = 0, 1, 2, where g01 ,
xr−xs

‖rr−rs‖2
, g02 ,

yr−ys
‖rr−rs‖2

.

The gradients of the first-order Lie derivatives are ∇T

x

[

L
1
f i
hl(x)

]

= 0,

for i = 1, 2 and ∀l; and

∇T

x

[

L
1
f0
hl(x)

]

=







































eT

3 , l = 1;
eT

4 , l = 2;
eT

6 , l = 5;
eT

10, l = 9;
g11 ·(e

T

1 − eT

7 ) + g12 ·(e
T

2 − eT

8 )
+ g13 e

T

3 + g14 e
T

4 + c·(eT6 − eT

10), l = 11
0, otherwise;

where g1q , ∂
∂α

(ẋr g
0
1 + ẏr g

0
2), and α = xr for q = 1, α = yr for q = 2, α = ẋr

for q = 3, and α = ẏr for q = 4.

The gradients of the second-order Lie derivatives are ∇T

x

[

L
2
f i
hl(x)

]

=

0, for i = 1, 2 and ∀l; and

∇T

x

[

L
2
f0
hl(x)

]

=

{

g21 ·(e
T

1 − eT

7 ) + g22 ·(e
T

2 − eT

8 ) + g23 e
T

3 + g24 e
T

4 , l = 11;
0, otherwise;

where g2q , ∂
∂α

(ẋr g
1
1 + ẏr g

1
2), and α = xr for q = 1, α = yr for q = 2, α = ẋr

for q = 3, and α = ẏr for q = 4,

∇T

x

[

L
2
f0f i

hl(x)
]

=

{

g2β ·(e
T

1 − eT

7 ) + g2β+1 ·(e
T

2 − eT

8 ), l = 11;
0, otherwise;

where β = 5 if i = 1 and β = 7 if i = 2; and g2β , ∂
∂xr

g1i+2 and g2β+1 ,
∂

∂yr
g1i+2.
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3.6.2 Nonlinear Observability Results

Theorem 3.6.1. A COpNav environment with one unknown receiver, with-

out controlled maneuvers, and one unknown SOP has no observable states.

Allowing controlled maneuvers makes the receiver velocity states observable.

Proof. The observation vector is y = [ ρ ] and x ∈ R10. Without control,

the only linearly independent rows are
{

∇T

x

[

L
p
f0

h(x)
]

, p = 0, . . . , 4
}

; hence,

rank [ONL] = 5, and

N [ONL] = span {n1, n2, n3, n4, n5} ,

where n1 , e1+e7, n2 , e2+e8, n3 , e5+e9, n4 , e6+e10, n5 ,
∑4

i=1 γiei,

and γ1 ,
−yr+ys

ẋr
, γ2 ,

xr−xs

ẋr
, γ3 ,

−ẏr
ẋr

, γ4 , 1.

Allowing controlled maneuvers introduces an additional linearly inde-

pendent row:
{

∇T

x

[

L
2
f0f i

h(x)
]

, i = 1 or 2
}

, yielding rank [ONL] = 6 and

removing n5 from N [ONL].

Theorem 3.6.2. A COpNav environment with one unknown receiver, without

controlled maneuvers, and m partially-known SOPs has no observable states

for m = 1. The receiver position and velocity states become observable for

m ≥ 2. Allowing controlled maneuvers makes the receiver position and velocity

states observable ∀m ≥ 1.

Proof. The observation vector is y = [ rs1, . . . , rsm , ρs1, . . . , ρsm ] and x ∈

R6+4m. Without control, and for m = 1, the only linearly independent
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rows are
{

∇T

x

[

L
0
f
0
hl(x)

]

, l = 1, . . . , 3;∇T

x

[

L
p
f0

h3(x)
]

, p = 1, . . . , 4
}

; hence,

rank [ONL] = 7, and

N [ONL] = span {n3, n4, n5} .

For m ≥ 2, the only linearly independent rows are
{

∇T

x

[

L
0
f0
hl(x)

]

, l =

1, . . . , 3m;∇T

x

[

L
1
f0
hl(x)

]

, l = 2m+ 1, . . . 3m
}

, with the following additional

linearly independent rows:

• m = 2:
{

∇T

x

[

L
p
f0

hl(x)
]

, p = 2, 3, l = 5, 6
}

• m = 3:
{

∇T

x

[

L
2
f0
hl(x)

]

, l = 7, 8, 9;∇T

x

[

L
3
f0
h7(x)

]}

,

• m ≥ 4:
{

∇T

x

[

L
2
f0
hl(x)

]

, l = 3m− 4, . . . , 3m
}

.

Hence, rank [ONL] = 4m+ 4, and

N [ONL] = span {n6,n7} ,

where n6 , e5 +
∑m

i=1 e5+4i and n7 , e7 +
∑m

i=1 e6+4i.

Allowing controlled maneuvers, for m ≥ 1, introduces an additional lin-

early independent row:
{

∇T

x

[

L
2
f0f i

h2m+1(x)
]

, i = 1 or 2
}

, yielding rank [ONL] =

4m+ 4, and

N [ONL] = span {n6, n7} .

Theorem 3.6.3. A COpNav environment with one unknown receiver, with-

out controlled maneuvers, and one fully-known SOP only has observable the

receiver clock bias and drift states. Allowing controlled maneuvers makes all

the states observable.
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Proof. The observation vector is y = [xs, ρ ] and x ∈ R10. Without con-

trol, the only linearly independent rows are
{

∇T

x

[

L
0
f0
hl(x)

]

, l = 1, . . . , 5;

∇T

x

[

L
p
f0

h5(x)
]

, p = 1, . . . , 4
}

; hence, rank [ONL] = 9, and

N [ONL] = span {n5} .

Allowing controlled maneuvers introduces an additional linearly independent

row:
{

∇T

x

[

L
2
f0f i

h5(x)
]

, i = 1 or 2
}

, yielding rank [ONL] = 10.

Theorem 3.6.4. A COpNav environment with one unknown receiver, without

controlled maneuvers, one fully-known SOP, and one partially-known SOP is

fully-observable. Allowing controlled maneuvers does not affect observability.

Proof. The observation vector is y = [xs1, rs2, ρs1 , ρs2 ] and x ∈ R14. Without

control, the only linearly independent rows are
{

∇T

x

[

L
0
f0
hl(x)

]

, l = 1, . . . , 8;

∇T

x

[

L
p
f0

hl(x)
]

, p = 1, . . . , 3, l = 7, 8
}

, and rank [ONL] = 14. Allowing con-

trolled maneuvers does not add linearly independent rows.

Theorem 3.6.5. A COpNav environment with n partially-known receivers,

without controlled maneuvers, and one unknown SOP only has observable the

receivers’ velocity states and the SOP’s position states. Allowing controlled

maneuvers does not affect observability.

Proof. The observation vector is y = [ rr1, . . . , rrn, ρr1 , . . . , ρrn ] and x ∈ R6n+4.

Without control, the only linearly independent rows are
{

∇T

x

[

L
p
f0

hl(x)
]

, p =

0, 1, l = 1, . . . , 3n
}

, with the following additional linearly independent rows:
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• n = 1:
{

∇T

x

[

L
p
f0

h3(x)
]

, p = 2, 3
}

,

• n ≥ 2:
{

∇T

x

[

L
2
f0
hl(x)

]

, l = 2n+ 1, 2n+ 2
}

.

Hence, rank [ONL] = 6n+ 2, and

N [ONL] = span

{

e5 +

n
∑

i=1

e5+6i, e6 +

n
∑

i=1

e6+6i

}

.

Allowing controlled maneuvers does not improve the rank any further, since

the control inputs will introduce additional rows into ONL whose columns

are linearly independent according to: O6n+3 = −
∑n−1

i=0 O5+6i and O6n+4 =

−
∑n−1

i=0 O6+6i, where Oi corresponds to the ith column of ONL.

Theorem 3.6.6. A COpNav environment with n partially-known receivers,

without controlled maneuvers, and m partially-known SOPs only has observ-

able the receivers’ velocity states. Allowing controlled maneuvers does not af-

fect observability.

Proof. The observation vector is y = [rr1 , . . . , rrn , rs1, . . . , rsm, ρr1,s1, . . . , ρrn,sm]

and x ∈ R6n+4m. Without control, the only linearly independent rows are
{

∇T

x

[

L
0
f0
hl(x)

]

, l = 1, . . . , 2n+2m+nm;∇T

x

[

L
1
f0
hl(x)

]

, l = 2m+1, . . . , 4n+

4m− nm− 2
}

; hence, rank [ONL] = 6n+ 4m− 2, and

N [ONL] = span

{

e6n+4m−1 +

n
∑

l=1

e6l−1 +

m−2
∑

l=0

e6n+4l+3,

e6n+4m +

n
∑

l=1

e6l +

m−2
∑

l=0

e6n+4l+4

}

,
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Allowing controlled maneuvers does not improve the rank any further, since the

control inputs will introduce additional rows into ONL whose columns are lin-

early independent according to: O6n+4m−1 = −
[
∑n

l=1O6l−1 +
∑m−2

l=0 O6n+4l+3

]

and O6n+4m = −
[
∑n

l=1O6l +
∑m−2

l=0 O6n+4l+4

]

.

Theorem 3.6.7. A COpNav environment with one partially-known receiver,

without controlled maneuvers, and one fully-known SOP is fully-observable.

Allowing controlled maneuvers does not affect observability.

Proof. The observation vector is y = [ rr,xs, ρ ] and x ∈ R10. Without con-

trol, the only linearly independent rows are
{

∇T

x

[

L
0
f0
hl(x)

]

, l = 1, . . . , 7;

∇T

x

[

L
1
f0
hl(x)

]

, l = 1, 2, 7
}

and rank [ONL] = 10, i.e., full-rank.

Theorem 3.6.8. A COpNav environment with one fully-known receiver, with-

out controlled maneuvers, and one unknown SOP is fully-observable. Allowing

controlled maneuvers does not affect observability.

Proof. The observation vector is y = [xr, ρ ] and x ∈ R10. Without con-

trol, the only linearly independent rows are
{

∇T

x

[

L
0
f
0
hl(x)

]

, l = 1, . . . , 7;

∇T

x

[

L
1
f0
hl(x)

]

, l = 1, 2, 7
}

and rank [ONL] = 10, i.e., full-rank.

Table 3.3 summarizes the nonlinear observability results. The follow-

ing conclusions can be drawn from these results. (i) The observability results

achieved from the linear observability analysis in 3.5 for receivers with velocity

random walk dynamics were identical to the ones achieved through the more
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rigorous nonlinear observability tools for receivers with uncontrolled maneu-

vers. (ii) Allowing receiver-controlled maneuvers reduces the required a priori

knowledge about the environment for observability. (iii) The control inputs

are necessary to make Case 3 fully-observable, since the Lie derivative con-

tributions of f1 or f 2 are needed to make ONL full-rank. While the inputs

corresponding to f 1 or f 2 can be specified in infinitely many ways, the only

requirement is that such inputs be non-zero.

Table 3.3: Nonlinear COpNav observability analysis results: Observable states

Case Without Control With Control

1 none ẋr, ẏr
2 m = 1: none m ≥ 1: xr, yr, ẋr, ẏr

m ≥ 2: xr, yr, ẋr, ẏr
3 δtr, δ̇tr all
4 all all
5 ẋri, ẏri, xs, ys, i = 1, . . . , n ẋri , ẏri, xs, ys, i = 1, . . . , n
6 ẋri, ẏri, i = 1, . . . , n ẋri , ẏri, i = 1, . . . , n
7 all all
8 all all

The following main result can be concluded from the observability anal-

ysis conducted in Sections 3.5 and 3.6.

Theorem 3.6.9. A planar COpNav environment comprising multiple receivers

with velocity random walk dynamics making pseudorange observations on mul-

tiple terrestrial SOPs is fully-observable if and only if the initial states of at

least: (i) one receiver is fully-known, (ii) one receiver is partially-known and

one SOP is fully-known, or (iii) one SOP is fully-known and one SOP is
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partially-known. If the receivers control their maneuvers in the form of ac-

celeration commands, the environment is fully-observable if and only if the

initial states of at least: (i) one receiver is fully-known or (ii) one SOP is

fully-known.

3.7 Simulation Results

This section presents simulation results for the three observable cases

corresponding to receivers with uncontrolled maneuvers in Table 3.2: Cases 4,

7, and 8 [84, 87]. For purposes of numerical stability, the clock error states were

defined to be cδt and cδ̇t, where c is the speed of light. The receiver’s clock

was assumed to be a temperature-compensated crystal oscillator (TCXO),

while the SOPs’ clocks were assumed to be oven-controlled crystal oscillators

(OCXOs). A simulator was developed to generate the “truth” data for each

COpNav environment studied. The simulation settings are specified in Table

3.4.

Table 3.4: Observability & estimability analyses simulation settings

Parameter Value

xr(0) [ 0, 0, 0, 25, 10, 1 ]T

xs1(0) [ 50, 100, 1, 0.1 ]T

xs2(0) [−50, 100, 1, 0.1 ]T

{h0,r, h−2,r} { 2× 10−19, 2× 10−20 }
{h0,si, h−2,si} { 8× 10−20, 4× 10−23 } , i = 1, 2

q̃x, q̃y 0.1 (m/s2)2

r 100m2

T 0.01 s
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The noisy pseudorange observations were processed by an EKF to esti-

mate the states of interest. In the following simulations, the system true initial

state x(0) was fixed, while the EKF initial state estimate x̂(0) was generated

according to x̂(0) ∼ N [x(0),P(0| − 1)], where P(0| − 1) is the EKF initial

estimation error covariance. The observability is quantified in terms of the

estimation error x̃ , x− x̂ and the corresponding estimation error covariance

P , E
[

x̃ x̃T
]

, where x̂ is the EKF state estimate. Results for a single-run

EKF and rigorous Monte Carlo (MC) analysis are presented. The MC anal-

ysis is based on an N -run average of the normalized estimation error squared

(NEES) [58]. The ith-run NEES ǫi and the average NEES ǭ are defined as

ǫi(k) , x̃T

i (k|k)P
−1
i (k|k)x̃i(k|k), ǭ(k) ,

1

N

N
∑

i=1

ǫi(k).

For the single-run EKF, an observable system should yield converging

estimation error covariances and the estimation errors should remain bounded.

For the N -run EKF, an observable system and a consistent EKF should yield a

statistic Nǭ(k) that is approximately chi-squared distributed with Nn degrees

of freedom, specifically Nǭ(k) ∼ χ2
Nn, where n is the state estimate dimension.

An unobservable system should yield an estimation error covariance that never

improves with more observations. Thus, the MC analysis boils down to a

hypothesis test on ǭ(k) with an acceptance region [r1, r2] defined such that

Pr {ǭ(k) ∈ [r1, r2] |H0} = 1 − α, where H0 is the null hypothesis and α is the

size of the test (probability of false alarm).

The simulations for Case 4 considered an environment with an unknown
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receiver and two SOPs: one fully-known and one partially-known. The initial

estimation error covariance matrices of the receiver and the second SOP were

chosen to be Pr(0| − 1) = (1 × 103) diag [ 2, 2, 1, 1, 30, 0.3 ] and Ps2(0| − 1) =

(1× 103) diag [ 30, 0.3 ], respectively.

The simulations for Case 7 considered an environment with a partially-

known receiver and two SOPs: one fully-known and one unknown. The initial

estimation error covariance matrices of the receiver and the second SOP were

chosen to be Pr(0| − 1) = (1 × 103) diag [ 1, 1, 30, 0.3 ] and Ps2(0| − 1) = (1 ×

103) diag [ 1, 1, 30, 0.3 ], respectively.

The simulations for Case 8 considered an environment with a fully-

known receiver and one unknown SOP. The initial estimation error covariance

matrix of the SOP was chosen to be Ps1(0| − 1) = (1× 103)diag [ 1, 1, 30, 0.3 ].

Figures 3.3, 3.4, and 3.5 show the estimation error trajectories x̃i(k|k)

for a single-run EKF along with the±2σi(k|k) estimation error variance bounds

for Cases 4, 7, and 8, respectively. Note that the estimation error variances

converge and that the estimation errors remain bounded, as would be expected

for an observable system.

Figures 3.6, 3.7, and 3.8 show the resulting NEES trajectories ǭ(k) for

α = 0.01 along with r1 and r2 for Cases 4, 7, and 8, respectively. Note that

the ǭ(k) values reside within the 99% probability region, which is consistent

with a well-behaved estimator operating on an observable system.

The eigenvalues associated with the normalized estimation error co-
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Figure 3.3: Estimation error trajectories and ±2σ-bounds for Case 4 in Table
3.1
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Figure 3.4: Estimation error trajectories and ±2σ-bounds for Case 7 in Table
3.1
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Figure 3.5: Estimation error trajectories and ±2σ-bounds for Case 8 in Table
3.1

ǭ(k)
r1& r2

N
E
E
S
ǭ
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Figure 3.6: NEES and r1 & r2 bounds for Case 4 in Table 3.1 with 50 MC
runs
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Figure 3.7: NEES and r1 & r2 bounds for Case 7 in Table 3.1 with 50 MC
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Figure 3.8: NEES and r1 & r2 bounds for Case 8 in Table 3.1 with 50 MC
runs
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variance, defined in (3.11), in ascending order corresponding to the single-run

simulation results for Cases 4, 7, and 8 at the end of the simulation are given

in Table 3.5. It is noted that in all three cases there is a wide dispersion be-

tween the smallest and largest eigenvalues, indicating the existence of modes

with exceptionally good and exceptionally poor observability. To determine

the directions associated with the modes with good and poor observability,

the eigenvectors corresponding to the smallest and largest eigenvalues, respec-

tively, are calculated and plotted in Figures 3.9, 3.10, and 3.11.

Table 3.5: Eigenvalues of normalized estimation error covariance matrix for
COpNav observable scenarios

Case Eigenvalues

4 0.002, 0.008, 0.057, 0.065, 0.072, 0.169, 2.272, 5.355
7 0.003, 0.003, 0.005, 0.011, 0.094, 0.428, 2.626, 4.830
8 0.002, 0.026, 1.491, 2.481
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Figure 3.9: Eigenvector along the most and least observable directions in the
state space for Case 4 in Table 3.1

From Figure 3.9 it can be concluded that a linear combination of the
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Figure 3.10: Eigenvector along the most and least observable directions in the
state space for Case 7 in Table 3.1
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Figure 3.11: Eigenvector along the most and least observable directions in the
state space for Case 8 in Table 3.1
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fifth and seventh states, corresponding to δtr and δts2, can be estimated ex-

ceptionally well with respect to the rest of the states, whereas the first state,

corresponding to xr, is poorly observable. From Figure 3.10 it can be con-

cluded that the first and second states, corresponding to ẋr and ẏr, can be

estimated exceptionally well with respect to the rest of the states, whereas a

linear combination of the fifth and sixth states, corresponding to xs2 and ys2,

are poorly observable. From Figure 3.11 it can be concluded that the third

state, corresponding to δts, can be estimated exceptionally well with respect

to the rest of the states, whereas a linear combination of the first and second

states, corresponding to xs and ys, are poorly observable.

3.8 Experimental Results

A field experimental demonstration was conducted to illustrate one of

the observable cases in Table 3.1, namely Case 8 [84]. The objective was to

demonstrate that a COpNav receiver with velocity random walk dynamics and

knowledge of its initial state can estimate the states of an unknown SOP in its

environment. To this end, two antennas were mounted on a vehicle to acquire

and track: (i) multiple GPS signals and (ii) a signal from a nearby cellular

phone tower whose signal was modulated through code division multiple access

(CDMA). The GPS and cellular signals were simultaneously downmixed and

synchronously sampled via two National InstrumentsR© vector Radio Frequency

Signal Analyzers (RFSAs). These front-ends fed their data to a Generalized

Radionavigation Interfusion Device (GRID) software receiver [88], which si-
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multaneously tracked all GPS L1 C/A signals in view and the signal from the

cellular tower with unknown states, producing pseudorange observables for

all tracked signals. The observables were fed into a MATLABR©-based EKF,

which estimated the states of the unknown CDMA cellular tower. Figure 3.12

illustrates the hardware setup of the conducted experiment.

GRID Software
Receiver MATLAB-

Based EKF

S
to
ra
g
e

National Instruments RFSA

Figure 3.12: Experiment hardware setup

Since the states of the GPS satellite vehicles (SVs) were known, and
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since the receiver was tracking more than four GPS SVs throughout the ex-

periment, the receiver’s initial state xr(0) was fully-known. The cellular tower

state vector consisted of its planar position states, clock bias, and clock drift,

as defined in (2.3). The EKF initial state estimate x̂(0) was generated accord-

ing to x̂(0) ∼ N [x(0),P(0| − 1) ], where x(0) ,
[

rT

s (0), cδts(0), 0
]

T

, where

rT

s , [ xs(0), ys(0) ] is the projection of the true cellular tower location from

the Earth-Centered Earth-Fixed (ECEF) coordinate frame system to a planar

system, cδts(0) = ‖rr(0)− r̂s(0|−1)‖2 −ρ(0)+ cδtr(0), r
T

r (0) , [xr(0), yr(0) ]

is the planar projection of the receiver’s initial location from ECEF, and

P(0| − 1) = diag [ 1× 104, 1× 104, 3× 104, 3× 102 ] is the EKF initial esti-

mation error covariance matrix. Figure 3.13 shows the receiver traversed tra-

jectory during the collection of the pseudorange observations, the true and

estimated location of the cellular phone tower, and the uncertainty ellipse pro-

duced by the EKF estimation error covariance. Despite the short COpNav

receiver trajectory, the tower location estimate was within about 10 meters

of the actual tower and within the estimation uncertainty ellipse. This result

is consistent with the theoretical prediction that a COpNav receiver with a

fully-known initial state can estimate the states of an unknown SOP.
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Figure 3.13: Vehicle traversed trajectory during the collection of the GPS
and cellular CDMA observations, true location of cellular CDMA tower, and
estimated CDMA tower location and associated estimation error ellipse
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Chapter 4

Motion Planning for Optimal Information

Gathering

Observability, which was studied in Chapter 3, is a Boolean property–

it does not specify which trajectories are best for estimability. This chap-

ter synthesizes receiver motion planning algorithms for optimal information

gathering in COpNav environments.

This chapter is organized as follows. Section 4.1 summarizes rele-

vant prior work. Section 4.2 focuses on greedy, i.e., one-step look-ahead, re-

ceiver motion planning. Several information-based optimization metrics are

studied and novel innovation-based optimization metrics are proposed. Con-

vexity properties of all such metrics are analyzed. It is shown that while

the information-based metrics possess no desirable convexity properties, the

innovation-based optimization problems reduce to search problems over the ex-

treme points of the feasibility region with a computationally efficient solution.

Section 4.3 assesses the superiority and limitations of receding horizon, i.e.,

multi-step look-ahead, strategy over greedy. Section 4.4 studies the problem of

collaborative signal landscape mapping with multiple receivers. Several infor-

mation fusion and decision making architectures are synthesized: centralized,
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decentralized, hierarchical without feedback, and hierarchical with feedback.

It is demonstrated that the hierarchical with feedback architecture achieves a

minimal price of anarchy.

4.1 Relevant Prior Work

Adaptive sensing is the process by which an observer adaptively chooses

sensing and motion strategies to maximize the information acquired. Synony-

mous terms to adaptive sensing include active perception, directed sensing,

active information gathering, adaptive sampling, sensor management, path

planning, trajectory optimization, and sensor motion control [89].

Optimizing an observer’s path in tracking applications has been the

subject of extensive research [90–96]. In such problems, the observer, which

has perfect knowledge about its own states, is tracking a stationary or a mobile

target through its onboard sensors. The trajectory optimization objective is

to prescribe optimal trajectories for the observer to follow in order to main-

tain good estimates about the target’s states. Such problems are typically

formulated in an optimal control framework.

In SLAM, the problem of trajectory optimization is more involved,

due to the coupling between the localization accuracy and the map quality.

Initial SLAM research did not take motion control into account and assumed

the robot’s path to be predetermined or randomly chosen. Of course, not

all trajectories a robot can take will be equally beneficial from a localization

and mapping accuracy perspective. The problem of trajectory optimization in
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SLAM has received considerable attention recently [89, 97–104].

Optimizing the receiver’s trajectory in OpNav environments can be

thought of as a hybrid of: (i) optimizing an observer’s path in tracking prob-

lems and (ii) optimizing the robot’s path in SLAM. First, due to the dynamical

nature of the clock error states, the SOP’s state space is non-stationary, which

makes the problem analogous to tracking non-stationary targets. Second, the

similarity to SLAM is due to the coupling between the receiver localization

accuracy and signal landscape map fidelity.

4.2 Greedy Motion Planning

Recall from Section 3.6 that an OpNav environment comprising a re-

ceiver with control over its own maneuvers and multiple terrestrial SOPs is

fully-observable if the receiver’s initial state vector is fully-known or the initial

state vector of one anchor SOP is fully-known. This section focuses on the

latter condition, in which case the objective of the receiver’s optimal motion

planning is to evaluate different sensing actions that the receiver can take, and

choose the action that maximizes the information acquired about the SOPs

states while simultaneously minimizing the uncertainty about the receiver’s

own states. The forthcoming discussions can be straightforwardly extended

to the former case, in which the objective of the receiver’s optimal motion

planning is merely signal landscape mapping.

78



4.2.1 Optimal Greedy Receiver Motion Planning Strategy

The proposed optimal greedy receiver motion planning loop is depicted

in Figure 4.1, where vr,max and ar,max are the maximum speed and acceler-

ation, respectively, with which the receiver can move. The receiver motion

planning loop depicted in Figure 4.1 is composed of the three blocks: (i) Op-

Nav Environment, (ii) Estimator, and (iii) Optimal Greedy Control, which

are described next.

Optimal Greedy Control

OpNav Environment: Dynamical System

ΣOpNav :







xr(k + 1) = Fr xr(k) +Gr ur(k) +wr(k)
xsj(k + 1) = Fs xsj(k) +wsj(k)
zj(k) = h

[

xr(k), xsj(k)
]

+ vsj(k), j = a, 1, . . . ,m

Estimator: EKF

z(k)

x̂(k|k), P(k|k)

u
⋆(k)

u
⋆
r(k) =































minimize
ur(k)

J [ur(k)]

subject to ΣOpNav

‖ur(k)‖2 ≤ ar,max

‖ur(k) +
1

T
v
⋆
r(k − 1)‖2 ≤

1

T
vr,max

Figure 4.1: Optimal greedy receiver motion planning loop

OpNav Environment This block represents the OpNav environment dy-

namical and observation models discussed in Chapter 2. The environ-
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ment is assumed to comprise a receiver with a state vector xr, a fully-

known anchor SOP with a state vector xsa , and m unknown SOPs with

state vectors {xsi}
m

i=1.

Estimator The pseudorange observations made by the receiver on all the

SOPs, zsj , where j = a, 1, . . . , m, are fused through an estimator, which

is chosen as an EKF for simplicity. Hence, the estimator’s dynamics

model is given by

x (k + 1) = Fx (k) +Gu (k) +w(k),

where x ,
[

xT

r ,x
T

s1
, . . . ,xT

sm
, xT

clk,sa

]T

is the estimator’s state vector,

{xsi}
m
i=1 are the state vectors of the m unknown SOPs, xclk,sa is the

clock error states vector of the known anchor SOP, u , ur is the

control vector, F = diag [Fr,Fs, . . . ,Fs, Fclk ], G =
[

GT

r , 02×4m+2

]

T

,

and w , [wT

r ,w
T

s1
, . . . ,wT

sm
, wT

clk,sa
]T is a zero-mean process noise vec-

tor with covariance Q = diag [Qr,Qs1, . . . ,Qsm, Qclk,sa ]. The obser-

vation vector has the form z , [ ρsa, ρs1 , . . . , ρsm ]T, where ρsj is the

pseudorange observation made by the receiver on the jth SOP, where

j = a, 1, . . . , m. It is assumed that the observation noise elements vρsj

are independent; hence, the estimator’s observation noise vector is given

by R = diag [ rsa, rs1, . . . , rsm ].

Optimal Greedy Control The state estimate x̂(k|k) and associated esti-

mation error covariance P(k|k) produced by the EKF are fed to an

optimizer, which solves a nonlinear constrained optimization problem
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to find the optimal admissible control input u⋆(k), which minimizes a

functional J of the control input, subject to the OpNav environment

dynamics and observation models ΣOpNav and velocity and acceleration

constraints, specifically

minimize
ur(k)

J [ur(k)]

subject to ΣOpNav

‖ur(k)‖2 ≤ ar,max

‖ur(k) +
1

T
v⋆
r(k − 1)‖2 ≤

1

T
vr,max.

Note that the optimization variable is u(k), whereas v⋆(k−1) is a known

constant vector representing the velocity commands that resulted from

solving the optimization problem at the previous time-step k − 1 and

has already been applied. The optimal control input u⋆(k) is fed-back

to the receiver to command its maneuver and is also communicated with

the estimator.

A particular feature of OpNav is that the quality of the estimates not

only depends on the spatial trajectory the receiver traverses within the envi-

ronment, but also on the velocity with which the receiver traverses such trajec-

tory. This can be explained by examining the pseudorange observation model

derived in (2.8). Note the term due to the clock biases c · [δtr(k)− δts(k)],

and recall the two state model governing the evolution of the clock bias and

drift states over time, which is essentially a double integrator driven by ex-

ogenous stochastic processes. Hence, the state space of each SOP contains

time-invariant (static) states, xs and ys, along with time-varying (dynamic)
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states , δts and δ̇ts. This makes the estimation problem similar to that of ob-

servers tracking dynamic targets, in which the velocity of the observer (tracker)

affects the quality of the estimates. The effect of the receiver’s velocity on the

quality of the estimates can be also seen by considering a time history of N

observations ZN , {z(1), z(2), . . . , z(N)}, collected at a sampling period T ,

by a receiver that traversed a particular trajectory at a speed s. If the receiver

doubled its speed, i.e., to become 2s, it could have collected the same number

of observations at half the sampling period T/2. Recall that the covariance of

the process noise characterizing the clock bias and drift Qclk is a function of

T , T 2, and T 3. Therefore, reducing T effectively reduces Qclk, which in turn

reduces the estimation error.

4.2.2 Information and Innovation Optimization Measures

A fundamental challenge in all optimization-based approaches is the

choice of a proper optimization metric. This subsection presents various

information- and innovation-based optimization metrics. The main issue with

these optimization strategies is the dependency of the objective functional on

the parameters to be estimated. This issue is prevalent in the literature and

is best described by Cochran as: “You tell me the value of θ, and I promise to

design the best experiment for estimating θ [105].”

Information-based metrics are well-established in the literature and are

based on the Shannon entropy and Fisher information. Broadly speaking,

Shannon entropy is related to the volume of a set containing a specified prob-
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ability mass, while Fisher information is related to the surface area of this set

[106]. Entropy measures the compactness, and thus the informativeness, of

a distribution. The entropy of a random vector x with distribution p(x) is

defined as [107]

H(x) , −

∫ ∞

∞

p(x) log[p(x)]dx.

The mutual information gain after an action u is defined as ∆I(u) ,

H(x) − H(x|u), where H(x|u) is the conditional entropy after action u.

Thus, ∆I(u) is a measure of the reduction in the uncertainty in x due to

the action u. A multi-variate Gaussian random vector x has entropy propor-

tional to the logarithm of the determinant of its covariance matrix P, namely

H(x) = 1
2
log[(2πe)n det(P)]. Therefore, for a Gaussian random vector x(k)

with covariance P(k), it can be shown that to maximize the mutual informa-

tion after an action u(k), one needs to solve the optimization problem

maximize
u(k)

log det

[

Y[k + 1|u(k)]

Y(k)

]

,

where Y(k) , P−1(k) is the information matrix and Y[k + 1|u(k)] is the

information matrix after action u(k). Recognizing that Y(k) corresponds

to the Fisher information matrix, one can establish the connection between

Shannon entropy and Fisher information: minimization of Shannon entropy

is equivalent to maximization of Fisher information. This is the basis of the

so-called D-optimality criterion. Some of the most common information-based

optimization measures are defined next [108].

83



Definition 4.2.1. Given an information matrix, Y, the D-, A-, and E-optimality

criteria are defined as

D-optimality: is equivalent to minimization of the volume of the uncertainty

ellipsoid, and is given by

minimize J = − log det [Y] .

A-optimality: is equivalent to minimization of the average variance of the

estimates, and is given by

minimize J = tr
[

Y−1
]

.

E-optimality: is equivalent to minimization of the length of the largest axis

of the uncertainty ellipsoid, and is given by

minimize J = λmax

[

Y−1
]

,

where λmax is the largest eigenvalue.

In contrast to the information-based criteria, which sought to mini-

mize a functional of the information matrix, the innovation-based criteria seek

to maximize a functional of the innovation matrix. Innovation-based opti-

mization has not received as much attention in the literature as information-

based [109, 110]. Intuitively, one seeks the receiver maneuver that yields

the most observation innovation, i.e., the “most difficult” observation to pre-

dict. The innovation-based optimization criteria: most innovative logarithm-

determinant (MILD), most innovative trace (MIT), and most innovative max-

imum eigenvalue (MIME) are defined next [111].
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Definition 4.2.2. Given an innovation matrix, S, the MILD, MIT, and MIME

criteria are defined as

MILD: is equivalent to maximization of the volume of the innovation ellipsoid,

and is given by

maximize J = log det [S] .

MIT: is equivalent to maximization of the average innovations, and is given

by

maximize J = tr [S] .

MIME: is equivalent to maximization of the length of the largest axis of the

innovation ellipsoid, and is given by

maximize J = λmax [S] ,

where λmax is the largest eigenvalue.

4.2.3 Information-Based Optimal Motion Planning

The information-based motion planning optimization problems are for-

mulated in this subsection. Given the estimate x̂(k|k) and associated esti-

mation error covariance P(k|k), the predicted state vector x̂(k + 1|k) and

associated prediction error covariance P(k + 1|k) are given by

x̂(k + 1|k) = Fx̂(k|k) +Gu(k)

P(k + 1|k) = FP(k|k)FT +Q.
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Note that P(k + 1|k) is not a function of u(k). The observation jacobian

matrix, evaluated at x̂(k + 1|k), is given by

H =











hT

1 (r̂r,u, rsa) 01×4 · · · 01×4

hT

1 (r̂r,u, r̂s1) hT

2 (r̂r,u, r̂s1) · · · 01×4
...

...
. . .

...
hT

1 (r̂r,u, r̂sm) 01×4 · · · hT

2 (r̂r,u, r̂sm)











hT

1 (rr,u, rsj) ,
[

g1(rr,u, rsj ) g2(rr,u, rsj) 0 0 c 0
]

hT

2 (rr,u, rsj) ,
[

−g1(rr,u, rsj)− g2(rr,u, rsj) −c 0
]

g1(rr,u, rsj ) ,
xr + T ẋr +

T 2

2
u1 − xsj

‖rr + T ṙ + T 2

2
u− rsj‖2

g2(rr,u, rsj ) ,
yr + T ẏr +

T 2

2
u2 − ysj

‖rr + T ṙ + T 2

2
u− rsj‖2

,

where j = a, 1, . . . , m, and the time dependency has been dropped above for

compactness of notation, namely H = H(k + 1), r̂r = r̂r(k + 1|k), u = u(k),

rsa = rsa(k), r̂sj = r̂sj(k + 1|k). The updated covariance matrix is given by

P−1(k + 1|k + 1) = P−1(k + 1|k) +HT(k + 1)R−1H(k + 1).

It is worth noting that P(k+ 1|k+ 1) is a function of u(k) and can be

computed without knowledge of the observation at the next time-step, namely

z(k + 1). The cost functional J [u(k)] can be chosen to be the D-, A-, or

E-optimality criterion defined in Definition 4.2.1, where Y = P−1(k+1|k+1).

Ideally, one would like to solve the optimization problem analytically

using Lagrange multipliers. However, the problem quickly becomes intractable
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as more SOPs are present in the environment. If no analytical solution can be

obtained, one typically resorts to numerical optimization solvers. Neverthe-

less, convexity properties of the problem are sought, if possible, which enables

utilization of efficient convex solvers, such as CVX [112]. Plotting J [u(k)] re-

veals that the D-, A-, and E-optimality criteria are neither convex nor concave

as illustrated in Figure 4.2 for a random OpNav environment comprising a

receiver and four SOPs.

4.2.4 Innovation-Based Optimal Motion Planning

This subsection formulates the innovation-based optimization problems

and shows that with proper reformulation and reasonable approximations such

optimization problems have strong convexity properties. Moreover, it is shown

that the MILD, MIT, and MIME optimization problems reduce to searching

over the extreme points of the feasibility region.

Theorem 4.2.1. For a sufficiently small sampling period T and with proper

reformulation, the innovation matrix S(k + 1) is affine in the control inputs,

specifically

S(k + 1) = S0(k + 1) +
2
∑

i=1

Si(k + 1)ui(k). (4.1)

Proof. First, consider transforming the receiver and SOP dynamics in (2.1)-

(2.3) and observation model in (2.7) into a polar coordinate frame centered

at the receiver (xr, yr), such that (xj , yj) 7→ (rsj , θsj), where xj , xr − xsj ,
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Figure 4.2: D-, A-, and E-optimality optimization functionals for an OpNav
environment with a receiver and four SOPs
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yj , yr − ysj , and







rsj =
√

x2
j + y2j

θsj = tan−1
(

yj
xj

) ⇔

{

xj = rsj cos θsj
yj = rsj sin θsj

where the tan−1(•) function is interpreted as the unambiguous four-quadrant

arctan function, commonly referred to as atan2(y, x). Hence, the transformed

state has the form x′ , g (x) =
[

ξT

sa
, ξ̇

T

sa
, ξT

s1
, ξ̇

T

s1
, . . . , ξTsm, ξ̇

T

sm
,xT

clk,r,x
T

clk,s1
,

. . . ,xT

clk,sm
, xT

clk,sa

]T

, where ξsj
,
[

rsj , θsi
]

T

, j = a, 1, . . . , m. It can be readily

shown that in the transformed coordinate frame the dynamics are nonlinear

in the states, yet affine in the control inputs, while the observations are linear

time-invariant, specifically

ẋ′(t) =f ′
0 [x

′(t)] +

2
∑

i=1

f ′
i [x

′(t)] ui(t) + w̃′(t) (4.2)

z(t) =H′x′(t) + ṽ(t),

f ′
i =

[

f ′
i,sa

, f ′
i,s1

, . . . , f ′
i,sm

, f ′
i,clk,r, f

′
i,clk,s1 . . . , f

′
i,clk,sm, f

′
i,clk,sa

]T

f ′
0,sj

=

[

ṙsj , θ̇sj , rsj θ̇
2
sj
,
−2 ṙsj θ̇sj

rsj

]

T

, f ′
0,clk,r =

[

δ̇tr, 0
]T

f ′
1,sj

=

[

0, 0, cos θsj ,
− sin θsj

rsj

]

T

, f ′
0,clk,sj

=
[

δ̇tsj , 0
]T

f ′
2,sj

=

[

0, 0, sin θsj ,
cos θsj
rsj

]T

f ′
1,clk,r = f ′

1,clk,sj
= f ′

2,clk,r = f ′
2,clk,sj

= 02×1

w̃′ =
[

w̃′
sa
, w̃′

s1
, . . . , w̃′

sm
, w̃clk,r, w̃clk,s1, . . . , w̃clk,sm, w̃clk,sa

]

T

w̃′
sj
=
[

0, 0, w̃′
1,sj

, w̃′
2,sj

]

T

,
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where i = 0, 1, 2 and j = a, 1, . . . , m. The transformed process noise vector w̃′

is zero-mean, white with a power spectral density Q̃′(t), such that

Q̃′ = diag
[

Q̃′
sa
, Q̃′

s1
, . . . , Q̃′

sm
, Q̃clk,r, Q̃clk,s1, . . . , Q̃clk,sm, Q̃clk,sa

]

Q̃′
sj
= Ψ

(

ξsj

)

diag [ 0, 0, q̃x, q̃y ]Ψ
T

(

ξsj

)

Ψ
(

ξsj

)

,











0 0 0 0
0 0 0 0
0 0 cos θsj sin θsj
0 0

− sin θsj
rsj

cos θsj
rsj











, j = a, 1, . . . , m

H′ =











h′T
sa

0 · · · 0 h′T
clk,r 0 · · · 0 h′T

clk,sa

0 h′T
s1

· · ·0 h′T
clk,r h′T

clk,s1
· · · 0 0 0

...
...

. . .
...

...
...

. . .
...

...
0 0 · · · h′T

sm
h′T
clk,r 0 · · · h′T

clk,sm
0











h′T
sj
, [ 1, 0, 0, 0 ] , h′T

clk,r , [ c, 0 ] , hT

clk,sj
= −h′T

clk,r.

Next, the nonlinear dynamics in (4.2) is linearized around nominal xo
j

and uo to yield the linear time-varying system

d

dt
δx′(t) = F′(t)δx′(t) +G′(t)δu(t) + w̃′(t), (4.3)

where δx′ , x′ − xo and δu , u − uo. It can be readily shown that F′(t) is

affine in the control inputs, namely

F′(t) = F′
0(t) +

2
∑

i=1

F′
i(t) ui(t)

F′
0(t) = diag

[

F′
0,sa(t),F

′
0,s1

(t), . . . ,F′
0,sm(t),Aclks

]

,

F′
i(t) = diag

[

F′
i,sa

(t),F′
i,s1
(t), . . . ,F′

i,sm
(t), 0(2m+4)×(2m+4)

]
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F′
0,sj

(t) =













0 0 1 0
0 0 0 1

θ̇2sj 0 0 2 rsj θ̇sj
2 ṙsj θ̇sj

r2sj
0

−2 θ̇sj
rsj

−2ṙsj
rsj













F′
1,sj

(t) =











0 0 0 0
0 0 0 0
0 − sin θsj 0 0

sin θsj
r2sj

− cos θsj
rsj

0 0











F′
2,sj

(t) =











0 0 0 0
0 0 0 0
0 cos θsj 0 0

− cos θsj
r2sj

− sin θsj
rsj

0 0











,

where j = a, 1, . . . , m and Aclks is block-diagonal consisting of m+2 blocks of

Aclk.

Then, the linearized system in (4.3) is discretized by assuming F′(t),

G′(t), and Q̃′(t) to be approximately constant over a sampling interval T , i.e.,

F′(t) ≈ F′(k), G′(t) ≈ G′(k), and Q̃′(t) ≈ Q̃′(k), and assuming zero-order

hold (ZOH) of the control inputs, i.e., {u(t) = u(k), k ≤ t < k + 1} to yield

[113]

x′(k + 1) = Φ′(k + 1, k)x′(k) + Γ′ u(k) +w′(k)

Γ′(k + 1, k) ,

∫ k+1

k

eF
′(k)[k+1−τ ]G(k) dτ,

Φ′(k+1, k) , eF
′(k)T , and w′(k) is a zero-mean white stochastic sequence with

covariance Q′(k + 1, k) given by

Q′(k + 1, k) =

∫ k+1

k

eF
′(k)[k+1−τ ] Q̃′(k) eF

′T(k)[k+1−τ ]dτ.

91



Note that the state transition matrix Φ′(k+1, k) is now a matrix exponential,

since F(t) is assumed to be constant over T . The matrix exponential can be

factored as

Φ′(k + 1, k) = Ξ(k) eT
∑

2

i=1
F

′

i(k)ui(k),

where Ξ(k) , eTF
′

0
(k). Note that the above factorization holds, since the

matrices F′
0(k) and

∑2
i=1F

′
i(k)ui(k) can be readily shown to be commutative

(see Section 1.1 in Appendix 1). Next, the matrix exponential eT
∑

2

i=1
F

′

i(k)ui(k)

is expressed as a Taylor series and assuming sufficiently small values of T , the

series is truncated to the first-order power in T . Therefore, the state transition

matrix is expressible as

Φ′(k + 1, k) = Ξ(k) + T

2
∑

i=1

Ξ(k)F′
i(k)ui(k).

Proceeding in a similar manner for Q′(k+1, k), it is straightforward to

show that Q′(k + 1, k) ≈ T Q′(k).

Next, the predicted error covariance is given by

P′(k + 1|k) = Φ′(k + 1, k)P′(k|k)Φ′T(k + 1, k) +Q′(k + 1, k).

Note that to evaluate P′(k+1|k), which corresponds to the transformed state

x′(k), one needs P′(k|k) in the transformed state-space. Given the state es-

timate x̂(k|k) in the original state-space and associated P(k|k), one can find

the transformed P′(k|k) via linearization around x̂(k|k) as

x′ = g(x) ≈ g [x̂(k|k)] +∇x g(x)

∣

∣

∣

∣

∣

x=x̂(k|k)

· [x− x̂(k|k)] .
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Defining Λ(k) , ∇x g(x)|x=x̂(k|k) and recognizing that cov [x− x̂(k|k)] =

P(k|k) yields

P′(k + 1|k) = Λ(k)P(k + 1|k)ΛT(k). (4.4)

Explicit expression for Λ(k) is given in Appendix 1.2 in Appendix 1.

Substituting for Φ′(k + 1, k) and truncating to the first-order power in

T , it can be shown that the predicted error covariance is affine in the control

inputs, specifically

P′(k + 1|k) = P′
0(k + 1|k) +

2
∑

i=1

P′
i(k + 1|k)ui(k)

P′
0(k + 1|k),Ξ(k)P′(k|k)ΞT(k) + Q′(k + 1, k)

P′
i(k + 1|k),T

[

Ξ(k)P′(k|k)F′T
i (k)ΞT(k) +Ξ(k)F′

i(k)P
′(k|k)ΞT(k)

]

, i = 1, 2.

Finally, the observation innovation z̃′(k + 1) , z(k + 1)− ẑ′(k + 1|k),

where ẑ′(k + 1|k) = H′x̂′(k + 1|k), has a corresponding covariance S′(k + 1)

given by

S′(k + 1) = H′P′(k + 1|k)H′T +R,

and (4.1) follows with S′
0(k + 1) = HP′

0(k + 1|k)HT + R and S′
i(k + 1) =

HP′
i(k + 1|k)HT, for i = 1, 2.

The special affine form of the innovation matrix in (4.1) yields the

following result regarding the optimal solution of the innovation-based opti-

mization problems.
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Theorem 4.2.2. The optimal solutions for the innovation-based greedy motion

planning problems: MILD, MIT, and MIME lie on the extreme points of the

feasibility region.

Proof. First, it easy to see that the velocity and acceleration constraints are

convex in the optimization variable u(k), since the norm of a vector is convex

and the composition of a convex function with an affine mapping preserves

convexity [114]. Next, we show that MILD is a concave function, whereas MIT

and MIME are convex functions. To this end, concavity of MILD follows from

Lemma 1.3.1 in Section 1.3 of Appendix 1. Moreover, since MIT is affine in

the optimization variable, it is both convex and concave. Convexity of MIME

follows from Lemma 1.3.2 in Section 1.3 of Appendix 1. Hence, in the MILD

case, one is maximizing a concave functional subject to convex constraints.

But, since the logarithm functional is strictly monotonically increasing, the

maximum is attained at the extreme points of the feasibility region. In the

MIT and MIME case, one is maximizing convex functionals subject to convex

constraints; therefore, the maximum is attained at the extreme points of the

feasibility region [115].

The significance of Theorem 4.2.2 is that the innovation-based opti-

mization problems reduce to search problems via function evaluations. Figure

4.3(a) illustrates the control feasibility region over which the information- and

innovation-based optimization functionals need to be considered. Figure 4.3(b)
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illustrates the extreme points of the feasibility region over which the optimal

solution of the innovation-based functionals lies.

u1

u2

ar,max

1

T
vr,max

u(k)

−

1

T
v(k − 1)

(a) (b)

u1

u2

ar,max

1

T
vr,max

u(k)

−

1

T
v(k − 1)

Figure 4.3: (a) Black shaded region: control feasibility region for information-
and innovation-based optimization. (b) Dashed curve: extreme points of feasi-
bility region over which the optimal solution of innovation-based optimization
lies

4.2.5 Relationship between D-Optimality and MILD

Under linear Gaussian assumptions, one can show that D-optimality

and MILD are equivalent. To see this, consider two jointly Gaussian random

vectors x and z with auto- and cross-covariances given by Pxx, Pzz, and Pxz.

Assume that z = Hx+ v, where v ∼ N (0,R) is independent of x. Then, the

mutual information between x and z, which measures the expected reduction

in entropy in one random vector due to the observation of another, can be
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shown through the Kullback-Leibler divergence to be given by [116]

I(x, z) =
1

2
log

det
[

P−1
xx +HTR−1H

]

det [P−1
xx]

(4.5)

=
1

2
log

det
[

HPxxH
T +R

]

det [R]
. (4.6)

Therefore, to maximize I(x, z) one can either maximize the right-hand side

of (4.5) or (4.6). Interpreting Pxx as the prediction error covariance, which

is not a function of u as shown in Subsection 4.2.3, it can be established

that the former maximization is nothing but D-optimality, while the latter

maximization is MILD.

4.2.6 Simulation Results

This section presents simulation results comparing greedy information-

and innovation-based receiver motion strategies as well as random and prede-

fined trajectories [111, 117]. A receiver with an unknown initial state vector

was assumed to be dropped in an OpNav environment comprising an anchor

SOP with a known initial state vector, labeled SOPa, and three SOPs with

unknown initial state vectors, labeled {SOPi}
3
i=1. The receiver’s clock was

assumed to be a TCXO, while the SOPs were assumed to be equipped with

OCXO clocks. For purposes of numerical stability, the clock error states were

defined to be cδt and cδ̇t. The simulation settings are given in Table 4.1.

Eight receiver trajectories were simulated. The first two were open-

loop: one in which the receiver’s maneuvers were chosen randomly, while in

the other, the maneuvers were specified so to traverse a trajectory around
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Table 4.1: Greedy motion planning simulation settings

Parameter Value

xr(0) [ 0, 0, 0, 0, 100, 10 ]T

xsa(0) [ 0, 150, 10, 0.1 ]T

xs1(0) [ 100, −150, 20, 0.2 ]T

xs2(0) [ 200, 200, 30, 0.3 ]T

xs3(0) [−150, 50, 40, 0.4 ]T

x̂r(0| − 1) ∼ N [xr(0),Pr(0| − 1) ]
x̂si(0| − 1) ∼ N [xsi(0),Psi(0| − 1) ] , i = 1, 2, 3
x̂clk,sa(0| − 1) ∼ N [xclk,sa(0),Pclk,sa(0| − 1) ]
Pr(0| − 1) (104) · diag [ 1, 1, 10−2, 10−2, 1, 10−2 ]
Psi(0| − 1) (103) · diag [ 1, 1, 1, 10−1 ] , i = 1, 2, 3
Pclk,sa(0| − 1) (103) · diag [ 1, 10−1 ]
h0,r 2× 10−19

h−2,r 2× 10−20

h0,sj 8× 10−20, j = 1, . . . , 4
h−2,sj 4× 10−23, j = 1, . . . , 4

q̃x, q̃y 0.1 (m/s2)2

R diag [ 400, 500, 600, 700 ] m2

vmax 20m/s

amax 5m/s2

T 0.1 s

SOPa. The remaining six trajectories were closed-loop according to Figure 4.1

with J [u(k)] being D-optimality, A-optimality, E-optimality, MILD, MIT, and

MIME. The optimal solutions of the information-based functionals were found

by gridding the control feasibility region and performing an exhaustive-search,

while the optimal solutions of the innovation-based functionals were found by

searching over the extreme points of the feasibility region.

Figure 4.4 illustrates the eight receiver trajectories for a single simu-
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lation run with the same initial estimates and process and observation noise

time histories.

To compare the performance of the eight trajectories, the root mean

squared estimation error (RMSEE) criterion was chosen [58]. The position,

velocity, clock bias, and clock drift RMSEE over N MC runs are respectively

defined as

RMSEE[r(k)] ,

√

√

√

√

1

N

N
∑

i=1

x̃2
i (k|k) + ỹ2i (k|k)

RMSEE[ṙ(k)] ,

√

√

√

√

1

N

N
∑

i=1

˜̇x2
i (k|k) + ˜̇y2i (k|k)

RMSEE[δt(k)] ,

√

√

√

√

1

N

N
∑

i=1

δ̃t
2

i (k|k)

RMSEE[δ̇t(k)] ,

√

√

√

√

1

N

N
∑

i=1

˜̇δt2i (k|k).

Figures 4.5-4.11 show the RMSEE for 100 MC runs for the receiver

and SOP1, while Figures 4.12-4.18 show the total RMSEE over the simulation

horizon (50 seconds). Similar RMSEE and total RMSEE results were reported

for SOP2 and SOP3.

The following conclusions can be drawn from these results. First,

optimization-based motion planning yielded superior results to open-loop tra-

jectories, which highlights the need to optimize the receiver trajectory for

optimal information gathering. Second, there was a consistent performance

ordering of the optimization-based methods: D-optimality and MILD yielded
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(a) (b)

SOPa

SOP1

SOP2

SOP3

(d)(c)

(f)(e)

(g) (h)

Figure 4.4: Receiver trajectories due to (a) random, (b) prescribed, (c) D-
optimality, (d) MILD, (e) A-optimality, (f) MIT, (g) E-optimality, and (h)
MIME motion planning strategies
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the best results followed by A-optimality and MIT, while E-optimality and

MIME yielded the worst results. Note that the only exception to this ordering

was in the receiver and SOP clock drift RMSEE for A-optimality, E-optimality,

MIT, and MIME. Nevertheless, the differences among these four methods for

the clock drift states RMSEE were practically negligible. Third, while D-

optimality and MILD were comparable, D-optimality was slightly superior,

despite the fact that they were shown to be equivalent in Subsection 4.2.5.

This can be explained by recalling that in deriving MILD a couple of approx-

imations were invoked, namely dropping terms involving higher-order powers

of T and approximating the matrix exponential via a Taylor Series expansion.

Additionally, D-optimality and MILD equivalency was shown to hold for the

Gaussian case, which does not necessarily hold here.
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Figure 4.5: Receiver position RMSEE
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Figure 4.6: Receiver velocity RMSEE
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Figure 4.7: Receiver clock bias RMSEE
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Figure 4.8: Receiver clock drift RMSEE
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Figure 4.9: SOP1 position RMSEE
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Figure 4.10: SOP1 clock bias RMSEE
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Figure 4.11: SOP1 clock drift RMSEE
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Figure 4.12: Receiver position total RMSEE
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Figure 4.13: Receiver velocity total RMSEE
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Figure 4.14: Receiver clock bias total RMSEE
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Figure 4.15: Receiver clock drift total RMSEE
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Figure 4.16: SOP1 position total RMSEE
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Figure 4.17: SOP1 clock bias total RMSEE
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Figure 4.18: SOP1 clock drift total RMSEE

4.3 Receding Horizon Trajectory Optimization

Multi-step look-ahead, also known as receding horizon, strategies are

known to outperform greedy strategies for trajectory optimization [100–103].

In receding horizon trajectory optimization, at a particular time-step, a multi-

step look-ahead optimal control sequence is computed. However, only the first

step of this sequence is applied, whereas the rest of the sequence is discarded.

This is motivated by the fact that at the next time-step, a new measurement

becomes available, which contains information that is used to refine the optimal

trajectory.

This section assesses the achieved improvements and associated limita-

tions of a receding horizon strategy over a greedy strategy for the two observ-

able modes of operation established in Section 3.6: (i) simultaneous receiver

107



localization and signal landscape mapping and (ii) signal landscape mapping.

For the former case, the OpNav environment is assumed to comprise an un-

known receiver with a state vector xr, a fully-known anchor SOP with a state

vector xsa, and m unknown SOPs with state vectors xs1 , . . . ,xsm, whereas for

the latter case the environment is assumed to comprise a fully-known receiver

with a state vector xr and m unknown SOPs with state vectors xs1 , . . . ,xsm.

4.3.1 Receding Horizon Receiver Motion Planning Strategy

The proposed receding horizon trajectory optimization loop is illus-

trated in Figure 4.19. At a particular time-step k, the pseudorange ob-

servations z(k) made by the receiver on the SOPs in the environment are

fused through an estimator– an EKF in this case. The observations take the

form z(k) , [ za(k), z1(k), . . . , zm(k) ]
T and z(k) , [ z1(k), . . . , zm(k) ]

T, re-

spectively, for the two modes of operation defined above, and it is assumed

that the observation noise elements are independent. Hence, the estimator’s

dynamics model is given by

x (k + 1) = Fx (k) +Gu (k) +w(k),

where for the first observable case: x ,
[

xT

r ,x
T

s1
, . . . ,xT

sm

]T

is the estima-

tor’s state vector, u , ur is the control vector, F = diag [Fr,Fs, . . . ,Fs ],

G =
[

GT

r , 02×4m

]T

, and w , [wT

r ,w
T

s1
, . . . ,wT

sm
]T is a zero-mean process

noise vector with covariance Q = diag [Qr,Qs1, . . . ,Qsm ], and the estima-

tor’s observation noise covariance is given by R = diag [ rsa , rs1, . . . , rsm ]. For
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the second observable case: x ,
[

xT

s1
, . . . ,xT

sm

]T

is the estimator’s state vec-

tor, u , 0 is the control vector, F = diag [Fs, . . . ,Fs ], G = [ 02×4m ]T, and

w , [wT

s1
, . . . ,wT

sm
]T is a zero-mean process noise vector with covariance

Q = diag [Qs1, . . . ,Qsm ], and the estimator’s observation noise covariance is

given by R = diag [ rs1, . . . , rsm ].

The EKF produces a state estimate x̂(k|k) and an associated esti-

mation error covariance P(k|k). The estimate and associated covariance are

fed into a receding horizon optimal control solver, which solves for the op-

timal admissible N -step look-ahead control actions UN
k , which are defined

as
(

UN
k

)⋆
, {u⋆(k + j), j= 0, . . . , N − 1} to minimize the D-optimality cost

functional J, subject to the OpNav dynamics and observation model ΣOpNav

along with velocity and acceleration constraints. Recall from Subsection 4.2.2

that the D-optimality criterion is proportional to the volume of the estimation

error uncertainty ellipsoid and was demonstrated in Subsection 4.2.6 to be su-

perior to the A- and E-optimality criteria in an RMSEE sense. In Figure 4.19,

vr,max and ar,max represent the maximum speed and acceleration, respectively,

with which the receiver can move.

Note that if N = 1, the receding horizon trajectory optimization prob-

lem reduces to greedy optimization. To evaluate the N -step estimation error

covariance, P(k +N |k +N), the zero future innovations assumption, namely

z̃(j + 1) , z(j + 1) − h [x̂(j + 1|j)] ≡ 0, for j = k, . . . , k + N − 1, will be

invoked [101]. Once the optimal N -step look-ahead control actions
(

UN
k

)⋆
are

found, only the first control action u⋆(k) is applied, whereas the rest of the
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control actions {u⋆(j)}k+N−1
j=k+1 are discarded. A single iteration of the algo-

rithm for finding the receding horizon optimal receiver trajectory is outlined

in Algorithm 1.

OpNav Environment: Dynamical System

ΣOpNav :







xr(k + 1) = Fr xr(k) +Gr ur(k) +wr(tk)
xsi(k + 1) = Fs xsi(k) +wsi(k)
zi(k) = h [xr(k), xsi(k)] + vsi(k)

Estimator: EKF

Receding Horizon Optimal Control

z(k)

x̂(k|k), P(k|k)

u
⋆(k)

(UN
k )

⋆ =







































minimize
U

N

k

J
[

U
N
k

]

= − log detP−1(k +N |k +N)

subject to ΣOpNav

‖ur(k +N − j)‖2 ≤ ar,max, j = 1, . . . , N

‖ur(k +N − j) +
1

T
v
⋆
r(k +N − j − 1)‖2 ≤

1

T
vr,max

j = 1, . . . , N

(UN
k )

⋆ =







































minimize
U

N

k

J
[

U
N
k

]

= − log detP−1(k +N |k +N)

subject to ΣOpNav

‖ur(k +N − j)‖2 ≤ ar,max, j = 1, . . . , N

‖ur(k +N − j) +
1

T
v
⋆
r(k +N − j − 1)‖2 ≤

1

T
vr,max

j = 1, . . . , N

Figure 4.19: Receding horizon receiver motion planning loop. For the first
observable mode of operation: i = a, 1, . . . , m, and for the second observable
mode of operation: i = 1, . . . , m.

One drawback of receding horizon trajectory optimization is repeated

invoking of the zero-innovation assumption. Another drawback is increased

computational burden. Figure 4.20 illustrates the cascade of feasibility re-

gions that should be considered as the horizon is increased. In particular,
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each point in the black shaded region corresponding to the feasibility region of

the first-step look-ahead has an associated feasibility region of its own signi-

fying the feasible maneuvers the receiver could take for the second-step. The

number of optimization variables for an N -step look-ahead problem are 2N .

Denoting the number of feasible maneuvers in a particular time-step j by nj ,

it is easy to see that an exhaustive search-type algorithm has a computational

burden O

(

∏N
j=1 nj

)

.

Algorithm 1 Receding horizon trajectory optimization

Given: x̂(k|k), P(k|k), N
for j = k, . . . , k +N − 1 find

x̂(j + 1|j) = Fx̂(j|j) +Gu(j)

H(j + 1) = ∂h[xr(j+1),xs(j+1)]
∂x

∣

∣

∣

x=x̂(j+1|j)

P(j + 1|j) = FP(j|j)FT +Q
S(j + 1) = H(j + 1)P(j + 1|j)HT(j + 1) +R
W(j + 1) = P(j + 1|j)HT(j + 1)S−1(j + 1)
P(j + 1|j + 1)=P(j + 1|j)−W(j + 1)S(j + 1)WT(j + 1)
x̂(j + 1|j + 1) ≡ x̂(j + 1|j)

end for
Solve:
minimize

UN
tk

J
[

UN
k

]

= − log detP−1(k +N |k +N)

subject to ΣOpNav

‖ur(k +N − j)‖2≤ar,max, j = 1, . . . , N
∥

∥

∥

∥

ur(k +N − j) +
v⋆
r(k +N − j − 1)

T

∥

∥

∥

∥

2

≤
vr,max

T
,

j = 1, . . . , N
Apply: u⋆(k)
Discard: {u⋆(k + 1), . . . ,u⋆(k +N − 1)}
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Figure 4.20: Cascade of feasibility regions for two-step look-ahead horizon.
The two disks in (a) represent the acceleration and velocity constraints for
the firs-step look-ahead. The disks intersection (black shaded area) are the
receiver feasible maneuvers. Each point in this feasibility region is associated
with another feasibility region in (b) representing the feasible maneuvers for
the second-step look-ahead.

4.3.2 Simulation Results

This subsection presents simulation results to demonstrate the limi-

tations and effectiveness of receding horizon trajectory optimization versus

greedy [85, 86]. An OpNav environment comprising a receiver and four SOPs,

labeled {SOPi}
4
i=1, was simulated according to the settings presented in Table

4.2. The receiver’s and SOPs’ clocks were assumed to be TCXO and OCXOs,

respectively. For purposes of numerical stability, the clock error states were

defined to be cδt and cδ̇t. Two receiver modes of operation were considered,

corresponding to the two observability conditions established in Section 3.6:
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(i) simultaneous receiver localization and signal landscape mapping in an en-

vironment with one fully-known “anchor” SOP and three unknown SOPs, and

(ii) signal landscape mapping in an environment with four unknown SOPs and

a fully-known receiver.

Table 4.2: Receding horizon trajectory optimization simulation settings

Parameter Value

xs1(0) [ 0, 150, 10, 0.1 ]T

xs2(0) [ 100, −150, 20, 0.2 ]T

xs3(0) [ 200, 200, 30, 0.3 ]T

xs4(0) [−150, 50, 40, 0.4 ]T

h0,r 2× 10−19

h−2,r 2× 10−20

h0,sj 8× 10−20, j = 1, . . . , 4
h−2,sj 4× 10−23, j = 1, . . . , 4

q̃x, q̃y 0.1 (m/s2)2

r { 250, 300, 350 } m2

vmax 10m/s

amax 3m/s2

T 0.2 s

Three sets of simulations were performed for three different observation

noise intensities r. Four receiver trajectories per noise intensity were generated:

a random trajectory, a greedy trajectory, and two receding horizon trajectories

with N = 2 and N = 3. For meaningful comparison, the same initial state

estimates and process and observation noise realization time histories were

used to generate the four receiver trajectories. Several MC-based runs were

conducted for each noise intensity with randomized initial state estimates and

noise realization time histories.
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4.3.2.1 Case 1: Simultaneous Receiver Localization and Signal Land-
scape Mapping with One Known Anchor SOP

The receiver was assumed to have the initial state xr(0) = [ 0, 0, 10, 0,

100, 10 ]T and the known anchor SOP was assumed to be SOP1. The initial

estimates for the receiver and the three SOPs were generated according to

x̂r(0|−1) ∼ N [xr(0),Pr(0| − 1)] and x̂si(0|−1) ∼ N [xsi(0),Psi(0| − 1)] , i =

2, 3, 4, with initial estimation error covariance matrices Pr(0| − 1) = (104) ·

diag [ 1, 1, 1, 1, 1, 10−2 ] and Psi(0| − 1) = (104) · diag [ 1, 1, 1, 10−2 ]. To as-

sess the localization accuracy and signal landscape map quality, the natural

logarithm of the posterior estimation error covariance determinant, namely

log det [P(k + 1|k + 1)], was adopted.

The resulting receiver trajectories for r = 250m2 and a particular run

are illustrated in Figure 4.21. The resulting localization and signal landscape

map uncertainties for r ∈ { 250, 300, 350 } m2 and the same run are plot-

ted in Figure 4.22-4.24. The log det [P⋆(k + 1|k + 1)] plots exhibited a similar

behavior for various MC runs. The reduction in receiver localization and sig-

nal landscape map estimation uncertainty for the receding horizon approaches

over the greedy approach at the end of the simulation time is averaged over

ten MC runs and is tabulated in Table 4.3.
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Table 4.3: Average % reduction in receiver localization and signal landscape
map estimation uncertainty for receding horizon over greedy

N r = 250 r = 300 r = 350

2 14.19 7.51 -8.03
3 29.63 20.95 6.28

(a)

SOP1

SOP2

SOP3

SOP4

(b)

(c) (d)

Figure 4.21: Case 1: receiver trajectories due to (a) random, (b) optimal
greedy, (c) optimal two-step look-ahead, and (d) optimal three-step look-ahead
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Figure 4.22: Localization & signal landscape map uncertainty for r = 250m2
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Figure 4.23: Localization & signal landscape map uncertainty for r = 300m2
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Figure 4.24: Localization & signal landscape map uncertainty for r = 350m2

4.3.2.2 Case 2: Signal Landscape Mapping with a Known Receiver

The receiver was assumed to have an initial known state of xr(0) =

[ 0, 0, 0, 0, 100, 10 ]T. The initial estimates for the the four SOPs were gener-

ated according to x̂si(0|−1) ∼ N [xsi(0),Psi(0| − 1)] , i = 1, . . . , 4, with initial

estimation error covariance matrices Psi(0|−1) = (104)·diag [ 1, 1, 1, 10−2 ]. To

assess the signal landscape map, quality log det [P(k + 1|k + 1)] was adopted.

The resulting receiver trajectories for r = 250m2 and a particular run

are illustrated in Figure 4.25. The resulting signal landscape map uncertainty

for r ∈ { 250, 300, 350 } m2 and the same run are plotted in Figure 4.26-4.28.

The log det [P⋆(k + 1|k + 1)] plots exhibited a similar behavior for various MC

runs. The reduction in signal landscape map estimation uncertainty for the

receding horizon approaches over the greedy approach at the end of the sim-

ulation time is averaged over ten MC runs and is tabulated in Table 4.4.
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Table 4.4: Average % reduction in signal landscape map estimation uncer-
tainty for receding horizon over greedy

N r = 250 r = 300 r = 350

2 94.69 55.56 43.61
3 135.51 78.46 52.63

(a)

SOP1

SOP2

SOP3

SOP4

(b)

(c) (d)

Figure 4.25: Case 2: receiver trajectories due to (a) random, (b) optimal
greedy, (c) optimal two-step look-ahead, and (d) optimal three-step look-ahead
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Figure 4.26: Signal landscape map uncertainty for r = 250m2

Time (s)

J
⋆
=
lo
g
d
et
[P

⋆
(k

+
1|
k
+
1)
]

N = 2

N = 3

Random

N = 1

Figure 4.27: Signal landscape map uncertainty for r = 300m2
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Figure 4.28: Signal landscape map uncertainty for r = 350m2

4.3.2.3 Simulation Results Discussion

The following conclusions can be drawn from the presented simula-

tions. First, greedy motion planning and receding horizon trajectory opti-

mization yielded superior results to random trajectories. Second, receding

horizon trajectory optimization outperformed greedy motion planning. Third,

the superiority of receding horizon over greedy motion planning depends on the

observation noise intensity– the larger the observation noise, the less advantage

the receding horizon strategy has. In fact, for large enough observation noise,

receding horizon yields nearly identical (or slightly worse) performance than

greedy. Fourth, for the same simulation settings, the improvements gained

from receding horizon over greedy were more significant whenever the receiver

had a priori knowledge about its own state and was tasked with signal land-

scape mapping, over the case where the receiver had no a priori knowledge
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about its state and was tasked with simultaneous receiver localization and

signal landscape mapping.

4.4 Collaborative Signal Landscape Mapping

This section studies the problem of collaborative signal landscape map-

ping of multiple unknown SOPs through multiple receivers. In accordance with

the observability condition established in Section 3.6, it is assumed that one

receiver has full knowledge of its initial state vector.

4.4.1 Price of Anarchy

The collaborative signal landscape mapping problem is a coupled de-

cision making under uncertainty and information fusion problem, to which

various architectures can be synthesized. To assess the performance of the

various architectures that will be synthesized, the game-theoretic notion of

price of anarchy (PoA) will be adopted, which is defined next [118].

Definition 4.4.1. The PoA quantifies the degradation of solution quality as a

centralized system moves to a more decentralized framework. Mathematically,

PoA ,

max
si

J⋆⋆si

J⋆
,

where J⋆ is the optimal centralized cost and J⋆⋆si is the cost of the ith agent

due to some decentralized strategy s.

Note that in calculating the PoA, one takes the worst case (maximum)

cost over different agents in the environment, since the PoA assesses the overall
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performance of the system due to a proposed decentralized strategy s versus

a centralized one. Also, note that PoA ≥ 1, and the closer the PoA is to one,

the more comparable the proposed decentralized strategy s is to an optimal

centralized strategy.

4.4.2 Main Building Blocks

The collaborative signal landscape mapping architectures are composed

of four main building blocks: (i) radio frequency (RF) front-end (FE) process-

ing and tracking loops (TL), (ii) extended information filter (EIF), (iii) opti-

mal greedy control (OGC) solver, and (iv) actuators. These building blocks

are described next.

4.4.2.1 RF FE Processing and TL

This block digitizes and downsamples the RF analog stream received by

the antenna [119–121]. Subsequently, the SOP signal is acquired and tracked

to produce the pseudorange observable described in Section 2.2 [122].

4.4.2.2 Extended Information Filter

This block takes the pseudorange observables {zi(k)}
m

i=1, where m is

the number of SOPs, and filters them to produce an estimate x̂(k|k) and an

associated estimation error covariance P(k|k). This block is also utilized to

fuse filtered estimates from different receivers.

For optimal fusion, the estimation scheme adopted to fuse estimates
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and associated estimation error covariances from multiple receivers making

observations on the same SOPs cannot be formulated in the standard KF for-

mulation. This is due to the fact that while the innovations are temporally

uncorrelated, the innovations generated from different receivers are correlated

by virtue of the fact that they use a common prediction [106]. Suboptimal al-

gorithms for fusing estimates and their corresponding auto-covariances, where

the cross-correlation between the vectors is unknown exist, such as the co-

variance intersection algorithm [123]. However, by expressing the estimation

problem in the information space instead of the state space, optimal fusion can

be derived leading to the EIF [106, 124], a special case of which is summarized

next.

Consider the linear dynamics and nonlinear observations

x(k + 1) = Fx(k) +Gu(k) +w(k)

z(k) = h [x(k)] + v(k)

where x ∈ Rn, u ∈ Rr, w ∈ Rn, z ∈ Rm, v ∈ Rm are the system state, input,

process noise, observation, and observation noise vectors, respectively. Assume

w and v to be zero-mean, mutually-uncorrelated, white noise sequences with

covariance matrices Q and R, respectively.

Assume the initial knowledge about the system state to be captured in

the state estimate x̂(0|0) and associated estimation error covariance P(0|0).

The EIF maintains the information state vector and information matrix, de-

fined as ŷ(i|j) , Y(i|j)x̂(i|j) and Y(i|j) , P−1(i|j), respectively, where
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x̂(i|j) and P(i|j) are the state vector estimate and associated estimation error

covariance at time i given all the observations up to and including time j. The

EIF recursive prediction and correction equations are given by

Prediction

ŷ(k + 1|k) = Y(k + 1|k) [F x̂(k|k) +Gu(k)]

Y(k + 1|k) =
[

FY−1(k|k)FT +Q
]−1

Correction

ŷ(k + 1|k + 1) = ŷ(k + 1|k) + i(k + 1)

Y(k + 1|k + 1) = Y(k + 1|k) + I(k + 1),

where i(k + 1) and I(k + 1) denote the information state contribution and its

corresponding information matrix, respectively, associated with observation

z(k + 1), and are given by

i(k + 1) = HT(k + 1)R−1 [ν(k + 1) +H(k + 1)x̂(k + 1|k)]

I(k + 1) = HT(k + 1)R−1H(k + 1)

ν(k + 1) = z(k + 1)− h [x̂(k + 1|k)]

H(k + 1) =
∂h [x(k)]

∂x

∣

∣

∣

∣

∣

x=x̂(k+1|k)

.

124



4.4.2.3 Optimal Greedy Control

This block takes the estimate x̂(k|k) and an associated estimation error

covariance P(k|k) of the signal landscape map and solves for the optimal

greedy maneuver u⋆
ri
(k) with which the ith receiver, for i = 1, . . . , N , where

N is the number of receivers, must move so to minimize a functional of the

control input J [uri(k)]. To this end, to specify J [uri(k)], the D-optimality

criterion will be chosen. Recall from Subsection 4.2.2 that the D-optimality

criterion is proportional to the volume of the estimation error uncertainty

ellipsoid and was demonstrated in Subsection 4.2.6 to be superior to the A-

and E-optimality criteria in an RMSEE sense. Hence, this block solves the

OGC problem, given by

minimize
uri

(k)
J [uri(k)] = log detPi(k + 1|k + 1)

subject to xri(k + 1) = Fri xri(k) +Gri uri(k) +wri(k)

xsj(k + 1) = Fs xsj(k) +wsj(k), j = 1, . . . , m

zj(k) = h
[

xri(k), xsj(k)
]

+ vsj(k), j = 1, . . . , m

‖uri(k)‖2 ≤ ari,max,
∥

∥

∥

∥

uri(k) +
1

T
v⋆
ri
(k − 1)

∥

∥

∥

∥

2

≤
1

T
vri,max,

(4.7)

where vri,max and ari,max are the maximum speed and acceleration, respectively,

with which the ith receiver can move. Note that the optimization vector is

uri(k), whereas v
⋆
ri
(k−1) is a known constant vector representing the velocity

commands that resulted from solving the optimization problem in the previous

time-step k − 1 and has already been applied.
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4.4.2.4 Actuators

This block applies the optimal control inputs u⋆
ri
(k) in the form of

acceleration commands, which are calculated by the OGC, to command the

receiver’s next maneuver .

4.4.3 Active Signal Landscape Mapping Architectures

This subsection presents the various active signal landscape mapping

architectures. The architectures are essentially classified according to where

active decisions about the maneuvers are made, what information is commu-

nicated, and where the information is processed [125].

4.4.3.1 Decentralized

In this architecture (depicted in Figure 4.29), each receiver acts individ-

ually: it fuses the observations made on the various SOPs to produce its own

signal landscape map and makes its own decisions. The observations made by

the ith receiver on all the SOPs in the environment are augmented into the

vector zi , [zri,s1, · · · , zri,sm]
T, which is subsequently processed by the EIF to

yield the local signal landscape state estimate x̂i(k|k) and associated estima-

tion error covariance Pi(k|k). Based on these local estimates, each receiver

solves for its own optimal greedy maneuver u⋆
ri
(k) defined in (4.7).

This architecture has the advantages of simplicity and self-containment,

but suffers from the drawback that receivers do not exploit information gath-

ered by other concurrent receivers.
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Figure 4.29: Decentralized active signal landscape mapping architecture

4.4.3.2 Centralized

In this architecture (depicted in Figure 4.30), the signal landscape

map and decision making are made at a central fusion and decision center

(CF & DC). The receivers send their observation vectors {zi}
N
i=1 to the CF

& DC, which fuses such observations through an EIF to produce a global

signal landscape map with estimate x̂(k|k) and associated estimation error

covariance P(k|k). The CF & DC OGC problem is identical to (4.7), ex-

cept that it solves for the global optimal greedy maneuver for all receivers

u⋆(k) ,
[

[u⋆
r1
(k)]T, · · · , [u⋆

rN
(k)]T

]T

. The optimal maneuvers are communi-

cated to each receiver.

This architecture is optimal; however, it requires two-way communica-

tion between the receivers and the CF & DC. Another drawback is that the

CF & DC needs to solve a potentially large-scale OGC problem.
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Figure 4.30: Centralized active signal landscape mapping architecture

4.4.3.3 Hierarchical without Feedback

In this architecture (depicted in Figure 4.31), the receivers produce

their own signal landscape maps and make their own decisions. Additionally,

they send their information contribution vectors and matrices {iri, Iri}
N

i=1 to a

central fusion center (CFC). The CFC is composed of an EIF, which maintains

a global signal landscape map. The CFC EIF’s prediction stage computations

are made according to the prediction equations given in Subsection 4.4.2.2,

while the correction stage computations are made according to

ŷ(k + 1|k + 1) = ŷ(k + 1|k) +

N
∑

i=1

iri(k + 1)

Y(k + 1|k + 1) = Y(k + 1|k) +
N
∑

i=1

Iri(k + 1).

This architecture has the following advantages: (i) receivers possess

their own local maps and (ii) a more accurate global map is available at the
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CFC. However, it suffers from the drawback that receivers have no access to

the global map.
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Figure 4.31: Hierarchical active signal landscape mapping architecture without
feedback (no dashed line) and with feedback (with dashed line)

4.4.3.4 Hierarchical with Feedback

This architecture (depicted in Figure 4.31), is identical to the one de-

scribed in subsection 4.4.3.3, except that once the CFC fuses the information

from the various receivers to produce the global signal landscape map, such

map is fed-back to each receiver to replace each receiver’s local corrected map.

This architecture eliminates the drawback of the hierarchical without

feedback architecture at the expense of requiring communication from the CFC

to the receivers.
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4.4.4 Simulation Results

This subsection compares the architectures discussed in Subsection

4.4.3 numerically in an environment comprising two receivers with known

initial states and four unknown SOPs. For purposes of numerical stability,

the clock bias and drift states were defined as cδt and cδ̇t, respectively. The

receivers’ and SOPs’ clocks were assumed to be TCXOs and OCXOs, respec-

tively. The simulation settings are given in Table 4.5.

Table 4.5: Collaborative signal landscape mapping simulation settings

Parameter Value

xs1(0) [ 0, 150, 10, 0.1 ]T

xs2(0) [ 100, −150, 20, 0.2 ]T

xs3(0) [ 200, 200, 30, 0.3 ]T

xs4(0) [−150, 50, 40, 0.4 ]T

xri(0) ∼ N [x̄ri ,Pri] ; i = 1, 2

x̄r1 [ 60, 15, 100, 10 ]T

x̄r2 [−55, 50, 100, 10 ]T

x̂sj(0|0) ∼ N
[

xsj(0),Psj(0|0)
]

; j = 1, . . . , 4
Pri (104) · diag [ 1, 1, 0, 0, 1, 10−2 ] ; i = 1, 2
Psj(0|0) (104) · diag [ 1, 1, 1, 10−2 ] ; j = 1, . . . , 4
h0,ri 2× 10−19, i = 1, 2
h−2,ri 2× 10−20, i = 1, 2
h0,sj 8× 10−20, j = 1, . . . , 4
h−2,sj 4× 10−23, j = 1, . . . , 4
rri,sj 500m2; i = 1, 2; j = 1, . . . , 4

q̃x, q̃y 0.1 (m/s2)2

vmax 10m/s

amax 5m/s2

T 0.1 s
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Figure 4.32 shows the receivers trajectories due to the four architec-

tures. Note that the trajectory for the hierarchical without feedback was

identical to the decentralized, since receivers had no access to the global map.

Figure 4.33 compares the quality of the maps produced by the four archi-

tectures for a single run, as measured by the optimal value of the objective

functional, denoted J⋆ = log det [P⋆(k + 1|k + 1)], which is proportional to

the volume of the estimation uncertainty ellipsoid. Here, for meaningful com-

parison, the same initial conditions, initial state estimates, and process and

observation noise realizations were used.

The PoA was calculated as the ensemble average at the end of the sim-

ulation time for 25 Monte Carlo simulation runs, where the receivers’ initial

states, SOPs initial state estimates, and noise realizations were randomized

over each run, and is tabulated in Table 4.6. Note that the hierarchial ap-

proach with feedback had a negligible PoA; hence, we conclude that it has a

comparable performance to the optimal centralized approach.

Table 4.6: Price of anarchy for collaborative signal landscape mapping archi-
tectures

Architecture Average Standard Deviation

Decentralized 1.91 0.13
Hierarchical without Feedback 1.18 0.11
Hierarchical with Feedback 1.03 0.04

131



(a) (b)

(c)

SOP1

SOP2

SOP3

SOP4

Receiver 2
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Figure 4.32: Receiver trajectories for (a) centralized, (b) hierarchical with
feedback, and (c) decentralized and hierarchical without feedback architectures
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Chapter 5

Conclusion

This dissertation laid down the theoretical foundation and addressed

fundamental analysis and synthesis questions pertaining to COpNav. In COp-

Nav, multiple receivers, whether in hand-held devices, in UAVs, UGVs, or

manned vehicles share information about ambient radio frequency SOPs to

construct and continuously refine a global signal landscape within which the

receivers localize themselves in space and time.

The minimal conditions under which a COpNav environment compris-

ing multiple receivers with velocity random walk dynamics making pseudor-

ange observations on multiple terrestrial SOPs were derived. It was shown

that the environment is completely observable if the initial states of at least:

(i) one receiver is fully-know, (ii) one receiver is partially-known and one

SOP is fully-known, or (iii) one SOP is fully-known and one SOP is partially-

known. If the receivers can control their maneuvers in the form of acceleration

commands, these observability requirement reduce to (i) one receiver is fully-

known or (ii) one SOP is fully-known. For scenarios in which the environment

is not fully-observable, the observable states in the environment were specified.

Moreover, the degree of observability (estimability) of the various states in the
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environment was assessed with particular attention paid to the most and least

observable directions in the state space. Numerical and experimental demon-

strations were presented, which agreed with the theoretical predictions.

Next, various receiver motion planning strategies for optimal informa-

tion gathering were proposed. In this respect, classical information-based met-

rics were derived, and it was shown that their associated optimization prob-

lems did not possess any convexity properties. Subsequently, novel innovation-

based metrics were proposed and derived, whose associated optimization prob-

lems were shown to possess strong convexity properties, yielding computa-

tionally efficient solutions. Analytical and numerical comparisons between the

information- and innovation-based solutions were presented showing that the

two sets of metrics perform comparably. In addition, the superiority of reced-

ing horizon motion strategies over greedy was assessed. It was demonstrated

that such strategies are more beneficial in the case of signal landscape mapping

versus the case of simultaneous receiver localization and signal landscape map-

ping. Also, it was demonstrated that the superiority diminished whenever the

environment uncertainty in the form of observation noise intensity increased.

Finally, the problem of collaborative signal landscape mapping with multiple

receivers was tackled. A number of decision making and information fusion ar-

chitectures were synthesized: centralized, decentralized, and hierarchical with

and without feedback. It was demonstrated that a hierarchical with feedback

architecture achieved a minimal price of anarchy.
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Chapter 6

Future Work

This chapter outlines a number of future research directions that build

upon this dissertation’s findings.

6.1 Navigation Security

We are steadily moving towards a world in which UGVs roam the streets

side-by-side with human-driven vehicles, and UAVs are integrated into the na-

tional airspace. Not only will such future autonomous vehicles demand more

accuracy and reliability from their navigation system, but they will also be

asked to operate in harsher environments than ever before. Jamming and

spoofing these navigation systems will have intolerable consequences. The pro-

posed COpNav framework implicitly protects against jamming and spoofing

threats through signal diversification. Near-term research should design ap-

propriate detection and mitigation algorithms against these malicious attacks.

Moreover, established receiver autonomous integrity monitoring (RAIM) tech-

niques should be extended to incorporate signals beyond GNSS, namely SOPs.

136



6.2 Adaptive Estimation

A COpNav receiver entering a new signal landscape cannot assume

the availability of high-fidelity models describing the environment’s dynamics.

Uncertainties in COpNav environments can be classified into dynamical and

statistical uncertainties, with the latter being more problematic. Incorrect

models jeopardize the estimation optimality and may cause filter divergence.

COpNav estimators need to: (i) perform on-the-fly signal characterization for

discovered SOPs and (ii) continuously refine estimates of SOPs’ parameters

of relevance. To this end, adaptive estimators, which provide a significant

improvement over fixed filters through the filter learning process, will be nec-

essary. These adaptive estimator should exploit proper parametrization of

different grades of receivers and SOPs oscillators.

6.3 Estimation Architectures

A significant difference between COpNav environments and conven-

tional distributed multi-sensor networks is that COpNav receivers are not

merely sensors– they are closed-loop systems composed of feedback tracking

loops. Future research should study the performance and limitations of various

estimation architectures, such as decentralized, centralized, and hierarchical.

Questions pertaining to necessary communication rates, effects of communi-

cation delay and disconnectivity, and appropriate estimators and information

fusion techniques should be addressed.
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Appendix 1

Appendix for Chapter 4

1.1 Commutativity of Dynamics Matrices

Proposition 1.1.1. The matrices F′
0 and

∑2
i=1Fiui are commutative.

Proof. Denoting A , F′
0 and B ,

∑2
i=1Fiui, direct calculations reveal that

AB = BA = diag
[

F′
3,sa ,F

′
3,s1

, . . . ,F′
3,sm , 0(2m+4)×(2m+4)

]

,

F′
3,sj

=











0 0 0 0
0 0 0 0
0 0 0 0

2 ṙsj θ̇sj (u1 sin θsj−u2 cos θsj )
r3sj

0 0 0











,

where j = a, 1, . . . , m.

1.2 Matrix Blocks for Equation (4.4)

Λ(k) =































Λsa 04×4 · · · 04×4 04×2

Λs1 −Λs1 · · · 04×4 04×2
...

...
. . .

...
...

Λsm 04×4 · · · −Λsm 04×2

Λclk,r 02×4 · · · 02×4 02×2

02×4 Λclk,s1 · · · 02×4 02×2
...

...
. . .

...
...

02×4 02×4 · · · Λclk,sm 02×2

02×4 02×4 · · · 02×4 Λclk,sa































.

139



Λsj ,











Λrsj ,xr
Λrsj ,yr

0 0 0 0

Λθsj ,xr
Λθsj ,yr

0 0 0 0

Λṙsj ,xr
Λṙsj ,yr

Λṙsj ,ẋr
Λṙsj ,ẏr

0 0

Λθ̇sj ,xr
Λθ̇sj ,yr

Λθ̇sj ,ẋr
Λθ̇sj ,ẏr

0 0











Λrsj ,xr
=Λṙsj ,ẋr

=
xr−xsj

‖rr−rsj‖
, Λrsj ,yr

=Λṙsj ,ẏr
=

yr−ysj
‖rr−rsj‖

Λθsj ,xr
=Λθ̇sj ,ẋr

=
−yr+ysj
‖rr−rsj‖

2
, Λθsj ,yr

=Λθ̇sj ,ẏr
=

xr−xsj

‖rr−rsj‖
2

Λṙsj ,xr
=

[

ẏr(−xr + xsj ) + ẋr(yr − ysj)
]

(yr − ysj)

‖rr − rsj‖
3

Λṙsj ,yr
=

[

ẏr(xr − xsj ) + ẋr(−yr + ysj)
]

(xr − xsj )

‖rr − rsj‖
3

Λθ̇sj ,xr
=
{

ẏr
[

−(xr − xsj)
2 + (yr − ysj)

2
]

+2ẋr(xr − xsj )(yr − ysj)
}/

‖rr − rsj‖
2

Λθ̇sj ,yr
=
{

ẋr

[

−(xr − xsj )
2 + (yr − ysj)

2
]

−2ẏr(xr − xsj)(yr − ysj)
}/

‖rr − rsj‖
2

Λclk,r ,
[

02×4 I2×2

]

Λclk,sj ,
[

02×2 I2×2

]

, j = a, 1, . . . , m.

1.3 Linear Functionals Convexity Properties

Lemma 1.3.1. The functional f(x) = log [ det (A0+
∑n

i=1 xiAi)], where

x ∈ Rn and Ai ∈ Sm is concave on {x : A0 +
∑n

i=1 xiAi ≻ 0}.

Proof. Since nonnegative weighting of a concave functional preserves its con-
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cavity, consider the functional

f(x) =
1

m
log

[

det

(

A0 +
n
∑

i=1

xiAi

)]

= log







[

det

(

A0 +
n
∑

i=1

xiAi

)]
1

m







, h [g(x)]

Using the fact that the functional g′(x) = − [det (A0 +
∑n

i=1 xiAi)]
1

m , where

x ∈ Rn and Ai ∈ Sm is convex on {x : A0 +
∑n

i=1 xiAi ≻ 0}; hence, g(x) ,

−g′(x) is concave. Recognizing that h is concave and nondecreasing, we con-

clude that f is concave, from applying the composition rule: if f(x) , h [g(x)],

with h : R → R and g : Rn → R, then f is concave if h is concave and nonde-

creasing and g is concave [114].

Lemma 1.3.2. The functional f(x) = λmax [A0+
∑n

i=1xiAi], where x ∈ Rn

and Ai ∈ Sn is convex.

Proof. The functional f can be expressed as

f(x) = sup
‖y‖2=1

[

yT

(

A0 +

n
∑

i=1

xiAi

)

y

]

.

Since f is the point-wise supremum of a family of liner functionals of x, i.e.

yT (A0 +
∑n

i=1 xiAi)y, indexed by y ∈ Rn, and using the fact that the point-

wise supremum of convex functionals is convex, then f is convex.
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