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ABSTRACT

Although at least one quarter of early-type barred galaxies host secondary stellar bars embedded in their large-scale
primary counterparts, the dynamics of such double-barred galaxies are still not well understood. Recently we
reported success at simulating such systems in a repeatable way in collisionless systems. In order to further our
understanding of double-barred galaxies, here we characterize the density and kinematics of the N-body simulations
of these galaxies. This will facilitate comparison with observations and lead to a better understanding of the observed
double-barred galaxies. We find the shape and size of our simulated secondary bars are quite reasonable compared
to the observed ones. We demonstrate that an authentic decoupled secondary bar may produce only a weak twist of
the kinematic minor axis in the stellar velocity field, due to the relatively large random motion of stars in the central
region. We also find that the edge-on nuclear bars are probably not related to boxy peanut-shaped bulges which are
most likely to be edge-on primary large-scale bars. Another kinematic feature often present in our double-barred
models is a ring-like feature in the fourth-order Gauss–Hermite moment h4 maps. Finally, we demonstrate that
the non-rigid rotation of the secondary bar causes its pattern speed to not be derived with great accuracy using
the Tremaine–Weinberg method. We also compare with observations of NGC 2950, a prototypical double-barred
early-type galaxy, which suggest that the nuclear bar may be rotating in the opposite sense as the primary.
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1. INTRODUCTION

Double-barred (S2B) galaxies were first described over
30 years ago (de Vaucouleurs 1975). The Hubble Space Tele-
scope has revealed secondary bars at the center of at least one
quarter of early-type optically-barred galaxies (Erwin & Sparke
2002). Dynamically decoupled5 secondary bars in S2B galax-
ies have been hypothesized to be a mechanism for driving gas
past the inner Lindblad resonance (ILR) of primary bars, to feed
the supermassive black holes that power active galactic nuclei
(AGN; Shlosman et al. 1989).

The dynamics of secondary bars are still not well under-
stood. The random apparent relative orientations of primary
and secondary bars in nearly face-on galaxies points to dy-
namical decoupling (Buta & Crocker 1993; Friedli & Martinet
1993). But images alone cannot reveal much about how the
two bars rotate through each other. Kinematic evidence of de-
coupling, using either gas or stars, is harder to obtain (Petitpas
& Wilson 2002; Schinnerer et al. 2002; Moiseev et al. 2004).
Indirect evidence for decoupling was claimed by Emsellem
et al. (2001) based on rotation-velocity peaks inside the sec-
ondary bars. Conclusive, direct kinematic evidence for a de-
coupled secondary bar was obtained for NGC 2950 by Corsini
et al. (2003, hereafter CDA03) who showed, using the method
of Tremaine & Weinberg (1984), that the primary and secondary
bars cannot be rotating at the same pattern speed.

Simulations offer the best way to understand double-barred
systems. However, the decoupled nuclear bars that formed in
early simulations did not last long. For example, the most

3 Harlan J. Smith Fellow.
4 Brooks Prize Fellow; current address: Centre For Astrophysics, University
of Central Lancashire, Preston, UK PR1 2HE.
5 In this context, by decoupled we mean only that Ωs �= Ωp , where Ωs (Ωp)
is the pattern speed of the secondary (primary) bar.

long-lived nuclear bar in Friedli & Martinet (1993) lasted
for less than two turns of the primary bar, corresponding to
about 0.4 Gyr, which is far too short to explain the observed
abundance of nested bars. Furthermore, their models usually
require substantial amounts of gas to form and maintain these
nuclear bars. Heller et al. (2007a, 2007b) reported that nested
bars form in a quasi-cosmological setting, but the amplitudes
of the bars also seem to weaken rapidly after most of the gas
has formed stars (Heller et al. 2007a, Figure 2). Petitpas &
Wilson (2004) found that four out of 10 double-barred galaxies
contain very little molecular gas in the nuclear region. These
clues suggest that large amounts of molecular gas may not be
necessary to maintain central nuclear bars. Rautiainen et al.
(2002) reported that a secondary bar forms in a collisionless
N-body simulation, although their secondary bar had a “vaguely
spiral shape.”

On the side of orbital studies, Maciejewski & Sparke (1997,
2000) discovered a family of loop orbits that may form building
blocks of long-lived nuclear stellar bars (also Maciejewski
& Athanassoula 2007). Their studies are very important for
understanding double-barred galaxies, but their models are not
fully self-consistent, since nested bars in general cannot rotate
rigidly through each other (Louis & Gerhard 1988). So fully
self-consistent N-body simulations are still needed to check if
their main results still hold when the non-rigid nature of the bars
is taken into account.

Recently, Debattista & Shen (2007, hereafter DS07) demon-
strated that long-lived secondary bars can form in purely
collisionless N-body simulations when a rotating pseudo-
bulge is introduced in their model. The nuclear bars in their
work are distinct bars, and do not have a spiral shape. They
showed that the behavior of their models was in good agree-
ment with the loop-orbit predictions of Maciejewski & Sparke
(2000).
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In this report we analyze the photometric and kinematic
properties of high-resolution models in detail. Our theoreti-
cal results here can also be compared to the observed two-
dimensional kinematics of some double-barred galaxies to
achieve a better understanding of the dynamics of the secondary
bars.

2. MODELS

The simulations presented in this paper are all collisionless.
The model setup is very similar to that of DS07. As in DS07,
the formation of the secondary bar is induced by a rotating
pseudobulge. We focus on three simulations: run D which
formed a long-lasting double-barred system due to an initially
rotating bulge, run S in which only a single bar formed with an
initially unrotating bulge component, and run NB where there
is no bulge component initially. It is worth stressing that the
only difference in the setup of run D and run S is the bulge
rotation, which is responsible for the formation of secondary
bars in our models. Our high-resolution simulations consist of
live disk and bulge components in a rigid-halo potential. We
restrict ourselves to rigid halos to allow higher mass resolution
in the nuclear regions to study the complicated co-evolution
of the two bars without the additional evolution introduced by
the halo. The rigid halos used in this study are all logarithmic
potentials Φ(r) = 1

2V 2
h ln

(
r2 +r2

h

)
. We set Vh = 0.6 and rh = 15

in all runs. We employed about four times more particles than
the runs published in DS07 to better analyze the photometric
and kinematic properties; Runs D and S have 4.8 × 106 equal
mass particles, with 4×106 in the disk and the rest in the bulge.
Run NB has 4 × 106 in the disk only, since there is no bulge.

The initial disks in our simulations all have exponential
surface densities with scale-length Rd, mass Md, vertical scale
height 0.1Rd, and Toomre-Q � 2. The bulge was generated
using the method of Prendergast & Tomer (1970) as described
in Debattista & Sellwood (2000), where a distribution function
is integrated iteratively in the global potential until convergence.
In both run D and run S the bulge has mass Mb = 0.2Md and we
used an isotropic King model distribution function. The bulge
truncation radius is 0.9Rd in both run D and run S. The bulge
set up this way is nonrotating. We introduce bulge rotation in
run D by simply reversing the velocities of bulge particles with
negative angular momenta, which is still a valid solution of the
collisionless Boltzmann equation. The bulges in run D and run S
are flattened by the disk potential initially, and remain so at later
times. The initial kinematic ratio (Vp/σ̄ )∗ in run D is about 1,
which is in the regime of oblate isotropic rotators (Binney 1978).
We have also run simulations with nuclear disks in place of the
bulges and these give results in broad agreement with those here.
A full description of these models will be presented elsewhere.

We use Rd and Md as the units of length and mass, respectively,
and the time unit is

(
R3

d

/
GMd

)1/2
. If we scale these units to

the physical values Md = 2.3 × 1010 M� and Rd = 2.5 kpc,
then the unit of time is 12.3 Myr. We use a force resolution
(softening) of 0.01, which scaled to the above physical units
and corresponds to 25 pc. These simulations were evolved with
a three-dimensional cylindrical polar grid code (Sellwood &
Valluri 1997). This code expands the potential in a Fourier series
in the cylindrical polar angle φ; we truncated the expansion at
m = 8. Forces in the radial direction are solved for by direct
convolution with the Green’s function, while the vertical forces
are obtained by fast Fourier transform. We used grids measuring
NR × Nφ × Nz = 58 × 64 × 375. The vertical spacing of the

grid planes was δz = 0.01Rd. Time integration used a leapfrog
integrator with a fixed time step δt = 0.04.

3. PHOTOMETRY

3.1. Shape of the Secondary Bar

Figure 1 shows the surface density contours and images of
the double-barred run D, and single-barred runs S and NB, the
latter of which does not have an initial bulge component. From
Figure 1 we see that for run D the secondary bar shows up in
both the disk and bulge components. All three large-scale bars
appear qualitatively similar to each other in both the face-on and
edge-on views.

When viewed side-on, the large-scale bar appears to be
boxy/peanut-shaped, regardless of whether or not an initial live
bulge is included or if a secondary bar is present. The formation
of a boxy/peanut-shaped bulge from disks via bending instabil-
ities has been studied extensively with N-body simulations (e.g.,
Combes et al. 1990; Raha et al. 1991; Bureau & Athanassoula
2005; Debattista et al. 2005; Martinez-Valpuesta et al. 2006;
Debattista et al. 2006). Figure 1 does not show any obvious in-
fluence of the secondary bar on the overall boxy/peanut-shaped
side-on appearance of a large-scale bar. So it is quite unlikely
that most box-shaped bulges are edge-on nuclear bars, as spec-
ulated by Kormendy & Kennicutt (2004) as a possibility of
explaining boxy bulges. This is hardly surprising as the small
size of the secondary bar makes its side-on signatures, if any,
easily masked by the primary. A caveat may be that the boxiness
in Figure 1 does not cover a range as wide as that in Debattista
et al. (2006). Also note that the boxy part is smaller than the
primary bar (regardless of double-barred or single-barred) as
a whole (see Shen & Sellwood 2004; Kormendy & Kennicutt
2004; Martinez-Valpuesta et al. 2006; Debattista et al. 2006;
Athanassoula & Beaton 2006).

Figure 2 shows the projected system (at t = 405 when the
two bars are nearly perpendicular) with an ordinary orientation:
the system is inclined at i = 45◦ with the line of nodes (LON)
of ψnuc = 45◦ relative to the secondary bar major axis. The
surface density image and contours resemble many observed
double-barred systems, such as NGC 2950, even though we did
not deliberately set out to match it.

3.2. Size Relation of the Two Bars

Figure 3 shows radial variations of m = 2 Fourier amplitude
and phase for run D at t = 400. Figure 4 shows the ellipticity
and position angle (P.A.) profiles of ellipses fitted with IRAF
for the same data as in Figure 3 (we use log scale for the radius
to be consistent with what observers usually adopt). There are
four popular methods for determining the semimajor axis aB of
a bar, as summarized by O’Neill & Dubinski (2003) and Erwin
(2005). For convenience, we denote the primary bar as B1 and
the secondary bar as B2.

1. The bar end is measured by extrapolating half-way down
the slope on the m = 2 amplitude plot (Figure 3(a)). We
find aB1 ∼ 2.3, aB2 ∼ 0.4, the B2/B1 bar length ratio is
about ∼0.17.

2. The bar end is measured when the m = 2 phase deviates
from a constant by 10◦ (Figure 3(b)). We find aB1 ∼ 2.1,
aB2 ∼ 0.4, the B2/B1 bar length ratio is about ∼0.19.

3. The bar end is measured at the peak of the fitted ellip-
ticity profiles (e.g., Marinova & Jogee 2007; Menéndez-
Delmestre et al. 2007), which is shown in Figure 4(a). We
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Figure 1. Three-dimensional surface density of three runs. In each row, from left to right, panels are for the large-scale total stellar distribution, central zoom-in
of total stellar distribution, separate disk (dark) and bulge (red) surface density contours, respectively. (a) Top row: the canonical run with a secondary bar formed
(run D); (b) middle row: the run with an unrotating bulge, which formed only a single bar (run S); (c) bottom row: the run without a bulge (run NB). The contours in
the x–y plane are separated by half dex, while in edge-on projections they are spaced more sparsely to avoid contour overcrowding.

(A color version of this figure is available in the online journal.)

find aB1 ∼ 1.7, aB2 ∼ 0.2, the B2/B1 bar length ratio is
about ∼0.12.

4. The bar end is measured when the P.A. of fitted ellipses
deviates from a constant by 10◦ (Figure 4(b)). We find
aB1 ∼ 2.3, aB2 ∼ 0.4, the B2/B1 bar length ratio is about
∼0.17.

Methods 1, 2, and 4 yield consistent values of the bar lengths
and length ratios. We found that method 3 tends to give a lower
value of bar lengths than the other three methods, as shown in

O’Neill & Dubinski (2003). Although these methods have some
uncertainties in measuring the bar lengths, the length ratio of the
two bars is in the range of 0.12–0.19 (in particular methods 1, 2,
and 4 give a consistent narrow range of 0.17–0.19). This result is
in good agreement with the typical observed length ratio of local
S2B systems (median ratio ∼ 0.12, see Erwin & Sparke 2002;
Erwin 2004; Lisker et al. et al. 2006). Note that we expect that
the length of the secondary cannot be too large, otherwise the
gravitational torque from the primary bar will inevitably twist
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Figure 2. Run D at t = 405 projected to i = 45◦ and ψnuc = 45◦ with all
particles shown. The model bears a passing resemblance to NGC 2950 (Erwin
& Sparke 2002).

(A color version of this figure is available in the online journal.)

Figure 3. Radial variations of the m = 2 Fourier amplitude and phase of all
particles for run D at t = 400.

the secondary into alignment if they rotate at different pattern
speeds.

3.3. Face-on Surface Density Profiles

Figure 5 shows the face-on surface density profiles along the
major and minor axes of the primary bar in runs D, S, and
NB. Compared with the initial profile of each run, there is a

Figure 4. Ellipticity and P.A. as a function of semimajor axis of IRAF-fitted
ellipses for run D at t = 400.

significant increase in central density following the formation
of the large-scale bar which redistributes the disk particles. For
run D, the central density profile along the primary bar major
axis is no longer higher than that along the minor axis, due
to the secondary bar orienting to a different direction from the
primary bar. This minor axis over-density is, of course, even
more pronounced when the two bars are perpendicular. This can
be an important signature of photometrically confirming small
secondary bars, especially when the central region is not well
resolved. Variations in M/L are unlikely to mask this minor/
major axis difference as density profiles are for roughly the same
radial range. On the other hand, long-wavelength photometry is
preferred to minimize the effects of dust. We do not find other
significant differences in the face-on surface density profiles
between run D and other runs without a secondary bar.

4. KINEMATICS

Figure 6 shows the behavior of the azimuthally averaged Ω,
Ω ± κ/2, and the location of the Lindblad resonances of the
bars at around t = 400 for run D. As shown in DS07, the
pattern speeds of the bars, especially that of the secondary, vary
as they rotate through each other: the secondary bar rotates
slower than average when the two bars are perpendicular, and
faster when the bars are parallel. The pattern speed bands shown
in Figure 6 reflect such variations. Clearly, the pattern speed of
the secondary bar oscillates much more than that of the primary.
The primary bar extends roughly to its corotation radius (CR)
(∼ 2.5), consistent with the general expectation, and is therefore
considered a fast bar (e.g. CDA03, Debattista & Williams 2004).
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Figure 5. Face-on surface density profiles along major and minor axes of the primary bar for run D (top row), run S (middle row), and run NB (bottom row). For each
row, from left to right: the surface density profile at t = 0, t = 400, and the close-up view of the inner region at t = 400, respectively. In all figures, solid lines are for
surface density for all particles, dashed lines are for bulge particles only, and dotted lines are for disk particles only. The black and red curves are along the major and
minor axes of the primary bar, respectively.

(A color version of this figure is available in the online journal.)

The secondary bar rotates faster than the primary bar. However,
the secondary bar is much shorter than its shortest RCR. In
addition, even if the variation of the pattern speed is taken
into account, the RCR of the secondary is not very close to
the RILR of the primary, if we use the same naive definition of
RILR as in Pfenniger & Norman (1990).6 This is inconsistent
with the CR–ILR coupling proposed to be a requirement for
making secondary bars (e.g., Pfenniger & Norman 1990; Friedli
& Martinet 1993).

Since the long-lasting secondary bars which form in our
simulations generally do not extend to their CR, the kinematics
of secondary bars differ from those of primary bars in at least
this important detail. We here explore the kinematic observables
of S2Bs in our simulations in more detail.

4.1. Line-of-Sight Velocity Distribution

We analyzed the line-of-sight velocity distribution (LOSVD)
by measuring the mean velocity v and velocity dispersion σ .
Departures from a Gaussian distribution are parameterized by
Gauss–Hermite moments (Gerhard 1993; van der Marel & Franx

6 A cautionary note is that the RILR read naively from Figure 6 serves just as
a visual guide, because the RILR determined this way is reliable only for weak
bars, and is questionable for our strong bars (e.g., van Albada & Sanders 1982).

1993; Bender et al. 1994). The second-order term in such an
expansion is related to the dispersion. Following Gerhard (1993)
the third-order term h3 and fourth-order term h4 are defined as

hn =
√

4π

Σ

∫
l(w)Hn(w) exp(−1/2)w2

dw

where w = (v−v)/σ , n = 3 or 4, H3(w) = [1/(96π )1/2](8w3−
12w), and H4(w) = [1/(768π )1/2](16w4 − 48w2 + 12). For a
particle model, the integral becomes a sum and Σ is replaced
by Np, the number of particles in a bin. h3 measures deviations
that are asymmetric about the mean, while h4 measures the
lowest-order symmetric deviations from Gaussian (negative for
a “flat-top” distribution, and positive for a more peaked one).

Another way to obtain v, σ , h3, and h4 altogether is by χ2 fit-
ting the velocity distribution directly with the combined Gauss–
Hermite polynomials. We have verified that the kinematic values
derived by directly fitting are in very good agreement with the
calculated values used in Figures 7–9.

Figures 7(a)–(e) show surface density maps and the LOS
stellar kinematics of run D at t = 405 when the two bars are
almost perpendicular to each other. For comparison purpose
Figure 7(f) is for run NB (run S is very similar to run NB, so it
is not shown for brevity). As in Figure 2, we project the system
to i = 45◦ with the LON of 45◦ relative to the secondary bar
major axis.
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Figure 6. Frequencies as a function of radius at around t = 400 for run D, calculated based on the azimuthally averaged gravitational attraction. The full-drawn
line shows the curve of the circular angular frequency Ω and the dashed curves mark Ω ± κ/2, where κ is the epicyclic frequency. The two shaded bands show the
oscillational ranges of the bar pattern speeds (the upper band is for the secondary bar and the lower one is for the primary).

The most striking feature in Figure 7 is that the twist of the
kinematic minor axis (i.e. vlos = 0) in the secondary bar region
is weak (see the mean velocity maps in Figure 7(b)–(e). The
kinematic minor axis is almost perpendicular to the inclination
axis, although there is a small but noticeable twisted pinch near
the kinematic minor axis in the nuclear region. The weak central
twist is mainly due to the relatively large velocity dispersion,
especially in the central region (likewise at t = 20, when only
the small nuclear bar exists, the stellar twist is stronger than at
t = 405, but still quite small compared to the expected twist
in gaseous kinematics). On the other hand, the twist of the
kinematic major axis is more prominent in the central region.
Moiseev et al. (2004) found the stellar kinematic minor axis
hardly twists from the photometric minor axis in their sample
with the most reliable kinematics, leading them to question
whether nuclear photometric isophotal twists represent bona
fide dynamically decoupled secondary bars. We demonstrate
that an authentic decoupled secondary bar may indeed produce
a very weak twist of the kinematic minor axis in the stellar
velocity field. So a central stellar velocity map without a strong
twist as in Moiseev et al. (2004) does not necessarily exclude
the existence of a decoupled nuclear bar.

As a comparison, Figure 7(f) shows that the kinematic minor
axis twist is slightly stronger for the single-barred run NB. Of
course gas kinematics may show much more twisted features
than the stellar data (e.g., Moiseev et al. 2004; Emsellem et al.
2006). However, the gas in the nuclear region is more prone to
nongravitational forces like shocks, AGN jets, and outflows, so
may not directly probe the underlying gravitational potential.

It is also worth noting that the σ symmetry axis does not
align with the secondary or the primary bars (also true for
the single-bar run NB), which is consistent with what Moiseev
et al. (2004) found.

Another interesting feature in Figure 7 is the h4 > 0 ring
encircling the secondary bar of run D. In Figure 8 we compare
the h4 images at typical times in run D, run S, and run NB. The
h4 ring is clearly present at various times in run D, regardless
of the angle between the primary and secondary bars, whereas

no clear h4 ring is visible in the single-bar runs S and NB.
We have verified that the h4 ring shows up in most projections
unless the inclination angle i � 50◦. We notice that the h4 ring
is absent at t = 0, so it is not set-in from the different initial
conditions, but developed as the double bars form. Also the h4
ring is absent in both the disk-particles-only and bulge-particles-
only h4 maps, so it must stem from the distribution of stars from
two components with different σlos. The h4 ring will be explored
further in a follow-up study.

4.2. Slit Kinematics

Figure 9 shows the evolution of the slit profiles along the
major axis of the primary/secondary bar of run D as the sec-
ondary rotates through the primary bar, and slit profiles for run
S. We notice that there is no central velocity dispersion (σ )-drop
in our simulated double-barred systems. So the σ -drop (as found
in Emsellem et al. 2001, 2006) is not a requirement, and is
not always associated with the formation of a double-barred
system. More likely σ -drops are just the signature of newly
formed (therefore dynamically “cool”) stars (Emsellem et al.
2001, 2006). Simulations have shown that a σ -drop can be pro-
duced in single-barred galaxies (Wozniak et al. 2003; Wozniak
& Champavert 2006), so it is not necessarily a unique feature of
double-barred systems.

In the case of a single bar (run S), h3 in Figure 9(c) has
relatively less features along the major axis of the large-scale
bar in the nuclear region (R � 0.2); the h3 correlation with v is
an indication of the high-velocity tail created by the elongated
orbits supporting the large-scale bar. On the other hand, in
Figure 9(a) and 9(b), nuclear h3 features are quite prominent
at many times, like the h3 anti-correlation with v. These
h3 reversal features manifest the complex asymmetric LOS
velocity distribution as the result of the decoupled secondary bar,
probably due to the strong rotation in the central bulge region.
However, we also found that such h3 features are suppressed at
some orientations and times.

The double h4 peaks in both Figure 9(a) and 9(b) also confirm
the existence of the h4 ring we discussed in the last subsection.
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Figure 7. Photometric and kinematic maps of run D and run NB. For each row from left to right are the projected surface density, mean velocities (“spider diagrams”),
velocity dispersion, h3, and h4 maps. (a) Row 1: run D at t = 405 face-on. (b) Row 2: run D at t = 405 inclined at 45◦ with the LON of 45◦ relative to the primary
bar major axis. (c) Row 3: close-up views of run D at t = 405 projected the same way as (b). (d) Row 4: as in (c) but include disk particles only. (e) Row 5: as in (c)
but include bulge particles only. (f) Row 6: run NB at t = 400 inclined at 45◦ with the LON of 45◦ relative to the (single) bar major axis. The corresponding fields for
run S are similar to that of run NB, so they are not shown for brevity. The short and long straight line segments label the direction of the secondary and primary bars,
respectively (note the length of the line segment does not represent the bar length). For the projected plot, one of the dashed lines represents the line of nodes (45◦),
while the other dashed line is the anti-LON (135◦). In the mean velocity map, the line with the connected dots shows the rough position of the kinematic major axis,
while the heavy solid curve is the zero-velocity curve (kinematic minor axis). The h3 and h4 analyses are not preformed in bins with less than 100 particles.

(A color version of this figure is available in the online journal.)
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Figure 8. Comparison of h4 features in run D, run S, and run NB. Panels (a)–(f) are h4 images for run D at t = 398 (two bars at 135◦), run D at t = 405 (90◦), run D
at t = 412 (45◦), run D at t = 415 (∼ 0◦), run S at t = 400, and run NB at t = 400, respectively. The projection parameters are the same for all panels: i = 45◦ with
the LON of 45◦ relative to the primary bar major axis.

(A color version of this figure is available in the online journal.)

Although our secondary bar is clearly decoupled from the
primary bar, the maximum of the rotational velocity does not
occur in the nuclear region (Figure 9); instead the rotational
velocity just rises smoothly past the region of the secondary
bar (the half-length of the secondary bar is around 0.4, see
Section 3.2). This is different from Emsellem et al. (2001),
possibly indicating the location of the maximum of the rotational
velocity is not a crucial factor for maintaining a nuclear bar.

5. PATTERN SPEED DETERMINATION

The dynamical state and evolution of barred galaxies is
determined by the pattern speed of their bars. Knowledge of
the pattern speeds of secondary bars may constrain mechanisms
of their formation and evolution. Not much is yet known with
certainty about secondary bar pattern speeds. Observationally,
the only direct kinematic constraint on Ωs , based on the
Tremaine–Weinberg (TW; Tremaine & Weinberg 1984) method,
was obtained for NGC 2950 by CDA03, who showed that the
primary and secondary bars cannot be rotating at the same rate.
They further suggested that the secondary bar of NGC 2950
is either rotating faster or counter-rotating with respect to
the primary bar. Maciejewski (2006, hereafter M06), more
emphatically, argued that NGC 2950 has to be counter-rotating
with respect to the primary. This would raise the prospect that
either NGC 2950 is atypical or that counter-rotating (or possibly
librating) double bars are common. However, this conclusion is
based on the assumption that the TW method continues to hold
for nested bars, which CDA03 suggested may not be the case.

Our simulations provide an ideal testbed for assessing the
reliability of measurements of Ωs . Here we test whether the
simple version of the TW method, as used by CDA03 using
three slits, can recover Ωs accurately, and check whether the
signature of apparent counter-rotation can occur without actual
counter-rotation.

5.1. The Tremaine–Weinberg Method

The TW method requires that the continuity equation be
satisfied for some kinematic tracer and that the tracer’s density
can be written as Σ(r, φ−Ωt). For slits parallel to the major axis
of the disk, if V is the luminosity-weighted mean velocity along
any such slit, and X the luminosity-weighted mean position
along the same slit, then plotting V versus X results in a straight
line with a slope of Ω sin i. This TW method has been used
to measure pattern speeds in large-scale bars (Merrifield &
Kuijken 1995; Gerssen et al. 1999; Debattista 2002; Aguerri
et al. 2003; Gerssen et al. 2003; Debattista & Williams 2004).
CDA03 showed that slits passing through the secondary bar
did not lie on the same line as those passing through only the
primary bar, proving that Ωs �= Ωp.

CDA03 argued that while Ωp can be measured from the
region outside the secondary bar, Ωs cannot be obtained as
easily. Their reasons for this were twofold: (1) disentangling
the contribution to X and V from the primary and secondary
bars is non-trivial, and (2) the secondary bar cannot be in rigid
rotation (Louis & Gerhard 1988; Debattista & Shen 2007),
violating the assumption of the TW method that the density
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Figure 9. Evolution of slit profiles of runs D and S. From top to bottom panels: surface density, mean LOS velocity, velocity dispersion, h3, and h4. (a) Left column:
slit profiles along the major axis of the primary bar in run D, as the secondary bar rotates through the primary one. In each panel the profiles from top to bottom with
increasing line width, shifted by an arbitrary amount, represent t = 398 (two bars at 135◦), t = 405 (90◦), t = 412 (45◦), and t = 415 (∼ 0◦), respectively. (b) Middle
column: as in (a), but slits are along the major axis of the secondary bar in run D. (c) Right column: as in (a), but slits are along the major axis of the (single) bar in
run S at t = 400, which does not vary as the single bar rotates. The slit width is ∼0.3 in all cases.
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Figure 10. Left: the face-on surface density (disk+bulge) in run D at t = 20. Right: the bulge viewed at i = 45◦ and ψnuc = 45◦ with the slits used in the TW
measurement indicated by the dashed lines.

can be expressed as Σ(r, φ − Ωt). Disentangling the different
contributions to integrals may be possible: CDA03 presented
two models for doing this and M06 presented another. M06 also
estimated the effect of non-rigid rotation to be less than 15%;
this estimate was however based on the simplifying assumption
that the system is two-dimensional. We therefore explore the
effect of non-rigid rotation on measurements of Ωs directly
with the simulations. The novelty of our approach lies in our
ability to cleanly disentangle the primary and secondary bars: in
our simulations we distinguish between disk and bulge particles.
While the disk particles support both the secondary and primary
bars, the bulge particles almost exclusively support only the
secondary bar. Thus, if we consider only bulge particles we have
a quite clean tracer population for the secondary bar. It is very
unlikely that any scheme that can be devised for observational
data will ever be able to separate the secondary bar from the
primary as cleanly as we can in our simulations.

5.2. Simulated TW Measurements

We therefore apply the TW method to bulge particles only.
We used 11 slits covering the full region −Ymax � Y � Ymax,
with Ymax = 0.3 where the secondary bar is strongest. This
corresponds to slit widths δY = 0.055 or aB2/δY = 7.3 (in
comparison, the observations of CDA03 had aB2/δY = 6.4).
We adopted an inclination i = 45◦ and varied the secondary
bar P.A. relative to the inclination axis, ψnuc, in the range
0◦ � ψnuc � 90◦. We measured X and V for each slit as in
Debattista (2003, hereafter D03):

X = 1

Nslit

∑
i∈slit

Xi, V = 1

Nslit

∑
i∈slit

Vz,i , (1)

where Vz,i and Xi are the line-of-sight velocity and the X
coordinate of particle i, and Nslit is the number of bulge particles
in the slit. The sums in these definitions are over bulge particles
only.

To measure Ωs we fit a straight line to V as a function
of X using least-squares. As in D03, we estimate errors on
the slit integrals, σX and σV , by their radial variation outside
|X| = 0.4. We also experimented with a number of other error
estimates including equal errors, the difference between positive
and negative Y, and errors proportional to Nslit. We found that the
most accurate measurements were obtained assuming weights

Table 1
The Results of TW Measurements

t Δφ Ωs σΩ

20 . . . 0.89 0.10 ± 0.02
398 135◦ 0.42 0.19 ± 0.10
405 90◦ 0.32 0.10 ± 0.06
412 45◦ 0.41 0.17 ± 0.12
415 0◦ 0.52 0.09 ± 0.08

Note. The column Δφ gives the approximate angle
between the two bars.

σV
−2, which we adopt throughout. In observations, the main

uncertainties are in V , and the linear regression is dominated by
σV , as here. We denote the slope of the fitted line as ΩTW sin i in
order to distinguish ΩTW from the pattern speed, Ωs , measured
through the time evolution of the simulation. We quantify the
typical errors in ΩTW as

σΩ =
〈∣∣∣∣ΔΩ

Ωs

∣∣∣∣
〉

=
〈∣∣∣∣1 − ΩTW

Ωs

∣∣∣∣
〉
, (2)

where 〈 〉 represents an average over the range 30◦ � ψnuc �
60◦, which are favorable orientations because they give large
values of X.

5.3. Precision of TW Measurements for Nuclear Bars

We start by considering the precision with which Ωs can be
measured in the absence of a primary bar by considering run D at
t = 20, before the primary bar forms but after the nuclear bar has
saturated. Figure 10 presents the surface density of the system;
only a nuclear bar is present, which is well traced by the bulge
particles. The right panel shows the projected surface density
at i = 45◦ and ψnuc = 45◦ with the slits used superposed.
The value of Ωs measured from the time evolution is listed
in Table 1. In Figure 11 we present the TW measurement for
the same orientation. The measured ΩTW is accurate to better
than 10%, which is the typical uncertainty for single bars (D03;
O’Neill & Dubinski 2003). The integrals X and V are both well
behaved, and each pair of slits at ±Y is consistent with a single
straight line that matches the pattern speed very well. Figure 12
summarizes the reliability of TW measurements for a single
nuclear bar, which shows that Ωs can be measured to better than
10% for all reasonable orientations. We also experimented with
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Figure 11. Left: the TW integrals as a function of slit offset Y for run D at t = 20 with i = 45◦ and ψnuc = 45◦. Right: the measurement of ΩTW. The solid line shows
Ω2 while the dashed line shows ΩTW.

Figure 12. Fractional error in ΩTW at t = 20 in run D as a function of ψnuc.
The average absolute error over 30◦ � ψnuc � 60◦ is < 10%.

a three-slit configuration consisting of the central Y = 0 slit
and Y = ±Yoffset for each Yoffset and found σΩ increases but is
still less than 14%. Thus, the TW method is well behaved for
an isolated nuclear bar.

In Figure 13 we show the bulge of run D at t = 398–415;
the secondary bar is prominent, and has insignificant or no
elongation along the primary bar. Thus, using bulge particles
only for TW measurements will result in only the secondary bar
being included.

In Figure 14 we present a single TW measurement at i = 45◦
and ψnuc = 45◦ for each of the four times of Figure 13. While the
integrals themselves appear generally well behaved, the scatter
of the points about the fitted lines is larger than at t = 20. This
scatter leads to a larger σΩ than in the single-bar case for all
orientations of the secondary bar, as shown in Figure 15 and
summarized in Table 1. Other than being large at the smallest
values of |X|, σΩ does not correlate with |X| or |V|. When we
fit lines to three slits as before, we find that the quality of the
fits varies considerably (Figure 16). The results of the same
analysis on data at t = 600 are comparable to those at t = 400.

We conclude that observationally it is difficult to determine the
uncertainty in any measurement of Ω based on slit data obtained
by CDA03 for NGC 2950.

5.4. Interpretation

We have demonstrated that the standard TW method on
the secondary bar, while not wholly unreliable, is unable to
recover Ωs without significant uncertainty. Observationally, this
situation would be exacerbated by the need to subtract the
contribution of the primary bar from the measured integrals,
which we have not addressed (but see Meidt et al. 2008).

The amplitude of the m = 2 perturbation in bulge particles
varies by some ±20% about the mean amplitude at all radii. Is
the failure of the TW method for secondary bars consistent with
the idea that non-rigid rotation leads to large errors? Evidence
that this is indeed the case can be found in Figure 15, which
shows the largest errors occur for Δφ = 45◦ and Δφ = 135◦.
Figure 2 of Debattista & Shen (2007) shows the amplitude of
the secondary bar, A2 ∼ −cos(2Δφ). Thus dA2/dt peaks at
Δφ = ±45◦, which is in excellent agreement with the phases
where we find the largest errors. Moreover, the redistribution of
material being radial along the secondary bar, we expect that
the largest errors will occur when the radial motions contribute
more to the line-of-sight velocity. While some of the error in
Figure 15 is clearly due to noise at all times, a significant part is
also physical. Most importantly, we find that, for Δφ = ±45◦,
the larger ψnuc is, the larger is the error in ΩTW. This leads us
to conclude that, as argued by CDA03, the perturbations to the
TW method due to non-rigid rotation are sufficiently large as to
render simple measurements of Ω2 noisy at best.

We have focused here on using slits to compare with the ob-
servations of CDA03 and used only bulge particles to isolate the
secondary bar. Meidt et al. (2008) present an analysis using an
extension of the TW method which is able to disentangle mul-
tiple pattern speeds if provided full two-dimensional velocity
fields. They find, as we find here, that the pattern speed of the
secondary is prone to larger uncertainties. However, regulariza-
tion with that method leads to more accurate measurements of
Ωs .
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Figure 13. Face-on surface density of bulge particles only in run D. The different snapshots are at t = 398 (top left), t = 405 (top right), t = 412 (bottom left), and
t = 415 (bottom right). The line indicates the orientation of the primary bar at the given time.

Besides the simulations presented in this paper we have also
run a large number of additional simulations, which will be
presented elsewhere. Among these simulations were instances
in which the secondary bars experienced less variations in their
amplitude. In those cases we found that the error in ΩTW can be
significantly smaller. However, it is not obvious at present how
to estimate amplitude oscillations for real systems.

5.5. Comparison with NGC 2950

Although we have shown that the TW method as used by
CDA03 is not very accurate for secondary bars, it is not so
grossly unreliable that we cannot consider the question of
whether the secondary bar in NGC 2950 is counter-rotating.
If it were, this would suggest a formation scenario for double-
barred galaxies different from that presented here. Simulations
have found that counter-rotating secondary bars are possible
if counter-rotating material is present in the disk (Sellwood
& Merritt 1994; Friedli 1996; Davies & Hunter 1997), and this
remains a viable model if such material is present in a sufficiently
large fraction of galaxies.

Starting from the assumption that both bars satisfy the
continuity equation and are in rigid rotation (i.e., Σi(R − Ωi t)
for i = s, p), CDA03 showed that the TW method for the two
bars combined becomes

(XpΩp + XsΩs) sin i = Vp + Vs ≡ V. (3)

The observed quantities are V and X ≡ Xp + Xs , whereas the
required quantities for determining the Ωi are Xi = ∫

XΣi dX

andVi = ∫
VlosΣi dX. Since slits can be selected to pass through

the primary but not the secondary bar, it is possible to de-
rive Ωp assuming that the oscillations in the primary are small
(in good agreement with our simulations). Ignoring the effect of
non-rigid rotation, CDA03 considered two assumptions forXs in
Equation (3) to solve for Ωs in NGC 2950. This gave a range of
possible values of Ωs , including a secondary bar counter-rotating
relative to the primary bar. Using the same data, M06 made a
different attempt at isolating the secondary bar. Based on his
analysis, M06 also argued that the secondary bar in NGC 2950
is counter-rotating. Since the analysis of both CDA03 and
M06 ignored the non-rigid rotation, neither of the esti-
mates for Ωs is likely to be very accurate as we showed
above.

Nevertheless, we do not find in our simulations cases where
the behavior of the integrals resembles that in NGC 2950. As
emphasized by M06, the main characteristic of the V(Y ) profile
in NGC 2950 is that it becomes steeper without changing sign
in the secondary bar region (see Figure 3 of CDA03). This
happens despite the fact that the two bars are on opposite sides
of the minor axis (see Figure 2), causing Xs to have the opposite
sign of Xp and leading to |X| declining more rapidly in the
secondary bar region. But instead of V also being shallower in
this region, CDA03 found that V(Y ) steepens there. For TW
measurements of the system in Figure 2, a TW measurement
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Figure 14. TW measurements with i = 45◦ and ψnuc = 45◦ at t = 398 (top left), t = 405 (top right), t = 412 (bottom left), and t = 415 (bottom right). The solid
lines show Ω2 while the dashed lines show ΩTW.

Figure 15. Full TW analysis for bulge particles only in run D. The different
panels are at t = 398, t = 405, t = 412, and t = 415, respectively (from left to
right).

using slits passing through both bars (now with both disk and
bulge particles included) does not show a steeper V(Y ) profile
(see Figure 17). We conclude that NGC 2950 may indeed
have counter-rotating primary and secondary bars. Another
possibility might be that the secondary bar librates about

Figure 16. Precision of TW measurements of secondary bars in nine models
using three slits as described in the text. The different points are offset
horizontally for clarity. The colors indicate t = 20: black, ψnuc � 135◦: blue
(t = 398 and t = 593), ψnuc � 90◦: green (t = 405 and t = 599), ψnuc � 45◦:
yellow (t = 412 and t = 605), and ψnuc � 0◦: red (t = 415 and t = 609).
The error bars on the individual points show the 1σ variations in the interval
30◦ � ψnuc � 60◦.

(A color version of this figure is available in the online journal.)

the primary bar, which deserves more investigation in future
studies.
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Figure 17. TW measurement for the full system of bulge+disk at t = 405 shown in Figure 2. The solid line is for Ωp while the dotted line is for −Ωs . The best-fit
straight line to the points is shown by the dashed line. The relative weights of bulge particles (their “mass-to-light” ratio) have been adjusted to roughly reproduce
X(Y ) in NGC 2950. This figure is to be compared with Figure 3 of CDA03.

6. CONCLUSIONS

We have analyzed the photometric and kinematic properties
of our high-resolution models, and contrasted them when with or
without a secondary bar. This study also compared the simulated
secondary bars with observations.

In general, the shape of secondary bars in our models is
reasonable compared to those observed. The length ratio of
two bars, determined by various methods, is in the range 0.12–
0.19, in good agreement with Erwin & Sparke (2002, 2003).
We also found the overall edge-on shape of boxy bulges is
largely unaffected by the existence of a secondary bar. At lower
inclinations, the central density profile along the primary bar
major axis is lower than that along the minor axis, due to the
secondary bar orienting to a different direction.

The primary extends roughly to its CR, and therefore fits the
definition of a fast bar (see, e.g., Aguerri et al. 2003). Although
the secondary bar rotates more rapidly than the primary, its
semimajor axis is much shorter than its CR, even if we take the
oscillation of the speeds of bar patterns into account. We did not
find evidence of CR–ILR coupling (e.g., Pfenniger & Norman
1990; Friedli & Martinet 1993) in our models.

We find that the central twist of the kinematic axis is quite
weak, even if a secondary bar is present, due to the relatively
large velocity dispersion of stars in the central region. This
is consistent with the two-dimensional stellar kinematics of
secondary bars studied in Moiseev et al. (2004). Another
kinematic feature often present in our double-barred models is
a ring-like feature in the fourth-order Gauss–Hermite moment
h4 maps. An h3 reversal feature may also appear in the nuclear
region at some favorable orientations and times. We do not find
a velocity dispersion σ -drop for our secondary bar model. It is
more likely that σ -drops are just the signature of newly formed
stars, and are not necessarily a unique feature of double-barred
systems.

We showed that the TW method is not very reliable even when
the primary bar contribution is fully excluded. The way in which
the measurement fails is consistent with the proposal of CDA03,
namely that the non-rigid rotation leads to internal motions that
violate the stationary frame assumption of the method. Nonethe-

less, we find no example in our simulations where the behavior of
the TW integrals mimics that observed in NGC 2950. Thus, this
galaxy may indeed have counter-rotating secondary and primary
bars.

The general agreement between our simulations and obser-
vations of double-barred galaxies gives us confidence that the
simulations are capturing the same dynamics as in nature. This
is especially remarkable because secondary bars are not merely
scaled down versions of primary bars, but have distinctly differ-
ent kinematic properties. In the absence of self-consistent sim-
ulations, earlier orbit-based models could not directly confront
the challenge from observations which found such differences.
This demonstrates the advantage of finally being able to simu-
late stellar double-barred galaxies, which had been puzzling for
so long.
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