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The natural living environments of E. coli cells are diverse, varying from 

mammalian gastrointestinal tracts and soil. Each environment might require 

distinct metabolic pathways and transporter systems, and long-term evolution 

has established elaborate regulatory system for E. coli cells to quickly adapt to 

the changing conditions. Sensing outside stresses and then adopting a different 

phenotype enable them to take advantage of any possible nutrients and defend 

against hostile environment. A lot of regulatory mechanisms have been identified 

by genetic, biochemical and molecular biology methods, and our study aim to 

build a systematic view on the response of the whole genome to four different 

environmental conditions. We used statistical tests including Pearson’s tests and 

Spearman’s tests and multiple testing adjustments to identify feature genes that 

are induced or repressed significantly across treatment levels. The feature genes 

identified were partially supported by previous literatures, and some of the novel 

genes not found in any previous studies may infer a potential research blind spot. 

Additionally, we compared the correlation tests to the implementation of machine 

learning algorithms, and discussed the advantage and drawbacks of each 

method. 
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Chapter 1   Introduction 

 

1.1 Adaptive Response of E. coli to the Diverse Environment 

The widely used model organism, Escherichia coli, is one of the best-studied 

microorganisms and is of interest both industrially and pathologically. E. coli cells 

have been found in diverse environment, including mammalian gastrointestinal 

tracts and soil. They are also challenged by diverse environmental stress like 

high osmolality, lack of nutrient and extreme temperatures. Consequently, the 

capability of E. coli to sense hostile environmental stress and change its 

physiological and biochemical properties for adaptation is the key to survive. In 

other words, E. coli cells are able to quickly switch to a different nutrient catabolic 

pathway or turn on different transporting systems through the elaborate 

regulation of gene expressions. 

Each time the living condition changes in the environment, an extensive 

response is usually required, involving a group of genes and a variety of 

compounds. Different environment might require a distinct set of genes to be 

expressed or repressed. And the effect of the four conditions involved in our 

study will be discussed in the next few sections. 

	
1.1.1. Carbon Source 

Similar to mammals and many other organisms, glucose is the primary carbon 

source for E. coli cells. When glucose is present in the environment, E. coli cells 

will repress the alternative carbon source catabolism through a global regulation 

system known as carbon catabolite repression(Saier, 1998).  

However, when glucose is limited in the environment, the E. coli cells will begin 

to relieve the carbon catabolite repression and activate other nutrient catabolic 

pathways, which usually involve the global transcription factor cyclic Amp (cAmp) 
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receptor protein (Crasnier, 1996; Hengge-aronis, 1996). Once the alternative 

carbon source metabolic pathways are activated, the cells are able to thrive on 

the nutrients available in environment. 

The lac operon induction is probably the most classic and well-studied regulatory 

system in E. coli. Lactose, or its experimental alternative IPTG, is able to induce 

the lactose metabolism genes by binding and removing the repressor protein 

from the lac operon promoter region (Chuang et al., 1993; François Jacob, 1961). 

This experimental system is now widely used in all research laboratory and 

genetic engineering industry. The substrate-specific induction mechanism now 

generalizes to the regulation of many other carbonhydrate catabolic genes 

(Brückner and Titgemeyer, 2002). Multiple such regulatory mechanisms allow E. 

coli cells to activate pathways of alternative carbon source (Liu et al., 2005).  

Liu et al. reported the effect of 5 different carbon sources on global gene 

expression. The transcriptional profiles of the 5 alternative carbon sources were 

compared with that of glucose, and 50-270 genes were identified as differentially 

expressed genes (Liu et al., 2005). 

 

1.1.2 Growth Phase 

The growth culture of bacterial cells in labs usually goes through 4 steps: lag 

phase, exponential phase, stationary phase and death phase. Cells divide and 

reproduce rapidly only in the exponential phase, and begin to accumulate toxic 

compounds at stationary phase and end their lives at death phase. However, the 

ambient, nutrient-rich environment as in the exponential phase of cell culture is 

not representative of E. coli natural growth environment. On the contrary, E. coli 

cells in their natural habitat often have limited nutrient and hostile conditions, and 

have to develop stationary-phase properties to survive the periods of starvation 

(Hengge-aronis, 1996). Stationary-phase E. coli cells exhibit some morphological 

and physiological properties that are not present in the exponential-phase cells, 



	 3	

including shrinkage of cell size, condensation of cytoplasm, accumulation of 

storage compounds and protective substances, and structural changes in many 

cellular component and cell membrane (Jenkins et al., 1990; Kolter et al., 1993; 

Siegele and Kolter, 1992). Such transition requires global gene regulation and 

large-scale protein synthesis that profoundly changes cell composition and 

physiology. And one of these master regulators is the rpoS-encoded sigma factor, 

the σs subunit of RNA polymerase.  

The σs subunit, as an crucial part in transcriptional regulation, is strongly induced 

in stationary-phase and is essential for the expression of many stationary-phase 

responsive genes (Hengge-aronis, 1996). Up to 10% of E. coli genes have been 

identified in genomic study downstream of σs-dependent regulation, and more 

than 80 of them have been confirmed using genetic and molecular biology 

approach (Weber et al., 2005).  

Aside from σs-dependent regulation, a group of nucleoid proteins related to DNA 

replication and transcription were also reported differentially expressed in 

stationary phase, indicating their regulatory roles in DNA functions such as 

replication, repair, recombination and protection (Ali Azam et al., 1999). 

 

1.1.3 Sodium Levels 

High sodium level in the environment represents the osmotic stress, which is 

quite common in the mammalian gastrointestinal tracts environment where E. coli 

cells usually stay (Weber et al., 2006). The cells have evolved a system to adapt 

to the high osmotic conditions. The consequences of sudden exposure to high 

osmolality include loss of water, reduce in respiration, and increase in pH (Weber 

and Jung, 2002). To counteract these changes, the cells will increase potassium 

uptake, accumulate osmoprotectants (betaine and trehalose) to balance external 

osmolarity and protect proteins from denaturation (Higgins et al., 1988). All these 

responses require a regulatory process involving activation of biosynthetic 
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pathways and transport systems for the osmoprotectant (Purvis et al., 2005; 

Weber and Jung, 2002). And the same high osmotic effect also applies to cells 

when high external magnesium is present in the surroundings. 

Extensive studies have been performed to investigate the mechanism of 

adaptation to high osmolality environment. A genome-wide study detected 152 

genes with altered transcription levels in response to the high sodium condition, 

indicating a global effect of high osmality on gene expression. And several 

selected genes were confirmed by biochemical experiment (Weber and Jung, 

2002). 

	

1.1.4 Magnesium Levels 

Besides the effect on osmolality as discussed in Section 1.1.3, the magnesium 

ions also play a central role in many cellular activities, including ATP-consuming 

reactions, DNA replication and transcription. Thus, any change in the external 

Mg2+ levels in the environment should be sensed and adapted by the bacterial 

cells quickly. 

The E. coli cells adopt two-component signal transduction mechanism to regulate 

cellular responses towards a spectrum of environmental stimuli. The phoP/phoQ 

two-component system senses the external Mg2+ concentration change and 

mediates the transcription activation of Mg2+-responsive genes. In this system, 

phoQ acts as the sensor protein, phosphorylate phoP regulator protein at low 

Mg2+ concentration, and induces around 30 genes (Soncini and Groisman, 1996). 

The phoP/phoQ genes showed up in the list of regulated genes in our statistical 

tests, which will be discussed in Chapter 4. 

Previous research has shown that 232 genes with 0.75 fold change in expression 

levels with external Mg2+, and 13 of these genes have conserved DNA sequence 

in the promoter region (Kato et al., 1999; Minagawa et al., 2003). This result is 

also supported by our study, as discussed later in Chapter 3. 
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1.1.5 Evolutional Significance of the Adaptive Gene Regulation 

E. coli cells live in diverse and usually hostile environment. In order to survive 

and reproduce in various conditions, the cells have evolved to efficiently use all 

types of nutrients, and survive when encountered with extreme environment. 

Meanwhile, specific metabolic pathways will be turned off whenever the substrate 

is no longer available (Liu et al., 2005). This elaborate gene regulation system 

enables the utilization of cellular resources without wasting energies on 

producing useless enzymes or transporters.  

 

1.2 Analysis of Transcriptomic Data Using Statistical Method and Machine 
Learning Models  

In the past centuries, various genetic, biochemical and molecular biology 

approaches like Western blot, Northern blot and 2-D electrophoresis have been 

used to investigate the responses of E. coli cells to various environmental stimuli 

(Ali Azam et al., 1999; Chuang et al., 1993; Weber and Jung, 2002; Weber et al., 

2006, 2005). However, these approaches are commonly blamed for their low-

efficiency, low-throughput, arbitrary criteria and usually lack of statistical 

evidence. On the other side, the systematic biology datasets, including genomic, 

proteomic and transcriptomic data, are attracting more interest as experimental 

and computational techniques progress. The ‘-omics’ data from experiments like 

microarray, RNA-seq, Mass-spectrometry are being generated and analyzed 

everyday, and the researchers are taking advantage of the vast amounts of data 

to establish a more comprehensive and robust model to study cellular activities 

(Chuang et al., 1993; Eguchi et al., 2004; Minagawa et al., 2003; Weber et al., 

2005). 

The traditional criterion of defining differential gene expression is either by visual 

inspection or setting a threshold for mean signal intensity. For example, some 
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studies pick genes with larger than 3-fold change or larger than 1.4 log2 fold 

change, and such kind of criteria are quite arbitrary and baseless (Liu et al., 2005; 

Weber and Jung, 2002). The adoption of statistical methods in genetic analysis 

introduces several advantages: (1) It establishes a well-defined rule for 

identification of the differentially expressed genes; (2) It controls for false positive 

discovery rate for the large number of parallel tests; (3) It has a mathematical 

foundation and higher accuracy. 

Meanwhile, more and more machine learning algorithms have been introduced 

into the field of genomics studies (Reed et al., 2003; Trentini et al., 2013). In our 

situation, the problem of identifying genes that differ in expression levels is then 

converted to a classification or clustering problem. Genes that are significantly 

up-regulated or down-regulated will produce higher accuracy in terms of 

predicting living conditions from gene expression levels. Thus, the Bayesian 

regression model and the Gaussian mixture model are used in our study to 

identify genes that may not be detected from classic statistical tests. 
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Chapter 2 Experiment Setting and Methods 

 
2.1 Experiment Setting 

The gene expression data were collected from143 E.coli samples cultured in 34 

distinct growth conditions. In each sample, the gene expression levels of 4279 

genes were measured and the associated treatment/growth conditions were 

recorded. These manipulated environmental factors include: growth time, carbon 

source, Mg2+ level, and Na+ level. Except for carbon source, the other three 

factors were recorded in both continuous scales (grow time in hours, 

sodium/magnesium concentration in millimolar) and categorical forms (growth 

phase as exponential/stationary/late_stationary, sodium/magnesium level as 

low/base/high).  

 

2.2 DESeq2 package and Data Preprocessing 

The DESeq2 package (Version 1.6.3) available in R (Version 3.2.0) was used in 

our analysis to study the differential gene expression patterns in bacteria when 

treated with different growth environment. The package DESeq2 is based on a 

negative binomial generalized linear model, and is well suited for handling raw 

count data set from techniques like RNA-Seq (Anders and Huber, 2010). 

DESeq2 package contains functions including estimation of size factor, auto-

filtration of outlying data points, normalization of data by the estimated size factor, 

and variance stabilizing transformation. Our raw dataset collected from the 143 

samples over 4279 genes were pre-processed by the DESeq2 package as 

mentioned above, and a logarithmic transformed and standardized dataset were 

obtained. These pre-processing steps are required for dataset coming from 

different samples, as the raw count data will be significantly affected by 

confounding factors like sequencing depth. 
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2.3 Estimation of log2 fold change 

The DESeq2 package was used to estimate the logarithmic fold change of gene 

expression in the treatment group compared to that of the control group. 

However, DESeq2 package by default takes the first level in alphabetical order 

as the control group, and make comparison between the control group and all 

other groups. In order to detect a significant up-regulation/down-regulation 

occurred in any treatment levels, logarithmic ratios were calculated from all 

possible combinations of treatment groups by repeatedly re-coding the treatment 

levels before using the DESeq2 results function.  

 

2.4 Correlation Test 

Correlation tests were used to detect whether the gene expression responds to 

some changes in the growth conditions.  

For the continuous variables, including bacterial growing time (in hours), the 

magnesium concentration (in millimolar) and sodium concentration (in millimolar), 

the correlation between the continuous factor and the gene expression was 

analyzed using both Pearson’s correlation test and Spearman’s rank correlation 

test, with or without logarithmic transformation.  

For the categorical variables, including carbon source in the bacteria growth 

medium, growth phase the bacteria culture was collected, and the 

magnesium/sodium levels, the correlation between these variables and gene 

expression levels were analyzed using the same types of correlation tests. But in 

order to perform the tests, the categorical variables were transformed into 

numeric variables using two different methods: (1) coding each factor level by 

consecutive integer numbers;  (2) coding the factor levels by binary numbers. 

Then the correlation tests were performed on all possible permutations of the 

factor levels, and the most significant test in each coding scheme were kept as 

the result. Use the Carbon Source factor as an example, method (1) will code 
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factor levels gluconate, glucose, glycerol, lactate as any permutation of {1,2,3,4} 

and choose the permutation that generate the most smallest p-value, and 

method (2) will code factor levels as any permutation of {1,0,0,0} and also 

choose the permutation that generate the most significant result. 

 

2.5 Multiple Testing Adjustment 

The correlation tests were performed on all 4279 genes, and the multiple testing 

problem will greatly inflate the type I error. Thus, p-values were adjusted using 

the Holm–Bonferroni method to control for the false discovery rate. 

 

2.6 Bayesian Regression Model  

The relationship between continuous environmental factors (Na+ in mM, Mg2+ in 

mM and growth time in hour) and the standardized gene expression levels was 

also modeled by Bayesian regression method. The likelihood function is shown 

as follow: 

L(Yi | β0, β1, σ) ~ N (β0 + β1Xi, σ2) 

where Yi represents the logarithmic transformed continuous factor value, and Xi 

represents the corresponding standardized gene expression level. β0 and β1 

represents the parameters to be estimated in the Bayesian regression model. 

Conjugate prior distributions for β0, and β1 were assumed to be standard normal, 

while conjugate prior for σ2 were assumed to be inverse-gamma with pre-defined 

hyper-parameter. Gibbs sampling algorithm was used to estimate β0, β1 and σ2, 

and the estimated parameters were then used to calculate the fitness of model. 
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2.7 Gaussian Mixture Clustering Algorithm 

The clustering algorithm was used to detect gene expression differences among 

categorical factors levels, by assuming the gene expression data follow a 

Gaussian mixture model as follow: 

Yi ~ 𝑤!!
!!! N(𝜇! ,𝜎!!) 

where the standardized gene expression Yi is assumed as an i.i.d. sample from a 

mixture of k Gaussian models with mean ui and standard deviation σi, with k 

being the number of categorical levels. The Gaussian models were combined 

with weight wi. According to the Gaussian mixture model, the standardized gene 

expression data from ith level were assumed to follow a Gaussian distribution 

with center 𝜇! and variance σ2, and the probability of belonging to the ith 

treatment group is the weight wi. 

The prior distributions of the parameters ui’s, σi’s, and wi’s were assumed to be 

standard normal distributions, inverse-gamma distributions, and dirichlet 

distribution, respectively. A set of latent variables Zi was added to facilitate the 

sampling process and the classification of clusters. 

The Gibbs sampling algorithm was implemented to estimate the posterior 

distributions of the standardized gene expression in each treatment group, and a 

distinguishable change in gene expression level can be detected using metrics 

discussed in the next section. 

 

2.8 Performance Metrics of the Bayesian Regression and Gaussian Mixture 
Models 

In order to represent the fitness of the Bayesian regression models, the likelihood 

of observed data given estimated model was calculated as below:  
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𝐿(𝑌|𝑀𝑜𝑑𝑒𝑙)  =  
1
2𝜋𝜎

𝑒!
(!!!!!!!!!!)!

!!!
!

!!!

 

where parameters β0, β1 and σ2 were estimated as described in Section 2.6. 

Since the standardized gene expression levels were used as predictor variables, 

larger likelihood indicates a better prediction of the continuous factor values 

based on the model. And the better predictions are usually associated more 

distinguishable gene expression levels among factor levels. 

For the Gaussian Mixture model, the likelihood of each data is calculated as the 

probability it comes from its associated cluster, given the mixture model with the 

estimated mean and standard deviation. For example, if Yi comes from factor 

level 1, then the likelihood of Yi will be derived from the normal distribution 

𝑁(𝜇!,𝜎!!). To overcome the dominant effect of one or a few huge probability 

density values, the likelihood was standardized by the summation of likelihood in 

all clusters. A large likelihood usually indicates that gene expression data from 

different factor levels are well separated and very distinguishable. 

Another performance metric used for Gaussian Mixture model is the accuracy of 

classification. Given the clusters with estimated mean and variance, each data 

was classified into the cluster that generates the largest likelihood. The accuracy 

is then calculated by comparing the predictions with the actual observations. 

Higher accuracy indicates better performance in classifying and predicting the 

categorical factor labels, and consequently is usually associated with 

differentially expressed genes. 
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Chapter 3 Result 
 

3.1 DESeq2 Log2 Fold Change Estimation and Statistical Testing 

The DESeq2 package method takes the raw count matrix of gene expression 

and an experiment design matrix as input, performs automatic data filtration, data 

transformation and data normalization by the estimated size factor, and outputs 

log2 fold change and p statistics from the negative binomial Wald Test between 

the default control group and all other treatment groups. The limit of DESeq2 is 

that it takes only use categorical experiment design variables, so only the 

categorical factors (growth phase, carbon source, Na+ levels and Mg2+ levels) 

were used in this DESeq2 analysis. 

As shown in Figure 3.1, the DESeq2 method successfully identified groups of 

genes with significant changes in expression levels in all four experiments. The 

log2 fold change is correlated with adjusted p-values, as genes with large log2 

fold change (>2) always have significant adjusted p-value, and genes with small 

log2 fold change (close to 0) are always non-significant. However, the genes with 

intermediate log2 fold change (>0.5 and <2) appear to have a weaker 

relationship with the test result. Our result disagrees with previous statement by 

Weber and Jung about the lack of correlation between n-fold differences and 

significance, but also indicates that the traditional threshold set by certain fold 

change or certain log2 fold change may not be statistically correct (Weber and 

Jung, 2002). Although not suitable as an arbitrary criterion, setting a filter based 

on the log2 fold change might be helpful in getting rid of some noises in the data, 

and controlling for the same false discovery rate with less stringent adjusted p-

values. 
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Figure 3.1 Relationship between the DESeq2 Adjusted p-values and Log2 
Fold Change with Respect to 4 Categorical Environmental Factors. The 
DESeq2 adjusted p-value decreases as log2 fold change increases, but this 
correlation is weaker with intermediate log2 fold change. The red line in each 
panel pinpoint the position of significance level. The data points below red line 
represent genes with significant difference in gene expression level.  
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(a)

(b) 

(c)  

Figure 3.2 The Effect of Logarithmic Transformation of the Continuous 
Factors on Pearson’s Test. (a) Gene ycfR and growth time (hr). (b) Gene asr 
and Mg2+ (mM). (c) Gene nagE and Na+ (mM). The gene in each panel was 
selected from the genes identified to be significant in both transformed and 
untransformed dataset. In each panel, the plot on the left shows the result based 
on original numeric factor and the plot on the right shows the result based on the 
logarithmic transformed factor. 
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Variable Method # Significant 
Genes 

% Significant 
Genes 

Growth Time (hr) Pearson's Test with 
Log Transformation 2851 0.666 

Growth Time (hr) Pearson's Test 1087 0.254 

Mg2+ (mM) 
Pearson's Test with 
Log Transformation 625 0.146 

Mg2+ (mM) Pearson's Test 204 0.048 

Na+ (mM) 
Pearson's Test with 
Log Transformation 7 

0.002 

Na+ (mM) Pearson's Test 10 0.002 

(a) 

 Sodium Experiment 

 Pearson's Test with Log Transformation 
Pearson's Test Non-significant Significant 
Non-significant 4262  (0.996) 1  (0.0002) 

Significant     4  (0.0009) 6  (0.0014) 

   
 Magnesium Experiment 

 Pearson's Test with Log Transformation 
Pearson's Test Non-significant Significant 
Non-significant 3602  (0.842) 467  (0.109) 

Significant     47  (0.011) 157  (0.036) 

   
 Growth Time Experiment 

 Pearson's Test with Log Transformation 
Pearson's Test Non-significant Significant 
Non-significant 1105   (0.258) 2081  (0.486) 

Significant   318   (0.074)  769   (0.180) 

(b) 

Table 3.1 Logarithmic Transformation of the Continuous Factors Increased 
the Power of Pearson’s Test. (a) Pearson’s tests using transformed factors 
identified more significant genes. (b) Pearson’s tests with transformation 
captured most of the genes identified by tests without transformation. The 
overlap between Pearson’s test with or without transformation is shown as the 
highlighted cell. Percentages over the total number of genes (4279 genes) are 
shown in the parenthesis of each cell. 
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3.2 The Logarithmic Transformation of the Continuous Factors Increased 
the Robustness of Pearson’s Correlation Tests by Reducing the Effect of 
High-leverage Data Points 

As shown in Figure 3.2, the untransformed numeric factors take values ranging 

from level of 10-2 to several hundreds, with most of data points clustered around 

0. This unbalanced data distribution results in the high-leverage data points at 

the far end of the left-side plots in each panel. The concept of high-leverage data 

points indicates the correlation tests are more vulnerable to outliers and 

measurement errors, and leads to a less robust model. Consequently, taking 

logarithmic transformation of the numeric factors largely alleviates the problem of 

data imbalance and increases the strength of linearity (as shown in plots on the 

right-hand side of Figure 3.2).  

The logarithmic transformation also increased the power of Pearson’s correlation 

tests in most cases, due to the increased linearity. According to the statistics in 

Table 3.1, the Pearson’s tests with transformed dataset capture most of the 

significant genes identified from the untransformed dataset in all three 

experiments, and meanwhile they identify a lot more significant genes in the 

Magnesium Experiment and Growth Time Experiment. The exception of Sodium 

Experiment may be resulted from the highly unbalanced data structure and the 

lack of linearity among the log sodium salt level and the standardized gene 

expression levels. 

On the other hand, the results from Spearman’s correlation tests are not affected 

by the logarithmic transformation. The reason lies in the fact that Spearman’s 

correlation test is non-parametric and based on rank only. Consequently, the 

monotonic logarithmic transformation only changes the value, but not the rank. 

The results from the Spearman’s tests and Pearson’s tests were compared in the 

next section. 
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3.3 Pearson’s Test and Spearman’s Test Perform Similarly in Most of the 
Experiments 

The Spearman’s correlation test is well suited for scenarios when the assumption 

of linearity and normality is absent, but it will also lead to less power than the 

Pearson’s test if the assumptions are met. According to the results in table 3.2, 

the Spearman’s tests perform very similarly with Pearson’s tests with both 

continuous factors (a) and categorical factors (b), given the same pre-processing 

steps. In most experiments, Pearson’s test and Spearman’s test identified similar 

amount of significant genes. Moreover, over 90% of those genes were identified 

in both tests (result not shown). 

The only exception comes from the Sodium Experiments, in both numeric and 

categorical forms. Spearman’s tests failed to identify any gene with significant 

changes in expression level after adjusted for multiple testing. On the other hand, 

Pearson’s tests identified up to 10 genes, which is still fewer than what we 

expected for bacterial genomics response to sodium stress. A possible 

explanation is the large variation resulted from the small number of data 

associated with certain levels (4 data at 100mM, 2 data at 200mM and 5 data at 

300mM). This highly unbalanced data distribution leads to high model variance 

and hence more uncertainty. However, we are still able to identify some genes 

that aligns with previous research result, which will be discussed in later sections. 
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Variable Method # significant 
Genes 

% significant 
Genes 

Continuous Experimental Factors 
Growth Time (hr) Spearman's Test 2858 0.668 

Growth Time (hr) Pearson's Test with 
Log Transformation 2851 0.666 

Mg2+ (mM) Spearman's Test 735 0.172 

Mg2+ (mM) Pearson's Test with 
Log Transformation 625 0.146 

Na+ (mM) Spearman's Test 0 0.000 

Na+ (mM) Pearson's Test with 
Log Transformation 7 0.002 

(a) 

Categorical Experimental Factors 
Factor Coded by Consecutive Integer 

Carbon Source    Spearman's Test 216 0.050 
Carbon Source Pearson's Test 190 0.044 
Growth Phase    Spearman's Test 3886 0.908 
Growth Phase Pearson's Test 3938 0.920 
Mg2+ Levels    Spearman's Test 1966 0.459 
Mg2+ Levels Pearson's Test 2068 0.483 

Factor Coded as Binary Vector 
Carbon Source Pearson's Test 89 0.021 
Carbon Source    Spearman's Test 153 0.036 
Growth Phase Pearson's Test 3983 0.931 
Growth Phase    Spearman's Test 4031 0.942 
Mg2+ Levels Pearson's Test 2136 0.499 
Mg2+ Levels    Spearman's Test 2074 0.485 
Na+ Levels    Spearman's Test 0 0.000 
Na+ Levels Pearson's Test 10 0.002 

(b) 

Table 3.2 Pearson’s Test and Spearman’s Test Perform Similarly Given the 
Same Pre-processing Steps. (a) Pearson’s and Spearman’s tests identified 
similar number of genes for each continuous factor (Note: log transformation was 
always used as discussed in section 3.2). (b) Pearson’s and Spearman’s tests 
identified similar number of genes for each categorical factor given the same 
coding strategy. 
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 (a)  

           (b)  

Figure 3.3 Illustration of the Differences between the Coding Schemes of 
Categorical Factors. (a) Binary-coded factors (one level is coded as 1 and all 
the other levels are coded as 0). (b) Integer-coded factors (the four levels of 
carbon source are coded as consecutive integers 1 to 4). Both panel used data 
from gene idnD. 
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Magnesium Experiment 

Pearson's Test 
(Integer-coded) 

Pearson's Test 
(Binary-coded) 

Spearman's test 
(Integer-coded) 

Spearman's Test (Binary-coded) 
Non-significant Significant 

Non-Significant 
Non-Significant Non-Significant 1629  (0.381)   24  (0.006) 

Significant   17    (0.004)   36  (0.008) 

Significant 
Non-Significant  278   (0.065)   82  (0.019) 

Significant    9    (0.002)  131 (0.031) 

Significant 
Non-Significant 

Non-Significant    6    (0.001)    0          (0) 
Significant      4  (0.0009)    1  (0.0002) 

Significant Non-Significant  209  (0.049)   80  (0.019) 
Significant   48   (0.011) 1719 (0.402) 

 
Carbon Source Experiment 

Pearson's Test 
(Integer-coded) 

Pearson's Test 
(Binary-coded) 

Spearman's test 
(Integer-coded) 

Spearman's Test (Binary-coded) 

Non-significant Significant 

Non-Significant 
Non-Significant 

Non-Significant 3983 (0.931) 15  (0.004) 
Significant 52   (0.012) 27  (0.006) 

Significant 
Non-Significant 4  (0.0009) 2 (0.0005) 

Significant 0           (0) 0          (0) 

Significant 
Non-Significant 

Non-Significant 29   (0.007) 2 (0.0005) 
Significant 40   (0.009) 36  (0.008) 

Significant 
Non-Significant 11   (0.003) 11  (0.003) 

Significant 1  (0.0002) 60  (0.014) 

 
Growth Phase Experiment 

Pearson's Test 
(Integer-coded) 

Pearson's Test 
(Binary-coded) 

Spearman's test 
(Integer-coded) 

Spearman's Test (Binary-coded) 
Non-significant Significant 

Non-Significant 
Non-Significant 

Non-Significant 164 (0.038) 19   (0.004) 
Significant 7   (0.002) 68   (0.016) 

Significant 
Non-Significant 2 (0.0005) 36   (0.008) 

Significant 0          (0) 40   (0.009) 

Significant 
Non-Significant 

Non-Significant 6   (0.001) 8   (0.002) 
Significant 4 (0.0009) 15   (0.004) 

Significant 
Non-Significant 48  (0.011) 105  (0.025) 

Significant 12  (0.003) 3739 (0.874) 
 

Table 3.3 The Effect of Coding Scheme Varies across Experiment. Genes identified 
in growth phase experiment have high overlap between the two coding schemes, while 
this is not the case for carbon source experiment or magnesium experiment. 
Percentages over the total number of genes (4279 genes) are shown in the parenthesis 
of each cell. 
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3.4 The Effect of Different Coding Strategy of the Categorical Factors on 
Correlation Tests Result 

The two coding strategy of the categorical factors (coded by consecutive integers 

or coded by binary vectors) are expected to identify two distinct groups of genes 

with different expression patterns. The binary-coding strategy aims to identify 

genes differentially expressed in one of the factor levels, while the integer-coding 

strategy aims to identify genes showing a gradient increase or decrease as factor 

changes. To demonstrate the difference between these two coding strategies, we 

used the expression levels of gene idnD as an example (Figure 3.3). idnD is 

identified as a differentially expressed gene through Pearson’s correlation test 

based on both coding strategy. However, the binary-coding method (Panel A) 

focused on the difference between one level (gluconate) and all other levels and 

identified the most different carbon source, while the integer-coding method 

(Panel B) suggests a gradual decrease in gene expression from gluconate to 

lactate. 

Although the expectations are different for the two coding strategies, surprisingly 

they end up identifying similar groups of genes in the Growth Phase experiment, 

with more 90% overlap (represented in the highlighted cells in table 3.3). On the 

other hand, the results in the Magnesium experiment and the Carbon Source 

experiment showed 65% and 20% overlap in the identified genes respectively. 

 

3.5 Correlation Tests using Categorical Factors Identified More Genes than 
their Continuous Equivalents 

The continuous numeric form of the environmental factors retains more 

information than the categorical equivalent, and hence are expected to be more 

accurate in distinguish the difference in gene expression. However, the results 

suggest that categorical factors generally have more power in the correlation 

tests, and also identified more significant genes, regardless of method. According 
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to our results, tests using Growth Phase identified 3886~4031 genes, 

significantly larger than tests using Growth Time (1087~2858 genes). Likewise, 

Mg2+ Levels factor identified 1966~2136 genes, compared to the Mg2+ (mM) 

factor (204~735 genes). 

 

3.6 Both Correlation Tests and DESeq2 Method Support and Complement 
Previous Studies 

Groups of genes responding to external Mg2+/Na+ fluctuation or change of growth 

phase have been identified in numerous past studies through genetic, 

biochemical and molecular biology methods.  

With respect to the effect of osmotic stress, Weber et al. identified a group of 22 

genes that are induced by high concentration of NaCl within the first 60min of 

induction (Weber et al., 2006). The correlation tests identified 7 of them before 

multiple testing adjustments, and 1 of them remains to be significant after the 

adjustment. Considering the small number of sodium-responsive genes (<10) 

that correlation tests identified, the chance of capturing 1 out of the 22 is much 

larger than randomly selection (~0.0023). On the other hand, DESeq2’s negative 

binomial generalized linear model identified 71 significant genes, with 9 of them 

in common with the group of 22 genes. Meanwhile, some genes identified by the 

correlation method but not in the previous study are supported by other 

researches. Two transport and binding proteins proV and proW, and a protease 

hycI were found up-regulated with a global false discovery rate 12% (Weber and 

Jung, 2002; Weber et al., 2005).  

Researches investigating magnesium-stimulated transcription also provide a list 

of genes known to be regulated by Mg2+ signal in bacterial cells (Minagawa et al., 

2003). Out of the set of 13 genes, 9 of them were identified by the correlation 

tests with categorical factor Mg2+ level, and 7 of them were identified by DESeq2 

package model. 
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The pool of genes identified as differentially expressed at different growth phase 

or growth time was also supported by literature. Among the list of 121 genes, 110 

were identified by the correlation tests, and 105 were identified by the DESeq2 

package model (Weber et al., 2005). Moreover, genes with regulatory roles with 

DNA functions, as well as genes known to be expressed phase-specific were all 

identified in our statistical tests (Ali Azam et al., 1999; Chuang et al., 1993). 

In sum, the correlation tests outperformed DESeq2 package model for both 

magnesium dataset and growth phase dataset, but generated less powerful 

result for sodium dataset. Possible explanations for the lack of significance in the 

sodium data correlation tests might be the limited number of samples at each 

treatment levels and the lack of consistent control factors, and both will lead to a 

larger variance and less powerful test result. Moreover, the auto-filtration 

performed by DESeq2 package prior to the statistical tests might help get rid of 

noises existed in the dataset. 

 

3.7 Trial Studies by Bayesian Regression Methods and Machine Learning 
algorithms 

The performance indicator adopted by the Bayesian Regression Model is 

likelihood of data, from which a conventional and default cutting point for 

significance is absent. Thus, we compared the top 20 genes identified from the 

correlation tests and the top 20 genes identified from the Bayesian regression 

models, and found that a heavy overlap between the genes being selected (data 

not shown).  

On the other hand, the result achieved from the clustering algorithm is not well 

aligned with the correlation tests, although the top 20 genes picked do suggest 

differential expression according to visual inspection. One major assumption of 

the Gaussian mixture model is that samples from each treatment group are i.i.d. 

normally distributed. However, the interference from confounding factors within 
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each treatment group may violate this crucial normality assumption and 

consequently lead to defective results. To avoid such drawbacks from the model-

based clustering algorithms, density-based clustering algorithms like DBSCAN 

might be helpful in improving prediction accuracy. 
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Chapter 4   Concluding Remarks and Future Directions 

 

Considering the widespread distribution and extensive application of E. coli, its 

genetic regulatory network is of interest academically, clinically and industrially. 

The adaptive response of E. coli cells to the various environmental conditions 

roots from their ability to sense distinct external signals and induce or repress 

groups of metabolic-related and transportation-related genes correspondingly. 

Our study investigated the genomics-wide response of E. coli cells to four 

environmental conditions: carbon source, growth phase (time), Na+ and Mg2+ 

concentrations. The expression levels of 4279 genes were measured and 

analyzed by correlation tests, Bayesian regression model, and clustering 

algorithm. The results were compared between models, as well as to the existing 

R package DESeq2 and past literatures. 

Pearson’s correlation test and Spearman’s correlation test showed evidence of a 

global effect on E. coli genomics by Mg2+ stress, switch of growth phase and 

change of carbon source. Hundreds of genes were proved to be significantly 

differentially expressed in each of the above datasets by both types of test. 

Moreover, Based on the large percentage of overlap between result from 

Pearson’s tests and Spearman’s tests, the choice of test does not seem to 

influence the result much.  

However, the logarithmic transformation of the continuous factors and the coding 

scheme of the categorical factors do have an impact. Transformation of the 

numeric factor reduces data range and improves the linearity between variables, 

so that it helps capture more genes with significant changes in expression levels. 

On the other hand, the different coding strategies of categorical factors were 

aimed to identify genes with different changing behaviors, but they turned out 

finding similar genes from the growth phase experiment, and results with less 

overlap in magnesium and carbon source dataset.  
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The correlation tests performed not as well for the sodium dataset, with only 10 

genes found with significant induction or repression. Despite of the lack of power 

in most tests, the identification of the 10 genes is supported by past studies using 

biochemical and molecular biology experiments, including the transport proteins 

proV, proW and proX, and a protease hycI (Weber et al., 2006, 2005). Similar 

evidence was also found for magnesium-induced genes, as the well-

characterized phoP/phoQ two-component system were both identified in our 

correlation test result (Minagawa et al., 2003). 

The lack of default threshold is a problem for both Bayesian regression model 

and the Gaussian mixture clustering algorithm. Without the threshold, the 

definition of significance will be vague and quite arbitrary. Nonetheless, the 

Bayesian regression models identifies almost the same group of top-ranked 

genes as the correlation tests, supporting the validity of the correlation tests from 

another aspect. However, the Gaussian-based clustering algorithm does not 

agree with the correlation tests all the time, possibly due to the violation of 

normality in part of the dataset. The implementation of model-free density-based 

clustering algorithm like DBSCAN might avoid such problem and be more helpful 

in distinguishing treatment levels with respect to our data structure. 

In sum, our correlation tests were proved to be effective in identifying feature 

genes in most of the datasets with certain pre-processing steps, while some 

additional effort will be worth trying for the machine learning algorithms’ 

implementation. 
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Appendix          R code for Correlation Tests and Clustering 

calculate_log2 <- function(selectLevel){    
coldata = subset(metaRNA, subset = dataSet %in% 

colnames(UnfilteredData), select = c('dataSet',selectLevel )) 
   colnames(coldata)[2] = 'condition' 
   countData = DESeqDataSetFromMatrix(countData = UnfilteredData, 
colData = coldata, design = ~ condition) 
   RESULT = NULL; LOG2CHANGE=NULL 
   nlevel = length(unique(countData$condition)) 
   orders = combn(1:nlevel, m=2, simplify=FALSE) 
   for (x in orders){ 
    countData$condition = 
factor(coldata$condition,levels(coldata$condition)[c(x[1], (1:nlevel)[-x], x[2])]) 
      countData = DESeq(countData) 
      result = results(countData) 
      result = data.frame(gene_id = rownames(UnfilteredData), 
log2FoldChange = abs(result$log2FoldChange),pvalue = result$pvalue) 
      RESULT = rbind(RESULT, result) 
      LOG2CHANGE = cbind(LOG2CHANGE, 
abs(result$log2FoldChange)) 
   } 
   log2foldchange = data.frame(gene_id = rownames(UnfilteredData), 
log2FoldChange = apply(LOG2CHANGE, 1, max)) 

finalResult = merge(RESULT, log2foldchange, 
by=c('gene_id','log2FoldChange' ))  
   finalResult1 = finalResult %>% group_by(gene_id) %>% 
dplyr::summarize(log2FoldChange = max(log2FoldChange), pvalue = 
min(pvalue))  
   finalResult1$padj = p.adjust(finalResult1$pvalue, method='fdr') 
   finalResult1 = merge(finalResult1, geneName, by='gene_id') 
   write.csv(finalResult1, file = paste('../XY/DESeq2',selectLevel,'.csv')) 
   return(finalResult1) 
  } 
 
 
##switch level  ##function for discrete variables ##number coded 
switch_level <- function(df, nlevel, cortest){ 

orders = permn(1:nlevel, fun = function(x){ 
      df$newlevel = as.numeric(as.character(mapvalues(df[,3], from= 
levels(df[,3]), to = x))) 
      test = cor.test(df[,4], df[,2], method = cortest) 
      return(c(pvalue = test$p.value, rvalue = test$estimate)) 

}) 
   orders = matrix(unlist(orders), ncol=2, byrow=T) 
   pvalue = min(orders[,1]) 
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   return(list(p.value = pvalue, estimate = max(orders[orders[,1] 
==pvalue ,2]))) 
} 
 
 
##function for discrete variables ##binary coded 
binary_switch <- function(df, nlevel, cortest){ 

  STAT = NULL 
  for (i in 1:nlevel){ 

    df$numfac = as.numeric(df[,3]) 
    df$numfac[df$numfac != i] = 0 
    df$numfac[df$numfac == i] = 1 
    test = cor.test(df[,4], df[,2], method = cortest) 

    STAT = rbind(STAT, c(pvalue = test$p.value, rvalue = test$estimate, 
level1 = i)) 

  } 
   pvalue = min(STAT[,1]) 
   return(list(p.value = pvalue, estimate = max(STAT[STAT[,1]==pvalue,2]),  
              level1 = STAT[STAT[,1]==pvalue,3] )) 
} 
 
metaRNA = read.csv('.././initialPaper01r/metaRNA.csv')    ##149 SAMPLE 
geneName = 
unique(read.csv('.././generateDictionary/nameDictionary_RNA_barrick.csv')) 
 
##main function 
compute_correlation <- function(dataframe,  
                                selectLevel,  
                                x.log = F, 
                                binary = F, 
                                cortest = 'pearson'){ 

  metaRNA_selectLevel = dataframe[, colnames(dataframe) %in% 
c('dataSet', selectLevel)] 
   
  TESTSTAT = NULL 
  nlevel = length(unique(metaRNA_selectLevel[,2])) 
  for (each_gene in 1:nrow(finalData)){  
    one_gene = merge(data.frame(count = finalData[each_gene,], dataSet = 
colnames(finalData)),  
                     metaRNA_selectLevel, by = 'dataSet')      ##total 143 
    if (selectLevel %in% c('carbonSource','Na_mM_Levels', 
'growthPhase','Mg_mM_Levels')) { 
      if (cortest == 'glm'){ 
        test = summary(lm(one_gene[,2] ~ one_gene[,3])) 
        test = list(p.value = test$coefficients[2,4], estimate = sqrt(test$r.squared)) 
      } 
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      else if (binary){ 
        test = binary_switch(one_gene, nlevel, cortest) 
      } 
      else{test = switch_level(one_gene, nlevel, cortest)} 
    } 
    else{ 
      if (x.log == T) one_gene[,3] = log(one_gene[,3]) 
      test = cor.test(one_gene[,3], one_gene[,2], method = cortest) 
    } 
    TESTSTAT = rbind(TESTSTAT, c(pvalue = test$p.value, rvalue = 
test$estimate)) 
  } 
 return(TESTSTAT) 
} 
 
##Bayesisn Regression Model 
MCMC_continuous <- function(iteration, one_gene, testdata, method = 'test'){ 
  #observations 
  X = one_gene[,2] 
  Y = log(one_gene[,3]) 
  n = length(X) 
   
  #initial values 
  u0 = 0; tau02 = 1    #beta0 prior hyperparameter 
  u1 = 0; tau12 = 1    #beta1 prior hyperparameter 
  a = 1; b = 1         #sigma2 prior hyperparameter 
  beta0 = 0; beta1 = 0; sigma2 = 1 
   
  PARAMETERS = c(beta0, beta1, sigma2) 
  for (i in 1:iteration){ 
    ###update posteriors 
     
    #update sigma2 
    sigma2 = 1/rgamma(1, a+n/2, rate = b+ sum((Y-beta0-beta1*X)^2)/2) 
     
    #update beta0, beta1 
    C0n = 1/(1/tau02 +n/sigma2) 
    m0n = (u0/tau02 + sum(Y-beta1*X)/sigma2) *C0n 
    beta0 = rnorm(1, mean = m0n, sd = sqrt(C0n)) 
     
    C1n = 1/(1/tau12 + sum(X^2)/sigma2) 
    m1n = (u1/tau12 + sum(X*(Y-beta0))/sigma2) * C1n 
    beta1 = rnorm(1, mean = m1n, sd = sqrt(C1n)) 
     
    PARAMETERS = rbind(PARAMETERS, c(beta0, beta1, sigma2)) 
  } 
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  ##plot convergence parameters 
  #pdf(file=paste('../XY/Convergence_Parameter_',selectLevel,'.pdf', sep='')) 
  #par(mfrow=c(ncol(PARAMETERS),1)) 
  #for (i in 1:ncol(PARAMETERS)){plot(PARAMETERS[,i], type = 'l')} 
  #dev.off() 
   
  exp_parameter = colMeans(PARAMETERS) 
  if (method =='grid'){ 
    ##Grid evaluation of likelihood 
    lowbound = max(min(one_gene$count)- 2*exp_parameter[3], -1.4) 
    highbound = max(one_gene$count)+2*exp_parameter[3] 
    sample_points = seq(lowbound, highbound, length = 100) 
    likelihood = dnorm(sample_points, mean = sample_points, sd = 
sqrt(exp_parameter[3])) 
  } 
  else{ 
    ##testing the trained model 
    likelihood = dnorm(log(testdata[,3]), mean = exp_parameter[1] + 
testdata[,2]*exp_parameter[2], sd = sqrt(exp_parameter[3]), log = T)  
  } 
  return(list(likelihood = sum(likelihood), par = exp_parameter)) 
} 
 
##Gaussian mixture model 
MCMC_discrete <- function(iteration, one_gene){ 
   
  ##Generate summary statistics 
  one_gene_stat = one_gene %>% group_by(one_gene[,3]) %>% 
dplyr::summarize(avg = mean(count), std = sd(count), n = n()) 
   
  ##Set initial values for parameters and hyperparameter 
  nlevel = nrow(one_gene_stat) 
  mu = numeric(length = nlevel)   ####one_gene_stat$meanMg 
  #constant variance/ non-constant variance 
  #sigma2 = 0.01 
  sigma2 = numeric(length = nlevel) + 0.01 
  alpha = numeric(length = nlevel)       ###(one_gene_stat$nMg)/10 
  C0 = 1 
  n = sum(one_gene_stat$n) 
   
  new_label = data.frame(y = one_gene$count, z = as.numeric(one_gene[,3])) 
   
  PARAMETERS = c(mu, alpha, sigma2) 
  Z = new_label$z 
  for (i in 1:iteration){ 



	 31	

     
    new_stat = new_label %>% group_by(z) %>% dplyr::summarize(avg = 
mean(y), std = sd(y), n = n()) 
     
    ##posterior distributions 
    C1 = 1/(1/C0 + new_stat$n/sigma2) 
    mu0n = (0/C0 + new_stat$n * new_stat$avg/sigma2)*C1 
    #update mu 
    mu = rnorm(nlevel, mean = mu0n, sd = sqrt(C1)) 
     
    #update omega 
    omega = rdirichlet(1, alpha+ new_stat$n) 
     
    ##update sigma2 
    sigma2 = 1/rgamma(nlevel, shape = new_stat$n/2 +1, rate = 
new_stat$n*(new_stat$std^2)/2) 
    sigma2[is.nan(sigma2)] = 0.0000001 
     
    ##update z 
    for (i in 1:n){ 
      probs = dnorm(new_label$y[i], mean = mu, sd = sqrt(sigma2)) 
      #new_label$z[i] = base::sample(1:nlevel, 1, prob = probs) 
      new_label$z[i] = which(probs == max(probs)) 
    } 
     
    ##post-processing to corre 
    Z = cbind(Z, new_label$z) 
    PARAMETERS = rbind(PARAMETERS, c(mu, omega, sigma2)) 
  } 
  Z = Z[, (iteration-200):iteration] 
  z = apply(Z, 1, FUN = function(x){names(which.max(table(x)))}) 
  counttable = table(one_gene[,3], z) 
  counttable = counttable/rowSums(counttable) 
   
  rowmax = unlist(apply(counttable,1, FUN = function(x) which(x ==max(x))[1])) 
  probs = sum(counttable[cbind(1:nlevel, rowmax)]) 
  if (length(unique(rowmax)) ==1) {probs = 0} 
   
  return(probs) 
} 
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