
DISCLAIMER:	

This	 document	 does	 not	 meet	 the
current	 format	 guidelines	 of

the Graduate	 School	 at	 	
The	 University	 of	 Texas	 at	 Austin.	

It	 has	 been	 published	 for	
informational	 use	 only.	

The Dissertation Committee for Aditya Rawal certifies that this is the approved
version of the following dissertation:

Discovering Gated Recurrent Neural Network Architectures

Committee:

Risto Miikkulainen, Supervisor

Scott Niekum

Aloysius Mok

Kay Holekamp

Discovering Gated Recurrent Neural Network Architectures

by

Aditya Rawal,

Dissertation

Presented to the Faculty of the Graduate School

of the University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

Doctor of Philosophy

The University of Texas at Austin

May 2018

I dedicate this to my mother late Shamita Rawal.

Acknowledgments

This work wouldn’t have been possible without unwavering support of
my wife Neha, my father Jatin, my brother Kandarp and my 3-year old daugh-
ter Samyra.

Risto , my advisor, has provided me freedom to fail which I found very
encouraging. He has provided supported even during the most difficult periods
of this endeavor. His guidance helped me pivot my efforts at the right time. He has
been a role model and I wish to carry forward my learnings from him as I embark
on a new chapter of my life.

ii

Discovering Gated Recurrent Neural Network Architectures

by

Aditya Rawal, Ph.D.

The University of Texas at Austin, 2018

Supervisor: Risto Miikkulainen

Reinforcement Learning agent networks with memory are a key component
in solving POMDP tasks. Gated recurrent networks such as those composed of
Long Short-Term Memory (LSTM) nodes have recently been used to improve state
of the art in many supervised sequential processing tasks such as speech recog-
nition and machine translation. However, scaling them to deep memory tasks
in reinforcement learning domain is challenging because of sparse and deceptive
reward function. To address this challenge first, a new secondary optimization
objective is introduced that maximizes the information (Info-max) stored in the
LSTM network. Results indicate that when combined with neuroevolution, Info-
max can discover powerful LSTM-based memory solutions that outperform tradi-
tional RNNs. Next, for the supervised learning tasks, neuroevolution techniques
are employed to design new LSTM architectures. Such architectural variations in-
clude discovering new pathways between the recurrent layers as well as designing
new gated recurrent nodes. This dissertation proposes evolution of a tree-based
encoding of the gated memory nodes, and shows that it makes it possible to ex-
plore new variations more effectively than other methods. The method discovers
nodes with multiple recurrent paths and multiple memory cells, which lead to sig-
nificant improvement in the standard language modeling benchmark task. The
dissertation also shows how the search process can be speeded up by training an
LSTM network to estimate performance of candidate structures, and by encourag-
ing exploration of novel solutions. Thus, evolutionary design of complex neural
network structures promises to improve performance of deep learning architec-
tures beyond human ability to do so.

iii

Table of Contents

1 Introduction 1
1.1 Motivation .. 1
1.2 Challenges .. 2
1.3 Approach .. 4
1.4 Guide to the Reader .. 6

2 Background and Related Work 8
2.1 Vanishing Gradients in Recurrent Neural Networks 8
2.2 LSTM .. 9
2.3 Applications of LSTMs ... 11

2.3.1 LSTMs for Reinforcement Learning problems........................... 12
2.4 Improvements in LSTMs... 13

2.4.1 Regularization ... 13
2.4.2 Improvements through Architecture Modifications 14

2.5 Evolutionary Techniques - Genetic Programming, NEAT 15
2.5.1 NEAT... 16
2.5.2 Genetic Programming.. 17

2.6 Diversity in Evolution... 17
2.7 Problem Domains ... 18

2.7.1 Language ... 18
2.7.2 Music ... 21
2.7.3 RL Memory Tasks .. 22

3 Evolving LSTM Network Structure and Weights using Unsupervised
Objective - InfoMax 23
3.1 Problem of Deception ... 23
3.2 Unsupervised Training of LSTM... 25

iv

3.3 Memory Tasks... 25
3.3.1 Sequence Classification.. 27
3.3.2 Sequence Recall ... 27

3.4 Experiments .. 30
3.4.1 Experiment 1: Comparing RNNs vs. LSTM 30
3.4.2 Experiment 2: Scaling NEAT-LSTM... 32

3.5 Conclusions... 37

4 Evolving Multi-layered LSTM structures as Graphs 38
4.1 Evolution Search Space ... 38
4.2 Experimental Setup... 40
4.3 Results... 42
4.4 Conclusions... 45

5 Evolving Recurrent Nodes 46
5.1 Tree Based Representation of Recurrent Node...................................... 46
5.2 GP-NEAT: Speciation .. 48
5.3 GP-NEAT: Crossover and Mutation.. 48
5.4 Hall of Shame.. 52
5.5 Search Space: Node... 54
5.6 Extra Recurrent Memory Cells.. 55
5.7 Meta-LSTM: Speeding up Evolution using Fitness Prediction.............. 56
5.8 Experimental Setup and Results ... 59

5.8.1 Network Training .. 59
5.8.2 Evolution Parameters .. 64
5.8.3 Meta-LSTM training .. 64
5.8.4 Distribution Methodology ... 64
5.8.5 Results ... 64

5.9 Conclusions... 68

6 Recurrent Networks for Music 70
6.1 Music Language Model .. 70

6.1.1 Experimental Setup ... 71
6.1.2 Results ... 71

v

6.2 AI Music Composer .. 73

7 Future Work 74

8 Conclusions 75
8.1 Contributions .. 76
8.2 Conclusions... 77

Bibliography 79

vi

Chapter 1

Introduction

Imagine artificial agents that can learn from past events and adapt like hu-
mans. These agents can then be deployed in challenging unseen environments.
Robots with a sophisticated understanding of natural language and conversation
skills can carry out many of our daily chores. Better weather forecasting systems
that predict natural disasters can save many lives. One common technology that
is critical in order to achieve these breakthroughs is AI based memory. With the
help of recent many advancements in deep learning, recurrent neural networks
have come to the forefront for building such AI based memory. The goal of this
dissertation is to devise new techniques to further improve this field and discover
better memory networks.

1.1 Motivation

Natural organisms can memorize and process sequential information over
long time lags. Chimpanzees and orangutans can recall events that occurred more
than a year ago (Martin-Ordas et al. ((2013)). Long term social memory can pro-
vide significant survival benefits. For example, bottlenose dolphins can recognize
each other’s whistle sounds even after decades (Bruck ((2013)). Such a capability
allows the dolphin to identify adversaries as well as potential teammates for hunt-
ing. First step towards adaptive behavior is to memorize past events and utilize
them for future decision making (Stanley et al. (2003)). For example, a group of
hyenas, during lion-hyena interactions, modulate their behavior over a period of
time through memory-based emotions - transitioning from being fearful initially
to becoming risk-taking later (Watts and Holekamp ((2008)). Memory is therefore
a key cognitive component and incorporating this capability in artificial agents can
make them more realistic (Schrum et al. (2011)).

In the reinforcement learning (RL) domain, the tasks requiring memory can
be formally be described as POMDP problems. Traditionally, recurrent neural net-
works (RNNs) have been the preferred choice for this purpose. However, RNNs
leak information and are unable to discover long-term dependencies (Hochreiter

1

et al. (2001)). Long Short Term Memory (LSTM) (Hochreiter and Schmidhuber
(1997a)) successfully overcomes these limitations of RNNs. It consists of memory
cells with linear activations. The inflow and outflow of information to and from
these cells is controlled by associated input/output gated units.

Such LSTM based memory networks are also used to build chat-bots, speech
recognition and forecasting systems. The time-series prediction problem in such
settings fall into the category of supervised learning problems. With the recent ad-
vances in deep learning, the performance of such LSTM networks has improved
drastically (Bahdanau et al. (2015a), Graves and Jaitly ((2014)) but their capabili-
ties cannot match human levels.

New methods are presented in this dissertation that can evolve deep se-
quence processing recurrent networks to solve RL and supervised memory tasks
with long time-dependencies.

While LSTM networks have been used to achieve strong results in the super-
vised sequence learning problems such as in speech recognition (Graves and Jaitly
((2014)) and machine translation Bahdanau et al. (2015a), their success in POMDP
tasks has been limited (Bayer et al. (2009a), Bakker et al. (2003)). A possible reason
is that it is difficult to train LSTM units (including its associated control logic) with
weak reward/fitness signal. Also, the number of LSTM units in a network is a pa-
rameter that is often manually selected. This approach turns out to be inefficient
especially in new problems where the memory depth requirements are not clear.

1.2 Challenges

In RL tasks, recurrent networks are often used as policy controllers to de-
termine agent actions given some input observations or as function approxima-
tors to predict the value function (Hausknecht and Stone (2017)). However, one
key challenge is to find the optimal size of such networks (for e.g. the number of
nodes in the layer). This is not a straightforward task and requires separate hyper-
parameter tuning. Size of the network matters for two reason: computational cost
and performance. Larger networks have bigger memory footprint and they take
more processor power. Networks used for RL are much smaller and run on CPU
than the ones used for supervised learning (that use GPU). It becomes more critical

2

therefore for RL memory networks to have close to optimal network size. Selecting
a model with a large number of LSTM nodes (much more than that required by the
task) can lead to overfitting of the model while selecting a very small model can
lead to underfitting.

A second challenge in solving RL memory problems could be that of sparse
and deceptive rewards. Deceptive fitness landscapes often lead the agent to local
optima. The lack of sufficient rewards can prevent the agent to escape local optima.

The LSTM networks used for supervised learing are significantly larger
than RL and the parameter size is often in the order of tens of millions. For su-
pervised learning problem, backpropagation through time (BPTT) is a powerful
technique to train LSTM network weights. With the availability of large scale la-
beled data and GPU compute, it is now possible to train LSTMs with mini-batch
stochastic gradient descent (SGD). Such networks often consist of couple of LSTM
layers stacked together along with some glue logic (for e.g. embedding layer, soft-
max layer) to construct a full model. These models can then be deployed for lan-
guage modeling, machine translation, speech recognition etc.

Previously, experimental results in supervised non-recurrent tasks like im-
age classification have demonstrated that deeper and larger feedforward networks
often outperform smaller and shallower networks (Saxe et al. (2013)). However,
the same idea does not directly scale to deep recurrent networks. While, recurrent
networks are naturally deep in time (depth equal to the number of unroll steps in
BPTT), stacking more LSTM layers vertically yields diminishing returns (Chung
et al. (2015)). Some of the recent human designed variants of stacked LSTMs like
recurrent highway networks (Zilly et al. (2016)), grid LSTMs (Kalchbrenner et al.
(2015)) and gated-feedback networks (Chung et al. (2015)) suggest that the search
space of architecture is large. (Chung et al. (2015)) and (Kalchbrenner et al. (2015))
showed that new ways of stitching up LSTM layers together gives improved per-
formance while (Zilly et al. (2016)) came up with a modifed recurrent node archi-
tecture to achieve the same.

The recurrent architectures have grown complex and can no longer be opti-
mized by humans. Therefore, a third challenge, specific to the supervised learning
domain, is the automatic design of deep recurrent network architectures.

3

1.3 Approach

A neuroevolution technique called NEAT (Stanley and Miikkulainen (2002))
is used in dissertation to automatically design the recurrent networks for RL mem-
ory tasks. NEAT is a gradient-free optimization methods that can search for both
network structure and weights in a non-parametric manner. NEAT gradually com-
plexifies the structure of the network, starting with a small seed network. Due to
its complex control logic, training LSTM networks with only NEAT could be chal-
lenging. To address this, a phased training approach is developed in this work;
where the input and forget gates are trained first and the output gates are trained
later.

To overcome the challenge of deception and sparse rewards in RL problems,
a key contribution of this dissertation is the design of an unsupervised objective
called information maximization (Info-Max). Besides maximizing the reward, the
agent maximizes (through evolution) the information stored in the LSTM based
memory network. This new objective not only drives the agent to gather new
information in the environment but is also used to construct an optimal sized net-
work that stores memory in the most efficient way possible. This hybridization
of agent exploration and memorization leads to improved agent behavior in chal-
lenging memory tasks such as deep T-maze.

To address the challenge of designing the architecture of recurrent networks
for supervised learning problems, variants of NEAT are employed. Recent work in
this area suggests that optimizing the network architecture using a meta-learning
algorithm like Bayesian optimization (Malkomes et al. (2015)), reinforcement learn-
ing (Zoph and Le (2016) Baker et al. (2016)), or evolutionary computation (Miikku-
lainen and et al. (2017), Real et al. (2017), et al. (2017)) and subsequently training
the network using SGD is a promising approach. Neuroevolution algorithms like
NEAT could therefore play an important role in search through this architectural
space to discover better structures.

The search for LSTM networks using neuroevolution can be divided into
two categories: 1) Evolving layer connectivity, 2) Evolving recurrent node archi-
tecture. In this dissertation, new technology is developed to solve the problems
in each of the category. First, a simpler variant of NEAT is used to discover new
connections between LSTM layers while keeping the recurrent node architecture

4

fixed. One such evolved solution discovered a new recurrent path between the
stack of two layers. The new recurrent path doubled the overall depth (sum of
feedforward and recurrent depths) of the network. Experimental results in the
language-modeling domain show that the evolved connectivity between LSTM
layers leads to improved performance at almost no extra cost (since the feedback
connection has a fixed weight of 1.0). The results suggest that neuroevolution can
be effective in quickly finding deeper and better LSTM network.

Next, the recurrent layer connectivity was fixed and neuroevolution was
applied to discover new gated recurrent node architectures. The gated recurrent
node can be represented as a tree. While, a LSTM node has a carefully designed
gating logic, in this experiment, evolution was tasked to search for a better gating
mechanism. A single LSTM node, when represented as a tree, can be considered
as a five layer deep network (see Figure 2.2). Evolution enables search for deeper
and larger gated recurrent nodes. Thus, the search space for node evolution is
orders of magnitude larger than layer evolution. Sopshisticated neuroevolution
techniques are needed to search such a large architectural space. A combined ge-
netic programming and NEAT (called GP-NEAT) is used for this purpose. GP-
NEAT combines the best ideas from genetic programming (for e.g. structural tree
distance and homologous crossover) with the advantages of NEAT (for e.g. speci-
ation). New techniques are proposed in this dissertation to exhaustively compare
tree structures and deduce their similarity, thus avoiding redundant trees in the
population. Additionally, there were three key innovations that were developed
in this dissertation for evolving gated recurrent nodes.

First, a new mechanism to encourage exploration of architectures was de-
vised. An archive of already-explored areas (called Hall of Shame) is maintained
during the course of evolution. This archive is used to drive architecture search
towards new un-explored regions. The effect is similar to that of novelty search
(Lehman (2012)), but does not require a separate novelty objective, simplifying
the search.

Second, experiments were conducted to show that evolution of neural net-
work architectures in general can be speeded up significantly by using an LSTM
network to predict the performance of candidate neural networks. After training
the candidate for a few epochs, such a Meta-LSTM network predicts what per-

5

formance a fully trained network would have. That prediction can then be used
as fitness for the candidate, speeding up evolution fourfold in these experiments.
While network performance prediction has recently gained some attention (Baker
et al. (2017)), this is the first study that actually deploys fitness prediction mecha-
nism to discover new and significantly improved gated recurrent architectures.

Third, taking inspiration from the results of layer evolution, where a new
feedback connection led to performance improvement, an extra recurrent connec-
tion is introduced within the node. Evolution is tasked with finding the appopriate
gating logic within the recurrent node. Combining all these innovations speeds up
evolution, resulting in the discovery a of new gated recurrent node that outper-
forms LSTMs and other state-of-the-art recurrent nodes like NAS (Zoph and Le
(2016)) and RHN (Zilly et al. (2016)) in the language-modeling domain (See Fig-
ure 5.9).

Finally, the results from evolution were transfered to the music domain.
Here, the best evolved recurrent node was used for polyphonic music generation.
The data set used for training and evaluation consists of classical piano tunes. In-
terestingly, in this domain, the evolved nodes were outperformed by the LSTMs.
This suggest that evolution discovered a recurrent architecture customized for the
language-modeling problem. An interactive music generation application was cre-
ated that takes a few input notes from the user and then uses the gated recurrent
networks to automatically compose a new musical piece.

1.4 Guide to the Reader

Chapter 2 describes the concepts used across this dissertation. It also dis-
cusses previous work in gated recurrent network architecture search. Chapter 3
looks at RL based memory problems and proposes solutions to solve them using
evolved LSTMs. Gated recurrent networks are evolved for supervised learning
in Chapter 4 and 5. In chapter 4, the connectivity between two LSTM layer is
evolved. Chapter 5 looks at evolving gated recurrent nodes while keeping the
layer connectivity fixed. In Chapter 6, the best evolved solution from Chapter
5 is transfered to the music domain. This chapter also includes details about an
application created to compose music using recurrent networks. Chapter 7 lists

6

possible future direction for this research. The contributions of this research and
conclusions are provided in Chapter 8.

7

Chapter 2

Background and Related Work

Recurrent Neural Networks are generative models that produce outputs
which can be used as inputs in future time steps. The experiments performed
in this work demonstrate how to build such memory networks for RL and su-
pervised learning tasks. The challenges in these two kinds of problems are dif-
ferent. This chapter provides detail on the concepts used across the dissertation.
For e.g. RNNs, LSTMs and their applications. Recently, techniques like regular-
ization, batch normalization and architecture modifications have been proposed
to improve the performance of LSTMs on supervised learning tasks. Since the
LSTM networks for RL problems are much smaller than the ones used for super-
vised tasks, these techniques do not yield as much performance improvements.
RL problems come with their own set of challenges like deceptive rewards.

This chapter also briefly describes the existing neuroevolution technologies
that are extended for LSTM evolution in later chapters. RL tasks in deep T-maze
are used for evaluation in Chapter 3 and language and music tasks are used for
supervised learning in subsequent chapters.

2.1 Vanishing Gradients in Recurrent Neural Networks

One major limitation of RNNs is that they are not able to maintain contexts
for longer time sequences. This occurs because of two reasons. First, the memory
state of a RNN keeps getting updated at each time step with new feedforward
inputs. This means that the network does not have the control of what and how
much context to maintain over time. This behavior negatively effects RNNs even
when their weights are trained with gradient-free methods like evolution. Second,
when RNNs are trained with backpropagation through time, they are not able to
properly assign gradients to previous time steps due to squashing non-linearities.
This is called as the vanishing gradient problem.

As shown in Figure 2.1, the gradient flows back through time in the unrolled
RNN. Equation 2.1 describe the feedforward activation in each step of the RNN.
Equation 2.2 and 2.3 describe the error that is backpropagated from time step t+1

8

Figure 2.1: Gradient flow in RNNs: on the left is a simple RNN and on the right is
its unrolled version. Purple arrows depict gradient flow back in time.

to the time step t− 1. Since the derivative of tanh is bounded between 0 and 1, the
gradient can vanish during backpropagation (Pascanu et al. (2013) This vanishing
gradient problem leads to poor performance of RNNs in deep sequential tasks.

st = tanh(Winputxt +Wrecurst−1 + b) (2.1)

∂Et+1

∂st−1
=
∂Et+1

∂st+1

∂st+1

∂st

∂st
∂st−1

(2.2)

∂st
∂sk

=
t∏

k+1

∂si
∂si−1

=
t∏

k+1

Wrecurdiag(tanh
′(si−1)) (2.3)

2.2 LSTM

LSTMs were designed to overcome the vanishing gradient problem by con-
trolling gradient flow using extra control logic and by providing extra linear path-
ways to transfer gradient without squashing Hochreiter and Schmidhuber (1997b).
LSTM include three types of control gates: write control that determines the input
to the memory state (with linear activation), forget gate that controls how much
of the stored memory value is transferred to the next time step, and output gate
which regulates the output of the memory cell. In addition, LSTM units can in-
clude extra peephole connections to probe the internal memory state. The peep-

9

hole connections allow the LSTM gates to be modulated based on value stored in
the internal memory state. The output activation function is tanh. Structure of a
single LSTM unit is depicted in Figure 2.2. Equations 2.4, 2.5, 2.6, 2.7, 2.8, 2.9
are the for the feedforward path. During backpropagation, the gradient for ∂st

∂sk

still goes through a couple of tanh non-linearities. However, there is an additional
linear pathway through memory cell ct that preserves the gradient based on the
control logic. Gated Recurrent Unit (GRU) is a variant LSTM in which the input
and forget gates are merged for effeciency. Thus, gated recurrent networks outper-
form RNNs in long sequence processing task and are therefore applicable in many
domains.

it = σ(Winputixt +Wrecurist−1 + bi) (2.4)

c̃t = tanh(Winputcxt +Wrecurcst−1 + bc) (2.5)

ft = σ(Winputfxt +Wrecurf st−1 + bf) (2.6)

ot = σ(Winputoxt +Wrecurost−1 + bo) (2.7)

ct = ct−1 ∗ ft + c̃t ∗ it (2.8)

st = tanh(ct) ∗ ot (2.9)

∂ct
∂ct−1

= ft (2.10)

∂ct
∂ck

=
t∏

i=k+1

∂ci
∂ci−1

=
t∏

i=k+1

fi (2.11)

∂E

∂it
=
∂E

∂ct

∂ct
∂it

=
∂E

∂ct
c̃t (2.12)

∂E

∂ft
=
∂E

∂ct

∂ct
∂ft

=
∂E

∂ct
ct−1 (2.13)

∂E

∂c̃t
=
∂E

∂ct

∂ct
∂c̃t

=
∂E

∂ct
it (2.14)

∂E

∂ct−1
=
∂E

∂ct

∂ct
∂ct−1

=
∂E

∂ct
ft (2.15)

10

Figure 2.2: LSTM node architecture: LSTM include three types of control gates:
write control that determines the input to the memory state (with linear activation),
forget gate that controls how much of the stored memory value is transferred to
the next time step, and output gate which regulates the output of the memory cell.
For backpropagation, LSTM node is unrolled in time similar to RNN.

2.3 Applications of LSTMs

Gated recurrent networks like LSTMs and GRUs have made many real-
world sequence processing applications possible, in particular those that include
supervised training with time-series data. For e.g. they are widely used for su-
pervised sequence learning problems like machine translation (Bahdanau et al.
(2015a)), image captioning (Vinyals et al. (2015)), web traffic forecasting (Suilin
(2017)), speech recognition (Bahdanau et al. (2015a)), handwriting recognition,
automatic music transcription (Ycart and Benetos (2017)), sentiment analysis and
stock market prediction.

Converting a sentence from English to French is an example of a Machine
translation problem. Sequence-to-sequence LSTM models are often used for this
purpose Sutskever et al. (2014). They consist of two parts: an encoder and a de-
coder. The input sentence is fed into the encoder one word at a time. The decoder
outputs a sequence of words in the target language. The encoder outputs are ig-
nored while the decoder outputs are used to compute the network loss. The ad-
vantage of such sequence to sequence model is that they are effective even when
the input and output sequences are of varying length. One such encoder-decoder

11

model is used in this work for network learning curve prediction (see Section 5.7).
Image captioning is an example of LSTMs being used as a generative model.

Given an input image, the goal is to generate a sequence of words describing that
image. The model often consists of a convolutional network to process the im-
age followed by a layer of LSTM. The LSTM layer functions as a type of language
model that takes the image embeddings in its first time-step and generates a se-
quence of words in the subsequent time-steps (see Section 2.7.1 for more details on
the language model).

Problems like speech and hand-writing recognition often use bi-directional
LSTM Schuster and Paliwal (1997). Bi-directional LSTM process the data in both
directions with two separate hidden layers, which are then fed forwards to the
same output layer Graves and Jaitly ((2014).

LSTMs can also used be used for classification tasks like sentiment analysis.
A set of text articles, tweets or reviews can be fed into the LSTM and the hidden
value activation (st) of the final layer at the last time-step can be treated as an
embedding for the whole article. This embedding can then be used to predict the
sentiment of the article.

2.3.1 LSTMs for Reinforcement Learning problems

Although LSTMs are commonly used in supervised tasks, they can be used
in RL as well, as both policy controller and function approximator. For exam-
ple, LSTM based network was used as a function approximator in the robot nav-
igation task Bakker et al. (2003). In this work, the input sequence to LSTM was
pre-processed to capture salient information from the environment. An unsuper-
vised event extraction was performed by classifying stream of inputs into a vari-
able number of distinct classes. Any change in input stream class is considered
an event, and is fed into a RL model consisting of LSTM function approximator.
One drawback of this method is that it can ignore sequential information that re-
mains fixed during a trial but changes across trials. Wierstra et al. ((2010) applied
policy gradient algorithm to train LSTM networks resulting in deeper memories
for POMDP tasks. LSTM layers can be combined with Deep Q-Network (DQN)
to integrate information over time and perform better in Atari games Hausknecht
and Stone (2017). LSTMs can be trained through policy gradient algorithm to solve

12

meta-learning problems like network achitecture search Zoph and Le (2016) and
learning new learning rules for gradient descent Andrychowicz et al. (2016).

Bayer et al.Bayer et al. (2009a) evolved custom LSTM memory cells using
mutation operators. These custom cells are then manually instantiated to construct
LSTM network for solving the T-maze problem. Their result suggests that evolving
LSTMs can lead to interesting solutions to POMPD problems that are difficult to
solve otherwise. Yet the evolved memory is not deep enough to be useful in real-
world AI tasks (like deep T-maze or modeling hyena emotions). New methods are
required to scale the evolution of LSTM to such tasks. Powerful neuroevolutionary
techniques (like NEAT) is one candidate approach to achieve complex memory
solutions. NEAT can evolve both the topology and weights of a LSTM network
in a non-parametric manner. Chapter 3 describes one such approach of evolvng
LSTMs for RL.

2.4 Improvements in LSTMs

In recent past, several techniques have been developed to improve the per-
formance of LSTMs. For e.g. weight regularization, activation regularization,
dropouts, modifed stochastic gradient descent, variable length back propagation
through time and new recurrent node and network architectures. Such variations
are usually developed] on supervised learning problems like language modeling
but can be extended to reinforcement learning domain. These improvements are
often independent and combining them gives additive gain in performance. The
following sections describe such improvements in detail.

2.4.1 Regularization

Regularization is a widely used machine learning technique to prevent the
overfitting of model to the training data. It is only applied during training and
not during inference. There are several ways to regularize neural network models.
The traditional approaches for regularization include adding L1 and L2 weight
penalty to the network loss function. For e.g when used in logistic regression, L1
penalty leads to sparse connectivity and L2 penalty leads to smaller weight values.
Regularization through dropout in deep networks is a more recent advancement

13

and leads to better generarlization. In this method, a randomly selected subset of
neurons are excluded from participating in the forward and backward pass. The
model is forced to work even in the absence of dropped neurons and thus creates
an ensemble effect and more robust model.

Initial experiments in applying standard feedforward dropouts to recurrent
networks showed degradation in performance. Zaremba et al. (2014) proposed
not dropping recurrent connections (Wrecur in Figure 2.1) and applying dropouts
only to feedforward paths (termed as vanilla recurrent dropout). Later, Gal and
Gharamani (2015) showed that recurrent connections can be dropped but the same
dropout mask should be applied across time steps within a sequence (termed as
variational recurrent dropout). They also showed applying the same principle to
input sequence dropout further improves generalization. Another approach is to
limit updates to LSTM’s hidden state by dropping out updates to control gates
instead of the hidden unit themselves Semeniuta et al. (2016).

Smaller models often generalize better. To take advantage of this fact, Press
and Wolf (2016) showed that for a language model, sharing input embedding with
output weights reduces overall parameter count and makes it easier to train even
larger models.

Another form of regularization modifies the hidden unit activations includ-
ing a technique called recurrent batch normalization (Cooijmans et al. (2016)).
Here, the hidden unit activations are whitened by scaling them to have zero mean
and unit variance. The model activations thus stay in linear range of non-linearities
like tanh and thus prevent vanishing gradients.

Experiments in Chapter 3 do not use any regularization since the models
are relatively small. Layer evolution (Chapter 4) uses vanilla dropouts as pro-
posed in Zaremba et al. (2014) and node evolution (Chapter 5) uses variational
dropouts (Gal and Gharamani (2015)), L2 weight regularization and shared em-
beddings(Press and Wolf (2016)).

2.4.2 Improvements through Architecture Modifications

Experiments in feedforward networks have previously indicated that archi-
tecture matters. Recent work suggests that the same could be true for recurrent
networks. Grid-LSTMs (Kalchbrenner et al. (2015)) and gated feedback recurrent

14

networks (Chung et al. (2015)) are examples of LSTM variants with modified layer
connectivity. Zilly et al. (2016) came up with a new kind of recurrent node called
the recurrent highway network. It consists of a 10-layer deep network within each
recurrent node. The internals of the weights are trained during backpropagation
(unlike LSTM node where internal weights are fixed to 1.0).

Automatic design of networks is an emerging area of research and often
described as meta-learning. The ’meta’ algorithm could be either a reinforcement
learning algorithm, evolutionary algorithm or a recurrent network itself.

Initial work in discovering new recurrent architectures did not yield promis-
ing results (Klaus et al. (2014)). However, a recent paper from Zoph and Le (2016)
showed that policy gradients can be used to train a LSTM network to find better
LSTM designs. In Zoph and Le (2016), a recurrent neural network (RNN) was
used to generate neural network architectures, and the RNN was trained with re-
inforcement learning to maximize the expected accuracy on a learning task. This
method uses distributed training and asynchronous parameter updates with 800
graphic processing units (GPUs) to accelerate the reinforcement learning process.
Baker et al., (2017) have proposed a meta-modeling approach based on reinforce-
ment learning to produce CNN architectures. A Q-learning agent explores and
exploits a space of model architectures with an ε−greedy strategy and experience
replay. These approaches adopt the indirect coding scheme for the network repre-
sentation, which optimizes generative rules for network architectures such as the
RNN. Suganuma et al. (2017) propose a direct coding approach based on Cartesian
genetic programming to design the CNN architectures.

2.5 Evolutionary Techniques - Genetic Programming, NEAT

Evolutionary algorithms fall into the category of gradient-free global search
techniques that are very effective for solving non-differentiable problems or prob-
lems with very weak gradient information. For e.g. in reinforcement learning do-
main, evolutionary algorithms like NEAT are quite competitive with Q-learning
and policy gradient methods (Stanley et al. (2003)). With the advent of deep learn-
ing, the policy gradient methods have made a comeback. REINFORCE trick allows
a non-differentiable reward to be converted into a differentiable surrogate that can

15

be used as an objective to train the policy neural network using stochastic gradient
ascent (Williams (1992)). One advantage of NEAT is that unlike policy gradient
that only trains weights, NEAT can be used to evolve both the structure and the
weights simultaneously.

Genetic Programming (GP) is another evolutionary technique that modifies
tree structure instead of graphs (as in NEAT). Both NEAT and GP have variable
length genotype encoding. The following two sub-section describe NEAT and GP
in more detail.

2.5.1 NEAT

NEAT is a neuroevolution method that has been successful in solving se-
quential decision making tasks (Stanley and Miikkulainen (2002; 2004), Lehman
and Miikkulainen (2014)). When used for RL, the evolved network is used as a
policy controller that receives sensory inputs and outputs agent actions at each
time step. NEAT begins evolution with a population of simple networks and
gradually modifies the network topology into diverse species over generations.
As new genes are added through mutations, they are assigned unique historical
markings called innovation number. During crossover, genes with the same histor-
ical markings are recombined to produce offsprings. The population of networks
is divided into different species based on number of shared historical markings.
Speciation protects structural innovations in networks and maintains diversity by
reducing competition among different species. The historical markings and specia-
tion thus allow NEAT to construct complex task-relevant features. Memory can be
introduced into the network by adding recurrent connections through mutations.
NEAT is an ideal choice to evolve networks with memory in a non-parametric
manner.

In Chapter 3, NEAT is used to evolve both the structure and weights of
a LSTM policy controller network. In Chatper 4, a simplified version of NEAT
with no speciation and crossover is used to evolve connectivity between two LSTM
layers. NEAT is combined with GP to evolve gated recurrent nodes in Chapter 5.

16

2.5.2 Genetic Programming

Genetic Programming (GP) is an Evolutionary Computation technique that
builds solutions represented as expresssions/programs. Similar to NEAT, it can
start from a simple expression that eventually grows over time. At the start of evo-
lution, a population of randomly generated simple expressions are evaluated. Ge-
netic programming iteratively transforms a population of parent expressions into a
new generation of the offspring by applying genetic operations like crossover and
mutations. These operations are applied to individual(s) selected from the popu-
lation. The individuals are probabilistically selected to participate in the genetic
operations based on their fitness.

The expression in the tree is often represented as a tree with left and right
branches. For e.g. in Chapter 5, the gated recurret node is represented as a tree
and therefore can evolved using GP. A variant of GP, called cartesian genetic pro-
gramming, allows evolution of graphs as well (Suganuma et al. (2017)).

One of the challenges in scaling GP is that it can suffer from bloating i.e.
programs can grow unnecessarily large without fitness improvements. To over-
come this problem, the idea of diversity maintenance through speciation in NEAT
can be combined with GP (Tujillo et al. (2015)).

2.6 Diversity in Evolution

Fitness landscape in many high-dimensional problems is deceptive that can
lead to local optima. When evolving topologies of the network, this effect can
lead to bloating Tujillo et al. (2015). Speciation in NEAT addresses this problem
by maintaining different kinds of networks in the population. The same ideas can
applied to genetic programming (as shown in Chapter 5).

Diversity can be used to characterize the behavior of the network in RL or in
supervised learning domains. For e.g. the set of actions that the agent takes within
an episode could be its behavioral vector and the agent’s behavioral novelty can
be measured in terms of the vector distance from agents’ actions (Lehman (2012)).
In the supervised problem like language modeling defining network diversity is
more compute intensive because of the presence of vastly more data points. There-
fore, diversity of network structure is often measured and maximized. Novelty

17

search is one such objective that can applied to either maximize behavioral or struc-
tural diversity. Howerver, it converts the problem into multi-objective problem. In
Chapter 5, structure diversity of recurrent nodes is maximized using a Hall of
Shame. This includes keeping a fixed size archive of already explored regions in
the architectural search space and preventing reproduction from spawning indi-
viduals in those areas. Thus, we can induce structural novelty without explicitly
maximizing it.

For RL problems, the problem of deception is more pronounced due to
sparser rewards. For e.g. in a maze search problem, where a small reward can
be found at a nearby corner from the agent and a high reward placed far away, the
agent learns to greedily act and settle for smaller reward. To overcome this, Chap-
ter 3 presents a new information maximization objective that motivates the agent
to explore areas that provides new information. The information maximization
objective quanitfies the novetly of information in terms of entropy. This additional
objective is closely aligned with NEAT such that the evolved networks have max-
imial information stored in LSTM nodes in the most efficient way possible.

2.7 Problem Domains

Three benchmark problems are used to evaluate the technology developed
in this work. Deep T-maze is a RL problem used in Chapter 3. Chapter 4 and 5
use language modeling as a benchmark problem. The solution evolved in Chapter
5 for language modeling is then transfered to music data.

2.7.1 Language

The goal of language modeling is to estimate the probability distribution of
words P (w) in a English language sentence.

This has application in speech recognition (Graves and Jaitly ((2014)) and
machine translation(Bahdanau et al. (2015b)) and text summarization. Training
better language models (LM) improves the underlying metrics of the downstream
task (such as word error rate for speech recognition, or BLEU score for transla-
tion), which makes the task of training better LMs valuable by itself. Further, when
trained on vast amounts of data, language models compactly extract knowledge

18

Figure 2.3: LSTM based Neural Network Language Model. Words are encoded
as one-hot vectors and fed into a embedding layer. Two LSTM layers are stacked
on top of the embedding layer and the final layer is softmax. The network outputs
word probabilities for the next word in the sentence. In this manner, the network
can be used for next word prediction.

encoded in the training data. For example, when trained on movie subtitles, these
language models are able to generate basic answers to questions about object col-
ors, facts about people, etc. (Józefowicz et al. (2016))

Statistical language models have been previously used where the model
learns probability of word occurrence based on examples of text. Bi-grams and tri-
grams are examples of such N-gram models where word transition probabilities
are computed by counting frequency of co-occurence of words in the training data.
Such models are simple to design and work well for short sentences but are not
powerful enough to capture dependencies in longer sentences.

Recently, the use of neural networks in the development of language models
has become very popular, to the point that it may now be the preferred approach.
Nonlinear neural network models solve some of the shortcomings of traditional
language models: they allow conditioning on increasingly large context sizes with
only a linear increase in the number of parameters, they alleviate the need for
manually designing backoff orders, and they support generalization across differ-
ent contexts.. Figure 2.3 shows example of one such LSTM model. In every time
step, the model takes in a one hot encoded word as input. A linear embedding

19

layer converts the discrete word input into a real-valued vector to represent each
word in the projection space. A stack of two LSTM layers combine the word em-
bedding with the context stored in their memory. Finally the softmax layer outputs
word probabilities. Such a model can be trained using stochastic gradient descent
(SGD).

Recurrent Neural Networks based LMs employ the chain rule to model joint
probabilities over word sequences:

p(w1, w2, ...wn) =
N∏
i=1

p(wi|w1, w2...wi−1) (2.16)

where the context of all previous words is encoded with an LSTM, and the
probability over words uses a Softmax (see Figure 2.3).

A good language model is one which assigns higher probability to gram-
matically correct or frequently observed sentences than ungrammatical or rare
ones. One metric to measure this performance is called word perplexity.

Perplexity(w1, w2, ...wn) = P (w1, w2, ...wn)
−1
n (2.17)

Perplexity(wi) = exp(Average Cross Entropy Loss per Word) (2.18)

Average Cross Entropy Loss per Word =
N−1∑
i=0

−Pitargetlog(Pipredicted) (2.19)

A completely random model that assigns every word in the sentence equal
probability (p = 1

N
, where N is the vocabulary size) will have perplexity of N . This

is the worst case performance of the model. Thus, a model with lower perplexity
value on the test data is considered better.

In this word, the experiments are focused on the task of predicting the next
word in the Penn Tree Bank corpus (PTB), a well-known benchmark for language
modeling Marcus et al. (1993). LSTM architectures in general tend to do well in
this task, and improving them is difficult Zaremba et al. (2014) Jozefowicz et al.

20

(2015) Gal and Gharamani (2015). The dataset consists of 929k training words, 73k
validation words, and 82k test words, with a vocabulary of 10k words. During
training, successive minibatches of size 20 are used to traverse the training set
sequentially.

2.7.2 Music

Music consists of a sequence of notes that often exhibit temporal depen-
dence. Predicting future notes based on the previous notes can therefore be treated
as a sequence prediction problem. Similar to natural language, musical struc-
ture can be captured using a music language model (MLM). Just like natural lan-
guage models form an important component of speech recognition systems, poly-
phonic music language model are an integral part of Automatic music transcrip-
tion (AMT). AMT is defined as the problem of extracting a symbolic representa-
tion from music signals, usually in the form of a time-pitch representation called
piano-roll, or in a MIDI-like representation. Despite being one of the most widely
discussed topics in music information retrieval (MIR), it remains an open problem,
in particular in the case of polyphonic music (Lewandowski et al. ((2012), Lavrenko
and Pickens (2003.))..

MLM predict the probability distribution of the notes in the next time step.
Multiple notes can be turned-on at a given time step for playing chords. The archi-
tecture of MLM is very similar to the one shown in Figure 2.3. One key difference
is that the output layer in case of MLM consists of a sigmoid layer (for chords).
The loss function used for training the network is cross-entropy between predicted
note and the target notes (see equation 2.19). The metric used to evaluate MLM is
called the F-measure. F-measure is computed on the test data by taking the geo-
metric mean of precision and recall.

The input is a piano-roll representation, in the form of an 88XT matrix M ,
where T is the number of timesteps, and 88 corresponds to the number of keys
on a piano, between MIDI notes A0 and C8. M is binary, such that M [p, t] = 1

if and only if the pitch p is active at the timestep t. In particular, held notes and
repeated notes are not differentiated. The output is of the same form, except it only
has T1 timesteps (the first timestep cannot be predicted since there is no previous
information).

21

Piano-midi.de dataset is used as the benchmark data. This dataset currently
holds 307 pieces of classical piano music from various composers. It was made by
manually editing the velocities and the tempo curve of quantised MIDI files in
order to give them a natural interpretation and feeling (Ycart and Benetos (2017))..
MIDI files encode explicit timing, pitch, velocity and instrumental information of
the musical score.

2.7.3 RL Memory Tasks

Most real-world RL applications are POMDPs and require some form of
recurrency to solve the problem of state aliasing. In order to sucessfully solve
such problems, a combination of sophisticated RL algorithm and simple memory
architecture is required. For e.g. in the atari video game, while the overall agent
performance improves with the addition of an LSTM layer, the same improvement
can be achieved by feeding multiple consecutive frames to a feedforward network
(Hausknecht and Stone (2017)). Since the goal of experiments in Chapter 3 is
to solve deep memory problems, a customized task is designed for this purpose
called deep T-maze.

Standard T-mazes are widely used as testbed for RL problems. At the be-
ginning of each trial, the agent observes one light. As the agent moves forward in
the aisle towards the T-junction, it no longer has access to the light. The color of the
light (red/green) indicates the direction (right/left) that the agent should take at
T-junction in order to reach the goal. Therefore, to be successful, the agent needs to
memorize the color of the light that was shown at the start. The problem of T-maze
can be easily scaled to a Deep T-maze. In this case, there are multiple input lights
at the start corresponding to the multiple T-junctions. In order to be successful,
the agent is required to recall the input light sequence in the correct order at each
T-junction. This task requires deeper memory than the simple T-maze (See Figure
3.2 for details).

22

Chapter 3

Evolving LSTM Network Structure and Weights using

Unsupervised Objective - InfoMax

In this chapter, NEAT (Neuroevolution of Augmenting Topologies) Stanley
and Miikkulainen (2002) algorithm is extended to incorporate LSTM nodes (NEAT-
LSTM). Since NEAT algorithm can evolve network topologies, it can discover the
correct amount of memory units for the task. NEAT-LSTM outperform RNNs in
two distinct memory tasks. However, NEAT-LSTM solutions do not scale as the
memory requirement of the task increases. To overcome this problem, a secondary
objective is used that maximizes the information stored in the LSTM units. The
LSTM network is first evolved during the pre-training phase with this unsuper-
vised objective to capture and store relevant features from the environment. Sub-
sequently, during the task fitness optimization phase, the stored LSTM features are
utilized to solve the memory task. This approach yields LSTM networks that are
able to solve deeper memory problems. Two memory tasks are used to compare
the performance of different algorithms: sequence recall and sequence classifica-
tion.

3.1 Problem of Deception

From an optimization perspective, since the problem of evolving memory
is deceptive, extra objectives (to promote solution diversity) can be used to over-
come deception Lehman and Miikkulainen (2014), Ollion et al. (2012). In such ap-
proaches, the evolutionary optimization problem is often cast as a multi-objective
problem with two objectives - primary objective (task fitness) and secondary di-
verstiy objective (like novelty search). However, there are no guarantees that such
diversity objectives can aid the learning algorithm to capture and store useful his-
torical information from the environment. Since the secondary diversity objective
is unrelated to the task fitness, the network can also undergo unsupervised pre-
training to optimize this objective. One such unsupervised objective is presented in
this dissertation that maximizes the total theoretic information stored in the LSTM

23

Figure 3.1: (a) The LSTM node with peephole connection: a single LSTM unit
is comprised of three components: (1) green-colored multiplication gates and sig-
moid/tanh activation function, (2) yellow-colored internal memory state with lin-
ear activation, and (3) blue-colored peephole connections. There are three multi-
plication gates (write, forget and read) that control the flow of information through
the LSTM unit. The peephole connections allow the internal memory state of the
LSTM unit to be probed. The peripheral control logic (shown in gray cloud-shaped
boxes) and the peephole connection weights are modified during the course of
evolution. (b) The Sequence-Classification Task: This is a binary classification
task where the network has to count whether the number of 1s in the input se-
quence exceeds the number of -1s (0s are ignored). At the start of evolution, the
network consists of one input node and one output node. NEAT evolves hidden
layer topology. A network requires memory in order to succeed in this task. Ex-
ample of input-output sequence values are shown in the table.

24

network.

3.2 Unsupervised Training of LSTM

In supervised learning domain, unsupervised pre-training of neural net-
works to initialize its parameters has been shown to improve the overall network
task performance significantly. This idea of pre-training the network with unsu-
pervised objective can also be extended to the RL domain. However, not much
literature exists on the topic of unsupervised pre-training of LSTM for RL POMDP
tasks. On a related note, Klapper-Rybicka et al. (2001) performed unsupervised
clustering of musical data using LSTM networks. In this work, Binary Informa-
tion Gain Optimization (BINGO, Schraudolph and Sejnowski (1993)) was used as
an unsupervised objective. BINGO maximizes the information gained from ob-
serving the output of a single layer network of logistic nodes, interpreting their
activity as stochastic binary variables. One limitation of BINGO is that it searches
only for uncorrelated binary features (thus the solution ends up having zeros and
ones in equal parts), which limits the amount of information the network can store.
Instead, LSTM features with maximal information are evolved in this work. Specif-
ically, the LSTM networks are evolved (using NEAT) to first extract and store in-
dependent (and highly informative) real-valued features. These features are then
later used to solve the memory task. Storing independent features in the LSTM en-
sures that the network has maximal information from a theoretic perspective. This
information-theoretic objective to train LSTM network is similar to the info-max
approach published in Bell and Sejnowski (1995). However, the main difference is
that there is no underlying assumption on the number of mixed features and the
linearity of the mixture.

3.3 Memory Tasks

This section describes two memory tasks. Both the tasks are situated in a
discrete maze where the agent moves one-step at each time-step of the trial. The
first task, sequence classification, is a binary classification problem of streaming
input. The second task, sequence recall, requires the agent to recall a previously

25

Figure 3.2: (a) Sequence Recall in simple T-maze: At the beginning of each trial,
the agent observes one light. As the agent moves forward in the aisle towards the
T-junction, it no longer has access to the light. The color of the light (red/green)
indicates the direction (right/left) that the agent should take at T-junction in order
to reach the goal. Therefore, to be successful, the agent needs to memorize the color
of the light that was shown at the start. (b) Network architecture: In this task, the
network has two inputs: one input represents the distance to the T-junction and
the second input is the light sequence (active only during the first few time steps)
(c) Deep T-maze: In the Deep T-maze, there are multiple input lights at the start
corresponding to the multiple T-junctions. In order to be successful, the agent is
required to recall the input light sequence in the correct order at each T-junction.
This task requires deeper memory than the simple T-maze.

26

provided instruction input and use it to make future decisions (turn left or right at
the T-junction). In both the tasks, the agent is required to store and to utilize the
past events in order to be successful in the task.

3.3.1 Sequence Classification

This is a binary classification task, where given an input sequence of 1 and -1
(interleaved with 0s), the network needs to determine whether it received more 1s
than -1s. The number of interleaved 0s in the input sequence is random and ranges
between (10-20 time steps) . This task can be visualized as a maze positioning task.
An agent situated at the center of a one-dimensional maze is provided instructions
to move either left/right. It is expected to move left (west) when its input is -1 and
move right (east) when its input is 1. When its input is zero, it is not expected to
move. At the end of the sequence, the agent needs to identify whether it is on the
right side of the maze or the left side i.e. has it taken mores steps towards east than
west. Note, that input 0 does not affect this decision but only serves to confuse
the agent. The number of turns (left/right) that the agent takes during a trial is
defined as the depth of the task. For example, a sequence of four turns (total four
1/-1 inputs interleaved with 0 in the input sequence) is termed as 4-deep. Different
sequence classification experiments are carried out by varying the depth of the task
(4/5/6 deep). The network architecture and example input-output combinations
are shown in Figure 3.1b.

3.3.2 Sequence Recall

In the simple T-Maze, at the beginning, an agent receives an instruction
stimulus (like red/green light) (see Figure 3.2a). The agent then travel a corridor
until it reaches the T-junction. At the junction, the path splits into two branches
(left/right) and the agent needs to take the correct branch in order to reach the
reward. The position of the reward is indicated by the instruction stimulus it re-
ceived at the beginning. For example, red light can indicate presence of reward
on the right-branch and green light can indicate the reward on left branch. A suc-
cessful agent thus can only maximize collecting the reward by memorizing and
utilizing its stimulus instruction. T-Maze has been widely used as a benchmark

27

Figure 3.3: NEAT-LSTM vs. NEAT-RNN comparison on the Sequence-
Classification task. The memory depth requirement is varied on the x-axis. The
y-axis values represents the success rate of each method in 50 runs. The perfor-
mance of NEAT-RNN and NEAT-LSTM is comparable for 4-deep sequence classifi-
cation. As the task depth is increased to 6-deep, NEAT-LSTM significantly outper-
forms NEAT-RNN. Successful solutions to the sequence-classification task should
be able to retain an aggregate of previous inputs and should also continuously
update this aggregate with new incoming inputs. The performance results indi-
cate that LSTM-based networks can memorize information over longer intervals
of time as compared to RNNs.

28

Figure 3.4: NEAT-LSTM, NEAT-RNN and NEAT-LSTM Info-max comparisons on
Sequence-Recall task. Success percentage of each method is plotted for T-maze
with varying depth. Both NEAT-RNN and NEAT-LSTM can quickly find the solu-
tion to simple one-step T-maze. As the maze becomes deeper, NEAT-LSTM outper-
forms NEAT-RNN. However, beyond 3-deep, the problem becomes too complex
for both the methods. A solution to the deep T-maze problem requires memo-
rizing the input light sequence in its correct order for several hundred time-step.
NEAT-LSTM Info-max can successfully find solutions for even 5-deep recall. This
suggests that pre-training of LSTM networks with unsupervised Info-max objec-
tive results in the capture of useful information from the environment that can later
be used to solve the memory task.

problem for evaluating agents with memory Bakker (2002), Bayer et al. (2009a),
Lehman and Miikkulainen (2014), Ollion et al. (2012).

This simple T-maze (with one T-junction) can then be extended to a more
complex deep T-maze which consists of a sequence of independent T-junctions
(Figure 3.2c.). Here, the agent receives a sequence of ordered instructions (one
corresponding to each T-junction decision) at the start of trial and it has to utilize
the correct instruction at every T-junction in order to reach the goal. Risi et al. Risi
et al. (2010.) used one such T-maze extension (double T-maze) to test plastic neural
networks. The distracted sequence recall task used in Monner and Reggia (2012)
is another variation of the deep T-maze recall, but it uses supervised training to
learn the LSTM parameters. However, the approach presented in this dissertation
uses a weak fitness signal (proportional to the number of correctly recalled input
instructions) to train the memory network. Scaling the memory depth of network
to recall long sequences in such RL settings has been a challenge.

29

3.4 Experiments

The following experiments have a three goals. First, to compare the perfor-
mance of RNNs vs. LSTM in the memory tasks. Since LSTMs outperform RNNs
in supervised domain, the hypothesis is that they can do the same in the RL do-
main as well. Second, the LSTMs based networks are scaled to deeper memory
tasks to understand their bottlenecks. Finally, a new unsupervised objective called
Info-Max is presented that enables deeper LSTMs.

In each experiment, a population of 100 networks is evolved using NEAT
for 15,000 generations. Each individual in the population is evaluated on all possi-
ble input sequences. Deeper tasks therefore require more evaluations than shallow
ones. The length of each trial also depends on the task-depth. For example, a 4-
deep sequence classification task consists of at least four time steps (corresponding
to four 1/-1) and 40 time steps of 0 inputs interleaved between 1/-1. During evo-
lution, out of a total fitness of 100, the network receives a fraction for correctly
predicting a part of the problem. For example, in a 4-deep sequence classification
problem, if the agent correctly predicts its position in the maze (left or right side)
after two turns, then it receives 50 fitness points. It is expected that such partial
reward will shape the network towards evolving optimal behavior.

Data is collected from 50 runs of each experiment type and the average suc-
cess rate (percentage of runs that yield solution with maximum fitness) is mea-
sured to compare performance of different methods. At each time step, the net-
work under evaluation is activated once. The value at the input of a node is propa-
gated to its output in a single time step. Therefore, the number of time steps it takes
for the network input to reach the output is equal to the shortest path between in-
put and output. This setup is critical in ensuring that the network captures the
input sequence values and their order correctly in the recall task.

3.4.1 Experiment 1: Comparing RNNs vs. LSTM

First, RNNs are evolved using standard NEAT algorithm (labeled as NEAT-
RNN). A user-defined parameter controls the probability (set to 0.1 in these exper-
iments) of adding a new recurrent link. The recurrent links can be either self-loops
or a longer loop consisting of several intermediate nodes. Next, NEAT is extended

30

to evolve LSTM-based networks that are compared with RNNs.

Method: NEAT-LSTM

Standard NEAT algorithm can add new nodes (sigmoid or rectified linear
units) through mutation. In this work, NEAT is extended such that during its
search process, it can add new LSTM units (probability of adding a new LSTM
unit is 0.01). On being first instantiated, LSTM gates have default values - always
write, always read and always forget. This setting ensures that initially, newly
added LSTM units do not affect the functionality of the existing network. Each
new instantiation of a LSTM unit is associated with the corresponding addition
of a minimum of six network parameters - three connections from external logic
to the control gates (depicted as cloud shaped gray boxes in Figure 3.1a) and three
peephole connections (blue-colored links in Figure 3.1a). During the course of evo-
lution, the existing parameters can be modified/removed and new ones can be
added to suit the requirements of the task. No recurrent connections are allowed
except the recurrency that exists within the LSTM unit.

Results

As shown in Figure 3.3, both NEAT-RNN and NEAT-LSTM can solve the 4-
deep sequence classification task easily. As memory depth requirement increases
to six, their success rate gradually decreases. NEAT-LSTM significantly outper-
forms NEAT-RNN in all the cases (t-test; p<0.01). The sequence-classification task
is relatively simpler than the sequence-recall task. The agent is required to update
and store its internal state with each new valid input (1/-1). Therefore, the success-
ful networks have simple architecture (consisting of only a few recurrent neurons
in the case of NEAT-RNN and a single LSTM in the case of NEAT-LSTM).

In the sequence-recall task, both NEAT-RNN and NEAT-LSTM quickly find
the solution to one-step T-maze (Figure 3.4). This result is expected and it matches
the outcomes of previous papers that focused on this problem (Lehman and Mi-
ikkulainen (2014), Wierstra et al. ((2010)). However, as the T-maze becomes deeper,
the successful solutions are required to store input light sequence information for
longer durations and in its correct order. Therefore, beyond 3-deep T-maze, the

31

Figure 3.5: Unsupervised Pre-training using the Information Maximization objec-
tive. Highly informative, independent LSTM features are incrementally added by
modifying the write control, forget control and input data logic using NEAT. Unsu-
pervised pre-training is carried out until evolution stops discovering independent
features or at the end of 10000 generations. By the end of this pre-training phase,
salient information observed by the agent is captured and stored in the LSTM net-
work. The pre-training aids evolution of deeper memory solutions in two ways.
First, it reduces the problem of deception by directing evolutionary search towards
landscapes that provide new information. Second, by incrementally adding inde-
pendent features, it avoids the problem of training a large number of LSTM pa-
rameters simultaneously.

problem becomes too complex for both NEAT-RNN and NEAT-LSTM to solve.

3.4.2 Experiment 2: Scaling NEAT-LSTM

In the harder task of sequence recall, the agent needs to store the entire input
sequence in correct order. Incremental evolution approach was applied in order to
solve deeper recall problems (>4-deep). Networks were first evolved for 2-, 3-,
and 4-deep recall problems; these networks were then used as a starting point (in
the NEAT algorithm) to solve the more complex problems of increasing depth (>4-
deep). However, this approach did not yield much success. The problem may be
that as the length of the input sequence increases, the number of parameters to
be evolved also increase (with each additional LSTM units). Also, the incremental
evolution approach requires detailed knowledge of the problem domain that is not
inline with the goal of this dissertation (i.e. to solve the memory task with limited
domain knowledge).

32

Method: Information Maximization Objective

One way to overcome the problem of deception is by ensuring that evo-
lution discovers unique time-dependencies by not re-discovering existing infor-
mation. In solving POMDP tasks that require memory, the agent can benefit by
capturing salient historical information from the environment and storing it in its
neural-network controller. As the agent moves in the environment over multiple
trials, it comes across a lot of information. For example, it can observe the wall
(which are mostly static across trials) or it can observe a binary light (red/green in
T-maze), which can provide possible clues for the location of the goal. It is difficult
to discern which information should be stored for later use (blinking light) and
which should be discarded (static walls).

One solution could be to store inputs (in their native form or in combination
with other inputs) such that the total information stored in the network is maxi-
mized. From a theoretical perspective, the information stored in a set of random
variables is maximized when their joint entropy is maximized. The joint entropy
of two random variables X and Y can be defined as

H(X, Y) = H(X) +H(Y)− I(X, Y), (3.1)

H(X) =
∑

P (X) logP (X), (3.2)

where H(X), H(Y) are the individual entropies of X and Y respectively and I(X, Y
) is the mutual information between X and Y. Thus, to maximize the information
stored in the network, the individual entropy of its hidden unit activations should
be maximized and their mutual information minimized. The mutual information
can be expressed as Kullback-Leibler divergence:

I(X, Y) =
∑

P (X, Y) log
P (X, Y)

P (X)P (Y)
(3.3)

Random variables with zero mutual information are statistically indepen-
dent. Computing and storing highly informative, maximally independent features
(i.e. features with high individual entropy and low mutual information) in the
network is the unsupervised objective that will be used for NEAT (Info-max). The
features are stored in the hidden LSTM units, since these units can retain informa-

33

Figure 3.6: RL training using the fitness objective. During the RL phase, the
stored/memorized features are utilized to solve the memory task. The write con-
trol, forget control and input data logic of the LSTM units (that store independent
features) is frozen and the read control logic is evolved using NEAT. NEAT can
add new hidden layers over the top of existing LSTM network.

tion over several time steps. Evolving independent features allows for pre-training
the network and only augments the NEAT-LSTM approach as outlined in Section
4.1.1. The new learning algorithm now consists of two steps: The first one is an
unsupervised objective phase where the independence of LSTM hidden units is
maximized (see Figure 3.5), and the second is an RL phase where the fitness objec-
tive is maximized (Figure 3.6).

A feature vector is constructed by concatenating the memory state values
(yellow-colored circle in Figure 3.1) of the LSTM unit from each neural network
activation across different trials. There is one distinct feature vector correspond-
ing to each LSTM hidden unit. To compute entropy and mutual information, the
feature vectors are treated as random variables. The real-valued features are par-
titioned into 10 equal-sized bins, and a histogram is constructed by counting the
number of elements in each bin. Entropy and pairwise mutual information (an ap-
proximation of total mutual information) of feature histograms is then calculated
using equation 3.2 and equation 3.3 respectively.

Evolving multiple independent features simultaneously can be challenging.
This problem can be broken down using incremental evolution Gomez and Mi-
ikkulainen (1997) (without the need for domain knowledge). Independent features
(with their values stored in individual LSTM units) can be discovered one at a time

34

using NEAT. Since the primary goal of this work is to build networks with mem-
ory, one simplifying assumption can be introduced: environment is not dynamic,
i.e. it does not change over time. With this assumption, independent features once
discovered and stored in LSTM need not change over a period of time. The station-
arity assumption also entails that during the unsupervised training phase, only the
write control logic, forget control logic and input data logic of the LSTM unit need
to be modified. Once the independent features have been discovered, no more
changes to the write, forget and input logic of the LSTM units are required (i.e.
they are frozen). For the remainder of evolutionary search, NEAT can only add
outgoing connections from the frozen network (to facilitate re-use of frozen logic).
Often, there exists multiple solutions to the problem of finding networks with max-
imum information. Some of these network solutions could be large. To bias NEAT
towards evolving smaller solutions during unsupervised objective optimization, a
regularization factor is introduced that penalizes larger networks. The size of the
evolved network (equal to the number of network connections) is weighted by a
regularization parameter (value varies between 0 and 1), and the resulting penalty
term is subtracted from the unsupervised objective value. Unsupervised training
is stopped either when NEAT cannot find any more independent features or at end
of 10000 generations.

Subsequently, during the RL phase, the LSTM outputs are provided as extra
inputs (in addition to the sensor inputs) to the NEAT algorithm. NEAT evolves the
read control logic of the frozen LSTM units to utilize the stored features appropri-
ately as deemed fit for the task. This approach makes neuroevolution computa-
tionally more tractable.

Results

NEAT-LSTM with the information maximization objective (NEAT-LSTM
Info-max) was evaluated on sequence-recall task, since it is the harder of the two
memory tasks. As shown in Figure 3.4, NEAT-LSTM and NEAT-RNN outperform
NEAT-LSTM Info-max in the 1-deep task. This is probably because NEAT-LSTM
and NEAT-RNN are powerful enough to quickly find a solution to the shallow
memory problem. As the memory depth requirement increases however, NEAT-
LSTM Info-max consistently outperforms NEAT-LSTM and NEAT-RNN (t-test;

35

p<0.01). NEAT-LSTM Info-max is able to solve 5-deep sequence recall problem
about 20% of the time.

In the sequence-recall task, the networks evolved using NEAT-LSTM Info-
max method can preserve information (in correct order) over hundreds of time
steps. This result suggests that pre-training of LSTM network with information
maximization objective facilitates the capture of useful information from the envi-
ronment. To confirm this hypothesis, pairwise mutual information was computed
between LSTM feature vectors and the network inputs. Since each input light in
the input sequence is independent of the other, maximum-information objective
should often yield solutions such that different LSTM units capture information
from distinct previous inputs. This was often found to be true. The info-max
objective drives the network evolution towards gathering maximum possible in-
formation. Note that unlike novelty search, info-max is not open-ended since it
depends on the richness of observable information in the environment. Further
comparisons between Info-max and novelty search on memory tasks can be found
at the demo page (link provided in Section 4) . While the idea of maximizing agent
information is proposed to increase the depth of the agent’s memory, it can in-
directly lead to exploratory behaviors. Artificial curiosity Schmidhuber (2010) is
one such concept, where the agent is explicitly rewarded for exploring areas in the
environment that provide more information.

When neuroevolution is used to discover features, a rich feature set may ac-
cumulate. Recently, feature accumulation through evolution has been successful in
solving both supervised learning problems and RL problem. For example, Szerlip
et al. Szerlip et al. (2015) used novelty search as an unsupervised objective to train
HyperNEAT networks for MNIST digit recognition problem. Koutnik et al. Kout-
nik et al. (2014) used a similar diversity objective (during unsupervised training)
to train Convolutional Networks for simulated car racing. The Info-max objec-
tive presented in this dissertation is customized for memory tasks and therefore,
should work better in POMDP problems. The idea of maximizing information gain
for advancing the complexity of behaviors is biologically plausible as well Adami
(2012).

36

3.5 Conclusions

Incorporating memory into artificial agents in a non-parametric manner is a
challenging problem Doshi (2009). As a solution to this problem, LSTM networks
are evolved using NEAT (NEAT-LSTM). NEAT discovers the appropriate number
of LSTM units suitable for a given task. Evaluation on two memory tasks indi-
cate that LSTM networks outperform RNNs in shallow POMDP tasks. To further
scale the evolution of LSTM to deeper memory problems, a new information max-
imization (Info-max) objective is devised. The LSTM networks are pre-trained by
optimizing for this unsupervised objective. During the course of pre-training over
several generations, LSTM units incrementally capture and stored unique features
from the environment. After this pre-training phase, the LSTM network is evolved
to solve the memory task. The strong performance of NEAT-LSTM Info-max on
deep sequence recall task indicates its utility in building generic AI agents that can
solve both MDPs and POMDPs.

Next, LSTM networks are evolved for supervised learning tasks like language-
modeling. LSTM networks for supervised learning are large and face different
kinds of challenges than the one evolved for RL. However, the main insight from
this chapter, that evolution can be an effective tool to automatically construct LSTM
networks, is extended to new kinds of problems in the next chapter.

37

Chapter 4

Evolving Multi-layered LSTM structures as Graphs

Recent research in LSTMs has been broadly focused in two directions - first,
in finding variations of individual LSTM memory unit architecture (Bayer et al.
(2009b), Jozefowicz et al. (2015), Cho et al. (2014)) and second, in discovering new
ways of stitching LSTM layers into a network (Kalchbrenner et al. (2015), Zilly
et al. (2016)). The first approach has led to marginal performance improvements
over the vanilla LSTMs (Klaus et al. (2014)) while the second approach has met
with more success (Chung et al. (2015)). In this chapter, the two approaches are
combined and a hybrid is proposed - i.e. neuroevolution is used to search for both
new LSTM units and their connectivity across multiple layers at the same time.

Specifically, multiple LSTM layers are flattened into a neural network graph
that can then be modified by neuroevolution. In each generation of evolution, a
population of networks with LSTM variants is created through mutation, and the
individual networks are trained/tested on benchmark task of language modeling.
At the end of training for this benchmark task, the test perplexity scores for each
network is its negative fitness value (in the language modeling task, lower perplex-
ity value is better). Thus, neuroevolution only modifies the network architecture
while the stochastic gradient descent updates the network weights over several
epochs of training. During selection, binary tournament is used to select individu-
als for mutuations. There are two types of mutation possible - first, that disables a
network connection and second, that adds a skip connection between two nodes.
Recently, skip connections have led to performance improvements in deep neural
networks, which suggests that they could be useful for LSTM networks as well.

4.1 Evolution Search Space

Two stacked LSTM nodes are opened up and presented as input for evolu-
tion to modify. For e.g. Figure 4.1 shows two layered stacked LSTM on the left.
The stacked LSTM layers are shown along with their internal logic on the right. A
single column of stacked nodes on the right is evolved and the evolved solution is
repeated across the layer. Notice, therefore that the two columns of nodes on the

38

Figure 4.1: Evolution search space: On the left is a two layered stacked LSTM with
each layer having two hidden neurons. On the right, the stacked LSTM layers
(each of width=2) are shown along with their internal details. The internals of
the two LSTM layers are exposed to evolution. Evolution, through mutation, can
add feedforward skip connection (shown in green) and feedback skip connections
(shown in red) between the two layers. The figure show one such example where
a feedforward and feedback connection has been added. Evoution is constrained
such that the skip connection can be added only between layers and not within a
layer. Evolution modifies the connection between two nodes in a single column.
That modification is then repeated across the layer. Constraining the evolution in
this manner reduces its search space and makes it more tractable.

39

right side of Figure 4.1 are exactly the same.
Evolution, through mutation can add feedforward and feedback connec-

tions between the internals of the two stacked LSTM nodes. It can also disable
connections added through evolution. In this manner, the underlying LSTM node
structure is not modified but only extended through evolution. Evolution is also
constrained to not add any skip connections within the internals of an LSTM node.
Limiting the evolution search space in this manner keeps evolution tractable and
also drives it towards discovering new paths that do not already exist in the LSTM.

There are 11 internal points within each node where evolution can either
add an incoming (feedforward for higher layer node and feedback for lower layer
node) or outgoing (feedback for higher layer node and feedforward for lower layer
node) skip connection. Evolution can add multiple such skip connection between
two stacked nodes. Thus the arachitectural search space is exponentially large.

The experimental setup and the language modeling task are described in
the next section.

4.2 Experimental Setup

Word-level prediction experiments were conducted on the Penn Tree Bank
(PTB) dataset (Marcus et al. (1993)), which consists of 929k training words, 73k
validation words, and 82k test words. It has 10k words in its vocabulary.

A population of 50 LSTM networks was initialized uniformly in [-0.05, 0.05]
(Figure 4.2). Each network consisted of two recurrent layers (vanilla LSTM or its
variants) with 650 hidden nodes in each layer. The network was unrolled in time
upto 35 steps. The hidden states were initialized to zero. The final hidden states
of the current minibatch was used as the initial hidden state of the subsequent
minibatch (successive minibatches sequentially traverse the training set). The size
of each minibatch is 20. For fitness evaluation, each network was trained for 39
epochs with SGD. A learning rate decay of 0.8 is applied at the end of every six
epochs and the dropout rate is 0.5. The gradients are clipped if there maximum
norm (normalized by minibatch size) exceeds 5. Training single network takes
about 200 minutes on a GeForce GTX 980 GPU card. [Add details about dropout]
The validation perplexity of the network reached after the final epoch of training

40

Figure 4.2: A population of stacked LSTM nodes are evolved using mutation op-
erators (shown on the left). Each newly created offspring is duplicated to create
a two layered stacked LSTM network as shown on the right. An input embed-
ding layer and an output softmax layer are added to the network to construct the
complete language model. The input to the model is the word in the current time
step and the output is the expected word in the next time step. The final epoch
validation perplexity of the model is used as its fitness during evolution.

41

is treated as the fitness of stacked LSTM node that were used to construct this net-
work. Binary tournament is used as a selection mechanism. This approach ensures
that individuals with higher fitness get higher chance to reproduce offspring. Re-
production involves selecting a parent and mutating it. There are three kinds of
mutations possible: 1) Mutation to add a feedforward connection between any
two randomly selected points in the two stacked LSTM nodes , 2) Mutation to add
a skip connection between any two randomly selected points in the two stacked
LSTM nodes and 3) Mutation to remove a connection added through evolution.
The three mutation probabilities are fixed to 0.5, 0.5, and 0.8 respectively through-
out evolution.

4.3 Results

After 25 generations of neuroevolution, the best network improved the per-
formance on PTB dataset by 5% (test-perplexity score is 80.4) as compared to the
medium regularized LSTM (Zaremba et al. (2014)) (see Table 4.1). As shown in
Figure4.3, this LSTM variant consists of a feedback skip connection between the
memory cells of the two LSTM layers. When the size of the network is increased to
the large setting (66 Million parameters), the evolved network still give improve-
ments over the vanilla LSTM (77.5 vs. 78.4).

This result is encouraging because it suggests that even small modifica-
tion in the layer connectivity can make a difference in the overall performance.
However, the result is not very surprising because a similar recurrent network
(designed by hand) has been shown to outperform vanilla LSTM (Chung et al.
(2015)). (Chung et al. (2015)) additionally includes a sophisticated gating mecha-
nism to control the flow of information from the higher layer LSTM layer to the
lower LSTM layer.

The evolved layer connectivity adds an extra recurrent pathway in the net-
work. The memory cell update equation for the recurrent nodes (See 2.8 for origi-
nal) in the lower layer is modified as shown below:

ct = ct−1 ∗ ft + c̃t ∗ it + dt−1, (4.1)

where:

42

Figure 4.3: Evolved LSTM layer connectivity: the best performing LSTM variant
after 25 generations of neuroevolution. It consists of a feedback skip connection
between the two memory cells. Notice, while the vanilla LSTM has feedforward
path from lower layer to the higher layer and recurrent paths within a layer, there
is no pathway from the higher layer to the lower layer. Evolution discovered this
pathway since it leads to improved network performance.

43

Table 4.1: Single Model Perplexity on Test set of Penn Tree Bank: evolved layers
are the ones discovered through evolution. The experimental setting are kept ex-
actly the same when comparing against results from Zaremba (2015) and only the
network layer connectivity is swapped. Evolved layers outperform fixed layers in
both medium and large setting.

Model Parameters Test Perplexity
Zaremba (2015) - Medium regularized LSTM 32M 82.7

Zaremba (2015) - Large regularized LSTM 66M 78.4
Evolved layer - Medium regularized LSTM 32M 80.4

Evolved layer - Large regularized LSTM 66M 77.5

dt−1 = Memory cell output of the higher layer from the previous time-step

The memory cell update equation for the lower layer remains unchanged
with the feedback connection (same as Equation 2.8). The gradient flow equation
for the higher layer now becomes:

∂E

∂dt−1
=
∂E

∂dt

∂dt
∂dt−1

+
∂E

∂ct

∂ct
∂dt−1

=
∂E

∂dt
ft +

∂E

∂ct
(4.2)

The gradient flow equation for the lower layer remains unchanged (Equa-
tion 2.15). In the vanilla LSTM case, backpropagation ensures that the lower layer
adapts itself to the behavior of the higher layer. Howerver, this extra recurrent
path also drives the higher layer to modify itself based on the lower layer.

When the evolved network was repeatedly trained (outside of evolution),
an interesting phenomena was observed. The network loss during training some-
times explode leading to very large perplexity values. One reason for this could be
the additive nature of the gradient for the higher layer (see the newly introduced
component ∂E

∂ct
in Equation 4.2). Further study is required to prevent this exploding

gradient problem. One approach could be to ensure that whenever evolution adds
a new skip connection, it is always accompanied with some gating logic (Chung
et al. (2015)). Other approaches could be lowering the threshold for gradient clip-
ping, regularizing the memory cell values through a L2 penalty or using batch
normalization (Cooijmans et al. (2016)).

44

4.4 Conclusions

The initial results from evolving LSTM layer connectivity are promising,
suggesting that a simple neuroevolution with only two possible mutations can
automatically discover a new improved LSTM variant. It is quite possible that
making neuroevolution richer by adding more forms of mutation and crossover
can lead to even lower test perplexity scores. Additionally, such multi-layered
LSTMs (as shown in Figure 4.3) can be used as components in evolving blueprints.

In the experiments described above, the LSTM node architecture was fixed
and the layer connectivity was evolved. In the next chapter, the overall layer inter-
connectivity is kept fixed and the recurrent node architecture is evolved. In this
manner, we can understand the individual contributions of layer and node evolu-
tion in overall performance improvement.

45

Chapter 5

Evolving Recurrent Nodes

Recurrent nodes like LSTM and GRU are different from feedforward nodes
in terms of the complexity of their hidden neuron activations. As described in
the Section 2.1, LSTM node consists of gating logic that controls the information
flow across time-steps. This additonal control alleviates the problem of vanishing
gradients (Pascanu et al. (2013)) in recurrent networks and thus improve their per-
formance. Another technique to improve performance is to increase their depth
(Saxe et al. (2013)). Recurrent networks like LSTMs and GRUs are deep in the
time context i.e. the recurrent connection allows information to be transformed
through the node in each time step. However, the recurrent nodes are usually not
themselves deep. This chapter formulate techniques to build deep recurrent nodes
and demonstrate how this technology could lead to improved performance.

The recurrent node is represented as a tree and GP is used to evolve its
structure. Some modifications to standard GP are proposed to maintain diversity
and improve evolutionary search. Repetition of evolved recurrent node yields a
recurrent layer. The recurrent layers can then be stacked together to construct a
recurrent network (an input embedding layer and output softmax layer can also be
added). Training of the constructed recurrent network is costly i.e it requires ample
GPU resources. A fitness prediction mechanism called Meta-LSTM is presented to
reduce the training time of the networks without comprimising accuracy.

5.1 Tree Based Representation of Recurrent Node

As shown in Figure5.1(a), a recurrent node can be represented as a tree
structure, and GP can therefore be used to evolve it. However, standard GP may
not be sufficiently powerful to do it. In particular, it does not maintain sufficient di-
versity in the population. Similar to the GP-NEAT approach by Tujillo et al. (2015),
it can be augmented with ideas from NEAT speciation.

A recurrent node usually has two types of outputs. The first, denoted by
symbol h in Figure5.1 (a), is the main recurrent output. The second, often denoted
by c, is the native memory cell output. The h value is weighted and fed to three

46

Figure 5.1: (a)Tree-based representation of the recurrent node: Tree outputs h(t)
and c(t) are fed as inputs in the next time step. Recurrent paths are shown in green
and red. The red connection is weighted while the green connection has a fixed
weight of 1.0. (b) Node to layer: In recurrent networks, the tree node is repeated
several times to create each layer in a multi-layered network. Different node colors
depict various element activations. In this chapter, recurrent tree structures are
evolved and deployed into the recurrent network through repetition.

locations: (1) to the higher layer of the network at the same time step, (2) to other
nodes in the network at the next time step, and (3) to the node itself at the next
time step. Before propagation, h is combined with weighted activations from the
previous layer, such as input word embeddings in language modeling, to generate
eight node inputs (termed as base eight by Zoph and Le (2016)). In comparison,
the standard LSTM node has four inputs (see Figure5.9(a)). The native memory
cell output is fed back, without weighting, only to the node itself at the next time
step. The connections within a recurrent cell are not trainable by backpropagation
and they all carry a fixed weight of 1.0.

Thus, even without an explicit recurrent loop, the recurrent node can be
represented as a tree. There are two type of elements in the tree: (1) linear activa-
tions with arity two (add, multiply), and (2) non-linear activations with arity one
(tanh, sigmoid, relu).

One limitation of standard tree is that it can have only a single output: the
root. This problem can be overcome by using a modified representation of a tree
that consists of Modi outputs (Zhang and Zhang (2004)). In this approach, with
some probability p (termed modirate), non-root nodes can be connected to any
of the possible outputs. A higher modi rate would lead to many sub-tree nodes

47

connected to different outputs. A node is assigned modi (i.e. connected to memory
cell outputs c or d) only if its sub-tree has a path from native memory cell inputs.

This representation allows searching for a wide range of recurrent node
structures with GP.

5.2 GP-NEAT: Speciation

Genetic programming suffers from bloating i.e. unnecessary growth in tree
size without corresponding increasing in fitness. One way to overcome, as pro-
posed by Tujillo et al. (2015), is to divide the population into NEAT like species.
The individuals in the population (trees) are topologically compared using a tree
distance metric (described in Section 5.3) and similar trees are assigned to the same
species. After the population is divided into species, the individual fitnesses are
normalized such that larger species (with more individuals) are penalized. After
normalization, the median fitness of the species is used as representative of the
species fitness. Averaging these species median fitnesses yields population aver-
age fitness.

Each species get to spawn offspring proportional to their median fitness. If
the species median fitness is higher than the population average fitness, the species
get more spawns and vice-versa. Algorithm 1 describes these steps in detail. Each
species carries out its own reproduction independently. The speciation procedure
is executed at the end of each generation.

One key difference between NEAT and GP-NEAT is that in NEAT, the popu-
lation is divided into species based on their shared historical markings. In contrast,
in GP-NEAT, individuals are topologically compared before they are assigned species.

5.3 GP-NEAT: Crossover and Mutation

One-point crossover is the most common type of crossover in GP. However,
since it does not take into account the tree structure, it can often be destructive.
An alternative approach, called homologous crossover Francone et al. (1999), is
designed to avoid this problem by crossing over the common regions in the tree.
Similar tree structures in the population can be grouped into species, as is often

48

Algorithm 1 Speciation: Divide population into m species, normalize fitness and
compute spawns
Require:

N : population size
pop: population of trees
thresh: maximum distance between two trees within the same species
SpeciesList: List of species; empty at the start of evolution
M : Number of species in the SpeciesList
Sj : Individual species
Ti: Individual tree representation of node. Includes a species pointer denoting
its membership
Ti.f itness: Fitness of the network constructed by repeating tree node Ti
Sj.representative: Individual tree in the species with the best fitness.

1: for i = 1 to N do
2: for j = 1 to M do
3: if δ(Sj.representative, Ti) < thresh then
4: Sj .add(Ti) {See equation 5.1 for δ.}
5: Ti.species = Sj

6: end if
7: end for
8: end for
9: for i = 1 to N do

10: if Ti.species == None then
11: Create new species SM+1 with Ti as its first member
12: end if
13: end for

14: for j = 1 to M do
15: for k = 1 to length(Sj) do
16: Tk.Normfitness = Tk.f itness ∗ length(Sj) {Normalize fitness to prevent

large species}
17: end for
18: Compute species median normalized fitness: Sj.medianfitness
19: end for
20: AvgFitness = 1

m

∑m
i=1 Sj.medianfitness {Average normalized fitness of the

population}

21: for j = 1 to M do
22: if Sj.medianfitness < AvgFitness then
23: Sj.spawns = length(Sj) ∗ 1.1 {Better performing species get more off-

springs}
24: else
25: Sj.spawns = length(Sj) ∗ 0.9
26: end if
27: end for

49

Figure 5.2: (a) Homologous crossover in GP: the two trees on the top look dif-
ferent but in-fact they are almost mirror images of each other. These two trees
will therefore belong in the same species. The line drawn around the trees marks
the homologous regions. A crossover point is randomly selected and one point
crossover is performed. The bottom two networks are the resultant offspring. (b)
Mutation in GP: Three type of mutation operators are shown - insert, shrink and
node mutations. The crossover and mutation operators are applied to parent trees
to create offspring trees.

50

done in NEAT Tujillo et al. (2015). Speciation achieves two objectives: (1) it makes
homologous crossover effective, since individuals within species are similar, and
(2) it helps keep the population diverse, since selection is carried out separately in
each species. A tree distance metric of Tujillo et al. (2015) is used to determine how
similar two trees Ti and Tj are:

δ(Ti, Tj) = β
Ni,j − 2nSi,j

Ni,j − 2
+ (1− β)Di,j − 2dSi,j

Di,j − 2
, (5.1)

where:
nTx = number of nodes in GP tree Tx,
dTx = depth of GP tree Tx,
Si,j = shared tree between Ti and Tj,

Ni,j = nTi
+ nTj

,

Di,j = dTi
+ dTj

,

β ∈ [0, 1],

δ ∈ [0, 1].

On the right-hand side of Equation 5.1, the first term measures the differ-
ence with respect to size, while the second term measures the difference in depth.
Thus, setting β = 0.5 gives an equal importance to size and depth. Two trees
will have a distance of zero if their structure is the same (irrespective of the actual
element types).

In most GP implementations, there is a concept of the left and the right
branch. A key extension in this work is that the tree distance is computed by
comparing trees after all possible tree rotations, i.e. swaps of the left and the right
branch. Without such a comprehensive tree analysis, two trees that are mirror
images of each other might end up into different species. This approach reduces
the search space by not searching for redundant trees. It also ensures that crossover
can be truly homologous Figure5.2 (a).

There are three kind of mutation operations in the experiments: (1) Muta-
tion to randomly replace an element with an element of the same type, (2) Mutation
to randomly insert a new branch at a random position in the tree; the subtree at the
chosen position is used as child node of the newly created subtree. (3) Mutation
to shrink the tree by choosing a branch randomly and replacing it with one of the

51

Algorithm 2 Reproduction: Create Offspring from Parent
Require:

parents: one or two parents
pcrossover: probability of homologous crossover
pmutateNode: probability of replacing an element with another element of same
arity
pmutateInsert: probability of randomly inserting a new branch at a random posi-
tion in the tree
pmutateShrink: probability of randomly replacing a branch with one of its argu-
ment

1: Sample p from a uniform distribution such that p ∈ [0, 1]
2: if p < pcrossover then
3: offsprings = HomologousCrossover(parents)
4: else
5: offsprings = parents {Copy parents to offsprings}
6: end if
7: if p < pmuateNode then
8: offsprings =MutateNode(offsprings)
9: end if

10: if p < pmutateShrink then
11: offsprings =MutateShrink(offsprings)
12: end if
13: if p < pmutateInsert then
14: offsprings =MutateInsert(offsprings)
15: end if
16: return offsprings

branch’s arguments (also randomly chosen). Algorithm 2 presents the reproduc-
tion in detail.

5.4 Hall of Shame

The structural mutations in GP, i.e. insert and shrink, can lead to recycling
of the same strcuture across multiple generations. In order to avoid such repeti-
tions, a key contribution of this dissertation is to introduce an archive called Hall
of Shame (Figure5.3(a)). This archive consists of individuals representative of stag-
nated species, i.e. regions in the architecture space that have already been discov-

52

Figure 5.3: (a)Hall of Shame: an archive of stagnant species called Hall of Shame
(shown in red) is built during evolution. This archive is looked up during re-
production, to make sure that newly formed offsprings do not belong to any of
the stagnant species. At a time, only 10 species are actively evaluated (shown in
green). This constraint ensures that active species get enough spawns to ensure a
comprehensive search in its vicinity before it is added to the Hall of Shame. Off-
springs that belong to new species are pushed into a inactive species list (shown
in yellow) and are only moved to the active list whenever an active species moves
to Hall of Shame. (b) Regions in architectural search space: the color of circles
(green/yellow/red) indicates the category of species (active/inactive/stagnant)
within that search space. Thus, hall of shame induces the search for novel ar-
chitectures without an explicit objective.

53

ered by evolution but are no longer actively searched. During reproduction, new
offsprings are repeatedly mutated until they result in an individual that does not
belong to Hall of Shame. Mutations that lead to Hall of Shame are not discarded,
but instead used as stepping stones to generate better individuals. Such mem-
ory based evolution is similar to novelty search. However, unlike novelty search
(Lehman (2012)), there is no additional fitness objective, simply an archive.

As shown in Figure5.3(b), the population consists of three types of species -
active, inactive and stagnant. While a species is active, constraints are added to its
crossover and mutation to ensure that its offsprings lie within its space (shown as
green circles in Figure5.3(b)). Once a species has been stagnated i.e. its best fitness
does not improve over X generations (X is a evolution parameter), it is marked
stagnated and it is added to the Hall of Shame. This stagnated species undergoes
severe mutations to reproduce new architectures (shown as yellow circles in Fig-
ure5.3(b)). At a time, only 10 species are actively evaluated (shown in green). This
constraint ensures that active species get enough spawns to ensure a comprehen-
sive search in its vicinity before it is added to the Hall of Shame. Offspring that
belong to new species are pushed into a inactive species list (shown in yellow)
and are only moved to the active list whenever an active species moves to Hall of
Shame.

5.5 Search Space: Node

GP evolution of recurrent nodes starts with a simple fully connected tree.
During the course of evolution, the tree size increases due to insert mutations and
decreases due to shrink mutations. The maximum possible height of the tree is
fixed at 15. However, there is no restriction on the maximum width of the tree.

The search space for the nodes is more varied and several orders of mag-
nitude larger than in previous approaches. More specifically, the main differences
from the state-of-the-art Neural Architecture Search (NAS; Zoph and Le (2016))
are: (1) NAS searches for trees of fixed height 10 layers deep; GP searches for trees
with height varying between six (the size of fully connected simple tree) and 15
(a constraint added to GP). (2) Unlike in NAS, different leaf elements can occur at
varying depths in GP. (3) NAS adds several constraints to the tree structure. For

54

Figure 5.4: Learning curve comparison of LSTM node, NAS node and GP nodes:
Y-axis is the validation perplexity (lower is better) and X-axis is the epoch number.
Notice that LSTM node learns quicker than the other two initially but eventually
settles at a larger perplexity value. This graph demonstrates that the strategy to
determine network fitness using partial training (say based on epoch 10 validation
perplexity) is faulty. A fitness predictor model like Meta-LSTM can overcome this
problem.

example, a linear element in the tree is always followed by a non-linear element.
GP prevents only consecutive non-linearities (they would cause loss of informa-
tion since the connections within a cell are not weighted). (4) In NAS, inputs to the
tree are used only once; in GP, the inputs can be used multiple times within a node.
Thus, GP is allowed greater flexibility to search for recurrent node architectures.

5.6 Extra Recurrent Memory Cells

Most gated recurrent node architectures consist of a single native memory
cell (denoted by output c in Figure5.1(a)). This memory cell is the main reason why
LSTMs perform better than simple RNNs. One key innovation introduced in this
dissertation is to allow multiple native memory cells within a node. The memory
cell output is fed back as input in the next time step without any modification, i.e.
this recurrent loop is essentially a skip connection. Adding another memory cell
in the node therefore does not effect the number of trainable parameters: It only
adds to the representational power of the node.

55

5.7 Meta-LSTM: Speeding up Evolution using Fitness Prediction

In both node and network architecture search, it takes about two hours to
fully train a network until 40 epochs. With sufficient computing power it is possi-
ble to do it: for instance Zoph and Le (2016) used 800 GPUs for training multiple
such solutions in parallel. However, if training time could be shortened, no matter
what resources are available, those resources could be used better.

A common strategy for such situations is early stopping (Real et al. (2017))
i.e. selecting networks based on partial training. For example in case of recurrent
networks, the training time would be cut down to one fourth if the best network
could be picked based on the 10th epoch validation loss instead of 40th. Figure5.4
demonstrates that this is not a good strategy, however. Networks that train faster
in the initial epochs often end up with a higher final loss.

Recent approaches to network performance prediction include Bayesian
modeling (Klein et al. (2017)) and regression curve fitting Baker et al. (2017). The
learning curves for which the above methods are deployed are much simpler as
compared to the learning curves of structures discovered by evolution Figure 5.5.

To overcome costly evaluation and to speed up evolution, a Meta-LSTM
framework for fitness prediction was developed in this dissertation. Meta-LSTM
is a sequence-to-sequence model (Sutskever et al. (2014)) that consists of an en-
coder RNN and a decoder RNN (Figure 5.6(a)). Such sequence-to-sequence models
have produced state-of-the-art results in challenging time-series prediction prob-
lems and generally outperform bayesian and regression approaches Suilin (2017).

In the Meta-LSTM, validation perplexity of the 8, 9 and 10 epochs is pro-
vided as sequential input to the encoder, and the decoder is trained to predict
the validation loss at epoch 40 (Figure5.6). Experiments showed that only three
encoder inputs are enough to predict the full learning curve. Training data for
these models is generated by fully training sample networks (i.e. until 40 epochs).
The loss is the mean absolute error percentage at epoch 40. This error measure is
used instead of mean squared error because it is unaffected by the magnitude of
perplexity (poor networks can have very large perplexity values that overwhelm
MSE). The hyperparameter values of the Meta-LSTM were selected based on its
performance in the validation dataset.

Due to the larger search space of evolution, the validation perplexity values

56

Figure 5.5: Example learning curves: learning curves for LSTM networks with
different node architectures are plotted (Penn Tree Bank dataset). All the curves
are plotted for the same hyper-parameter setting. Each curve corresponds to a
network constructed from a unique recurrent node architecture. The curves are
non-linear and therefore not easy to predict. This shows as fitness prediction to
evolved networks is challenging and require sophisticated methods.

57

Figure 5.6: (a) Three Meta-LSTM models: three separate Meta-LSTM models are
trained based on the range of validation perpelxity values. All three models are
alike except for the fact that Model 3 takes logarithmic inputs. (b) Meta-LSTM
model: this is a sequence-to-sequence (seq2seq) model that takes the validation
perplexity of the 8th, 9th and 10th epochs as sequential input and predicts the val-
idation perplexity at epoch 40. The green rectangles denote the encoder and the
orange rectangles denote the decoder. Thus, the encoder length is 3 and the de-
coder length is 30. Decoder loss is computed at each step and averaged to generate
a single final loss. Once trained and deployed, Meta-LSTM provides 4x speedup
during network evaluation.

(i.e. training data of Meta-LSTM) have a high variance (from 70 to 1020 as shown in
Figure 5.5). Additionally, it is more important to have accurate epoch 40 perplexity
prediction for smaller values than for the larger values. As a result, three separate
models of meta-lstm are trained depending upon the value of the input. As shown
in Figure 5.6 (a), Model 1 is used for validation perplexity values (for epoch 8, 9
and 10) less than 690. Model 2 is used for values in the range 690-1000 and Model 3
is used for the values in the range 1000-1020. Inputs to model 3 are fed after taking
their logarithm, in order to properly scale them. Other than the difference in the
input data range, all three models are trained in the exact same manner.

Note that Meta-LSTM is trained separately and only deployed for use dur-
ing evolution. Thus, networks can be partially trained with a 4× speedup, and
assessed with near-equal accuracy as with full training.

The Meta-LSTM network consists of two layers, 40 nodes each. To generate
training data for it, 1000 samples from a preliminary node evolution experiment
was obtained, representing a sampling of designs that evolution discovers. Each

58

of these sample networks was trained for 40 epochs with the language modeling
training set; the perplexity on the language modeling validation set was measured
in the first 10 epochs, and at 40 epochs. The Meta-LSTM network was then trained
to predict the perplexity at 40 epochs, given a sequence of perplexity during the
first 10 epochs as input. A validation set of 500 further networks was used to
decide when to stop training the Meta-LSTM, and its accuracy measured with an-
other 500 networks.

In line with Meta-LSTM training, during evolution each candidate is trained
for 10 epochs, and tested on the validation set at each epoch. The sequence of such
validation perplexity values is fed into the trained meta-LSTM model to obtain its
predicted perplexity at epoch 40; this prediction is then used as the tness for that
candidate.

The procedure of evolution of recurrent node is described in Algorithm 3.

5.8 Experimental Setup and Results

The following sections describes the experimental setting for network train-
ing and evolution.

5.8.1 Network Training

During evolution, each network has two layers of 540 units each, and is un-
rolled for 35 time steps. The hidden states are initialized to zero; the final hidden
states of the current minibatch are used as the initial hidden states of the subse-
quent minibatch. The dropout rate is 0.4 for feedforward connections and 0.15 for
recurrent connections Gal and Gharamani (2015). The network weights have L2
penalty of 0.0001. The evolved networks are trained for 10 epochs with a learning
rate of 1; after six epochs the learning rate is decreased by a factor of 0.9 after each
epoch. The norm of the gradients (normalized by minibatch size) is clipped at 10.
Training a network for 10 epochs takes about 30 minutes on an NVIDIA 1080 GPU.
The following experiments were conducted on 40 such GPUs.

The Meta-LSTM consists of two layers, 40 nodes each. To generate training
data for it, 1000 samples from a preliminary node-evolution experiment was ob-
tained, representing a sampling of designs that evolution discovers. Each of these

59

Algorithm 3 Evolution of Recurrent Nodes
Require:

G: Maximum number of generations to run
startgene: Initial seed tree gene representing a recurrent node
N : population size
M : Number of species in the SpeciesList
pop: new population of size N spawned by mutating startgene
Sj : Individual species
Ti: Individual tree representation of node. Includes a species pointer denoting
its membership
Ti.f itness: Fitness of the network constructed by repeating tree node Ti

1: for g = 1 to G do
2: for i = 1 to N do
3: Construct a recurrent network by repeating the tree gene Ti
4: Train the recurrent network for 10 epochs on the training data using Back-

prop
5: Compute Validation Perplexity for each of the 10 epoch
6: Ti.f itness = meta-lstm(validation perplexity of first 10 epochs as input se-

quence)
7: end for

8: Speciate population into m species:S1, S2, . . ., SM {See Algorithm 1}

9: offspring = [], count = 0
10: for j = 1 to M do
11: for k = 1 to Sj.spawns do
12: parents: Use binary tournament selection to pick parent trees within

species Sj

13: offspring[count] = reproduce(parents) {Reproduce within species: See
Algorithm 2}

14: count = count+ 1
15: end for
16: end for

17: pop←offspring

18: end for

60

Figure 5.7: Evolution of recurrent nodes: a population of recurrent tree nodes are
evolved (shown on the left). Each newly created offspring is duplicated to create
a two layered stacked RNN network as shown on the right. An input embedding
layer and an output softmax layer are added to the network to construct the com-
plete language model. The input to the model is the word in the current time step
and the output is the expected word in the next time step. The final epoch val-
idation perplexity of the model is used as its fitness during evolution. The best
evolved network (with the best validation performance) is later selected and fine
tuned with hyperparameter optimization.

61

sample networks was trained for 40 epochs with the language-modeling training
set; the perplexity on the language modeling validation set was measured in the
first 10 epochs, and at 40 epochs. The Meta-LSTM network was then trained to
predict the perplexity at 40 epochs, given a sequence of perplexity during the first
10 epochs as input. A validation set of 500 further networks was used to decide
when to stop training the Meta-LSTM, and its accuracy measured with another 500
networks.

In line with Meta-LSTM training, during evolution each candidate is trained
for 10 epochs, and tested on the validation set at each epoch. The sequence of such
validation perplexity values is fed into the trained meta-LSTM model to obtain its
predicted perplexity at epoch 40; this prediction is then used as the fitness for that
candidate. The individual with the best fitness after 30 generations is scaled to
a larger network consisting of 740 nodes in each layer. This setting matches the
32 Million parameter configuration used by Zoph and Le (2016). A grid search
over drop-out rates is carried out to fine-tune the model. Its performance after 180
epochs of training is reported as the final result (Table 5.1).

Loss Function

Perplexity is used as the loss function for training the language modeling
network. As was described in equation 2.18, perplexity is exponentiated cross
entropy. Cross entropy loss function is commonly used in training deep networks
for classfication tasks (equation 2.19).

The loss function for the Meta-LSTM is mean absolute percentage error.
For mini-batch stochastic gradient descent, the loss is computer per word

by averaging over both the batch size and the unroll length of the network (35
time steps in this case).

Regularization

To prevent over-fitting of the model to the training data, regularization is
used in machine learning models. There are several prescribed regularization tech-
niques for recurrent networks (as discussed in Chapter 2). The language-modeling
network used three such techniques: L2 penalty on the weights, variational drop-

62

pout (Gal and Gharamani (2015)), and shared input, output embeddings (Press
and Wolf (2016)).

During experiments, it was observed that dropping out inputs of the first
recurrent layer made the network unstable leading to diverging results. Thus, the
variational droppout (Gal and Gharamani (2015)) method was modified and the
first recurrent layer inputs were not dropped.

Batch Normalization

Batch normalization is used in deep networks to scale the hidden neuron
activations such that their distribution remains the same throughout the training
process. It prevent covariate shift within hidden layers and improves gradient
flow (Cooijmans et al. (2016)).

Adding a recurrent batch-norm layer to the language-modeling network
gave poor results. One reason for this degradation could be due to regularization
effect of batch-norm. Since the language model already has three types of regular-
ization, adding batch-norm leads to spurious effects. Further understanding this
problem could be an area of future study.

Optimization Algorithm

The language-modeling network is trained with mini-batch SGD. At the
end of each batch, all the gradients are averaged within the batch and across time-
steps, and then applied to the network weights. The weight update rule is given
by:

w = w − η∂Q(w)
∂w

, (5.2)

where:
Q(w) = 1

n

∑N
i=1Qi(w)

The Meta-LSTM is trained with ADAM optimizer. ADAM is similar to SGD
except that it keeps a running mean and variance of the gradients and scales the
gradients accordingly.

63

5.8.2 Evolution Parameters

A population of trees of size 100 was evolved for 30 generations with a
crossover rate of 0.6, insert and shrink mutation probability of 0.6 and 0.3, respec-
tively, and modi rate (i.e. the probability that a newly added node is connected to
memory cell output) of 0.3. A compatibility threshold of 0.3 was used for specia-
tion; species is marked stagnated and added to the Hall of Shame if the best fitness
among its candidates does not improve in four generations. Each node is allowed
to have three outputs: one main recurrent output (h) and two native memory cell
outputs (c and d). See Figure 5.7 for details.

The evolution parameters were not optimized since that requires running
each parameter variation several times. Running each experiment is costly and
therefore, tuning of these parameters is future work.

5.8.3 Meta-LSTM training

Two layered LSTM network with 80 hidden nerurons in each layer. After
training, model 1 achieves an accuracy of 97± 3.1% , model 2 achieves an accuracy
of 85 ± 10.5% and model 3 achieves an accuracy of 60 ± 35%. Adam optimizier
Algorithm 3

5.8.4 Distribution Methodology

The following experiments were run on the 80 NVIDIA 1080Ti GPUs. Since
these machines were a shared resource, custom work-distribution framework was
developed to find an idle machine and utilize it for training. This framework in-
cluded server-client setup: server would run the evolution code on the CPU to
produce offspring networks which were then distributed on client GPUs for train-
ing.

5.8.5 Results

In the following sub-sections, the impact of new features like Hall of Shame
and Meta-LSTM is evaluated. Then the performance of the evolved node is com-
pared against other state-of-the-art methods on Penn Tree Bank.

64

Figure 5.8: Evaluating the effect of Speciation, Hall of Shame and Meta-LSTM:
three evolution experiments are conducted. In the first experiment, speciation,
Hall of Shame and Meta-LSTM are disabled (blue curve). In the second, experi-
ment, speciation and Hall of Shame are enabled (green curve). In the third experi-
ment, speciation, Hall of Shame and Meta-Lstm are enabled (red curve). For all the
three experiments, each network is partially trained till epoch 10. The epoch 10 val-
idation perplexity is used as the fitness in the first two experiments. For the third
experiment, Meta-LSTM is used to predict epoch 40 validation perplexity which is
then used as the network fitness. After evolution has completed, the best individ-
uals from each generation are picked and fully trained till epoch 40. For all three
experiments, this graph plots the epoch 40 performance of the best network in a
given generation. The plot shows that as evolution progresses, speciation and hall
of shame select better individuals (green curve v/s. blue curve). Further enabling
Meta-LSTM leads to selection of best networks (red curve). The results suggests
that inclusion of Speciation, Hall of Shame, and Meta-LSTM in the evolution can
improve the overall run-time and benchmark performance.

65

Table 5.1: Single Model Perplexity on Test set of Penn Tree Bank. Node evolved
using GP outperforms the node discovered by NAS (Zoph(2016)) and Recurrent
Highway Network (Zilly et al. (2016)) in various configurations.

Model Parameters Test Perplexity
Gal (2015) - Variational LSTM 66M 73.4

Zoph (2016) 20M 71.0
GP Node Evolution 20M 68.2

Zoph (2016) 32M 67.9
GP Node Evolution 32M 66.5

Zilly et al. (2016) , shared embeddings 24M 66.0
Zoph (2016), shared embeddings 25M 64.0

GP Evolution, shared embeddings 25M 63.0

Understanding the Impact of Speciation, Hall of Shame and Meta-LSTM

It is also important to understand the impact of using Speciation, Hall of
Shame and Meta-LSTM in evolution. For this purpose, three evolution experi-
ments were conducted: 1) Single Species with no speciation and no Hall of Shame,
2) With Speciation and Hall of Shame enabled 3) Speciation, Hall of Shame and
Meta-LSTM enabled. In each experiment, the individual in the population was
assigned a fitness equal to its 10th epoch validation perplexity. As evolution pro-
gressed, in each generation, the best individual was trained fully till epoch 40. The
epoch 40 validation perplexity of best individuals in these three experiments has
been plotted in Figure 5.8. This figure demonstrates incremental gains with each
feature. For e.g. enabling Speciation and Hall of Shame results in better cham-
pions at the end of 21 generations. Subsequently, enabling Meta-LSTM gives the
networks with the best epoch 40 validation perplexity. This comparison shows
that individuals that are selected based upon meta LSTM prediction perform bet-
ter than the ones selected using only partial training.

Evolved Nodes

The best evolved node is shown Figure 5.9. The evolved node reuses in-
puts as well as utilize the extra memory cell pathways. As shown in Table 5.1, the
evolved node (called GP Node evolution in the table) achieves a test performance
of 68.2 for 20 Million parameter configuration on Penn Tree Bank. This is 2.8 per-

66

Figure 5.9: (a) Comparing Evolved recurrent node with NASCell and LSTM: the
green input elements denote the native memory cell outputs from the previous
time step (c, d). The red colored inputs are formed after combining the node out-
put from the previous time step h(t − 1) and the new input from the current time
step x(t). In all three solutions, the memory cell paths include relatively few non-
linearities. The evolved cell utilizes the extra memory cell in different parts of the
node. GP evolution also reuses inputs unlike the NAS and LSTM solution. With
these discovered features, the evolved cell outperforms both LSTM and NASCell
in the language-modeling task.

67

plexity points better than the test performance of the node discovered by NAS
(Zoph(2016) in the table) in the same configuration. Evolved node also outper-
forms NAS in the 32 Million configuration (68.1 v/s. 66.5). Recent work has shown
that sharing input and output embedding weight matrices of neural network lan-
guage models improves performance (Press and Wolf (2016)). The experimental
results obtained after including this method are marked as shared embeddings in
Table 5.1.

One interesting aspect of the evolved node is the discovery of LSTM like
output gating. Figure 5.9 (a) shows the LSTM node with control logic (o input
followed by a sigmoid activation) used for output gating. A similar output gating
was discovered by evolution in Figure 5.9 (c) (See inputs k and m, each followed
by a sigmoid). The result demonstrates that evolution can find solutions that not
only outperform human designs, but also employ similar underlying principles.

5.9 Conclusions

Recent studies on metalearning methods such as neural architecture search
and evolutionary optimization have shown that LSTM performance can be im-
proved by complexifying it further (Zoph and Le (2016) Miikkulainen and et al.
(2017)). This chapter develops a new method along these lines, recognizing that
a large search space where significantly more complex node structures can be
constructed could be beneficial. The method is based on a tree encoding of the
node structure so that it can be efficiently searched using genetic programming.
Indeed, the approach discovers significantly more complex structures than be-
fore, and they indeed perform significantly better: Performance in the standard
language modeling benchmark, where the goal is to predict the next word in a
large language corpus, is improved by 6 perplexity points over the standard LSTM
(Zaremba et al. (2014)), and 0.9 perplexity points over the previous state of the art,
i.e. reinforcement-learning based neural architecture search (Zoph and Le (2016)).

GP-NEAT is an effective tool to evolve such nodes. The search can be made
more efficient, by keeping an archive of stagnated species called Hall of Shame.
The network evaluation time can be reduced by using Meta-LSTM that predicts the
learning curve of each network. Thus, 4x speed-up in evolution can be achieved.

68

More analysis of the evolved node is required to understand whether all
nodes are necessary.

In the next chapter, the node evolved for language-modeling is evaluated in
the music-modeling domain. This can give us insights into whether the discovered
solution is transferrable to other domains.

69

Chapter 6

Recurrent Networks for Music

The problem of pattern detection in music involves predicting future mu-
sical notes, given the notes that have occurred in the past. Music has temporal
patterns and previous work (in Lewandowski et al. ((2012); Lavrenko and Pick-
ens (2003.); Eck and Schmidhuber ((2002)) demonstrated that these patterns are
challenging to learn using traditional machine learning techniques. Learning these
patterns often requires human intervention for feature generation. In this chapter,
the best evolved node from the node evolution experiment in Chapter 5 is used
for music note prediction. Musical data consists of melodies which requires short
term memory and repetitions that require long term memory.

6.1 Music Language Model

The problem domain considered here is the polyphonic music prediction
(See Figure 6.1). Music has several possible representations (e.g. .wav, .mp3 etc.).
This work uses MIDI (www.midi.org) representation of music, although the mod-
els proposed here can applied to other representations of music as well. In MIDI
files, the onset, duration, and pitch of every note in a piece of music is known.
But no other information is necessarily available. The pitches are encoded as num-

Figure 6.1: Polyphonic music data in piano roll format: a 2D representation of a
single musical track. Dark circles represent notes which are played at a given time
instant. There are 88 notes in total corresponding to 88 piano keys. Thus musical
sounds can be represented as discrete symbols.

70

bers, ranging from 1 to 128. The durations are not symbolic, but instead are given
as millisecond integers. The onset times also are not symbolic, but occur at mil-
lisecond integer locations. Since only piano datasets are used for this study, the
maximum number of notes present at a given time is 88 i.e. the key range of the
piano. Monophonic music is such that, if a note is playing, no new note may start
until the previous note has finished. In polyphonic music, there is no such restric-
tion. Any note may start or finish before any other note finishes. Polyphonic MIDI
can therefore be viewed as a two-dimensional graph, with millisecond time along
the x-axis, and MIDI note number (21 to 108) along the y-axis. At any point along
the y-axis, notes turn on, remain on for a particular duration, and then turn back
off again as shown in Figure 10. Black circles represent notes being on. White cir-
cles represent notes being off. With this data representation, the problem statement
can be described concretely - given a set of musical note history, predict the note
values (1/0) at the next time step.

6.1.1 Experimental Setup

As described in Section 2.7.2, Piano-midi.de dataset is used as a benchmark
data. This data is divided into train (60%), test (20%) and validation (20%) sets.
The music language model consists of two stacked recurrent layers, each of width
128 (See Figure 6.2). The input and output layers are 88 wide each. The network is
trained for 50 epochs with Adam at a learning rate of 0.01. The network is trained
by minimizing cross entropy between the output of the network and the ground
truth. For evaluation, F1 score is computed on the test data. F1 score is the har-
monic mean of precision and recall (higher is better).

6.1.2 Results

Three networks were constructed: first with LSTM nodes, second NAS node
and the third with evolved node. All the three networks were trained under the
same setting as described in the previous section. The F1 score of each of the three
models is shown in Table 6.1. LSTM node outperforms both NAS and evolved
nodes. This result is interesting because both NAS and evolved nodes significantly
outperformed LSTM node in the language-modeling task. This results suggests

71

Figure 6.2: Music Language Model used for Generation: The figure on the right
describes the architecture of the music language model. It is similar to the natural
language-model as shown in Figure 2.3. There are two key differences - first, the
input vector is not one-hot in music due to the presence of chords; second, the
output layer is a sigmoid here unlike the softmax layer in the natural language
case. The sigmoid layer allows generation of chords at the network output. The
figure on the left is a snapshot of the music generation demo that was developed
to exhibit the power of recurrent networks. It shows a set of white and black keys
similar to the ones present on an actual piano. The user can enter a few notes using
the keyboard. These notes are fed as a sequence into the music language model on
the right. The music language then takes over and generates new outputs. The
network outputs are then fed into its input in the next time-step. Thus the network
works as a generative model.

72

Table 6.1: F1 scores computed on Piano-Midi dataset. LSTM outperforms both the
evolved node and NAS node.

Model F1 score
LSTM 0.548

Zoph (2016) 0.47
GP Node Evolution 0.45

that NAS and evolved nodes are custom solution for a specific domain. In the
future, custom nodes can be evolved for the music domain.

6.2 AI Music Composer

To demonstrate the power of recurrent networks, an interactive music com-
postion application was developed. The trained music language model from the
above experiment was used in a generative setting. The user can enter a few notes
using their keyboard (See Figure 6.2 on left). The timing does not matter; the se-
quence is converted into a sequence of quarter notes automatically. These notes are
fed as a sequence into the music language model on the right. The music model
then takes over and generates new outputs. The network outputs are then fed into
its input in the next time-step. Thus the network works as a generative model.

This is a simple demonstration of how humans and AI can colloborate to
create new music. Here is the weblink for the application: Click here

73

https://www.sentient.ai/sentient-labs/ea/lstm-music/

Chapter 7

Future Work

There are four main experiments that can be performed in the future.
First, the Info-Max objective can be combined with the idea of artificial cu-

riosity (Schmidhuber (2010)). While the idea of maximizing agent information
is proposed to increase the depth of the agent’s memory, it can indirectly lead to
exploratory behaviors. Artificial curiosity is one such concept, where the agent
is explicitly rewarded for exploring areas in the environment that provide more
information.

Second, instead of training weights for each new offspring from scratch, the
offspring can inherit the weights of one of the parent. This would allow partial
training of the offspring and thus reduce evaluation time.

Third, the ideas from Chapter 4 and Chapter 5 can be combined i.e. both
layer connectivity and recurrent node structure can be evolved simultaneously us-
ing bi-level methods (Miikkulainen and et al. (2017)).

Fourth, the ideas from recurrent highway networks (Zilly et al. (2016)) can
be borrowed and employed here. In Zilly et al. (2016), the internal weights of the
recurrent node are trained using backpropagation. This was made possible due
to the presence of highway circuitry with every internal non-linearity. Including
such highway logic in the recurrent tree nodes can allow the internal node weights
to be trained.

74

Chapter 8

Conclusions

In many areas of engineering design, the systems have become so complex
that humans can no longer optimize them, and instead, automated methods are
needed. This has been true in VLSI design for a long time, but it has also become
compelling in software engineering: The idea in "programming by optimization"
is that humans should design only the framework and the details should be left
for automated methods such as optimization (Hoos (2012)). Recently similar limi-
tations have started to emerge in deep learning. The neural network architectures
have grown so complex that humans can no longer optimize them; hyperparam-
eters and even entire architectures are now optimized automatically through gra-
dient descent (Andrychowicz and et al. (2016)), Bayesian parameter optimization
(Malkomes et al. (2015)), reinforcement learning (Zoph and Le (2016) Baker et al.
(2016)), and evolutionary computation (Miikkulainen and et al. (2017) Real et al.
(2017), et al. (2017)). Improvements from such automated methods are significant
and suggest that the structure of the network matters.

This dissertation shows that the same approach can be used to improve ar-
chitectures that have been used essentially unchanged for decades. The case in
point is the Long Short-Term Memory (LSTM) network (Hochreiter and Schmid-
huber (1997b)). It was originally proposed in 1992; with the vastly increased com-
putational power, it has recently been shown a powerful approach for sequential
tasks such as speech recognition, language understanding, language generation,
and machine translation, in some cases improving performance 40% over tradi-
tional methods (Bahdanau et al. (2015b)). The basic LSTM structure has changed
very little in this process, and thorough comparisons of variants concluded that
there’s little to be gained by modifying it further (Klaus et al. (2014) Jozefowicz
et al. (2015)).

New techniques are proposed in this dissertation to automatically design
LSTM networks for problems in RL domain and supervised learning domain. The
next section lists key contributions.

75

8.1 Contributions

1. The first contribution of this work is an understanding of the impact of evolv-
ing networks consisting of RNNs, LSTMs in RL based memory problems.
LSTMs outperform RNNs in tasks that require shallow memory. However,
for deeper memory tasks, the performance of evolved LSTMs do not scale.
The reward function in deeper memory problems is sparse, thus limiting the
agent to sub-optimial behaviors.

2. To overcome this problem, a second contribution is the design of a new ob-
jective called Information-Maximization. This is an unsupervised objective
and therefore does not depend on careful design of the environment. The
training of the agent network is split into two phases. In the first phase,
the agent captures maximal information from the environment and stores it
in an efficient manner in the LSTM layer. Subsequently, during the reward
maximization phase, the agent can utilize its stored information and escape
sub-optimal behaviors. Information maximization within an agent is in-fact
a general idea that can be combined with other RL methods like policy gra-
dient or Q-learning as well.

3. For supervised learning problems like language modeling, only the architec-
ture of the network is evolved and the weights are trained using BPTT. The
third contribution of this research is to demonstrate how a simple evolution-
ary algorithm can be applied to discover novel connections between LSTM
layers. One such evolved solution consisted of a feedback skip connection
from the higher layer LSTM to the lower layer LSTM. This pathway doubled
the network depth and facilitated gradient flow, thus improving the overall
network performance in the language-modeling task.

4. Fourth contribution of this work is to deploy a combination of GP and NEAT
(GP-NEAT) to evolve gated recurrent nodes. Modifications are introduced
in GP-NEAT so that tree structural comparisons are more accurate, thus pre-
venting redundant trees in the population.

5. Inspired by the encouraging results in Chapter 4, an extra recurrent connec-
tion was introduced within a node. Evolution is then allowed to construct

76

the appropriate glue logic surrounding the two recurrent connections.

6. Sixth contribution is the design of an archive called Hall of Shame. This
archive drives evolution towards new architectural search space without ex-
plicitly maximizing a novelty objective.

7. A Meta-LSTM was designed that predicts the final performance of the net-
work under evaluation. It uses a sequence-to-sequence model that takes in
the learning curve values from the first few epochs and then predicts the re-
maining curve. This innovation significantly speeds up network evaluation,
thus saving both money and time.

8. GP-NEAT used speciation, Hall of Shame and Meta-LSTM to quickly dis-
cover new gated recurrent node that outperforms both LSTM and NAS. The
evolved node is shown in Figure 5.9.

9. Transfering the node evolved for the language modeling task to the music
prediction task yields poorer results (when compared to LSTM). This pro-
vides new insights into the power of architecture search. Although, both
evolved and NAS node significantly outperformed LSTMs in language-modeling,
they were customized for that domain only. New recurrent architectures
need to be discovered for the music domain.

10. The final contribution of this work is to create an interactive AI music com-
poser. Human user and the music-modeling network can collaborate to cre-
ate new songs.

8.2 Conclusions

Supervised learning problems with large data and RL problems with sparse
rewards, both face a common challenge: how to automatically design networks
for these problems? Experiments presented in this work demonstrate the power
of evolutionary techniques to solve such problems. While the human memory is
potentially infinite, the same is not true for artificially created memory through
recurrence in RL agents. Gathering and storing information in the recurrent net-
works in an efficient manner is therefore important. A new unsupervised object

77

called Info-max is developed in this research. When combined with neuroevolu-
tion, this objective can be used to simultaneously drive the agent exploration and
complexification of its recurrent network in a non-parameteric manner.

Neuroevolution can also discover new pathways in large and deep recur-
rent networks used for supervised learning. It can be applied to construct new
gated recurrent nodes that are deep networks within a network. Results from
Chapter 6 indicate that novel architectures discovered for language-modeling are
not easily transferrable to other domains like music. However, with new innova-
tions presented in Chapter 5 that speed up architecture search, a custom solution
can be quickly discovered in new domains. Finally, the results from this disser-
tation indicate that letting an AI system design another AI system is a promising
area of research and can lead to discoveries that are beyond human imagination.

78

Bibliography

C. Adami. The use of information theory in evolutionary biology,. Annals NY Acad.
Sci., 1256:49–65, 2012.

M. Andrychowicz and et al. Learning to learn by gradient descent by gradient
descent. In NIPS, 2016.

Marcin Andrychowicz, Misha Denil, Sergio Gómez, Matthew W Hoffman, David
Pfau, Tom Schaul, and Nando de Freitas. Learning to learn by gradient descent
by gradient descent. In D. D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, and
R. Garnett, editors, Advances in Neural Information Processing Systems 29, pages
3981–3989. Curran Associates, Inc., 2016. URL http://papers.nips.cc/paper/

6461-learning-to-learn-by-gradient-descent-by-gradient-descent.pdf.

D. Bahdanau, K. Cho, and Y. Bengio. Neural machine translation by jointly learn-
ing to align and translate. In In ICLR, 2015a.

D. Bahdanau, K. Cho, and Y. Bengio. Neural machine translation by jointly learn-
ing to align and translate. In In ICLR, 2015b.

B. Baker, O. Gupta, N. Naik, and R. Raskar. Designing neural network architectures
using reinforcement learning. 2016. URL https://arxiv.org/pdf/1611.02167v2.

pdf.

Bowen Baker, Otkrist Gupta, Ramesh Raskar, and Nikhil Naik. Practical neu-
ral network performance prediction for early stopping. CoRR, abs/1705.10823,
2017. URL http://arxiv.org/abs/1705.10823.

B. Bakker. Reinforcement learning with long short-term memory. In Advances in
Neural Information Processing Systems 14, pages 1475–1482, 2002.

B. Bakker, V. Zhumatiy, G. Gruener, and J. Schmidhuber. A robot that
reinforcement-learns to identify and memorize important previous observa-
tions. In In Proceedings of the 2003 IEEE/RSJ International Conference on Intelligent
Robots and Systems, IROS 2003, pages 430–435, 2003.

79

http://papers.nips.cc/paper/6461-learning-to-learn-by-gradient-descent-by-gradient-descent.pdf
http://papers.nips.cc/paper/6461-learning-to-learn-by-gradient-descent-by-gradient-descent.pdf
https://arxiv.org/pdf/1611.02167v2.pdf
https://arxiv.org/pdf/1611.02167v2.pdf
http://arxiv.org/abs/1705.10823

J. Bayer, D. Wierstra, J. Togelius, and J. Schmidhuber. Evolving memory cell struc-
tures for sequence learning. In Proc. ICANN, pages 755–764, 2009a.

J. Bayer, D. Wierstra, J. Togelius, and J. Schmidhuber. Evolving memory cell struc-
tures for sequence learning. In In Artificial Neural Networks ICANN, pages 755–
764, 2009b.

A. J. Bell and T. J. Sejnowski. An information-maximisation approach to blind
separation and blind deconvolution. Neural Computation, pages 1129–1159, 1995.

J.N. Bruck. Decades-long social memory in bottlenose dolphins. Proceedings of the
Royal Society B: Biological Sciences, 280, (2013).

Kyunghyun Cho, Bart van Merrienboer, Çaglar Gülçehre, Fethi Bougares, Hol-
ger Schwenk, and Yoshua Bengio. Learning phrase representations using RNN
encoder-decoder for statistical machine translation. CoRR, abs/1406.1078, 2014.
URL http://arxiv.org/abs/1406.1078.

J. Chung, C. Gulcehre, K. Cho, and Y. Bengio. Gated feedback recurrent neural
networks. arXiv preprint, arxiv/1502.02367, 2015.

Tim Cooijmans, Nicolas Ballas, César Laurent, and Aaron C. Courville. Recurrent
batch normalization. CoRR, abs/1603.09025, 2016.

F. Doshi. The infinite partially observable markov decision process. In NIPS,2009,
2009.

D. Eck and J. Schmidhuber. Finding temporal structure in music: Blues improvisa-
tion with lstm recurrent networks. In Neural Networks for Signal Processing, IEEE
workshop, (2002).

C. Fernando et al. Pathnet: Evolution channels gradient descent in super neural
networks. 2017. URL https://arxiv.org/abs/1701.08734.

F. Francone, M. Conrads, W. Banzhaf, and P. Nordin. Homologous crossover in
genetic programming. In GECCO, 1999.

Y. Gal and Z. Gharamani. A theoretically grounded application of dropout in re-
current neural networks. 2015.

80

http://arxiv.org/abs/1406.1078
https://arxiv.org/abs/1701.08734

F. Gomez and R. Miikkulainen. Incremental evolution of complex general behav-
ior. Adaptive Behavior, 5:317–342, 1997.

A. Graves and N. Jaitly. Towards end-to-end speech recognition with recurrent
neural networks. In In Proc. 31st ICML, pages 1764–1772, (2014).

M. Hausknecht and P. Stone. Deep recurrent q-learning for partially observable
mdps. arXiv preprint, arxiv/1507.06527, 2017.

S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural Computation,
9(8):1735–1780, 1997a.

S. Hochreiter and J. Schmidhuber. Long short term memory. Neural Computation,
1997b.

S. Hochreiter, Y. Bengio, P. Frasconi, and J. Schmidhuber. Gradient flow in recur-
rent nets: the difficulty of learning long-term dependencies. In A Field Guide to
Dynamical Recurrent Neural Networks. IEEE Press, 2001.

Holger Hoos. Programming by optimization. Communications of the ACM, 55:70–
80, 2012.

R. Jozefowicz, W. Zaremba, and I. Sutskever. An empirical exploration of recurrent
network architectures. In In Proceedings of the 32nd International Conference on
Machine Learning, pages 2342–2350, 2015.

Rafal Józefowicz, Oriol Vinyals, Mike Schuster, Noam Shazeer, and Yonghui Wu.
Exploring the limits of language modeling. CoRR, abs/1602.02410, 2016. URL
http://arxiv.org/abs/1602.02410.

Nal Kalchbrenner, Ivo Danihelka, and Alex Graves. Grid long short-term memory.
CoRR, abs/1507.01526, 2015. URL http://arxiv.org/abs/1507.01526.

M. Klapper-Rybicka, N. N. Schraudolph, and J. Schmidhuber. Unsupervised learn-
ing in lstm recurrent neural networks. In ICANN, pages 684–691. Springer-
Verlag, 2001.

G. Klaus, R. Srivastava, J. KoutnÂt’Äśk, R. Steunebrink, and J. Schmidhuber. Lstm:
A search space odyssey. arXiv preprint, arxiv/1503.04069, 2014.

81

http://arxiv.org/abs/1602.02410
http://arxiv.org/abs/1507.01526

Aaron Klein, Stefan Falkner, Jost Tobias Springenberg, and Frank Hutter. Learning
curve prediction with bayesian neural networks. In ICLR, 2017.

J. Koutnik, J. Schmidhuber, and F. Gomez. Evolving deep unsupervised convolu-
tional networks for vision-based reinforcement learning. In In Proceedings of the
2014 Conference on Genetic and Evolutionary Computation, (GECCO 2014), pages
541–548, 2014.

V. Lavrenko and J. Pickens. Polyphonic music modeling with random fields. In
ACM MM, pages 120–129, 2003.

J. Lehman. Evolution through the search for novelty. 2012.

J. Lehman and R. Miikkulainen. Overcoming deception in evolution of cognitive
behaviors. In Proceedings of the Genetic and Evolutionary Computation Conference
(GECCO 2014), Vancouver, BC, Canada, July 2014.

N. B. Lewandowski, Y. Bengio, and P. Vincent. Modeling temporal dependencies in
high-dimensional sequences: Application to polyphonic music generation and
transcription. In International Conference on Machine Learning, (2012).

G. Malkomes, C. Schaff, and R. Garnett. Bayesian optimization for automated
model selection. In NIPS, 2015.

M. P. Marcus, M. A. Marcinkiewicz, and B. Santorini. Building a large annotated
corpus of english: The penn treebank. Computational linguistics, 19(2), 1993.

G. Martin-Ordas, D. Berntsen, and Call J. Memory for distant past events in chim-
panzees and orangutans. Current Biology, 23(15):1438–1441, (2013).

R. Miikkulainen and et al. Evolving deep neural networks. 2017. URL https:

//arxiv.org/abs/1703.00548.

D. D. Monner and J. A. Reggia. A generalized lstm-like training algorithm for
second-order recurrent neural networks. Neural Networks, 25:70–83, 2012.

C. Ollion, T. Pinville, and D. Stephane. With a little help from selection pressures:
evolution of memory in robot controllers. In In Artificial Life, volume 13, pages
407–414, 2012.

82

https://arxiv.org/abs/1703.00548
https://arxiv.org/abs/1703.00548

Razvan. Pascanu, Tomas. Mikolov, and Yoshua Bengio. On the difficulty of training
recurrent neural networks. In ICML, Atlanta, GA, USA, June 2013.

Ofir Press and Lior Wolf. Using the output embedding to improve language mod-
els. arXiv preprint, arxiv/1608.05859, 2016.

Esteban Real, Sherry Moore, Andrew Selle, Saurabh Saxena, Yutaka Leon Sue-
matsu, Jie Tan, Quoc V.Le, and Alexey Kurakin. Large-scale evolution of image
classifiers. 2017. URL https://arxiv.org/abs/1703.01041.

S. Risi, C. E. Hughes, and K. O. Stanley. Evolving plastic neural networks with
novelty search. Adaptive Behavior, 18(6):470–491, 2010.

Andrew M. Saxe, James L. McClelland, and Surya Ganguli. Exact solutions to
the nonlinear dynamics of learning in deep linear neural networks. CoRR,
abs/1312.6120, 2013. URL http://arxiv.org/abs/1312.6120.

J. Schmidhuber. Formal theory of creativity, fun, and intrinsic motivation (1990-
2010). In IEEE Transactions on Autonomous Mental Development, volume 2(3),
pages 230–247, 2010.

N. N. Schraudolph and T. J. Sejnowski. Unsupervised discrimination of clustered
data via optimization of binary information gain. Advances in Neural Information
Processing Systems, 5:499–506, 1993.

J. Schrum, I. Karpov, and R. Miikkulainen. Ut2: Human-like behavior via neu-
roevolution of combat behavior and replay of human traces. In Proceedings of the
IEEE Conference on Computational Intelligence and Games (CIG 2011), pages 329–
336, 2011.

. Schuster and K. K. Paliwal. Bidirectional recurrent neural networks. In IEEE
Transactions on Signal Processing, 1997.

Stanislau Semeniuta, Aliaksei Severyn, and Erhardt Barth. Recurrent dropout
without memory loss. Technical report, 2016. URL http://arxiv.org/abs/1603.

05118.

K. O. Stanley and R. Miikkulainen. Competitive coevolution through evolutionary
complexification. Journal of Artificial Intelligence Research, 21:63–100, 2004.

83

https://arxiv.org/abs/1703.01041
http://arxiv.org/abs/1312.6120
http://arxiv.org/abs/1603.05118
http://arxiv.org/abs/1603.05118

K. O. Stanley, B. Bryant, and R. Miikkulainen. Evolving adaptive neural networks
with and without adaptive synapses. In Proceedings of the 2003 Congress on Evolu-
tionary Computation, Piscataway, NJ, 2003. IEEE. URL http://nn.cs.utexas.edu/

?stanley:cec03.

Kenneth O. Stanley and Risto Miikkulainen. Evolving neural networks through
augmenting topologies. Evolutionary Computation, 10(2):99–127, 2002. URL http:

//nn.cs.utexas.edu/?stanley:ec02.

M. Suganuma, S. Shirakawa, and T. Nagao. A genetic programming approach to
designing convolutional neural network architectures. In GECCO, 2017.

Arthur Suilin. Web traffic time series forecasting. https://www.kaggle.com/c/web-

traffic-time-series-forecasting/discussion/43795, 2017. Accessed: 2017.

I. Sutskever, O. Vinyals, and Q. Le. Sequence to sequence learning with neural
networks. In NIPS, 2014.

P. A. Szerlip, G. Morse, J. K. Pugh, and K. O. Stanley. Unsupervised feature learn-
ing through divergent discriminative feature accumulation. In In Proc. of the
Twenty-Ninth AAAI Conference on Artificial Intelligence, 2015.

L. Tujillo, L. Munoz, E. Lopez, and S.Silva. neat genetic programming: Controlling
bloat naturally. In Information Sciences, 2015.

O. Vinyals, A. Toshev, S. Bengio, and D. Erhan. Show and tell: A neural image
caption generator. In Proc. of CVPR, pages 3156–3164, 2015.

H. Watts and K. E. Holekamp. Interspecific competition influences reproduction
in spotted hyenas. Journal of Zoology, 276(4):402–410, (2008).

D. Wierstra, A. Foerster, J. Peters, and J. Schmidhuber. Recurrent policy gradients.
Logic Journal of IGPL, 18(2):620–634, (2010).

R. J. Williams. Simple statistical gradient-following algorithms for connectionist
reinforcement learning. 1992.

Adrien Ycart and Emmanouil Benetos. A study on lstm networks for polyphonic
music sequence modelling. In ISMIR, 2017.

84

http://nn.cs.utexas.edu/?stanley:cec03
http://nn.cs.utexas.edu/?stanley:cec03
http://nn.cs.utexas.edu/?stanley:ec02
http://nn.cs.utexas.edu/?stanley:ec02
https://www.kaggle.com/c/web-traffic-time-series-forecasting/discussion/43795
https://www.kaggle.com/c/web-traffic-time-series-forecasting/discussion/43795

W. Zaremba, I. Sutskever, and Oriol Vinyals. Recurrent neural network regulariza-
tion. arXiv preprint, arxiv/1409.2329, 2014.

Y. Zhang and M. Zhang. A multiple-output program tree structure in genetic pro-
gramming. In Complex Systems, 2004.

Julian G. Zilly, Rupesh Kumar Srivastava, Jan Koutník, and Jürgen Schmidhuber.
Recurrent highway networks. CoRR, abs/1607.03474, 2016. URL http://arxiv.

org/abs/1607.03474.

B. Zoph and Q. V. Le. Neural architecture search with reinforcement learning. 2016.
URL https://arxiv.org/pdf/1611.01578v1.pdf.

85

http://arxiv.org/abs/1607.03474
http://arxiv.org/abs/1607.03474
https://arxiv.org/pdf/1611.01578v1.pdf

	Introduction
	Motivation
	Challenges
	Approach
	Guide to the Reader

	Background and Related Work
	Vanishing Gradients in Recurrent Neural Networks
	LSTM
	Applications of LSTMs
	LSTMs for Reinforcement Learning problems

	Improvements in LSTMs
	Regularization
	Improvements through Architecture Modifications

	Evolutionary Techniques - Genetic Programming, NEAT
	NEAT
	Genetic Programming

	Diversity in Evolution
	Problem Domains
	Language
	Music
	RL Memory Tasks

	Evolving LSTM Network Structure and Weights using Unsupervised Objective - InfoMax
	Problem of Deception
	Unsupervised Training of LSTM
	Memory Tasks
	Sequence Classification
	Sequence Recall

	Experiments
	Experiment 1: Comparing RNNs vs. LSTM
	Experiment 2: Scaling NEAT-LSTM

	Conclusions

	Evolving Multi-layered LSTM structures as Graphs
	Evolution Search Space
	Experimental Setup
	Results
	Conclusions

	Evolving Recurrent Nodes
	Tree Based Representation of Recurrent Node
	GP-NEAT: Speciation
	GP-NEAT: Crossover and Mutation
	Hall of Shame
	Search Space: Node
	Extra Recurrent Memory Cells
	Meta-LSTM: Speeding up Evolution using Fitness Prediction
	Experimental Setup and Results
	Network Training
	Evolution Parameters
	Meta-LSTM training
	Distribution Methodology
	Results

	Conclusions

	Recurrent Networks for Music
	Music Language Model
	Experimental Setup
	Results

	AI Music Composer

	Future Work
	Conclusions
	Contributions
	Conclusions

	Bibliography
	sig page.pdf
	Introduction
	Motivation
	Challenges
	Approach
	Guide to the Reader

	Background and Related Work
	Vanishing Gradients in Recurrent Neural Networks
	LSTM
	Applications of LSTMs
	LSTMs for Reinforcement Learning problems

	Improvements in LSTMs
	Regularization
	Improvements through Architecture Modifications

	Evolutionary Techniques - Genetic Programming, NEAT
	NEAT
	Genetic Programming

	Diversity in Evolution
	Problem Domains
	Language
	Music
	RL Memory Tasks

	Evolving LSTM Network Structure and Weights using Unsupervised Objective - InfoMax
	Problem of Deception
	Unsupervised Training of LSTM
	Memory Tasks
	Sequence Classification
	Sequence Recall

	Experiments
	Experiment 1: Comparing RNNs vs. LSTM
	Experiment 2: Scaling NEAT-LSTM

	Conclusions

	Evolving Multi-layered LSTM structures as Graphs
	Evolution Search Space
	Experimental Setup
	Results
	Conclusions

	Evolving Recurrent Nodes
	Tree Based Representation of Recurrent Node
	GP-NEAT: Speciation
	GP-NEAT: Crossover and Mutation
	Hall of Shame
	Search Space: Node
	Extra Recurrent Memory Cells
	Meta-LSTM: Speeding up Evolution using Fitness Prediction
	Experimental Setup and Results
	Network Training
	Evolution Parameters
	Meta-LSTM training
	Distribution Methodology
	Results

	Conclusions

	Recurrent Networks for Music
	Music Language Model
	Experimental Setup
	Results

	Evolution of Recurrent Node for Music
	AI Music Composer

	Future Work
	Conclusions
	Contributions
	Conclusions

	Bibliography

