

Copyright

by

Vignesh Naganathan

2015

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UT Digital Repository

https://core.ac.uk/display/211332502?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

The Report Committee for Vignesh Naganathan
Certifies that this is the approved version of the following report:

A Comparative Analysis of Parallel Prefix Adders
in 32nm and 45nm Static CMOS Technology

APPROVED BY
SUPERVISING COMMITTEE:

Earl Swartzlander

Lizy John

Supervisor:

A Comparative Analysis of Parallel Prefix Adders
in 32nm and 45nm Static CMOS Technology

by

Vignesh Naganathan, B.Tech.

Report

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

Master of Science in Engineering

The University of Texas at Austin
May 2015

 Dedication

I would like to dedicate the report to my parents Naganathan Venkataraman and Radha

Balasubramanian. Without their love and unconditional support, I could not have

completed this degree away from my home country. I would also like to dedicate it to my

fiancé, Anusha Balan, for her support and encouragement.

 v

Acknowledgements

I would like to thank my supervisor, Dr. Earl Swartzlander, for his inspirational

support and guidance on helping me to work towards a Masters degree. His strong

technical support and initial encouraging words guided me towards the completion of the

report for this degree. I thank Dr. Lizy John for her contributions as well.

I would also like to acknowledge the support and assistance given by Vignesh

MG and Balavinayagam Swaminathan for contributing ideas and feedback.

 vi

Abstract

A Comparative Analysis of Parallel Prefix Adders
in 32nm and 45nm static CMOS Technology

Vignesh Naganathan, M.S.E

The University of Texas at Austin, 2015

Supervisor: Earl Swartzlander

Binary adders form a major part in various arithmetic logical operation units

including multipliers, dividers and digital signal processors. Parallel prefix adders

represent a set of efficient structures for binary addition, greatly suited for VLSI

implementation due to their regularity and speed. This report is focused on the

comparative analysis of 5 major types of parallel prefix adder frameworks namely

Kooge-Stone, Knowles adders, Brent-Kung, Han-Carlson and Ladner-Fischer adders

implemented in Synopsys’s SAED 32nm static CMOS technology operating at 1.05V for

8-bit, 16-bit and 32-bit input vectors based on power, performance and area (PPA)

metrics. The process technology is modeled with 9 metal tracks. Power, performance and

area metrics based on circuit simulations are used for comparison. The metrics are

compared across SAED 32nm and FreePDK 45nm technology to quantify the impact of

technology on architecture.

 vii

Table of Contents

List of Tables ... viii	

List of Figures .. ix	

CHAPTER 1 INTRODUCTION ...01	

1.1 Literature Review ..02
1.2 Prefix computation approach ..03

CHAPTER 2 PARALLEL PREFIX ADDERS ...06	

2.1 Taxonomy ...07	

2.2 Prefix graph convention ..08

CHAPTER 3 PARALLEL PREFIX ADDER SCHEMES ..10	

3.1 Kogge-Stone adders ..10
3.2 Knowles family of adders ...11
3.3 Brent-Kung adders ..13
3.4 Ladner-Fischer adders ...14
3.5 Han-Carlson adders ...16
3.6 Summary ...17

CHAPTER 4 SIMULATION METHODOLOGY ...18

CHAPTER 5 CIRCUIT SIMULATION RESULTS ..22
5.1 SAED 32nm technology ...23
5.2 FreePDK 45nm technology ...26

CHAPTER 6 CONCLUSION ..29

Appendix ..30

Bibliography ..46	

Vita ...48	

	

 viii

List of Tables

Table 1:	
 Algorithmic comparison of prefix tree structure16	

Table 2:	
 Critical path delay of prefix adders in SAED 32nm technology20

Table 3:	
 Total cell area of prefix adders in SAED 32nm technology21

Table 4:	
 Total power dissipation of prefix adders in SAED 32nm technology ..22

Table 5:	
 Power, performance and area metrics of Knowles family of adders23

Table 6:	
 Critical path delay of prefix adders in 45nm technology24

Table 7:	
 Total cell area of prefix adders in 45nm technology25

Table 8:	
 Total power dissipation of prefix adders in 45nm technology26

 ix

List of Figures

Figure 1:	
 Taxonomy of 16-bit prefix tree from D.Harris..07

Figure 2:	
 16-bit Kogge-Stone prefix tree ..10

Figure 3:	
 Knowles 16-bit prefix [4,2,2,1] structure ..11

Figure 4:	
 16-bit Brent Kung prefix tree ..12

Figure 5:	
 16-bit Ladner-Fischer prefix tree ..14

Figure 6:	
 16-bit Han-Carlson prefix tree ..15

Figure 7:	
 Simulation methodology ...18

Figure 8:	
 Critical path delay of prefix adders in 32nm technology21

Figure 9:	
 Total cell area of synthesized prefix adders in 32nm technology22

Figure 10:	
 Critical path delay of prefix adders in 45nm technology25

Figure 11:	
 Total cell area of synthesized prefix adders in 45nm technology26

	

 1

CHAPTER 1

INTRODUCTION

Addition is the most common arithmetic operation and binary adders are used

widely in almost all the arithmetic operations in the modern digital systems. Multipliers,

dividers, arithmetic logic units (ALU), digital system processors (DSP) among others

extensively use binary addition operations. Most often, the performance of the digital

systems depends critically on the performance of binary adders. In addition, power

efficiency is very critical in portable electronic systems like smartphones and tablets with

limited battery power. Hence, binary adders are required to be faster, smaller and

extremely power efficient.

The critical path in a binary adder is the carry out computation path from the

inputs. The propagation delay in the carry chain limits the performance of the binary

adders. In conventional ripple carry adders, as the width of the input vectors increases,

the length of the carry chain increases. This carry-propagation problem can be efficiently

addressed by parallel prefix computation. Parallel prefix adders (PPA) are variations of

the well-known carry look ahead (CLA) adders. They are the fastest and most efficient

computation structure for binary addition in VLSI digital systems because of the

regularity and parallel execution nature. The parallel prefix adders attain logarithmic time

complexity and the propagation delay is directly proportional to the number of levels in

carry propagation logic.

This report focuses on the performance of the different parallel prefix adders

implemented in SAED 32nm and FreePDK 45nm static CMOS technology node. The

 2

parallel prefix adders analyzed in the report are Kogge-Stone adder, Brent-Kung adder,

Han Carlson adder, Ladner Fischer adder and Knowles family of adders. The power,

performance and area (PPA) metrics are used to perform the comparative analysis of

these parallel prefix adders. Based on the simulation studies, Kogge-Stone adder is the

fastest adder while it burns the highest power due to its extensive parallel prefix

operations while Brent-Kung adder is the smallest adder and burns the least power due to

its prefix tree structure.

1.1 Literature Review

There are many ways of approaching the process of binary addition providing

different insight, resulting in different implementations. The simplest adder architecture

is ripple carry adder [1] where every block computes a 1-bit sum and provides the

resulting output and the carry bit for the next 1-bit adder. The worst-case delay is linearly

proportional to the width of the input operands. Some other adders like bit-serial adders

and Manchester Carry chain adders also have at least linear time complexity with respect

to word width of inputs.

Weinberger and Smith’s carry-lookahead adders (CLA) [2] are commonly used

structure for logarithmic time addition. CLA employ multiple levels of Manchester carry

chains of generate, propagate and kill signals to solve carry-propagation problem. The

carry-skip adder provides a compromise between ripple carry adder and a CLA adder. It

splits input vectors into multiple bit groups or blocks and then computes “group

propagate” signals for each block of inputs to establish bypass or skip paths around that

blocks to speed up the carry propagation.

 3

Sklansky’s conditional-sum adder [3] realizes addition with modules by

performing computation of conditional sums and carries that result from the assumption

of all the possible distributions of carries for column groups. Bedrij’s carry-select adder

[4] approaches the carry-propagation problem by independently generating multiple-radix

carries and using these carries to select between simultaneously generated sums. Since

input operands are added twice to produce two sums with carry assumed in one addition

and carry not assumed in another addition, it is not efficient in terms of cell count and

area. Several variants of high-speed adders include Nadler’s pyramid adder [5], Ling

adder [6] and spanning tree carry-lookahead adder [7].

The prefix formulation is an excellent approach to compute carry propagation

network as adders implemented based on parallel prefix operators can be implemented

compact and regular in VLSI. The associativity and idempotency properties of prefix

operators give extreme flexibility in formulating various variants in prefix addition

algorithm and their implementation in VLSI. The prefix computation approach and the

existing variants of prefix tree algorithms are briefly explained in the coming section.

1.2 Prefix computation approach

For n-bit addition, where n is a power of 2, a minimum-depth prefix adder

comprises 3+log2n inverting gate stages in CMOS technology. The first stage of a prefix

adder computes carry generate (g), propagate (p) and kill (k) terms for each bit according

to the relations:

 4

gi =ai⋅bi

ki = !(ai + bi)

pi =ai ⊕bi

A carry is generated if both the input addend bits of the particular stage are ones and an

input carry to a particular stage is propagated to the next stage if one of the addend bits is

one. Thus, based on the generate and propagate signals, the carry bits of each stage are

derived by:

ci+1 =gi +pici ���

The final stage computes sum bits as:

si = pi ⊕ci

Thus summing up the above steps, in general carry lookahead adders have a 3-step

structure:

• Pre-computation stage of generate gi, propagate pi signals for each bit position

• Computation of carry Ci for each bit position

• Post-computation stage of combining Ci, and Pi to generate sum Si for each bit

position

The first and last stages are fast because they involve simple operations on signals local

to each bit position. The intermediate stages are used to compute carry propagation

network using prefix operation �in a parallel prefix adder. The prefix operation �

 5

(gx,px) � (gy,py) = (gx + px.gy, px.py)

The carry into any bit position can be computed using a chain of prefix operations:

(Ci+1,Pi) = (gi,pi)�(gi-1,pi-1)�(gi-2,pi-2)� …�(g0,p0)

The problem of carry determination can be formulated as follows [8]:

Given

(g0,p0), (g1,p1)…(gi-1,pi-1),(gi,pi)

Find

(g0…0,p0…0),(g0…1,p0…1)…(g0…i-1,p0…1-1),(g0…i,p0…i)

Since the prefix operator is associative and idempotent, these operations can be

performed in greater parallelism, allowing parallel prefix adders to be much faster

circuits than any of the other adder implementations.

(gh…j,ph…j)� (gj…k,pj…k) = (gh…i,ph…i)� (gi…k,pi…k) where h > i ≥j > k

(gh…j,ph…j)� (gi…k,pi…k) = (gh…k,ph…k)

Thus, the carry problem is converted to a parallel prefix operations and there are various

prefix computation schemes to find all the carries. This multilevel-lookahead idea is to

compute small group of intermediate prefixes and then find large group prefixes, until all

the carry bits are computed.

 6

CHAPTER 2

PARALLEL PREFIX ADDERS

Adders in which the computation of carries is based on the above-defined prefix

equations are called “prefix adders.” When multiple sub-terms are computed in parallel

by exploiting associative and/or idempotency properties, then the prefix adders are called

“parallel prefix adders.” These structures are very commonly used in high performance

adders because the delay is logarithmically proportional to the input operand width.

Based on the variations of the prefix tree structure, there are several types of parallel

prefix adders. Trade-offs involved in different prefix tree structures include

• radix/valency

• area of the adder

• logic tree depth

• fan-out of the nodes at each stage

• the overall wiring network

In this report, 5 major parallel prefix adders, namely Ladner-Fischer, Kogge-

Stone, Brent-Kung, Han-Carlson, and Knowles family of adders are analyzed from a

VLSI designer point of view. Additional insight on how the architecture and minimum

feature size of SAED 32nm and FreePDK 45nm impact circuit technology.

 7

2.1 Taxonomy

For any n-bit prefix trees with fixed radix of 2 (the number of inputs to the logic

gates is always 2 for the PPA discussed in the report), design trade-off is made among

logic levels, fan-out and wire tracks. Hence the taxonomy, as proposed by D. Harris[9],

uses the (l,f,t) with each variable representing logic levels, fan-out and wire tracks,

respectively. l,f and t are integers between 0 and log2(n) -1.

• Logic levels: log2(n) + l

• Fan-out: 2f + 1

• Wire tracks: 2t

Figure 1. Taxonomy of 16-bit prefix tree from D. Harris

 8

Based on the taxonomy, Kogge-Stone prefix tree (0,0,log2(n)-1) has the least logic

levels and fan-out. However, the wire track is 2log2(n)-1, which is the maximum among the

prefix structures. This results in a dense gate structure compromising on area and power

for performance gain. Brent-Kung prefix tree (log2(n)-1,0,0) has the least fan-out and

wiring track. However it requires the most logic levels among the prefix trees. Therefore

Brent-Kung compromises the speed significantly for smallest area and least power

dissipation. Ladner-Fischer prefix tree (log2(n)-2,1,0) employs smaller number of logic

levels and wiring tracks while the fan-out increases with wider inputs towards the later

stages of prefix computation graph. This results in significant loss in performance in

CMOS implementation due to increased capacitive output load on last stage drivers for

wider words. Knowles family (0,f,t) has the least logic levels while fan-out and wire

tracks depend on the specific prefix structure. This family has a high dense gate structure.

Han-Carlson prefix tree (1, 0, log2(n)-2) reduces the gate density by introducing one extra

logic level than minimum. However the number of wire tracks is logarithmically

proportional to input width.

2.2 Prefix graph convention

The general convention used in the prefix graph shown in the coming sections is

group generate/propagate signals are the only signals used in the purple colored circular

dots, which represent prefix operators. The group generate/propagate signals are based on

the single bit generate/propagate signals computed in the pre-computation stage. They are

represented by white colored circular dots. Solid lines show the lateral connectivity

 9

required between nodes at each stage while the dashed lines show the implicit vertical

connections between the nodes in the same column.

 10

CHAPTER 3

PARALLEL PREFIX ADDER SCHEMES

3.1 Kogge-Stone adders

Kogge-Stone adder [10] is one of the widely used prefix tree structure for high

performance adders. It employs fewest logic levels with maximum fan-out limited to 2 in

all logic levels for all width Kogge-Stone prefix trees. It is one of the members of the

Knowles family of adders with the special case of the maximum branch fan-out at each

level limited to 1. For example, 16-bit Kogge-Stone adder as shown in the figure below

can be expressed as Knowles [1,1,1,1] where the numbers in the brackets represent the

maximum branch fan-out at each logic level.

Kogge-Stone adders achieve very high performance by extensive parallelism of

prefix operator execution employing both associativity and idempotency. Idempotency

property limits the lateral logical fanout at each node to unity but dramatically increases

the number of lateral wires at each level. The increased wire tracks result in highly dense

gate structure. Hence wire capacitance is high even though logical fanout is minimized.

This results in requirement of buffering to drive higher wire capacitance. Due to extreme

parallel execution, the total power dissipated by Kogge-Stone is highest among the prefix

adders.

 11

Figure 2: 16-bit Kogge-Stone prefix tree

The area of Kogge-Stone is also very high. For a technology independent

comparison of area, we can use the prefix cell count as an estimate. However the actual

area should include the pre-computation and post-computation logic circuits along with

buffering. For n-bit Kogge Stone adder, total number of prefix operators can be

calculated as nlog2n – n + 1. When n=16, the number of prefix operators is 49.

3.2 Knowles Family of adders

Knowles [11] proposed a family of adders with flexible architectures of prefix

tree computation structures. As mentioned earlier, Knowles prefix adders are

distinguished by the maximum branch fan-out at each logic level. Knowles [4,2,2,1]

prefix structure for 16-bit adder is shown below. 16-bit Kogge-Stone adder is nothing but

Knowles [1,1,1,1] prefix structure. In fact, there are 14 different topologies for 16-bit

 12

adders such as [4,2,1,1], [4,4,2,1], [8,2,1,1] and [8,2,2,1] with Kogge-Stone [1,1,1,1] and

Ladner-Fischer [8,4,2,1] as limiting cases in terms of branch fan-out in each logic stage.

Knowles family of adders also includes Hybrid Knowles prefix adders, which allow

different fan-out in the same logic level.

Figure 3: Knowles 16-bit prefix [4,2,2,1] structure

The Knowles prefix tree family can be built based on Kogge-Stone prefix trees

and can be gradually moved on to more complex prefix structures like Brent-Kung or

Han-Carlson tree. It allows us to limit the lateral wire tracks at each logic level and the

branch fan-out at each logic level based on the technology requirements. Also it allows

reuse of the blocks of smaller adders in the prefix tree and to combine the best of

different prefix adder qualities based on the constraints.

The area of Knowles adders depends on the prefix tree implementation. Knowles

 13

[2,1,1,1] contains the same number of logic levels as Kogge-Stone [1,1,1,1]. Kogge-

Stone 8-bit adder can be reused for the first three logic levels while the logic level 4 is

modified to have a fan-out of 3 instead of 2. Thus, the Knowles [2,1,1,1] has same

number of prefix operator cells as Kogge-Stone 16-bit adder. However the lateral wire-

tracks is reduced in the final logic level. The cell count is estimated as nlog2n – n +1,

exactly same as Kogge-Stone 16-bit adder.

3.3 Brent-Kung adders

Brent-Kung prefix tree [12] is a well-known structure, which has the least fan-out

and lateral wire tracks among the popular prefix adders. However it is a complex

structure because it has the most logic levels. A 16-bit Brent-Kung prefix tree structure is

shown below.

Figure 4: 16-bit Brent Kung prefix tree

 14

Brent-Kung adder restricts the lateral fan-out of each node to unity, as in Kogge-

Stone adder but without the explosion of wires. The capacitive load is still high due to the

wide span of wires. For instance, in a 16-bit adder shown above, the structure starts with

prefix operators every 2 bits. The input span is 1 bit and the output span is 2 bits. At logic

level 2, the distance between each operator is 4 bits while it is 8 bits in logic level 3. At

logic level 4, the only prefix operation is at the MSB with input span of 8 bits and the

output span of 16 bits. At logic levels 5 through 7, the input bit spans are decremented

and they are 4, 2 and 1 bit respectively. The critical path for a 16-bit adder is from bit 0 in

the pre-computation stage to bit 14 in logic stage 6. Hence, even with buffering, the

Brent-Kung adders are among the slowest prefix adders.

In terms of prefix operator count, for a n-bit adder, the total number of prefix

operators is 2(n-1) - log2n. For n = 16, it is 26.

3.4 Ladner-Fischer adders

Ladner-Fischer prefix tree structure [13] is shown below. Sklansky’s conditional-

sum adder can be included in this family of prefix structure. It exploits the associativity

property of prefix operators extensively, but not the idempotency property, while

constructing a binary tree of prefix operators. It is in some sense a basis for the other

prefix tree structures.

 15

Figure 5: 16-bit Ladner-Fischer prefix tree

This structure has minimum logic depth but has large fan-out requirement up to

n/2. The longest lateral fanning wires run from a node to n/2 other nodes. Capacitive fan-

out loads are very large for later levels in the graph for wider input operands. In VLSI

CMOS implementations, it involves increasing the drive strengths of the buffers and

inverters to support larger loads. This increases the area, limits the performance by

increasing the delay and burns more power due to larger drive cells.

The number of logic levels of log2n is always the minimum in this scheme for an

n-bit adder. Each logic level has n/2 cells. Therefore, the total number of prefix operators

is nlog2n

 16

3.5 Han-Carlson adders

The idea of Han-Carlson prefix tree [14] is very similar to Kogge-Stone adder in

terms of maximum fan-out of 2 at each logic stage. However Han-Carlson scheme uses

fewer cells and lateral wire tracks than Kogge-Stone adder by adding one extra logic

level. A 16-bit Han-Carlson prefix tree is shown below.

Figure 6: 16-bit Han-Carlson prefix tree

Han-Carlson prefix tree performs prefix operations every other bit in each logic

level. The extra last logic stage performs prefix operations for the missing carries. This

approach accomplishes minimum branch fan-out at each logic level without using more

wiring track resources. The critical path is from bit 8 in the pre-computation stage to

carry bit 10 in the final stage.

 17

As mentioned above, the number of logic levels is log2n + 1 for any n-bit adder.

It can be observed that the total number of prefix operators in this scheme is (n/2)log2n.

For n = 16, 32 prefix operators are used.

3.6 Summary

By tabulating the logic levels, fanout, prefix operator count and lateral wiring

tracks for the above discussed adders, a clear idea of the trade-offs involved in the design

is provided.

Table 1: Algorithmic comparison of prefix tree structure

Prefix structure Logic Levels Prefix count Fan-out Wire Tracks

Kogge-Stone log2n nlog2n – n + 1 2 n/2

Knowles[2,1,1,1] log2n nlog2n – n + 1 3 n/4

Brent-Kung 2log2n-1 2(n-1) – log2n 2 1

Ladner-Fischer log2n (n/2)log2n n/2+1 1

Han-Carlson log2n+1 (n/2)log2n 2 n/4

Thus in this chapter, the construction analysis of parallel prefix adders is done in

detail. The trade-offs involved in designing a prefix adder scheme is tabulated for

comparison.

 18

CHAPTER 4

SIMULATION METHODOLOGY

To understand the impact of circuits and CMOS technology on the prefix tree

structure, simulation data on power, performance and area from placed and routed

circuits are needed. To obtain the simulation results for the report, the following

methodology is followed.

The 8-bit, 16-bit and 32-bit versions of each of the above 5 parallel prefix adders

were designed in structural Verilog model. The individual bit generate and propagate

signals are generated using an AND gate and a XOR gate respectively. A prefix operator

is designed using an AND gate and an AOI cell. The multiple carries are computed using

different prefix tree structures with proper buffering necessary, according to the

implementation. The post-computation stage is designed using XOR gates to generate the

sum bits.

To understand the impact of technology, this report uses Synopsys 32/28nm

Generic Library and FreePDK 45nm [15] design kit. The 32nm Digital Standard Cell

library [16] consists of 350 cells for different drive strengths to optimize the IC design.

The library is designed for 1.05V operation with a process technology of 1P9M. Since

University of Texas at Austin is a member of Synopsys University Program, it is possible

to perform System-on-Chip (SoC) implementations and statistical circuit analysis through

commercial front-end and back-end tools without violating the intellectual property (IP).

FreePDK is an open source, variation aware Process Design Kit (PDK), provided by

North Carolina State University.

 19

Figure 7: Simulation methodology

Design	

• Pre+ix	
 tree	
 architecture	
 built	
 with	
 Verilog	
 HDL	

• Hand-­‐instantiated	
 logic	
 structure	
 for	
 group/propagate	
 signal	
 generation	
 and	

pre+ix	
 operator.	

Synthesis	

• Tool:	
 Synopsys's	
 Design	
 Compiler	
 Topographical	

• Input:	
 RTL,	
 static	
 CMOS	
 technology	
 logical,	
 timing	
 and	
 physical	
 libraries,	

Constraints,	
 Milkyway	
 Library	
 +iles	

• Output:	
 Gate-­‐level	
 netlists	
 with	
 custom	
 design	
 of	
 pre+ix	
 operator,	
 QoR	
 reports	

Place	
 and	

Route	

• Tool:	
 Cadence's	
 Encounter	
 Digital	
 Implementation	

• Input:	
 DC	
 synthesized	
 netlist,	
 static	
 CMOS	
 technology	
 logical,	
 physical	
 and	

timing	
 libraries,	
 Physical	
 LEF	
 +ile	

• Output:	
 Placed	
 and	
 Routed	
 netlist,	
 Interconnect-­‐RC	
 parasitic	

extraction(*.spef),	
 post-­‐layout	
 delay	
 constraints	
 (*.sdf)	

Gate-­‐level	

simulation	

• Tool:	
 Synopsys's	
 VCS/DVE	

• Input:	
 Physical	
 netlist,	
 Gate-­‐level	
 verilog	
 models,	
 post-­‐layout	
 delay	

annotations	
 (*.sdf),	
 Testbench	
 to	
 generate	
 random	
 set	
 of	
 test	
 vectors	

• Output:	
 Logic-­‐level	
 switching	
 activity	
 information	
 with	
 delay	
 annotated	

(*.vcd)	

Power	

estimation	

• Tool:	
 Synopsys's	
 PrimeTime-­‐PX	

• Input:	
 Physical	
 netlist,	
 static	
 CMOS	
 timing	
 and	
 logical	
 libraries	
 (*.lib),	

Interconnect-­‐RC	
 parasitics	
 (*.spef),	
 Switching	
 activity	
 information	
 (*.vcd)	

• Output:	
 Post-­‐layout	
 timing,	
 peak	
 power,	
 internal	
 power,	
 leakage	
 power	
 and	

total	
 time-­‐based	
 average	
 power	
 reports	

 20

The high level description is then synthesized using Synopsys’s SAED 32nm

static CMOS technology using Design Compiler Topographical. It is a physical-aware

synthesis where interconnect RC modeling is based on coarse placement performed by

Design Compiler.

The resulting gate-level synthesized netlists are physically placed and routed

using Cadence’s Encounter Digital Implementation (EDI). The resulting layout is used as

the basis for the circuit simulation. The interconnect RC parasitic extraction is done based

on EDI’s routing and exported in SPEF format.

Each physically placed and routed adder implementation is simulated with 1250

pseudo-random input vectors through a testbench, which annotates the cell timing delay

and interconnect delay. The back-annotation of post-layout timing delay SDF and

parasitic SPEF, is done to ensure accurate modeling of the switching behavior for the

randomly generated inputs. The toggle count per net of each adder is calculated using

logic simulation VCD. Synopsys’s VCS/DVE circuit simulator is used to generate the

switching activity information of each adder.

Finally, the total power dissipation is estimated from the detailed time-based

average mode power simulation in Synopsys’s PrimeTime-PX. The logic switching

activity VCD information dumped by the previous gate simulation is used to estimate the

dynamic switching power and internal power. To ensure better correlation with post-

layout implementation, the extracted RC parasitic SPEF constraints are applied during

power estimation. Leakage power is also included in the total power estimation.

 21

The same methodology is followed using FreePDK 45nm technology to analyze

the impact of circuit technology on architecture.

 22

CHAPTER 5

CIRCUIT SIMULATION RESULTS

Based on the above-described methodology, the following parallel prefix adders

were simulated: Brent-Kung, Kogge-Stone, Knowles family of adders, Han-Carlson and

Ladner-Fischer in SAED 32nm technology and FreePDK 45nm technology.

5.1 SAED 32nm technology

The performance is typically limited by the worst-case delay of the critical path in

an adder implementation. The critical path delay in worst-case corner operating at 1.05V

for the parallel prefix adders is tabulated below. As can be seen, Kogge-Stone adder is

the fastest while Brent-Kung adder is the slowest among the adders. The best performing

Knowles adder structure in terms of power, performance and area is picked for each input

vector width and presented in this table.

Table 2: Critical path delay of prefix adders in SAED 32nm technology

Adders	

Critical	
 path	
 delay	
 (ns)	

8-­‐bit	
 16-­‐bit	
 32-­‐bit	

Brent-­‐Kung	
 0.37	
 0.49	
 0.59	

Kogge-­‐Stone	
 0.30	
 0.38	
 0.45	

Han-­‐Carlson	
 0.34	
 0.42	
 0.48	

Ladner-­‐Fischer	
 0.32	
 0.42	
 0.51	

Knowles	
 Family	
 	

8-­‐bit:	
 [2,1,1]	

	
 16-­‐bit:	
 [4,4,2,1]	

32-­‐bit:	
 [16,2,2,2,1]	
 0.31	
 0.39	
 0.48	

	
 	
 	
 	

 23

Figure 8: Critical path delay of prefix adders in 32nm technology

The area comparison is shown in the Table.

Table 3: Total cell area of prefix adders in SAED 32nm technology

Adders	

Area	

8-­‐bit	
 16-­‐bit	
 32-­‐bit	

Brent-­‐Kung	
 127.83	
 277.27	
 584.79	

Kogge-­‐Stone	
 155.28	
 382.49	
 910.09	

Han-­‐Carlson	
 132.41	
 304.72	
 685.93	

Ladner-­‐Fischer	
 132.41	
 303.19	
 680.09	

Knowles	
 Family	
 	

8-­‐bit:	
 [2,1,1]	

	
 16-­‐bit:	
 [4,4,2,1]	

32-­‐bit:	
 [16,2,2,2,1]	
 157.06	
 321.24	
 772.60	

 24

Figure 9: Total cell area of synthesized prefix adders in SAED 32nm technology

The total power dissipation of different adders is tabulated here. As can be seen,

Kogge-Stone adders burn the highest amount of power as the input word width increases.

It is due to extensive application of parallel prefix operators for high performance. Brent-

Kung adders burn the least amount of power. Knowles adders achieve comparable

performance to the Kogge-Stone adders without exploding in area and burning high

power.

Table 4: Total power dissipation of prefix adders in SAED 32nm technology

Adders	

Total	
 power	
 (W)	

8-­‐bit	
 16-­‐bit	
 32-­‐bit	

Brent-­‐Kung	
 6.12E-­‐05	
 1.11E-­‐04	
 2.31E-­‐04	

Kogge-­‐Stone	
 5.91E-­‐05	
 1.36E-­‐04	
 3.20E-­‐04	

Han-­‐Carlson	
 6.33E-­‐05	
 1.44E-­‐04	
 2.59E-­‐04	

Ladner-­‐Fischer	
 6.32E-­‐05	
 1.44E-­‐04	
 2.67E-­‐04	

Knowles	
 Family	
 	

8-­‐bit:	
 [2,1,1]	

	
 16-­‐bit:	
 [4,4,2,1]	

32-­‐bit:	
 [16,2,2,2,1]	
 5.76E-­‐05	
 1.25E-­‐04	
 2.89E-­‐04	

 25

The detailed comparison of Knowles family of adders is presented in Table

below. The numbers in the bracket represent the maximum branch fan-out at each logic

stage for the corresponding prefix tree structure. Power, performance and area of the

implementation in 32nm static CMOS technology are shown here.

Table 5: Power, performance and area metrics of Knowles family of adders

	
 Input	

width	

Knowles	

structure	

Critical	

path	

delay	

(ns)	

Area	

(sq	
 μ)	

Internal	

Power	

(W)	

Leakage	

Power	

(W)	

Total	

Power	

(W)	

8-­‐bit	

[2,1,1]	
 0.31	
 157.06	
 1.01E-­‐06	
 5.66E-­‐05	
 5.76E-­‐05	

[2,2,1]	
 0.33	
 141.56	
 1.01E-­‐06	
 5.43E-­‐05	
 5.53E-­‐05	

[4,1,1]	
 0.32	
 141.56	
 1.01E-­‐06	
 5.43E-­‐05	
 5.53E-­‐05	

16-­‐bit	

[2,1,1,1]	
 0.42	
 384.27	
 2.03E-­‐06	
 1.36E-­‐04	
 1.38E-­‐04	

[2,2,1,1]	
 0.42	
 384.27	
 2.03E-­‐06	
 1.36E-­‐04	
 1.38E-­‐04	

[2,2,2,1]	
 0.39	
 350.46	
 2.03E-­‐06	
 1.29E-­‐04	
 1.31E-­‐04	

[4,1,1,1]	
 0.43	
 382.49	
 2.03E-­‐06	
 1.37E-­‐04	
 1.40E-­‐04	

[4,2,1,1]	
 0.44	
 382.49	
 2.03E-­‐06	
 1.37E-­‐04	
 1.40E-­‐04	

[4,2,2,1]	
 0.44	
 380.71	
 2.03E-­‐06	
 1.39E-­‐04	
 1.41E-­‐04	

[4,4,1,1]	
 0.42	
 381.22	
 2.03E-­‐06	
 1.40E-­‐04	
 1.42E-­‐04	

[4,4,2,1]	
 0.39	
 321.24	
 2.03E-­‐06	
 1.23E-­‐04	
 1.25E-­‐04	

[8,1,1,1]	
 0.39	
 348.69	
 4.06E-­‐06	
 1.75E-­‐04	
 1.79E-­‐04	

[8,2,1,1]	
 0.40	
 350.46	
 4.06E-­‐06	
 1.75E-­‐04	
 1.79E-­‐04	

[8,2,2,1]	
 0.39	
 321.24	
 4.06E-­‐06	
 1.68E-­‐04	
 1.72E-­‐04	

[8,4,1,1]	
 0.39	
 321.24	
 2.03E-­‐06	
 1.23E-­‐04	
 1.25E-­‐04	

32-­‐bit	

[16,2,2,2,1]	
 0.48	
 772.60	
 3.93E-­‐06	
 2.85E-­‐04	
 2.89E-­‐04	

[16,4,2,2,1]	
 0.50	
 834.86	
 3.93E-­‐06	
 3.04E-­‐04	
 3.08E-­‐04	

[2,2,2,1,1]	
 0.49	
 843.25	
 3.93E-­‐06	
 2.96E-­‐04	
 3.00E-­‐04	

[4,4,2,2,1]	
 0.49	
 836.90	
 3.93E-­‐06	
 3.03E-­‐04	
 3.07E-­‐04	

The trade-off between circuit speed and area in 32nm CMOS technology is very

tight. The area increases drastically to achieve superior speed targets and the chip

fabrication cost is very high when area increases even by a few percent in modern CMOS

 26

technology. As the table for Knowles adders shows, the speedup in adder network is

achieved by introduction of parallel, logically redundant prefix operators. Similar trend is

observed in prefix tree structure evolution from Ladner-Fischer adder to Kogge-Stone

adder by exploiting idempotency property of prefix operators. However this results in the

explosion of lateral wire track count and results in significant power and area cost.

5.2 FreePDK 45nm technology

The critical path delay in 45nm technology for the adders operating at 1.8V is

presented here. Even though Kogge-Stone adder is the fastest adder scheme, the slowest

adder implementation is not always Brent-Kung adder. For wider inputs, Ladner-Fischer

adder becomes the slowest due to the high fan-out capacitive load seen by the later

stages. The technology plays an important role in how the capacitive load and wiring

delay affect the performance of adders in wider inputs. In general, performance speedup

of 33-45% is achieved in scaling the technology from 45nm to 32nm CMOS technology.

 Table 6: Critical path delay of prefix adders in FreePDK 45nm technology

Adders	

Critical	
 path	
 delay	

8-­‐bit	
 16-­‐bit	
 32-­‐bit	

Brent-­‐Kung	
 0.54	
 0.77	
 0.94	

Kogge-­‐Stone	
 0.40	
 0.53	
 0.72	

Han-­‐Carlson	
 0.45	
 0.58	
 0.72	

Ladner-­‐Fischer	
 0.46	
 0.62	
 1.03	

Knowles	
 Family	
 	

8-­‐bit:	
 [2,1,1]	

	
 16-­‐bit:	
 [4,4,2,1]	

32-­‐bit:	
 [16,2,2,2,1]	
 0.42	
 0.57	
 0.77	

 27

Figure 10: Critical path delay of prefix adders in 45nm technology

The area in 45nm technology is shown in Table 7. As can be seen, similar trend of

Kogge-Stone being the largest adder structure especially for wider inputs is observed

here. On average, the adder structures grow by 50-60% in area when compared to 32nm

technology.

Table 7: Total cell area in FreePDK 45nm technology

Adders	

Total	
 cell	
 area	
 (sq.micron)	

8-­‐bit	
 16-­‐bit	
 32-­‐bit	

Brent-­‐Kung	
 187.25	
 414.86	
 884.63	

Kogge-­‐Stone	
 240.75	
 619.95	
 1521.00	

Han-­‐Carlson	
 196.17	
 468.36	
 1084.08	

Ladner-­‐Fischer	
 196.17	
 468.36	
 1084.08	

Knowles	
 Family	
 	

8-­‐bit:	
 [2,1,1]	

	
 16-­‐bit:	
 [4,4,2,1]	

32-­‐bit:	
 [16,2,2,2,1]	
 229.31	
 481.86	
 1212.98	

 28

Figure 12: Total cell area of synthesized prefix adders in 45nm technology

 The total power dissipation in 45nm technology is shown in Table 8. The 45nm

FreePDK technology involved a thick oxide gate with 10 metal layers. The leakage

power is the primary component in the total power dissipation. Also, the operating

voltage is 1.8V at 45nm technology while it was 1.05V in 32nm technology. That also

explains why the power dissipation is very high at 45nm technology when compared

against 32nm technology.

Table 8: Total power dissipation of prefix adders in FreePDK 45nm technology

Adders	

Total	
 power	
 (W)	

8-­‐bit	
 16-­‐bit	
 32-­‐bit	

Brent-­‐Kung	
 9.17E-­‐05	
 1.66E-­‐04	
 3.70E-­‐04	

Kogge-­‐Stone	
 8.86E-­‐05	
 2.17E-­‐04	
 5.43E-­‐04	

Han-­‐Carlson	
 9.49E-­‐05	
 2.26E-­‐04	
 4.27E-­‐04	

Ladner-­‐Fischer	
 9.47E-­‐05	
 2.26E-­‐04	
 4.41E-­‐04	

Knowles	
 Family	
 	

8-­‐bit:	
 [2,1,1]	

	
 16-­‐bit:	
 [4,4,2,1]	

32-­‐bit:	
 [16,2,2,2,1]	
 8.64E-­‐05	
 1.92E-­‐04	
 4.71E-­‐04	

 29

CHAPTER 6

CONCLUSION

In this Master’s report, the comparative analysis of parallel prefix adders in terms

of power, performance and area is done in SAED 32nm and FreePDK 45nm static CMOS

technologies. It is clearly shown that Kogge-Stone adder structure is the fastest parallel

prefix adder scheme at the cost of highest area and power dissipation. Knowles adders

achieve comparable performance to Kogge-Stone adders by balancing the maximum

branch fan-out across logic stages and limiting the lateral wire track count. Interconnect

delay is the dominant component than gate delays in modern technology. Also, the

routing resources are very expensive in modern technology.

Brent-Kung adder is the smallest and least power hungry parallel prefix adder.

However because of its increased logic levels for wider inputs, it is also the slowest

adder. Hence it is not practical in CMOS implementations with very high performance

targets. Ladner-Fischer adder has a very high fan-out capacitive load in the critical path,

especially for wider inputs. Hence it is not suitable for high speed applications for longer

words without proper buffering.

Thus, there is no perfect adder for a particular technology due to the trade-off

involved in speed, area and wire tracks. In order to be power efficient, operating voltages

and multi-threshold voltage based cells can be used for power savings in adder structure.

 30

APPENDIX

Generate/Propagate logic

module BITPG (Gi, Pi, Ai, Bi);
output Gi, Pi;

input Ai, Bi;
AND2X1_RVT U_gen_and (.A1(Ai),.A2(Bi),.Y(Gi));
XOR2X1_RVT U_prop_xor (.A1(Ai),.A2(Bi),.Y(Pi));
//assign Gi = Ai & Bi;
//assign Pi = Ai ^ Bi;

endmodule

module GROUPGP (G2, P2, G0, G1, P0, P1);
output G2, P2;

input G0, G1, P0, P1;
AO21X1_RVT U_prefix_gen (.A1(G0),.A2(P1),.A3(G1),.Y(G2));
AND2X1_RVT U_prefix_prop (.A1(P1),.A2(P0),.Y(P2));
//assign G2 = G1 | (G0 & P1);
//assign P2 = P1 & P0;

endmodule

Kogge-Stone 16-bit adder

module kogge_stone16 (A, B, Sum, Cout);
parameter WIDTH = 16;
input [WIDTH:1] A, B;
output [WIDTH:1] Sum;
output Cout;

wire [WIDTH:1] g, p;
wire [WIDTH:1] inter_g [4:1];
wire [WIDTH:1] inter_p [4:1];

genvar j,k,l,m,n;
generate
for (j=1; j<= WIDTH; j = j+1)
begin : bit_pg
 BITPG pg (.Gi(g[j]), .Pi(p[j]), .Ai(A[j]), .Bi(B[j]));
end
endgenerate

assign inter_g[1][1] = g[1];
assign inter_p[1][1] = p[1];

 31

generate
for (k=1; k<=(WIDTH-1); k = k+1)
begin : group_prefix_stage_1
GROUPGP prefix (.G2(inter_g[1][k+1]), .P2(inter_p[1][k+1]),
.G0(g[k]), .G1(g[k+1]), .P0(p[k]), .P1(p[k+1]));
end
endgenerate

assign inter_g[2][1] = g[1];
assign inter_p[2][1] = p[1];

assign inter_g[2][2] = inter_g[1][2];
assign inter_p[2][2] = inter_p[1][2];

generate
for (l=1; l<=(WIDTH-2); l = l+1)
begin : group_prefix_stage_2
GROUPGP prefix (.G2(inter_g[2][l+2]), .P2(inter_p[2][l+2]),
.G0(inter_g[1][l]), .G1(inter_g[1][l+2]), .P0(inter_p[1][l]),
.P1(inter_p[1][l+2]));
end
endgenerate

assign inter_g[3][1] = g[1];
assign inter_p[3][1] = p[1];

assign inter_g[3][2] = inter_g[1][2];
assign inter_p[3][2] = inter_p[1][2];

assign inter_g[3][3] = inter_g[2][3];
assign inter_p[3][3] = inter_p[2][3];

assign inter_g[3][4] = inter_g[2][4];
assign inter_p[3][4] = inter_p[2][4];

generate
for (m=1; m<=(WIDTH-4); m = m+1)
begin : group_prefix_stage_3
GROUPGP prefix (.G2(inter_g[3][m+4]), .P2(inter_p[3][m+4]),
.G0(inter_g[2][m]), .G1(inter_g[2][m+4]), .P0(inter_p[2][m]),
.P1(inter_p[2][m+4]));
end
endgenerate

assign inter_g[4][1] = g[1];
assign inter_p[4][1] = p[1];

assign inter_g[4][2] = inter_g[1][2];
assign inter_p[4][2] = inter_p[1][2];

 32

assign inter_g[4][3] = inter_g[2][3];
assign inter_p[4][3] = inter_p[2][3];

assign inter_g[4][4] = inter_g[2][4];
assign inter_p[4][4] = inter_p[2][4];

assign inter_g[4][5] = inter_g[3][5];
assign inter_p[4][5] = inter_p[3][5];
assign inter_g[4][6] = inter_g[3][6];
assign inter_p[4][6] = inter_p[3][6];
assign inter_g[4][7] = inter_g[3][7];
assign inter_p[4][7] = inter_p[3][7];
assign inter_g[4][8] = inter_g[3][8];
assign inter_p[4][8] = inter_p[3][8];

generate
for (n=1; n<=(WIDTH-8); n = n+1)
begin : group_prefix_stage_4
GROUPGP prefix (.G2(inter_g[4][n+8]), .P2(inter_p[4][n+8]),
.G0(inter_g[3][n]), .G1(inter_g[3][n+8]), .P0(inter_p[3][n]),
.P1(inter_p[3][n+8]));
end
endgenerate

//post-processing
assign Sum[1] = p[1];
assign Sum[2] = p[2] ^ g[1];
assign Sum[3] = p[3] ^ inter_g[1][2];
assign Sum[4] = p[4] ^ inter_g[2][3];
assign Sum[5] = p[5] ^ inter_g[2][4];
assign Sum[6] = p[6] ^ inter_g[3][5];
assign Sum[7] = p[7] ^ inter_g[3][6];
assign Sum[8] = p[8] ^ inter_g[3][7];
assign Sum[9] = p[9] ^ inter_g[3][8];
assign Sum[10] = p[10] ^ inter_g[4][9];
assign Sum[11] = p[11] ^ inter_g[4][10];
assign Sum[12] = p[12] ^ inter_g[4][11];
assign Sum[13] = p[13] ^ inter_g[4][12];
assign Sum[14] = p[14] ^ inter_g[4][13];
assign Sum[15] = p[15] ^ inter_g[4][14];
assign Sum[16] = p[16] ^ inter_g[4][15];

assign Cout = inter_g[4][16];

endmodule

Knowles [4,4,2,1] 16-bit adder

module knowles_adder16_4421 (A, B, Sum, Cout);

 33

parameter WIDTH = 16;
input [WIDTH:1] A, B;
output [WIDTH:1] Sum;
output Cout;

wire [WIDTH:1] g, p;
wire [WIDTH:1] inter_g [4:1];
wire [WIDTH:1] inter_p [4:1];

genvar j,k,l,m,n;
generate
for (j=1; j<= WIDTH; j = j+1)
begin : bit_pg
 BITPG pg (.Gi(g[j]), .Pi(p[j]), .Ai(A[j]), .Bi(B[j]));
end
endgenerate

assign inter_g[1][1] = g[1];
assign inter_p[1][1] = p[1];
assign inter_g[1][3] = g[3];
assign inter_p[1][3] = p[3];
assign inter_g[1][5] = g[5];
assign inter_p[1][5] = p[5];
assign inter_g[1][7] = g[7];
assign inter_p[1][7] = p[7];
assign inter_g[1][9] = g[9];
assign inter_p[1][9] = p[9];
assign inter_g[1][11] = g[11];
assign inter_p[1][11] = p[11];
assign inter_g[1][13] = g[13];
assign inter_p[1][13] = p[13];
assign inter_g[1][15] = g[15];
assign inter_p[1][15] = p[15];

generate
for (k=1; k<=(WIDTH-1); k = k+2)
begin : group_prefix_stage_1
GROUPGP prefix (.G2(inter_g[1][k+1]), .P2(inter_p[1][k+1]),
.G0(g[k]), .G1(g[k+1]), .P0(p[k]), .P1(p[k+1]));
end
endgenerate

assign inter_g[2][1] = g[1];
assign inter_p[2][1] = p[1];

assign inter_g[2][2] = inter_g[1][2];
assign inter_p[2][2] = inter_p[1][2];
assign inter_g[2][5] = inter_g[1][5];
assign inter_p[2][5] = inter_p[1][5];
assign inter_g[2][6] = inter_g[1][6];
assign inter_p[2][6] = inter_p[1][6];

 34

assign inter_g[2][9] = inter_g[1][9];
assign inter_p[2][9] = inter_p[1][9];
assign inter_g[2][10] = inter_g[1][10];
assign inter_p[2][10] = inter_p[1][10];
assign inter_g[2][13] = inter_g[1][13];
assign inter_p[2][13] = inter_p[1][13];
assign inter_g[2][14] = inter_g[1][14];
assign inter_p[2][14] = inter_p[1][14];

generate
for (l=2; l<=(WIDTH-2); l = l+4)
begin : group_prefix_stage_2
GROUPGP prefix1 (.G2(inter_g[2][l+1]), .P2(inter_p[2][l+1]),
.G0(inter_g[1][l]), .G1(inter_g[1][l+1]), .P0(inter_p[1][l]),
.P1(inter_p[1][l+1]));
GROUPGP prefix2 (.G2(inter_g[2][l+2]), .P2(inter_p[2][l+2]),
.G0(inter_g[1][l]), .G1(inter_g[1][l+2]), .P0(inter_p[1][l]),
.P1(inter_p[1][l+2]));
end
endgenerate

assign inter_g[3][1] = g[1];
assign inter_p[3][1] = p[1];

assign inter_g[3][2] = inter_g[1][2];
assign inter_p[3][2] = inter_p[1][2];

assign inter_g[3][3] = inter_g[2][3];
assign inter_p[3][3] = inter_p[2][3];

assign inter_g[3][4] = inter_g[2][4];
assign inter_p[3][4] = inter_p[2][4];

generate
for (m=4; m<=(WIDTH-4); m = m+4)
begin : group_prefix_stage_3
GROUPGP prefix1 (.G2(inter_g[3][m+1]), .P2(inter_p[3][m+1]),
.G0(inter_g[2][m]), .G1(inter_g[2][m+1]), .P0(inter_p[2][m]),
.P1(inter_p[2][m+1]));
GROUPGP prefix2 (.G2(inter_g[3][m+2]), .P2(inter_p[3][m+2]),
.G0(inter_g[2][m]), .G1(inter_g[2][m+2]), .P0(inter_p[2][m]),
.P1(inter_p[2][m+2]));
GROUPGP prefix3 (.G2(inter_g[3][m+3]), .P2(inter_p[3][m+3]),
.G0(inter_g[2][m]), .G1(inter_g[2][m+3]), .P0(inter_p[2][m]),
.P1(inter_p[2][m+3]));
GROUPGP prefix4 (.G2(inter_g[3][m+4]), .P2(inter_p[3][m+4]),
.G0(inter_g[2][m]), .G1(inter_g[2][m+4]), .P0(inter_p[2][m]),
.P1(inter_p[2][m+4]));
end
endgenerate

 35

assign inter_g[4][1] = g[1];
assign inter_p[4][1] = p[1];

assign inter_g[4][2] = inter_g[1][2];
assign inter_p[4][2] = inter_p[1][2];

assign inter_g[4][3] = inter_g[2][3];
assign inter_p[4][3] = inter_p[2][3];

assign inter_g[4][4] = inter_g[2][4];
assign inter_p[4][4] = inter_p[2][4];

assign inter_g[4][5] = inter_g[3][5];
assign inter_p[4][5] = inter_p[3][5];
assign inter_g[4][6] = inter_g[3][6];
assign inter_p[4][6] = inter_p[3][6];
assign inter_g[4][7] = inter_g[3][7];
assign inter_p[4][7] = inter_p[3][7];
assign inter_g[4][8] = inter_g[3][8];
assign inter_p[4][8] = inter_p[3][8];

generate
for (n=4; n<=(WIDTH-8); n = n+4)
begin : group_prefix_stage_4
GROUPGP prefix1 (.G2(inter_g[4][n+5]), .P2(inter_p[4][n+5]),
.G0(inter_g[3][n]), .G1(inter_g[3][n+5]), .P0(inter_p[3][n]),
.P1(inter_p[3][n+5]));
GROUPGP prefix2 (.G2(inter_g[4][n+6]), .P2(inter_p[4][n+6]),
.G0(inter_g[3][n]), .G1(inter_g[3][n+6]), .P0(inter_p[3][n]),
.P1(inter_p[3][n+6]));
GROUPGP prefix3 (.G2(inter_g[4][n+7]), .P2(inter_p[4][n+7]),
.G0(inter_g[3][n]), .G1(inter_g[3][n+7]), .P0(inter_p[3][n]),
.P1(inter_p[3][n+7]));
GROUPGP prefix4 (.G2(inter_g[4][n+8]), .P2(inter_p[4][n+8]),
.G0(inter_g[3][n]), .G1(inter_g[3][n+8]), .P0(inter_p[3][n]),
.P1(inter_p[3][n+8]));
end
endgenerate

//post-processing
assign Sum[1] = p[1];
assign Sum[2] = p[2] ^ g[1];
assign Sum[3] = p[3] ^ inter_g[1][2];
assign Sum[4] = p[4] ^ inter_g[2][3];
assign Sum[5] = p[5] ^ inter_g[2][4];
assign Sum[6] = p[6] ^ inter_g[3][5];
assign Sum[7] = p[7] ^ inter_g[3][6];
assign Sum[8] = p[8] ^ inter_g[3][7];
assign Sum[9] = p[9] ^ inter_g[3][8];
assign Sum[10] = p[10] ^ inter_g[4][9];
assign Sum[11] = p[11] ^ inter_g[4][10];

 36

assign Sum[12] = p[12] ^ inter_g[4][11];
assign Sum[13] = p[13] ^ inter_g[4][12];
assign Sum[14] = p[14] ^ inter_g[4][13];
assign Sum[15] = p[15] ^ inter_g[4][14];
assign Sum[16] = p[16] ^ inter_g[4][15];

assign Cout = inter_g[4][16];

endmodule

Brent-Kung 16-bit adder
module brent_kung16 (A, B, Sum, Cout);
parameter WIDTH = 16;

input [WIDTH:1] A, B;
output [WIDTH:1] Sum;
output Cout;

wire [WIDTH:1] g, p;
wire [WIDTH:1] inter_g [6:1];
wire [WIDTH:1] inter_p [6:1];

genvar j,k,l,m1,m2,n;
generate
for (j=1; j<= WIDTH; j = j+1)
begin : bit_pg
 BITPG pg (.Gi(g[j]), .Pi(p[j]), .Ai(A[j]), .Bi(B[j]));
end
endgenerate

generate
for (k=1; k<=(WIDTH-1); k = k+2)
begin : group_prefix_stage_1
assign inter_g[1][k] = g[k];
assign inter_p[1][k] = p[k];
GROUPGP prefix (.G2(inter_g[1][k+1]), .P2(inter_p[1][k+1]),
.G0(g[k]), .G1(g[k+1]), .P0(p[k]), .P1(p[k+1]));
end
endgenerate

generate
for (l=1; l<=(WIDTH-1); l = l+4)
begin : group_prefix_stage_2
assign inter_g[2][l] = inter_g[1][l];
assign inter_p[2][l] = inter_p[1][l];
assign inter_g[2][l+1] = inter_g[1][l+1];
assign inter_p[2][l+1] = inter_p[1][l+1];
assign inter_g[2][l+2] = inter_g[1][l+2];
assign inter_p[2][l+2] = inter_p[1][l+2];

 37

GROUPGP prefix (.G2(inter_g[2][l+3]), .P2(inter_p[2][l+3]),
.G0(inter_g[1][l+1]), .G1(inter_g[1][l+3]), .P0(inter_p[1][l+1]),
.P1(inter_p[1][l+3]));
end
endgenerate

GROUPGP prefix_stage3_8 (.G2(inter_g[3][8]), .P2(inter_p[3][8]),
.G0(inter_g[2][4]), .G1(inter_g[2][8]), .P0(inter_p[2][4]),
.P1(inter_p[2][8]));
GROUPGP prefix_stage3_16 (.G2(inter_g[3][16]), .P2(inter_p[3][16]),
.G0(inter_g[2][12]), .G1(inter_g[2][16]), .P0(inter_p[2][12]),
.P1(inter_p[2][16]));
generate
for (m1=1; m1<= 7; m1 = m1 + 1)
begin : group_prefix_stage_3_first_half
assign inter_g[3][m1] = inter_g[2][m1];
assign inter_p[3][m1] = inter_p[2][m1];
end
endgenerate

generate
for (m2=9; m2<= 15; m2 = m2 + 1)
begin : group_prefix_stage_3_second_half
assign inter_g[3][m2] = inter_g[2][m2];
assign inter_p[3][m2] = inter_p[2][m2];
end
endgenerate

assign inter_g[4][1] = inter_g[3][1];
assign inter_p[4][1] = inter_p[3][1];
assign inter_g[4][2] = inter_g[3][2];
assign inter_p[4][2] = inter_p[3][2];
assign inter_g[4][3] = inter_g[3][3];
assign inter_p[4][3] = inter_p[3][3];
assign inter_g[4][4] = inter_g[3][4];
assign inter_p[4][4] = inter_p[3][4];
assign inter_g[4][5] = inter_g[3][5];
assign inter_p[4][5] = inter_p[3][5];
assign inter_g[4][6] = inter_g[3][6];
assign inter_p[4][6] = inter_p[3][6];
assign inter_g[4][7] = inter_g[3][7];
assign inter_p[4][7] = inter_p[3][7];
assign inter_g[4][8] = inter_g[3][8];
assign inter_p[4][8] = inter_p[3][8];

assign inter_g[4][9] = inter_g[3][9];
assign inter_p[4][9] = inter_p[3][9];

assign inter_g[4][10] = inter_g[3][10];
assign inter_p[4][10] = inter_p[3][10];

 38

assign inter_g[4][11] = inter_g[3][11];
assign inter_p[4][11] = inter_p[3][11];

GROUPGP prefix_stage4_12 (.G2(inter_g[4][12]), .P2(inter_p[4][12]),
.G0(inter_g[3][8]), .G1(inter_g[3][12]), .P0(inter_p[3][8]),
.P1(inter_p[3][12]));

assign inter_g[4][13] = inter_g[3][13];
assign inter_p[4][13] = inter_p[3][13];

assign inter_g[4][14] = inter_g[3][14];
assign inter_p[4][14] = inter_p[3][14];

assign inter_g[4][15] = inter_g[3][15];
assign inter_p[4][15] = inter_p[3][15];

GROUPGP prefix_stage4_16 (.G2(inter_g[4][16]), .P2(inter_p[4][16]),
.G0(inter_g[3][8]), .G1(inter_g[3][16]), .P0(inter_p[3][8]),
.P1(inter_p[3][16]));

assign inter_g[5][1] = inter_g[4][1];
assign inter_p[5][1] = inter_p[4][1];
assign inter_g[5][2] = inter_g[4][2];
assign inter_p[5][2] = inter_p[4][2];
assign inter_g[5][3] = inter_g[4][3];
assign inter_p[5][3] = inter_p[4][3];
assign inter_g[5][4] = inter_g[4][4];
assign inter_p[5][4] = inter_p[4][4];
assign inter_g[5][5] = inter_g[4][5];
assign inter_p[5][5] = inter_p[4][5];

GROUPGP prefix_stage_5_6 (.G2(inter_g[5][6]), .P2(inter_p[5][6]),
.G0(inter_g[4][4]), .G1(inter_g[4][6]), .P0(inter_p[4][4]),
.P1(inter_p[4][6]));
assign inter_g[5][7] = inter_g[4][7];
assign inter_p[5][7] = inter_p[4][7];
assign inter_g[5][8] = inter_g[4][8];
assign inter_p[5][8] = inter_p[4][8];
assign inter_g[5][9] = inter_g[4][9];
assign inter_p[5][9] = inter_p[4][9];

GROUPGP prefix_stage_5_10 (.G2(inter_g[5][10]), .P2(inter_p[5][10]),
.G0(inter_g[4][8]), .G1(inter_g[4][10]), .P0(inter_p[4][8]),
.P1(inter_p[4][10]));
assign inter_g[5][11] = inter_g[4][11];
assign inter_p[5][11] = inter_p[4][11];
assign inter_g[5][12] = inter_g[4][12];
assign inter_p[5][12] = inter_p[4][12];
assign inter_g[5][13] = inter_g[4][13];
assign inter_p[5][13] = inter_p[4][13];

 39

GROUPGP prefix_stage_5_14 (.G2(inter_g[5][14]), .P2(inter_p[5][14]),
.G0(inter_g[4][12]), .G1(inter_g[4][14]), .P0(inter_p[4][12]),
.P1(inter_p[4][14]));
assign inter_g[5][15] = inter_g[4][15];
assign inter_p[5][15] = inter_p[4][15];
assign inter_g[5][16] = inter_g[4][16];
assign inter_p[5][16] = inter_p[4][16];

assign inter_g[6][1] = inter_g[5][1];
assign inter_p[6][1] = inter_p[5][1];
assign inter_g[6][16] = inter_g[5][16];
assign inter_p[6][16] = inter_p[5][16];
generate
for (n=2; n<=(WIDTH-1);n=n+2)
begin: group_prefix_stage_6
assign inter_g[6][n] = inter_g[5][n];
assign inter_p[6][n] = inter_p[5][n];
GROUPGP prefix (.G2(inter_g[6][n+1]), .P2(inter_p[6][n+1]),
.G0(inter_g[5][n]), .G1(inter_g[5][n+1]), .P0(inter_p[5][n]),
.P1(inter_p[5][n+1]));
end
endgenerate

//post-processing
assign Sum[1] = p[1];
assign Sum[2] = p[2] ^ g[1];
assign Sum[3] = p[3] ^ inter_g[6][2];
assign Sum[4] = p[4] ^ inter_g[6][3];
assign Sum[5] = p[5] ^ inter_g[6][4];
assign Sum[6] = p[6] ^ inter_g[6][5];
assign Sum[7] = p[7] ^ inter_g[6][6];
assign Sum[8] = p[8] ^ inter_g[6][7];
assign Sum[9] = p[9] ^ inter_g[6][8];
assign Sum[10] = p[10] ^ inter_g[6][9];
assign Sum[11] = p[11] ^ inter_g[6][10];
assign Sum[12] = p[12] ^ inter_g[6][11];
assign Sum[13] = p[13] ^ inter_g[6][12];
assign Sum[14] = p[14] ^ inter_g[6][13];
assign Sum[15] = p[15] ^ inter_g[6][14];
assign Sum[16] = p[16] ^ inter_g[6][15];
assign Cout = inter_g[6][16];

endmodule

Ladner-Fischer 16-bit adder

module ladner_fischer16(A,B,C,cout);
input [16:1] A;
input [16:1] B;
output [16:1] C;

 40

output cout;

wire [16:1] Gi,Pi;
wire [16:1] St1g,St1p;
wire [16:1] St2g,St2p;
wire [16:1] St3g,St3p;
wire [16:1] St4g,St4p;

// Prefix Computation
genvar i;
generate
for (i = 1; i <= 16; i = i+1)
begin : bit_gen
BITPG bitpg (.Gi(Gi[i]), .Pi(Pi[i]), .Ai(A[i]),.Bi(B[i]));
end
endgenerate
// Stage 1
genvar j;
generate
for (j = 1; j < 16; j = j+2)
begin
GROUPGP groupgp1 (.G0(Gi[j]), .P0(Pi[j]), .G1(Gi[j+1]),
.P1(Pi[j+1]), .G2(St1g[j+1]), .P2(St1p[j+1]));
end
endgenerate
// Stage 2
genvar k;
generate
for (k = 1; k < 16; k = k+4)
begin
GROUPGP groupgp1 (.G0(St1g[k+1]), .P0(St1p[k+1]), .G1(Gi[k+2]),
.P1(Pi[k+2]), .G2(St2g[k+2]), .P2(St2p[k+2]));
GROUPGP groupgp2 (.G0(St1g[k+1]), .P0(St1p[k+1]), .G1(St1g[k+3]),
.P1(St1p[k+3]), .G2(St2g[k+3]), .P2(St2p[k+3]));
end
endgenerate

// Stage 3
genvar l;
generate
for (l = 1; l < 16; l = l+8)
begin
GROUPGP groupgp1 (.G0(St2g[l+3]), .P0(St2p[l+3]), .G1(Gi[l+4]),
.P1(Pi[l+4]), .G2(St3g[l+4]), .P2(St3p[l+4]));
GROUPGP groupgp2 (.G0(St2g[l+3]), .P0(St2p[l+3]), .G1(St1g[l+5]),
.P1(St1p[l+5]), .G2(St3g[l+5]), .P2(St3p[l+5]));
GROUPGP groupgp3 (.G0(St2g[l+3]), .P0(St2p[l+3]), .G1(St2g[l+6]),
.P1(St2p[l+6]), .G2(St3g[l+6]), .P2(St3p[l+6]));
GROUPGP groupgp4 (.G0(St2g[l+3]), .P0(St2p[l+3]), .G1(St2g[l+7]),
.P1(St2p[l+7]), .G2(St3g[l+7]), .P2(St3p[l+7]));
end

 41

endgenerate

genvar m;
generate
for (m = 1; m < 16; m = m+16)
begin
GROUPGP groupgp1 (.G0(St3g[m+7]), .P0(St3p[m+7]), .G1(Gi[m+8]),
.P1(Pi[m+8]), .G2(St4g[m+8]), .P2(St4p[m+8]));
GROUPGP groupgp2 (.G0(St3g[m+7]), .P0(St3p[m+7]), .G1(St1g[m+9]),
.P1(St1p[m+9]), .G2(St4g[m+9]), .P2(St4p[m+9]));
GROUPGP groupgp3 (.G0(St3g[m+7]), .P0(St3p[m+7]), .G1(St2g[m+10]),
.P1(St2p[m+10]), .G2(St4g[m+10]), .P2(St4p[m+10]));
GROUPGP groupgp4 (.G0(St3g[m+7]), .P0(St3p[m+7]), .G1(St2g[m+11]),
.P1(St2p[m+11]), .G2(St4g[m+11]), .P2(St4p[m+11]));
GROUPGP groupgp5 (.G0(St3g[m+7]), .P0(St3p[m+7]), .G1(St3g[m+12]),
.P1(St3p[m+12]), .G2(St4g[m+12]), .P2(St4p[m+12]));
GROUPGP groupgp6 (.G0(St3g[m+7]), .P0(St3p[m+7]), .G1(St3g[m+13]),
.P1(St3p[m+13]), .G2(St4g[m+13]), .P2(St4p[m+13]));
GROUPGP groupgp7 (.G0(St3g[m+7]), .P0(St3p[m+7]), .G1(St3g[m+14]),
.P1(St3p[m+14]), .G2(St4g[m+14]), .P2(St4p[m+14]));
GROUPGP groupgp8 (.G0(St3g[m+7]), .P0(St3p[m+7]), .G1(St3g[m+15]),
.P1(St3p[m+15]), .G2(St4g[m+15]), .P2(St4p[m+15]));

end
endgenerate

assign C[1] = Pi[1];
assign C[2] = Pi[2]^Gi[1];
assign C[3] = Pi[3]^St1g[2];
assign C[4] = Pi[4]^St2g[3];

assign C[5] = Pi[5]^St2g[4];
assign C[6] = Pi[6]^St3g[5];
assign C[7] = Pi[7]^St3g[6];
assign C[8] = Pi[8]^St3g[7];
assign C[9] = Pi[9]^St3g[8];
assign C[10] = Pi[10]^St4g[9];
assign C[11] = Pi[11]^St4g[10];
assign C[12] = Pi[12]^St4g[11];
assign C[13] = Pi[13]^St4g[12];
assign C[14] = Pi[14]^St4g[13];
assign C[15] = Pi[15]^St4g[14];
assign C[16] = Pi[16]^St4g[15];

assign cout = St4g[16];

 42

endmodule

Han-Carlson 16-bit adder

module han_carlson32(A,B,C,cout);
input [32:1] A;
input [32:1] B;
output [32:1] C;
output cout;

wire [32:1] Gi,Pi;
wire [32:1] St1g,St1p;
wire [32:1] St2g,St2p;
wire [32:1] St3g,St3p;
wire [32:1] St4g,St4p;
wire [32:1] St5g,St5p;

// Prefix Computation
genvar i;
generate
for (i = 1; i <= 32; i = i+1)
begin : bit_gen
BITPG bitpg (.Gi(Gi[i]), .Pi(Pi[i]), .Ai(A[i]),.Bi(B[i]));
end
endgenerate
// Stage 1
genvar j;
generate
for (j = 1; j < 32; j = j+2)
begin
GROUPGP groupgp1 (.G0(Gi[j]), .P0(Pi[j]), .G1(Gi[j+1]),
.P1(Pi[j+1]), .G2(St1g[j+1]), .P2(St1p[j+1]));
end
endgenerate
// Stage 2
genvar k;
generate
for (k = 2; k < 32; k = k+2)
begin
GROUPGP groupgp1 (.G0(St1g[k]), .P0(St1p[k]), .G1(St1g[k+2]),
.P1(St1p[k+2]), .G2(St2g[k+2]), .P2(St2p[k+2]));
end
endgenerate
// Stage 3
genvar l;
assign St2g[2] = St1g[2];
assign St2p[2] = St1p[2];
generate
for (l = 4; l < 32; l = l+2)

 43

begin
GROUPGP groupgp1 (.G0(St2g[l-2]), .P0(St2p[l-2]), .G1(St2g[l+2]),
.P1(St2p[l+2]), .G2(St3g[l+2]), .P2(St3p[l+2]));
end
endgenerate

// Stage 4
genvar m;
assign St3g[2] = St2g[2];
assign St3p[2] = St2p[2];
assign St3g[4] = St2g[4];
assign St3p[4] = St2p[4];
generate
for (m = 8; m < 32; m = m+2)
begin
GROUPGP groupgp1 (.G0(St3g[m-6]), .P0(St3p[m-6]), .G1(St3g[m+2]),
.P1(St3p[m+2]), .G2(St4g[m+2]), .P2(St4p[m+2]));
end
endgenerate

// Stage 5
genvar n;
assign St4g[2] = St3g[2];
assign St4p[2] = St3p[2];
assign St4g[4] = St3g[4];
assign St4p[4] = St3p[4];
assign St4g[6] = St3g[6];
assign St4p[6] = St3p[6];
assign St4g[8] = St3g[8];
assign St4p[8] = St3p[8];
generate
for (n = 16; n < 32; n = n+2)
begin
GROUPGP groupgp1 (.G0(St4g[n-14]), .P0(St4p[n-14]), .G1(St4g[n+2]),
.P1(St4p[n+2]), .G2(St5g[n+2]), .P2(St5p[n+2]));
end
endgenerate

// Stage 6 Not comfortable to use generate
//genvar m;
//generate
//for (m = 2; m < 32; m = m+2)
//begin
//GROUPGP groupgp1 (.G0(St1g[m]), .P0(St1p[m]), .G1(Gi[m+1]),
.P1(Pi[m+1]), .G2(St2g[m+1]), .P2(St2p[m+1]));
//end
//endgenerate
GROUPGP groupgp1 (.G0(St1g[2]), .P0(St2p[2]), .G1(Gi[3]),
.P1(Pi[3]), .G2(St2g[3]), .P2(St2p[3]));

 44

GROUPGP groupgp2 (.G0(St2g[4]), .P0(St2p[4]), .G1(Gi[5]),
.P1(Pi[5]), .G2(St2g[5]), .P2(St2p[5]));
GROUPGP groupgp3 (.G0(St3g[6]), .P0(St3p[6]), .G1(Gi[7]),
.P1(Pi[7]), .G2(St2g[7]), .P2(St2p[7]));
GROUPGP groupgp4 (.G0(St3g[8]), .P0(St3p[8]), .G1(Gi[9]),
.P1(Pi[9]), .G2(St2g[9]), .P2(St2p[9]));
GROUPGP groupgp5 (.G0(St4g[10]), .P0(St4p[10]), .G1(Gi[11]),
.P1(Pi[11]), .G2(St2g[11]), .P2(St2p[11]));
GROUPGP groupgp6 (.G0(St4g[12]), .P0(St4p[12]), .G1(Gi[13]),
.P1(Pi[13]), .G2(St2g[13]), .P2(St2p[13]));
GROUPGP groupgp7 (.G0(St4g[14]), .P0(St4p[14]), .G1(Gi[15]),
.P1(Pi[15]), .G2(St2g[15]), .P2(St2p[15]));
GROUPGP groupgp8 (.G0(St4g[16]), .P0(St4p[16]), .G1(Gi[17]),
.P1(Pi[17]), .G2(St2g[17]), .P2(St2p[17]));
GROUPGP groupgp9 (.G0(St5g[18]), .P0(St5p[18]), .G1(Gi[19]),
.P1(Pi[19]), .G2(St2g[19]), .P2(St2p[19]));
GROUPGP groupgp10 (.G0(St5g[20]), .P0(St5p[20]), .G1(Gi[21]),
.P1(Pi[21]), .G2(St2g[21]), .P2(St2p[21]));
GROUPGP groupgp11 (.G0(St5g[22]), .P0(St5p[22]), .G1(Gi[23]),
.P1(Pi[23]), .G2(St2g[23]), .P2(St2p[23]));
GROUPGP groupgp12 (.G0(St5g[24]), .P0(St5p[24]), .G1(Gi[25]),
.P1(Pi[25]), .G2(St2g[25]), .P2(St2p[25]));
GROUPGP groupgp13 (.G0(St5g[26]), .P0(St5p[26]), .G1(Gi[27]),
.P1(Pi[27]), .G2(St2g[27]), .P2(St2p[27]));
GROUPGP groupgp14 (.G0(St5g[28]), .P0(St5p[28]), .G1(Gi[29]),
.P1(Pi[29]), .G2(St2g[29]), .P2(St2p[29]));
GROUPGP groupgp15 (.G0(St5g[30]), .P0(St5p[30]), .G1(Gi[31]),
.P1(Pi[31]), .G2(St2g[31]), .P2(St2p[31]));

assign C[1] = Pi[1];
assign C[2] = Pi[2]^Gi[1];
assign C[4] = Pi[4]^St2g[3];
assign C[6] = Pi[6]^St2g[5];
assign C[8] = Pi[8]^St2g[7];
assign C[10] = Pi[10]^St2g[9];
assign C[12] = Pi[12]^St2g[11];
assign C[14] = Pi[14]^St2g[13];
assign C[16] = Pi[16]^St2g[15];
assign C[18] = Pi[18]^St2g[17];
assign C[20] = Pi[20]^St2g[19];
assign C[22] = Pi[22]^St2g[21];
assign C[24] = Pi[24]^St2g[23];
assign C[26] = Pi[26]^St2g[25];
assign C[28] = Pi[28]^St2g[27];
assign C[30] = Pi[30]^St2g[29];
assign C[32] = Pi[32]^St2g[31];

assign C[3] = Pi[3]^St1g[2];
assign C[5] = Pi[5]^St2g[4];
assign C[7] = Pi[7]^St3g[6];
assign C[9] = Pi[9]^St3g[8];

 45

assign C[11] = Pi[11]^St4g[10];
assign C[13] = Pi[13]^St4g[12];
assign C[15] = Pi[15]^St4g[14];
assign C[17] = Pi[17]^St4g[16];
assign C[19] = Pi[19]^St5g[18];
assign C[21] = Pi[21]^St5g[20];
assign C[23] = Pi[23]^St5g[22];
assign C[25] = Pi[25]^St5g[24];
assign C[27] = Pi[27]^St5g[26];
assign C[29] = Pi[29]^St5g[28];
assign C[31] = Pi[31]^St5g[30];

assign cout = St5g[32];

endmodule

 46

BIBLIOGRAPHY

[1] R. K. Richards, Arithmetic Operations in Digital Computers, Princeton, N.J.: D. Van

Nostrand Co., 1955.

[2] A. Weinberger and J. Smith, “A logic for high-speed addition,” National Bureau of

Standards, no. 591, pp. 3–12, 1958.

[3] J. Sklansky, “Conditional-sum addition logic,” IRE Transactions on Electronic

Computers, vol. EC-9, pp. 226–231, 1960.

[4] O. J. Bedrij, “Carry-select adder,” IRE Transactions on Electronic Computers, vol.

EC-11, pp. 340–346, 1962.

[5] M. Nadler, “A High-Speed Electronic Arithmetic Unit for Automatic Computing

Machines,” Alta Technica (Prague), vol. 6, pp. 464-478, 1956.

[6] H. Ling, “High speed binary adder,” IBM Journal of Research and Development, vol.

25, pp. 156–166, 1981.

[7] Thomas Lynch and Earl E. Swartzlander, Jr., “A Spanning Tree Carry Lookahead

Adder,” IEEE Transactions on Computers, vol. 41, 1992, pp. 931-939.

[8] B. Parhami, Computer Arithmetic, Algorithm and Hardware Design, New York:

Oxford University Press, pp. 91-119, 2000.

[9] D. Harris, “A taxonomy of parallel prefix networks,” in Record of the Thirty-Seventh

Asilomar Conference on Signals, Systems and Computers, Nov. 2003, pp. 2213–

2217.

[10] P. Kogge and H. Stone, “A parallel algorithm for the efficient solution of a general

class of recurrence relations,” IEEE Transactions on Computers, vol. C-22, pp. 786–

793, 1973.

 47

[11] S. Knowles, “A family of adders,” Proceedings of the 15th IEEE Symposium on

Computer Arithmetic, June 2001, pp. 277–281

[12] R. P. Brent and H. T. Kung, “A regular layout for parallel adders,” IEEE

Transactions on Computers, vol. C-31, pp. 260–264, 1982.

[13] R. Ladner and M. Fischer, “Parallel prefix Computation,” Journal of the ACM, vol.

27, pp. 831–838, 1980

[14] T. Han and D. Carlson, “Fast area-efficient VLS Adders,” Proceedings of the 8th

IEEE Symposium on Computer Arithmetic, Sept. 1987, pp. 49–56

[15] J. E. Stine, I. Castellanos, M. Wood, J. Henson, F. Love, W. R. Davis, P. D.

Franzon, M. Bucher, S. Basavarajaiah, J. Oh, and R. Jenkal, “FreePDK: An open-

source variation-aware design kit,” Proceedings of IEEE International

Microelectronic System Education, 2007, pp. 173–174

[16] Synopsys 32/28nm Interoperable PDK for Teaching AMS/Custom Design

http://www.synopsys.com/Community/UniversityProgram/Pages/32-28nm-ipdk.aspx

 48

VITA

 Vignesh Naganathan graduated from National Institute of Technology,

Tiruchirapalli, India as Bachelor of Technology in Electronics and Communication

Engineering in 2010. He pursued Masters of Science in Electrical Engineering with focus

on Integrated Circuits and Systems at The University of Texas at Austin.

 After completing the Bachelor’s degree, Vignesh Naganathan worked as ASIC

Design Engineer at NVidia Corporation, India from 2010 to 2013. He is working at

Apple Inc., as CPU Implementation Engineer since January 2015. He can be reached at

vignesh.radnag@gmail.com. This report was typed by the author.

