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Abstract 

 

A Comparative Analysis of Parallel Prefix Adders 
in 32nm and 45nm static CMOS Technology 

 

Vignesh Naganathan, M.S.E 

The University of Texas at Austin, 2015 

 

Supervisor:  Earl Swartzlander 
 

Binary adders form a major part in various arithmetic logical operation units 

including multipliers, dividers and digital signal processors. Parallel prefix adders 

represent a set of efficient structures for binary addition, greatly suited for VLSI 

implementation due to their regularity and speed. This report is focused on the 

comparative analysis of 5 major types of parallel prefix adder frameworks namely 

Kooge-Stone, Knowles adders, Brent-Kung, Han-Carlson and Ladner-Fischer adders 

implemented in Synopsys’s SAED 32nm static CMOS technology operating at 1.05V for 

8-bit, 16-bit and 32-bit input vectors based on power, performance and area (PPA) 

metrics. The process technology is modeled with 9 metal tracks. Power, performance and 

area metrics based on circuit simulations are used for comparison. The metrics are 

compared across SAED 32nm and FreePDK 45nm technology to quantify the impact of 

technology on architecture. 
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CHAPTER 1  

INTRODUCTION 

Addition is the most common arithmetic operation and binary adders are used 

widely in almost all the arithmetic operations in the modern digital systems. Multipliers, 

dividers, arithmetic logic units (ALU), digital system processors (DSP) among others 

extensively use binary addition operations. Most often, the performance of the digital 

systems depends critically on the performance of binary adders. In addition, power 

efficiency is very critical in portable electronic systems like smartphones and tablets with 

limited battery power. Hence, binary adders are required to be faster, smaller and 

extremely power efficient. 

The critical path in a binary adder is the carry out computation path from the 

inputs. The propagation delay in the carry chain limits the performance of the binary 

adders. In conventional ripple carry adders, as the width of the input vectors increases, 

the length of the carry chain increases. This carry-propagation problem can be efficiently 

addressed by parallel prefix computation. Parallel prefix adders (PPA) are variations of 

the well-known carry look ahead (CLA) adders. They are the fastest and most efficient 

computation structure for binary addition in VLSI digital systems because of the 

regularity and parallel execution nature. The parallel prefix adders attain logarithmic time 

complexity and the propagation delay is directly proportional to the number of levels in 

carry propagation logic. 

This report focuses on the performance of the different parallel prefix adders 

implemented in SAED 32nm and FreePDK 45nm static CMOS technology node. The 



 2 

parallel prefix adders analyzed in the report are Kogge-Stone adder, Brent-Kung adder, 

Han Carlson adder, Ladner Fischer adder and Knowles family of adders. The power, 

performance and area (PPA) metrics are used to perform the comparative analysis of 

these parallel prefix adders. Based on the simulation studies, Kogge-Stone adder is the 

fastest adder while it burns the highest power due to its extensive parallel prefix 

operations while Brent-Kung adder is the smallest adder and burns the least power due to 

its prefix tree structure. 

1.1 Literature Review 

There are many ways of approaching the process of binary addition providing 

different insight, resulting in different implementations. The simplest adder architecture 

is ripple carry adder [1] where every block computes a 1-bit sum and provides the 

resulting output and the carry bit for the next 1-bit adder. The worst-case delay is linearly 

proportional to the width of the input operands. Some other adders like bit-serial adders 

and Manchester Carry chain adders also have at least linear time complexity with respect 

to word width of inputs.  

Weinberger and Smith’s carry-lookahead adders (CLA) [2] are commonly used 

structure for logarithmic time addition. CLA employ multiple levels of Manchester carry 

chains of generate, propagate and kill signals to solve carry-propagation problem. The 

carry-skip adder provides a compromise between ripple carry adder and a CLA adder. It 

splits input vectors into multiple bit groups or blocks and then computes “group 

propagate” signals for each block of inputs to establish bypass or skip paths around that 

blocks to speed up the carry propagation.  
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Sklansky’s conditional-sum adder [3] realizes addition with modules by 

performing computation of conditional sums and carries that result from the assumption 

of all the possible distributions of carries for column groups. Bedrij’s carry-select adder 

[4] approaches the carry-propagation problem by independently generating multiple-radix 

carries and using these carries to select between simultaneously generated sums. Since 

input operands are added twice to produce two sums with carry assumed in one addition 

and carry not assumed in another addition, it is not efficient in terms of cell count and 

area. Several variants of high-speed adders include Nadler’s pyramid adder [5], Ling 

adder [6] and spanning tree carry-lookahead adder [7]. 

The prefix formulation is an excellent approach to compute carry propagation 

network as adders implemented based on parallel prefix operators can be implemented 

compact and regular in VLSI. The associativity and idempotency properties of prefix 

operators give extreme flexibility in formulating various variants in prefix addition 

algorithm and their implementation in VLSI. The prefix computation approach and the 

existing variants of prefix tree algorithms are briefly explained in the coming section. 

1.2 Prefix computation approach 

For n-bit addition, where n is a power of 2, a minimum-depth prefix adder 

comprises 3+log2n inverting gate stages in CMOS technology. The first stage of a prefix 

adder computes carry generate (g), propagate (p) and kill (k) terms for each bit according 

to the relations: 
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gi =ai⋅bi 

ki = !(ai + bi) 

pi =ai ⊕bi 

A carry is generated if both the input addend bits of the particular stage are ones and an 

input carry to a particular stage is propagated to the next stage if one of the addend bits is 

one. Thus, based on the generate and propagate signals, the carry bits of each stage are 

derived by: 

ci+1 =gi +pici ��� 

The final stage computes sum bits as: 

si = pi ⊕ci 

Thus summing up the above steps, in general carry lookahead adders have a 3-step 

structure: 

• Pre-computation stage of generate gi, propagate pi signals for each bit position 

• Computation of carry Ci for each bit position 

• Post-computation stage of combining Ci, and Pi to generate sum Si for each bit 

position 

The first and last stages are fast because they involve simple operations on signals local 

to each bit position. The intermediate stages are used to compute carry propagation 

network using prefix operation �in a parallel prefix adder. The prefix operation � 
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(gx,px) � (gy,py) = (gx + px.gy, px.py) 

The carry into any bit position can be computed using a chain of prefix operations: 

(Ci+1,Pi) = (gi,pi)�(gi-1,pi-1)�(gi-2,pi-2)� …�(g0,p0) 

The problem of carry determination can be formulated as follows [8]: 

Given 

(g0,p0), (g1,p1)…(gi-1,pi-1),(gi,pi) 

Find 

(g0…0,p0…0),(g0…1,p0…1)…(g0…i-1,p0…1-1),(g0…i,p0…i) 

Since the prefix operator is associative and idempotent, these operations can be 

performed in greater parallelism, allowing parallel prefix adders to be much faster 

circuits than any of the other adder implementations.  

(gh…j,ph…j)� (gj…k,pj…k) = (gh…i,ph…i)� (gi…k,pi…k) where h > i ≥j > k 

(gh…j,ph…j)� (gi…k,pi…k) = (gh…k,ph…k) 

Thus, the carry problem is converted to a parallel prefix operations and there are various 

prefix computation schemes to find all the carries. This multilevel-lookahead idea is to 

compute small group of intermediate prefixes and then find large group prefixes, until all 

the carry bits are computed. 
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CHAPTER 2 

PARALLEL PREFIX ADDERS 

Adders in which the computation of carries is based on the above-defined prefix 

equations are called “prefix adders.” When multiple sub-terms are computed in parallel 

by exploiting associative and/or idempotency properties, then the prefix adders are called 

“parallel prefix adders.” These structures are very commonly used in high performance 

adders because the delay is logarithmically proportional to the input operand width. 

Based on the variations of the prefix tree structure, there are several types of parallel 

prefix adders. Trade-offs involved in different prefix tree structures include  

• radix/valency  

• area of the adder 

• logic tree depth 

• fan-out of the nodes at each stage 

• the overall wiring network 

In this report, 5 major parallel prefix adders, namely Ladner-Fischer, Kogge-

Stone, Brent-Kung, Han-Carlson, and Knowles family of adders are analyzed from a 

VLSI designer point of view. Additional insight on how the architecture and minimum 

feature size of SAED 32nm and FreePDK 45nm impact circuit technology.  
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2.1 Taxonomy 

For any n-bit prefix trees with fixed radix of 2 (the number of inputs to the logic 

gates is always 2 for the PPA discussed in the report), design trade-off is made among 

logic levels, fan-out and wire tracks. Hence the taxonomy, as proposed by D. Harris[9], 

uses the (l,f,t) with each variable representing logic levels, fan-out and wire tracks, 

respectively. l,f and t are integers between 0 and log2(n) -1. 

• Logic levels: log2(n) + l 

• Fan-out: 2f + 1 

• Wire tracks: 2t 

 

Figure 1. Taxonomy of 16-bit prefix tree from D. Harris 



 8 

Based on the taxonomy, Kogge-Stone prefix tree (0,0,log2(n)-1) has the least logic 

levels and fan-out. However, the wire track is 2log2(n)-1, which is the maximum among the 

prefix structures. This results in a dense gate structure compromising on area and power 

for performance gain. Brent-Kung prefix tree (log2(n)-1,0,0) has the least fan-out and 

wiring track. However it requires the most logic levels among the prefix trees. Therefore 

Brent-Kung compromises the speed significantly for smallest area and least power 

dissipation. Ladner-Fischer prefix tree (log2(n)-2,1,0) employs smaller number of logic 

levels and wiring tracks while the fan-out increases with wider inputs towards the later 

stages of prefix computation graph. This results in significant loss in performance in 

CMOS implementation due to increased capacitive output load on last stage drivers for 

wider words. Knowles family (0,f,t) has the least logic levels while fan-out and wire 

tracks depend on the specific prefix structure. This family has a high dense gate structure. 

Han-Carlson prefix tree (1, 0, log2(n)-2) reduces the gate density by introducing one extra 

logic level than minimum. However the number of wire tracks is logarithmically 

proportional to input width. 

2.2 Prefix graph convention 

The general convention used in the prefix graph shown in the coming sections is 

group generate/propagate signals are the only signals used in the purple colored circular 

dots, which represent prefix operators. The group generate/propagate signals are based on 

the single bit generate/propagate signals computed in the pre-computation stage. They are 

represented by white colored circular dots. Solid lines show the lateral connectivity 
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required between nodes at each stage while the dashed lines show the implicit vertical 

connections between the nodes in the same column. 
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CHAPTER 3 

PARALLEL PREFIX ADDER SCHEMES 

3.1 Kogge-Stone adders 

Kogge-Stone adder [10] is one of the widely used prefix tree structure for high 

performance adders. It employs fewest logic levels with maximum fan-out limited to 2 in 

all logic levels for all width Kogge-Stone prefix trees. It is one of the members of the 

Knowles family of adders with the special case of the maximum branch fan-out at each 

level limited to 1. For example, 16-bit Kogge-Stone adder as shown in the figure below 

can be expressed as Knowles [1,1,1,1] where the numbers in the brackets represent the 

maximum branch fan-out at each logic level. 

Kogge-Stone adders achieve very high performance by extensive parallelism of 

prefix operator execution employing both associativity and idempotency. Idempotency 

property limits the lateral logical fanout at each node to unity but dramatically increases 

the number of lateral wires at each level. The increased wire tracks result in highly dense 

gate structure. Hence wire capacitance is high even though logical fanout is minimized. 

This results in requirement of buffering to drive higher wire capacitance. Due to extreme 

parallel execution, the total power dissipated by Kogge-Stone is highest among the prefix 

adders. 



 11 

 

Figure 2: 16-bit Kogge-Stone prefix tree 

The area of Kogge-Stone is also very high. For a technology independent 

comparison of area, we can use the prefix cell count as an estimate. However the actual 

area should include the pre-computation and post-computation logic circuits along with 

buffering. For n-bit Kogge Stone adder, total number of prefix operators can be 

calculated as nlog2n – n + 1. When n=16, the number of prefix operators is 49. 

3.2 Knowles Family of adders 

Knowles [11] proposed a family of adders with flexible architectures of prefix 

tree computation structures. As mentioned earlier, Knowles prefix adders are 

distinguished by the maximum branch fan-out at each logic level. Knowles [4,2,2,1] 

prefix structure for 16-bit adder is shown below. 16-bit Kogge-Stone adder is nothing but 

Knowles [1,1,1,1] prefix structure.  In fact, there are 14 different topologies for 16-bit 
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adders such as [4,2,1,1], [4,4,2,1], [8,2,1,1] and [8,2,2,1] with Kogge-Stone [1,1,1,1] and 

Ladner-Fischer [8,4,2,1] as limiting cases in terms of branch fan-out in each logic stage. 

Knowles family of adders also includes Hybrid Knowles prefix adders, which allow 

different fan-out in the same logic level. 

 

Figure 3: Knowles 16-bit prefix [4,2,2,1] structure 

The Knowles prefix tree family can be built based on Kogge-Stone prefix trees 

and can be gradually moved on to more complex prefix structures like Brent-Kung or 

Han-Carlson tree. It allows us to limit the lateral wire tracks at each logic level and the 

branch fan-out at each logic level based on the technology requirements. Also it allows 

reuse of the blocks of smaller adders in the prefix tree and to combine the best of 

different prefix adder qualities based on the constraints.  

The area of Knowles adders depends on the prefix tree implementation. Knowles 
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[2,1,1,1] contains the same number of logic levels as Kogge-Stone [1,1,1,1]. Kogge-

Stone 8-bit adder can be reused for the first three logic levels while the logic level 4 is 

modified to have a fan-out of 3 instead of 2. Thus, the Knowles [2,1,1,1] has same 

number of prefix operator cells as Kogge-Stone 16-bit adder. However the lateral wire- 

tracks is reduced in the final logic level. The cell count is estimated as nlog2n – n +1, 

exactly same as Kogge-Stone 16-bit adder.  

3.3 Brent-Kung adders 

Brent-Kung prefix tree [12] is a well-known structure, which has the least fan-out 

and lateral wire tracks among the popular prefix adders. However it is a complex 

structure because it has the most logic levels. A 16-bit Brent-Kung prefix tree structure is 

shown below. 

 

Figure 4: 16-bit Brent Kung prefix tree 
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Brent-Kung adder restricts the lateral fan-out of each node to unity, as in Kogge-

Stone adder but without the explosion of wires. The capacitive load is still high due to the 

wide span of wires. For instance, in a 16-bit adder shown above, the structure starts with 

prefix operators every 2 bits. The input span is 1 bit and the output span is 2 bits. At logic 

level 2, the distance between each operator is 4 bits while it is 8 bits in logic level 3. At 

logic level 4, the only prefix operation is at the MSB with input span of 8 bits and the 

output span of 16 bits. At logic levels 5 through 7, the input bit spans are decremented 

and they are 4, 2 and 1 bit respectively. The critical path for a 16-bit adder is from bit 0 in 

the pre-computation stage to bit 14 in logic stage 6. Hence, even with buffering, the 

Brent-Kung adders are among the slowest prefix adders. 

In terms of prefix operator count, for a n-bit adder, the total number of prefix 

operators is 2(n-1) - log2n. For n = 16, it is 26.  

3.4 Ladner-Fischer adders 

Ladner-Fischer prefix tree structure [13] is shown below. Sklansky’s conditional-

sum adder can be included in this family of prefix structure. It exploits the associativity 

property of prefix operators extensively, but not the idempotency property, while 

constructing a binary tree of prefix operators. It is in some sense a basis for the other 

prefix tree structures. 



 15 

 

Figure 5: 16-bit Ladner-Fischer prefix tree 

This structure has minimum logic depth but has large fan-out requirement up to 

n/2. The longest lateral fanning wires run from a node to n/2 other nodes. Capacitive fan-

out loads are very large for later levels in the graph for wider input operands. In VLSI 

CMOS implementations, it involves increasing the drive strengths of the buffers and 

inverters to support larger loads. This increases the area, limits the performance by 

increasing the delay and burns more power due to larger drive cells. 

The number of logic levels of log2n is always the minimum in this scheme for an 

n-bit adder. Each logic level has n/2 cells. Therefore, the total number of prefix operators 

is nlog2n 
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3.5 Han-Carlson adders 

The idea of Han-Carlson prefix tree [14] is very similar to Kogge-Stone adder in 

terms of maximum fan-out of 2 at each logic stage. However Han-Carlson scheme uses 

fewer cells and lateral wire tracks than Kogge-Stone adder by adding one extra logic 

level. A 16-bit Han-Carlson prefix tree is shown below. 

 

Figure 6: 16-bit Han-Carlson prefix tree 

Han-Carlson prefix tree performs prefix operations every other bit in each logic 

level. The extra last logic stage performs prefix operations for the missing carries. This 

approach accomplishes minimum branch fan-out at each logic level without using more 

wiring track resources. The critical path is from bit 8 in the pre-computation stage to 

carry bit 10 in the final stage. 
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As mentioned above, the number of logic levels is log2n + 1 for any n-bit adder. 

It can be observed that the total number of prefix operators in this scheme is (n/2)log2n. 

For n = 16, 32 prefix operators are used. 

3.6 Summary 

By tabulating the logic levels, fanout, prefix operator count and lateral wiring 

tracks for the above discussed adders, a clear idea of the trade-offs involved in the design 

is provided. 

Table 1: Algorithmic comparison of prefix tree structure 

 

Prefix structure Logic Levels Prefix count Fan-out Wire Tracks 

Kogge-Stone log2n nlog2n – n + 1 2 n/2 

Knowles[2,1,1,1] log2n nlog2n – n + 1 3 n/4 

Brent-Kung 2log2n-1 2(n-1) – log2n 2 1 

Ladner-Fischer log2n (n/2)log2n n/2+1 1 

Han-Carlson log2n+1 (n/2)log2n 2 n/4 

 
Thus in this chapter, the construction analysis of parallel prefix adders is done in 

detail. The trade-offs involved in designing a prefix adder scheme is tabulated for 

comparison. 
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CHAPTER 4 

SIMULATION METHODOLOGY 

To understand the impact of circuits and CMOS technology on the prefix tree 

structure, simulation data on power, performance and area from placed and routed 

circuits are needed. To obtain the simulation results for the report, the following 

methodology is followed.  

The 8-bit, 16-bit and 32-bit versions of each of the above 5 parallel prefix adders 

were designed in structural Verilog model. The individual bit generate and propagate 

signals are generated using an AND gate and a XOR gate respectively. A prefix operator 

is designed using an AND gate and an AOI cell. The multiple carries are computed using 

different prefix tree structures with proper buffering necessary, according to the 

implementation. The post-computation stage is designed using XOR gates to generate the 

sum bits. 

To understand the impact of technology, this report uses Synopsys 32/28nm 

Generic Library and FreePDK 45nm [15] design kit. The 32nm Digital Standard Cell 

library [16] consists of 350 cells for different drive strengths to optimize the IC design. 

The library is designed for 1.05V operation with a process technology of 1P9M. Since 

University of Texas at Austin is a member of Synopsys University Program, it is possible 

to perform System-on-Chip (SoC) implementations and statistical circuit analysis through 

commercial front-end and back-end tools without violating the intellectual property (IP). 

FreePDK is an open source, variation aware Process Design Kit (PDK), provided by 

North Carolina State University. 
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Figure 7: Simulation methodology 

 

Design	  

• Pre+ix	  tree	  architecture	  built	  with	  Verilog	  HDL	  
• Hand-‐instantiated	  logic	  structure	  for	  group/propagate	  signal	  generation	  and	  
pre+ix	  operator.	  

Synthesis	  

• Tool:	  Synopsys's	  Design	  Compiler	  Topographical	  
• Input:	  RTL,	  static	  CMOS	  technology	  logical,	  timing	  and	  physical	  libraries,	  
Constraints,	  Milkyway	  Library	  +iles	  
• Output:	  Gate-‐level	  netlists	  with	  custom	  design	  of	  pre+ix	  operator,	  QoR	  reports	  

Place	  and	  
Route	  

• Tool:	  Cadence's	  Encounter	  Digital	  Implementation	  
• Input:	  DC	  synthesized	  netlist,	  static	  CMOS	  technology	  logical,	  physical	  and	  
timing	  libraries,	  Physical	  LEF	  +ile	  
• Output:	  Placed	  and	  Routed	  netlist,	  Interconnect-‐RC	  parasitic	  
extraction(*.spef),	  post-‐layout	  delay	  constraints	  (*.sdf)	  

Gate-‐level	  
simulation	  

• Tool:	  Synopsys's	  VCS/DVE	  
• Input:	  Physical	  netlist,	  Gate-‐level	  verilog	  models,	  post-‐layout	  delay	  
annotations	  (*.sdf),	  Testbench	  to	  generate	  random	  set	  of	  test	  vectors	  
• Output:	  Logic-‐level	  switching	  activity	  information	  with	  delay	  annotated	  
(*.vcd)	  

Power	  
estimation	  

• Tool:	  Synopsys's	  PrimeTime-‐PX	  
• Input:	  Physical	  netlist,	  static	  CMOS	  timing	  and	  logical	  libraries	  (*.lib),	  
Interconnect-‐RC	  parasitics	  (*.spef),	  Switching	  activity	  information	  (*.vcd)	  
• Output:	  Post-‐layout	  timing,	  peak	  power,	  internal	  power,	  leakage	  power	  and	  
total	  time-‐based	  average	  power	  reports	  
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The high level description is then synthesized using Synopsys’s SAED 32nm 

static CMOS technology using Design Compiler Topographical. It is a physical-aware 

synthesis where interconnect RC modeling is based on coarse placement performed by 

Design Compiler. 

The resulting gate-level synthesized netlists are physically placed and routed 

using Cadence’s Encounter Digital Implementation (EDI). The resulting layout is used as 

the basis for the circuit simulation. The interconnect RC parasitic extraction is done based 

on EDI’s routing and exported in SPEF format.  

Each physically placed and routed adder implementation is simulated with 1250 

pseudo-random input vectors through a testbench, which annotates the cell timing delay 

and interconnect delay. The back-annotation of post-layout timing delay SDF and 

parasitic SPEF, is done to ensure accurate modeling of the switching behavior for the 

randomly generated inputs. The toggle count per net of each adder is calculated using 

logic simulation VCD. Synopsys’s VCS/DVE circuit simulator is used to generate the 

switching activity information of each adder. 

Finally, the total power dissipation is estimated from the detailed time-based 

average mode power simulation in Synopsys’s PrimeTime-PX. The logic switching 

activity VCD information dumped by the previous gate simulation is used to estimate the 

dynamic switching power and internal power. To ensure better correlation with post-

layout implementation, the extracted RC parasitic SPEF constraints are applied during 

power estimation. Leakage power is also included in the total power estimation.  
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The same methodology is followed using FreePDK 45nm technology to analyze 

the impact of circuit technology on architecture. 
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CHAPTER 5 

CIRCUIT SIMULATION RESULTS 

Based on the above-described methodology, the following parallel prefix adders 

were simulated: Brent-Kung, Kogge-Stone, Knowles family of adders, Han-Carlson and 

Ladner-Fischer in SAED 32nm technology and FreePDK 45nm technology. 

5.1 SAED 32nm technology 

The performance is typically limited by the worst-case delay of the critical path in 

an adder implementation. The critical path delay in worst-case corner operating at 1.05V 

for the parallel prefix adders is tabulated below. As can be seen, Kogge-Stone adder is 

the fastest while Brent-Kung adder is the slowest among the adders. The best performing 

Knowles adder structure in terms of power, performance and area is picked for each input 

vector width and presented in this table.  

Table 2: Critical path delay of prefix adders in SAED 32nm technology 

Adders	  
Critical	  path	  delay	  (ns)	  

8-‐bit	   16-‐bit	   32-‐bit	  
Brent-‐Kung	   0.37	   0.49	   0.59	  
Kogge-‐Stone	   0.30	   0.38	   0.45	  
Han-‐Carlson	   0.34	   0.42	   0.48	  
Ladner-‐Fischer	   0.32	   0.42	   0.51	  

Knowles	  Family	  	  
8-‐bit:	  [2,1,1]	  

	  16-‐bit:	  [4,4,2,1]	  
32-‐bit:	  [16,2,2,2,1]	   0.31	   0.39	   0.48	  
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Figure 8: Critical path delay of prefix adders in 32nm technology 

The area comparison is shown in the Table. 

 

Table 3: Total cell area of prefix adders in SAED 32nm technology 

 

Adders	  
Area	  

8-‐bit	   16-‐bit	   32-‐bit	  
Brent-‐Kung	   127.83	   277.27	   584.79	  
Kogge-‐Stone	   155.28	   382.49	   910.09	  
Han-‐Carlson	   132.41	   304.72	   685.93	  
Ladner-‐Fischer	   132.41	   303.19	   680.09	  

Knowles	  Family	  	  
8-‐bit:	  [2,1,1]	  

	  16-‐bit:	  [4,4,2,1]	  
32-‐bit:	  [16,2,2,2,1]	   157.06	   321.24	   772.60	  
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Figure 9: Total cell area of synthesized prefix adders in SAED 32nm technology 

 
The total power dissipation of different adders is tabulated here. As can be seen, 

Kogge-Stone adders burn the highest amount of power as the input word width increases. 

It is due to extensive application of parallel prefix operators for high performance. Brent-

Kung adders burn the least amount of power. Knowles adders achieve comparable 

performance to the Kogge-Stone adders without exploding in area and burning high 

power. 

Table 4: Total power dissipation of prefix adders in SAED 32nm technology 

Adders	  
Total	  power	  (W)	  

8-‐bit	   16-‐bit	   32-‐bit	  
Brent-‐Kung	   6.12E-‐05	   1.11E-‐04	   2.31E-‐04	  
Kogge-‐Stone	   5.91E-‐05	   1.36E-‐04	   3.20E-‐04	  
Han-‐Carlson	   6.33E-‐05	   1.44E-‐04	   2.59E-‐04	  
Ladner-‐Fischer	   6.32E-‐05	   1.44E-‐04	   2.67E-‐04	  

Knowles	  Family	  	  
8-‐bit:	  [2,1,1]	  

	  16-‐bit:	  [4,4,2,1]	  
32-‐bit:	  [16,2,2,2,1]	   5.76E-‐05	   1.25E-‐04	   2.89E-‐04	  
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The detailed comparison of Knowles family of adders is presented in Table 

below. The numbers in the bracket represent the maximum branch fan-out at each logic 

stage for the corresponding prefix tree structure. Power, performance and area of the 

implementation in 32nm static CMOS technology are shown here. 

Table 5: Power, performance and area metrics of Knowles family of adders 

	  Input	  
width	  

Knowles	  
structure	  

Critical	  
path	  
delay	  
(ns)	  

Area	  
(sq	  μ)	  

Internal	  
Power	  
(W)	  

Leakage	  
Power	  
(W)	  

Total	  
Power	  
(W)	  

8-‐bit	  

[2,1,1]	   0.31	   157.06	   1.01E-‐06	   5.66E-‐05	   5.76E-‐05	  
[2,2,1]	   0.33	   141.56	   1.01E-‐06	   5.43E-‐05	   5.53E-‐05	  
[4,1,1]	   0.32	   141.56	   1.01E-‐06	   5.43E-‐05	   5.53E-‐05	  

16-‐bit	  

[2,1,1,1]	   0.42	   384.27	   2.03E-‐06	   1.36E-‐04	   1.38E-‐04	  
[2,2,1,1]	   0.42	   384.27	   2.03E-‐06	   1.36E-‐04	   1.38E-‐04	  
[2,2,2,1]	   0.39	   350.46	   2.03E-‐06	   1.29E-‐04	   1.31E-‐04	  
[4,1,1,1]	   0.43	   382.49	   2.03E-‐06	   1.37E-‐04	   1.40E-‐04	  
[4,2,1,1]	   0.44	   382.49	   2.03E-‐06	   1.37E-‐04	   1.40E-‐04	  
[4,2,2,1]	   0.44	   380.71	   2.03E-‐06	   1.39E-‐04	   1.41E-‐04	  
[4,4,1,1]	   0.42	   381.22	   2.03E-‐06	   1.40E-‐04	   1.42E-‐04	  
[4,4,2,1]	   0.39	   321.24	   2.03E-‐06	   1.23E-‐04	   1.25E-‐04	  
[8,1,1,1]	   0.39	   348.69	   4.06E-‐06	   1.75E-‐04	   1.79E-‐04	  
[8,2,1,1]	   0.40	   350.46	   4.06E-‐06	   1.75E-‐04	   1.79E-‐04	  
[8,2,2,1]	   0.39	   321.24	   4.06E-‐06	   1.68E-‐04	   1.72E-‐04	  
[8,4,1,1]	   0.39	   321.24	   2.03E-‐06	   1.23E-‐04	   1.25E-‐04	  

32-‐bit	  

[16,2,2,2,1]	   0.48	   772.60	   3.93E-‐06	   2.85E-‐04	   2.89E-‐04	  
[16,4,2,2,1]	   0.50	   834.86	   3.93E-‐06	   3.04E-‐04	   3.08E-‐04	  
[2,2,2,1,1]	   0.49	   843.25	   3.93E-‐06	   2.96E-‐04	   3.00E-‐04	  
[4,4,2,2,1]	   0.49	   836.90	   3.93E-‐06	   3.03E-‐04	   3.07E-‐04	  

 

The trade-off between circuit speed and area in 32nm CMOS technology is very 

tight. The area increases drastically to achieve superior speed targets and the chip 

fabrication cost is very high when area increases even by a few percent in modern CMOS 
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technology. As the table for Knowles adders shows, the speedup in adder network is 

achieved by introduction of parallel, logically redundant prefix operators. Similar trend is 

observed in prefix tree structure evolution from Ladner-Fischer adder to Kogge-Stone 

adder by exploiting idempotency property of prefix operators. However this results in the 

explosion of lateral wire track count and results in significant power and area cost. 

5.2 FreePDK 45nm technology 

The critical path delay in 45nm technology for the adders operating at 1.8V is 

presented here. Even though Kogge-Stone adder is the fastest adder scheme, the slowest 

adder implementation is not always Brent-Kung adder. For wider inputs, Ladner-Fischer 

adder becomes the slowest due to the high fan-out capacitive load seen by the later 

stages. The technology plays an important role in how the capacitive load and wiring 

delay affect the performance of adders in wider inputs. In general, performance speedup 

of 33-45% is achieved in scaling the technology from 45nm to 32nm CMOS technology. 

 

 Table 6: Critical path delay of prefix adders in FreePDK 45nm technology 

 

Adders	  
Critical	  path	  delay	  

8-‐bit	   16-‐bit	   32-‐bit	  
Brent-‐Kung	   0.54	   0.77	   0.94	  
Kogge-‐Stone	   0.40	   0.53	   0.72	  
Han-‐Carlson	   0.45	   0.58	   0.72	  
Ladner-‐Fischer	   0.46	   0.62	   1.03	  

Knowles	  Family	  	  
8-‐bit:	  [2,1,1]	  

	  16-‐bit:	  [4,4,2,1]	  
32-‐bit:	  [16,2,2,2,1]	   0.42	   0.57	   0.77	  
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Figure 10: Critical path delay of prefix adders in 45nm technology 

The area in 45nm technology is shown in Table 7. As can be seen, similar trend of 

Kogge-Stone being the largest adder structure especially for wider inputs is observed 

here. On average, the adder structures grow by 50-60% in area when compared to 32nm 

technology. 

Table 7: Total cell area in FreePDK 45nm technology 

 

Adders	  
Total	  cell	  area	  (sq.micron)	  

8-‐bit	   16-‐bit	   32-‐bit	  
Brent-‐Kung	   187.25	   414.86	   884.63	  
Kogge-‐Stone	   240.75	   619.95	   1521.00	  
Han-‐Carlson	   196.17	   468.36	   1084.08	  
Ladner-‐Fischer	   196.17	   468.36	   1084.08	  

Knowles	  Family	  	  
8-‐bit:	  [2,1,1]	  

	  16-‐bit:	  [4,4,2,1]	  
32-‐bit:	  [16,2,2,2,1]	   229.31	   481.86	   1212.98	  
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Figure 12: Total cell area of synthesized prefix adders in 45nm technology 

 The total power dissipation in 45nm technology is shown in Table 8. The 45nm 

FreePDK technology involved a thick oxide gate with 10 metal layers. The leakage 

power is the primary component in the total power dissipation. Also, the operating 

voltage is 1.8V at 45nm technology while it was 1.05V in 32nm technology. That also 

explains why the power dissipation is very high at 45nm technology when compared 

against 32nm technology. 

Table 8: Total power dissipation of prefix adders in FreePDK 45nm technology 

 

Adders	  
Total	  power	  (W)	  

8-‐bit	   16-‐bit	   32-‐bit	  
Brent-‐Kung	   9.17E-‐05	   1.66E-‐04	   3.70E-‐04	  
Kogge-‐Stone	   8.86E-‐05	   2.17E-‐04	   5.43E-‐04	  
Han-‐Carlson	   9.49E-‐05	   2.26E-‐04	   4.27E-‐04	  
Ladner-‐Fischer	   9.47E-‐05	   2.26E-‐04	   4.41E-‐04	  

Knowles	  Family	  	  
8-‐bit:	  [2,1,1]	  

	  16-‐bit:	  [4,4,2,1]	  
32-‐bit:	  [16,2,2,2,1]	   8.64E-‐05	   1.92E-‐04	   4.71E-‐04	  
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CHAPTER 6 

CONCLUSION 

In this Master’s report, the comparative analysis of parallel prefix adders in terms 

of power, performance and area is done in SAED 32nm and FreePDK 45nm static CMOS 

technologies. It is clearly shown that Kogge-Stone adder structure is the fastest parallel 

prefix adder scheme at the cost of highest area and power dissipation. Knowles adders 

achieve comparable performance to Kogge-Stone adders by balancing the maximum 

branch fan-out across logic stages and limiting the lateral wire track count. Interconnect 

delay is the dominant component than gate delays in modern technology. Also, the 

routing resources are very expensive in modern technology. 

Brent-Kung adder is the smallest and least power hungry parallel prefix adder. 

However because of its increased logic levels for wider inputs, it is also the slowest 

adder. Hence it is not practical in CMOS implementations with very high performance 

targets. Ladner-Fischer adder has a very high fan-out capacitive load in the critical path, 

especially for wider inputs. Hence it is not suitable for high speed applications for longer 

words without proper buffering. 

Thus, there is no perfect adder for a particular technology due to the trade-off 

involved in speed, area and wire tracks. In order to be power efficient, operating voltages 

and multi-threshold voltage based cells can be used for power savings in adder structure. 
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APPENDIX 
 
Generate/Propagate logic 
 
module BITPG ( Gi, Pi, Ai, Bi ); 
output  Gi, Pi; 
 
input  Ai, Bi; 
AND2X1_RVT U_gen_and (.A1(Ai),.A2(Bi),.Y(Gi)); 
XOR2X1_RVT U_prop_xor (.A1(Ai),.A2(Bi),.Y(Pi)); 
//assign Gi = Ai & Bi; 
//assign Pi = Ai ^ Bi; 
 
endmodule 
 
module GROUPGP ( G2, P2, G0, G1, P0, P1 ); 
output  G2, P2; 
 
input  G0, G1, P0, P1; 
AO21X1_RVT U_prefix_gen (.A1(G0),.A2(P1),.A3(G1),.Y(G2)); 
AND2X1_RVT U_prefix_prop (.A1(P1),.A2(P0),.Y(P2)); 
//assign G2 = G1 | (G0 & P1); 
//assign P2 = P1 & P0; 
 
endmodule 
 

Kogge-Stone 16-bit adder 

 
module kogge_stone16 ( A, B, Sum, Cout); 
parameter WIDTH = 16; 
input [WIDTH:1] A, B; 
output [WIDTH:1] Sum; 
output Cout; 
 
wire [WIDTH:1] g, p; 
wire [WIDTH:1] inter_g [4:1]; 
wire [WIDTH:1] inter_p [4:1]; 
 
genvar j,k,l,m,n; 
generate 
for (j=1; j<= WIDTH; j = j+1) 
begin : bit_pg 
    BITPG pg (.Gi(g[j]), .Pi(p[j]), .Ai(A[j]), .Bi(B[j]) ); 
end 
endgenerate 
 
assign inter_g[1][1] = g[1]; 
assign inter_p[1][1] = p[1]; 
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generate 
for (k=1; k<=(WIDTH-1); k = k+1) 
begin : group_prefix_stage_1 
GROUPGP prefix (.G2(inter_g[1][k+1]), .P2(inter_p[1][k+1]), 
.G0(g[k]), .G1(g[k+1]), .P0(p[k]), .P1(p[k+1])); 
end 
endgenerate 
 
assign inter_g[2][1] = g[1]; 
assign inter_p[2][1] = p[1]; 
 
assign inter_g[2][2] = inter_g[1][2]; 
assign inter_p[2][2] = inter_p[1][2]; 
 
generate 
for (l=1; l<=(WIDTH-2); l = l+1) 
begin : group_prefix_stage_2 
GROUPGP prefix (.G2(inter_g[2][l+2]), .P2(inter_p[2][l+2]), 
.G0(inter_g[1][l]), .G1(inter_g[1][l+2]), .P0(inter_p[1][l]), 
.P1(inter_p[1][l+2])); 
end 
endgenerate 
 
assign inter_g[3][1] = g[1]; 
assign inter_p[3][1] = p[1]; 
 
assign inter_g[3][2] = inter_g[1][2]; 
assign inter_p[3][2] = inter_p[1][2]; 
 
assign inter_g[3][3] = inter_g[2][3]; 
assign inter_p[3][3] = inter_p[2][3]; 
 
assign inter_g[3][4] = inter_g[2][4]; 
assign inter_p[3][4] = inter_p[2][4]; 
 
generate 
for (m=1; m<=(WIDTH-4); m = m+1) 
begin : group_prefix_stage_3 
GROUPGP prefix (.G2(inter_g[3][m+4]), .P2(inter_p[3][m+4]), 
.G0(inter_g[2][m]), .G1(inter_g[2][m+4]), .P0(inter_p[2][m]), 
.P1(inter_p[2][m+4])); 
end 
endgenerate 
 
assign inter_g[4][1] = g[1]; 
assign inter_p[4][1] = p[1]; 
 
assign inter_g[4][2] = inter_g[1][2]; 
assign inter_p[4][2] = inter_p[1][2]; 
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assign inter_g[4][3] = inter_g[2][3]; 
assign inter_p[4][3] = inter_p[2][3]; 
 
assign inter_g[4][4] = inter_g[2][4]; 
assign inter_p[4][4] = inter_p[2][4]; 
 
assign inter_g[4][5] = inter_g[3][5]; 
assign inter_p[4][5] = inter_p[3][5]; 
assign inter_g[4][6] = inter_g[3][6]; 
assign inter_p[4][6] = inter_p[3][6]; 
assign inter_g[4][7] = inter_g[3][7]; 
assign inter_p[4][7] = inter_p[3][7]; 
assign inter_g[4][8] = inter_g[3][8]; 
assign inter_p[4][8] = inter_p[3][8]; 
 
generate 
for (n=1; n<=(WIDTH-8); n = n+1) 
begin : group_prefix_stage_4 
GROUPGP prefix (.G2(inter_g[4][n+8]), .P2(inter_p[4][n+8]), 
.G0(inter_g[3][n]), .G1(inter_g[3][n+8]), .P0(inter_p[3][n]), 
.P1(inter_p[3][n+8])); 
end 
endgenerate 
 
//post-processing 
assign Sum[1] = p[1]; 
assign Sum[2] = p[2] ^ g[1]; 
assign Sum[3] = p[3] ^ inter_g[1][2];  
assign Sum[4] = p[4] ^ inter_g[2][3];  
assign Sum[5] = p[5] ^ inter_g[2][4];  
assign Sum[6] = p[6] ^ inter_g[3][5];  
assign Sum[7] = p[7] ^ inter_g[3][6];  
assign Sum[8] = p[8] ^ inter_g[3][7]; 
assign Sum[9] = p[9] ^ inter_g[3][8]; 
assign Sum[10] = p[10] ^ inter_g[4][9]; 
assign Sum[11] = p[11] ^ inter_g[4][10]; 
assign Sum[12] = p[12] ^ inter_g[4][11]; 
assign Sum[13] = p[13] ^ inter_g[4][12]; 
assign Sum[14] = p[14] ^ inter_g[4][13]; 
assign Sum[15] = p[15] ^ inter_g[4][14]; 
assign Sum[16] = p[16] ^ inter_g[4][15]; 
 
assign Cout = inter_g[4][16]; 
 
endmodule 
 

Knowles [4,4,2,1] 16-bit adder 

 
module knowles_adder16_4421 ( A, B, Sum, Cout); 
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parameter WIDTH = 16; 
input [WIDTH:1] A, B; 
output [WIDTH:1] Sum; 
output Cout; 
 
wire [WIDTH:1] g, p; 
wire [WIDTH:1] inter_g [4:1]; 
wire [WIDTH:1] inter_p [4:1]; 
 
genvar j,k,l,m,n; 
generate 
for (j=1; j<= WIDTH; j = j+1) 
begin : bit_pg 
    BITPG pg (.Gi(g[j]), .Pi(p[j]), .Ai(A[j]), .Bi(B[j]) ); 
end 
endgenerate 
 
assign inter_g[1][1] = g[1]; 
assign inter_p[1][1] = p[1]; 
assign inter_g[1][3] = g[3]; 
assign inter_p[1][3] = p[3]; 
assign inter_g[1][5] = g[5]; 
assign inter_p[1][5] = p[5]; 
assign inter_g[1][7] = g[7]; 
assign inter_p[1][7] = p[7]; 
assign inter_g[1][9] = g[9]; 
assign inter_p[1][9] = p[9]; 
assign inter_g[1][11] = g[11]; 
assign inter_p[1][11] = p[11]; 
assign inter_g[1][13] = g[13]; 
assign inter_p[1][13] = p[13]; 
assign inter_g[1][15] = g[15]; 
assign inter_p[1][15] = p[15]; 
 
generate 
for (k=1; k<=(WIDTH-1); k = k+2) 
begin : group_prefix_stage_1 
GROUPGP prefix (.G2(inter_g[1][k+1]), .P2(inter_p[1][k+1]), 
.G0(g[k]), .G1(g[k+1]), .P0(p[k]), .P1(p[k+1])); 
end 
endgenerate 
 
assign inter_g[2][1] = g[1]; 
assign inter_p[2][1] = p[1]; 
 
assign inter_g[2][2] = inter_g[1][2]; 
assign inter_p[2][2] = inter_p[1][2]; 
assign inter_g[2][5] = inter_g[1][5]; 
assign inter_p[2][5] = inter_p[1][5]; 
assign inter_g[2][6] = inter_g[1][6]; 
assign inter_p[2][6] = inter_p[1][6]; 
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assign inter_g[2][9] = inter_g[1][9]; 
assign inter_p[2][9] = inter_p[1][9]; 
assign inter_g[2][10] = inter_g[1][10]; 
assign inter_p[2][10] = inter_p[1][10]; 
assign inter_g[2][13] = inter_g[1][13]; 
assign inter_p[2][13] = inter_p[1][13]; 
assign inter_g[2][14] = inter_g[1][14]; 
assign inter_p[2][14] = inter_p[1][14]; 
 
generate 
for (l=2; l<=(WIDTH-2); l = l+4) 
begin : group_prefix_stage_2 
GROUPGP prefix1 (.G2(inter_g[2][l+1]), .P2(inter_p[2][l+1]), 
.G0(inter_g[1][l]), .G1(inter_g[1][l+1]), .P0(inter_p[1][l]), 
.P1(inter_p[1][l+1])); 
GROUPGP prefix2 (.G2(inter_g[2][l+2]), .P2(inter_p[2][l+2]), 
.G0(inter_g[1][l]), .G1(inter_g[1][l+2]), .P0(inter_p[1][l]), 
.P1(inter_p[1][l+2])); 
end 
endgenerate 
 
assign inter_g[3][1] = g[1]; 
assign inter_p[3][1] = p[1]; 
 
assign inter_g[3][2] = inter_g[1][2]; 
assign inter_p[3][2] = inter_p[1][2]; 
 
assign inter_g[3][3] = inter_g[2][3]; 
assign inter_p[3][3] = inter_p[2][3]; 
 
assign inter_g[3][4] = inter_g[2][4]; 
assign inter_p[3][4] = inter_p[2][4]; 
 
generate 
for (m=4; m<=(WIDTH-4); m = m+4) 
begin : group_prefix_stage_3 
GROUPGP prefix1 (.G2(inter_g[3][m+1]), .P2(inter_p[3][m+1]), 
.G0(inter_g[2][m]), .G1(inter_g[2][m+1]), .P0(inter_p[2][m]), 
.P1(inter_p[2][m+1])); 
GROUPGP prefix2 (.G2(inter_g[3][m+2]), .P2(inter_p[3][m+2]), 
.G0(inter_g[2][m]), .G1(inter_g[2][m+2]), .P0(inter_p[2][m]), 
.P1(inter_p[2][m+2])); 
GROUPGP prefix3 (.G2(inter_g[3][m+3]), .P2(inter_p[3][m+3]), 
.G0(inter_g[2][m]), .G1(inter_g[2][m+3]), .P0(inter_p[2][m]), 
.P1(inter_p[2][m+3])); 
GROUPGP prefix4 (.G2(inter_g[3][m+4]), .P2(inter_p[3][m+4]), 
.G0(inter_g[2][m]), .G1(inter_g[2][m+4]), .P0(inter_p[2][m]), 
.P1(inter_p[2][m+4])); 
end 
endgenerate 
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assign inter_g[4][1] = g[1]; 
assign inter_p[4][1] = p[1]; 
 
assign inter_g[4][2] = inter_g[1][2]; 
assign inter_p[4][2] = inter_p[1][2]; 
 
assign inter_g[4][3] = inter_g[2][3]; 
assign inter_p[4][3] = inter_p[2][3]; 
 
assign inter_g[4][4] = inter_g[2][4]; 
assign inter_p[4][4] = inter_p[2][4]; 
 
assign inter_g[4][5] = inter_g[3][5]; 
assign inter_p[4][5] = inter_p[3][5]; 
assign inter_g[4][6] = inter_g[3][6]; 
assign inter_p[4][6] = inter_p[3][6]; 
assign inter_g[4][7] = inter_g[3][7]; 
assign inter_p[4][7] = inter_p[3][7]; 
assign inter_g[4][8] = inter_g[3][8]; 
assign inter_p[4][8] = inter_p[3][8]; 
 
generate 
for (n=4; n<=(WIDTH-8); n = n+4) 
begin : group_prefix_stage_4 
GROUPGP prefix1 (.G2(inter_g[4][n+5]), .P2(inter_p[4][n+5]), 
.G0(inter_g[3][n]), .G1(inter_g[3][n+5]), .P0(inter_p[3][n]), 
.P1(inter_p[3][n+5])); 
GROUPGP prefix2 (.G2(inter_g[4][n+6]), .P2(inter_p[4][n+6]), 
.G0(inter_g[3][n]), .G1(inter_g[3][n+6]), .P0(inter_p[3][n]), 
.P1(inter_p[3][n+6])); 
GROUPGP prefix3 (.G2(inter_g[4][n+7]), .P2(inter_p[4][n+7]), 
.G0(inter_g[3][n]), .G1(inter_g[3][n+7]), .P0(inter_p[3][n]), 
.P1(inter_p[3][n+7])); 
GROUPGP prefix4 (.G2(inter_g[4][n+8]), .P2(inter_p[4][n+8]), 
.G0(inter_g[3][n]), .G1(inter_g[3][n+8]), .P0(inter_p[3][n]), 
.P1(inter_p[3][n+8])); 
end 
endgenerate 
 
//post-processing 
assign Sum[1] = p[1]; 
assign Sum[2] = p[2] ^ g[1]; 
assign Sum[3] = p[3] ^ inter_g[1][2];  
assign Sum[4] = p[4] ^ inter_g[2][3];  
assign Sum[5] = p[5] ^ inter_g[2][4];  
assign Sum[6] = p[6] ^ inter_g[3][5];  
assign Sum[7] = p[7] ^ inter_g[3][6];  
assign Sum[8] = p[8] ^ inter_g[3][7]; 
assign Sum[9] = p[9] ^ inter_g[3][8]; 
assign Sum[10] = p[10] ^ inter_g[4][9]; 
assign Sum[11] = p[11] ^ inter_g[4][10]; 
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assign Sum[12] = p[12] ^ inter_g[4][11]; 
assign Sum[13] = p[13] ^ inter_g[4][12]; 
assign Sum[14] = p[14] ^ inter_g[4][13]; 
assign Sum[15] = p[15] ^ inter_g[4][14]; 
assign Sum[16] = p[16] ^ inter_g[4][15]; 
 
assign Cout = inter_g[4][16]; 
 
endmodule 
 
 

Brent-Kung 16-bit adder 
module brent_kung16 ( A, B, Sum, Cout); 
parameter WIDTH = 16; 
 
input [WIDTH:1] A, B; 
output [WIDTH:1] Sum; 
output Cout; 
 
wire [WIDTH:1] g, p; 
wire [WIDTH:1] inter_g [6:1]; 
wire [WIDTH:1] inter_p [6:1]; 
 
genvar j,k,l,m1,m2,n; 
generate 
for (j=1; j<= WIDTH; j = j+1) 
begin : bit_pg 
    BITPG pg (.Gi(g[j]), .Pi(p[j]), .Ai(A[j]), .Bi(B[j]) ); 
end 
endgenerate 
 
generate 
for (k=1; k<=(WIDTH-1); k = k+2) 
begin : group_prefix_stage_1 
assign inter_g[1][k] = g[k]; 
assign inter_p[1][k] = p[k]; 
GROUPGP prefix (.G2(inter_g[1][k+1]), .P2(inter_p[1][k+1]), 
.G0(g[k]), .G1(g[k+1]), .P0(p[k]), .P1(p[k+1])); 
end 
endgenerate 
 
generate 
for (l=1; l<=(WIDTH-1); l = l+4) 
begin : group_prefix_stage_2 
assign inter_g[2][l] = inter_g[1][l]; 
assign inter_p[2][l] = inter_p[1][l]; 
assign inter_g[2][l+1] = inter_g[1][l+1]; 
assign inter_p[2][l+1] = inter_p[1][l+1]; 
assign inter_g[2][l+2] = inter_g[1][l+2]; 
assign inter_p[2][l+2] = inter_p[1][l+2]; 
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GROUPGP prefix (.G2(inter_g[2][l+3]), .P2(inter_p[2][l+3]), 
.G0(inter_g[1][l+1]), .G1(inter_g[1][l+3]), .P0(inter_p[1][l+1]), 
.P1(inter_p[1][l+3])); 
end 
endgenerate 
 
GROUPGP prefix_stage3_8 (.G2(inter_g[3][8]), .P2(inter_p[3][8]), 
.G0(inter_g[2][4]), .G1(inter_g[2][8]), .P0(inter_p[2][4]), 
.P1(inter_p[2][8])); 
GROUPGP prefix_stage3_16 (.G2(inter_g[3][16]), .P2(inter_p[3][16]), 
.G0(inter_g[2][12]), .G1(inter_g[2][16]), .P0(inter_p[2][12]), 
.P1(inter_p[2][16])); 
generate 
for (m1=1; m1<= 7; m1 = m1 + 1) 
begin : group_prefix_stage_3_first_half 
assign inter_g[3][m1] = inter_g[2][m1]; 
assign inter_p[3][m1] = inter_p[2][m1]; 
end 
endgenerate 
 
generate 
for (m2=9; m2<= 15; m2 = m2 + 1) 
begin : group_prefix_stage_3_second_half 
assign inter_g[3][m2] = inter_g[2][m2]; 
assign inter_p[3][m2] = inter_p[2][m2]; 
end 
endgenerate 
 
assign inter_g[4][1] = inter_g[3][1]; 
assign inter_p[4][1] = inter_p[3][1]; 
assign inter_g[4][2] = inter_g[3][2]; 
assign inter_p[4][2] = inter_p[3][2]; 
assign inter_g[4][3] = inter_g[3][3]; 
assign inter_p[4][3] = inter_p[3][3]; 
assign inter_g[4][4] = inter_g[3][4]; 
assign inter_p[4][4] = inter_p[3][4]; 
assign inter_g[4][5] = inter_g[3][5]; 
assign inter_p[4][5] = inter_p[3][5]; 
assign inter_g[4][6] = inter_g[3][6]; 
assign inter_p[4][6] = inter_p[3][6]; 
assign inter_g[4][7] = inter_g[3][7]; 
assign inter_p[4][7] = inter_p[3][7]; 
assign inter_g[4][8] = inter_g[3][8]; 
assign inter_p[4][8] = inter_p[3][8]; 
 
assign inter_g[4][9] = inter_g[3][9]; 
assign inter_p[4][9] = inter_p[3][9]; 
 
assign inter_g[4][10] = inter_g[3][10]; 
assign inter_p[4][10] = inter_p[3][10]; 
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assign inter_g[4][11] = inter_g[3][11]; 
assign inter_p[4][11] = inter_p[3][11]; 
 
GROUPGP prefix_stage4_12 (.G2(inter_g[4][12]), .P2(inter_p[4][12]), 
.G0(inter_g[3][8]), .G1(inter_g[3][12]), .P0(inter_p[3][8]), 
.P1(inter_p[3][12])); 
 
assign inter_g[4][13] = inter_g[3][13]; 
assign inter_p[4][13] = inter_p[3][13]; 
 
assign inter_g[4][14] = inter_g[3][14]; 
assign inter_p[4][14] = inter_p[3][14]; 
 
assign inter_g[4][15] = inter_g[3][15]; 
assign inter_p[4][15] = inter_p[3][15]; 
 
GROUPGP prefix_stage4_16 (.G2(inter_g[4][16]), .P2(inter_p[4][16]), 
.G0(inter_g[3][8]), .G1(inter_g[3][16]), .P0(inter_p[3][8]), 
.P1(inter_p[3][16])); 
 
assign inter_g[5][1] = inter_g[4][1]; 
assign inter_p[5][1] = inter_p[4][1]; 
assign inter_g[5][2] = inter_g[4][2]; 
assign inter_p[5][2] = inter_p[4][2]; 
assign inter_g[5][3] = inter_g[4][3]; 
assign inter_p[5][3] = inter_p[4][3]; 
assign inter_g[5][4] = inter_g[4][4]; 
assign inter_p[5][4] = inter_p[4][4]; 
assign inter_g[5][5] = inter_g[4][5]; 
assign inter_p[5][5] = inter_p[4][5]; 
 
GROUPGP prefix_stage_5_6 (.G2(inter_g[5][6]), .P2(inter_p[5][6]), 
.G0(inter_g[4][4]), .G1(inter_g[4][6]), .P0(inter_p[4][4]), 
.P1(inter_p[4][6])); 
assign inter_g[5][7] = inter_g[4][7]; 
assign inter_p[5][7] = inter_p[4][7]; 
assign inter_g[5][8] = inter_g[4][8]; 
assign inter_p[5][8] = inter_p[4][8]; 
assign inter_g[5][9] = inter_g[4][9]; 
assign inter_p[5][9] = inter_p[4][9]; 
 
GROUPGP prefix_stage_5_10 (.G2(inter_g[5][10]), .P2(inter_p[5][10]), 
.G0(inter_g[4][8]), .G1(inter_g[4][10]), .P0(inter_p[4][8]), 
.P1(inter_p[4][10])); 
assign inter_g[5][11] = inter_g[4][11]; 
assign inter_p[5][11] = inter_p[4][11]; 
assign inter_g[5][12] = inter_g[4][12]; 
assign inter_p[5][12] = inter_p[4][12]; 
assign inter_g[5][13] = inter_g[4][13]; 
assign inter_p[5][13] = inter_p[4][13]; 
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GROUPGP prefix_stage_5_14 (.G2(inter_g[5][14]), .P2(inter_p[5][14]), 
.G0(inter_g[4][12]), .G1(inter_g[4][14]), .P0(inter_p[4][12]), 
.P1(inter_p[4][14])); 
assign inter_g[5][15] = inter_g[4][15]; 
assign inter_p[5][15] = inter_p[4][15]; 
assign inter_g[5][16] = inter_g[4][16]; 
assign inter_p[5][16] = inter_p[4][16]; 
 
assign inter_g[6][1] = inter_g[5][1]; 
assign inter_p[6][1] = inter_p[5][1]; 
assign inter_g[6][16] = inter_g[5][16]; 
assign inter_p[6][16] = inter_p[5][16]; 
generate 
for (n=2; n<=(WIDTH-1);n=n+2) 
begin: group_prefix_stage_6 
assign inter_g[6][n] = inter_g[5][n]; 
assign inter_p[6][n] = inter_p[5][n]; 
GROUPGP prefix (.G2(inter_g[6][n+1]), .P2(inter_p[6][n+1]), 
.G0(inter_g[5][n]), .G1(inter_g[5][n+1]), .P0(inter_p[5][n]), 
.P1(inter_p[5][n+1])); 
end 
endgenerate 
 
//post-processing 
assign Sum[1] = p[1]; 
assign Sum[2] = p[2] ^ g[1]; 
assign Sum[3] = p[3] ^ inter_g[6][2];  
assign Sum[4] = p[4] ^ inter_g[6][3];  
assign Sum[5] = p[5] ^ inter_g[6][4];  
assign Sum[6] = p[6] ^ inter_g[6][5];  
assign Sum[7] = p[7] ^ inter_g[6][6];  
assign Sum[8] = p[8] ^ inter_g[6][7]; 
assign Sum[9] = p[9] ^ inter_g[6][8]; 
assign Sum[10] = p[10] ^ inter_g[6][9]; 
assign Sum[11] = p[11] ^ inter_g[6][10]; 
assign Sum[12] = p[12] ^ inter_g[6][11]; 
assign Sum[13] = p[13] ^ inter_g[6][12]; 
assign Sum[14] = p[14] ^ inter_g[6][13]; 
assign Sum[15] = p[15] ^ inter_g[6][14]; 
assign Sum[16] = p[16] ^ inter_g[6][15]; 
assign Cout = inter_g[6][16]; 
 
endmodule 
 

Ladner-Fischer 16-bit adder 
 
module ladner_fischer16(A,B,C,cout); 
input [16:1] A; 
input [16:1] B; 
output [16:1] C; 
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output  cout; 
 
wire [16:1] Gi,Pi; 
wire [16:1]  St1g,St1p; 
wire [16:1]  St2g,St2p; 
wire [16:1]  St3g,St3p; 
wire [16:1]  St4g,St4p; 
 
// Prefix Computation 
genvar i; 
generate 
for ( i = 1; i <= 16; i = i+1 ) 
begin : bit_gen 
BITPG bitpg (.Gi(Gi[i]), .Pi(Pi[i]), .Ai( A[i]),.Bi(B[i]) ); 
end 
endgenerate 
// Stage 1 
genvar j; 
generate 
for ( j = 1; j < 16; j = j+2 ) 
begin 
GROUPGP groupgp1 (.G0(Gi[j]), .P0(Pi[j]), .G1(Gi[j+1]), 
.P1(Pi[j+1]), .G2(St1g[j+1]), .P2(St1p[j+1]) ); 
end 
endgenerate 
// Stage 2 
genvar k; 
generate 
for ( k = 1; k < 16; k = k+4 ) 
begin 
GROUPGP groupgp1 ( .G0(St1g[k+1]), .P0(St1p[k+1]), .G1(Gi[k+2]), 
.P1(Pi[k+2]),     .G2(St2g[k+2]), .P2(St2p[k+2]) ); 
GROUPGP groupgp2 ( .G0(St1g[k+1]), .P0(St1p[k+1]), .G1(St1g[k+3]), 
.P1(St1p[k+3]), .G2(St2g[k+3]), .P2(St2p[k+3]) ); 
end 
endgenerate 
 
// Stage 3 
genvar l; 
generate 
for ( l = 1; l < 16; l = l+8 ) 
begin 
GROUPGP groupgp1 ( .G0(St2g[l+3]), .P0(St2p[l+3]), .G1(Gi[l+4]),   
.P1(Pi[l+4]),   .G2(St3g[l+4]), .P2(St3p[l+4])); 
GROUPGP groupgp2 ( .G0(St2g[l+3]), .P0(St2p[l+3]), .G1(St1g[l+5]), 
.P1(St1p[l+5]), .G2(St3g[l+5]), .P2(St3p[l+5])); 
GROUPGP groupgp3 ( .G0(St2g[l+3]), .P0(St2p[l+3]), .G1(St2g[l+6]), 
.P1(St2p[l+6]), .G2(St3g[l+6]), .P2(St3p[l+6])); 
GROUPGP groupgp4 ( .G0(St2g[l+3]), .P0(St2p[l+3]), .G1(St2g[l+7]), 
.P1(St2p[l+7]), .G2(St3g[l+7]), .P2(St3p[l+7])); 
end 
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endgenerate 
 
 
 
genvar m; 
generate 
for ( m = 1; m < 16; m = m+16 ) 
begin 
GROUPGP groupgp1 ( .G0(St3g[m+7]), .P0(St3p[m+7]), .G1(Gi[m+8]),   
.P1(Pi[m+8]),     .G2(St4g[m+8]), .P2(St4p[m+8])); 
GROUPGP groupgp2 ( .G0(St3g[m+7]), .P0(St3p[m+7]), .G1(St1g[m+9]), 
.P1(St1p[m+9]),   .G2(St4g[m+9]), .P2(St4p[m+9])); 
GROUPGP groupgp3 ( .G0(St3g[m+7]), .P0(St3p[m+7]), .G1(St2g[m+10]), 
.P1(St2p[m+10]), .G2(St4g[m+10]), .P2(St4p[m+10])); 
GROUPGP groupgp4 ( .G0(St3g[m+7]), .P0(St3p[m+7]), .G1(St2g[m+11]), 
.P1(St2p[m+11]), .G2(St4g[m+11]), .P2(St4p[m+11])); 
GROUPGP groupgp5 ( .G0(St3g[m+7]), .P0(St3p[m+7]), .G1(St3g[m+12]), 
.P1(St3p[m+12]), .G2(St4g[m+12]), .P2(St4p[m+12])); 
GROUPGP groupgp6 ( .G0(St3g[m+7]), .P0(St3p[m+7]), .G1(St3g[m+13]), 
.P1(St3p[m+13]), .G2(St4g[m+13]), .P2(St4p[m+13])); 
GROUPGP groupgp7 ( .G0(St3g[m+7]), .P0(St3p[m+7]), .G1(St3g[m+14]), 
.P1(St3p[m+14]), .G2(St4g[m+14]), .P2(St4p[m+14])); 
GROUPGP groupgp8 ( .G0(St3g[m+7]), .P0(St3p[m+7]), .G1(St3g[m+15]), 
.P1(St3p[m+15]), .G2(St4g[m+15]), .P2(St4p[m+15])); 
 
end 
endgenerate 
 
 
  
assign C[1] = Pi[1]; 
assign C[2] = Pi[2]^Gi[1]; 
assign C[3] = Pi[3]^St1g[2]; 
assign C[4] = Pi[4]^St2g[3]; 
 
assign C[5] = Pi[5]^St2g[4]; 
assign C[6] = Pi[6]^St3g[5]; 
assign C[7] = Pi[7]^St3g[6]; 
assign C[8] = Pi[8]^St3g[7]; 
assign C[9] = Pi[9]^St3g[8]; 
assign C[10] = Pi[10]^St4g[9]; 
assign C[11] = Pi[11]^St4g[10]; 
assign C[12] = Pi[12]^St4g[11]; 
assign C[13] = Pi[13]^St4g[12]; 
assign C[14] = Pi[14]^St4g[13]; 
assign C[15] = Pi[15]^St4g[14]; 
assign C[16] = Pi[16]^St4g[15]; 
 
assign cout = St4g[16]; 
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endmodule 
 
 

Han-Carlson 16-bit adder 
 
module han_carlson32(A,B,C,cout); 
input [32:1] A; 
input [32:1] B; 
output [32:1] C; 
output  cout; 
 
wire [32:1] Gi,Pi; 
wire [32:1]  St1g,St1p; 
wire [32:1]  St2g,St2p; 
wire [32:1]  St3g,St3p; 
wire [32:1]  St4g,St4p; 
wire [32:1]  St5g,St5p; 
 
// Prefix Computation 
genvar i; 
generate 
for ( i = 1; i <= 32; i = i+1 ) 
begin : bit_gen 
BITPG bitpg (.Gi(Gi[i]), .Pi(Pi[i]), .Ai( A[i]),.Bi(B[i]) ); 
end 
endgenerate 
// Stage 1 
genvar j; 
generate 
for ( j = 1; j < 32; j = j+2 ) 
begin 
GROUPGP groupgp1 (.G0(Gi[j]), .P0(Pi[j]), .G1(Gi[j+1]), 
.P1(Pi[j+1]), .G2(St1g[j+1]), .P2(St1p[j+1]) ); 
end 
endgenerate 
// Stage 2 
genvar k; 
generate 
for ( k = 2; k < 32; k = k+2 ) 
begin 
GROUPGP groupgp1 ( .G0(St1g[k]), .P0(St1p[k]), .G1(St1g[k+2]), 
.P1(St1p[k+2]),     .G2(St2g[k+2]), .P2(St2p[k+2]) ); 
end 
endgenerate 
// Stage 3 
genvar l; 
assign St2g[2] = St1g[2]; 
assign St2p[2] = St1p[2]; 
generate 
for ( l = 4; l < 32; l = l+2 ) 
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begin 
GROUPGP groupgp1 ( .G0(St2g[l-2]), .P0(St2p[l-2]), .G1(St2g[l+2]), 
.P1(St2p[l+2]),     .G2(St3g[l+2]), .P2(St3p[l+2]) ); 
end 
endgenerate 
 
// Stage 4 
genvar m; 
assign St3g[2] = St2g[2]; 
assign St3p[2] = St2p[2]; 
assign St3g[4] = St2g[4]; 
assign St3p[4] = St2p[4]; 
generate 
for ( m = 8; m < 32; m = m+2 ) 
begin 
GROUPGP groupgp1 ( .G0(St3g[m-6]), .P0(St3p[m-6]), .G1(St3g[m+2]), 
.P1(St3p[m+2]),     .G2(St4g[m+2]), .P2(St4p[m+2]) ); 
end 
endgenerate 
 
// Stage 5 
genvar n; 
assign St4g[2] = St3g[2]; 
assign St4p[2] = St3p[2]; 
assign St4g[4] = St3g[4]; 
assign St4p[4] = St3p[4]; 
assign St4g[6] = St3g[6]; 
assign St4p[6] = St3p[6]; 
assign St4g[8] = St3g[8]; 
assign St4p[8] = St3p[8]; 
generate 
for ( n = 16; n < 32; n = n+2 ) 
begin 
GROUPGP groupgp1 ( .G0(St4g[n-14]), .P0(St4p[n-14]), .G1(St4g[n+2]), 
.P1(St4p[n+2]),     .G2(St5g[n+2]), .P2(St5p[n+2]) ); 
end 
endgenerate 
 
 
// Stage 6 Not comfortable to use generate 
//genvar m; 
//generate 
//for ( m = 2; m < 32; m = m+2 ) 
//begin 
//GROUPGP groupgp1 ( .G0(St1g[m]), .P0(St1p[m]), .G1(Gi[m+1]), 
.P1(Pi[m+1]),     .G2(St2g[m+1]), .P2(St2p[m+1]) ); 
//end 
//endgenerate 
GROUPGP groupgp1 ( .G0(St1g[2]), .P0(St2p[2]), .G1(Gi[3]), 
.P1(Pi[3]),     .G2(St2g[3]), .P2(St2p[3]) ); 
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GROUPGP groupgp2 ( .G0(St2g[4]), .P0(St2p[4]), .G1(Gi[5]), 
.P1(Pi[5]),     .G2(St2g[5]), .P2(St2p[5]) ); 
GROUPGP groupgp3 ( .G0(St3g[6]), .P0(St3p[6]), .G1(Gi[7]), 
.P1(Pi[7]),     .G2(St2g[7]), .P2(St2p[7]) ); 
GROUPGP groupgp4 ( .G0(St3g[8]), .P0(St3p[8]), .G1(Gi[9]), 
.P1(Pi[9]),     .G2(St2g[9]), .P2(St2p[9]) ); 
GROUPGP groupgp5 ( .G0(St4g[10]), .P0(St4p[10]), .G1(Gi[11]), 
.P1(Pi[11]),     .G2(St2g[11]), .P2(St2p[11]) ); 
GROUPGP groupgp6 ( .G0(St4g[12]), .P0(St4p[12]), .G1(Gi[13]), 
.P1(Pi[13]),     .G2(St2g[13]), .P2(St2p[13]) ); 
GROUPGP groupgp7 ( .G0(St4g[14]), .P0(St4p[14]), .G1(Gi[15]), 
.P1(Pi[15]),     .G2(St2g[15]), .P2(St2p[15]) ); 
GROUPGP groupgp8 ( .G0(St4g[16]), .P0(St4p[16]), .G1(Gi[17]), 
.P1(Pi[17]),     .G2(St2g[17]), .P2(St2p[17]) ); 
GROUPGP groupgp9 ( .G0(St5g[18]), .P0(St5p[18]), .G1(Gi[19]), 
.P1(Pi[19]),     .G2(St2g[19]), .P2(St2p[19]) ); 
GROUPGP groupgp10 ( .G0(St5g[20]), .P0(St5p[20]), .G1(Gi[21]), 
.P1(Pi[21]),     .G2(St2g[21]), .P2(St2p[21]) ); 
GROUPGP groupgp11 ( .G0(St5g[22]), .P0(St5p[22]), .G1(Gi[23]), 
.P1(Pi[23]),     .G2(St2g[23]), .P2(St2p[23]) ); 
GROUPGP groupgp12 ( .G0(St5g[24]), .P0(St5p[24]), .G1(Gi[25]), 
.P1(Pi[25]),     .G2(St2g[25]), .P2(St2p[25]) ); 
GROUPGP groupgp13 ( .G0(St5g[26]), .P0(St5p[26]), .G1(Gi[27]), 
.P1(Pi[27]),     .G2(St2g[27]), .P2(St2p[27]) ); 
GROUPGP groupgp14 ( .G0(St5g[28]), .P0(St5p[28]), .G1(Gi[29]), 
.P1(Pi[29]),     .G2(St2g[29]), .P2(St2p[29]) ); 
GROUPGP groupgp15 ( .G0(St5g[30]), .P0(St5p[30]), .G1(Gi[31]), 
.P1(Pi[31]),     .G2(St2g[31]), .P2(St2p[31]) ); 
 
assign C[1] = Pi[1]; 
assign C[2] = Pi[2]^Gi[1]; 
assign C[4] = Pi[4]^St2g[3]; 
assign C[6] = Pi[6]^St2g[5]; 
assign C[8] = Pi[8]^St2g[7]; 
assign C[10] = Pi[10]^St2g[9]; 
assign C[12] = Pi[12]^St2g[11]; 
assign C[14] = Pi[14]^St2g[13]; 
assign C[16] = Pi[16]^St2g[15]; 
assign C[18] = Pi[18]^St2g[17]; 
assign C[20] = Pi[20]^St2g[19]; 
assign C[22] = Pi[22]^St2g[21]; 
assign C[24] = Pi[24]^St2g[23]; 
assign C[26] = Pi[26]^St2g[25]; 
assign C[28] = Pi[28]^St2g[27]; 
assign C[30] = Pi[30]^St2g[29]; 
assign C[32] = Pi[32]^St2g[31]; 
 
assign C[3] = Pi[3]^St1g[2]; 
assign C[5] = Pi[5]^St2g[4]; 
assign C[7] = Pi[7]^St3g[6]; 
assign C[9] = Pi[9]^St3g[8]; 
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assign C[11] = Pi[11]^St4g[10]; 
assign C[13] = Pi[13]^St4g[12]; 
assign C[15] = Pi[15]^St4g[14]; 
assign C[17] = Pi[17]^St4g[16]; 
assign C[19] = Pi[19]^St5g[18]; 
assign C[21] = Pi[21]^St5g[20]; 
assign C[23] = Pi[23]^St5g[22]; 
assign C[25] = Pi[25]^St5g[24]; 
assign C[27] = Pi[27]^St5g[26]; 
assign C[29] = Pi[29]^St5g[28]; 
assign C[31] = Pi[31]^St5g[30]; 
 
assign cout = St5g[32]; 
 
endmodule  
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