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Abstract -- Ratings of induction machines range from 
tens of thousands horsepowers to fractional horsepowers. 
Unexpected downtime of large Induction motors, such as 
those used in power plants, can be very costly. Cracked rotor 
bars of induction machines may overheat rotors, lower 
outputs, and cause non-retrievable damages. 

This study presents a new observation that links shaft 
signals to cracked rotor bars. Theoretical foundation for this 
observation is derived. Experimental results clearly confirm 
the theory that under loaded conditions, double-slip
frequency shaft signals can be detected while there are 
cracked rotor bars in induction machines. 

The new method suggested In this study Is simple and 
reliable. No disassembling Is required. 

I. INlRODUCfiON 

Induction motors are the most popular motors in 

electric drives. Their ratings range from tens of thousands 

horsepowers to fractional horsepowers. It is commonly 

agreeable that unexpected downtime of large induction 

motors, such as those used in power plants, can be very 

costly. This method provides a mean to give early 

warnings on eccentricities and cracked rotor bars of 

induction machines without shutting down or 

disassembling for examinations. 
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Shaft voltages and currents have been noticed for 

many years [1-4] . Using shaft voltages for detecting 

defects in turbogeneraLOrs [3 ,4] has been proposed 

recently. The method presented in this paper for induction 

machines is new. Unlike turbogenerators, induction 

machines do not run at synchronous speeds. 

This new method differs from the air-gap torque 

approach for detecting defects of induction motors [5]. 

This technology may be used simultaneously with the air

gap torque method to increase the detection reliability. 

This method is different from the existing commercial 

methods that are based on various identifications of side 

bands of a line current [7, 8]. 

This detection is associated with eccentricities, 

literatures on eccentricity topics are given in references 

[10-13]. 

II. THEORETICAL DERIVATIONS 

A. Relationship between shaft signals and eccentricities 

Air gaps of induction motors are small. It is rather 

difficult to locate rotors absolutely without any 

eccentricities. Even with an absolutely centered rotor, 

local stray short-circuited paths in punching stacks may 

cause asymmetries. Hence, shaft voltages occur. Fig. 1 

shows that under situations with eccentricities, portion of 

the rotating flux is linked with shaft and generates shaft 

voltages. The main frequency of shaft voltages is the 

rotating field's frequency. 
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Fig. 1. Shaft flux linkages with respect to air gap 
rotating fluxes 

B. Slip-Frequency Rotor Currents and Rotating Fields 
Associated with Cracked Rotor Bars 

Major rotor-current frequency of induction motors is 
slip frequency that equals the product of slip, s, and line 

frequency, f. Fig. 2 shows that under normal operation 

with symmetrical multiphase rotor windings, the rotating 

field generated by rotor currents and viewed from rotor 

itself rotates at electrical angular speed 

NOs 

where 

Fig. 2. Stator and rotor rotating fields under normal 
operation 
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When rotor has cracked bars, the rotor windings are 

not symmetrical. Hence, a single-phase rotor winding 

component appears. Fig. 3 shows that the single-phase 

winding component produces a forward and a backward 

rotor field rotating at electrical angular speeds, +NOs and 

-NOs, with reference to the rotor. The rotor angular speed 

is (1-s)·ros. Adding the rotor angular speed to the rotor

field angular speeds gives the angular speeds of two rotor 

fields viewed from the stator. They are: 

(1-s)·ros + s·ros = ros 

and 

Fig. 3. Stator and rotor rotating fields under a single 
phase rotor situation 

C. Double-Slip-Frequency Shaft Signals Corresponding to 
Cracked Rotor Bars under Eccentricities 

When induction machines are loaded, the rotor 

currents become relatively significant than those of no

loads. If a machine has eccentricities, the frequencies of 

shaft signals reflect those of the rotating fields. For an 

induction machine with cracked rotor bars, the resultant 

rotating field contains a component that is the sum of the 

backward rotor-current field rotating at electrical angular 

speed, (1-2·sJ-ros, and the main field rotating at ros· 

A component of resultant rotating field 

=sin fp·~- (1-2·s)·ros·t] + sinfp·~- ros · t] (1) 

where 

p = number of pole pairs. 

1'} = angular position in mechanical degrees 



Simplification of (1) gives a component of resultant 

rotating field 

=sin fp·t'}- ros · t] · cos[2·s·ros·t] 

+ cosfp·t'}- ros · t] · sin[2 ·s·ros·t] 

+ sin fp·t'} - ros ·t] 

(2) 

Equation (2) clearly shows that the main rotating field 

rotating at synchronous angular speed, ros, is partly 

modulated by a double-slip-frequency, 2·s·ros, envelop. 

III. EXPERIMENTAL SETIJP 

Fig. 4 shows a setup for the signal measurements. For 

large induction machines, insulated bearings and/or 

insulated couplings are commonly used to prevent shaft 

currents. Shaft voltage signals can readily be obtained 

without disassembling the machines. Hardware needed for 

picking up shaft signals of a machine are two brushes and 

holders. Experimental works shown in this study are 

conducted with both insulated bearings and non-insulated 

bearings. The lubricant films of bearings act as sufficient 

insulation for the shaft signals of the experimental 

machines. Hence, this method may be used for machines 

without insulated bearings. However, additional works are 
being conducted for further confirmations on larger 

frames. 
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Fig. 4. Measurements of shaft voltage and shaft flux 
linkage 
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IV. TESTED SHAFf VOLTAGES AND FLUX LINKAGES 

Fig. 5 compares shaft flux linkages (and voltages) 

between a normal good rotor and a rotor with cracked 

rotor bars of two induction motor assemblies that use the 

same stator successively. The two assemblies are tested 

under the same load. When the rotor has cracked bars, the 

envelop of the shaft flux linkage as shown in Fig. 5b 

clearly depicts the envelop of two times the slip frequency. 

Fig. Sa shows that there is no such an envelop under the 

same load when the rotor is good. 
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Fig. 5. Comparisons of shaft flux linkages (and 
voltages) between normal rotor and rotor with 
cracked bars of induction motors having the 
same stator and under loaded condition 

Fig. 6 shows how the envelop of shaft flux linkage 

changes when the load of a motor with cracked rotor bars 

changes. For a heavier load the slip goes up, hence, as 

illustrated in Fig. 6b the envelop frequency of two times 

the slip frequency unmistakably increases. 

Fig. 7 shows the comparisons of shaft flux linkages 

between two different eccentricities of a motor under a 

loaded condition. The magnitude of shaft flux linkage 

goes up when there is greater eccentricity. 
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Fig. 6. Comparisons of shaft flux linkages (and 
voltages) under different loads and subsequently 
different slips of an induction motor with 
cracked rotor bars 
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Fig. 7. Comparisons of shaft flux linkages (and 
voltages) between less and more eccentricities 
of an induction motor under loaded condition 
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V. CoNCLUsioNs 

Cracked rotor bars of induction machines may 

overheat rotors, lower outputs, and cause non-retrievable 

damages. 

This paper presents a unique observation that links 

shaft signals to the cracked rotor bars of induction 

machines. Theoretical foundation for this observation is 

derived. Experimental results clearly confrrm the theory 

that under loaded conditions, double-slip-frequency shaft 

signals, which modulate shaft voltages and shaft-flux 

linkages, can be detected while there are cracked rotor bars 

in induction machines. The magnitude of shaft flux 

linkage goes up when there is greater eccentricity. 

The new method suggested in this study is simple and 

reliable. No disassembling is required. Instrumentation 

can be developed according to this new method. 
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