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Towards a Self-dual Geometric Langlands Program

Richard Thomas Derryberry, Ph.D.

The University of Texas at Austin, 2018

Supervisors: David Ben-Zvi
Andrew Neitzke

This thesis is comprised of two logically separate but conjecturally related

parts.

In the first part of the thesis I study theories of class S [32] via the formalism

of relative quantum field theories [30]. From this physical formalism, and by analogy

to the physical derivation of usual geometric Langlands [45, 86], I conjecture the

existence of a self-dual version of the geometric Langlands program.

In the second part of the thesis I study shifted Cartier duality for the moduli

of Higgs bundles. The main results are: (1) a criteria for ramification of L-valued

cameral covers, (2) a generalisation of the Langlands duality/mirror symmetry results

for the moduli of Higgs bundles of [24,37], and (3) the existence of a self-dual version

of the moduli of Higgs bundles. This self-dual space is conjecturally the target space

for a theory of class S compactified on a torus, and provides positive evidence for the

self-dual geometric Langlands program.
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Chapter 1

Introduction

In his remarkable article “Harmonic analysis as the exploitation of symmetry

– a historical survey” [54], George Mackey details how advances in the seemingly

disparate fields of number theory, probablility theory, and mathematical physics may

all be viewed through the lens of harmonic analysis. The central theme of his article

– pithily expressed in the title – is the power and applicability of representation

theory (“the exploitation of symmetry”) to the aforementioned topics, especially the

theory of unitary representations of (commutative and noncommutative) groups.

If one thinks of classical harmonic analysis as the exploitation of manifest

symmetry – e.g. as the study of functions on a symmetric space – then the theme of

this dissertation might reasonably be said to be the exploitation of hidden symmetry.

The hidden symmetries in question begin life as (a priori) non-geometric “dualities”

of quantum field theories, which after careful analysis yield subtle mathematical

consequences: an outer automorphism of the N = (2, 2) supersymmetry algebra, for

instance, leads to the mathematical and physical program of “Mirror Symmetry” [42]

(a program which has spawned myriad subfields; for a dramatically incomplete list

see [17, 35,47,59,74,80]).

The first part of this thesis (Chapter 2) is an extended review of duality in
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quantum field theory, both the general principles and specific examples. At the

conclusion of this review I describe a self-dual version of the geometric Langlands

program, obtained via exploitation of the symmetries of certain two dimensional

quantum field theories derived from the theories of class S of Gaiotto, Moore and

Neitzke [32]. When viewed in two dimensions these symmetries are hidden, however

by lifting the theory to four dimensions they become geometrically manifest. A fur-

ther lifting of the theory to a relative quantum field theory in six dimensions reveals

that this same symmetry is responsible for the phenomenon of electric-magnetic du-

ality in four dimensional N = 4 supersymmetric Yang-Mills theory [30, 86]. This

electric-magnetic duality was famously used by Kapustin and Witten to derive the

(usual) geometric Langlands program [45], justifying the appellation “self-dual geo-

metric Langlands” for Conjectures 1–3.

The second part of this thesis (Chapters 3–5) comprises a mathematical explo-

ration of the physical predictions of Chapter 2. This part contains the main results

of the thesis: I prove a generalisation of the results on Langlands duality for Hitchin

systems of [24,37] (Theorems 5.5.1 and 5.5.2), and as a corollary derive the existence

of a self-dual moduli space predicted by Conjecture 1 (Corollary 5.5.3). I achieve

this by constructing a moduli space of “G̃-Higgs bundles of arbitrary degree” as a

slice inside of a larger moduli space of G̃τ -Higgs bundles – this is a generalisation

of the procedure of cutting the moduli space of “SLn-Higgs bundles of degree d”

out of the moduli space of GLn-Higgs bundles (c.f. [7] for the analogous principal

bundle construction). The duality results then follow from an analysis of the local

structure of these slice moduli spaces, and an application of the Langlands duality
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results of Donagi and Pantev [24]. I also prove an intermediate result that may be

of independent interest regarding when a Gm-equivariant map from the total space

of a line bundle to a finite type affine Gm-scheme V will intersect a conical divisor

D ⊂ V (Theorem 4.1.2).

1.1 Outline of dissertation

A chapter-by-chapter summary of this thesis is as follows:

Chapter 1 (as you have just seen) serves as a brief introduction to the thesis.

For convenience and reference I have collected the notation and conventions I use in

this thesis together in Section 1.2.

Chapter 2 contains the physical content of this thesis. I begin with an ex-

tended review of duality in quantum field theories (Section 2.1) and relative quantum

field theories (Section 2.2), before discussing the derivation of electric-magnetic du-

ality in N = 4 supersymmetric Yang-Mills and the geometric Langlands program

(Section 2.3). I conclude this chapter by outlining a self-dual version of the geomet-

ric Langlands program, derived from the theories of class S of Gaiotto, Moore and

Neitzke [32] (Section 2.4; Conjectures 1–3).

In Chapter 3 I review the mathematical background prerequisite for the orig-

inal work in Chapters 4–5. This background falls into two categories: the modern

perspective on shifted Cartier duality for commutative group stacks (Sections 3.1–

3.2), and a review of the theory of Higgs bundles with a focus on the connection

between the Hitchin fibration, cameral covers, and the group scheme of regular cen-
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tralisers (Sections 3.3–3.4).

Chapter 4 contains an intermediate result on ramification of cameral covers

that is required for the analysis of Chapter 5. I first prove in Theorem 4.1.2 a

general statement about when the sections of an bundle associated to a Gm space V

intersect with a divisor induced by a conical divisor D ⊂ V (Section 4.1), and from

this I deduce a criterion for detecting ramification of cameral covers (Section 4.2).

Chapter 5 is the final chapter in the body of the thesis, and contains the main

duality results: Theorem 5.5.1, Theorem 5.5.2, and Corollary 5.5.3. As a preliminary

result, I compare the Hitchin fibres for isogeneous simple groups (Section 5.1). I then

construct and study the local structure of the moduli spaces Higgs•
G̃

(C) and M•
G̃

(C)

(Section 5.2) before comparing the sheaves of regular centralisers for G̃, Gad and G̃τ

(Section 5.3). As an intermediate step I describe the dual of Higgs•
G̃

(C) (Section

5.4) before presenting and proving the main duality results for M•
G̃

(C) (Section 5.5).

I conclude by presenting a variety of examples to contextualise the duality theorems

and suggest future applications (Section 5.6).

Finally, there are three Appendices dealing with topics not appropriate to

the body of the dissertation: a review of the theory of reductive algebraic groups

(Appendix A), a discussion of fixed points of the action of the Weyl group on a chosen

maximal torus (Appendix B), and some results on the structure of the reductive

group G̃τ and its Langlands dual group (Appendix C).
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1.2 Notation and conventions

In this section I will make note of various conventions in notation and termi-

nology that appear throughout this dissertation. First-time readers may wish to skim

this section to check for unfamiliar notation, however there is no content (lemmata,

theorems, etc.) that is strictly prerequisite for the rest of the dissertation.

1.2.1 Lie theoretic conventions

This section deals only with Lie theoretic notation and conventions: for defi-

nitions and properties of reductive algebraic groups, see Appendix A.

In the following, G is most generally a complex reductive algebraic group,1

however at times I will note further assumptions of simplicity, simple connectivity,

etc. Lie algebras will be denoted by lower case fraktur font, so for instance the Lie

algebra of G will be denoted by g. Given a semisimple group G, I will denote by

G̃ the corresponding simply-connected form and by Gad the corresponding adjoint

form.

A choice of Borel subgroup of G will usually be denoted B, with Lie algebra

b. The unipotent radical of B will be denoted by U , and a choice of maximal torus

will be denoted by H with Lie algebra h. The notation T is reserved for an algebraic

torus that is not the maximal torus of a group G, and the (abelian) Lie algebra of

such a torus is denoted t.

1In [63, 64] the more general setup of torsors for non-constant group schemes is considered; by
contrast I will always think of G as the constant group scheme G×X → X. I work in a topology
where G-torsors are locally trivial, i.e. in the étale or analytic topology.
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The rank dim(H) of a reductive algebraic group G will be denoted by rank(G),

or just by r.

When considering the Weyl group of a particular maximal torus H ⊂ G I

will use the notation WG(H) = NG(H)/H; when I do not need to emphasise the

maximal torus H I will just write W .

The set of roots of the group G will be denoted by R, and a choice of positive

roots will be denoted R+. Given a choice of positive roots, the corresponding simple

roots will be denoted S.

If M is a set or space with a G-action (e.g. M is a representation of G) I will

denote by MG the fixed points of the G-action (e.g. the G-invariant subspace of the

representation).

Finally, there are many notations in the literature for the lattices that appear

in the study of reductive algebraic groups. As it can sometimes be difficult to keep

straight what each piece of notation means (particularly across different references) I

have opted to use a notation that makes manifest the input data and the variance for

each lattice without being cumbersome. As above, let T denote an algebraic torus,

and let G denote a reductive algebraic group with chosen maximal torus H:

• Denote the character lattice of T by X•(T ) := Hom(T,C×), and the cocharac-

ter lattice by X•(T ) := Hom(C×, T ). When convenient, these can be identified

as subgroups X•(T ) ⊂ t∗ and X•(T ) ⊂ t.

• Denote by X•(G,H) := X•(H) the character lattice corresponding to a choice

of maximal torus H ⊂ G; similarly denote the corresponding cocharacter

6



lattice by X•(G,H). When convenient these can be identified as subgroups

X•(G,H) ⊂ h∗ and X•(G,H) ⊂ h.

When G is semisimple and H is a choice of maximal torus I will sometimes use the

notation

ΛR = X•(Gad, Had) and ΛW = X•(G̃, H̃) (1.1)

for the root and weight lattice, and

ΠR = X•(Gad, Had) = Λ∧R = HomZ(ΛR,Z) and ΠW = X•(G̃, H̃) = Λ∧W (1.2)

for the coroot and coweight lattice. I have tried to use this notation only in situations

where the more precise notation would prove unwieldy, as the condensed notation

(1) fails to keep track of the group G and (2) fails to distinguish whether or not I

have chosen a maximal torus.

1.2.2 Geometric conventions

A general complex scheme or manifold will be denoted by X, with structure

sheaf OX , and a general test scheme will be denoted S. The constant sheaf on X

valued in A is denoted AX . The notation C will be reserved for the situation where

the space in question is a Riemann surface or and algebraic curve (usually, but not

always, of genus g > 1).

Given a space X and spaces equipped with maps to X, Y1 → X and Y2 → X,

I will denote by HomX(Y1, Y2) the collection of maps Y1 → Y2 in the slice category

7



of spaces with a map to X (i.e. maps which commute with the “structure maps” to

X).

Given a group G, I will use the algebro-geometric terminology G-torsor to

refer to a principal G-bundle. I.e. a G-torsor over a space X is a space P → X

equipped with a (right) G-action, such that (1) the map (idP , act) : P × G →

P ×X P is an isomorphism and (2) P admits local sections.2 Here the terms “space”

and “local” are deliberately vague, as this definition is applicable to many different

categories and Grothendieck topologies.

As a general rule, stacky moduli spaces are denoted via calligraphic and italic

fonts, while coarse moduli spaces are denoted via bold font. Stacky quotients are

denoted by square brackets [ / ]: if X is equipped with a right action of G, then

[X/G] represents the stack with presentation given by the groupoid [51, §2.4.3]

X ×G

X

s t s(x, g) = x, t(x, g) = x · g. (1.3)

Given two stacks Y and Z, I will denote by Map(Y,Z) the functor whose S points

are given by MapS(Y × S,Z × S) for any affine scheme S. Similarly, if A, B are

commutative group stacks, I will denote by Hom(A,B) the commutative group stack

whose S-points are given by HomS(A×S,B×S) for any affine scheme S [1, XVIII].

Finally and importantly: from Important Remark! 5.2.9 onwards, I will be

2Given the assumption of this dissertation that we will only deal with constant group schemes
and that the map P → X is faithfully flat, condition (1) is sufficient to ensure that P has local
sections in the étale topology. Furthermore, had G been a non-constant group scheme over X, the
map in condition (1) would have had domain P ×X G.
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implicitly restricting away from the discriminant locus of the Hitchin base (see Def-

inition 3.3.5 and (3.53)). The duality results of Chapter 5 will hold over this dense

open set of Hitchg(C) – the question of whether or not this duality may be extended

over the discriminant is still open.3

1.2.3 Duality conventions

Much of this thesis has to do with the interplay between various standard

dualities. To distinguish between them I use the following notation:

• L(−) denotes an object obtained via Langlands duality, e.g. the Langlands dual

group LG.

• (−)∨ denotes the Pontrjagin dual group Hom(−, U(1)) or Hom(−,Gm), de-

pending on context.

• (−)∧ denotes the dual lattice to an abelian group, (−)∧ := Hom(−,Z).

• (−)D denotes the Cartier dual Hom(−,O×[1]) or Hom(−, BGm), depending

on context. E.g. if A is an abelian variety then AD is the usual dual abelian

variety.

3Partial results in this direction have been obtained by Arinkin and Fedorov [4, 5].
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Chapter 2

Physics and Duality

In this chapter I will discuss the background and motivation for the self-dual

geometric Langlands program. Since this material is largely drawn from physics,

readers should be aware that this section will involve some amount on non-rigorous

physical reasoning (such as manipulation of path integrals).

In Section 2.1 I will begin by discussing quantum field theories and some of

the geometries that may be associated with such a theory. I will describe the notion

of a duality of quantum field theories, and explore the ways in which such dualities

manifest geometrically.

In Section 2.2 I will describe the notion of a relative quantum field theory

after [30]. This formalises the notion of an quantum field theory “with anomaly”,

and (as we shall see) can be used to engineer dualities of quantum field theories.

In this section I will also introduce “Theory X” (otherwise known as the “6d (2,0)

superconformal field theory”, see [72,85]) and theories of class S [31,32], two relative

quantum field theories of particular importance to this dissertation.

In Section 2.3 I will review how the geometric Langlands program may be

derived from Theory X, as discussed in [45,76,86].

Finally, in Section 2.4 I will sketch how a new “self-dual geometric Langlands
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program” might be obtained from Theory X, via theories of class S. An overview of

the relationship between the theories introduced in Sections 2.2-2.4 is presented in

Figure 2.4.

2.1 Quantum field theories, geometry and duality

Let S be a structure that can be placed on a manifold1 (e.g. smooth structure,

Riemannian metric, spin structure, supermanifold structure, G-bundle with connec-

tion, etc.). The physical concept at the heart of this dissertation is the following:

Quasi-Definition 2.1.1 (Quantum Field Theory). An (extended) d-dimensional

S-structured quantum field theory (QFT), Z, is a procedure for functorially assigning

• a C-number Z(Md) to every closed d-manifold with structure S (the correlation

function or path integral),

• a C-vector space Z(Nd−1) to every closed (d − 1)-manifold with structure S

(the space of states),

• a C-linear category Z(P d−2) to every closed (d−2)-manifold with structure S,2

• higher (appropriately C-linear) categorical data to higher codimension mani-

folds with structure S,

1More accurately, S should collect together different compatible structures for different dimen-
sional manifolds. For instance, S may specify a symplectic structure for a 2k-dimensional manifold
and a contact structure for a (2k − 1)-dimensional manifold. See [75] for more discussion on this
point.

2In the case d = 2 this category may be interpreted as the category of boundary conditions for
the theory.
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subject to unitarity and locality constraints.

Furthermore, for every k < d there is a collection of k-dimensional subman-

ifold operators {O(k)} that may be used to decorate a given manifold, e.g. we may

evaluate the correlation function of a collection of operators

Z(Md;O(k1)
a1

, . . . ,O(kl)
al

) ∈ C. (2.1)

When k = 0, 1, 2 these are sometimes called local, line/loop and surface operators

respectively; when k = d− 1 these are sometimes called domain walls.

Remark 2.1.1. The locality constraint of Quasi-Definition 2.1.1 may be mathemati-

cally interpreted as saying that the domain of the functor Z is some kind of bordism

d-category3, where e.g. the objects are (d− k)-manifolds with some sort of structure

(supermanifold, Riemannian structure, spin structure, equipped with a principal

bundle, etc.), the morphisms are (d − k + 1)-manifolds with boundary (and struc-

ture), the 2-morphisms are (d− k + 2)-manifolds with corners, etc.

Example 1. It is possible to give a rigorous version of Quasi-Definition 2.1.1 in

the case where our QFT is a topological quantum field theory (TQFT). In [52] Lurie

defines an fully extended topological field theory valued in a symmetric monoidal

(∞, n)-category C to be a symmetric monoidal functor from a domain bordism

(∞, n)-category to C. Moreover, the cobordism hypothesis (due to Baez-Dolan [6],

Lurie [52], and others) states that such TQFTs satisfy the strongest possible locality

constraint: namely, they are determined by what they evaluate to on a connected

0-manifold (i.e. a point).

3Or (∞, d)-category [52].
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Example 2. One “obvious” example of a QFT which looks boring but will in fact

be extremely important later is the trivial d-dimensional QFT, trivd. trivd assigns

the number 1 to every d-manifold, the 1-dimensional vector space C to every (d−1)-

manifold, the C-linear category VectC to every (d−2)-manifold, and so on, assigning

an n-categorical version of a C-linear symmetric monoidal unit to every (d − n)-

manifold.

2.1.1 Examples of QFTs

While results such as the cobordism hypothesis are elegant and conceptually

useful, in practice – i.e. when one wants to study a particular QFT – one does not

specify only the minimal amount of local data required to give a well-defined theory

and attempt to compute non-trivial correlation functions. Instead there are physical

techniques one can draw on to construct a quantum field theory, such as the following.

Quasi-Definition 2.1.2 (Path Integral Quantisation). Recall a classical Lagrangian

field theory on a d-manifold Md is specified by the data of

1. a space of classical fields F, usually the sections of some fibre bundle over M ,

2. a Lagrangian density L, which is (roughly) a local functional of the fields F

valued in densities on M , and

3. a variational 1-form γ, whose role I will not discuss in the sequel.

(For rigorous definitions of the above and an introduction to classical field theory,

one should consult the remarkable set of notes [22].) Given the above data, one can
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form the classical action

S : F → R

S[φ] :=

∫
M

L[φ] (2.2)

and the classical equations of motion are derived by finding the critical points of S

with respect to the functional derivative δ
δφ

.4

Given a classical Lagrangian field theory one defines its path integral quanti-

sation by considering the fundamental object of study to be the path integral

Z(Md) :=

∫
F

DφeiS[φ]. (2.3)

In this formulation submanifold operators are often functionals O on F,5 and one

calculates correlation functions of operators by inserting them into the integral:

Z(Md;O) :=

∫
F

DφO(φ)eiS[φ]. (2.4)

The path integral formalism also allows one to derive the vector spaces of states and

(higher) categorical data of Quasi-Definition 2.1.1, although I will not describe how

to do so here. For some details and examples see [44] and [18].

Remark 2.1.2. When studying operator insertions it is common to consider the nor-

malised correlation functions

〈O1 · · ·Ol〉M :=
Z(M ;O1, . . . ,Ol)

Z(M)
=

∫
F
DφO1(φ) · · ·Ol(φ)eiS[φ]∫

F
DφeiS[φ]

(2.5)

4I am brushing over important details here, e.g. the integral S[φ] may not always converge. To
deal with such issues I again refer the reader to [22].

5There are more general submanifold operators that alter the path integral by, for instance,
prescribing certain boundary conditions or singularities along a given submanifold.
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rather than the path integrals themselves, e.g. compare the perturbative and formal

sections of [83].

With the technique of path integral quantisation at our disposal, we can now

give examples of QFTs which arise via quantisation of classical theories. For detailed

analysis of the classical theories listed below, see [22].

Example 3. The simplest example of a non-trivial QFT is the quantisation of the

free real scalar field of mass m on a oriented manifold M equipped with a metric η

(of Euclidean or Lorentz signature). The classical theory has F = Map(M,R) and

L(R-scalar)[φ] :=
1

2
dφ ∧ ?ηdφ−

m2

2
φ2dvolη, (2.6)

where ?η is the Hodge star and dvolη is the volume form associated to η.

Example 4. A natural generalisation of Example 3 is given by the class of theories

known as (non-linear) σ-models. These are obtained by replacing

(1) the real numbers R with a Riemannian manifold (X, g) (the target space), and

(2) the mass term 1
2
m2φ2 with a potential energy function V : X → R.

The space of fields is now F = Map(M,X) and the Lagrangian density is

L(NLSM)[Φ] :=

(
1

2
‖dΦ‖2 − Φ∗(V )

)
dvolη (2.7)

where the norm ‖ − ‖ is computed using both metrics η and g.
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Example 5. In order to make contact with the real world (e.g. the theory of elec-

tromagnetism) one needs to consider the class of theories known as gauge theories,

which transform “global symmetries” – informally, transformations of the classical

fields which are the same at all points of spacetime – with “local” or “gauge symme-

tries” – where the fields are allowed to transform in a different way at each point of

spacetime. Mathematically this is done by expanding the space of fields to include

certain principal bundles with connection, and redefining the original fields of the

theory to live in associated bundles, where they are acted on by the corresponding

covariant derivative.6

The basic example of a gauge theory is a pure gauge theory or pure Yang-Mills

theory. Start with the data of:

(1) a Lie group G with Lie algebra g, and

(2) a bi-invariant inner product 〈−,−〉 on g.

Pure Yang-Mills theory with gauge group G is constructed by gauging the trivial

global action of G on the trivial QFT of Example 2. Explicitly, the space of fields

on an oriented (pseudo-)Riemannian manifold (M, η) is F = ConnG(M), the space

of connections on principal G-bundles over M , and the Lagrangian density is given

6This is really a two-step process: (1) choose a way to extend the theory for each fixed principal
bundle with connection (i.e. redefine the original fields), and (2) expand the space of fields to include
principal bundles with connection. A physicist might say that they had (1) coupled the theory to a
background field and (2) gauged the symmetry.
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by

L(YMG)[∇] := −1

2
〈F∇ ∧ ?ηF∇〉, (2.8)

where F∇ is the curvature 2-form of the connection ∇.

Example 6. As a final example for this section, we consider a synthesis of Examples

4 and 5 called a gauge theory with matter. Suppose thatG is a compact Lie group, and

let R be a finite dimensional complex G-representation equipped with a G-invariant

Hermitian inner product (−,−). Given a principal G-bundle P → M , denote by

RP →M the associated bundle (P ×R)/G. Then the space of fields is

F(G,R) := {((P,∇),Φ) | (P,∇) ∈ ConnG(M), Φ ∈ MapM(M,RP )} (2.9)

and the Lagrangian density is

L[∇,Φ] := L(R)[∇,Φ] + L(YMG)[∇], (2.10)

where

L(R)[∇,Φ] =
1

2
‖d∇Φ‖2dvolη (2.11)

and d∇ denotes the induced covariant derivative in the associated bundle.

2.1.2 Duality in QFT

Implicit in the discussion of Example 5 is the idea that quantum field theories

are not rigid objects – that is to say that they can have interesting (non-trivial)

automorphisms. With that in mind, consider the following:
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Quasi-Definition 2.1.3 (Duality of QFTs). A duality of quantum field theories is

an isomorphism of QFTs Z1 and Z2. If D : Z1 → Z2 is duality of QFTs I will say

that D exhibits Z1 and Z2 as duals, or informally just that Z1 and Z2 are dual.

Remark 2.1.3. Quasi-Definition 2.1.3 is a more liberal use of the term “duality” than

one usually finds in the literature (either mathematical or physical), as it encompasses

(for instance) global symmetries of a QFT. I find it more satisfying, however, to use

this as an umbrella definition and then discuss specific interesting examples of duality

than to introduce specific examples in isolation and then gesticulate in the direction

of some mysterious unifying principle.

I do believe that there ought to be a quasi-definition – or even definition! –

of duality that only encompasses “conventionally interesting” examples, but I do not

know of any such formulation at present.

Remark 2.1.4. Suppose that (Fi,Li), i = 1, 2, are two classical field theories whose

path integral quantisations are dual. Observe that:

• This implies that ∫
φ∈F1

Dφei
∫
L1[φ] =

∫
ψ∈F2

Dψei
∫
L2[ψ], (2.12)

but it is not necessarily the case that L2 may be obtained from L1 by a simple

change of variables F1 → F2 (see Section 2.1.4).

• (2.12) by itself does not imply that the quantisations are dual, since a QFT

consists of more data than just the partition functions of manifolds. E.g. there
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must be a one-to-one mapping of between the submanifold operators of the two

theories.

Example 7. Arguably the most famous duality in physics is mirror symmetry, which

is an equivalence of two quite different looking 2d TQFTs known as the “A-model”

and the “B-model” [42,75]. The input for these theories includes manifolds with extra

structure X and X∨: when X and X∨ are both Calabi-Yau manifolds the induced

equivalence between the categories of boundary conditions is Kontsevich’s celebrated

homological mirror symmetry conjecture [47], which claims that the bounded derived

category of coherent sheaves on X∨ is equivalent to the Fukaya category of X.

Remark 2.1.5. The concept of duality in physics is not unique to quantum field

theory: one can talk about dualities of classical theories, string dualities, and more.

2.1.3 Effective theories and moduli spaces

The approach I have taken so far supposes that quantum field theories are

“ideal”, in the sense that I implicitly assumed they give well-defined, sensible answers

at arbitrarily high energies. In practice, however, many quantum field theories break

down above some finite energy scale. One way to understand a theory with such

singular behaviour is to interpret it as an effective field theory (EFT).

The motivation for EFT is fairly straightforward: if you want to calculate the

trajectory of a cricket ball you don’t start with the equations of general relativity.7

That is to say that in order to understand the low energy (infrared or IR) behaviour

7Despite appearances, the duration of a cricket match is not a time-dilation effect.
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of a theory Z one does not need perfect knowledge of the theory at arbitrarily high

energies (the ultraviolet or UV range). Instead, one may study the IR physics by

constructing a new effective theory Z
(IR)
Λ that gives a good approximation to the

theory Z at energy scales less than Λ, but which fails to approximate Z at energy

scales higher than Λ. This failure might involve divergences of observable quantities,

such as happens when one interprets a QFT with a UV divergence as an EFT, or it

may simply return physically unreasonable answers, as happens if one attempts to

apply Newtonian mechanics to arbitrarily fast or massive bodies.

Geometry plays a central role in the study of the IR physics of a QFT for the

following reason:

Quasi-Definition 2.1.4 (Target space). The IR physics of a QFT Z is described

by a σ-model of maps to a space M(Z), or just M. I will refer to the space M as the

target space of the theory.

Remark 2.1.6. The target space of a low energy σ-model is often referred to as the

moduli space of vacua of the theory (see e.g. the glossary of [21]). This is not entirely

correct: the moduli space of vacua may be independently defined as the space of

ground states of the theory, and while this often agrees with the target space of

Quasi-Definition 2.1.4 they are not equivalent. In particular, they will differ for a 2d

QFT with a continuous target space.

Now, observe that the target space M(Z) associated to the theory Z encodes

information about the IR physics8 of Z only. The quantum IR physics may be

8This terminology is potentially confusing, since defining what is meant by “low energy” itself

20



obtained as the quantisation of two (or more) different classical σ-models: as such,

given a duality Z1 ' Z2 one might find two different descriptions of the classical

σ-models. While the corresponding target spaces M1 and M2 will not be isomorphic,

it is natural to expect that the geometry of M1 and M2 should be related in some

way. To explore what sort of relationship one might expect, I need to introduce

various methods by which a d-dimensional QFT may be used to produce a (d− k)-

dimensional QFT.

Quasi-Definition 2.1.5. The following terminology is used inconsistenly across the

literature: the convention that I have chosen is adopted from Gregory Moore’s Felix

Klein Lectures [58, §2.2]. Let Z be a d-dimensional QFT, and let S be a compact

k-manifold.

(1) VerKleinung: The VerKleinung of Z along S is the (d − k)-dimensional QFT

which assigns to an l-manifold M the number/vector space/(higher) category

Z(M × S).9

(2) Compactification: The compactification of Z on S, denoted Z[S], is the IR

limit of the VerKleinung of Z along S, where we take all distance scales on S to

be small.

(3) Dimensional Reduction: Suppose that Z is a Lagrangian field theory with

field space F and Lagrangian density L, and that G is a Lie group that acts

involves making choices (e.g. one might integrate out all particles with mass above a chosen energy
scale Λ) which lead to different IR limits. In this situation I wish to take the “absolute” low energy
limit, i.e. integrating out all massive particles.

9I will not define any notation for VerKleinung, as I will not be making use of this procedure
except in so far as it is required for the definition of compactification.
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transitively on S. Then the dimensional reduction of Z with respect to the G-

action (or dimensional reduction on S), denoted ZG (or ZS), is the Lagrangian

QFT obtained by taking as field space the G-invariant fields FG, and by taking

as Lagrangian density 1
vol(G)

L|FG .10

Remark 2.1.7. Since by definition a topological quantum field theory has no met-

ric/length/energy dependence, the procedures of VerKleinung and compactification

coincide for TQFTs.

We now have the language to describe a particularly famous geometric duality

conjecture:

Example 8. In [74] Strominger, Yau and Zaslow study the compactification of type

IIA and type IIB string theory on a pair of Calabi-Yau 3-folds X and Y . Under

the assumption that the resulting physical theories are mirror dual,11 an analysis of

certain moduli of vacua associated to the compactified theories suggests that given

a nonsingular “special Lagrangian” torus Xb in X, the moduli space of flat U(1)-

connections on small special Lagrangian deformations of Xb provides a coordinate

chart for Y . The SYZ mirror symmetry proposal then conjectures that the collection

of all such coordinate charts cover an open dense subspace of Y .

A geometric consequence of this proposal is that the Calabi-Yau 3-folds X

and Y are fibrations over a common base B, and that for a dense set of b ∈ B

the fibres Xb and Yb are “dual special Lagrangian tori” in the sense that there is

10G may have infinite volume, in which case vol(G) must be treated formally or regularised.
11In the sense of string theory, which is different from but may be related to the mirror symmetry

of Example 7.
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a natural identification of Yb with the moduli space of flat U(1)-connections on Xb

(and vice-versa). Such a setup is called an SYZ fibration, and X and Y are called

SYZ mirror dual.

Remark 2.1.8. Experts will notice that for the purposes of exposition I have made

some omissions in my description of SYZ mirror symmetry: X and Y are integrable

systems over B (in particular they are only generically fibrations), I have not defined

the term “special Lagrangian”, and I have omitted any mention of the large complex

structure limit. Although important these topics are not necessary for either moti-

vation or understanding of this dissertation, and their inclusion would only serve as

a distraction.

Remark 2.1.9. The methods used in this dissertation will be primarily algebro-

geometric in nature, and so a priori it seems that the SYZ proposal of Example

8 would be of little relevance (living in the world of symplectic and holomorphic

symplectic geometry). Nevertheless, the geometric duality that I will be interested

in may be interpreted as an instance of SYZ mirror symmetry via the following trick:

Suppose that instead of just being Calabi-Yau, the manifolds X and Y are

hyperkähler – recall that X is hyperkähler if it is equipped with a Riemannian metric

g and a triple (I, J,K) of complex structures12 which satisfy the quaternion relations

and which all exhibit g as a Kähler metric on X. Write the corresponding Kähler

forms as ωI , ωJ and ωK . Then ΩI := ωJ + iωK is a holomorphic symplectic form for

complex structure I, and it is an exercise in linear algebra to show that if ΩI |T ≡ 0 for

12In fact by taking linear combinations aI + bJ + cK with a2 + b2 + c2 = 1 one sees that there is
an entire CP1 ∼= S2 worth of compatible complex structures.
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a half-dimensional submanifold T (say that T is complex Lagrangian for I) then T is

special Lagrangian for complex structure J . Furthermore, there is a correspondence

between holomorphic line bundles on (T, I) and flat U(1)-bundles on T (thought of

as a special Lagrangian submanifold in complex structure J).

Therefore, if X and Y are SYZ mirror dual in the sense of Example 8 with

respect to complex structures JX , JY , then with respect to complex structures IX , IY

the fibres Xb and Yb will generically be compact complex tori which are dual in the

sense of abelian varieties. This setup, which will be generalised and made precise in

Chapter 3, is the algebraic version of SYZ mirror symmetry that I will be concerned

with in Chapter 5.

2.1.4 Extended example: Reduction of U(1) gauge theory from 4d to 2d

Before delving in to the more complicated QFTs that motivated this thesis,

it is instructive to consider a toy example that brings together many of the topics

discussed in Sections 2.1.1, 2.1.2, and 2.1.3. Namely, we will compactify (nonsuper-

symmetric) 4d pure U(1) gauge theory on a torus S1
r ×S1

R in two different ways. The

two different compactifications yield dual 2d σ-models, and so produce dual moduli

of vacua. This duality will be manifest in the complex structure of the moduli spaces

(it will be the self-duality of an elliptic curve), but non-manifest in the Riemannian

metrics (which will generically be different).
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2.1.4.1 Pure 4d U(1) gauge theory

Specialising Example 5 to the case G = U(1), the setup for 4d U(1) gauge

theory is as follows: spacetime is a 4-manifold M (4) equipped with a metric η of

signature (+,−,−,−), and there is a single U(1)-gauge field (i.e. connection on a

principal circle bundle L) A(4) with field strength F (4) = dA(4). The Lagrangian for

this theory is given by

L(4) = −Im(τ)

4π
F (4) ∧ ?F (4) +

Re(τ)

4π
F (4) ∧ F (4) (2.13)

where τ is a complex parameter with strictly positive imaginary part, and where the

field strength is normalised so that [F (4)] ∈ H2(M (4); 2πZ). In the quantum field

theory associated to this Lagrangian, we wish to calculate the functional integral

Z =
∑
L

1

vol(GL)

∫
DAei

∫
L(4)

, (2.14)

where GL is the gauge group of the circle bundle L, and vol(GL) is a normalisation

factor formally keeping track of the (infinite) volume of this group.

2.1.4.2 Compactifying to three dimensions

We first reduce to a 3d theory by compactifying L(4) on a circle of radius R,

i.e. set M (4) = M (3)×S1
R. Taking a Fourier expansion of the connection and plugging

in the equations of motion13 for L(4), one can derive that the nonzero Fourier modes

become, in the 3d theory, massive particles of mass proportional to 1
R

. By letting

R be very small, for example of order the Planck length, we can guarantee that no

13And also fixing Lorentz gauge d ? A = 0.
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excitations of the nonzero Fourier modes can occur in the low energy 3d effective

theory [73].

Thus we may assume that our connection is constant in the S1
R direction:

precisely, we can always perform a partial gauge fixing by imposing the condition

∂Aϑ
∂ϑ

= 0, where ∂
∂ϑ

is the generator of isometric rotations of the circle, and in this

choice of gauge we may impose nonexistence of nonzero Fourier modes through the

constraint ∂ϑAi = 0. Having imposed this constraint, we integrate out the circle

direction to find the 3d effective Lagrangian

L
(3)
kin = −R

2
Im(τ)F ∧ ?F +

R

2
Im(τ)dσ ∧ ?dσ +

R

2
Re(τ) · 2F ∧ dσ (2.15)

where A(4) = A + σdϑ. The residual gauge symmetries are given by U(1)-gauge

transformations of A on M (3), and by certain affine transformations in the variable

ϑ (since the second derivative of an affine transformation is zero). Thus, A is a

connection on M (3) with field strength F = dA, and σ is a scalar field which by

invariance of our theory under the residual gauge transformation e
iϑ
R is valued in

R/ 1
R
Z.

2.1.4.3 Dualising the 3d theory

The classical equations of motion for a U(1) gauge field A with field strength

F = dA are given by d?F = 0. In dimension three this implies that (at least locally)

?F = dφ for some function φ, or equivalently F = ?dφ. It is tempting, therefore, to

suggest that in three dimensions there should be a dual description of U(1) gauge

theory as a (real) scalar field theory. Let us now show that we can indeed reformulate
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the Lagrangian L
(3)
kin in this way, with the caveat that since in a quantum field theory

we must integrate over all fields, and not just the on-shell fields,14 the reformulation

is somewhat subtle.

Consider adding the Lagrange multiplier

L
(3)
lag = Rdγ ∧ F (2.16)

to our Lagrangian, where γ : M (3) → R/ 1
R
Z is again a circle-valued function. Note

that by adding this term to our Lagrangian we have changed our perspective on

whether F or A is a fundamental field in our theory. One can show that perform-

ing the path integral over γ recovers our original Lagrangian L
(3)
kin with the correct

quantisation and normalisation conditions for the field strength.15

We could also perform the integral over the 2-form field F first. Letting

F ′ = F − ?
(

1

Im(τ)
dγ +

Re(τ)

Im(τ)
dσ

)
, (2.17)

which is a linear shift in F (and so DF ′ = DF in the path integral measure), the

14The solutions to the classical equations of motion.
15One needs to take care with this integral, since γ is circle valued, not real valued. Specifically,

the calculation requires fixing for each homotopy class of maps to the circle α ∈ H1(M (3);Z) a
1-form dγα which represents α in de Rham cohomology, writing our variable as dγ = dγα + dγR for
γR a real valued scalar field, and then performing an integral over γR and a sum over H1(M (3);Z).

Recovering the original Lagrangian uses a Poisson resummation trick that requires a Poincaré du-
ality theorem, and fixing 1-form representatives requires Hodge theory. On a non-compact manifold
these theorems do not hold for smooth forms: thankfully, we can use L2-cohomology instead.
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Lagrangian becomes

L
(3)
kin + L

(3)
lag

= −R
2

Im(τ)

[
F ′ ∧ ?F ′ −

(
1

Im(τ)
dγ +

Re(τ)

Im(τ)
dσ

)
∧ ?
(

1

Im(τ)
dγ +

Re(τ)

Im(τ)
dσ

)
− dσ ∧ ?dσ

]
. (2.18)

The integrand of the path integral now factors into a piece which (after Wick rotation)

is Gaussian in F ′, and a piece which is independent of F ′. Performing the Gaussian

integral and absorbing the result into the normalisation factor of the path integral,

we are left with the path integral for the Lagrangian

L̂(3) = −R
2

Im(τ)

[
−
(

1

Im(τ)
dγ +

Re(τ)

Im(τ)
dσ

)
∧ ?
(

1

Im(τ)
dγ +

Re(τ)

Im(τ)
dσ

)
− dσ ∧ ?dσ

]
. (2.19)

After some straightforward algebraic manipulations, and rescaling

γ̃ = Rγ, σ̃ = Rσ : M (3) → R/Z, (2.20)

this becomes

L̂(3) =
1

2Im(τ)R
(dγ̃ + τdσ̃) ∧ ?(dγ̃ + τ̄ dσ̃). (2.21)

Now consider the elliptic curve with modulus τ , Eτ = C
Z⊕τZ , with (local) coordinates

z, z̄ induced from C. Equip Eτ with a rescaling of the standard metric

g :=
1

2Im(τ)R
dzdz̄. (2.22)
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Let ‖ · ‖ be the norm induced on T ∗M (3)⊗TEτ by the metrics η and g. Then setting

Φ(x) = γ̃(x) + τ σ̃(x), (2.23)

which is well-defined since γ̃ and σ̃ are R/Z-valued, we have that

1

2
‖dΦ‖2dvolη =

1

2Im(τ)R
(dγ̃ + τ σ̃) ∧ ?(dγ̃ + τ̄ σ̃). (2.24)

Written this way, we recognise L̂(3) as the Lagrangian for a σ-model of maps Φ :

(M (3), η) → (Eτ , g) (c.f. Example 4). We can calculate the volume of the target

space: the volume form is given by

dvolg =
i

4Im(τ)R
dz ∧ dz̄ =

1

2Im(τ)R
dRe(z) ∧ dIm(z) (2.25)

and so by integrating over the fundamental domain given by the parallelogram de-

fined by the vectors 1 and τ in C, we find that

vol(Eτ , g) =
1

2Im(τ)R

∫ Im(τ)

0

∫ 1

0

dRe(z)dIm(z) =
1

2R
. (2.26)

2.1.4.4 Compactification to two dimensions

We now compactify on another circle, this time of radius r, by taking M (3) =

Σ×S1
r for Σ a 2-manifold equipped with a Lorentz signature metric η. An analysis of

the Fourier modes similar to the one performed for the reduction to three dimensions

shows that the nonzero Fourier modes correspond to massive particles which may be

ignored in the low energy effective theory.

Thus we may derive the IR effective Lagrangian for the 2d reduced theory by

simply integrating L̂(3) on the circle of radius r, with all fields independent of the
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circle direction. This results in the Lagrangian

L(2) =
1

2
· 2πr‖dΦ‖2dvolη. (2.27)

Rescale the metric on Eτ to

hr,R := 2πrg =
πr

Im(τ)R
dzdz̄. (2.28)

Then

L(2) =
1

2
‖dΦ‖2dvolη (2.29)

is the Lagrangian for a sigma model of maps Φ : (Σ, η)→ (Eτ , hr,R), where the target

space now has volume

vol(Eτ , hr,R) = π
r

R
. (2.30)

Now, we could have chosen to reduce on the two circles in the opposite order, resulting

in a 2d sigma model with target space (Eτ , hR,r) of volume vol(Eτ , hR,r) = πR
r
. These

two theories are dual to each other: concretely, they correspond to different choices

of three manifold on which we dualise the 3d gauge field (Σ× S1
r or Σ× S1

R). So we

see that:

Quasi-Theorem 2.1.1. The Kähler manifold (Eτ , hR,r) is related by a nontrivial

duality to the Kähler manifold (Eτ , hr,R).

Remark 2.1.10. Note that the target space Eτ is an elliptic curve and is therefore

self-dual as an abelian variety (this is the manifest duality that was promised at the

beginning of Section 2.1.4).
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To conclude this section I will make one final observation (which serves as

foreshadowing for Section 2.4). Namely, if we calibrate the radii of the two circles

so that r = R then the metric on the target space becomes independent of the radii,

and we find that:

Quasi-Corollary 2.1.2. The Kähler manifold
(
Eτ ,

π
Im(τ)

dzdz̄
)

is related to itself by

a nontrivial self-duality of quantum field theories.

2.2 Relative quantum field theories

Given a QFT with a global symmetry, Example 5 and Footnote 6 describe how

this global symmetry might be promoted to a local symmetry through a “coupling

and gauging” procedure. It is possible for this procedure to be obstructed, however,

as the next example demonstrates.

Example 9. Let Σ be a Riemann surface with nondegenerate metric η, and let G be

a finite dimensional Lie group equipped with a left-invariant Riemannian metric that

is induced by a left-invariant metric ρ on g (I will suggestively write ρ(x, y) = tr(xy)).

The Lagrangian for a σ-model of maps g : Σ→ G is given by16

L(x) =
1

2
‖dg(x)‖2dvolη(x). (2.32)

16This is often written (e.g. [84]) in local coordinates and for a matrix Lie group G as

‖dg(x)‖2 = ηij tr

(
g(x)−1

∂g

∂xi
(x)g(x)−1

∂g

∂xj
(x)

)
. (2.31)
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Including also an interesting topological term Γ(g) [81, 82], the Wess-Zumino term,

we obtain the WZW action

S[g] := − 1

8π

∫
Σ

‖dg(x)‖2dvolη(x)− iΓ(g) (2.33)

which is well-defined moduli 2πiZ (once the trace-form has been appropriately nor-

malised). Then the Wess-Zumino-Witten (WZW) model at level k ∈ Z is the 2d

conformal QFT defined by the path integral

Zk(Σ) :=

∫
Map(Σ,G)

Dge−kS[g]. (2.34)

The action S[g] is invariant under the action of G × G on G given by (g1, g2) · h =

g1hg
−1
2 , so the WZW model has a global G × G symmetry. Considering only the

right multiplication action, the WZW model has a global G-symmetry: we would

like to (1) couple to and (2) gauge this G-symmetry.

Unfortunately,17 there is a well-known obstruction to gauging thisG-symmetry

[84]. Namely, while it is possible to couple the theory to a G-bundle with connection

– i.e. redefine g to be a section of a G-bundle P with connection ∇ on Σ and define

an action S[g,∇] such that at the trivial connection ddR, S[g, ddR] = S[g] – it is not

possible to do so in a gauge invariant way. The best one can achieve is an action

whose behaviour under a gauge transformation h : Σ→ G is

S[gh−1, (P, h∗(∇))] = S[g, (P,∇)] + A[h, (P,∇)] (2.35)

17Or fortunately, depending on your perspective.
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where the anomalous term A depends only on h and ∇ (not on g or the complex

structure on Σ). Consider the path integral of this G-coupled theory

Zk(Σ; (P,∇)) :=

∫
MapΣ(Σ,P )

Dge−kS[g,(P,∇)] (2.36)

which we may think of as a function on the space A(Σ, G) of all G-connections

on Σ. The transformation law (2.35) for S[g, (P,∇)] implies that the path integral

transforms as

Zk(Σ; (P, h∗(∇))) = α(h,∇)Zk(Σ; (P,∇)) (2.37)

where the anomalous multiplicative term α again depends only on h and ∇. α is non-

trivial (this is the aforementioned obstruction to gauging the global G-symmetry),

however there is a Map(Σ, G)-equivariant holomorphic line bundle L⊗k on A(Σ, G),

the (kth tensor power of the) prequantum line bundle, and Zk(Σ; (P,∇)) can be

interpreted as a gauge invariant holomorphic section of L⊗k (and therefore as a

physical state in 3d Chern-Simons gauge theory at level k [83]).

Remark 2.2.1. In [84, §2.2] Witten describes how the line bundle L and the path

integral Zk descend to give a holomorphic section of a line bundle (also denoted L)

on M(Σ, G), the moduli space of flat connections modulo gauge transformations.

I.e. the path integral Zk(Σ) is an element of the finite dimensional vector space

H0(M(Σ, G);L⊗k), which is the vector space assigned to the surface Σ in Chern-

Simons gauge theory [83, §3.1].

The physical notion of an anomalous field theory (as in Example 9) is captured

by the following formalism of Freed and Teleman.
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Definition 2.2.1 (Relative Quantum Field Theory [30]). Given a (d+1)-dimensional

QFT α, denote by α≤d its truncation to manifolds of dimension ≤ d. Then a quantum

field theory Q relative to α is either a homomorphism

Q : (trivd+1)≤d → α≤d, (2.38)

or a homomorphism

Q : α≤d → (trivd+1)≤d. (2.39)

Example 10. To see why Definition 2.2.1 captures the anomaly of the WZW model,

observe that a relative QFT Q : (trivd+1)≤d → α≤d assigns to a d-manifoldMd a linear

map

Q(Md) : (trivd+1)(Md) = C→ α(Md) (2.40)

or equivalently (by taking the image of 1 ∈ C) Q(Md) ∈ α(Md). But now letting

Q = Zk be the WZW model and α = CSG,k be Chern-Simons gauge theory at level

k, the conclusion of Example 9 translates into

Zk(Σ) ∈ H0(M(Σ, G);L⊗k) = CSG,k(Σ). (2.41)

Remark 2.2.2. Following [30], when I wish to emphasise that a QFT is not relative

(i.e. it is an QFT in the sense of Quasi-Definition 2.1.1) I will say that it is an absolute

d-dimensional QFT.

Example 11. A QFT relative to trivd+1 is an absolute d-dimensional QFT.

The observation of Example 11 leads to the following definition:
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Definition 2.2.2. An absolution of a relative QFT Q : (trivd+1)≤d → α≤d (resp.

Q : α≤d → (trivd+1)≤d) is another relative QFT A : α≤d → (trivd+1)≤d (resp. A :

(trivd+1)≤d → α≤d). If A is an absolution of Q, say that A absolves Q.18

With this definition, the composition of a relative QFT with an absolution is

an absolute d-dimensional QFT A ◦ Q : (trivd+1)≤d → (trivd+1)≤d. I will postpone

examples of absolutions to Sections 2.3 and 2.4.

2.2.1 Theory X

One motivation for introducing the formalism of relative QFTs in [30] was the

desire to understand the structure of a mysterious 6-dimensional theory discovered in

[72,85], particularly those features predicted in [86, §4] which relate to the geometric

Langlands program (I defer discussion of this relation to Section 2.3). This theory,

known as Theory X, is a 6d (0,2)-superconformal field theory with no known (or

expected19) classical description.

As explained in [30, Data 5.1], the data required to specify a Theory X is

(1) A real Lie algebra g with an invariant inner product 〈−,−〉 such that all coroots

have square length 2, and

(2) A full lattice Γ in a choice of Cartan subalgebra h, such that Γ contains the

coroot lattice of g and such that 〈−,−〉 is integral and even on Γ.

18“Absolution is the process that frees a quantum field theory from the sin of being relative.” [61]
19Arguments for why Theory X cannot be the quantisation of a classical theory may be found

in [86, §4]. One observation that argues against the existence of a Lagrangian is that after a
perturbation, the IR physics may be described as a theory of gerbes with a self-dual curvature
3-form H; however, the standard kinetic term for such a field would be H ∧ ?H = H ∧H = 0.
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The conditions placed on the inner product imply that the Lie algebra g must be re-

ductive with simply-laced semisimple subalgebra. The case of an abelian Lie algebra

leads to a theory that is expected to be non-interacting, and I will not discuss this

case. Instead, I will focus on the case where g is semisimple (or usually just simple)

and simply-laced, the lattice is exactly the coroot lattice ΠR. The inner product is

then forced to be a specific normalisation of the Killing form of g.

Remark 2.2.3. Note that if G̃ is the simply-connected Lie group with Lie algebra g,

the centre of the group may be expressed as Z(G̃) = ΠW/ΠR (notation as in (1.2)),

and the inner product 〈−,−〉 induces a symmetric perfect pairing Z(G̃) × Z(G̃) →

U(1).

Given the above data, [30, Expectation 5.3] predicts the existence of a 7d

TQFT αg and a 6d QFT Xg relative to αg. Explicitly, at the first two category

levels:

• To a 6-manifold X αg assigns a (finite dimensional) vector space, and the

partition function of Xg is a vector Xg(X) ∈ αg(X).

• To a 5-manifold Y αg assigns a linear category,20 and the space of states of Xg

is an object Xg(Y ) ∈ αg(Y ).

A discussion of the predicted structure of αg can be found in [30, §5] – I will restrict

my discussion here to a description of the partition vector Xg(X) (following [76,86]).

20Modelled on topological vector spaces.
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Let X be a compact oriented 6-manifold, and consider the middle cohomology

group H3(X;Z(G̃)). The composition of cup product, the perfect pairing on Z(G̃),

and evaluation against the fundamental class yields a nondegenerate skew pairing

ω : H3(X;Z(G̃))×H3(X;Z(G̃))→ U(1). (2.42)

Such a pairing defines a U(1) central extension known as the Heisenberg group,

1→ U(1)→ H(X,ω)→ H3(X;Z(G̃))→ 0 (2.43)

characterised by the property that any lifts21 Φ(a),Φ(b) ∈ H(ω) of elements a, b ∈

H3(X;Z(G̃)) will satisfy the Heisenberg commutation relation

Φ(b)Φ(a) = ω(a, b)Φ(a)Φ(b). (2.44)

The Stone-von Neumann Theorem [65, Ch.2] states that up to non-canonical isomor-

phism there is a unique irreducible representation of H(X,ω) on which the central

U(1) acts via scalar multiplication. Then αg(X) is supposed to be the underlying

vector space of this representation.

Here we encounter a problem which, to the best of my knowledge, remains un-

resolved: namely, to define αg(X) it is not sufficient to provide an isomorphism class

of vector spaces – one must specify a representative for this isomorphism class. This

requires a choice of Lagrangian (i.e. maximal isotropic) subgroup L ⊂ H3(X;Z(G̃))22

21Note that Φ cannot be a homomorphism (the extension is non-split).
22In the interests of radical transparency, it also requires a choice of splitting L → H(X,ω),

which is important but which I will deemphasise in this narrative.
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(the representation is constructed by considering a class of L-invariant functions):

denote the corresponding representation by αg(X;L).

Now, given two choices of Lagrangian subgroup L1 and L2
23 there is a canon-

ical “Fourier transform” isomorphism αg(X;L1) → αg(X;L2), providing a glimmer

of hope that the vector space might be canonically defined after all! Unfortunately

our hope is destined to be dashed upon the rocks of reality: given three Lagrangian

subgroups L1, L2 and L3, the composition

αg(X;L1)→ αg(X;L2)→ αg(X;L3)→ αg(X;L1) (2.45)

is not necessarily the identity, but is instead multiplication by some scalar c(L1, L2, L3)

[65, Ch.4]. Therefore, absent a choice of Lagrangian subgroup, the canonically de-

fined object is really

Pαg(X) := P(αg(X;L)) for any Lagrangian subgroup L. (2.46)

Following [76], I will set this problem aside for the moment in favour of choosing a

decomposition H3(X;Z(G̃)) ∼= A ⊕ B where A,B are maximal isotropic (and so in

duality with each other via the pairing ω), and choosing splittings ΦA : A→ H(X,ω)

and ΦB : B → H(X,ω). The action of the elements ΦA(a) on αg(X;A) may be

simultaneously diagonalised by a basis {Zb(X)}b∈B on which the action of H(X,ω)

is determined by

ΦA(a)Zb(X) = ω(a, b)Zb(X) and ΦB(b)Zb′(X) = Zb+b′(X). (2.47)

23Satisfying a compatibility condition which depends on the splittings of Footnote 22.
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Then the partition vection of Theory X (with respect to all the choices we have been

forced to make) is given by

Xg(X) = (Zb(X))b∈B ∈ αg(X;A). (2.48)

Remark 2.2.4. Suppose you were to now choose another Lagrangian subgroup L ⊂

H3(X;Z(G̃)) (and splitting ΦL), not necessarily related to A or B. Then the space

of L-invariants αg(X;A)L is 1-dimensional, and so the projection of Xg(X) to this

subspace gives us an honest partition function Xg(X;L). For L = A this is given by

Xg(X;A) = Z0, while for L = B it is given by Xg(X;B) =
∑

b∈B Zb.

This suggests that if one could specify a choice of such a subgroup L(X)

in a consistent/functorial manner for all X, this might be enough to determine an

absolution of Theory X.

Remark 2.2.5. Following on from Remark 2.2.4, in Sections 2.3 and 2.4 I will ex-

plain how upon compactification to a lower dimensional theory we can find ways

to consistently choose maximal isotropic splittings A(X) ⊕ B(X) and Lagrangian

subgroups L(X). The problems of well-definedness which plagued our discussion of

Theory X are then in some sense resolved once we pass to compactifications – this

is one way in which we understand the theories obtained from Theory X better than

we understand Theory X itself.

Example 12 (Theories of class S.). The QFTs that are most relevant to this disser-

tation are the theories of class S of Gaiotto, Moore and Neitzke [32]. This class of
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theories is obtained by compactifying (a particular twist24 of) Theory Xg on a Rie-

mann surface C (potentially with decorated punctures, although I will not analyse the

punctured case). The resulting theory, denoted Sg[C], is still a relative QFT [31,76]:

in Section 2.4 I will discuss how to absolve Sg[C] using the observation of Remark

2.2.4.

2.3 Geometric Langlands from Theory X

Before discussing absolutions and dualities of Sg[C], it is instructive to con-

sider a more familiar duality: S-duality25 in 4d N = 4 supersymmetric Yang-Mills

theory, henceforth SYM or SYMG(τ) when I wish to specify the gauge group G

and complexified coupling constant τ (c.f. Section 2.1.4.1), and its relation to the

geometric Langlands program [45].

As outlined in [86] and discussed in [76], one way to construct N = 4 SYM

is by compactifying Theory X on an elliptic curve. Restricting to the case of a

simply-laced26 gauge group G, this construction works as follows:

Consider the theory Xg where g is a simply-laced simple Lie algebra, with

corresponding simply-connected group G̃ and adjoint group Gad. Choose a complex-

ified coupling constant τ ∈ H = {z ∈ C | Im(z) > 0}, and consider the elliptic curve

with modulus τ , Eτ = C
Z⊕τZ . Note that it is important to remember τ as an element

24For a discussion of topological twisting one can consult the book [42]; for references that discuss
the twistings relevant to theories of class S see [58,75].

25A.k.a. electric-magnetic duality [34], a.k.a. Montonen-Olive duality [57].
26Construction of SYM for non-simply laced gauge group involves “folding” of Lie algebras [8],

the details of which are unclear to me (particularly for theories with no description in terms of
classical fields).
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Figure 2.1: Lattice defining Eτ , with fundamental domain shaded and distinguished
cycles A and B(τ) labeled.

of the upper half-plane and not just as an element of the parameter space of elliptic

curves, H/SL2(Z), as this then specifies a consistent choice of basis (“A” and “B”

cycle) for the homology of Eτ ,

H1(Eτ ) = ZA⊕ ZB(τ), (2.49)

by taking the image of the straight-line paths 0 → 1 and 0 → τ in Eτ (see Figure

2.1). Denote the Poincaré duals to A and B(τ) in H1(Eτ ;Z(G̃)) by W and H(τ)

respectively, so that we have a splitting

H1(Eτ ;Z(G̃)) = Z(G̃)W ⊕ Z(G̃)H(τ) (2.50)

into electric (Wilson) and magnetic (’t Hooft) lines.

This data is sufficient to give a well-defined 4d relative QFT Xg[Eτ ]: sup-
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pose that M is a 4-manifold with H1(M ;Z(G̃)) = H3(M ;Z(G̃)) = 0.27 There is a

decomposition

H3(M × Eτ ;Z(G̃)) =
(
H2(M ;Z(G̃))⊗W

)
︸ ︷︷ ︸

electric fluxes through 2-cycles of M

⊕
(
H2(M ;Z(G̃))⊗H(τ)

)
︸ ︷︷ ︸

magnetic fluxes through 2-cycles of M

(2.51)

and so we can define a basis {Zν(τ ;M)}ν∈H2(M ;Z(G̃)) = {Zν⊗H(τ)(M×Eτ )}ν∈H2(M ;Z(G̃))

of αg(τ ;M) = αg(M×Eτ ;H2(M ;Z(G̃))⊗W ) that satisfies the relations (2.47). Then

the partition vector of the 4d theory Xg[Eτ ] is

Xg[Eτ ](M) = (Zν(τ ;M))ν∈H2(M ;Z(G̃)) ∈ αg(τ ;M). (2.52)

The component Zν(τ ;M) may be identified as the partition function of N = 4

SYM with gauge group Gad, restricted to Gad-bundles with characteristic class ν ∈

H2(M ;Z(G̃)) [76, 78, 85]. So, consider the absolutions of Xg[Eτ ] given by the max-

imal isotropic subgroups H2(M ;Z(G̃)) ⊗W and H2(M ;Z(G̃)) ⊗H(τ) – according

to Remark 2.2.4 these have partition functions given by

Z0(τ ;M) = SYMG̃(τ ;M) (2.53)∑
ν∈H2(M ;Z(G̃))

Zν(τ ;M) = SYMGad
(τ ;M) (2.54)

i.e. the absolutions are SYM with gauge group the simply-connected group (2.53)

and adjoint group (2.54) respectively.

Remark 2.3.1. Other choices of gauge group can be achieved by considering isotropic

subgroups formed by taking linear combinations eW + mH(τ). The situation for

type A Lie algebras is spelled out in [76, §4.2].
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Figure 2.2: SL2(Z) acts on the data that determines the SYM gauge group.
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Now, consider the action of the S-transformation in the mapping class group

of the torus, MCG(T 2) = SL2(Z) (Figure 2.2). S =

(
0 1
−1 0

)
acts simultaneously

on H and H1(T 2) via

τ 7→ −1

τ
and

W
H
7→ −H

W
. (2.55)

This action then induces a duality of QFTs that on the level of partition functions

is given by

SYMG̃(τ ;M) = Z0(τ ;M) =
∑
ν

Zν

(
−1

τ
;M

)
= SYMGad

(
−1

τ
;M

)
(2.56)

Since for simply-laced groups L(G̃) = Gad, this provides a geometric realisation of S-

duality for SYM; the physical duality of QFTs is the shadow of a geometric symmetry

only visible from the point of view of Theory X.

The relation between S-duality in SYMG and the geometric Langlands pro-

gram was analysed in [45] by further compactifying on a Riemann surface C to obtain

a 2d QFT, σG[C], which is a σ-model with target space the moduli of G-Higgs bun-

dles HiggsG(C) (see Section 3.3.4 for the definition). There is a continuous family of

topological twists for any such σ-model [45, §5], and S-duality thus predicts a family

of dualities between the resulting topological field theories, which I will now briefly

review.

27These assumptions are not necessary, but they simplify the following formulae.
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2.3.1 Dolbeault geometric Langlands

The first twist of σG[C] to consider gives rise to the B-model (Example 7)

on the moduli of Higgs bundles. The category of branes28 for the B-model is given

by the bounded derived category of coherent sheaves on the target space, and it is

known that S-duality in 4d SYM descends to T-duality29 of the target spaces for the

corresponding 2d σ-models [12, 36].

S-duality of SYM therefore predicts an equivalence of categories

Db
coh(HiggsG(C)) ' Db

coh(HiggsLG(C)), (2.57)

sometimes called the Dolbeault geometric Langlands conjecture. The mathematical

status of this conjecture is given by the following theorem, proven by Hausel and

Thaddeus in the case of G = SLn(C) [37] and by Donagi and Pantev for arbitrary

reductive groups [24]:

Theorem 2.3.1. Over a dense subset of the base of the Hitchin fibration there is an

equivalence of derived categories of coherent sheaves

Db
coh(HiggsG(C)) ' Db

coh(HiggsLG(C)), (2.58)

implemented by a fibrewise Fourier-Mukai transform.

Remark 2.3.2. The definitions of the moduli stack of Higgs bundles HiggsG(C) and

the Hitchin fibration may be found in Sections 3.3.1 and 3.3.3 respectively.

28A.k.a. boundary conditions.
29A.k.a. SYZ mirror symmetry (Example 8).
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Later in this dissertation, Theorem 5.5.1 will provide a further generalisation

of Theorem 2.3.1.

2.3.2 De Rham geometric Langlands

In [45] the authors are most interested not in arbitrary topological twists of

σG[C], but in twists which are induced by topological twists of 4d SYM. The twist

of σG[C] discussed in Section 2.3.1 is not induced by a twist of SYM – however it

admits a 2-parameter family of deformations which are, and which are the primary

focus of [45].

The parameters, call them ε1 and ε2, both deform HiggsG(C), but they do

so in nonsymmetric ways:

(1) The first deforms the complex structure of HiggsG(C), and via the non-abelian

Hodge theorem the resulting space may be identified as the space LocSysG(C) of

flatG-connections on C [70]. The resulting theory is the B-model on LocSysG(C).

(2) The second quantizes the symplectic structure, which via the identification O(HiggsG(C)) =

O(T ∗BunG(C))30 results in the “non-commutative” space of differential opera-

tors (or “D-modules”) on the moduli of G-bundles on C, BunG(C). The result-

ing theory (whose category of branes is D-mod(BunG(C))) may be identified

with the A-model on LocSysG(C).31

30On the level of stacks, HiggsG(C) = T ∗BunG(C); on the level of coarse moduli spaces there is
an open dense inclusion T ∗BunG(C) ⊂ HiggsG(C), whose complement has high codimension.

31The complex structure on LocSysG(C) is a priori different here to the complex structure for
the B-model. See [45, §5.3] for details.
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Moreover, under S-duality the two parameters (ε1, ε2) transform in the fundamental

representation of SL2(Z),32 and so S-duality between categories of branes becomes:

Conjecture (De Rham Geometric Langlands). There is an equivalence of derived

categories

Db
coh(LocSysLG(C)) ' D-mod(BunG(C)).

Remark 2.3.3. The above conjecture is often just called “The geometric Langlands

conjecture”, and is due to Laumon, Beilinson and Drinfeld [9, 10, 28, 50]. There are

known counterexamples to Conjecture 2.3.2 exactly as it is stated here; the state of

the art formulation (which requires the use of derived algebraic geometry) may be

found in the paper [3] of Arinkin and Gaitsgory.

Remark 2.3.4. The nomenclature “de Rham” (and “Dolbeault” in Section 2.3.1) is

by analogy with the terminology used by Simpson for the moduli spaces involved in

the non-abelian Hodge theorem [70] (which are the targets of the corresponding 2d

σ-models we are discussing). To complete the analogy, there is also a Betti geometric

Langlands due to Ben-Zvi and Nadler [11].

Remark 2.3.5. Strictly speaking, de Rham geometric Langlands is obtained by turn-

ing on a single deformation parameter at a time. Turning on both at once results in

a “quantum geometric Langlands correspondence” – e.g. see Teschner’s exploration

of the AGT correspondence [2, 77].

32This is because the parameters ε1 and ε2 come from turning on a Nekrasov Ω-background [62].
Mathematically this means that we begin to work Eτ ∼= S1×S1-equivariantly, resulting in a family
of theories over the graded H•S1×S1(∗) = C[ε1, ε2]-plane.
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2.3.3 Geometric Satake

There are two basic types of line operator in SYM: electric Wilson lines and

magnetic ’t Hooft lines. Both are derived from surface operators in Xg in which one

surface direction is “wrapped” around a cycle of Eτ (notation as in (2.49)):

(1) The Wilson lines correspond to surface operators in Xg in which one surface

direction is wrapped around the cycle A in Eτ .

(2) The ’t Hooft lines correspond to surface operators in Xg in which one surface

direction is wrapped around the cycle B(τ) in Eτ .

(3) There are also mixed line operators corresponding to surface operators with one

direction wrapped around a linear combination of the A and B(τ) cycles.

Not all of these line operators will be compatible with any given topological twisting

of σG[C]. In the two topological twists of 4d SYM described in Section 2.3.2 the

allowed line operators are:

(1) For the twist that leads to the B-model with target LocSysG(C), the only topo-

logical line operators are the Wilson lines. The category of Wilson lines is given

by the category of representations of G, Rep(G).

(2) For the twist that leads to A-model with target LocSysG(C), the only topological

line operators are the ’t Hooft lines. The category of ’t Hooft lines is given by

the category of (equivariant, perverse) sheaves on the affine Grassmannian of G,

PL+G(GrG).
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Since the operator S exchanges the cycles A and B(τ) on Eτ (see Figure 2.2 again).

S-duality exchanges the Wilson and ’t Hooft lines, which manifests as the following

mathematical theorem:

Theorem 2.3.2 (Geometric Satake Theorem, [33, 53, 56]). There is an equivalence

of tensor categories Rep(LG) ' PL+G(GrG).

2.4 Self-dual Geometric Langlands

Now, recall the relative theories of class S of Example 12. Taking a cue from

the requirement in the SYM case that we ought to remember τ ∈ H and not just

in H/SL2(Z), here I claim that we ought to also remember a pants decomposition

of C. The pants decomposition yields a canonical splitting of H1(C) into A and B

cycles [15], and so provides a well-defined partition vector for the relative class S

theory.

As was the case in Section 2.3, in order to absolve this relative theory the

extra data required is a choice of Lagrangian subgroup Γ ⊂ H1(C;Z(G̃)) (physically:

a collection of mutually local line operators [31,76]). Denote the absolved theory by

Sg[C; Γ].

Now, reduce further on an torus T 2 = S1 × S1 where the circles have the

same radius and T 2 is equipped with the product metric. The resulting 2d theory,

which I will denote by Σg[C; Γ], is now equipped with an MCG(T 2) = SL2(Z) of self -

dualities (c.f. Quasi-Corollary 2.1.2), as the S1-factors in the T 2 are indistinguishable

and (more importantly) the SL2(Z)-action leaves invariant the data Γ which was
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Figure 2.3: SL2(Z) preserves the data Γ that determines the theory of class S.

required to absolve the theory (Figure 2.3).

By analogy with the work of [45] relating SYMG(τ) and geometric Langlands,

we may think of the theories Σg[C; Γ] as encoding the structure of the following

self-dual geometric Langlands program.

2.4.1 Self-dual Dolbeault Langlands

There is a canonical torus fibration Mg(C; Γ) associated to Sg[C; Γ], called the

Seiberg-Witten integrable system of Sg[C; Γ] (in fact such a torus fibration exists for

any 4d N = 2 theory [27,68,69]) – in particular, this integrable system is the moduli
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space of vacua for the 2d theory Σg[C; Γ].33 In [76] (and [31] for type A1), Mg(C; Γ)

is predicted to be
Higgs

G̃
(C)

Γ
, where the action of H1(C;Z(G̃)) on HiggsG̃(C) is that

of tensoring by a principal Z(G̃)-bundle.

The self-duality induced by the S-transformation of MCG(T 2) then suggests

the following conjecture:

Conjecture 1 (Self-dual Dolbeault Langlands). The target space of the σ-model

Σg[C; Γ] is self SYZ mirror dual. Moreover, there is a Fourier-Mukai transform

implementing a self-equivalence of the derived category Db
coh (Mg(C; Γ)).

In Theorem 5.5.2 and Corollary 5.5.3 I will demonstrate that over a dense

open subset of the Hitchin base a “stacky” version of Conjecture 1 holds. Moreover,

the neutral component of the coarse moduli space studied in Section 5.5 is exactly

the self-dual abelian scheme
Higgs

G̃
(C)

Γ
predicted by [31,76].

2.4.2 Self-dual de Rham and quantum Langlands

Just as was the case in Section 2.3.2, the action of SL2(Z) on Σg[C; Γ] can

be viewed as a discrete shadow of a more refined homotopical S1 × S1 symmetry.

Working equivariantly with respect to this S1×S1-action (i.e. turning on a Nekrasov

Ω-background, c.f. Footnote 32) we again spread our theory out as a family over the

H•S1×S1(∗) ' C[ε1, ε2]-plane, yielding a natural 2-parameter deformation of self-dual

Dolbeault Langlands.

33In fact, up to a scaling factor in the metric, this is also the target space for the low energy
effective theory associated to the 3d QFT obtained by compactifying Sg[C; Γ] on a circle.
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The parameters ε1 and ε2 here have the same origin as the ones that ap-

peared in the deformations of Dolbeault Langlands, and so (ε1, ε2) transforms in the

fundamental representation of SL2(Z). I therefore propose the following:

Conjecture 2 (Self-dual de Rham and quantum Langlands). There exists a two pa-

rameter family of theories Σ
(ε1,ε2)
g [C; Γ] that quantises self-dual Dolbeault Langlands,

in the sense that Σ
(0,0)
g [C; Γ] = Σg[C; Γ]. Moreover, S-duality induces an equivalence

between the categories of branes B
(ε1,ε2)
g [C; Γ] in both the self-dual de Rham (1-

parameter, i.e. B
(ε,0)
g [C; Γ] ' B

(0,ε)
g [C; Γ]) and self-dual quantum (full 2-parameter)

Langlands theories.

Remark 2.4.1. In particular, a satisfactory resolution to Conjecture 2 would require

explicitly identifying both the category of branes B
(ε1,ε2)
g [C; Γ] and the corresponding

action of S-duality.

Remark 2.4.2. Note that since for Σg[C; Γ] there do not appear to be any preferred

cycles on T 2 (as opposed to the cycles determined by τ for SYM), it is possible that

the quantised theories may be completely determined up to equivalence by how many

deformation parameters are turned on.

Regardless of this, I do not expect that the derivation of the ε1 and ε2 defor-

mations will be symmetric. By analogy with usual geometric Langlands I suspect

that one will manifest as a complex structure deformation and one will be a quanti-

sation of the symplectic structure, and that this self-duality will appear as a highly

non-trivial identification between a priori different categories.
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2.4.3 Self-dual geometric Satake

Finally, recall that the line operators in SYMG(τ) all arose from surface oper-

ators in Xg with one direction wrapped around a cycle of the torus Eτ . Since these 6d

surface operators are constant on C, upon reducing to Sg[C; Γ] we obtain a collection

of 4d surface operators, labelled by points of C (together with some extra discrete

data).

One interesting problem would be to explicitly identify the 2-category of sur-

face operators Sg[C; Γ] in the 4d theory Sg[C; Γ]. This, however, is an extremely

hard problem. To reduce to a related but potentially more tractable problem, con-

sider wrapping one direction of a surface operator from Sg[C; Γ] on a cycle in T 2 to

obtain a line operator in Σg[C; Γ] – I will call such line operators special.34

In a 2-dimensional theory the collection of line operators form a monoidal

category which acts on the category of branes by modifying boundary conditions.

Denote the tensor category of special line operators by Lg[C; Γ]. Since objects of

Lg[C; Γ] are labelled by 1-cycles on T 2 I expect that SL2(Z) will act by non-trivial

autoequivalences on Lg[C; Γ], in a manner compatible with the SL2(Z)-action on

Bg[C; Γ].

Conjecture 3 (Self-dual geometric Satake conjecture). S-duality is a non-trivial

autoequivalence of Lg[C; Γ], intertwining the action of Lg[C; Γ] on Bg[C; Γ].

34Observe that these operators are the analogs for Σg[C; Γ] of those line operators in σG[C]
induced by Wilson and ’t Hooft lines in SYM.
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Figure 2.4: QFTs obtained from Theory X. Black lines are compactifications, blue
lines are absolutions, grey lines are S-dualities.

Remark 2.4.3. As in Remark 2.4.1, a satisfactory resolution to Conjecture 3 would

require explicitly identifying the tensor category Lg[C; Γ] and the autoequivalence

determined by S-duality.
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Chapter 3

Cartier duality and Higgs bundles

In this chapter I will review the mathematical background prerequisite for

the original work of Chapters 4 and 5. There are two broad themes to this material:

Cartier duality of commutative group stacks (Sections 3.1 and 3.2), and Higgs bundles

and the Hitchin fibration (Sections 3.3 and 3.4).

In Section 3.1 I recall the definition of a commutative group stack and give

examples. I discuss the concept of an action of a commutative group stack, and give

a procedure for constructing examples of such actions.

In Section 3.2 I describe a generalisation of duality for abelian varieties known

as shifted Cartier duality. I discuss how Cartier duality acts on various classes of

commutative group stacks which are important for this dissertation. As an extended

example, in Section 3.2.1 I consider the Cartier dual for the moduli stack of torus

bundles – the first mathematic instance of Langlands duality in this thesis.

In Section 3.3 I introduce the moduli stack of Higgs bundles and explore how

many geometric structures – chiefly the Hitchin fibration and the Hitchin section

– arise naturally out of representation theory via a mapping stack construction. I

recall the parametrisation of the Hitchin base in terms of cameral covers, and also

briefly discuss the coarse moduli space of semistable Higgs bundles.
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Finally, in Section 3.4 I explain how over a dense subset of the Hitchin base the

Hitchin fibration may be studied via an abelianisation procedure involving cameral

covers. In contrast to abelianisation of Higgs bundles via spectral covers [38, 40]

the abelian bundles we consider are not line bundles but are instead bundles for the

group scheme of regular centralisers [25, 63, 64] – roughly, bundles with structure

group a maximal torus and with nice (abelian) degenerations at the branch points

of the cameral cover.

3.1 Commutative group stacks

Categorical background, e.g. material on symmetric monoidal categories, may

be found in [46,55]. Background on stacks and descent theory may be found in [51,79].

As always, k denotes an algebraically closed field.

Definition 3.1.1. A Picard groupoid is a symmetric monoidal category in which ev-

ery object is invertible (with respect to the monoidal structure) and every morphism

is invertible (in the usual sense).

Remark 3.1.1. Given a Picard groupoid (C,⊗) the set1 of equivalence classes of

objects π0C is a commutative group in a canonical way.

The canonical example of a Picard groupoid, which in particular explains the

nomenclature, is as follows:

1I am implicitly assuming that C is essentially small. From now on I will not mention such
set-theoretic caveats, as they are not essential to the content of this thesis.
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Example 13. Let X be a complex manifold, and consider the category whose objects

are holomorphic line bundles on X and whose morphisms are given by isomorphisms

of holomorphic line bundles. Tensor product of line bundles endows this category

with the structure of a Picard groupoid, and the commutative group obtained by

taking π0 is exactly the Picard group of holomorphic line bundles on X.

Definition 3.1.2. Let X be a space endowed with a Grothendieck topology. A

commutative group stack on X is a sheaf of Picard groupoids on X.

Remark 3.1.2. I have left the meaning of “space” in Definition 3.1.2 deliberately

ambiguous. In this thesis I will consider the following two cases:

(1) X is an algebraic stack over a base scheme S, with the fppf topology (c.f. [1, XVIII

1.4] and [14,16]).

(2) X is a complex variety with the analytic topology (c.f. [24, 26]).

Example 14. Given two commutative group stacks A and B over X there is a

commutative group stack Hom(A,B) whose U -points are given by the category

HomU(A×X U,B×X U) [14, Definition 2.4 and Example 2.8].

The following three examples are central to the spaces I will study in Chapter

5:

Example 15. An abelian variety A is a group scheme which is a complete variety

over k. Given a scheme X, an abelian scheme over X is a smooth group scheme over

X whose fibres are abelian varieties – this provides a class of examples of commutative

group stacks.
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Note that when k = C abelian varieties correspond analytically to projective

compact complex tori – this is the situation of most relevance to this thesis. More

information on abelian varieties and schemes may be found in [60,65].

Example 16. More generally, any sheaf of abelian groups K over X may be regarded

as a commutative group stack with discrete objects (and trivial automorphisms).

Example 17. Given a sheaf of abelian groups K over X, the classifying stack

BK whose U -points are BK(U) = (groupoid of K|U -torsors on U) is a commuta-

tive group stack. BK may be presented as the stack quotient [∗/K] where ∗ denotes

the trivial sheaf of abelian groups on X, c.f. (1.3).

Remark 3.1.3. In light of the presentation BK = [∗/K] we may interpret the clas-

sifying stack of K over X to be the quotient of X by the trivial action of K. This

perspective is especially useful when X is defined to be the parameter space of equiv-

alence classes of objects which admit non-trivial automorphisms: then, even though

the group of automorphisms K acts trivially on the space X, the quotient stack

[X/K] remembers the fact that the objects parametrised by X admit non-identity

automorphisms.

Remark 3.1.4. There is a convenient reformulation of the theory of commutative

group stacks in terms of complexes of sheaves, due to Deligne [1, XVIII, 1.4]. Let

Ch[−1,0](X) denote the 2-category given by:

• Objects are complexes of abelian sheaves on X concentrated in degrees -1 and

0, A• = [A−1 → A0], such that A−1 is injective.2

2The injectivity assumption implies that the quotient prestack [A0/A−1] is already a stack.
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• Morphisms are chain maps of complexes.

• 2-morphisms are homotopies of chain maps.

Given a complex of abelian sheaves of the form A−1 → A0 the quotient stack [A0/A−1]

is a commutative group stack on X. This construction gives an equivalence between

Ch[−1,0](X) and the 2-category of commutative group stacks on X [1, XVIII, 1.4.17].

This may be interpreted as a (length 1) form of the Dold-Kan correspondence between

simplicial objects and chain complexes.

3.1.1 Gerbes and “stacky” actions

Following the terminology of [25, 26], consider the following notion of a prin-

cipal bundle with structure “group” BK:

Definition 3.1.3. 1. Let P be a Picard groupoid. A category C is a gerbe over

P if

(a) P acts on C as a tensor category, and

(b) for any object C ∈ C the functor

P C

P P · C
(3.1)

is an equivalence of categories.

2. Let A be a commutative group stack over X. A stack E over X is a gerbe over

A if
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(a) for every open set3 U of X, E(U) is a gerbe over A(U), compatible with

pullbacks [25, §3.6], and

(b) there exists a covering U → X such that E(U) is non-empty (i.e. local

sections exist).

If A = BK for K a sheaf of abelian groups on X I will refer to E as a K-gerbe.

Remark 3.1.5. The definition of a K-gerbe I have given in Definition 3.1.3 is more

accurately called a K-banded gerbe. Since I am interested only in gerbes for sheaves

of abelian groups, this abuse of terminology is both quite minor and extremely

common in the literature (e.g. [24–26,41]). For the more general definition of a gerbe

see [23, II.Appendix].

The actions by commutative group stacks that I will make use of in this thesis

are mostly of the following, quite concrete form:

Proposition 3.1.1. Given the data of

(1) two groups T and G,

(2) a homomorphism ζ : T → Z(G),

(3) a T -module V ,

(4) a G/ζ(T )-module M , and

(5) a T -invariant linear map l : V →MG,

3Or étale/fppf map, depending on which Grothendieck topology we are using.
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there exists a functor

F (ζ, l) : V/T ×M/G→M/G (3.2)

defined on objects by l + idM and on morphisms by (t, g) 7→ ζ(t)g. This descends to

an action morphism on the quotient stacks [V/T ]× [M/G]→ [M/G].

Furthermore, if T and G are equipped with extra geometric structure (e.g.

group schemes, Lie groups) and X is a geometric space of the same type, there is an

induced action morphism on the mapping stacks

Map (X, [V/T ])×Map (X, [M/G])→Map (X, [M/G]) . (3.3)

Proof. Provided the functor F (ζ, l) is well-defined the induced action on stack quo-

tients follow automatically from the functor of points perspective, and the induced

action on mapping stacks follows from this together with the universal property of

the product. Well-definedness of F (ζ, l) follows from an easy calculation.

Example 18. Suppose V = M = 0 and T is a central subgroup of G. Then the

induced action (3.3) is given by twisting a G-bundle by a T -bundle:

BunT (X)×BunG(X)→ BunG(X)

(L, P ) 7→ L⊗ P (3.4)

If L and P are defined by Čech 1-cocycles λij and gij respectively, then L ⊗ P is

defined by the 1-cocycle λij · gij.
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Example 19. In Example 18 suppose that T = C× acts via diagonal matrices on

G = GLn(C). Then the induced action

Pic(X)×BunGLn(X)→ BunGLn(X)

(L,E) 7→ L⊗ E (3.5)

is literally given by taking the tensor product of a line bundle L with a rank n vector

bundle E.

The following action will be important in Chapter 5.

Example 20. Let G̃ be a connected and simply-connected simple group, T be an

algebraic torus, and τ : Z(G̃) → T be an embedding. Let G̃τ := G̃×T
Z(G̃)

, identify

T = Z(G̃τ ), and define ζ : T → G̃τ ×Gm by ζ(t) = ([1G̃, t], 1Gm).

Then letting V be the trivial T -module (and so necessarily “l” is the zero

map) and M be the G̃τ ×Gm-module gτ = Lie(G̃τ ) (via the adjoint action and scalar

multiplication), Proposition 3.1.1 produces a functor

F (ζ, 0) : BT × gτ/G̃τ ×Gm → gτ/G̃τ ×Gm. (3.6)

Passing to mapping stacks yields an action

ζ∗ : BunT (X)×Map
(
X,
[
gτ/G̃τ ×Gm

])
→ Map

(
X,
[
gτ/G̃τ ×Gm

])
(3.7)

and so by restricting to maps classifying a fixed line bundle L (see Section 3.3.1) we

obtain an action map

ζ∗ : BunT (X)×HiggsG̃τ (X;L)→ HiggsG̃τ (X;L). (3.8)
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3.2 Shifted Cartier duality

Given an abelian variety A the dual abelian variety AD is the moduli space

of multiplicative line bundles on A [65]. Recalling that BGm is the classifying stack

for Gm-torsors, i.e. algebraic line bundles, the “multiplicative” condition may be

translated into the statement that

AD := Hom(A,BGm) (3.9)

This example may be generalised as follows:

Definition 3.2.1. Let A be a commutative group stack over X. The shifted Cartier

dual or 1-Cartier dual of A is the commutative group stack AD := Hom(A, BGm).

Remark 3.2.1. When working over C in the analytic topology, the definition/notation

AD = Hom(A, BO×) is sometimes used [24,26].

I adopt the following definition after [16, Def. 1.2.1]:

Definition 3.2.2. A commutative group stack A is reflexive if the canonical mor-

phism A→ (AD)D is an isomorphism.

Example 21 (Dualising sheaves and classifying stacks [14, Cor. 3.5-6]). Let K be a

sheaf of abelian groups on X. Then:

1. There is a canonical isomorphism (BK)D ' K∨ = Hom(K,Gm).

2. There is a canonical homomorphism B(K∨) → KD, which is an isomorphism

if the sheaf Ext1(K,Gm) = 0.
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In particular, if K is locally finitely generated (i.e. locally a finite direct sum of Zs

and a finite group) then K is a reflexive commutative group stack.

Definition 3.2.3. Given a commutative group stack A over X there are two asso-

ciated sheaves of abelian groups [14, Def. 2.9]:

• the coarse moduli sheaf π0(A), and

• the automorphism group of a neutral section π1(A).

A sequence of commutative group stacks A → B → C is exact if both sequences of

sheaves of abelian groups

π0(A)→ π0(B)→ π0(C) (3.10)

π1(A)→ π1(B)→ π1(C) (3.11)

are exact.

The following proposition is immediate:

Proposition 3.2.1. Shifted Cartier duality is an exact, contravariant, involutive

autoequivalence on the 2-category of reflexive commutative group stacks.

One might fear that the hypotheses of Proposition 3.2.1 are too restrictive

to apply to any interesting examples. The following proposition, together with re-

flexivity of abelian varieties [65, Cor. 10.2] and Example 21 proves that we need not

worry:
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Proposition 3.2.2. Suppose that a commutative group stack A over X is locally

isomorphic to a product of reflexive commutative group stacks. Then A is a reflexive

commutative group stack.

Proof. The canonical map A → (AD)D is an isomorphism if and only if it is an

isomorphism locally on X – but this is exactly our hypothesis (c.f. [26, Prop. A.6]

and [19, Appendix A]).

3.2.1 Dualising BunT (X)

Let T be an algebraic torus, and let X be a smooth, projective, connected

curve over k. Recall that the moduli stack of T -bundles on X is the commutative

group stack BunT (X) = Map(X,BT ). Denote by BunT (X) the corresponding

coarse moduli space, and by Bun0
T (X) and Bun0

T (X) the corresponding neutral

components.

Proposition 3.2.3. Let T be an complex algebraic torus with Langlands dual torus

LT (see Theorem A.4.2). Then the moduli stacks and coarse moduli spaces of T -

bundles have the following Cartier duals:

BunT (X)D = BunLT (X) (3.12)

Bun0
T (X)D = BunLT (X) (3.13)

Bun0
T (X)D = Bun0

LT (X) (3.14)

Remark 3.2.2. Proposition 3.2.3 is well-known, and follows from autoduality of the

Jacobian (as I will outline below). I include the proof here as, although it is not
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difficult, I am unaware of anywhere in the literature where it has been written out

in full.

The hard part in the proof of Proposition 3.2.3 – which I am outsourcing! –

is the following formulation of geometric class field theory (due to Justin Campbell):

Theorem 3.2.4 ( [16, Thm 1.2.2]). If A is a reflexive commutative group stack then

restriction along the Abel-Jacobi map

Hom(Pic(X),A)→Map(X,A) (3.15)

is an isomorphism.

Proof of Proposition 3.2.3. Theorem 3.2.4 and Proposition 3.2.1 give the following

chain of natural isomorphisms:

BunT (X) = Map(X,BT )

= Hom(Pic(X), BT )

= Hom((BT )D,Pic(X)D)

= Hom(X•(T ),Pic(X)D). (3.16)

Given a lattice L, define L∧ = Hom(L,Z). The natural map L∧⊗Z A→ Hom(L,A)

is an isomorphism, so using that X•(T )∧ = X•(T ) = X•(LT ) gives

BunT (X) = Hom(X•(T ),Pic(X)D)

= X•(T )∧ ⊗Z Pic(X)D

= X•(T )⊗Z Pic(X)D

= X•(LT )⊗Z Pic(X)D. (3.17)
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Dualising this expression gives

BunT (X)D = Hom(BunT (X), BGm)

= Hom(X•(LT )⊗Z Pic(X)D, BGm)

= Hom(X•(LT ),Hom(Pic(X)D, BGm))

= Hom(X•(LT ),Pic(X))

= Hom(Pic(X)D, B(LT ))

= Hom(Pic(X), B(LT ))

= Map(X,B(LT ))

= BunLT (X). (3.18)

Now,

0→ Bun0
T (X)→ BunT (X)→ X•(T )→ 0 (3.19)

dualises to

0→ B(LT )→ BunLT (X)→ Bun0
T (X)D → 0 (3.20)

i.e. Bun0
T (X)D = BunLT (X), and

0→ Bun0
T (X)→ BunT (X)→ X•(T )→ 0 (3.21)

dualises to

0→ B(LT )→ Bun0
LT (X)→ Bun0

T (X)D → 0 (3.22)

i.e. Bun0
T (X)D = Bun0

LT (X).
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3.3 Higgs bundles and cameral covers

For the rest of this chapter I consider a fixed Riemann surface (or complex

smooth projective algebraic curve) C, often assumed to have genus > 1. Denote by

KC → C the canonical bundle of C, and letG be a complex reductive algebraic group.

The following (standard) notion of a Higgs bundle is attributable to Hitchin [38,40]:

Definition 3.3.1. A KC-valued G-Higgs bundle on C is a pair (E,ϕ), where

• E → C is a holomorphic G-bundle, and

• ϕ ∈ H0(C; ad(E)⊗KC), i.e. ϕ is a global section of the bundle ad(E)⊗KC .

Here, ad(E) is the vector bundle associated to E via the adjoint representation of G

on g = Lie(G). This is sometimes also denoted ad(E) = gE.

Although this is the most common definition of a Higgs bundle in the liter-

ature, it turns out that the analysis of this and other related moduli spaces can be

profitably approached through a more abstract notion of a Higgs bundle. As per [25],

we may think of the above definition of a Higgs bundle as specifying complete spectral

data – a decomposition into eigenspaces and the corresponding eigenvalues – for a

Higgs field; the following more abstract definition corresponds to specifying only a

decomposition into eigenspaces for a Higgs field:

Definition 3.3.2. Recall that the locus of regular elements in g is the locus of

elements whose centralisers have minimal possible dimension,

greg := {x ∈ g | dim(ZG(x)) = rank(G) = r}. (3.23)
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A regular G-Higgs bundle on C is a pair (E, cC), where

(1) E is a principal G-bundle over C, and

(2) cC is a vector subbundle of gE of rank r such that [cC , cC ] = 0, and such that

locally cC is the sheaf of centralisers of a section of E ×G greg.

Example 22. To understand the idea that a Higgs bundle specifies some com-

plete/partial spectral data, consider the situation of a GLnC-Higgs bundle on a one

point space ∗. A regular Higgs bundle is then given by an n-dimensional complex

vector space V , and a commutative subalgebra c∗ ⊂ End(V ) which is n-dimensional

as a complex vector space and admits a single regular generator.

Any basis of c∗ as a C-vector space defines a maximally commuting set of linear

operators on V , and hence a decomposition of V into one-dimensional subspaces

V =
⊕n

i=1 Li which are simultaneous eigenlines for the n operators; the Li are

independent of the choice of basis of operators. A regular Higgs bundle with values4

(c.f. Definition 3.3.1) in this situation then picks out a particular element of c∗ to be

the Higgs field, and this is the same data as specifying the eigenvalue of the Higgs

field on each of the eigenlines Li.

Remark 3.3.1. In [25] it is proved that there is a smooth irreducible complex scheme

G/N , a partial compactification of the quotient varient G/N which parametrises

4More accurately we are specifying here the data of a regularised Higgs bundle with values in
the trivial bundle: see [25] for this notion. The distinction is in whether the subbundle cC is given
explicitly as data; if the Higgs field ϕ is regular, however, there is no choice to speak of, as cC is
forced to be the centraliser of ϕ.
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Cartan subalgebras of g, which parametrises the regular centralisers in g. Thus, one

could equivalently define a G-Higgs bundle to be a pair (E, σ) where

(1) E is a principal G-bundle over C, and

(2) σ is a G-equivariant map σ : E → G/N .

A morphism of G-Higgs bundles Φ : (E, σ) → (F, τ) is a morphism Φ of

principal G-bundles such that τ ◦ Φ = σ,

E

G/N

F

σ

Φ

τ

(3.24)

With this notion of morphism we obtain a category of Higgs bundles, and these fit

together to define the stack of abstract Higgs bundles on C, the S-points of which

are the category of G-Higgs bundles on C × S.

3.3.1 General analysis of Higgs bundles with values

As my primary object of study will be not abstract Higgs bundles but Higgs

bundles with values in KC , I must also describe how the collection of all KC-valued

Higgs bundles may be given the structure of a stack. For this, consider more generally

the notion of an L-valued G-Higgs bundle on X,5 where X is some complex scheme.

5The definition of which is identical to Definition 3.3.1 with every occurance of “KC” replaced
by “L”.
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Consider the stack quotient [g/G], where G acts on its Lie algebra g via the adjoint

action. A map from X to [g/G] is given by

(1) a principal G-bundle E on X, together with

(2) a section of the adjoint bundle gE.

Comparing this to Definition 3.3.1 of a Higgs bundle with values, we see that such a

map is equivalent to an OX-valued G-Higgs bundle on X.

We may extend this description to Higgs bundles with values in other line

bundles as follows: consider the multiplicative group Gm, i.e. the group scheme

whose R valued points are given by R× = Spec(R[t, t−1]). There is an action of Gm

on g which commutes with the adjoint action of G, given by λ · x = λx for λ ∈ Gm

and x ∈ g. We may therefore consider the stack quotient [g/G×Gm]. A map from

X to this quotient is given by

(1) a principal G-bundle E on X, and

(2) a line bundle (i.e. principal Gm-bundle) L on X, together with

(3) a section of the vector bundle gE ⊗ L→ X.

Hence the stack Map(X, [g/G×Gm]) is exactly the moduli stack of G-Higgs bundles

on X with values in some line bundle. Composition of such a map with the natural

projection map [g/G × Gm] → BGm classifies the line bundle of values for the

corresponding Higgs bundle.

71



Definition 3.3.3. Denote by HiggsG(X,L) the moduli stack of G-Higgs bundles on

X with values in L, i.e. the substack of Map(X, [g/G × Gm]) whose projection to

Map(X,BGm) = BunGm(X) classifies the line bundle L.

3.3.2 The Chevalley morphism and the Kostant section

By using the description of the moduli of Higgs bundles as a mapping stack

into [g/G×Gm] we are able to identify certain geometric features which are induced

from the representation theory of G, are so are insensitive to the geometry of the

space X and the line bundle L. In particular, we are interested in a canonical

projection that exists for each moduli space, and a section of this projection whose

only geometric dependence is on a choice of square root of of L. Before describing

these features, let us review the relevant representation theoretic facts.

Fix the data of a maximal torus and a Borel subgroup H ↪→ B ⊂ G. This

determines a set of simple roots S in the root system R of the Lie algebra g. Denote

the root space of g corresponding to α ∈ R by gα, and choose a nonzero vector

xα ∈ gα for each simple α ∈ S. For each simple root α there is then a unique element

x−α ∈ g−α such that [xα, x−α] = α∨, the coroot corresponding to α (determined by

the normalisation condition α(α∨) = 2). Background and a proof of the following

result can be found in [20,48]:

Theorem 3.3.1. The elements x+ =
∑

α∈S xα and x− =
∑

α∈S x−α are regular

nilpotent elements of g.

Consider the adjoint action of G on g, and the induced action of the Weyl

group W := WG(H) = NG(H)/H on the Lie algebra of the maximal torus h, where
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NG(H) denotes the normaliser in G of the torus H. These induce actions of G and W

on the algebras C[g] and C[h] respectively, and we define c := Spec(C[h]W ) = h/W .

We then have the following theorem of Kostant [49]:

Theorem 3.3.2. 1. The restriction map C[g] → C[h] induces an isomorphism

on the subalgebras of invariants C[g]G
∼→ C[h]W . Moreover, C[h]W is a poly-

nomial algebra generated by homogeneous elements P1, . . . , Pr of degrees m1 +

1, . . . ,mr + 1.

2. The Chevalley or characteristic polynomial map χ : g → c, induced by the

above isomorphism, is Gm-equivariant with respect to the weight one action of

Gm on g, and the action on c defined by

λ · (P1, . . . , Pr) = (λm1+1P1, . . . , λ
mr+1Pr).

3. The restriction of χ to the regular locus greg ⊂ g is smooth, and each fibre is a

single G-orbit.

4. Let gx+ ⊂ g denote the Lie algebra centraliser of x+ (i.e. the kernel of ad(x+)

acting on g). Then the affine subspace x− + gx+ is contained in the regular

locus greg, and the Chevalley map restricts to an isomorphism x− + gx+ ∼= c.

Remark 3.3.2. The inverse to the Chevalley map on x− + gx+ is called the Kostant

section, and is often denoted by κ:

greg g

c

χ
κ

73



Observe that the subspace x−+ gx+ is not stable under the weight one action

of Gm, hence the Kostant section has no chance of being Gm-equivariant. We fix this

as in [63]: recall that, if one writes a root α ∈ R as α =
∑
niαi, where the sum is

over the set of simple roots and the coefficients are entirely contained in either Z≥0

or Z≤0, then the height of α is defined to be

ht(α) :=
∑

ni. (3.25)

Define an action ρ : Gm → Aut(g) by taking the trivial action on h and acting on

the root space gα as

ρ(λ) · gα = λht(α)gα, (3.26)

and then further define the action ρ+ : Gm → Aut(g) by

ρ+(λ) = λρ(λ). (3.27)

ρ+ acts by scaling x+ and so preserves gx+ , and

ρ+(x−) = λρ(λ)x− = λλ−1x− = x−; (3.28)

hence the Gm-action ρ+ preserves the Kostant section x− + gx+ . Furthermore, we

have (see [63]):

Proposition 3.3.3. The map κ is Gm-equivariant with respect to the action of Gm

on c given in the previous theorem, and the action ρ+ on the Kostant section defined

above.
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3.3.3 The Hitchin fibration

I will now describe the canonical geometric data induced by the representation

theory of G.

3.3.3.1 The Hitchin base

For L → X a line bundle, corresponding to the Gm-torsor (L − 0) → X,

consider the associated c-bundle on X

cL := c×Gm (L− 0). (3.29)

Concretely, one can write cL = (L⊗ h)/W .

Definition 3.3.4. Hitchg(X,L) is the functor whose S-points are given by

Hom(S,Hitchg(X,L)) = HomX(S ×X, cL). (3.30)

Now, since by definition c = h/W = g//G, the Chevalley morphism factors

through the stack [g/G]. Since it is Gm-equivariant, it further descends to give a

map

χ : [g/G×Gm]→ [c/Gm] (3.31)

which by abuse of notation I will also denote by χ. For X a complex scheme, consider

the mapping stack Map(X, [c/Gm]). χ further induces a map

Map(X, [g/G×Gm])→Map(X, [c/Gm]), (3.32)

which on the subfunctors determined by the projection to Map(X,BGm) give maps

hL : HiggsG(X,L)→ Hitchg(X,L). (3.33)
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Definition 3.3.5. The maps hL are called Hitchin maps, and we define the Hitchin

base to be the C-points Hitchg(X,L) = HomX(X, tot(cL)) = H0(X; (L⊗ h)/W ).

The Hitchin base Hitchg(X,L) is an affine space, and it represents the functor

Hitchg(X,L). Moreover, it parametrises the L-valued cameral covers of X, which

we define after [24] as follows:

Definition 3.3.6. A cameral cover of X is a scheme X̃ together with a map p :

X̃ → X and a W -action along the fibres of p satisfying:

1. p is finite and flat over X.

2. As an OX-module with W -action p∗OX̃ is locally isomorphic to OX ⊗ C[W ].

3. Locally with respect to the étale (or analytic) topology on X, X̃ is a pullback

of the W -cover h→ h/W .

An L-valued cameral cover of X is a cameral cover p : X̃ → X together with a

W -equivariant embedding σ̃ : X̃ → tot(L⊗ h).

Remark 3.3.3. The embedding σ̃ realises the cameral cover X̃ as a pullback

X̃ tot(L⊗ h)

X tot (cL)

σ̃

p
y

σ

(3.34)

for a unique σ ∈ Hitchg(X,L).
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Remark 3.3.4. If p : X̃ → X satisfies only conditions (1) and (2), we say that it

is a W -cover of X. We say that condition (3) defines a “cameral” cover because it

locally implies that we can label the sheets (and ramification pattern) of p using the

Weyl chambers (and root hyperplanes) of g.

3.3.3.2 The Hitchin sections

Our next goal is to use the Kostant section κ : c→ g to obtain sections of the

various Hitchin maps hL defined above. The most straightforward way to do so would

be to show that the Kostant section itself descends to the stack quotient to provide

a section [c/Gm] → [g/G × Gm]: using the diagonal morphism Gm → Gm × Gm we

have a map

[(x− + gx+)/ρ+(Gm)]→ [g/ρ(Gm)×Gm] (3.35)

where the second factor is the action by homotheties. Here however we encounter a

complication: the action ρ does not necessarily factor through Gm → H → G as a

cocharacter, and thus obstructs the easy existence of a section.6

In fact in ρ does not factor through a cocharacter then the desired section

does not always exist. Assume, however, that ρ does not factor through a cocharacter

and that the line bundle L admits a square root L1/2. In this situation a section does

exist, and we construct it as follows. Consider the homomorphism φ : SL2C → G

6E.g. ρ factors through a cocharacter for G = SL3(C), but not for G = SL2(C).
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determined by the principal7 sl2C (c.f. Theorem 3.3.1)

(x+, h, x−) where h = [x+, x−]. (3.36)

We can then define an action on g using the diagonal Gm ⊂ SL2C by taking

ρ̃(λ) · x = Adφ(λ)(x), and ρ̃+(λ) · x = λ2 Adφ(λ)(x). (3.37)

The action Adφ(λ) is the square of the action ρ defined previously, and the shift by

λ2 ensures that ρ̃+ preserves the Kostant section x− + gx+ . The Chevalley map is

equivariant with respect to this action of Gm on g, and the square of the action

previously defined for c.

Denote by G[2]
m → Gm the squaring morphism of the multiplicative group,

and let G[2]
m act on c by the square of the usual action (i.e. through the squaring

homomorphism to Gm acting via the usual action). Then we have the sequence of

maps

[c/G[2]
m ] [(x− + gx+)/ρ+(G[2]

m )] [g/ρ(G[2]
m )×G[2]

m ] [g/ρ̃(Gm)×G[2]
m ]

[g/G×G[2]
m ]

κ
∼

(3.38)

7An sl2-triple is called principal if its elements are regular.
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We therefore have the following induced diagram on mapping stacks:

Map(X, [g/G×G[2]
m ]) Map(X, [g/G×Gm])

Map(X, [c/G[2]
m ]) Map(X, [c/Gm])

κ∗ (3.39)

Now, consider an element in the Hitchin base Hitchg(X,L) where L admits a square

root L1/2. Recall that an S-point in the Hitchin base is a map in HomX(S ×X, cL).

Locally, we can find square-roots of this section, i.e. maps to cL1/2 , and to these

we may apply the Kostant section κ∗ and pushfoward again via the squaring map.

Pushing forward along the squaring map eliminates the possible {±1} discrepancies

among our choices of lifts, and so these local maps patch together to give us a well-

defined S-point of Higgsg(X,L). I.e., if L admits a square-root, we may use this to

construct a Hitchin section

HiggsG(X,L)

Hitchg(X,L)

hLsL (3.40)

Remark 3.3.5. If the action of ρ does factor through a cocharacter (as for SL3(C)),

the section (3.40) exists for any line bundle L.

3.3.4 Coarse moduli spaces of semistable Higgs bundles

Although most of my analysis will be done on the moduli stack of Higgs

bundles, I will also be able to draw some conclusions about the moduli space of

semistable Higgs bundles. The stability conditions arise naturally both from the

point of view of physics [13] and nonabelian Hodge theory [70], and while the moduli

79



space contains strictly less information than the moduli stack of Higgs bundles it has

a much richer geometric structure.

Recall that a Higgs bundle (E, φ) on a Riemann surface C is semistable if for

any parabolic subgroup P ⊂ G and P -Higgs subbundle (F, ψ) ⊂ (E,ϕ), the degree

of F is less than or equal to zero (where degree refers to the degree of the vector

bundle pF associated to F by the adjoint action of P ). If the inequality is strict, we

say that (E,ϕ) is stable.

Definition 3.3.7. Denote by HiggsG(C,KC) the moduli space of semistable KC-

valued G-Higgs bundles on C.

Remark 3.3.6. There is a natural open substack of semistable KC-valued G-Higgs

bundles on C, HiggsssG (C,KC) ⊂ HiggsG(C,KC) which maps to this coarse moduli

space, a fact which I will exploit to transfer results proved using the moduli stack

onto the moduli space.

It is known that the moduli spaces HiggsG(C,KC) can be equipped with

a natural hyperkähler structure [38, 45]; indeed a standard method of constructing

these moduli spaces involves taking the hyperkähler quotient – a technique which

allows one to take the quotient of a group action on a hyperkähler space in such a way

as to induce a hyperkähler structure on the quotient [39] – of all solutions to Hitchin’s

equations by the action of gauge transformations. One of the results of Chapter 5

will be an SYZ mirror symmetry statement for certain quotients of HiggsG(C,KC)

which themselves inherit a hyperkähler structure (c.f. Remark 2.1.9).
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3.4 The group scheme of regular centralisers

The Hitchin fibration described in section 3.3.3 is a powerful tool that we may

use in order to study the geometry of the moduli of Higgs bundles. Following the

ideas of Donagi, Gaitsgory and Ngô [25, 64], I will now review a uniform approach

to understanding the fibres of the Hitchin map via the group scheme of regular

centralisers.

3.4.1 The schemes of centralisers

Consider the group scheme of centralisers I → g defined by

I = {(x, g) ∈ g×G | Adg(x) = x} ⊂ g×G. (3.41)

This map is very poorly behaved: observe for instance that it interpolates between

the fibre of a regular semisimple element, which is an algebraic torus of dimension

r = rank(G), and the fibre over 0, which is a copy of G. When restricted to the

regular locus, however, Ireg becomes a smooth commutative group scheme of relative

dimension r, whose generic fibre (over a semisimple element) is an algebraic torus.

Example 23. The only rank one complex simple Lie algebra is g = sl2C, for which

G might equal SL2C or PGL2C. In both situations the centraliser of a regular

semisimple element (i.e. nonzero diagonalisable matrix) is a rank one algebraic torus,

conjugate to the standard diagonal torus

H =

{(
λ 0
0 λ−1

)}
λ∈C×

⊂ G. (3.42)
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The centraliser of any regular nilpotent element is related by conjugation to the cen-

traliser of the standard regular nilpotent element

(
0 1
0 0

)
, which one can calculate

to be C for G = PGL2C, and Cq C = C× (Z/2Z) for G = SL2C.

Definition 3.4.1. Recalling that the Kostant section κ is valued in the regular locus

of g, we define the group scheme of regular centralisers J by

J = κ∗Ireg → c. (3.43)

Since Ireg is a smooth commutative group scheme, so is J . Consider the

pullback by the Chevalley map χ∗J → g: by construction this is equipped with an

isomorphism over the regular locus (χ∗J)|greg
∼→ I|greg , and this extends uniquely

to a homomorphism of group schemes χ∗J → I since J is smooth, I is affine, and

χ∗J \ χ∗J |greg is closed of high codimension [64].

Remark 3.4.1. Note that although the comparison map (χ∗J)|greg
∼→ I|greg extends

over all of g, it is very far from being an isomorphism – indeed, over 0 ∈ g it is the

zero map.

3.4.2 Schemes of centralisers and automorphisms of Higgs bundles

I will now recall how to relate the group schemes I and J to the geometry of

the moduli stack of Higgs bundles by understanding them as inducing automorphisms

of Higgs bundles. I is equipped with a natural action of G×Gm, given by

(h, t) · (x, g) = (tAdh(x), hgh−1) (3.44)

which covers the G×Gm-action on g. So, I descends to a group scheme

[I/G×Gm]→ [g/G×Gm], (3.45)
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which by abuse of notation I will also denote by I ≡ [I/G×Gm]. Observe that the

fibre over a closed point x is

Ix = {(x, g) | Adg(x) = x} = {x} × CG(x) (3.46)

which are the automorphisms of the Higgs bundle with values in the trivial line

bundle

G× ∗

∗

, φ(∗) = x ∈ g. (3.47)

In general, given a map hE,φ : X × S → [g/G × Gm] classifying a family of Higgs

bundles (E, φ) on X, we have that h∗E,φ(I) = Aut(E, φ), essentially by definition [63].

Similarly, J descends to a group scheme

[J/Gm]→ [c/Gm], (3.48)

and the morphism χ∗J → I descends to a map

χ∗([J/Gm]) [I/G×Gm]

[g/G×Gm]

(3.49)

which is an isomorphism over the locus [greg/G×Gm]. The following is due to [63]:

Proposition 3.4.1. [greg/G] → c is a J-gerbe, and is in fact the trivial J-gerbe

trivialised by the Kostant section.

Proof. The smooth surjective morphism over c

G× c→ greg given by (g, a) 7→ Adg(κ(a)) (3.50)
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has fibres given by J , and is G-equivariant where the G-action on the left hand side

is given by left multiplication on G. Taking the quotient by the G-action then gives

the desired isomorphism

[c/J ]
∼→ [greg/G]. (3.51)

I will now consider a Picard stack on the affine Hitchin base Hitchg(X,L),

defined as follows [63]: recall that a point σ : S → Hitchg(X,L) is equivalent to a

map

hσ : X × S → [c/Gm] (3.52)

which lies over the map X → BGm that classifies the line bundle L → X. By

pulling back the smooth commutative group scheme J → [c/Gm] along hσ, we obtain

a smooth family of commutative group schemes Jσ = h∗σJ → X × S.

Consider the category of Jσ-torsors on X×S, TorsJσ(X×S). The assignment

σ 7→ TorsJσ(X × S) defines a Picard stack on Hitchg(X,L) which we denote TorsJ .

Proposition 3.4.2. There is an action of TorsJσ(X×S) on the fibre HiggsG(X,L)σ :=

hL(S)−1(σ) of the (S-points of the) Hitchin map.

Proof. This arises from the following construction: given a sheaf G → B of groupoids

(in sets) on B, a sheaf of abelian groups A → B, and a homomorphism A →

End(idG ), one can twist any global section (i.e. object of G (B)) by an A-torsor. In

our situation, G = HiggsG(X,L)σ, A = Jσ, and the homomorphism is induced by

the map χ∗J → I.
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Remark 3.4.2. Since I can be described as the sheaf of automorphisms on the stack

[g/G×Gm], Proposition 3.4.2 can also be viewed as a relative-over-g version of

Proposition 3.1.1.

Through this action we may interpret the moduli of Higgs bundles HiggsG(X,L)

as a kind of partial compactification of TorsJ as follows. Write HiggsG(X,L)reg for

the subfunctor classifying those maps hE,φ : X×S → [g⊗L/G] which factor through

the open substack [greg ⊗ L/G]. Assume that L admits a square root, so that the

Hitchin fibration admits a Kostant section. Then since by construction the Kostant

section takes values in the regular locus, we have the following [64, Prop 4.3.3]:

Proposition 3.4.3. HiggsG(X,L)reg is open in HiggsG(X,L) with non-empty fibres

over Hitchg(X,L). Moreover, TorsJ acts on this locus simply-transitively.

3.4.3 The Hitchin fibration away from the discriminant locus

Consider the branch locus of the generically étale Galois W -cover h → c,

which we denote by Dg since it may be identified with the divisor given by vanishing

of the discriminant

∏
α∈R

dα, (3.53)

where the product is over the roots of G.8 I adopt the follow definiton after [63]:

Definition 3.4.2. Call σ ∈ Hitchg(X,L) very regular if the image of the associated

map hσ : X → cL is transverse to the divisor DL = Dg ×Gm L.

8Since α : H → Gm, dα : h→ Ga.
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Remark 3.4.3. Geometrically, Definition 3.4.2 means that the associated cameral

cover pσ : X̃σ → X has simple Galois ramification, i.e. all of the ramification points

of pa have ramification index one [24]; moreover in this situation X̃ is smooth [64].

If L is very ample, then the very regular locus is open and dense in Hitchg(X,L)

[63]. Denote the complement of this locus by ∆g (or just ∆ if g is clear from context),

so that the very regular locus is Hitchg(X,L) \∆.

Proposition 3.4.4. [63, Prop 4.3] For σ ∈ Hitchg(X,L)\∆, the groupoid TorsJσ(X×

S) acts simply-transitively on HiggsG(X,L)σ; i.e. HiggsG(X,L)σ is a Jσ-gerbe. More-

over, if the Hitchin section exists, it trivialises this gerbe.

Proof. This follows from [63, Prop 4.2], which says that for σ very regular, HiggsG(X,L)σ ⊂

HiggsG(X,L)reg.

Let (X,L) = (C,KC), and recall the coarse moduli space of semistable KC-

valued Higgs bundles Higgsg(C,KC). The above groupoid level analysis, together

with the fact that Higgs bundles with very regular characteristics are stable, yields

the following corollary upon passage to equivalence classes:

Corollary 3.4.5. The Hitchin fibre HiggsG(C,KC)σ lying over a very regular char-

acteristic σ ∈ Hitchg(C,KC) is a torsor for H1(C; Jσ), the group of equivalence

classes of Jσ-torsors on C.
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Chapter 4

Ramification of cameral covers

In this chapter I discuss the conditions under which a cameral cover will be

ramified. The method I use do this is analogous to how one detects ramification of

spectral covers in the case of GLn(C)-Higgs bundles valued in the canonical bundle

of a curve: there, since the spectral cover is locally cut out by the characteristic

polynomial of a matrix of holomorphic 1-forms, ramification is determined by the

discriminant of the characteristic polynomial (which detects repeated roots). The

key observation to make is that branch points can be identified as the zeros of a

section of some power of the canonical bundle.

Since I am working with principal Higgs bundles, and hence with cameral

covers rather than spectral covers, it is not possible to take the characteristic poly-

nomial of a Higgs field. Instead one locally applies the Chevalley map to the Higgs

field, and detects ramification using the collection of root hyperplanes in c = h/W .

In order to deal with this more general situation, I will first prove a more general

statement about when the sections of an bundle associated to a Gm space V intersect

with a divisor induced by a conical divisor D ⊂ V . The application to cameral covers

is then straightforward and immediate.
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4.1 Twisting of Gm-spaces and conical divisors

Let k be an algebraically closed field, and let V be an affine k-scheme of finite

type equipped with a Gm-action; i.e.

V = Spec(A) for A =
⊕
n∈Z

An a graded ring. (4.1)

I wish to understand what it means to “twist” V by another scheme with a Gm-

action.

4.1.1 Calculations over Spec(k)

To begin with, let us work over the point Spec(k), and let W = Spec(B) be

a scheme with the same properties as V . To construct the twist described approxi-

mately by

W ×Gm V “=”(W × V )/(w, v) ∼ (λ−1w, λv) for λ ∈ Gm (4.2)

we proceed as follows. Let B̄ be the graded k-algebra whose underlying algebra is B

and with grading given by B̄n = B−n. Then define

W ×Gm V := Spec
(
(B̄ ⊗k A)Gm

)
, (4.3)

i.e. the GIT quotient W ×Gm V = (W̄ × V )//Gm, where W̄ signifies that we have

taken the inverse to the usual Gm-action on W .

Remark 4.1.1. It is reasonable to ask whether or not this GIT quotient in fact defines

a geometric quotient, as was suggested by our approximate description of the twist

(4.2). This will not always be the case: for instance, if V = AN
k and W = AM

k then
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it is a short exercise to show that the described GIT quotient will yield ANM
k , which

for N,M > 2 cannot be a geometric quotient for dimension reasons.

I am interested in a situation where this does happen to give a geometric

quotient, however: namely, when W is the total space of a line bundle on a smooth

(affine) k-variety with its zero section removed. Much of the analysis that follows

does not rely on whether or not the GIT quotient is a geometric quotient, and we

will use the notation W ×Gm V to refer to the GIT quotient without worrying too

much about whether or not the quotient is geometric.

Unwrapping the definition of W ×Gm V , we find that

(B̄ ⊗k A)Gm = (B̄ ⊗k A)0 =
⊕
n

(B̄)−n ⊗ An =
⊕
n

Bn ⊗ An =: C. (4.4)

Note that C has a natural grading given by

Cn = Bn ⊗ An, (4.5)

i.e. there is a residual action of Gm on W ×Gm V , which we can interpret as acting on

either the V or the W factor (with the action being “balanced out” by the quotient,

i.e. independent of whether one chooses to act on V or on W and hence well-defined).

Example 24. Suppose that W = Gm = Spec(k[t, t−1]). Inverting the Gm-action on

W places t in degree -1 and t−1 in degree +1, so that

Gm ×Gm V = Spec

(⊕
n

k · tn ⊗k An

)
= Spec

(⊕
n

tnAn

)
∼= Spec(A)

since
⊕

n t
nAn ∼= A naturally as graded k-algebras. I.e. there is a natural isomor-

phism

Gm ×Gm V ∼= V
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as k-schemes equipped with a Gm-action. Since this is supposed to be an associated

bundle construction, this is as we would expect.

Now, suppose that we are given f ∈ Ad, d > 0, assumed to be neither a unit

nor nilpotent. The vanishing locus of f defines a codimension 1 subscheme of V ,

D = Spec(A/(f)) ⊂ Spec(A) = V (4.6)

which, since f is homogeneous, is also equipped with an Gm-action. Consider the

graded subring of B defined by1

B+
(d) :=

⊕
n≥0

Bdn, (B+
(d))i = Bdi. (4.7)

Then the element f induces a graded k-algebra homomorphism

B+
(d)

⊕
n∈ZBn ⊗ An

bdn bdn ⊗ fn

ϕ

(4.8)

where bdn ∈ Bdn. Note that this is a well-defined homomorphism since no strictly

positive degree element of B+
(d) can be a unit – indeed this was the reason for the

truncation, and we will soon see in the motivating example of twisting a Gm-space

by a line bundle that such a construction appears organically.

Thus, we have an Gm-equivariant map

W ×Gm V → Spec(B+
(d)). (4.9)

I will now examine in more detail the case where W is the total space of a line bundle

with its zero section removed.

1This is essentially the dth Veronese ring of B but with a twisted grading and truncated to
non-negative degrees.
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Example 25. In the simplest situation, let W = Gm = Spec(k[t, t−1]). Then

k[t, t−1]+(d) = k[td], and the map ϕ is

k[td]
⊕

tnAn A

td tdf f

∼

i.e. this corresponds to the map f itself, which we may think of a Gm-equivariant

map V → A1
k (where the Gm action on A1

k has weight d).

4.1.2 Twisting construction in families

I now want to perform a version of the above construction in families, with

the goal of answering the question: If f is a homogeneous function on a space V

equipped with Gm-action, what sort of function does it induce on the twist of V by a

line bundle?

So, suppose that X = Spec(R) is a smooth affine k-variety and L is a locally

free R-module of rank 1 with dual L∨ = HomR(L,R). The corresponding geometric

line bundle is given by

L = Spec
X

(SymR(L∨))→ X. (4.10)

As before, V = Spec(A) is an affine k-scheme with a Gm-action, however for ease of

exposition I will additionally assume that A is non-negatively graded. We have

L = Spec
X

(SymR(L∨)) X × V = V

X

(4.11)
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and so we form the scheme over X

VL := (L \ 0)×Gm
X V . (4.12)

Because of our assumption that A is non-negatively graded, the process of taking

Gm-invariants kills off any negatively graded functions on L \ 0, i.e. functions with a

pole along the zero section. Hence, we may equivalently work with

VL = L×Gm
X V . (4.13)

Remark 4.1.2. Note that although the GIT quotients above yield the same space,

(L\0)×GmV is a geometric quotient of (L\0)×XV , while L×Gm
X V is not a geometric

quotient of L ×X V . It is a distinction probably worth remembering: the former

description is geometrically accurate, while the latter is algebraically convenient in

our situation.

Now, we explicitly have that

VL = L×Gm
X V = Spec

X

(
(SymR(L∨)⊗R (R⊗k A))Gm

)
= Spec

X

(
(SymR(L∨)⊗k A)Gm

)
= Spec

X

(
(SymR(L∨)⊗k A)0

)
= Spec

X

(⊕
n≥0

SymR(L∨)n ⊗k An

)
. (4.14)

Given f ∈ Ad as before, let B := A/(f) and

D = Spec(B) ⊂ Spec(A) = V. (4.15)
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Since f is homogeneous, B is (non-negatively) graded, and so we may form

DL = Spec
X

(⊕
n≥0

SymR(L∨)n ⊗k Bn

)
. (4.16)

Since L is assumed locally free, the homogeneous components of the symmetric

algebra are flat R-algebras, and so the quotient map A � B induces an R-linear

quotient map ⊕
n≥0

SymR(L∨)n ⊗k An �
⊕
n≥0

SymR(L∨)n ⊗k Bn, (4.17)

and so a closed embedding over X

DL VL

X

(4.18)

Now, L is a locally free (graded) R-module of rank 1, hence so is L⊗d, and we

have (L⊗d)∨ = (L∨)⊗d. The following isomorphism may be checked locally, where it

becomes Example 25:

SymR((L∨)⊗d) ∼= SymR(L∨)+
(d). (4.19)

Relative Spec of this ring is exactly the dth line bundle tensor power L⊗d, and so the

graded R-linear map induced by f

SymR(L∨)+
(d)

⊕
n≥0 SymR(L∨)n ⊗k An

pdn pdn ⊗ fn

ϕ

(4.20)

induces a Gm-equivariant map over X

VL L⊗d

X

Φ

(4.21)
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Proposition 4.1.1. Φ−1(0) = DL

Proof. The zero section is defined by the map

z : SymR(L∨)+
(d) → R

which is projection onto the 0-graded piece, i.e. projection onto Gm-invariants. Thus

the fibre over the zero section is defined by the pushout of R-algebras

SymR(L∨)+
(d)

⊕
n≥0 SymR(L∨)n ⊗k An

R R
⊗

SymR(L∨)+
(d)

(⊕
n

SymR(L∨)n ⊗k An

)z

ϕ

p

(4.22)

Due to our assumption that f is not nilpotent ϕ is injective, and so we may identify

this pushout with⊕
n

SymR(L∨)n ⊗k (A/(f))n =
⊕
n

SymR(L∨)n ⊗k Bn; (4.23)

taking relative Spec over X then completes the proof.

Remark 4.1.3. By working in affine patches, the same analysis applies more generally

to any smooth k-variety X (not necessarily affine).

We now have the following commutative diagram:

DL 0

VL L⊗d

X

Φ (4.24)
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Now, suppose that σ : X → VL is a section. Then

σ−1(DL) = σ−1(Φ−1(0)) = (Φ ◦ σ)−1(0) (4.25)

and Φ ◦ σ : X → L⊗d is a section of a line bundle. Therefore Φ ◦ σ is nowhere

vanishing if and only if it trivialises L⊗d, and so we conclude that:

Theorem 4.1.2. Let V , f be as above, and suppose that L→ X is a line bundle on

a smooth k-variety whose dth power is non-trivial. Then any section of the associated

V -bundle VL → X has nonempty intersection with the divisor DL ⊂ VL.

4.2 Application to cameral covers

We may immediately apply Theorem 4.1.2 to get the following result:

Theorem 4.2.1. Suppose that g is a simple Lie algebra and choose a Cartan sub-

algebra h ⊂ g. Let W and R denote the corresponding Weyl group and root system,

respectively. Let X be a smooth complex algebraic variety, and let L be a complex

line bundle on X such that L⊗|R| is non-trivial. Then every L-valued g cameral cover

of X is ramified.

Proof. This is Theorem 4.1.2 applied to the situation where V = c = g//G = h/W

is the adjoint quotient, and

f =
∏
α∈R

dα. (4.26)

The dα are all linear functions on h, so f is homogenous of degree |R|, and since the

Weyl group permutes the roots α this function descends to the quotient c. Finally,
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as noted in section 3.4.3, the vanishing locus of f is exactly the branch locus for the

universal cameral cover h→ c.

Remark 4.2.1. In fact the above theorem can be sharpened slightly: it holds ex-

actly for simply-laced root systems, however in the non simply-laced case we have a

factorisation into a product over the short roots Rs and long roots Rl,∏
α∈R

dα =

( ∏
αs∈Rs

dαs

)( ∏
αl∈Rl

dαl

)
(4.27)

where each factor is individually Weyl group invariant. Therefore we only need to

require that L⊗|Rl| and L⊗|Rs| are both nontrivial, and we may conclude that we have

ramification points in our cameral cover corresponding to both long and short roots.
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Chapter 5

Duality for quotients of the moduli of Higgs

bundles

Having dealt with the neccessary background and preliminary results in Chap-

ters 3 and 4, in this chapter I present the main results of this thesis: a generalisation

of the Langlands duality and mirror symmetry results of [24,37] (Theorems 5.5.1 and

5.5.2), and the existence of self-dual moduli stacks conjecturally related to theories

of class S (Corollary 5.5.3 and Conjecture 1).

I begin in Section 5.1 by comparing the Hitchin fibres for isogenous simple

groups, in particular observing that isogenous simple groups have isogenous Hitchin

fibres (Theorem 5.1.3). This leads to a particularly nice comparison theorem relating

the Hitchin Pryms of Langlands dual groups (Theorem 5.1.4).

In Section 5.2 I introduce the main object of interest in this thesis, the moduli

space M•
G̃

(C) of “G̃-Higgs bundles of arbitrary degree, modulo Z(G̃)” (this quasi-

definition will be elucidated over the course of the chapter, for instance in Exam-

ple 29). I will also introduce as an intermediary object of study a moduli stack

Higgs•
G̃

(C) which has a clearer modular interpretation, but which behaves poorly

under Cartier duality. The end of this section (5.2.2) is dedicated to studying the

geometry of Higgs•
G̃

(C) and M•
G̃

(C) locally over the Hitchin base.
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In Section 5.3 I make use of the sheaves of regular centralisers to identify the

Hitchin Prym for Gad as a quotient of the Hitchin Prym for G̃τ .

In Section 5.4 I study the behaviour of Higgs•
G̃

(C) under Cartier duality. Al-

though there is not a clear modular description of this dual in terms of the Langlands

dual group, this analysis is required for the main theorems.

Section 5.5 contains the main results of this thesis: (1) the Langlands duality

interpretation of M•
G̃

(C)D (Theorem 5.5.1), (2) the identification of the Cartier dual

to certain finite group quotients of M•
G̃

(C), and (3) the existence of self-dual moduli

stacks conjecturally related to Σg[C; Γ] (Corollary 5.5.3).

Finally, in Section 5.6 I conclude the thesis with a collection of examples

illustrating the duality results of Section 5.5. I discuss how these results relate

to theories of class S (Examples 30 and 31), compare with the results of [24, 37]

(Examples 32 and 33), and discuss Theorem 5.5.1 for Higgs bundles of type Bn and

Cn (Example 34).

5.1 Comparison of Hitchin fibres for isogenous simple groups

In what follows I will make heavy use of comparisons between Hitchin Pryms

(Definition 5.1.1) for different reductive groups belonging to the same isogeny class.

Let G be a reductive algebraic group and denote by JGσ → C the pullback of the

group scheme of regular centralisers for G by the map σ : C → [c/Gm] classifying a

point in the Hitchin base; i.e. JGσ = σ−1JG, where JG is the group scheme of regular

centralisers for G.
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Restrict to the situation where G a simple group. The following claim may

be checked quickly via a computation on stalks:

Lemma 5.1.1. Let G → G/Z denote an isogeny of simple groups, so that Z is a

discrete subgroup of the centre Z(G). There is a short exact sequence of commutative

group schemes over [c/Gm],

0→ Zc → JG → JG/Z → 0. (5.1)

Since pullback of sheaves is exact there is an analogous exact sequence over

any other [c/Gm]-scheme. In particular, corresponding to a point σ in the Hitchin

base we have a short exact sequence of sheaves over C

0→ ZC → JGσ → JG/Zσ → 0. (5.2)

Suppose now that G̃ is a connected and simply-connected simple group. Tak-

ing the long exact sequence of the sequence (5.2) yields

0 Z Γ(C; J G̃σ ) Γ(C; J
G̃/Z
σ )

H1(C;Z) H1(C; J G̃σ ) H1(C; J
G̃/Z
σ )

H2(C;Z)

(5.3)

Definition 5.1.1. For simply connected G̃, the Hitchin Prym for G̃ associated to σ

is

H1(C; J G̃σ ) (∼= HiggsG̃(C)σ). (5.4)
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For a general reductive groupG define the Hitchin Prym to be the identity component

of H1(C; JGσ ).

Remark 5.1.1. Note that for a non simply-connected semisimple group G̃/Z the

Hitchin Prym is given by

ker[H1(C; J G̃/Zσ )→ H2(C;Z)] (∼= Higgs0
G̃/Z

(C)σ). (5.5)

Remark 5.1.2. In order to identify the cohomology group H1(C; JGσ ) with the Hitchin

fibre HiggsG(C)σ I have implicitly trivialised the gerbe of Higgs bundles [25] using

a Hitchin section (3.40).

The Hitchin Pryms are known to be abelian varieties [24], and a rephrasing

of Corollary 3.4.5 yields that the fibres of the Hitchin fibration for G̃/Z which lie

over very regular characteristics are torsors for the Higgs0
G̃/Z

(C)σ.

Rewrite the exact sequence associated to (5.2) as

0 Z Γ(C; J G̃σ ) Γ(C; J
G̃/Z
σ )

H1(C;Z) HiggsG̃(C)σ Higgs0
G̃/Z

(C)σ 0.

(5.6)

Lemma 5.1.2. Suppose that C is a smooth, proper, irreducible curve over C, that

the line bundle classified by σ has nontrivial |R|th power, and that σ is a very regular

characteristic. Then the map on global sections Γ(C; J G̃σ )→ Γ(C; J
G̃/Z
σ ) is surjective.

Remark 5.1.3. In what follows I will make use of an alternative and more explicit

description of the sheaf of regular centralisers, which is due to [25]. Denote by
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πσ : C̃σ → C the cameral cover of C classified by σ : C → [c/Gm], and consider

the sheaf on C̃σ of holomorphic maps to a choice of maximal torus H ⊂ G, H(OC̃σ
).

Push this sheaf down to C and take W ≡ WG(H)-invariants, calling the result H C̃σ
,

H C̃σ
(U) =

(
(πσ)∗H(OC̃σ

)W
)

(U) = HomW (Ũσ, H), (5.7)

i.e. W -equivariant maps from the induced cameral cover Ũσ to the maximal torus H.

Denote by Dα
σ the fixed point scheme of the root reflection sα ∈ W acting on C̃σ,

and define a subsheaf HC̃σ
⊂ H C̃σ

by

HC̃σ
(U) = {t ∈ H C̃σ

(U) | (α ◦ t)|Dασ = +1 for each α ∈ R}. (5.8)

Then according to [25, Theorem 11.6] there is an isomorphism between JGσ and TC̃σ .

I will use the description given by the latter in the proof of Lemma 5.1.2.

Proof. First observe that since C is proper so is C̃σ, and since σ is assumed to be

very regular C̃σ is non-singular. Thus, since H is affine, any map from C̃σ to H will

be locally constant; i.e.

H C̃σ
(C) = HomW (C̃σ, H) ⊂ HomW (π0(C̃σ), H). (5.9)

Write C̃σ in terms of components as

C̃σ =

|π0(C̃σ)|∐
i=1

C̃(i). (5.10)

Since the W -action is transitive on sheets, by choosing a component C̃(i) ∈ π0(C̃σ)

we can identify

H C̃σ
(C) = HomW (C̃σ, H) = HomStabW (C̃(i))(C̃

(i), H) ⊂ HStabW (C̃(i)), (5.11)
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where StabW (C̃(i)) ⊂ W is the stabiliser of C̃(i) under the induced action of W on

π0(C̃σ). If the cover C̃σ were unramified this inclusion would be an equality; in

order to take into account possible ramification, let S(x) ⊂ StabW (C̃(i)) denote the

stabiliser of the closed point x ∈ C̃(i). Then

H C̃σ
(C) = HomStabW (C̃(i))(C̃

(i), H) =
⋂

x∈C̃(i)

HS(x) ⊂ HStabW (C̃(i)). (5.12)

The stabiliser of any point in C̃σ may be identified with the stabiliser of its image

(under any local trivialisation where we identify C̃σ → C as pulled back from h→ c),

and all such stabilisers are Weyl subgroups of W .1

From the assumption that the line bundle classified by σ has nontrivial |R|th

power, we know from Theorem 4.2.1 and the subsequent remark that there exists a

root2 α such that sα ∈ StabW (C̃(i)) and Dα
σ ∩ C̃(i) 6= ∅. Thus there is some finite

subset of roots R′ ⊂ R – which must contain both a long and a short root, in the

non-simply laced case, and which is closed under the action of StabW (C̃(i)) on R –

such that

H C̃σ
(C) =

⋂
x∈C̃(i)

HS(x) = H〈sα|α∈R
′〉 =

⋂
α∈R′

T sα . (5.13)

Now, according to Theorem B.1.2,

Hsα,+1 := {tZ ∈ (H/Z)sα |α(tZ) = +1}

= {tZ ∈ (H/Z)sα | sα(tz) = tz for all tz ∈ tZ}. (5.14)

1Specifically, for x̃ ∈ C̃σ they are the subgroups generated by the root reflections corresponding
to root hyperplanes containing the image of x̃ under C̃σ → h.

2In the simply-laced case, and in the non-simply laced case that there exists both a long and a
short root.
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The top condition, α(tZ) = +1, is exactly the extra condition that distinguishes

(H/Z)C̃σ from (H/Z)C̃σ
∼= J

G̃/Z
σ ; the bottom condition cuts out exactly the subset

of (H/Z)sα whose preimages under H → H/Z are also fixed points of sα. Hence we

have that

HC̃σ
(C) =

⋂
α∈R′

Hsα,+1 →
⋂
α∈R′

(H/Z)sα,+1 = (H/Z)C̃σ(C) (5.15)

is a surjection, which is exactly the statement we wished to prove.

Example 26. How could this have failed? Suppose that C is an irreducible complex

projective variety that admits a connected étale double cover: all double covers are

sl2C cameral covers, so we are implicitly assuming that our double cover is cameral

and valued in some line bundle which has trivial square. As observed in the proof of

Lemma 5.1.2, global sections of J in this case are given by

JSL2(C) = TWSL2
∼= Z/2Z and JPGL2(C) = TWPGL2

= Z/2Z, (5.16)

where the Weyl group invariants in this case were calculated in Example 38. Thus,

in this example JPGL2(C) 6∼= JSL2(C)/Z(SL2C).

From Lemma 5.1.2 we obtain a comparison theorem relating any Hitchin

Prym to the Hitchin Prym for the connected simply-connected group:

Theorem 5.1.3. Let G̃ be a simple, connected, simply-connected group and G̃ →

G̃/Z an isogeny. Then for σ ∈ Hitchg(C,KC) \ ∆g there is an isomorphism of

abelian varieties

Higgs0
G̃/Z

(C)σ =
HiggsG̃(C)σ
H1(C,Z)

. (5.17)
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Proof. By Lemma 5.1.2, H1(C;Z) → HiggsG̃(C)σ is injective, thus the long exact

sequence of (5.2) involving the Hitchin Pryms breaks up into two short exact se-

quences; the isomorphism of the theorem is the content of the bottom sequence.

Remark 5.1.4. To really get value out of Theorem 5.1.3 one should assume that the

genus of C is at least 2, so that the very regular locus is open and dense in the

Hitchin base.

Theorem 5.1.4. Let G̃ be a simple, connected, simply-connected group, and let L̃G

denote the simply-connected cover of its Langlands dual group. Then

(HiggsL̃G(C)σ)D =
HiggsG̃(C)σ

H1(C;Z(L̃G))∨
. (5.18)

Proof. By [24, Theorem A] we have that HiggsG̃(C)σ = (Higgs0
LGad

(C)σ)D. Dual-

ising the isogeny of abelian varieties from Theorem 5.1.3

0→ H1(C;Z(L̃G))→ HiggsL̃G(C)σ → Higgs0
LGad

(C)σ → 0 (5.19)

we obtain the dual isogeny

0→ H1(C;Z(L̃G))∨ → (Higgs0
LGad

(C)σ)D → (HiggsL̃G(C)σ)D → 0. (5.20)

5.2 Construction and local structure of Higgs•
G̃

(C) and M•
G̃

(C)

In their proof of Langlands duality for SL/PGL-Hitchin systems [37], Hausel

and Thaddeus make use not just of the moduli of SLn-Higgs bundles but of the
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moduli space of “degree d” SLn-Higgs bundles. This does not literally make sense as

written (as an SLn-bundle has trivial determinant and is thus degree zero) – what

is really meant by this is “GLn-Higgs bundles with determinant a fixed line bundle

of degree d and trace-free Higgs field”.

To generalise the results of [24, 37], and to prove the existence of a self-dual

space, I will now construct a generalisation of this space for G̃-Higgs bundles, where

G̃ may be any connected simply-connected semisimple group (c.f. [7] for an analogous

construction for the moduli stack of bundles).

5.2.1 Construction of Higgs•
G̃

(C)

Let µN denote the group of N th roots of unity with generator ω := e
2πi
N .

Observe that a homomorphism τ : (µN)s → (C×)s is determined by an s× s-matrix

A = (Aji) ∈ Mats×s(Z/NZ) by setting

(µN)s (C×)s

(ω~a) (ωA~a)

τ

(5.21)

where ~a ∈ (Z/NZ)s and (ω~a) = (ωa1 , . . . , ωas) ∈ (µN)s.

Definition 5.2.1. Call an homomorphism τ : (µN)s → (C×)s a special embedding if

it can be represented by a matrix in the image of the map SLs(Z)→ SLs(Z/NZ).

More generally, let K be a finite abelian group equipped with an isomorphism

k : K ' µN1 × · · · × µNs , and let T is an complex algebraic torus of rank s. I

will call a homomorphism τ : K → T a special embedding if the map it induces

τ ◦ k−1 : (µlcm(N1,...,Ns))
s → (C×)s is a special embedding for some isomorphism

T ' (C×)s.
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Remark 5.2.1. If τ is a special embedding with respect to some isomorphism T '

(C×)s, it is in fact an isomorphism with respect to all such isomorphisms.

Remark 5.2.2. It is not difficult to show that τ : (µN)s → (C×)s is an embedding if

and only if any matrix A which represents it is in GLs(Z/NZ). In particular, special

embeddings are embeddings.

Now, let G̃ be a connected simply-connected simple group with centre Z(G̃),

fix a trivialisation k : Z(G̃) → µN1 × · · · × µNs , and let τ : Z(G̃) → T be a special

embedding of Z(G̃) into a complex algebraic torus (whose rank s is necessarily equal

to the number of cyclic factors in Z(G̃), by the definition of a special embedding).3

Definition 5.2.2. Define a group G̃τ by the equation

G̃τ :=
G̃× T
Z(G̃)

, (5.22)

where Z(G̃) ⊂ G̃ is the inclusion homomorphism.

Proposition 5.2.1. The group G̃τ is independent of the choice of special embedding,

up to non-canonical isomorphism.

Proof. Suppose that τ1, τ2 are two special embeddings, and consider them as maps

from (µN)s → (C×)s whereN is the lowest common multiple of the orders of the cyclic

factors of Z(G̃). Let A1, A2 be representative matrices for the special embeddings.

We wish to find an automorphism β : (C×)s → (C×)s such that β ◦ τ1 = τ2.

3This value of s is moreover the minimal possible rank for a torus admitting an embedding of
Z(G̃).
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As observed above, β will be represented by some matrix B ∈ Mats×s(Z).

For β ◦ τ1 = τ2 to hold, we need that for all ~a ∈ (Z/NZ)s, β ◦ τ1(ω~a) = (ωBA1~a) =

(ωA2~a) = τ2(ω~a), which occurs if and only if BA1 ≡ A2 modulo N . But by the

definition of a special embedding the matrices representing τ1 and τ2 may be lifted

to matrices in SLs(Z), which I will also denote by A1 and A2, and so it suffices to

take B = A2A
−1
1 .

To complete the proof of the proposition, it suffices to observe that [idG̃ × β]

is a well-defined isomorphism G̃τ1 ' G̃τ2 .

Remark 5.2.3. It is reasonable to ask whether we really needed to consider special

embeddings, or whether any matrix A ∈ GLs(Z/NZ) would suffice. In fact, we

need to require at least that A is in the image of the map GLs(Z) → GLs(Z/NZ).

Suppose that det(A) 6= ±1 modulo N , so that A cannot be lifted to GLs(Z). It is

possible to find an automorphism γ of (µN)s, represented by a matrix C, such that

det(AC) = 1. In order for this to induce an isomorphism as in Proposition 5.2.1,

α would need to extend to an automorphism of the group G̃, necessarily not an

inner automorphism. But, for example, Out(SL8C) = Z/2Z while Aut(Z(SL8C)) =

Aut(Z/8Z) = Z/2Z × Z/2Z – so there are necessarily automorphisms of the centre

which do not extend to automorphisms of the entire group.

Remark 5.2.4. Note that the isomorphism β in Proposition 5.2.1 is not unique. For

example, if s = 2 we have

(
1 0
0 1

)
≡
(

1 N
0 1

)
, and both are in SL2(Z).
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The group G̃τ comes equipped with two projections

G̃τ

Gad T/Z(G̃)

p ∂ (5.23)

Note that T/Z(G̃) ' T non-canonically: for the moment I will not choose such an

isomorphism, preferring to work with T/Z(G̃).

Example 27. Let G̃ = SLn and τ : Z(SLn) = µn ⊂ Gm.4 Then G̃τ = GLn and the

maps p and ∂ are

GLn

PGLn Gm

p det (5.24)

The Lie algebra of G̃τ is

gτ = g⊕ t (5.25)

where g = Lie(G̃) and t = Lie(T ). Let H ⊂ G̃ be a maximal torus with Lie algebra

h so that

Hτ =
H × T
Z(G̃)

(5.26)

is a maximal torus of G̃τ with Lie algebra hτ = h× t. Since t is abelian, the quotient

cτ = hτ/W (where W ≡ WG̃τ
(Hτ ) = WG̃(H) is the Weyl group, see Appendix B) is

cτ = (h/W )× t = c× t (5.27)

4Although some results will require that we work over C, many of the constructions – such as
this one – are independent of the ground ring.
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where c = h/W is the adjoint quotient for the group G̃. Thus there is a “Hitchin

map” between stacks

χτ = χ× idt :
[
gτ/G̃τ ×Gm

]
=
[
(g× t)/G̃τ ×Gm

]
→ [c/Gm]× [t/Gm] = [cτ/Gm] .

(5.28)

The maps p and ∂ induce maps[
(g× t)/G̃τ ×Gm

]

[g/Gad ×Gm]
[
t/(T/Z(G̃))×Gm

]
' B(T/Z(G̃))× [t/Gm]

p∗ ∂∗

(5.29)

and so for a space5 X there are maps

Map
(
X,
[
(g× t)/G̃τ ×Gm

])

Map (X, [g/Gad ×Gm]) BunT/Z(G̃)(X)×Map (X, [t/Gm])

p∗ ∂∗

(5.30)

Supposing now that the pushforwards to BGm all classify the line bundle L → X,

we obtain maps

HiggsG̃τ (X,L)

HiggsGad
(X,L) BunT/Z(G̃)(X)×H0(X; t⊗ L)

p∗ ∂∗

(5.31)

5Depending on the category: Complex scheme, algebraic variety, projective algebraic
curve/Riemann surface, etc.
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Example 28. In the running SLn/GLn example (5.24), these maps are

HiggsGLn(X,L)

HiggsPGLn(X,L) Pic(X)×H0(X;L)

p∗ det× tr (5.32)

Now, choose an isomorphism t : T ∼= Gs
m. Under this isomorphism Z(G̃) is

sent to a product of groups of roots of unity, so t induces an isomorphism

T/Z(G̃) ∼=
Gm

µi1
× · · · × Gm

µis
(5.33)

and by taking ithj powers componentwise we obtain an isomorphism T/Z(G̃) ∼= Gs
m.

This isomorphism of groups allows us to further identify

BunT/Z(G̃)(X) ∼= Pic(X)× · · · × Pic(X). (5.34)

Remark 5.2.5. Choosing a different trivialisation T ∼= Gs
m induces a unique auto-

morphism of Gm
µi1
× · · · × Gm

µis
and so ultimately a unique automorphism of the stack

Pic(X)× · · · × Pic(X).

Now, suppose that X = C is a Riemann surface, or a smooth complex pro-

jective algebraic curve. Choose a point x ∈ C and for ~p = (p1, . . . , ps) denote

O(~px) = (O(p1x), . . . ,O(psx)) ∈ BunT/Z(G̃)(C) (5.35)

where we have used the isomorphism (5.34). Define a lattice by Λ(x) = {O(~px) | ~p ∈

Zs} ⊂ BunT/Z(G̃)(C). Passing to the group of connected components of BunT/Z(G̃)(C)

exhibits an isomorphism

Λ(x) X•(T/Z(G̃))

BunT/Z(G̃)(C)

∼=

ι (5.36)
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and so yields a splitting ιx : X•(T/Z(G̃)) ↪→ BunT/Z(G̃)(C).

Definition 5.2.3. Define Higgs•
G̃

(C,L) to be the pullback of stacks over the trace-

free locus of the Hitchin base {0} ⊂ H0(C; t⊗ L)

Higgs•
G̃

(C,L) HiggsG̃τ (C,L)

X•(T/Z(G̃)) BunT/Z(G̃)(C) BunT/Z(G̃)(C)×H0(C; t⊗ L)
y

∂∗

ιx

id×0

(5.37)

Remark 5.2.6. Note that given another point y ∈ C, the embeddings ιx and ιy

differ by the automorphism of BunT/Z(G̃)(C) given by tensoring with the T/Z(G̃)-

bundles O(~p(y − x)). Since O(~p(y − x)) ∈ Bun0
T/Z(G̃)

(C) and Bun0
T/Z(G̃)

(C) is a

divisible abelian group, this also yields an automorphism of HiggsG̃τ (C,L). Hence,

by uniqueness of pullbacks the stacks Higgs•
G̃

(C,L) for various choices of x ∈ C are

all isomorphic.

Remark 5.2.7. When L = KC , I will often omit the line bundle from the notation,

e.g.

HiggsG(C,KC) ≡ HiggsG(C), Hitchg(C,KC) = Hitchg(C), etc. (5.38)

5.2.2 Local description over Hitchg(C) and definition of M•
G̃

(C)

Recall that the Hitchin base is defined by Hitchg(C,L) = H0(C; cL), so that

for gτ

Hitchgτ (C,L) = H0(C; cL × (t⊗ L))

= H0(C; cL)×H0(C; t⊗ L)

= Hitchg(C,L)×H0(C; t⊗ L). (5.39)
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Restricting to the case of L = KC , the following square commutes (though is not

cartesian):

Higgs•
G̃

(C) HiggsG̃τ (C)

Hitchg(C) Hitchg(C)×H0(C; t⊗KC)
id×0

(5.40)

Remark 5.2.8. From now on I will implicitly restrict HiggsG̃τ (C) to the trace-free

locus Hitchg(C) × {0} ⊂ Hitchg × H0(C; t ⊗ KC) = Hitchgτ (C), as this is the

appropriate place to compare HiggsG̃τ (C) with HiggsG̃(C).

Note that

Z(G̃τ ) ∼= T G̃τ = G̃×T
Z(G̃)

t [(1G̃, t)]

(5.41)

hence HiggsG̃τ (X)|Hitchg(C)\∆ → HiggsG̃τ (X)|Hitchg(C)\∆ is a (locally trivial) Z(G̃τ ) =

T -gerbe [24].

Remark 5.2.9 (Important Remark!). From now on I will assume that we are working

away from the discriminant locus (3.53), and I will omit the explicit restriction

symbol “|Hitchg(C)\∆”.

In other words, locally the stack HiggsG̃τ (C) decomposes as the product

HiggsG̃τ (C) ∼= HiggsG̃τ (C)×BT (5.42)

and moreover, the coarse moduli space HiggsG̃τ (C) splits locally into the product

of its neutral component and its group of connected components (since its group

of connected components is the free group π0(HiggsG̃τ (C)) = π0(BunT/Z(G̃)(C)) =
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X•(T/Z(G̃))), i.e. locally

HiggsG̃τ (C) ' Higgs0
G̃τ

(C)×X•(T/Z(G̃))×BT. (5.43)

Next I wish to understand the local structure of Higgs•
G̃

(C). A (closed) point

of Higgs•
G̃

(C) is given by

• a G̃τ -bundle P → C

• a Higgs field φ ∈ H0(C; cKC ) (i.e. “tracefree”), and

• an isomorphism ψ : ∂∗(P ) ' O(~px) (for some ~p ∈ Zs).

More generally, an S-point of Higgs•
G̃

(C) is given by

• a G̃τ -bundle PS → C × S

• a Higgs field φS ∈ H0(C × S; pr∗C(cKC )), and

• an isomorphism ψS : ∂∗(PS) ' pr∗C(O(~px)) (for some ~p ∈ Zs).

Note that the action of BT which was previously given by tensoring with the pullback

of a T -bundle on S must be restricted: now only T -bundles TS → S satisfying

∂∗(TS) ' OS (5.44)

may act on the moduli space. These are exactly those T -bundles which are induced

from Z(G̃)-bundles via τ ,

0 BZ(G̃) BT B(T/Z(G̃)) 0,Bτ B∂ (5.45)
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so we see that one effect of pulling back is a “reduction of structure group” from BT

to BZ(G̃).

To see what happens to the abelian variety component in the local decompo-

sition (5.43), note that the component defined by the cartesian diagram

Higgs0
G̃

(C,L) Higgs•
G̃

(C,L)

∗ X•(T/Z(G̃))

y

0

(5.46)

may be identified as Higgs0
G̃

(C,L) ' HiggsG̃(C,L), the usual moduli of Higgs bundles

for the simply-connected simple group G̃. So locally Higgs•
G̃

(C) decomposes as

Higgs•
G̃

(C) ∼= HiggsG̃(C)×X•(T/Z(G̃))×BZ(G̃). (5.47)

The natural map Higgs•
G̃

(C)→ HiggsG̃τ (C) is locally

HiggsG̃(C) × X•(T/Z(G̃)) × BZ(G̃)

Higgs0
G̃τ

(C) × X•(T/Z(G̃)) × BT

id Bτ (5.48)

and the projection Higgs•
G̃

(C)→ HiggsGad
(C) is locally

HiggsG̃(C) × X•(T/Z(G̃)) × BZ(G̃)

Higgs0
Gad

(C) × Z(G̃) × ∗

isogeny (5.49)

There is another important stack which admits a map from Higgs•
G̃

(C), constructed

as follows. Recall from (3.8) that BunT (C) acts on HiggsG̃τ (C) (see Section 3.1.1

for a description of this action). Via the splitting ιx : X•(T ) → BunT (C) we may
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restrict this to an action of X•(T ), which may be thought of concretely as tensoring

Higgs bundles with O(~px) as ~p ranges over Zs, and this action restricts to give an

action on Higgs•
G̃

(C).

Definition 5.2.4. Denote by M•
G̃

(C) the stack Higgs•
G̃

(C)/X•(T ).

Proposition 5.2.2. Locally the quotient map Higgs•
G̃

(C)→M•
G̃

(C) is given by

Higgs•
G̃

(C) ' HiggsG̃(C) × X•(T/Z(G̃)) × BZ(G̃)

M•
G̃

(C) ' HiggsG̃(C) × Z(G̃) × BZ(G̃)

(5.50)

Proof. The action of X•(T ) on HiggsG̃(C) and BZ(G̃) is trivial, so it suffices to

check this claim for the group of connected components. For this, is suffices to

check the corresponding claim for the moduli space of bundles (not Higgs bundles).

Consider the generalisation of the Kümmer sequence6

1→ Z(G̃)→ T (OC)→ (T/Z(G̃))(OC)→ 1. (5.51)

The H0 row of the corresponding long exact sequence in cohomology is exact (since

C is compact/projective); starting at H1 the long exact sequence is

0 H1(C;Z(G̃)) H1(C;T (OC)) H1(C; (T/Z(G̃))(OC))

H2(C;T (OC))

(5.52)

6This becomes the Kümmer sequence for T = Gm and Z(G̃) = µn.
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Now, H2(C;T (OC)) = 0 – this follows analytically by taking the long exact sequence

of the exponential sequence 0 → Z → O → O× → 1 and observing that there are

no (2,0)-forms on C, and it follows algebraically from the existence of an injective

comparison map H2
et(C;Gm)→ H2(Can;O×C) [26].

Identifying H2(C;Z(G̃)) = Z(G̃) canonically and using the identification

H1(C;T (OC)) = BunT (C), (5.52) becomes

0→ H1(C;Z(G̃))→ BunT (C)→ BunT/Z(G̃)(C)→ Z(G̃)→ 0 (5.53)

The map out of H1(C;Z(G̃)) factors through the identity component of BunT (C),

and so the content of (5.53) may be split into the two identifications: Bun0
T/Z(G̃)

(C) ∼=
Bun0

T (C)

H1(C;Z(G̃))
and

Z(G̃) ∼=
π0(BunT/Z(G̃)(C))

π0(BunT (C))
=
X•(T/Z(G̃))

X•(T )
(5.54)

which is what we wished to show.

Example 29. In the running example with G̃ = SLn, M•SLn(C) may be thought

of as encoding the observation that the moduli spaces HiggsdSLn depend only on d

mod n, and that tensoring with the line bundle O(x) is an isomorphism HiggsdSLn
∼=

Higgsd+n
SLn

.

5.3 Comparing sheaves of regular centralisers

In (5.48) we observed that HiggsG̃(C) appears as an abelian subvariety of

Higgs0
G̃τ

(C). Since upon Cartier duality subobjects become quotient objects, and

under Langlands duality simply-connected groups are sent to adjoint groups, it
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should be the case that Higgs0
Gad

(C) may be realised as a quotient of Higgs0
G̃τ

(C).

To see that this is indeed possible, I will compare the sheaves of regular centralisers

J G̃τ and J G̃.

Proposition 5.3.1. (1) JG1×G2 = JG1 × JG2

(2) If T ∼= (C×)n then JT = T .

(3) There is a short exact sequence of sheaves

0→ Z(G̃)→ J G̃ × T → J G̃τ → 0. (5.55)

Proof. (1) Follows from the fact that the Lie algebra of G1 ×G2 is g1 ⊕ g2, and the

adjoint action factors as G1 ×G2 → End(g1)⊕ End(g2) ⊂ End(g1 ⊕ g2).

(2) Since T is abelian the adjoint action is trivial, so ZT (x) = T for every x ∈ t.

(3) This can be checked locally, as per Lemma 5.1.1.

Proposition 5.3.2. There are isomorphisms of abelian schemes (over the comple-

ment of the discriminant locus in the Hitchin base) Higgs0
Gad

(C) ∼=
Higgs0

G̃τ
(C)

Bun0
T (C)

and

Bun0
T (C)

H1(X;Z(G̃))
∼=

Higgs0
G̃τ

(C)

Higgs
G̃

(C)
.

Proof. Pulling the short exact sequence (5.55) back via some cameral cover of C
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yields

0 Γ(C;Z(G̃)) Γ(C; JG̃ × T ) Γ(C; JG̃τ )

H1(C;Z(G̃)) H1(C; JG̃ × T ) H1(C; JG̃τ )

H2(C;Z(G̃)) = Z(G̃) 0

(5.56)

where the vanishing of H2(C; JG̃ × T ) is observed in [24, §5].

Let Kτ = ker(H1(C; JG̃τ )→ H2(C;Z(G̃))).7 Then (5.56) becomes

0 Z(G̃) Γ(C; JG̃)× T Γ(C; JG̃τ )

H1(C;Z(G̃)) H1(C; JG̃)×H1(C;T ) Kτ 0.

(5.57)

Since the map H1(C;Z(G̃)) → H1(C;T ) = BunT (C) is itself an embedding8 (and

in fact it factors through H1(C;T )0 = Bun0
T (C)), the above sequence splits into two

short exact sequences, yielding

Kτ =
HiggsG̃(C)×BunT (C)

H1(C;Z(G̃))
(5.58)

and (restricting the the neutral component)

Higgs0
G̃τ

(C) =
HiggsG̃(C)×Bun0

T (C)

H1(C;Z(G̃))
. (5.59)

7Note that this is not necessarily connected, i.e. is not necessarily the neutral component.
8Reduce to the case H1(C;µn) ⊂ H1(C;Gm).
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The isomorphism
Bun0

T (C)

H1(X;Z(G̃))
∼=

Higgs0
G̃τ

(C)

Higgs
G̃

(C)
follows immediately from (5.59), and the

isomorphism Higgs0
Gad

(C) ∼=
Higgs0

G̃τ
(C)

Bun0
T (C)

follows from (5.59) and the identification

Higgs0
Gad

(C) ∼= Higgs
G̃

(C)

H1(C;Z(G̃))
of Theorem 5.1.3.

5.4 Dualising Higgs•
G̃

(C)

At a first glance one might expect that the stacks Higgs•
G̃

(C) will provide

the correct generalisation of the Langlands duality results of [24,37]. In this section

we will see that this is not quite correct, since by remembering all of the connected

components of HiggsG̃τ (C) this stack is keeping track of too much information (or

perhaps better, it is keeping track of components and automorphisms in a non-

symmetric manner). Regardless, I will describe the structure of the Cartier dual

Higgs•
G̃

(C) so that in Section 5.5 I can show that the moduli space M•
G̃

(C) is well-

behaved under Cartier duality.

As a first step I will “measure the difference” between the stacks Higgs•
G̃

(C)

and HiggsG̃τ (C), i.e.

Proposition 5.4.1. There are isomorphisms of commutative group stacks

HiggsG̃τ (C)/Higgs•
G̃

(C) ∼=
BunT/Z(G̃)(C)

X•(T/Z(G̃))
∼= Bun0

T/Z(G̃)
(C). (5.60)

Proof. The second isomorphism is immediate – we have already seen that a choice

of point x ∈ C gives a splitting of the map BunT/Z(G̃)(C) → π0(BunT/Z(G̃)(C))) =

X•(T/Z(G̃)). Hence it suffices to prove the first isomorphism, which follows by
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composing the defining pullback square (5.37) with the pullback square

X•(T/Z(G̃)) BunT/Z(G̃)(C)

0
Bun

T/Z(G̃)
(C)

X•(T/Z(G̃))

y
(5.61)

to obtain the pullback square

Higgs•
G̃

(C) HiggsG̃τ (C)

0
Bun

T/Z(G̃)
(C)

X•(T/Z(G̃))

y (5.62)

This can be seen to yield a short exact sequence of commutative group stacks via

the local description of the maps given in Section 5.2.2.

Now, consider the following short exact sequences of commutative group

stacks and their coarse moduli spaces:

0 Higgs•
G̃

(C) HiggsG̃τ (C) Bun0
T/Z(G̃)

(C) 0

0 Higgs•
G̃

(C) HiggsG̃τ (C) Bun0
T/Z(G̃)

(C) 0

(5.63)

Using Proposition 3.2.3 and the identifications given in Appendix C (as well as

another dualisation result from [24], namely LHiggs0 = HiggsD) these dualise to the

short exact sequences

0 BunL(T/Z(G̃))(C) Higgs
(L̃G)Lτ

(C) Higgs•
G̃

(C)D 0

0 Bun0
L(T/Z(G̃))

(C) Higgs0

(L̃G)Lτ
(C) Higgs•

G̃
(C)D 0

(5.64)
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From the exact sequences (5.64), we are led to study the quotient stacks
Higgs

G̃τ
(C)

BunT (C)

and
Higgs0

G̃τ
(C)

Bun0
T (C)

. By Proposition 5.3.2,
Higgs0

G̃τ
(C)

Bun0
T (C)

∼= Higgs0
Gad

(C), so that
Higgs0

G̃τ
(C)

Bun0
T (C)

is

a T -gerbe over Higgs0
Gad

(C). This result in fact extends to the non-neutral connected

components as well:

Proposition 5.4.2. The stack
Higgs

G̃τ
(C)

BunT (C)
is a T -gerbe over HiggsGad

(C).

Proof. The exact sequence of groups

1→ T → G̃τ → Gad → 1 (5.65)

yields the short exact sequence of sheaves of regular centralisers

1→ T (OC)→ JG̃τ → JGad
→ 1. (5.66)

Global sections of (5.66) remain exact, so starting at H1 the associated long exact

sequence of cohomology gives

0→ H1(C;T (OC))→ H1(C; JG̃τ )→ H1(C; JGad
)→ H2(C;T (OC)). (5.67)

We have already seen that H2(C;T (OC)) = 0 during the course of the proof of

Proposition 5.2.2, and so this becomes the short exact sequence of coarse moduli

spaces

0→ BunT (C)→ HiggsG̃τ (C)→ HiggsGad
(C)→ 0. (5.68)

Since HiggsG̃τ (C) is locally isomorphic to HiggsG̃τ (C)×BT the result follows.

Combining this result with the short exact sequences (5.64) gives the following

corollary:
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Corollary 5.4.3. (a) Higgs•
G̃

(C)D is an L(T/Z(G̃))-gerbe over HiggsLGad
(C).

(b) Higgs•
G̃

(C)D is an L(T/Z(G̃))-gerbe over Higgs0
LGad

(C).

Notation 5.4.1. To declutter the notation, from now on I will denote
Higgs

G̃τ
(C)

BunT (C)
by

Q•
G̃

(C).

5.5 Dualising M•
G̃

(C)

As per Example 29, the moduli space M•
G̃

(C) may be interpreted as the

“moduli of G̃-Higgs bundles on C of arbitrary degree, modulo uninteresting isomor-

phisms”. The main results of this thesis – namely the generalisation of [24, 37] to

incorporate “non-zero degrees” for all semisimple groups (Theorems 5.5.1 and 5.5.2)

and the existence of self-dual moduli stacks associated to simply-laced Lie algebras

(Corollary 5.5.3) – boil down to the fact that the moduli space M•
G̃

(C) behaves nicely

under Cartier duality.

There is an action of H1(C;Z(G̃)) on Higgs•
G̃

(C), induced by the BunT (C)

action on HiggsG̃τ (C) and the trivialisation of the gerbe BunT (C) over BunT (C)

given by the choice of point x ∈ C.9 This action is free away from the discriminant

locus of Hitchg(C), a fact which may be checked locally.

Theorem 5.5.1. Away from the discriminant locus in the Hitchin base there is an

9The existence of such a trivialisation may be easier to see from the Cartier dual perspective,
where it becomes the splitting of the map BunLT (C)→ π0(BunLT (C)) = X•(

LT ).
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isomorphism of commutative group stacks(
M•

G̃
(C)

H1(C;Z(G̃))

)D

∼= M•
L̃G

(C). (5.69)

Proof. Consider the commutative diagram with exact rows and columns

0 0 0

0 X•(T )×H1(C;Z(G̃)) BunT (C) Bun0
T/Z(G̃)

(C) 0

0 Higgs•
G̃

(C) HiggsG̃τ (C) Bun0
T/Z(G̃)

(C) 0

0
M•
G̃

(C)

H1(C;Z(G̃))
Q•
G̃

(C) B(T/Z(G̃)) 0

0 0 0
(5.70)
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Dualising this diagram gives

0 0 0

0 X•(
L(T/Z(G̃))) Q•

G̃
(C)D

(
M•
G̃

(C)

H1(C;Z(G̃))

)D
0

0 BunL(T/Z(G̃))(C) Higgs
(L̃G)Lτ

(C) Higgs•
G̃

(C)D 0

0 Bun0
L(T/Z(G̃))

(C) Bun0
LT (C) B(LT )×B(H1(C;Z(L̃G))) 0

0 0 0
(5.71)

But by the definition of Q•
G̃

(C) and Proposition 5.4.2, Q•
G̃

(C)D ∼= Higgs•
L̃G

(C), and

so the first row of the diagram can be rewritten as(
M•

G̃
(C)

H1(C;Z(G̃))

)D

∼=
Higgs•

L̃G
(C)

X•(L(T/Z(G̃)))
=: M•

L̃G
(C). (5.72)

Now, take a subgroup Γ ⊂ H1(C;Z(G̃)) and consider the “intermediate quo-

tient” stack
M•
G̃

(C)

Γ
. Recall that H1(C;Z(G̃)) is equipped with a non-degenerate skew

pairing (c.f. (2.42)), and denote by ann(Γ) the annihilator of Γ with respect to this

pairing.

Theorem 5.5.2. Away from the discriminant locus in the Hitchin base there is an
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isomorphism of commutative group stacks(
M•

G̃
(C)

Γ

)D

∼=
M•

L̃G
(C)

ann(Γ)
. (5.73)

Proof. Consider the quotient map

γ :
M•

G̃
(C)

Γ
→

M•
G̃

(C)

H1(C;Z(G̃))
(5.74)

with kernel H1(C;Z(G̃))/Γ. Locally the map (5.74) is

M•
G̃

(C)

Γ
' Higgs

G̃
(C)

Γ
× Z(G̃) × BZ(G̃)

M•
G̃

(C)

H1(C;Z(G̃))
' Higgs

G̃
(C)

H1(C;Z(G̃))
× Z(G̃) × BZ(G̃)

γ isogeny id
Z(G̃)

id
BZ(G̃) (5.75)

Under Cartier duality (−)D, the map γ dualises locally to(
M•
G̃

(C)

H1(C;Z(G̃))

)D
'

(
Higgs

G̃
(C)

H1(C;Z(G̃))

)D
× BZ(L̃G) × Z(L̃G)

(
M•
G̃

(C)

Γ

)D
'

(
Higgs

G̃
(C)

Γ

)D
× BZ(L̃G) × Z(L̃G)

γD dual isogeny id
BZ(L̃G)

id
Z(L̃G)

(5.76)

The kernel of the dual isogeny is (H1(C;Z(G̃))/Γ)∨, so we have a short exact se-

quence

0→ (H1(C;Z(G̃))/Γ)∨ →

(
M•

G̃
(C)

H1(C;Z(G̃))

)D

→

(
M•

G̃
(C)

Γ

)D

→ 0. (5.77)

The theorem now follows from the identification
(

M•
G̃

(C)

H1(C;Z(G̃))

)D ∼= M•
L̃G

(C) of Theo-

rem 5.5.1, and the identification (H1(C;Z(G̃))/Γ)∨ ∼= ann(Γ) due to non-degeneracy

of the skew-pairing on H1(C;Z(G̃)).
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In particular, we immediately deduce from Theorem 5.5.2 the existence of a

collection of self-dual commutative group stacks.

Corollary 5.5.3. In the setup of Theorem 5.5.2, suppose that G̃ = L̃G (e.g. G̃ is

ADE type), and that Γ is a Lagrangian subgroup of H1(C;Z(G̃)) (i.e. Γ = ann(Γ)).

Then away from the discriminant locus of the Hitchin base(
M•

G̃
(C)

Γ

)D

∼=
M•

G̃
(C)

Γ
, (5.78)

i.e.
M•
G̃

(C)

Γ
is a self-dual commutative group stack.

Remark 5.5.1. As per Remark 2.1.9 and Conjecture 1, Corollary 5.5.3 may be inter-

preted as the statement that the target space of the 2d QFT Σg[C; Γ] is self SYZ

mirror dual.

Finally, we may deduce from the above results the following (non-stacky)

corollary:

Corollary 5.5.4. With notation as above and away from the discriminant locus in

the Hitchin base,
HiggsG̃(C)

Γ
and

Higgs
L̃G

(C)

ann(Γ)
are torsors for dual abelian schemes. In

particular, if G̃ = L̃G and ann(Γ) = Γ then
HiggsG̃(C)

Γ
is a self-dual abelian scheme.

Proof. This follows from the previous results by restricting to the neutral component

of the coarse moduli space.

5.6 Examples of dual spaces

To conclude I will describe how the results of Section 5.5 apply to various

examples.
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Example 30. An analysis of A1 theories of class S was performed in [31]. There

Gaiotto, Moore and Neitzke explain that a line operator in the A1 theory corre-

sponds to a simple closed path on C, and that a collection of line operators may be

simultaneously included in the theory only if a “mutual locality condition” is satis-

fied. Geometrically, the mutual locality condition on a collection of line operators

L becomes the requirement that that the number of intersection points of any two

paths in L be even – by passing to Poincaré dual cocycles, this induces an isotropic

subgroup of H1(C;µ2) with respect to the skew-pairing (2.42).

This example generalises to any group of ADE type by choosing a symplectic

basis for H1(C) with respect to the intersection pairing (which may further be divided

into a pair of bases for maximal isotropic subgroups, called A and B cycles) and taking

as generators for Γ the Poincaré duals in H1(C;Z(G̃)) of an isotropic subset of this

basis – for instance taking as a basis for Γ the Poincaré duals of all the A-cycles

yields a maximal isotropic subgroup Γ ⊂ H1(C;Z(G̃)), and so by Corollary 5.5.3

and Remark 5.5.1 a self-dual target space for the 2d theory Σg[C; Γ].

Example 31. As in Example 30 consider the A1 theory, and suppose that we have

chosen a collection of mutually local line operators Γ ⊂ H1(C;µ2) for the theory

Ssl2 [C; Γ]. If the collection of line operators is non-maximal, so that Γ is isotropic

but not Lagrangian, then we may identify the Cartier/SYZ dual of the corresponding

space/stack of Higgs bundles as per Theorem 5.5.2 and Corollary 5.5.4. However,

this space does not have an obvious physical interpretation as the target space of

a 2d σ-model, since the corresponding collection of line operators ann(Γ) no longer

satisfies the mutual locality condition and cannot be used to absolve the relative
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theory Ssl2 [C].

Example 32. Theorem 5.5.1 in fact gives another derivation of the SYZ mirror

symmetry results of Hausel and Thaddeus for SL/PGL-Higgs bundles [37]. To see

this, observe that for type An−1 (5.69) becomes(
M•SLnC(C)

H1(C;Z/nZ)

)D
∼= M•SLnC(C). (5.79)

The right hand side of this equation is the moduli stack of GLnC-Higgs bundles

(E, φ) equipped with an isomorphism det(E) ' OC(dx) for some degree d ∈ Z/nZ10

and such that trφ = 0, and the object we are dualising on the left hand side is the

moduli space of PGLnC-Higgs bundles equipped with the gerbe of liftings of the

universal projective Higgs bundle to a universal GLn-Higgs bundle (again, tracefree

and equipped with an isomorphism det(E) ' OC(dx)). The exact form of [37, Thm.

3.7] then ought to follow from an argument similar to the proof of [24, Cor. 5.5] (the

details of which will appear in a future paper).

Example 33. Consider the group G = SO(2n). This is a self Langlands dual group,

and so by the results of Donagi and Pantev [24] gives rise to a self-dual moduli space

of Higgs bundles. It is natural to ask whether or not this space fits into the story of

this dissertation.

In fact it does: for simplicity I will discuss this duality on the level of coarse

moduli spaces. The centre of the universal cover G̃ = Spin(2n) is either µ2 × µ2 (if

2n = 4k) or µ4 (if 2n = 4k + 2). The central subgroup corresponding to SO(2n) is

10The dependence on d mod n rather than d ∈ Z is observed in [37].
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either the diagonal copy of µ2 ⊂ µ2 × µ2 or the unique µ2 subgroup of µ4 – in either

case this subgroup is isotropic with respect to the natural pairing on Z(G̃), and so

induces an isotropic subgroup H1(C;µ2) ⊂ H1(C;Z(G̃)). By nondegeneracy of the

skew-pairing on H1(C;Z(G̃)) this subgroup is maximal isotropic, and the resulting

abelian scheme
HiggsSpin(2n)(C)

H1(C;µ2)
is isomorphic to Higgs0

SO(2n)(C), the moduli space of

SO(2n)-Higgs bundles with vanishing second Stiefel-Whitney class.

To make this example extremely concrete, consider the first non-trivial case

G = SO(4). The universal cover is G̃ = Spin(4) = SU(2)×SU(2) with centre µ2×µ2,

corresponding to the µ2 centres of each of the SU(2) factors. Spin(4) double covers

the spaces SO(3) × SU(2), SU(2) × SO(3), and SO(4), corresponding respectively

to the subgroups µ2 × 1, 1 × µ2, and the diagonal subgroup ∆. Denote the unique

nondegenerate pairing on µ2 by Υ2; then the pairing on the central µ2 × µ2 is

Υ((a, b), (c, d)) = Υ2(a, c)Υ2(b, d). (5.80)

On the diagonal subgroup corresponding to SO(4), this pairing is identically 1, since

Υ((a, a), (b, b)) = Υ2(a, b)2 = 1. Hence the subgroup H1(C; ∆) ⊂ H1(C;µ2 × µ2) is

isotropic, and by nondegeneracy of the cup product pairing and of Υ on µ2 × µ2 it

is maximal isotropic and the results of the previous paragraph apply.

Example 34. Finally, it is interesting to consider what the duality of Theorem

5.5.1 looks like for the simply-connected groups Sp(2n) and Spin(2n+ 1), whose Lie

algebras are exchanged by Langlands duality.
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First, consider the isomorphism(
M•Sp(2n)(C)

H1(C;µ2)

)D

∼= M•Spin(2n+1)(C). (5.81)

The stack we are dualising on the left hand side of (5.81) is the moduli space of

PSp(2n) = Sp(2n)/µ2-Higgs bundles equipped with the gerbe of liftings of the uni-

versal PSp(2n)-Higgs bundle to a universal symplectic Higgs bundle. To interpret

the right hand side, use the standard embedding µ2 = Z(Spin(2n + 1)) ⊂ C× to

construct

Spin(2n+ 1)× C×

µ2

= Spinc(2n+ 1)C (5.82)

the complexification of the compact group Spinc(2n+ 1). Fix a point x ∈ C. Then

the moduli stack M•Spin(2n+1)(C) may be identified as the stack of Spinc(2n + 1)C-

Higgs bundles (E, φ) equipped with an isomorphism

∂∗(E) '
{

OC or
OC(x)

(5.83)

and with φ “tracefree” (c.f. (5.31)). Specifically, the neutral component M0
Spin(2n+1)(C)

may be identified with the usual moduli stack HiggsSpin(2n+1)(C), and the non-neutral

component M1
Spin(2n+1)(C) may be identified as the moduli stack of Spinc(2n +

1)C-Higgs bundles (E, φ) equipped with an isomorphism ∂∗(E) ' OC(x). Since

H2(C;µ2) = µ2 we have that M•Spin(2n+1)(C) = M0
Spin(2n+1)(C)

∐
M1

Spin(2n+1)(C).

Next consider the isomorphism(
M•Spin(2n+1)(C)

H1(C;µ2)

)D

∼= M•Sp(2n)(C). (5.84)
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We have already seen one interpretation of the left hand side in terms of Spinc(2n+

1)C-Higgs bundles – another interpretation is that on the left hand side we are du-

alising the moduli space of SO(2n + 1)-Higgs bundles equipped with the gerbe of

liftings of the universal SO(2n+ 1)-Higgs bundle to a universal Spin(2n+ 1)-Higgs

bundle.

To interpret the right hand side we again construct the corresponding group

G̃τ – this time the group is

Spc(2n)C :=
Sp(2n,C)× C×

µ2

, (5.85)

the complexification of the compact group Spc(2n) = Sp(2n)×U(1)
µ2

.11 Then M•Sp(2n)(C)

is – imprecisely – the stack of Spc(2n)C-Higgs bundles “with fixed second Stiefel-

Whitney class, again considered up to parity”. The precise interpretation of the two

connected components is analogous to the interpretation for Spin(2n+1): M0
Sp(2n)(C)

is isomorphic to the moduli stack HiggsSp(2n)(C), and M1
Sp(2n)(C) may be identified

as the moduli stack of Spc(2n)C-Higgs bundles (E, φ) equipped with an isomorphism

∂∗(E) ' OC(x), and satisfying tr(φ) = 0.

11Ideally there ought to be a relation between this group and the noncompact group Mpc(2n) of
automorphisms of the unitary Heisenberg group associated to the standard real symplectic vector
space (R2n, ωstd) [29, 66, 67] – Mpc(2n) is to the metaplectic group Mp(2n) as Spinc(n) is to the
ordinary spin group Spin(n).
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Appendix A

Review of reductive algebraic groups

In the following appendix we work over an algebraically closed field k. Refer-

ences for this material are [43, 71].

A.1 Linear algebraic groups

Definition A.1.1. An algebraic group is a group object in the category of algebraic

varieties. Explicitly, it is an algebraic variety G equipped with an identity element

1G ∈ G, multiplication map µ : G × G → G and an inversion map ι : G → G

satisfying the usual group axioms, and such that the maps µ and ι are morphisms

of algebraic varieties.

Definition A.1.2. A closed subgroup H of an algebraic group G is a subgroup which

is closed in the Zariski topology.

Remark A.1.1. A closed subgroup H of an algebraic group G can be given the struc-

ture of an algebraic group, such that the inclusion map H ⊂ G is a homomorphism

of algebraic groups.

Definition A.1.3. A linear algebraic group is an algebraic group G whose underlying

variety is affine.
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Example 35. The following are all examples of linear algebraic groups. The meaning

of “standard” group structure will be explicated below in Example 36:

(a) The additive group Ga, whose underlying variety is A1
k = Spec(k[t]), with the

standard additive structure.

(b) The multiplicative group Gm, whose underlying variety is Spec(k[t, t−1]), with

the standard multiplicative structure.

(c) The general linear group GL(V ) of a (finite dimensional) vector space V , with

group structure given by matrix multiplication. To see that GL(V ) can be

given the structure of an affine variety, observe that it can be obtained as an

open subvariety of End(V ) ∼= Adim(V )2

k by localising away from the determinant

function det ∈ O(End(V )).

(d) Any Zariski closed subgroup of GL(V ) inherits the structure of a linear algebraic

group. This includes the familiar examples of SL(V ), SO(V ), Sp(V ), diagonal

matrices, upper triangular matrices, strictly upper triangular matrices, and finite

groups.

Example 36. It is instructive to consider (linear) algebraic groups from the functor-

of-points perspective. Recall that a k-scheme S defines a functor (which I will also

denote by S):

S : CAlgk Set

R S(R) := Homk−Sch(Spec(R), S)

(A.1)
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If G is an algebraic group then its functor of points factors through the category of

groups:

G : CAlgk Grp

R G(R) := Homk−Sch(Spec(R), G)

(A.2)

We call the set/group G(R) the R-points of G. From this point of view we can

describe the linear algebraic groups of Example 35 as follows:

(a) The R-points of the additive group are given by Ga(R) = R with addition as the

group operation.

(b) The R-points of the multiplicative group are given by Gm(R) = R×, the group

of multiplicative units in R.

(c) The R-points of GLn(k) are given by GLn(R), the n × n matrices with entries

in R whose determinant is in R×.

Example 37. A class of algebraic groups which are not linear algebraic groups but

which are essential to this dissertation are given by abelian varieties. An abelian

variety over k is an algebraic group A over k whose underlying variety is complete.

As this implies that any map from A to an affine scheme is constant, these cannot

be linear algebraic groups.

A.2 Lie algebras

Recall the abstract definition of a Lie algebra:

Definition A.2.1. A Lie algebra over k is a pair (v, [−,−]) where
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• v is a k-vector space, and

• [−,−] : v⊗k v→ v is a k-bilinear pairing which is skew-symmetric and satisfies

the Jacobi identity :

[x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0 for all x, y, z ∈ v. (A.3)

Given a linear algebraic group G over k with coordinate ring k[G], consider

the Lie algebra of k-linear derivations

DG = Derk(k[G], k[G]) := {D ∈ HomVectk(k[G], k[G]) |D(fg) = f ·Dg + g ·Df}
(A.4)

i.e. the Lie algebra of vector fields on G. The actions of G on itself by left and

right translation induce actions of G on k[G], denoted L and R respectively, and

consequently induce G-actions (by conjugation) on DG.

Definition A.2.2. The Lie algebra of G, denoted Lie(G) or g, is the Lie algebra of

left-invariant vector fields on G,

Lie(G) = g := {D ∈ DG |D = Lg ◦D ◦ L−1
g for all g ∈ G}. (A.5)

Remark A.2.1. The actions of left and right translation commute, and so R induces

an action of G on g.

Next, consider the homomorphism

G Aut(G)

g (h 7→ ghg−1)

(A.6)

This fixes the identity 1 ∈ G and induces automorphisms of the tangent space T1G.
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Definition A.2.3. The representation of G on T1G induced by conjugation is called

the adjoint action of G as is denoted Ad : G→ GL(T1G).

Proposition A.2.1. [71, §4.4] There is a vector space isomorphism g ∼= T1G under

which the action of G induced by right translation is identified with Ad.

Definition A.2.4. The differential of Ad at the identity is denoted ad : g →

End(T1G), and is called the adjoint action (for reasons made clear by the follow-

ing Proposition A.2.2).

Proposition A.2.2. [71, §4.4] Under the identification g ∼= T1G, the adjoint action

satisfies ad(x)(y) = [x, y]. I.e. ad is a Lie algebra homomorphism, and so defines an

action of the Lie algebra g on itself.

Remark A.2.2. Dual to the adjoint actions, there are induced coadjoint actions on

the dual of the Lie algebra,

Ad∗ :G→ Aut(g∗) (A.7)

ad∗ :g→ End(g∗) (A.8)

A.3 Types of linear algebraic group and Lie algebra

Definition A.3.1. Let V be a finite dimensional vector space over k.

(1) An endomorphism A ∈ Endk(V ) is semisimple if there is a basis of V in which

A is a diagonal matrix.

(2) An endomorphism A ∈ Endk(V ) is nilpotent if there is N ∈ Z>0 such that

AN = 0.
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(3) An endomorphism A ∈ Endk(V ) is unipotent if A− 1 is nilpotent.

Let G be a linear algebraic group over k.

(1) An element g ∈ G is semisimple if and only if its image in any finite dimensional

faithful representation is semisimple.

(2) An element g ∈ G is unipotent if and only if its image in any finite dimensional

faithful representation is unipotent.

Theorem A.3.1 (Jordan Decompositions, [71, §2.4]). Let V be a finite dimensional

vector space over k, and let G be a linear algebraic group over k.

(i) Additive Jordan Decomposition: Let A ∈ End(V ). There exist unique

elements As, An ∈ End(V ) such that

• As is semisimple,

• An is nilpotent,

• As and An commute, and

• A = As + An.

Furthermore, there are polynomials P,Q ∈ k[t] without constant term such that

As = P (A) and An = Q(A).

(ii) Multiplicative Jordan Decomposition: Let A ∈ GL(V ). There exist

unique elements As, Au ∈ GL(V ) such that

• As is semisimple,
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• Au is unipotent,

• As and Au commute, and

• A = AsAu.

(iii) Jordan Decomposition in a Linear Algebraic Group: Let g ∈ G. There

exist unique elements gs, gu ∈ G such that

• gs is semisimple,

• gu is unipotent,

• gs and gu commute, and

• g = gsgu.

Definition A.3.2. (1) An linear algebraic group T is an (algebraic) torus if it is

isomorphic to GN
m for some N ∈ Z>0.1

(2) A linear algebraic group U is unipotent if all of its elements are unipotent.

(3) A group B is called solvable if its derived series

B(0) := B, B(n) := [B(n−1), B(n−1)], (A.9)

terminates at the identity after finitely many steps, i.e. B(n) = {1B} for some

n ∈ Z>0.

1Recall that we are working over an algebraically closed field. Over a non-algebraically closed
field F, T is an algebraic torus if its base-change to an algebraic closure F̄ is an algebraic torus; a
torus which is already isomorphic to GNm over F is called F-split.
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(4) A group N is called nilpotent if its lower central series

N1 := N, Nn := [Nn−1, N ], (A.10)

terminates at the identity after finitely many steps, i.e. Nn = {1N} for some

n ∈ Z>0.

Definition A.3.3. Let G be a linear algebraic group over k.

(1) A closed subgroup P of G is parabolic if G/P is a complete variety.

(2) A Borel subgroup B of G is a (closed, connected) maximal solvable subgroup of

G. Equivalently, it is a minimal parabolic subgroup of G.

(3) A maximal torus H of G is a subtorus of G not strictly contained in any other

subtorus.

(4) A Cartan subgroup of G is the identity component of the centraliser of a maximal

torus.

(5) The radical of G, R(G), is the maximal closed, connected, normal, solvable

subgroup of G.

(6) The unipotent radical of G, Ru(G), is the maximal closed, connected, normal,

unipotent subgroup of G. Equivalently, it is the group of unipotent elements in

the radical R(G).

Definition A.3.4. Let G be a linear algebraic group over k.

(1) G is simple if has no proper, connected, closed, normal subgroup.
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(2) G is semi-simple if R(G) = {1G}.

(3) G is reductive if Ru(G) = {1G}.

Remark A.3.1. Simple linear algebraic groups (as defined in A.3.4) are occasionally

referred to as quasi-simple, e.g. [71, §8.1.12]. This is because they are not simple in

the purely group theoretic sense. This use of the term “simple” is standard practice,

and in context does not usually cause confusion.

The above concepts for linear algebraic groups have analogues in the theory

of Lie algebras.

Definition A.3.5. Let g be a Lie algebra over k.

1. An element x ∈ g is semisimple if its image in any finite-dimensional represen-

tation is semisimple.

2. An element x ∈ g is nilpotent if its image in any finite-dimensional representa-

tion is nilpotent.

Definition A.3.6. 1. A Lie algebra b is called solvable if its derived series

b(0) := b, b(n) := [b(n−1), b(n−1)], (A.11)

terminates at zero after finitely many steps, i.e. b(n) = {0} for some n ∈ Z>0.

2. A Lie algebra n is called nilpotent if its lower central series

n1 := n, nn := [nn−1, n], (A.12)

terminates at zero after finitely many steps, i.e. nn = {0} for some n ∈ Z>0.
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Definition A.3.7. Let g be a Lie algebra over k.

(1) g is simple if it is non-abelian and has no non-trivial proper ideals.

(2) g is semi-simple if it is a direct sum of simple Lie algebras.

(3) g is reductive if it is the direct sum of a semi-simple Lie algebra and an abelian

Lie algebra.

Definition A.3.8. Let g be a semi-simple Lie algebra over k.

(1) A Borel subalgebra b of g is a maximal solvable subalgebra of g.

(2) A parabolic subalgebra p of g is a subalgebra containing a Borel subalgebra of g.

(3) A Cartan subalgebra h of g is a self-normalising nilpotent subalgebra.

Remark A.3.2. If we restrict our focus to reductive algebraic groups and Lie algebras,

the Cartan subgroups are exactly the maximal tori, and similarly the Cartan sub-

algebras are exactly the maximally commuting subalgebras of semisimple elements

(which occur as the Lie algebras of maximal tori).

Remark A.3.3. The Additive Jordan Decomposition of Theorem A.3.1 carries over

to give a Jordan decomposition for elements of semisimple Lie algebras over k.

A.4 Classification of reductive algebraic groups

For this section, let G denote a reductive algebraic group over an algebraically

closed field k, let B ⊂ G be a choice of Borel subgroup, and let H ⊂ B be a choice

of maximal torus.
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A.4.1 Abstract root datum

Definition A.4.1. A root datum is the data of a quadruple Ψ = (X,R,X∨, R∨)

consisting of

(1) free abelian groups X and X∨ of finite rank, equipped with a perfect pairing

〈−,−〉 : X ×X∨ → Z,2 and

(2) finite subsets R and R∨ of X and X∨ respectively, together with a bijection

R R∨

α α∨

We call R the set of roots and R∨ the set of coroots.

This data is subject to the following conditions:

(a) If α ∈ R then 〈α, α∨〉 = 2.

(b) If α ∈ R then sα(R) = R and s∨α(R∨) = R∨, where for λ ∈ X, x ∈ X∨,

sα(λ) := λ− 〈λ, α∨〉α

s∨α(x) := x− 〈α, x〉α∨ (A.13)

The map sα is called the root reflection corresponding to α.

Definition A.4.2. Given a root datum Ψ = (X,R,X∨, R∨), the Weyl group of Ψ,

denoted W (Ψ), is the subgroup of Aut(X) generated by the root reflections {sα}α∈R.

2I.e. X∨ ∼= Hom(X,Z) = X∧. This is an annoying notational inconsistency, which should not
cause confusion in context.
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Definition A.4.3. Given a root datum Ψ = (X,R,X∨, R∨), the root lattice is

ΛR := Z ·R ⊂ X and the coroot lattice is ΠR := Z ·R∨ ⊂ X∨.

Remark A.4.1. Suppose R 6= ∅ and consider the real vector vector space V := R⊗ΛR.

Then R is a root system in V [71, §7.4.1], i.e. R satisfies:

(a) R is finite, generates V , and 0 6∈ R.

(b) If α ∈ R there exists α∨ ∈ V ∗ such that 〈α, α∨〉 = 2, and sα(R) = R.

(c) If α ∈ R then α∨(R) ⊂ Z.

Furthermore, a root system is called reduced if cα ∈ R for some α ∈ R and c ∈ Q

implies that c = ±1.

Definition A.4.4. Let Ψ = (X,R,X∨, R∨) be a root datum. A subset R+ ⊂ R is

a system of positive roots if there exists x ∈ X∨ such that 〈α, x〉 6= 0 for all α ∈ R,

and

R+ = {α ∈ R | 〈α, x〉 > 0}. (A.14)

Definition A.4.5. Let Ψ be a root datum with a choice of positive roots R+. A

root α ∈ R is called simple if it cannot be written as the sum of two positive roots.

A.4.2 Root datum from reductive algebraic groups

In this section I describe how a connected reductive algebraic group gives

rise to a root datum. Recall that we have a choice of maximal torus and Borel,

H ⊂ B ⊂ G, and that these have Lie algebras h ⊂ b ⊂ g.
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Definition A.4.6. The Weyl group associated to G ⊃ H is WG(H) := NG(H)/H.

Recall that there is a canonical representation associated to G called the

adjoint action, Ad : G→ GL(g). Restricting this action to H, we may decompose g

into isotypic components labelled by the character lattice X•(G,H):

g ∼=
⊕

λ∈X•(G,H)

gλ. (A.15)

Definition A.4.7. The elements of the set

R(G,H) := {α ∈ X•(G,H) \ {0} | gα 6= 0} (A.16)

are called the roots of G relative to H. This will sometimes be denoted by R when

context makes G, H clear.

Recall that there is a natural integer valued pairing 〈−,−〉 between characters

(maps to Gm) and cocharacters (maps from Gm) defined by

X•(G,H)×X•(G,H) Hom(Gm,Gm) = Z

(λ, x) (λ ◦ x)(z) = z〈λ,x〉
(A.17)

Definition A.4.8. Given a root α ∈ R(G,H) there is a unique element α∨ ∈

X•(G,H) satisfying the conditions of Definition A.4.1 with respect to the pairing

(A.17). α∨ is called the coroot corresponding to α, and the set of coroots is denoted

R(G,H)∨ (or R∨ if G, H are clear from context).

Definition A.4.9. The isotypic components of g in equation (A.15) corresponding

to roots are called the root spaces of g.
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Definition A.4.10. Let R+(B) (or R+ is context is clear) denote the subset of

R(G,H) corresponding to the Borel subalgebra b, i.e.

b = h⊕

 ⊕
α∈R+(B)

gα

 . (A.18)

Theorem A.4.1 (Classification of reductive algebraic groups.). Let H ⊂ B ⊂ G be

as above.

1. The quadruple Ψ(G,H) = (X•(G,H), R(G,H), X•(G,H), R(G,H)∨) is a root

datum with reduced root system.

2. There is an isomorphism W (Ψ(G,H)) ∼= WG(H).

3. There is a one-to-one correspondence between root datum up to isomorphism3

and connected reductive algebraic groups up to isomorphism.

4. The subset R+(B) of Definition A.4.10 is a system of positive roots (Definition

A.4.4). Conversely, any system of positive roots for R(G,H) arises as R+(B′)

for some Borel subgroup B′ ⊃ H.

Proof. See [71, Ch.7–10].

Proposition A.4.2 (Langlands Duality). For simplicity, let the ground field be k =

C.

1. If Ψ = (X,R,X∨, R∨) is a root datum then so is LΨ = (X∨, R∨, X,R).

3There is a natural way to define the notion of a morphism of root systems.
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2. There is an involution L(−) on the set of connected complex reductive algebraic

groups up to isomorphism, called Langlands duality. If G is a connected reduc-

tive algebraic group and H ⊂ G is a maximal torus, then LG is determined up

to isomorphism by the root datum (X•(G,H), R(G,H)∨, X•(G,H), R(G,H)).

3. If T is an algebraic torus, then LT ∼= X•(T )⊗Z C×.
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Appendix B

Fixed points of Weyl group actions

In this appendix I study the action of the Weyl group of a reductive algebraic

group G on a choice of fixed maximal torus H, with a view to understanding the

fixed loci of root reflections. As we have seen, this is related to understanding the

global sections of the scheme of regular centralisers on a smooth proper scheme (c.f.

Lemma 5.1.2).

B.1 Fixed points: The (semi)simple case

Assume that G is a simple and connected complex algebraic group, with a

choice of maximal torus H ⊂ G. Via the exponential map we have an (analytic and

W -equivariant) identification

H ∼=
X•(H)⊗ C
X•(H)

= X•(H)⊗ C× (B.1)

where X•(H) = Hom(C×, H) ⊂ h is the cocharacter lattice of H.

Recall that the Weyl reflection sα : h∗ → h∗ corresponding to the root α is
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defined by1

sα(λ) = λ− λ(Hα)dα, (B.2)

where Hα is the coroot associated to α, i.e. the unique element of [gα, g−α] satisfying

dα(Hα) = 2. Dualising this, we have that sα ∈ WG(H) acts on h via

sα(x) = x− dα(x)Hα. (B.3)

Translating this via the exponential map into a question about fixed points on the

maximal torus H, we say that a point x ∈ h is a fixed point of sα if and only if

sα(x) ∈ x+X•(H), which, using our explicit description of sα, occurs if and only if

dα(x)Hα ∈ X•(H).

As one application of this lattice theoretic description, we make the following

observation:

Proposition B.1.1. If h ∈ H is fixed by the action of sα, then α(h) = ±1.

Proof. Let ΛR denote the root lattice and X•(G,H) = X•(H) the character lattice

of G, both thought of as embedded in h∗. We have

X•(H) = {y ∈ h |λ(y) ∈ Z for all λ ∈ X•(H)}. (B.4)

Represent the fixed h ∈ H by x ∈ h. Since ΛR ⊂ X•(H) we have that sα(x) ∈

x + X•(H) implies dα(dα(x)Hα) ∈ Z, equivalently 2dα(x) ∈ Z, and so dα(x) ∈ 1
2
Z.

1Recall that our convention is that α defines a character of H, hence its derivative dα defines a
linear functional on h.
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But then for some n ∈ Z

α(t) = e2πidα(x) = eπin ∈ {±1}. (B.5)

Recall that if G1 → G2 is an isogeny of simple groups inducing an isogeny on

maximal tori H1 → H2, then X•(G1, H1) ⊂ X•(G2, H2). This reflects the fact that if

x ∈ h represents a fixed point of sα acting on H1 ⊂ G1, then it also represents a fixed

point of sα acting on H2 ⊂ G2. This is not a deep fact: the isogeny is W -equivariant,

where W ≡ WG1(H1) = WG2(H2), since it corresponds to the quotient by a central

subgroup and the Weyl group action is induced by conjugation. More interesting

is the question of when a fixed element h2 ∈ Hsα
2 can be lifted to a fixed element

h1 ∈ Hsα
1 . It turns out that we can give an exact answer to this question when the

group we wish to lift to is the simply-connected form of the group.

Theorem B.1.2. Let G̃ be a simple, connected, simply-connected complex algebraic

group, and let G̃ → G be an isogeny of simple groups. Choose a maximal torus

H̃ ⊂ G̃ an denote by H the corresponding maximal tori in G. Suppose that h ∈ H

is fixed by the root reflection sα ∈ W . Then a preimage h̃ ∈ h̃ of h is fixed by sα if

and only if α(h) = 1.

Proof. We first translate this into a statement about lattices and integrality: specif-

ically the claim of the theorem is equivalent to the claim that for any element x ∈ h

representing h, dα(x) ∈ Z if and only if dα(x)Hα ∈ X•(G̃, H̃). In this form, the the-

orem follows from the fact that the cocharacter lattice for the simply connected form

of the group is exactly the coroot lattice (i.e. the integral span of the coroots).
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Remark B.1.1. By considering products of simple groups and their Weyl groups,

Theorem B.1.2 immediately extends to all semi-simple complex algebraic groups.

Example 38. Consider the groups SL2C and PGL2C, with a simultaneous choice

of Cartan subalgebra h = {2 × 2 traceless complex matrices}. Let h =

(
1 0
0 −1

)
,

and consider the character

dα : h→ C

dα (a · h) = 2a (B.6)

Then the root, weight, and character lattices are given by

ΛR = Z · dα = X•(PGL2, Had)

ΛW =
1

2
Z · dα = X•(SL2, H) (B.7)

and the coroot, coweight, and cocharacter lattices are

ΠR = Z · h = X•(SL2, H)

ΠW =
1

2
Z · h = X•(PGL2, H) (B.8)

The Weyl group in this case is of order 2, with non-trivial element acting on h by

sα(x) = −x, so that x exponentiates to a fixed point in G if and only if 2x ∈

X•(G,H). For G = SL2C this translates to dα(x) ∈ Z, which upon exponentiating

gives (
±1 0
0 ±1

)
.

For G = PGL2C this translates to dα(x) ∈ 1
2
Z, which upon exponentiating gives a

new non-trivial fixed element given by the equivalence class of(
i 0
0 −i

)
.
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Remark B.1.2. This example, and a comparison of SLrC and PGLrC for r > 2,

could have been done more directly by using that the Weyl group of type Ar−1 is

the symmetric group on r letters acting on the standard torus of diagonal matrices

by permuting the elements on the diagonal. A generalisation of this direct analysis

even to other classical groups, however, is difficult and not particularly illuminating.

B.2 Fixed points: The reductive case

B.2.1 The Weyl group of a reductive algebraic group

Let G be (connected) semisimple group, T an algebraic torus, and K a finite

central subgroup of G × T , with projection to G denoted KG ⊂ Z(G) ⊂ G and

inversion and projection to T denoted by KT ⊂ T .2 We want to understand the

Weyl group of the quotient

G(K;T ) =
G× T
K

. (B.9)

Let H ⊂ G be a choice of maximal torus. Since KG ⊂ Z(G) ⊂ H, we have that

K ⊂ H × T and the maximal torus of G(K;T ) is

H(K;T ) =
H × T
K

. (B.10)

First, we consider the Weyl group of the product G× T . T is central, so NG×T (H ×

T ) = NG(H) × T , and thus the Weyl group with respect to this choice of maximal

torus is

WG×T (H × T ) =
NG×T (H × T )

H × T
= NG(H)/H = WG(H), (B.11)

2In other words, if we think of K as a subgroup of both G and T , the equivalence relation we
quotient out by is (g, t) ∼ (gk, k−1t).
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i.e. the Weyl group of the product is the Weyl group of the semisimple factor.

Now, let’s consider the Weyl group of the quotient G(K;T ). Since this is a

covering space of G×T , and there is an alternate characterisation of the Weyl group

as generated by reflections in hyperplanes in the Cartan subalgebra, we expect that

we should arrive at the same answer again. Still, let us check this directly.

Since elements of the form [1G, t] ∈ G(K;T ) are central, it suffices to deter-

mine when an element of the form [g, 1T ] ∈ G(K;T ) is in the normaliser. It suffices

to consider elements of the form [h, 1T ] ∈ H(K;T ) (again, since the image of the

subgroup T is central in the quotient). We calculate

[g, 1T ][h, 1T ][g−1, 1T ] = [ghg−1, 1T ]. (B.12)

This lies in H(K;T ) if and only if ghg−1 = h′k for some k ∈ K whose image in KT

is trivial, and h′ ∈ H. But KG ⊂ Z(G) ⊂ H, so this occurs if and only if ghg−1 ∈ H,

i.e. g ∈ NG(H). The normaliser is therefore

NG(K;T )(H(K;T )) =
NG(H)× T

K
(B.13)

and so taking the quotient by H(K;T ) = H×T
K

we find that

WG(K;T )(H(K;T )) = WG(H). (B.14)

B.2.2 Calculation of fixed points

Now, assume that the map K → KT is an embedding, and denote by W the

canonically isomorphic Weyl groups

W ≡ WG(K;T )(H(K;T )) = WG(H). (B.15)
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We wish to identify the fixed locus H(K;T )W .

Proposition B.2.1.

H(K;T )W =
HW × T

K

Proof. Restoring the trivial action of the centraliser, this is the same asH(K;T )(NG(H)×T )/K .

Let [n, t] ∈ NG(H)×T
K

and [h, s] ∈ H(K;T )W , so that

[h, s] = [n, t][h, s][n−1, t−1] = [nhn−1, s]. (B.16)

This occurs if and only if there is k ∈ K with images kG and kT in KG and KT such

that nhn−1 = hkG and s = k−1
T s. This requires kT = 1T , and since we assumed that

K → KT was an embedding this implies k = 1 and so kG = 1G. Therefore,

nhn−1 = h, i.e. h ∈ HNG(H) = HW (B.17)

and the proposition follows.

Remark B.2.1. Given that we have spent time in Section B.1 comparing Weyl group

fixed points for isogenous simple groups, it is important to note what this does not

prove: namely, it does not contradict Theorem B.1.2, which gave conditions for when

a fixed point in the maximal torus of a simple group may be lifted to a fixed point

in the maximal torus of the corresponding simply-connected form of the group.

The assumption that saves us from any inconsistency is the assumption that

the map K → KT is an embedding: in the setting where we are studying an isogeny

of (semi)simple groups we have that T is the trivial group, and so K must also be

the trivial group.
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Appendix C

Structure results for G̃τ

In this appendix I study the structure of the reductive algebraic group G̃τ ,

which I used in Chapter 5 to construct the moduli stack M•
G̃

(X).

C.1 The Langlands dual of the map τ

Consider the exact sequence of complex algebraic groups

1→ Z(G̃)→ G̃× T → G̃τ → 1. (C.1)

I claim that there is a dual exact sequence

1→ Z(L̃G)→ L(G̃τ )→ L̃G× LT → 1. (C.2)

Where does this come from? Consider the exact sequence of abelian groups

1 Z(G̃) T T/Z(G̃) 1.τ (C.3)

Taking characters Hom(−,C×) is a contravariant functor and yields the exact se-

quence

0→ X•(T/Z(G̃))→ X•(T )→ Z(G̃)∨ → 0, (C.4)
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i.e.

0→ X•(
L(T/Z(G̃)))→ X•(

LT )→ Z(L̃G)→ 0. (C.5)

Apply −⊗L
Z C× and take homology to get the exact sequence

1→ TorZ1 (Z(L̃G),C×)→ L(T/Z(G̃))→ LT → 1. (C.6)

As an abelian group C× ∼= R×>0 × U(1) ∼= R × U(1), and so TorZ1 (Z(L̃G),C×) is

canonically isomorphic to the torsion subgroup of Z(L̃G) (which is the entire group,

since Z(G̃) is torsion). I.e. we have an exact sequence

1 Z(L̃G) L(T/Z(G̃)) LT 1.
Lτ (C.7)

So, let H̃ ⊂ G̃ be a maximal torus. Then

• Had = H̃/Z(G̃) is a maximal torus for Gad.

• H̃ × T is a maximal torus for G̃× T .

• H̃×T
Z(G̃)

is a maximal torus for G̃τ .

• L
(
H̃×T
Z(G̃)

)
is a maximal torus for L(G̃τ ).

So an exact sequence

1→ Z(G̃)→ H̃ × T → H̃ × T
Z(G̃)

→ 1 (C.8)

yields an exact sequence

1→ Z(L̃G)→ L

(
H̃ × T
Z(G̃)

)
→ LH̃ × LT → 1 (C.9)

and so via the inclusions H̃ ⊂ G̃, L
(
H̃×T
Z(G̃)

)
⊂ L(G̃τ ), the exact sequence (C.1) yields

a dual exact sequence (C.2).
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C.2 Structure of the Langlands dual group

There is another inclusion

Z(G̃) G̃× T

z (1G̃, τ(z))

1×τ

(C.10)

which induces an exact sequence

1 Z(G̃) G̃τ Gad × (T/Z(G̃)) 1.
1×τ

(C.11)

Proposition C.2.1. The Langlands dual exact sequence is given by

1 Z(L̃G) L̃G× L(T/Z(G̃)) L(G̃τ ) 1
Lι×Lτ

(C.12)

where ι : Z(G̃) ⊂ G̃ and Lι : Z(L̃G) ⊂ L̃G are the subgroup inclusions, and Lτ is the

map described in section C.1. I.e. we can realise the Langlands dual of G̃τ as

L(G̃τ ) ∼=
L̃G× L(T/Z(G̃))

Z(L̃G)
= (L̃G)Lτ . (C.13)

Proof. It suffices to prove the result after replacing the group G̃ with a choice of

maximal torus H̃. Consider the following commutative diagram, where all rows and
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columns are exact:

0 1 1

1 Z(G̃) T T/Z(G̃) 1

1 Z(G̃) H̃×T
Z(G̃)

Had × T/Z(G̃) 1

0 Had Had 0

1 1

τ

1×id 1×id

1×τ (C.14)

Applying (−)∨ := Hom(−,C×) yields another commutative diagram, again with all

rows and columns exact:

0 0

0 X•(Had) X•(Had) 0

0 X•(Had)×X•(T/Z(G̃)) X•
(
H̃×T
Z(G̃)

)
Z(G̃)∨ 0

0 X•(T/Z(G̃)) X•(T ) Z(G̃)∨ 0

0 0 0

1×τ∨

τ∨

(C.15)

Applying − ⊗L
Z C× and taking homology yields a third commutative diagram with
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all rows and columns exact:

1 1

0 L̃H L̃H 0

1 Z(L̃G) L̃H × L(T/Z(G̃)) L
(
H̃×T
Z(G̃)

)
1

1 Z(L̃G) L(T/Z(G̃)) LT 1

0 1 1

L1×τ

Lτ

(C.16)

Therefore, composing L1× τ with projection to the second factor gives

Z(L̃G) L̃H × L(T/Z(G̃))

L(T/Z(G̃))

L1×τ

Lτ
(C.17)

Repeating this argument but with the central column in the first diagram given by

1 H̃ H̃×T
Z(G̃)

T/Z(G̃) 1 (C.18)

shows that composition with the first projection is

Z(L̃G) L̃H × L(T/Z(G̃))

L̃H

L1×τ

Lι

(C.19)

Therefore, L1× τ = Lι× Lτ .
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Birkhäuser Boston, Inc., Boston, MA, second edition, 1998.

[72] Andrew Strominger. Open p-branes. Phys. Lett. B, 383(1):44–47, 1996.

[73] Andrew Strominger. Kaluza-Klein compactifications, supersymmetry, and Calabi-

Yau spaces. In Quantum fields and strings: a course for mathematicians, Vol.

1, 2 (Princeton, NJ, 1996/1997), pages 1091–1115. Amer. Math. Soc., Provi-

dence, RI, 1999.

[74] Andrew Strominger, Shing-Tung Yau, and Eric Zaslow. Mirror symmetry is

T -duality. Nuclear Phys. B, 479(1-2):243–259, 1996.

[75] Yuji Tachikawa. A pseudo-mathematical pseudo-review on 4d N = 2 supersym-

metric quantum field theories. Available at https://member.ipmu.jp/yuji.

tachikawa/not-on-arxiv.html.

[76] Yuji Tachikawa. On the 6d origin of discrete additional data of 4d gauge

theories. Journal of High Energy Physics, 2014(5):20, May 2014.

[77] J. Teschner. Quantization of the Hitchin moduli spaces, Liouville theory and the

geometric Langlands correspondence I. Adv. Theor. Math. Phys., 15(2):471–

564, 2011.

169



[78] Erik Verlinde. Global aspects of electric-magnetic duality. Nuclear Phys. B,

455(1-2):211–225, 1995.

[79] Angelo Vistoli. Grothendieck topologies, fibered categories and descent theory.

In Fundamental algebraic geometry, volume 123 of Math. Surveys Monogr.,

pages 1–104. Amer. Math. Soc., Providence, RI, 2005.

[80] Claire Voisin. Mirror symmetry, volume 1 of SMF/AMS Texts and Mono-

graphs. American Mathematical Society, Providence, RI; Société Mathématique
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