
The Dissertation Committee for David Iseri Inouye
certifies that this is the approved version of the following dissertation:

Appropriate, Accessible and Appealing

Probabilistic Graphical Models

Committee:

Inderjit S. Dhillon, Supervisor

Pradeep Ravikumar, Co-Supervisor

Raymond J. Mooney

Qixing Huang

Byron C. Wallace



Appropriate, Accessible and Appealing

Probabilistic Graphical Models

by

David Iseri Inouye, B.A., B.S.E.E., M.S.C.S.

DISSERTATION

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

THE UNIVERSITY OF TEXAS AT AUSTIN

May 2017



Dedicated to my beloved wife Harriett for her persistent warmth.



Acknowledgments

Unless the LORD builds the house,

those who build it labor in vain.

Unless the LORD watches over the city,

the watchman stays awake in vain.

It is in vain that you rise up early

and go late to rest,

eating the bread of anxious toil;

for he gives to his beloved sleep.

— Psalm 127:1-2

I thank the Lord God for sustaining me, walking with me and researching with me

throughout my work. If the Lord had not worked, my research efforts would have been in

vain. Yet, the Lord in his good pleasure has graciously allowed me to complete my Ph.D.

Any truth or good you find in this work are from the Lord and any inadequacies are my

own.

I am grateful to my supervisor Prof. Inderjit Dhillon for his overall support

throughout my research and for giving me great freedom to pursue topics that excited me.

I also appreciated his reasonable expectations about the amount and pacing of

research—especially when I felt overwhelmed. I thank my co-supervisor Prof. Pradeep

Ravikumar for convincing me to submit my first graphical model paper to ICML—a task

that initially felt impossible at the time. His constructive guidance and feedback helped

form the direction of this research as well as my broader approach to research. I thank

iv



Prof. Byron Wallace for our many fun and fruitful discussions; his enthusiasm and support

greatly encouraged me. I thank the other committee members Prof. Raymond Mooney and

Prof. Qixing Huang for their time and support.

I gratefully acknowledge the financial support of the National Science Foundation

Graduate Research Fellowship Program.

I want to express my gratitude to Prof. Genevera Allen and Prof. Eunho Yang for

their work on the Poisson review paper. I thank my former labmate Nagarajan Natarajan

(Naga) for his smiles and encouraging words especially in my early years of graduate school. I

also greatly appreciated Hsiang-Fu Yu’s kind help with optimization, proofs, coding problems

and LATEX. I thank all my other labmates for talking with me and helping me along the

way including but not limited to Prof. Cho-Rui Hsieh, Si Si, Kai Zhong, Rashish Tandon,

Tianyang Li, Qi Lei, Kai-Yang Chiang and Prof. Joyce Whang.

I am grateful to Prof. Jugal Kalita who sparked my interest in both research and

machine learning during my undergraduate studies. Without his influence, I likely would

have never pursued research or even known about machine learning. I also thank Prof.

William Pottenger who mentored my second summer research internship and supported my

application to graduate school.

I am indebted to my parents for their continual love, support and prayers. I thank

my brother for our many random research discussions. With the greatest love, I thank

my beloved wife Harriett for all her love, affection, perseverance and fortitude amid the

challenges of research including the long lost-in-thought stares and late nights.

I am grateful to my many Hampton House friends and roommates who kept me sane

in the early years of graduate school. You offered a breath of fresh air away from the pressures

of academic life.

Finally, I close with these quotes that encouraged me, challenged me and often

v



enlivened a right perspective throughout my research:

For the LORD gives wisdom;

from his mouth come knowledge and understanding;

— Proverbs 2:6

Come now, you who say, “Today or tomorrow we will go into such and such a

town and spend a year there and trade and make a profit” . . . . Instead you ought

to say, “If the Lord wills, we will live and do this or that.”

— James 4:13,15

If I have prophetic powers, and understand all mysteries and all knowledge, and

if I have all faith, so as to remove mountains, but have not love, I am nothing.

— 1 Corinthians 13:2

“Come to me, all who labor and are heavy laden, and I will give you rest. Take

my yoke upon you, and learn from me, for I am gentle and lowly in heart, and

you will find rest for your souls. For my yoke is easy, and my burden is light.”

— Matthew 11:28-30

The words of the wise . . . are given by one Shepherd. My son, beware of anything

beyond these. Of making many books there is no end, and much study is a

weariness of the flesh.

— Ecclesiastes 12:11-12

vi



Appropriate, Accessible and Appealing

Probabilistic Graphical Models

by

David Iseri Inouye, Ph.D.

The University of Texas at Austin, 2017

Supervisor: Inderjit S. Dhillon
Co-Supervisor: Pradeep Ravikumar

Appropriate - Many multivariate probabilistic models either use independent

distributions or dependent Gaussian distributions. Yet, many real-world datasets contain

count-valued or non-negative skewed data, e.g. bag-of-words text data and biological

sequencing data. Thus, we develop novel probabilistic graphical models for use on

count-valued and non-negative data including Poisson graphical models and multinomial

graphical models. We develop one generalization that allows for triple-wise or k-wise

graphical models going beyond the normal pairwise formulation. Furthermore, we also

explore Gaussian-copula graphical models and derive closed-form solutions for the

conditional distributions and marginal distributions (both before and after conditioning).

Finally, we derive mixture and admixture, or topic model, generalizations of these

graphical models to introduce more power and interpretability.

Accessible - Previous multivariate models, especially related to text data, often have

complex dependencies without a closed form and require complex inference algorithms that

have limited theoretical justification. For example, hierarchical Bayesian models often

require marginalizing over many latent variables. We show that our novel graphical models
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(even the k-wise interaction models) have simple and intuitive estimation procedures based

on node-wise regressions that likely have similar theoretical guarantees as previous work in

graphical models. For the copula-based graphical models, we show that simple

approximations could still provide useful models; these copula models also come with

closed-form conditional and marginal distributions, which make them amenable to

exploratory inspection and manipulation. The parameters of these models are easy to

interpret and thus may be accessible to a wide audience.

Appealing - High-level visualization and interpretation of graphical models with

even 100 variables has often been difficult even for a graphical model expert—despite

visualization being one of the original motivators for graphical models. This difficulty is

likely due to the lack of collaboration between graphical model experts and visualization

experts. To begin bridging this gap, we develop a novel “what if?” interaction that

manipulates and leverages the probabilistic power of graphical models. Our approach

defines: the probabilistic mechanism via conditional probability; the query language to

map text input to a conditional probability query; and the formal underlying probabilistic

model. We then propose to visualize these query-specific probabilistic graphical models by

combining the intuitiveness of force-directed layouts with the beauty and readability of

word clouds, which pack many words into valuable screen space while ensuring words do

not overlap via pixel-level collision detection. Although both the force-directed layout and

the pixel-level packing problems are challenging in their own right, we approximate both

simultaneously via adaptive simulated annealing starting from careful initialization. For

visualizing mixture distributions, we also design a meaningful mapping from the properties

of the mixture distribution to a color in the perceptually uniform CIELUV color space.

Finally, we demonstrate our approach via illustrative visualizations of several real-world

datasets.
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Chapter 1

Introduction1

1.1 Appropriate

1.1.1 Problem: Inappropriate Probabilistic Models

Gaussian, binary and discrete undirected graphical models—or Markov Random

Fields (MRF)—have become popular for compactly modeling and studying the structural

dependencies between high-dimensional continuous, binary and categorical data

respectively [Friedman et al., 2008, Hsieh et al., 2014, Banerjee et al., 2008, Ravikumar

et al., 2010, Jalali et al., 2010]. However, real-world data does not often fit the assumption

that variables come from Gaussian or discrete distributions. For example, word counts in

documents are nonnegative integers with many zero values and hence are more

appropriately modeled by the Poisson distribution. Yet, an independent Poisson

distribution would be insufficient because words are often either positively or negatively

related to other words—e.g. the words “machine” and “learning” would often co-occur

together in ICML papers (positive dependency) whereas the words “deep” and “kernel”

would rarely co-occur since they usually refer to different topics (negative dependency).

Thus, a Poisson-like model that allows for dependencies between words is desirable. As

another example, the delay times at airports are nonnegative continuous values that are

more closely modeled by an exponential distribution than a Gaussian distribution but an

1Some paragraphs of this chapter are from the drafts of the paper [Inouye et al., 2017] first-authored by
David Inouye but co-authored with Eunho Yang, Genevera Allen and Pradeep Ravikumar. See Chapter 5
for more information on David Inouye’s contributions.
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independent exponential distribution is insufficient because delays at different airports are

often related (and sometimes causally related)—e.g. if a flight from Los Angeles, CA

(LAX) to San Francisco, CA (SFO) is delayed then it is likely that the return flight of the

same airplane will also be delayed. Other examples of non-Gaussian and non-discrete data

include high-throughput gene sequencing count data, crime statistics, website visits,

survival times, call times and delay times.

Multivariate count-valued data has become increasingly prevalent in modern big

data settings. Variables in such data are rarely independent and instead exhibit complex

positive and negative dependencies. We highlight three examples of multivariate

count-valued data that exhibit rich dependencies: text analysis, genomics, and crime

statistics. In text analysis, a standard way to represent documents is to merely count the

number of occurrences for each word in the vocabulary and create a word-count vector for

each document. This representation is often known as the bag-of-words representation, in

which the word order and syntax are ignored. The vocabulary size—i.e. the number of

variables in the data—is usually much greater than 1000 unique words, and thus a

high-dimensional multivariate distribution is required. Also, words are clearly not

independent. For example, if the word “Poisson” appears in a document, then the word

“probability” is more likely to also appear signifying a positive dependency. Similarly, if

the word “art” appears, then the word “probability” is less likely to also appear signifying

a negative dependency. In genomics, RNA-sequencing technologies are used to measure

gene and isoform expression levels. These technologies yield counts of reads mapped back

to DNA locations, that even after normalization, yield non-negative data that is highly

skewed with many exact zeros. This genomics data is both high-dimensional, with the

number of genes measuring in the tens-of-thousands, and strongly dependent, as genes

work together in pathways and complex systems to produce particular phenotypes. In

crime analysis, counts of crimes in different counties are clearly multidimensional, with
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dependencies between crime counts. For example, the counts of crime in adjacent counties

are likely to be correlated with one another, indicating a positive dependency. While

positive dependencies are probably more prevalent in crime statistics, negative

dependencies might be very interesting. For example, a negative dependency between

adjacent counties may suggest that a criminal gang has moved from one county to the

other.

These examples motivate the need for a high-dimensional count-valued distribution

that permits rich dependencies between variables. In general, a good class of probabilistic

models is a fundamental building block for many tasks in data analysis. Estimating such

models from data could help answer exploratory questions such as: Which genomic pathways

are altered in a disease e.g. by analyzing genomic networks? Or, which county seems to have

the strongest effect, with respect to crime, on other counties?

One line of work assumes that the node conditional distributions—i.e. one variable

given the values of all the other variables—are univariate exponential families2 and

determines under what conditions a joint distribution exists that is consistent with these

node conditional distributions. Besag [1974] developed this multivariate distribution for

pairwise dependencies, and Yang et al. [2015] extended this model to k-wise dependencies.

Yang et al. [2015] also developed and analyzed an M-estimator based on `1 regularized

node-wise regressions to recover the graphical model structure with high probability.

Unfortunately, these models only allowed negative dependencies in the case of the

exponential and Poisson distributions. Yang et al. [2013] proposed three modifications to

the original Poisson model to allow positive dependencies but these modifications alter the

Poisson base distribution or require the specification of unintuitive hyperparameters. Allen

and Liu [2013] proposed another Poisson graphical model but the model is inconsistent

2See [Wainwright and Jordan, 2008] for an introduction to exponential families.

3



because it cannot be normalized. Thus, we seek to overcome these issues for standard

graphical models.

Topic models for count data, such as the well-known Latent Dirichlet Allocation model

(LDA), essentially build a hierarchical generative model for count data. Topic models are

generalizations of mixture distributions; in particular, they assume that each observation

can come from more than one component. However, the topic distributions are assumed

to be independent given the topic assignments. Yet in real-world datasets, even words

within a topic may be dependent; for example, the words “machine” and “learning” should

be dependent in a topic about computer science. Thus, the fundamental assumption of

conditional independence is often violated in many real-world datasets [Mimno and Blei,

2011].

1.1.2 Proposed Solution: General Graphical Models with Positive
Dependencies

We propose two graphical models to help provide multivariate models that

appropriately fit non-Gaussian data such as count-valued or non-negative data. In

particular, we propose the fixed-length Poisson MRF (LPMRF) in Chapter 3 that relaxes

the independence assumption of the multinomial distribution, which is merely the sum of

independent categorical variables. This allows for a count-valued graphical model which

allows for explicit positive and negative dependencies between variables. We also propose a

more general class of models called square root graphical models (SQR) in Chapter 4 which

provides elegant Poisson and exponential graphical models that permit positive

dependencies—unlike the previous graphical models in [Besag, 1974, Yang et al., 2015].

In addition, we develop two generalizations of topic models in Chapter 6 to overcome

the assumption that topics or components are independent distributions. We then propose

two novel topic models using undirected graphical models based on these generalizations in
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Chapters 7 and 8. These novel topic models fundamentally extend the standard notions of

topic models by allowing dependencies even within each topic.

1.2 Accessible

1.2.1 Problem: Complex Estimation Algorithms or Difficult to Interpret
Parameters

General multivariate probabilistic models—except for the well-known discrete or

Gaussian graphical model—have struggled to become mainstream because they are either

difficult to interpret or have complex estimation algorithms. This makes them inaccessible

to the general science community. One thread that has become prevalent is the hierarchical

Bayesian approach including topic modeling [Blei et al., 2010]. The main idea is to

manually construct a directed acyclic graphical model—often with many latent

variables—and then learn these latent variables and corresponding parameters. However,

these hierarchical models require manual construction and usually manual development of

the learning algorithm (though there has been some progress in general Bayesian learning,

see http://probabilistic-programming.org/wiki/Home). In addition, to compute the

likelihood, the latent variables must be marginalized out, which is often quite difficult.

Previous graphical models represented by [Yang et al., 2015] were restricted to

negative dependencies in the case of the Poisson model. While [Yang et al., 2013] proposed

modifications of the original Poisson graphical model to allow for positive dependencies,

the modifications significantly altered the distribution and required the user to specify

truncation parameters.

5
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1.2.2 Proposed Solution: Explicitly Model Dependencies and Estimate
Parameters with Fast Convex Optimization

As in [Yang et al., 2015], we explicitly model dependencies in our models by

associating a parameter with each dependency under a general graphical model

formulation. Unlike the models in [Yang et al., 2015], however, our models permit positive

dependencies, which are much easier to interpret than negative dependencies. This enables

simpler interpretation of the models. We propose Newton-like algorithms based on the

work in [Hsieh et al., 2011] to learn these models much more quickly than the proximal

gradient algorithms in [Yang et al., 2013, 2015]. As with the previous graphical models, our

estimation algorithms are also easier to interpret than the inference algorithms in

hierarchical Bayesian or copula models because they are merely node-wise regressions with

a particular loss function based on a univariate exponential family.

1.3 Appealing

1.3.1 Problem: Difficult to Visualize, Interpret or Provide Feedback

General high-dimensional graphical models—despite their name—have often been

difficult to visualize or interpret. In particular, graphical models involving thousands of words

are often difficult to understand even for graphical model experts. One näıve visualization

would be to merely list the top edges. However, this would not easily show the global

structure because it would be difficult to understand even twenty edges at one time. Another

idea is to use a matrix to show the edge weights. While this may be clearer than a list of edge

weights, the ordering of matrix columns is very important to the interpretation and the global

structure may be difficult to understand if there are more than twenty or thirty variables. As

another idea, people have visualized graphical models using network visualization programs
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such as Gephi3 or Cytoscape4. While network visualization can definitely provide a higher-

level view of the model, the software often suffers from overlapping labels so that it is difficult

to see many variables at once. In addition, these network visualization tools are only post-

processing tools after the model has been fit and do not enable the user to interact with

the model. All of these visualizations only provide one view of the model, and thus they

cannot show multiple perspectives of the high-dimensional model. Intuitive and powerful

user interaction with the models is required to better interpret and understand these high-

dimensional and complex graphical models.

1.3.2 Proposed Solution: Intuitive and Interactive Visualization Framework

We propose an intuitive and interactive visualization framework that seeks to

combine the mathematical modeling power of probabilistic graphical models, the aesthetics

of word clouds such as Wordle5, and the high-level intuitive idea of network visualization.

In Chapter 11, we first describe a novel and intuitive user interaction by converting ‘what

if?’ queries into concrete probabilistic operations on the model. This provides a simple and

transparent interface to the user without requiring significant knowledge about the variable

values or underlying probabilistic model; this makes the visualization accessible to a wider

audience than graphical model experts. In Chapter 12, we propose our novel model

visualization which visualizes a graphical model via a beautiful visualization that is

semantically meaningful, easy to understand and aesthetically pleasing. By combining the

power of graphical models and the beauty of visualization, we develop a novel interaction

and visualization that allows exploratory analysis of multiple types of datasets including

text data and non-text data such as airport delay times and daily stock returns.

3gephi.org
4cytoscape.org
5wordle.net
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1.4 Preliminaries

1.4.1 Notation

Let p and n denote the number of dimensions and instances respectively. We will

usually use s or t to denote indices of the dimension and i as an index of the instance.

Unless otherwise indicated, we will let X ∈ Rp×n denote the data matrix. Parameters of

distributions will usually be denoted with Greek letters such as θ, Φ, or Ψ. We will generally

use uppercase letters for matrices (e.g. Φ, X), boldface lowercase letters or indices of matrices

for column vectors (i.e xi,θ,Φs) and lowercase letters for scalar values (i.e. xsi, θs). Let R

denotes the set of real numbers, R+ denotes the nonnegative real numbers, and R++ denotes

the strictly positive real numbers. Similarly, Z denotes the set of integers, and Z+ and Z++

are defined similarly. We denote the standard basis vectors as es = [0, · · · , 0, 1, 0, · · · , 0]T and

the ones vector as e = [1, 1, · · · , 1]T . Let xp and j
√
x to be the entry-wise power and j-th root

of the vector x. For an exponential family, let T (·), B(·) and A(·) be the sufficient statistic,

log base measure and log partition function (i.e. log normalizing constant) respectively.

1.4.2 Exponential Families

We briefly describe exponential family distributions which form the basis fore the

graphical models developed throughout this work. Many commonly used distributions fall

into this family, including Gaussian, Bernoulli, exponential, gamma, and Poisson, among

others. The exponential family is specified by a vector of sufficient statistics denoted by

T (x) ≡ [T1(x), T2(x), · · · , Tm(x)], the log base measure B(x) and the domain of the random

variable D. With this notation, the generic exponential family is defined as:

PExpFam(x |η) = exp

(
m∑
i=1

ηiTi(x) +B(x)− A(η)

)

A(η) = log

∫
D

exp

(
m∑
i=1

ηiTi(x) +B(x)

)
dµ(x) ,
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where η are called the natural or canonical parameters of the distribution, µ is the Lebesgue

or counting measure depending on whether D is continuous or discrete respectively, and

A(η) is called the log partition function or log normalization constant because it normalizes

the distribution over the domain D. Note that the sufficient statistics {Ti(x)}mi=1 can be

any arbitrary function of x; for example, Ti(x) = x1x2 could be used to model interaction

between x1 and x2. The log partition function A(η) will be a key quantity when discussing

the following models: A(η) must be finite for the distribution to be valid, so that the

realizable domain of parameters is given by {η ∈ D : A(η) <∞}. Thus, for instance, if the

realizable domain only allows positive or negative interaction terms for instance, that would

severely restrict the set of allowed dependencies in the model.

Let us now consider the exponential family form of the univariate Poisson as an

example:

PPoiss(x |λ) = λx/x! exp(−λ)

= exp(log(λx)− log(x!)− λ)

= exp(log(λ)︸ ︷︷ ︸
η

x︸︷︷︸
T (x)

+ (−log(x!))︸ ︷︷ ︸
B(x)

−λ) , and therefore

PPoiss(x | η) = exp(ηx− log(x!)− exp(η)) , (1.1)

where η ≡ log(λ) is the natural parameter of the Poisson, T (x) = x is the Poisson sufficient

statistic, −log(x!) is the Poisson log base measure and A(η) = exp(η) is the Poisson log

partition function. Note that for the general exponential family distribution, the log partition

function may not have a closed form.
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Part I

Novel Graphical Models with Positive
Dependencies
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Summary of Part I

In the following chapters, we first present previous graphical models—focusing on

ones that can handle count-valued data based on the univariate Poisson. One of the key

challenges in these previous graphical models is allowing positive dependencies in an elegant

way. Previous attempts either required unintuitive hyperparameters such as truncation value

[Yang et al., 2013] or ignored the consistency of the joint distribution [Allen and Liu, 2012,

2013]. These models provide the motivation and basis for the new graphical models that we

introduce in Chapters 3 and 4. Chapter 3 introduces the novel fixed-length Poisson MRF

(LPMRF) for count data by assuming the length of the vector (i.e. it’s `1 norm) is known

or fixed; the difference between the LPMRF model and previous Poisson graphical models

is similar to the difference between a independent Poisson distribution and a multinomial

distribution, which has a fixed number of trials. In Chapter 4, we introduce the novel square-

root graphical model (SQR) that elegantly allows both positive and negative dependencies

by taking the square root of the sufficient statistics; no hyperparameters are required and

the joint distribution is consistent with the conditional distributions. Finally, in Chapter 5,

we compare our proposed graphical models to other multivariate distributions derived for

count data. In particular, we review marginal Poisson models as exemplified by copula-based

models and mixtures of independent Poisson distributions. Then, we extensively compare

all of these models both qualitatively and quantitatively on real-world datasets.
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Chapter 2

Previous Graphical Models1

In this chapter, we present a brief background on the graphical model class as in

[Besag, 1974, Yang et al., 2015]2 along with derivative works in [Yang et al., 2013, Allen

and Liu, 2012, 2013]. As will be evident, these previous graphical models either only allow

negative dependencies [Yang et al., 2015], require unintuitive hyperparameters such as

truncation value [Yang et al., 2013] or ignore joint consistency [Allen and Liu, 2012, 2013].

Thus, we develop new models to overcome these issues in later chapters.

We now more formally define the previous graphical models from [Besag, 1974, Yang

et al., 2015]. Let T (x) and B(x) be the sufficient statistics and log base measure respectively

of the base univariate exponential family and let D ⊆ Rp
+ be the domain of the random

vector. We will denote T (x) : Rp → Rp to be the entry-wise application of the sufficient

statistic function to each entry in the vector x. With this notation, the previous class of

graphical models can be defined as [Yang et al., 2015]:

P(x|θ,Φ) = exp
(
θTT (x) + T (x)TΦT (x)

p∑
s=1

B(xs)− A(θ,Φ)
)

(2.1)

A(θ,Φ) =

∫
D

exp
(
θTT (x) + T (x)TΦT (x) +

p∑
s=1

B(xs)
)

dµ(x) , (2.2)

1Parts of this chapter are from drafts of [Inouye et al., 2017]. See Chapter 5 for more information on
David Inouye’s contribution.

2Besag [1974] originally named these Poisson auto models, focusing on pairwise graphical models, but
[Yang et al., 2015] considers the general graphical model setting.
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where A(θ,Φ) is the log partition function (i.e. log normalization constant) which is required

for probability normalization, Φ ∈ Rp×p is symmetric with zeros along the diagonal and µ

is either the standard Lebesgue measure or the counting measure depending on whether the

domain D is continuous or discrete. The only difference from a fully independent model is

the quadratic interaction term T (x)TΦT (x)—i.e. O(T (x)2)—which is why the exponential

and Poisson cases do not admit positive dependencies as will be described in later sections.

This graphical model was based on assuming that the node-conditional distributions

(i.e. the univariate distribution of one variable given all other variables) is specified by a

univariate exponential family. Yang et al. [2015] show that if this assumption is made, the

consistent joint distribution restricted to pairwise interactions is of the form in Eqn. 2.1—and

in fact is necessarily this form.

Parameter estimation in a this graphical model is naturally suggested by its

construction: all of the parameters in (2.1) can be estimated by considering the node

conditional distributions for each node separately, and solving an `1-regularized regression

for each variable. This parameter estimation approach is not only simple, but is also

guaranteed to be consistent even under high dimensional sampling regimes, under some

other mild conditions including a sparse graph structural assumption (see Yang et al.

[2012, 2015] for more details on the analysis).

2.1 Poisson Graphical Models (PGM/PMRF)

For the Poisson, T (x) = x, B(x) = −log(x!) and x ∈ Z+, and thus the Poisson

instantiation is as follows:

PPMRF(x |θ,Φ) = exp
(
θTx+ xTΦx−

p∑
s=1

log(xs!)− A (θ,Φ)
)
, (2.3)

In spite of its simple parameter estimation method, the major drawback with the Poisson

graphical model, or Poisson Markov Random Field (PMRF), instantiation is that it only
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permits negative conditional dependencies between variables:

Proposition 1 (Besag [1974]). Consider the Poisson graphical model distribution in (2.1).

Then, for any parameters θ and Φ, APGM(θ,Φ) < +∞ only if the pairwise parameters are

non-positive: φst ≤ 0, ∀s 6= t.

Intuitively, if any entry in Φ, say Φst, is positive, the term Φstxsxt would grow

quadratically, whereas the log base measure terms −log(xs!) − log(xt!) only decreases as

O(xslog(xs) + xtlog(xt)), so A(θ,Φ) → ∞ as xs, xt → ∞. Thus, even though the Poisson

graphical model is a natural extension of the univariate Poisson distribution (from the node

conditional viewpoint), it entails a highly restrictive parameter space, with severely limited

applicability. Thus, multiple PGM extensions attempt to relax this negativity restriction to

permit positive dependencies as described next.

2.2 Extensions of Poisson Graphical Models

To circumvent the severe limitations of the PGM distribution which in particular only

permits negative conditional dependencies, several extensions to PGM that permit a richer

dependence structure have been proposed.

2.2.1 Truncated PGM (TPGM/TPMRF)

Because the negativity constraint is due in part to the infinite domain of count

variable, a natural solution would be to truncate the domain of variables. It was Kaiser

and Cressie [1997] who first introduced an approach to truncate the Poisson distribution in

the context of graphical models. Their idea was simply to use a Winsorized Poisson

distribution for node conditional distributions: x is a Winsorized Poisson if

z = I(z′ < R)z′ + I(z′ ≥ R)R, where z′ is Poisson, I(·) is an indicator function, and R is a

fixed positive constant denoting the truncation level. However, Yang et al. [2013] showed
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that Winsorized node conditional distributions actually does not lead to a consistent joint

distribution.

As an alternative way of truncation, Yang et al. [2013] instead keep the same

parametric form as PGM but merely truncate the domain to non-negative integers less

than or equal to R—i.e. DTPGM = {0, 1, · · · , R}, so that the joint distribution takes the

form [Yang et al., 2015]:

PTPGM(x) = exp{θTx+ xTΦx−
∑

ilog(xs!)− ATPGM(θ,Φ)} . (2.4)

As they show, the node-conditional distributions of this graphical model distribution belong

to an exponential family that is Poisson-like, but with domain bounded by R. Thus, the key

difference from the vanilla Poisson graphical model is that the domain is finite, and hence

the log partition function ATPGM(·) only involves a finite number of summations. Thus, no

restrictions are imposed on the parameters for the normalizability of the distribution.

Yang et al. [2013] discuss several major drawbacks to TPGM. First, the domain needs

to be bounded a priori, so that R should ideally be set larger than any unseen observation.

Second, the effective range of parameter space for a non-degenerate distribution is still

limited: as the truncation value R increases, the effective values of pairwise parameters

become increasingly negative or close to zero—otherwise, the distribution can be degenerate

placing most of its probability mass at 0 or R.

2.2.2 Quadratic PGM (QPGM/QPMRF)

Yang et al. [2013] also investigate the possibility of Poisson graphical models that (a)

allows both positive and negative dependencies, as well as (b) allow the domain to range over

all non-negative integers. As described previously, a key reason for the negative constraint

on the pairwise parameters φst is that the log base measure
∑

s log(xs!) scales more slowly
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than the quadratic pairwise term xTΦx where x ∈ Zp+. Yang et al. [2013] thus propose two

possible solutions: increase the base measure or decrease the quadratic pairwise term.

First, if we modify the base measure of Poisson distribution with “Gaussian-esque”

quadratic functions (note that for the linear sufficient statistics with positive dependencies,

the base measures should be quadratic at the very least [Yang et al., 2013]), then the joint

distribution, which they call a quadratic PGM, is normalizable while allowing both positive

and negative dependencies [Yang et al., 2013]:

PQPGM(x) = exp{θTx+ xTΦx− AQPGM(θ,Φ)}. (2.5)

Essentially, QPGM has the same form as the Gaussian distribution, but where its domain

is the set of non-negative integers. The key differences from PGM are that Φ can have

negative values along the diagonal, and the Poisson base measure
∑

s−log(xs!) is replaced

by the quadratic term
∑

s φssx
2
s. Note that a sufficient condition for the distribution to be

normalizable is given by:

xTΦx < −c‖x‖2
2 ∀x ∈ Zp+ , (2.6)

for some constant c > 0, which in turn can be satisfied if Φ is negative definite. One significant

drawback of QPGM is that the tail is Gaussian-esque and thin rather than Poisson-esque

and thicker as in PGM.

2.2.3 Sub-Linear PGM (SPGM/SPMRF)

Another possible modification is to use sub-linear sufficient statistics in order to

preserve the Poisson base measure and possibly heavier tails. Consider the following

univariate distribution over count-valued variables:

P(z) ∝ exp{θT (z ; R0, R)− logz!} , (2.7)
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which has the same base measure logz! as the Poisson, but with the following sub-linear

sufficient statistics:

T (z ; R0, R) =


z if z ≤ R0

− 1
2(R−R0)

z2 + R
R−R0

x− R2
0

2(R−R0)
if R0 < z ≤ R

R+R0

2
if z ≥ R .

(2.8)

For values of x up to R0, T (x) increases linearly, while after R0 its slope decreases linearly,

and finally after R, T (x) becomes constant. The joint graphical model, which they call a

sub-linear PGM (SPGM), specified by the node conditional distributions belonging to the

family (2.7), has the following form:

PSPGM(x) = exp{θTT (x) + T (x)T ΦT (x)−
∑

s log(xs!)− ASPGM(θ,Φ |R0, R)} , (2.9)

where

ASPGM(θ,Φ |R0, R) = log
∑
x∈Z+

exp{θTT (x) + T (x)T ΦT (x)−
∑

s log(xs!)} , (2.10)

and T (x) is the entry-wise application of the function in (2.8). SPGM is always normalizable

for φst ∈ R ∀ s 6= t [Yang et al., 2013].

The main difficulty in estimating Poisson graphical model variants above with infinite

domain is the lack of closed-form expressions for the log partition function, even just for the

node-conditional distributions that are needed for parameter estimation. Yang et al. [2013]

propose an approximate estimation procedure that uses the univariate Poisson and Gaussian

log partition functions as upper bounds for the node-conditional log-partition functions for

the QPGM and SPGM models respectively.

2.2.4 Local PGM

Inspired by the neighborhood selection technique of Meinshausen and Bühlmann

[2006], Allen and Liu [2012, 2013] propose to learn the network structure of count-valued
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data by fitting a series of `1-regularized Poisson regressions to learn the

node-neighborhoods. Such an estimation method may yield interesting network estimates,

but as Allen and Liu [2013] note, these estimates do not correspond to a consistent joint

density. Instead, the underlying model is defined in terms of a series of local models where

each variable is conditionally Poisson given its node-neighbors; this approach is thus

termed the local Poisson graphical model (LPGM). Note that LPGM does not impose any

restrictions on the parameter space or types of dependencies; if the parameter space of each

local model was constrained to be non-positive, then the LPGM reduces to the vanilla

Poisson graphical model as previously discussed. Hence, the LPGM is less interesting as a

candidate multivariate model for count-valued data, but many may still find its simple and

interpretable network estimates appealing. Recently, several have proposed to adopt this

estimation strategy for alternative network types [Hadiji et al., 2015, Han and Zhong,

2016].

2.3 Exponential Graphical Models

We also review the exponential instantiation of the graphical model from [Yang et al.,

2015] which the domain D ∈ Rp
+, T (x) = x and B(x) = 0. Suppose there is even one positive

entry in Φ denoted φst. Then as x→∞, the positive quadratic term xsφstxt will dominate

the linear term θTx and thus the log partition function will diverge (i.e. A(θ,Φ) → ∞).

Thus, as with the Poisson instantiation, Φst ≤ 0 is required for a consistent joint distribution.

2.4 Conclusion

In the next chapters, we seek to overcome the main issue with the previous

graphical models [Yang et al., 2015] that only allows negative dependencies for the Poisson

and exponential instantiations. We would like to maintain the univariate distribution’s

18



characteristics (such as a sub-quadratic tails for the Poisson and exponential distributions)

while allowing both positive and negative dependencies. In addition, we would prefer to

avoid requiring the specification of hyperparameters. In Chapters 3 and 4, we develop one

graphical model distribution for the Poisson case called a fixed-length Poisson MRF

(LPMRF) and a more elegant class of graphical models called square root graphical models

(SQR) that generalizes both the Poisson and exponential distributions.
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Chapter 3

Fixed-Length Poisson MRF1

3.1 Abstract

We propose a novel distribution that generalizes the Multinomial distribution to

enable dependencies between dimensions. Our novel distribution is based on the

parametric form of the Poisson MRF model [Yang et al., 2012] but is fundamentally

different because of the domain restriction to a fixed-length vector similar to the

multinomial distribution where the number of trials is fixed or known. Thus, we propose

the Fixed-Length Poisson MRF (LPMRF) distribution. We develop AIS sampling methods

to estimate the likelihood and log partition function (i.e. the log normalizing constant),

which was not developed for the Poisson MRF model.

3.2 Introduction & Related Work

The multinomial distribution seems to be a natural distribution for modeling count-

valued data such as text documents. Indeed, most topic models such as PLSA [Hofmann,

1999], LDA [Blei et al., 2003] and numerous extensions—see [Blei et al., 2010] for a survey

of probabilistic topic models—use the multinomial as the fundamental base distribution

while adding complexity using other latent variables. This is most likely due to the extreme

simplicity of multinomial parameter estimation—simple frequency counts—that is usually

1The majority of this chapter is from [Inouye et al., 2015] with some edits for better integration into
this dissertation. [Inouye et al., 2015] was primarily executed and authored by David Inouye with guiding
contributions and edits by the co-authors.
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smoothed by the simple Dirichlet conjugate prior. In addition, because the multinomial

requires the length of a document to be fixed or pre-specified, usually a Poisson distribution

on document length is assumed. This yields a Poisson-multinomial distribution—which by

well-known results is merely an independent Poisson model.2 However, the multinomial

assumes independence between the words because the multinomial is merely the sum of

independent categorical variables. This restriction does not seem to fit with real-world

text. For example, words like “neural” and “network” will tend to co-occur quite frequently

together in NIPS papers. Thus, we seek to relax the word independence assumption of the

multinomial.

While the Truncated Poisson graphical model (TPGM/TPMRF) [Yang et al., 2013]

described in Chapter 2 may provide interesting parameter estimates, a TPMRF with positive

dependencies may be almost entirely concentrated at the corners of the joint distribution

because of the quadratic term in the log probability (see the bottom left of Fig. 3.1). In

addition, the log partition function of the TPMRF is intractable to estimate even for a small

number of dimensions because the sum is over an exponential number of terms.

Thus, we develop a different distribution than a TPMRF that allows positive

dependencies but is more appropriately normalized. We observe that the multinomial is

proportional to an independent Poisson model with the domain restricted to a fixed length

L. Thus, in a similar way, we propose a Fixed-Length Poisson MRF (LPMRF) that is

proportional to a PMRF but is restricted to a domain with a fixed vector length—i.e.

where ‖x‖1 = L. This distribution is quite different from previous PMRF variants because

the normalization is very different as will be described in later sections. For a motivating

example, in Fig. 3.1, we show the marginal distributions of the empirical distribution and

fitted models using only three words from the Classic3 dataset that contains documents

2The assumption of Poisson document length is not important for most topic models [Blei et al., 2003].
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regarding library sciences and aerospace engineering (See Sec. 8.4). Clearly, real-world text

has positive dependencies as evidenced by the empirical marginals of “boundary” and

“layer” (i.e. referring to the boundary layer in fluid dynamics) and LPMRF does the best

at fitting this empirical distribution. In addition, the log partition function—and hence the

likelihood—for LPMRF can be approximated using sampling as described in later sections.

Under the PMRF or TPMRF models, both the log partition function and likelihood were

computationally intractable to compute exactly.3 Thus, approximating the log partition

function of an LPMRF opens up the door for likelihood-based hyperparameter estimation

and model evaluation that was not possible with PMRF.

3.3 Fixed-Length Poisson MRF

LPMRF Definition The Fixed-Length Poisson MRF (LPGM/LPMRF) distribution is a

simple yet fundamentally different distribution than the (PGM/PMRF). Letting L ≡ ‖x‖1

be the length of document, we define the LPMRF distribution as follows:

PLPMRF(x|θ,Φ, L) = exp(θTx+ xTΦx−
∑

s log(xs!)− AL(θ,Φ)) (3.1)

AL(θ,Φ) = log
∑
x∈XL

exp(θTx+ xTΦx−
∑

s log(xs!)) (3.2)

XL = {x : x ∈ Zp+, ‖x‖1 = L}. (3.3)

The only difference from the PMRF parametric form is the log partition function AL(θ,Φ)

which is conditioned on the set XL (unlike the unbounded set for PMRF). This domain

restriction is critical to formulating a tractable and reasonable distribution. Combined with a

Poisson distribution on vector length L = ‖x‖1, the LPMRF distribution can be a much more

suitable distribution for documents than a multinomial. The LPMRF distribution reduces to

the standard multinomial if there are no dependencies. However, if there are dependencies,

3The example in Fig. 3.1 was computed by exhaustively computing the log partition function.
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Figure 3.1: Marginal Distributions from Classic3 Dataset (Top Left) Empirical
Distribution, (Top Right) Estimated multinomial × Poisson joint distribution—i.e.
independent Poissons, (Bottom Left) Truncated Poisson MRF, (Bottom Right) Fixed-Length
PMRF × Poisson joint distribution. The simple empirical distribution clearly shows a strong
dependency between “boundary” and “layer” but strong negative dependency of “boundary”
with “library”. Clearly, the word-independent multinomial-Poisson distribution underfits the
data. While the Truncated PMRF can model dependencies, it obviously has normalization
problems because the normalization is dominated by the edge case. The LPMRF-Poisson
distribution much more appropriately fits the empirical data.

then the distribution can be quite different than a multinomial as illustrated in Fig. 3.2 for

an LPMRF with p = 2 and L fixed at either 10 or 20 words. After the original submission,

we realized that for p = 2 the LPMRF model is the same as the multiplicative binomial

generalization in [Altham, 1978]. Thus, the LPMRF model can be seen as a multinomial

generalization (p ≥ 2) of the multiplicative binomial in [Altham, 1978].

LPMRF Parameter Estimation Because the parametric form of the LPMRF model is

the same as the form of the PMRF model and we primarily care about finding the correct

dependencies, we decide to use the PMRF estimation algorithm described in [Inouye et al.,

2014a] to estimate θ and Φ. The algorithm in [Inouye et al., 2014a] uses an approximation
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Figure 3.2: LPMRF distribution for L = 10 (left) and L = 20 (right) with negative, zero and
positive dependencies. The distribution of LPMRF can be quite different than a multinomial
(zero dependency) and thus provides a much more flexible parametric distribution for count
data.

to the likelihood by using the pseudo-likelihood and performing `1 regularized node-wise

Poisson regressions. The `1 regularization is important both for the sparsity of the

dependencies and the computational efficiency of the algorithm. While the PMRF and

LPMRF are different distributions, the pseudo-likelihood approximation for estimation

provides good results as shown in the results section. We present timing results to show

the scalability of this algorithm in Sec. 8.6. Other parameter estimation methods would be

an interesting area of future work.

3.3.1 Likelihood and Log Partition Estimation

Unlike previous work on the PMRF or TPMRF distributions, we develop a tractable

approximation to the LPMRF log partition function (Eq. 3.2) so that we can compute

approximate likelihood values. The likelihood of a model can be fundamentally important

for hyperparameter optimization and model evaluation.

LPMRF Annealed Importance Sampling First, we develop an LPMRF Gibbs sampler

by considering the most common form of multinomial sampling, namely by taking the sum

of a sequence of L Categorical variables. From this intuition, we sample one word at a time
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while holding all other words fixed. The probability of one word in the sequence w` given all

the other words is proportional to exp(θs+ 2Φsx−`) where x−` is the sum of all other words.

See the Appendix for the details of Gibbs sampling. Then, we derive an annealed importance

sampler [Neal, 2001] using the Gibbs sampling by scaling the Φ matrix for each successive

distribution by the linear sequence starting with 0 and ending with 1 (i.e. γ = 0, . . . , 1).

Thus, we start with a simple multinomial sample from P(x |θ, 0 · Φ, L) = PMult(x |θ, L)

and then Gibbs sample from each successive distribution PLPMRF(x |θ, γΦ, L) updating the

sample weight as defined in [Neal, 2001] until we reach the final distribution when γ = 1.

From these weighted samples, we can compute an estimate of the log partition function

[Neal, 2001].

Upper Bound Using Hölder’s inequality, a simple convex relaxation and the partition

function of a multinomial, an upper bound for the log partition function can be computed:

AL(θ,Φ) ≤ L2λΦ,1 + Llog(
∑

s exp θs) − log(L!), where λΦ,1 is the maximum eigenvalue of

Φ. See the Appendix for the full derivation. We simplify this upper bound by subtracting

log(
∑

s exp θs) from θ (which does not change the distribution) so that the second term

becomes 0. Then, neglecting the constant term −log(L!) that does not interact with the

parameters (θ,Φ), the log partition function is upper bounded by a simple quadratic function

w.r.t. L.

Weighting Φ for Different L For datasets in which L is observed for every sample but is

not uniform—such as document collections, the log partition function will grow quadratically

in L if there are any positive dependencies as suggested by the upper bound. This causes

long documents to have extremely small likelihood. Thus, we must modify Φ as L gets larger

to counteract this effect. We propose a simple modification that scales the Φ for each L:

Φ̃L = ω(L)Φ. In particular, we propose to use the sigmoidal function using the Log Logistic
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cumulative distribution function (CDF): ω(L) = 1 − LogLogisticCDF(L |αLL, βLL). We set

the βLL parameter to 2 so that the tail is O(1/L2) which will eventually cause the upper

bound to approach a constant. Letting L̄ = 1
n

∑
i Li be the mean instance length, we choose

αLL = cL̄ for some small constant c. This choice of αLL helps the weighting function to

appropriately scale for corpora of different average lengths.

Final Approximation Method for All L For our experiments, we approximate the log

partition function value for all L in the range of the corpus. We use 100 AIS samples for 50

different test values of L linearly spaced between the 0.5L̄ and 3L̄ so that we cover both small

and large values of L. This gives a total of 5,000 annealed importance samples. We use the

quadratic form of the upper bound Ua(L) = ω(L)L2a (ignoring constants with respect to Φ)

and find a constant a that upper bounds all 50 estimates: amax = maxL[ω(L)L2]−1(ÂL(θ,Φ)−

Llog(
∑

s exp θs) + log(L!)), where ÂL is an AIS estimate of the log partition function for the

50 test values of L. This gives a smooth approximation for all L that are greater than or

equal to all individual estimates. An example of this final approximation can be seen in

Fig. 3.3.

3.4 Conclusion

We motivated the need for a more flexible distribution than the multinomial such

as the Poisson MRF. However, the PMRF distribution has several complications due to

its normalization that hinder it from being a general-purpose model for count data. We

overcome these difficulties by restricting a fixed-length domain as in a multinomial while

retaining the parametric form of the Poisson MRF. By parameterizing by the length of the

document, we can then efficiently compute sampling-based estimates of the log partition

function and hence the likelihood—which were not previously developed for the PMRF

model. In general, we suggest that the LPMRF model could open up new avenues of research
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Figure 3.3: Example of log partition estimation for all values of L.

where the multinomial distribution is currently used.
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Chapter 4

Square Root Graphical Model1

4.1 Abstract

We develop Square Root Graphical Models (SQR), a novel class of parametric

graphical models that provides multivariate generalizations of univariate exponential family

distributions. Previous multivariate graphical models [Yang et al., 2015] did not allow

positive dependencies for the exponential and Poisson generalizations. However, in many

real-world datasets, variables clearly have positive dependencies. For example, the airport

delay time in New York—modeled as an exponential distribution—is positively related to

the delay time in Boston. With this motivation, we give an example of our model class

derived from the univariate exponential distribution that allows for almost arbitrary

positive and negative dependencies with only a mild condition on the parameter matrix—a

condition akin to the positive definiteness of the Gaussian covariance matrix. Our Poisson

generalization allows for both positive and negative dependencies without any constraints

on the parameter values. We also develop parameter estimation methods using node-wise

regressions with `1 regularization and likelihood approximation methods using sampling.

Finally, we demonstrate our exponential generalization on a synthetic dataset and a

real-world dataset of airport delay times.

1The majority of this chapter is from [Inouye et al., 2016a] with some edits for better integration into
this dissertation. [Inouye et al., 2016a] was primarily executed and authored by David Inouye with guiding
contributions and edits by the co-authors.
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4.2 Square Root Graphical Model

We remind the reader of the form of the previous graphical model class described in

Chapter 2 [Yang et al., 2015]:

P(x|θ,Φ) = exp
(
θTT (x) + T (x)TΦT (x)

+
∑p

s=1B(xs)− A(θ,Φ)
) (4.1)

A(θ,Φ) =
∫
D exp

(
θTT (x) + T (x)TΦT (x)

+
∑p

s=1B(xs)
)

dµ(x) ,
(4.2)

where A(θ,Φ) is the log partition function (i.e. log normalization constant) which is required

for probability normalization, Φ ∈ Rp×p is symmetric with zeros along the diagonal and µ

is either the standard Lebesgue measure or the counting measure depending on whether the

domain D is continuous or discrete.

The amazingly simple yet helpful change from the previous graphical model class

[Yang et al., 2015] is that we take the square root of the sufficient statistics in the

interaction term. Essentially, this makes the interaction term linear in the sufficient

statistics O(T (x)) rather than quadratic O(T (x)2) as in Eqn. 4.1. This change avoids the

problem of the quadratic term overcoming the other terms while allowing both positive and

negative dependencies. More formally, given any univariate exponential family with

nonnegative sufficient statistics T (x) ≥ 0, we can define the Square Root Graphical Model

(SQR) class as follows:

P(x |θ,Φ)=exp
(
θT
√
T (x)+

√
T (x)

T
Φ
√
T (x)

+
∑

sB(xs)− A(Φ)
) (4.3)

A(θ,Φ)=
∫
D exp

(
θT
√
T (x)+

√
T (x)

T
Φ
√
T (x)

+
∑

sB(xs)
)

dµ(x) ,
(4.4)
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where
√
T (x) is an entry-wise square root except when T (x) = x2 in which case

√
T (x) ≡

x.2 Figure 4.1 shows examples of the exponential and Poisson SQR distributions for no

dependency, positive dependency and negative dependency. If θ = 0 and Φ is a diagonal

matrix, then we recover an independent joint distribution so the SQR class of models can

be seen as a direct relaxation of the independence assumption, similar to previous graphical

models. In the next sections, we analyze some of the properties of SQR models including

their conditional distributions.

0

0.1
0 0.2

0.1
0.2

Independent Exponentials

0.3
0.3

0

0.1
0 0.2

0.1
0.2

Positive Exp. SQR

0.3
0.3

0

0.1
0 0.2

0.1
0.2

Negative Exp. SQR

0.3
0.3

Figure 4.1: These examples of 2D exponential SQR and Poisson SQR distributions with
no dependency (i.e. independent), positive dependency and negative dependency show the
amazing flexibility of the SQR model class that can intuitively model positive and negative
dependencies while having a simple parametric form. The approximate 1D marginals are
shown along the edges of the plots.
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Node Conditional 
Distributions

Radial Conditional 
Distributions

Figure 4.2: Node conditional distributions (left) are univariate probability distributions of
one variable assuming the other variables are given while radial conditional distributions are
univariate probability distributions of vector scaling assuming the vector direction is given.
Both conditional distributions are helpful in understanding SQR graphical models.

4.2.1 SQR Conditional Distributions

We analyze two types of univariate conditional distributions of the SQR graphical

models. The first is the standard node conditional distribution, i.e. the conditional

distribution of one variable given the values for all other variables (see Fig. 4.2). The

second is what we will call the radial conditional distribution in which the unit direction is

fixed but the length of the vector is unknown (see Fig. 4.2). The node conditional

distribution is helpful for parameter estimation as described more fully in Sec. 4.2.3. The

radial conditional distribution is important for understanding the form of the SQR

distribution as well as providing a means to succinctly prove that the normalization

constant is finite (i.e. the distribution is valid) as described in Sec. 4.2.2.

2This nuance is important for the Gaussian SQR in Sec. 4.3.
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Node Conditional Distribution The probability distribution of one variable xs given

all other variables x−s = [x1, x2, . . . , xs−1, xs+1, . . . , xp] is as follows:

P(xs |x−s,θ,Φ) ∝
exp
{
φssT (xs) +

(
θs+2φT−s

√
T (x−s)

)√
T (xs)+B(xs)

}
,

where φ−s ∈ Rp−1 is the s-th column of Φ with the s-th entry removed. This conditional

distribution can be reformulated as a new two parameter exponential family:

P(xs |x−s,θ,Φ) =

exp
(
η1T̃1(xs) + η2T̃2(xs) +B(xs)− Anode(η)

)
(4.5)

Anode(η) =∫
D exp

(
η1T̃1(xs) + η2T̃2(xs) +B(xs)

)
dµ(xs) ,

(4.6)

where η1 = φss, η2 = θs + 2φT−s
√
T (x−s), T̃1(x) = T (x), and T̃2(x) =

√
T (x). Note that

this reduces to the base exponential family only if η2 = 0 unlike the model in Eqn. 4.1

which, by construction, has node conditionals in the base exponential family. Examples of

node conditional distributions for the exponential and Poisson SQR can be seen in Fig. 4.3.

While these node conditionals are different from the base exponential family and hence

slightly more difficult to use for parameter estimation as described later in Sec. 4.2.3, the

benefit of almost arbitrary positive and negative dependencies significantly outweighs the

cost of using SQR over previous graphical models.

Radial Conditional Distribution For simplicity, let us assume w.l.o.g. that T (x) = x.3

Suppose we condition on the unit direction v = x
‖x‖1 of the sufficient statistics but the scaling

3If T is not linear than we can merely reparameterize the distribution so that this is the case.
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Figure 4.3: Examples of the node conditional distributions of exponential (left) and Poisson
(right) SQR models for η2 = 0, η2 > 0 and η2 < 0.

of this unit direction z = ‖x‖1 is unknown. We call this the radial conditional distribution:

P(x = zv |v,θ,Φ)

∝ exp
(
θT
√
zv +

√
zv

T
Φ
√
zv +

∑
sB(zvs)

)
∝ exp

(
(θT
√

v)
√
z +

(√
v
T

Φ
√

v
)
z +

∑
sB(zvs)

)
.

The radial conditional distribution can be rewritten as a univariate exponential family:

P(z |v,θ,Φ) = exp
(
η̄1z + η̄2

√
z︸ ︷︷ ︸

O(z)

+ B̃v(z)︸ ︷︷ ︸
O(B(z))

−Arad(η̄)
)

(4.7)

Arad(η̄) =

∫
D

exp
(
η̄1z + η̄2

√
z︸ ︷︷ ︸

O(z)

+ B̃v(z)︸ ︷︷ ︸
O(B(z))

)
dµ(z) , (4.8)

where η̄1 =
√

v
T

Φ
√

v, η̄2 = θT
√

v and B̃v(z) =
∑

sB(zvs). Note that if the log base

measure of the base exponential family is zero B(x) = 0, then the radial conditional is the
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same as the node conditional distribution because the modified base measure is also zero

B̃v(z) = 0. If both θ = 0 and B(x) = 0, this actually reduces to the base exponential

family. For example, the exponential distribution has B(x) = 0, and thus if we set θ = 0,

the radial conditional of an exponential SQR is merely the exponential distribution. Other

examples with a log base measure of zero include the Beta distribution and the gamma

distribution with a known shape. For distributions in which the log base measure is not zero,

the distribution will deviate from the node conditional distribution based on the relative

difference between B(x) and B̃v(x). However, the important point even for distributions

with non-zero log base measures is that the terms in the exponent grow at the same rate

as the base exponential family—i.e. O(z) + O(B(z)). This helps to ensure that the radial

conditional distribution is normalizable even as z → ∞ since the base exponential family

was normalizable. As an example, the Poisson distribution has the log base measure B(x) =

−log(x!) and thus B̃v(x) is O(−xlogx) whereas the other terms η̄1z + η̄2

√
z are only O(z).

This provides the intuition of why the Poisson SQR radial distribution is normalizable as

will be explained in Sec. 4.3.2.

4.2.2 Normalization

Normalization of the distribution was the reason for the negative-only parameter

restrictions of the exponential and Poisson distributions in the previous graphical models

[Besag, 1974, Yang et al., 2015] as defined in Eqn. 4.1. However, we show that in the

case of SQR models, normalization is much simpler to achieve and generally puts little to

no restriction on the value of the parameters—thus allowing both positive and negative

dependencies. For our derivations, let V = {v : ‖v‖1 = 1,v ∈ Rp
+} be the set of unit vectors

in the positive orthant. The SQR log partition function A(Φ) can be decomposed into nested
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integrals over the unit direction and the one dimensional integral over scaling, denoted z:

A(θ,Φ) = log

∫
V

∫
Z(v)

exp
(
θT
√
zv +

√
zv

T
Φ
√
zv (4.9)

+
∑
s

B(zvs)
)

dµ(z) dv

= log

∫
V

∫
Z(v)

exp(η̄1(v)z+η̄2(v)
√
z+
∑
s

B(zvs))dµ(z) dv, (4.10)

where Z(v) = {z ∈ R+ : zv ∈ D}, and µ and D are defined as in Eqn. 4.2. Because V

is bounded, we merely need that the radial conditional distribution is normalizable (i.e.

Arad(η̄) < ∞ from Eqn. 4.8) for the joint distribution to be normalizable. As suggested in

Sec. 4.2.1, the radial conditional distribution is similar to the base exponential family and

thus likely only has similar restrictions on parameter values as the base exponential family. In

Sec. 4.3, we give examples for the exponential SQR and Poisson SQR distributions showing

that this condition can be achieved with little or no restriction on the parameter values.

4.2.3 Parameter Estimation

For estimating the parameters Φ and θ, we follow the basic approach of [Ravikumar

et al., 2010, Yang et al., 2015, 2013] and fit p `1-regularized node-wise regressions using the

node conditional distributions described in Sec. 4.2.1. Thus, given a data matrix X ∈ Rp×n

we attempt to optimize the following convex function:

arg min
Φ

− 1
n

∑
s

∑
i

(
η1sixsi + η2si

√
xsi

+B(xsi)− Anode(η1si, η2si)
)

+ λ‖Φ‖1,off ,
(4.11)

where η1si = φs,s, η2si = θ + 2φT−s
√
T (x−si), ‖Φ‖1,off =

∑
s 6=t |φst| is the `1-norm on the

off diagonal elements and λ is a regularization parameter. Note that this can be trivially

parallelized into p independent sub problems which allows for significantly faster computation
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as in [Inouye et al., 2015]. Unlike previous graphical models [Yang et al., 2015] that were

known to have closed-form solutions to the node conditional log partition function, the

main difficulty for SQR graphical models is that the node conditional log partition function

Anode(η) is not known to have a closed form in general.

For the particular case of exponential SQR models, there is a closed-form solution

for Anode using the error function as will be seen in Sec. 4.3.1 on exponential SQR models.

More generally, because Anode is merely a one dimensional summation or integral, standard

numerical approximations such as Gaussian quadrature could be used. Similarly, the gradient

of ∇Anode could be numerically approximated by:

∇Anode = 1
ε

[(
Â(η1 + ε, η2)− Â(η1, η2)

)
,(

Â(η1, η2 + ε)− Â(η1, η2)
)]
,

(4.12)

where ε is a small step such as 0.001. Notice that to compute the function value and the

gradient, only three 1D numerical integrations are needed. Another significant speedup that

could be explored in future work would be to use a Newton-like method as in [Hsieh et al.,

2014, Inouye et al., 2015], which optimize a quadratic approximation around the current

iterate. Because these Newton-like methods only need a small number of Newton iterations

to converge, the number of numerical integrations could be reduced significantly compared

to gradient descent which often require thousands of iterations to converge.

4.2.4 Likelihood Approximation

We use Annealed Importance Sampling (AIS) [Neal, 2001] similar to the sampling

used in [Inouye et al., 2015] for likelihood approximation. In particular, we need to

approximate the SQR log partition function A(θ,Φ) as in Eqn. 4.4. First, we derive a slice

sample for the node conditionals in which the bounds for the slice can be computed in

closed form. Second, we use the slice sampler to develop a Gibbs sampler for SQR models.

Finally, we derive an annealed importance sampler [Neal, 2001] using the Gibbs sampler as
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the intermediate sampler by linearly combining the off-diagonal part of the parameter

matrix Φoff with the diagonal part Φdiag—i.e. Φ̃ = γΦoff + Φdiag. We also modify θ̃ = γθ

similarly. For each successive distribution, we linearly change γ from 0 to 1. Thus, we start

by sampling from the base exponential family independent distribution∏p
s=1 P(x | η1s = φss, η2s = 0) and slowly move towards the final SQR distribution

P(x |θ,Φ). We maintain the sample weights as defined in [Neal, 2001] and from these

weights, we can compute an approximation to the log partition function [Neal, 2001].

4.3 Examples from Various Exponential Families

We give several examples of SQR graphical models in the following sections (however,

it should be noted that we have been developing a class of graphical models for any univariate

exponential family with nonnegative sufficient statistics). The main analysis for each case is

determining what conditions on the parameter matrix Φ allow the joint distribution to be

normalized. As described in Sec. 4.2.2, for SQR models, this merely reduces to determining

when the radial conditional distribution is normalizable. We analyze the exponential and

Poisson cases in later sections but first we give examples of the discrete and Gaussian SQR

graphical models.

The discrete SQR graphical model—including the binary Ising model—is equivalent to

the standard discrete graphical model because the sufficient statistics are indicator functions

Ts(x) = I(x = s), ∀s 6= p and the square root of an indicator function is merely the indicator

function. Thus, in the discrete case, the discrete graphical model in [Ravikumar et al., 2010,

Yang et al., 2015] is equivalent to the discrete SQR graphical model. For the Gaussian

distribution, we can use the nonnegative Gaussian sufficient statistic T (x) = x2. Thus, the

Gaussian SQR graphical model is merely P(x|Φ) ∝ exp(θTx+ xTΦx), which by inspection

is clearly the standard Gaussian distribution where θ = Σ−1µ and Φ = −1
2
Σ−1 is required
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to be negative definite.4 Thus, the Gaussian graphical model can be seen as a special case

of SQR graphical models.

4.3.1 Exponential SQR Graphical Model

We consider what are the required conditions on the parameters θ and Φ for the

exponential SQR graphical model. If η̄1 is positive, the log partition function will diverge

because even the end point limz→∞ exp(η̄1z) → ∞. On the other hand, if η̄1 is negative,

then the radial conditional distribution is similar in form to the exponential distribution and

thus the log partition function will be finite because the negative linear term η̄1z dominates

in the exponent as z →∞.5 See appendix for proof. Thus, the basic condition on Φ is:

ΦExp ∈ {Φ :
√

v
T

Φ
√

v < 0, ∀v ∈ V} . (4.13)

Note that this allows both positive and negative dependencies. A sufficient condition is that

Φ be negative definite—as is the case for Gaussian graphical models. However, negative

definiteness is far from necessary because we only need negativity of the interaction term

for vectors in the positive orthant. It may even be possible for Φ to positive definite but

Eqn. 4.13 be satisfied; however, we have not explored this idea.

For fitting the SQR model, the node conditional log partition function AExp(η) has

a closed-form solution:

AExp(η) =log

(√πη1 exp
(−η22

4η1

)(
1−erf

( −η2
2
√
−η1

))
−2(−η1)

3
2

− 1

η1

)
,

4This is by the slightly nuanced definition of the square root operator in Eqn. 4.3 and 4.4 such that√
x2 ≡ x rather than |x|.
5On the edge case when η̄1 = 0, the log partition function will diverge if η̄2 ≥ 0 and will converge if η̄1 < 0

by simple arguments. The normalizability condition when η2 = 0 could slightly loosen the condition on Φ
in Eqn. 4.13 but for simplicity we did not include this edge case.
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where erf(·) is the error function. The erf function shows up because of an initial substitution

of u =
√
x to transform the exponent into a quadratic form. Note that η1 < 0 by the condition

on ΦExp in Eqn. 4.13 above. The derivatives of AExp can also be computed in closed form

for use in the parameter estimation algorithm.

4.3.2 Poisson SQR Graphical Model

The normalization analysis for Poisson SQR graphical model is also relatively

simple but requires a more careful analysis than the exponential SQR graphical model. Let

us consider the form of the Poisson radial conditional:

Prad(z |v) ∝ exp(η̄1z + η̄2

√
z −

∑
s log((zvs)!)). Note that the domain of z, denoted

Dz = {z ∈ Z+ : zv ∈ Zp+}, is discrete. We can simplify the analysis by taking a larger

domain D̃z = {z ∈ Z+} of all non-negative integers and changing the log factorial to the

smooth gamma function, i.e.
∑

s log((zvs)!)) →
∑

s log(Γ(zvs + 1)). Thus, the radial

conditional log partition function is upper bounded by:∑
z∈Z+

exp
(
η̄1z + η̄2

√
z︸ ︷︷ ︸

O(z)

−
∑

slog(Γ(zvs + 1))︸ ︷︷ ︸
O(zlogz)

)
<∞. (4.14)

The basic intuition is that the exponent has a linear O(z) term minus an O(zlogz) term,

which will eventually overcome the linear term and hence the summation will converge. Note

that we did not assume any restrictions on Φ except that all the entries are finite. Thus, for

the Poisson distribution, Φ can have arbitrary positive and negative dependencies. A formal

proof for Eqn. 4.14 is given in the appendix.

4.4 Experiments and Results

4.4.1 Synthetic Experiment

In order to show that our parameter estimation algorithm has the ability to find the

correct dependencies, we develop a synthetic experiment on chain-like graphs. We construct
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Φ to be a k-dependent circular chain-like graph by first setting the diagonal of Φ to be 1.

Then, we add an edge between each node and its k neighbors with a value of 0.9
2∗k , i.e. the

s-th node is connected to the (s + 1)-th, (s + 2)-th, . . . , (s + k)-th nodes where the indices

are modulo p (e.g. k = 1 is the standard chain graph). This ensures that Φ is negative

definite by the Gershgorin disc theorem. We generate samples using Gibbs sampling with

1000 Gibbs iterations per sample and 10 slice samples for each node conditional sample. For

this experiment, we set p = 30, λ = 10−5, k ∈ {1, 2, 3, 4}, and n ∈ {100, 200, 400, 800, 1600}.
We calculate the edge precision for the fitted model by computing the precision for the

top kp edges—i.e. the number of true edges in the top kp estimated edges over the total

number of true edges. The results in Fig. 4.4 demonstrate that our parameter estimation

algorithm is able to easily find the edges for small k and is even able to identify the edges

for large k, though the problem becomes more difficult when k is large (because there are

more parameters, which are also smaller), and thus more samples are needed. With 1,600

samples, our parameter estimation algorithm is able to recover at least 95% of the edges

even when k = 4.

4.4.2 Airport Delay Times Experiment

In order to demonstrate that the SQR graphical model class is more suitable for real-

world data than the graphical models in [Yang et al., 2015] (which can only model negative

dependencies), we fit an exponential SQR model to a dataset of airport delay times at the

top 30 commercial USA airports—also known as Large Hub airports. We gathered flight

data from the US Department of Transportation public “On-Time: On-Time Performance”

database6 for the year 2014. We calculated the average delay time per day at each of the

top 30 airports (excluding cancellations).

For our implementation, we set λ ∈ {0.05, 0.005, 0.0005} and set a maximum of 5000

6http://www.transtats.bts.gov/DL SelectFields.asp?Table ID =236&DB Short Name=On-Time

40



iterations for our proximal gradient descent algorithm. For approximating the log partition

function using the AIS sampling defined in Sec. 4.2.4, we sampled 1000 AIS samples with

100 annealing distributions—i.e. γ took 100 values between 0 and 1—, 10 Gibbs steps per

annealed distribution and 10 slice samples for every node conditional sampling. Generally,

our algorithm with these parameter settings took roughly 35 seconds to train the model and

about 25 seconds to compute the likelihood (i.e. AIS sampling) using MATLAB prototype

code on the TACC Maverick cluster.7

We computed the geometric mean of the relative log likelihood compared to the

independent exponential model, i.e. exp((LSQR − LInd)/n), where L is the log likelihood.

These values can be seen in Fig. 4.4 (higher is better). Clearly, the exponential SQR model

provides a major improvement in relative likelihood over the independent model suggesting

that the delay times of airports are clearly related to one another. In Fig. 4.5, we visualize

the non-zeros of Φ—which correspond to the edges in the graphical model—to show that

our model is capturing intuitive positive dependencies.

First, it should be noted that all the dependencies are positive yet positive

dependencies were not allowed by previous graphical models [Yang et al., 2015]! Second, as

would be expected because of weather delays, the airports in the Chicago area seems to

affect the delays of many other airports. Similarly, a weather effect seems to be evident for

the airports near New York City. Third, as would be expected, some dependencies seem to

be geographic in nature as seen by the west coast dependencies, Texas dependency (i.e.

DFW-IAH), and east coast dependencies. Note that the geographic dependencies were

found even though no location data was given to the algorithm. Fourth, the busiest airport

in Atlanta, GA (ATL) is not strongly dependent on other airports. This seems reasonable

because Atlanta rarely has snow and there are few major airports geographically close to

7https://portal.tacc.utexas.edu/user-guides/maverick
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Figure 4.4: (Left) The fitted exponential SQR model improves significantly over the
independent exponential model in terms of relative likelihood suggesting that a model with
positive dependencies is more appropriate. (Right) The edge precision for the circular chain
graph described in Sec. 4.4.1 demonstrate that our parameter estimation algorithm is able
to effectively identify edges for small k, and if given enough samples, can also identify edges
for larger k.

Atlanta. These qualitative results suggest that the exponential SQR model is able to

capture multiple interesting and intuitive dependencies.

4.5 Discussion

As full probability models, SQR graphical models could be used in any situation where

a multivariate distribution is required. For example, SQR models could be used in Bayesian

classification by modeling the probability of each class distribution instead of the classical

Naive Bayes assumption of independence. As another example, SQR models could be used

as the base distribution in mixtures or admixture composite distributions as in [Inouye et al.,

2014b,a]—similar to multivariate Gaussian mixture models. Another extension would be to

consider mixed SQR graphical models in which the joint distribution has variables using
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Figure 4.5: Visualizing the edges between airports shows that SQR models can capture
interesting and intuitive positive dependencies even though previous exponential graphical
models [Yang et al., 2015] were restricted to negative dependencies. The delays at the
Chicago airports seem to greatly affect other airports as would be expected because of
Chicago weather delays. Other dependencies are likely related to weather or geography.
(For this visualization, we set λ = 0.0005. Width of lines is proportional to the value of the
edge weight, i.e. a non-zero in Φ, and the size of airport abbreviation is proportional to the
average number of passengers.)

different exponential families as base distributions as explored for previous graphical models

in [Yang et al., 2014a, Tansey et al., 2015].

Comparison to Fixed-Length Poisson MRF In Chapter 3 Inouye et al. [2015], we

proposed a graphical model variant called Fixed-Length Poisson MRF (LPMRF) that
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modifies the domain of the distribution assuming the length of the vector L = ‖x‖1 is

fixed, i.e. D = {x ∈ Zp+ : ‖x‖1 = L}. Because the domain is finite as in TPGM, the

distribution is normalizable even with positive dependencies. However, as with TPGM, the

quadratic term in the parametric form dominates the distribution if L is large, and thus

Inouye et al. [2015] modify the distribution by introducing a weighting function that

decreases the quadratic term as L increases. The previous Poisson graphical models

(LPMRF, PGM, TPGM, SPGM, QPGM) attempt to deal with the quadratic interaction

term in different ways but all of them significantly change the distribution/domain and

often require the specification of new unintuitive hyperparameters to allow for positive

dependencies. Also, according to the authors’ best knowledge, no variants of the

exponential graphical model have been proposed to allow for positive dependencies.

Therefore, we propose a novel graphical model class that alleviates the problem with the

quadratic interaction term and provides both exponential and Poisson graphical models

that allow positive and negative dependencies.

4.6 Conclusion

We introduce a novel class of graphical models that creates multivariate

generalizations for any univariate exponential family with nonnegative sufficient

statistics—including Gaussian, discrete, exponential and Poisson distributions. We show

that SQR graphical models generally have few restrictions on the parameters and thus can

model both positive and negative dependencies unlike previous generalized graphical models

as represented by [Yang et al., 2015]. In particular, for the exponential SQR model, the

parameter matrix Φ can have both positive and negative dependencies and is only

constrained by a mild condition—akin to the positive-definiteness condition on Gaussian

covariance matrices. For the Poisson distribution, there are no restrictions on the

parameter values, and thus the Poisson SQR model allows for arbitrary positive and
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negative dependencies. We develop parameter estimation and likelihood approximation

methods and demonstrate that the SQR model indeed captures interesting and intuitive

dependencies by modeling both synthetic datasets and a real-world dataset of airport

delays. The general SQR class of distributions opens the way for graphical models to be

effectively used with non-Gaussian and non-discrete data without the unintuitive

restriction to negative dependencies.
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Chapter 5

A Review of Multivariate Distributions for Count Data

Derived from the Poisson Distribution1

5.1 Abstract

The Poisson distribution has been widely studied and used for modeling univariate

count-valued data. Multivariate generalizations of the Poisson distribution that permit

dependencies, however, have been far less popular. Yet, real-world high-dimensional

count-valued data found in word counts, genomics, and crime statistics, for example,

exhibit rich dependencies, and motivate the need for multivariate distributions that can

appropriately model this data. We review multivariate distributions derived from the

univariate Poisson, categorizing these models into three main classes: 1) where the

marginal distributions are Poisson, 2) where the joint distribution is a mixture of

independent multivariate Poisson distributions, and 3) where the node-conditional

distributions are derived from the Poisson. We discuss the development of multiple

instances of these classes and compare the models in terms of interpretability and theory.

Then, we empirically compare multiple models from each class on three real-world

datasets that have varying data characteristics from different domains, namely traffic

1Most of this chapter was published in [Inouye et al., 2017], which was a collaborative effort with Eunho
Yang, Genevera I. Allen and Pradeep Ravikumar. David Inouye drafted the experimental and comparison
sections, executed all the experiments, rewrote and expanded the copula section, added summaries for major
sections, and edited the whole paper for content and continuity. Genevera I. Allen originally drafted the
copula section of this paper. Eunho Yang originally drafted the introduction, graphical model section and
mixture model section. All authors contributed to editing and revising.

46



accident data, biological next generation sequencing data, and text data. These empirical

experiments develop intuition about the comparative advantages and disadvantages of each

class of multivariate distribution that was derived from the Poisson. Finally, we suggest

new research directions as explored in the subsequent discussion section.

5.2 Introduction

The classical model for a count-valued random variable is the univariate Poisson

distribution, whose probability mass function for x ∈ {0, 1, 2, . . . } is:

PPoiss(x |λ) = λx exp(−λ)/x! , (5.1)

where λ is the standard mean parameter for the Poisson distribution. A trivial extension of

this to a multivariate distribution would be to assume independence between variables, and

take the product of node-wise univariate Poisson distributions, but such a model would be

ill-suited for many examples of multivariate count-valued data that require rich dependence

structures. We review multivariate probability models that are derived from the univariate

Poisson distribution and permit non-trivial dependencies between variables. We categorize

these models into three main classes based on their primary modeling assumption. The first

class assumes that the univariate marginal distributions are derived from the Poisson. The

second class is derived as a mixture of independent multivariate Poisson distributions. The

third class assumes that the univariate conditional distributions are derived from the Poisson

distribution—this last class of models can also be studied in the context of probabilistic

graphical models. An illustration of each of these three main model classes can be seen

in Fig. 5.1. While these models might have been classified by primary application area

or performance on a particular task, a classification based on modeling assumptions helps

emphasize the core abstractions for each model class. In addition, this categorization may

help practitioners from different disciplines learn from the models that have worked well
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in different areas. We discuss multiple instances of these classes in the later sections and

highlight the strengths and weaknesses of each class. We then provide a short discussion on

the differences between classes in terms of interpretability and theory. Using two different

empirical measures, we empirically compare multiple models from each class on three

real-world datasets that have varying data characteristics from different domains, namely

traffic accident data, biological next generation sequencing data, and text data. These

experiments develop intuition about the comparative advantages and disadvantages of the

models and suggest new research directions as explored in the subsequent discussion section.

Figure 5.1: (Left) The first class of Poisson generalizations is based on the assumption
that the univariate marginals are derived from the Poisson. (Middle) The second class is
based on the idea of mixing independent multivariate Poissons into a joint multivariate
distribution. (Right) The third class is based on the assumption that the univariate
conditional distributions are derived from the Poisson.

5.2.0.1 Notation

R denotes the set of real numbers, R+ denotes the nonnegative real numbers, and

R++ denotes the positive real numbers. Similarly, Z denotes the set of integers. Matrices
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are denoted as capital letters (e.g. X,Φ), vectors are denoted as boldface lowercase letters

(e.g. x,φ) and scalar values are non-bold lowercase letters (e.g. x, φ).

5.3 Marginal Poisson Generalizations

The models in this section generalize the univariate Poisson to a multivariate

distribution with the property that the marginal distributions of each variable are Poisson.

This is analogous to the marginal property of the multivariate Gaussian distribution, since

the marginal distributions of a multivariate Gaussian are univariate Gaussian, and thus

seems like a natural constraint when extending the univariate Poisson to the multivariate

case. Several historical attempts at achieving this marginal property have incidentally

developed the same class of models, with different derivations [M’Kendrick, 1925,

Campbell, 1934, Wicksell, 1916, Teicher, 1954]. This marginal Poisson property can also be

achieved via the more general framework of copulas [Xue-Kun Song, 2000, Nikoloulopoulos

and Karlis, 2009, Nikoloulopoulos, 2013a].

5.3.1 Multivariate Poisson Distribution

The formulation of the multivariate Poisson2 distribution goes back to M’Kendrick

[1925] where authors use differential equations to derive the bivariate Poisson process. An

equivalent but more readable interpretation to arrive at the bivariate Poisson distribution

would be to use the summation of independent Poisson variables, as follows [Campbell,

1934]: Let y1, y2 and z be univariate Poisson variables with parameters λ1, λ2 and λ0

respectively. Then by setting x1 = y1 + z and x2 = y2 + z, (x1, x2) follows the bivariate

2The label “multivariate Poisson” was introduced in the statistics community to refer to the particular
model introduced in this section but other generalizations could also be considered multivariate Poisson
distributions.
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Poisson distribution, and its joint probability mass is defined as:

PBiPoi(x1, x2 |λ1, λ2, λ0)

= exp(−λ1 − λ2 − λ0)
λx11

x1!

λx22

2!

min(x1,x2)∑
z=0

(
x1

z

)(
x2

z

)
z!

(
λ0

λ1λ2

)z
. (5.2)

Since the sum of independent Poissons is also Poisson (whose parameter is the sum

of those of two components), the marginal distribution of x1 (similarly x2) is still a Poisson

with the rate of λ1 + λ0. It can be easily seen that the covariance of x1 and x2 is λ0

and as a result the correlation coefficient is somewhere between 0 and min{
√
λ1+λ0√
λ2+λ0

,
√
λ2+λ0√
λ1+λ0

}
[Holgate, 1964]. Independently, Wicksell [1916] derived the bivariate Poisson as the limit

of a bivariate binomial distribution. Campbell [1934] show that the models in M’Kendrick

[1925] and Wicksell [1916] can identically be derived from the sums of 3 independent Poisson

variables.

This approach to directly extend the Poisson distribution can be generalized further

to handle the multivariate case x ∈ Zp+, in which each variable xi is the sum of individual

Poisson yi and the common Poisson x0 as before. The joint probability for a Multivariate

Poisson is developed in Teicher [1954] and further considered by other works [Dwass and

Teicher, 1957, Srivastava and Srivastava, 1970, Wang, 1974, Kawamura, 1979]:

PMulPoi(x;λ) = exp
(
−

p∑
i=0

λi

)( p∏
i=1

λxii
xi!

)mini xi∑
z=0

( p∏
i=1

(
xi
z

))
z!

(
λ0∏p
i=1 λi

)z
. (5.3)

Several have shown that this formulation of the multivariate Poisson can also be derived as

a limiting distribution of a multivariate binomial distribution when the success probabilities

are small and the number of trials is large [Krishnamoorthy, 1951, Krummenauer, 1998,

Johnson et al., 1997]. As in the bivariate case, the marginal distribution of xi is Poisson

with parameter λi +λ0. Since λ0 controls the covariance between all variables, an extremely

limited set of correlations between variables is permitted.
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Mahamunulu [1967] first proposed a more general extension of the multivariate

Poisson distribution that permits a full covariance structure. This distribution has been

studied further by many [Loukas and Kemp, 1983, Kano and Kawamura, 1991, Johnson

et al., 1997, Karlis, 2003, Tsiamyrtzis and Karlis, 2004]. While the form of this general

multivariate Poisson distribution is too complicated to spell out for p > 3, its distribution

can be specified by a multivariate reduction scheme. Specifically, let yi for

i = 1, . . . , (2p − 1) be independently Poisson distributed with parameter λi. Now, define

A = [A1, A2, . . . Ap] where Ai is a d ×
(
p
i

)
matrix consisting of ones and zeros where each

column of Ai has exactly i ones with no duplicate columns. Hence, A1 is the p× p identity

matrix and Ap is a column vector of all ones. Then, x = Ay is a p-dimensional

multivariate Poisson distributed random vector with a full covariance structure. Note that

the simpler multivariate Poisson distribution with constant covariance in Eq. 5.3 is a

special case of this general form where A = [A1, Ap].

The multivariate Poisson distribution has not been widely used for real data

applications. This is likely due to two major limitations of this distribution. First, the

multivariate Poisson distribution only permits positive dependencies; this can easily be

seen as the distribution arises as the sum of independent Poisson random variables and

hence covariances are governed by the positive rate parameters λi. The assumption of

positive dependencies is likely unrealistic for most real count-valued data examples.

Second, computation of probabilities and inference of parameters is especially cumbersome

for the multivariate Poisson distribution; these are only computationally tractable for small

p and hence not readily applicable in high-dimensional settings. Kano and Kawamura

[1991] proposed multivariate recursion schemes for computing probabilities, but these

schemes are only stable and computationally feasible for small p, thus complicating

likelihood-based inference procedures. Karlis [2003] more recently proposed a latent

variable based EM algorithm for parameter inference of the general multivariate Poisson
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distribution. This approach treats every pairwise interaction as a latent variable and

conducts inference over both the observed and hidden parameters. While this method is

more tractable than recursion schemes, it still requires inference over
(
d
2

)
latent variables

and is hence not feasible in high-dimensional settings. Overall, the multivariate Poisson

distribution introduced above is appealing in that its marginal distributions are Poisson;

yet, there are many modeling drawbacks including severe restriction on the types of

dependencies permitted (e.g. only positive relationships), a complicated and intractable

form in high-dimensions, and challenging inference procedures.

5.3.2 Copula Approaches

A much more general way to construct valid multivariate Poisson distributions with

Poisson marginals is by pairing a copula distribution with Poisson marginal distributions.

For continuous multivariate distributions, the use of copula distributions is founded on

the celebrated Sklar’s theorem: any continuous joint distribution can be decomposed into a

copula and the marginal distributions, and conversely, any combination of a copula and

marginal distributions gives a valid continuous joint distribution [Sklar, 1959]. The key

advantage of such models for continuous distributions is that copulas fully specify the

dependence structure hence separating the modeling of marginal distributions from the

modeling of dependencies. While copula distributions paired with continuous marginal

distributions enjoy wide popularity (see for example [Cherubini et al., 2004a] in finance

applications), copula models paired with discrete marginal distributions, such as the

Poisson, are more challenging both for theoretical and computational reasons [Genest and

Nešlehová, 2007, Nikoloulopoulos, 2013b, 2016]. However, several simplifications and recent

advances have attempted to overcome these challenges [Rüschendorf, 2013,

Nikoloulopoulos, 2013b, 2016].
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5.3.2.1 Copula Definition and Examples

A copula is defined by a joint cumulative distribution function (CDF),

C(u) : [0, 1]p → [0, 1] with uniform marginal distributions. As a concrete example, the

Gaussian copula (see left subfigure of Fig. 5.2 for an example) is derived from the

multivariate normal distribution and is one of the most popular multivariate copulas

because of its flexibility in the multidimensional case; the Gaussian copula is defined

simply as:

CGauss
R (u1, u2, · · · , up) = HR

(
H−1(u1), · · · , H−1(up)

)
,

where H−1(·) denotes the standard normal inverse cumulative distribution function, and

HR(·) denotes the joint cumulative distribution function of a N (0, R) random vector, where

R is a correlation matrix. A similar multivariate copula can be derived from the multivariate

Student’s t distribution if extreme values are important to model [Demarta and McNeil,

2005].

The Archimedean copulas are another family of copulas which have a single parameter

that defines the global dependence between all variables [Trivedi and Zimmer, 2005]. One

property of Archimedean copulas is that they admit an explicit form unlike the Gaussian

copula. Unfortunately, the Archimedean copulas do not directly allow for a rich dependence

structure like the Gaussian because they only have one dependence parameter rather than

a parameter for each pair of variables.

Pair copula constructions (PCCs) [Aas et al., 2009] for copulas, or vine copulas, allow

combinations of different bivariate copulas to form a joint multivariate copula. PCCs define

multivariate copulas that have an expressive dependency structure like the Gaussian copula

but may also model asymmetric or tail dependencies available in Archimedean and t copulas.

Pair copulas only use univariate CDFs, conditional CDFs, and bivariate copulas to construct

a multivariate copula distribution and hence can use combinations of the Archimedean
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copulas described previously. The multivariate distributions can be factorized in a variety

of ways using bivariate copulas to flexibly model dependencies.Vines, or graphical tree-like

structures, denote the possible factorizations that are feasible for PCCs [Bedford and Cooke,

2002].

5.3.2.2 Copula Models for Discrete Data

As per Sklar’s theorem, any copula distribution can be combined with marginal

distribution CDFs {Fi(xi)}di=1 to create a joint distribution:

G(x1, x2, · · · , xp | θ, F1, · · · , Fp) = Cθ (u1 = F1(x1), · · · , up = Fp(xp)) .

If sampling from the given copula is possible, this form admits simple direct sampling from

the joint distribution (defined by the CDF G(·)) by first sampling from the copula

u ∼ Copula(θ) and then transforming u to the target space using the inverse CDFs of the

marginal distributions: x = [F−1
1 (u1), · · · , F−1

p (up)].

A valid multivariate discrete joint distribution can be derived by pairing a copula

distribution with Poisson marginal distributions. For example, a valid joint CDF with

Poisson marginals is given by

G(x1, x2, · · · , xp | θ) = Cθ (F1(x1 |λ1), · · · , Fp(xp |λp)) ,

where Fi(xi |λi) is the Poisson cumulative distribution function with mean parameter λi,

and θ denotes the copula parameters. If we pair a Gaussian copula with Poisson marginal

distributions, we create a valid joint distribution that has been widely used for generating

samples of multivariate count data [Xue-Kun Song, 2000, Yahav and Shmueli, 2012, Cook

et al., 2010]—an example of the Gaussian copula paired with Poisson marginals to form a

discrete joint distribution can be seen in Fig. 5.2.
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Figure 5.2: A copula distribution (left)—which is defined over the unit hypercube and has
uniform marginal distributions—, paired with univariate Poisson marginal distributions for
each variable (middle) defines a valid discrete joint distribution with Poisson marginals
(right).

Nikoloulopoulos [2013a] present an excellent survey of copulas to be paired with

discrete marginals by defining several desired properties of a copula (quoted from

[Nikoloulopoulos, 2013a]):

1. Wide range of dependence, allowing both positive and negative dependence.

2. Flexible dependence, meaning that the number of bivariate marginals is

(approximately) equal to the number of dependence parameters.

3. Computationally feasible cumulative distribution function (CDF) for likelihood

estimation.

4. Closure property under marginalization, meaning that lower-order marginals belong to

the same parametric family.

5. No joint constraints for the dependence parameters, meaning that the use of covariate

functions for the dependence parameters is straightforward.

Each copula model satisfies some of these properties but not all of them. For example,
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Gaussian copulas satisfy properties (1), (2) and (4) but not (3) or (5) because the normal

CDF is not known in closed form and the positive definiteness constraint on the correlation

matrix. Nikoloulopoulos [2013a] recommend Gaussian copulas for general models and vine

copulas if modeling dependence in the tails or asymmetry is needed.

5.3.2.3 Theoretical Properties of Copulas Derived from Discrete Distributions

From a theoretical perspective, a multivariate discrete distribution can be viewed

as a continuous copula distribution paired with discrete marginals but the derived copula

distributions are not unique and hence, are unidentifiable [Genest and Nešlehová, 2007].

Note that this is in contrast to continuous multivariate distributions where the derived

copulas are uniquely defined [Sklar, 1973]. Because of this non-uniqueness property, Genest

and Nešlehová [2007] caution against performing inference on and interpreting dependencies

of copulas derived from discrete distributions. A further consequence of non-uniqueness is

that when copula distributions are paired with discrete marginal distributions, the copulas

no longer fully specify the dependence structure as with continuous marginals [Genest and

Nešlehová, 2007]. In other words, the dependencies of the joint distribution will depend in

part on which marginal distributions are employed. In practice, this often means that the

range of dependencies permitted with certain copula and discrete marginal distribution pairs

is much more limited than the copula distribution would otherwise model. However, several

have suggested that this non-uniqueness property does not have major practical ramifications

[Nikoloulopoulos, 2013a, Karlis, 2016].

We discuss a few common approaches used for the estimation of continuous copulas

with discrete marginals.
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5.3.2.4 Continuous Extension for Parameter Estimation

For estimation of continuous copulas from data, a two-stage procedure called Inference

Function for Marginals (IFM) [Joe and Xu, 1996] is commonly used in which the marginal

distributions are estimated first and then used to map the data onto the unit hypercube

using the CDFs of the inferred marginal distributions. While this is straightforward for

continuous marginals, this procedure is less obvious for discrete marginal distributions when

using a continuous copula. One idea is to use the continuous extension (CE) of integer

variables to the continuous domain [Denuit and Lambert, 2005] by forming a new “jitter”

continuous random variable x̃:

x̃ = x+ (u− 1) ,

where u is a random variable defined on the unit interval. It is straightforward to see that

this new random variable is continuous and x̃ ≤ x. An obvious choice for the distribution of

u is the uniform distribution. With this idea, inference can be performed using a surrogate

likelihood by randomly projecting each discrete data point into the continuous domain and

averaging over the random projections as done in [Heinen and Rengifo, 2007, 2008]. Madsen

[2009], Madsen and Fang [2011] use the CE idea as well but generate multiple jittered

samples {x̃(1), x̃(1), . . . , x̃(m)} for each original observation x to estimate the discrete likelihood

rather than merely generating one jittered sample x̃ for each original observation x as in

[Heinen and Rengifo, 2007, 2008]. Nikoloulopoulos [2013b] find that CE-based methods

significantly underestimate the correlation structure because the CE jitter transform operates

independently for each variable instead of considering the correlation structure between the

variables.

5.3.2.5 Distributional Transform for Parameter Estimation

In a somewhat different direction, Rüschendorf [2013] proposed the use of a

generalization of the CDF distribution function F (·) for the case with discrete variables,
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which they term a distributional transform (DT) denoted by F̃ (·):

F̃ (x, v) ≡ F (x) + vP(x) = P(X < x) + vP(X = x) ,

where v ∼ Uniform(0, 1). Note that in the continuous case, P(X = x) = 0 and thus

this reduces to the standard CDF for continuous distributions. One way of thinking of

this modified CDF is that the random variable v adds a random jump when there are

discontinuities in the original CDF. If the distribution is discrete (or more generally if there

are discontinuities in the original CDF), this transformation enables a simple proof of a

theorem akin to Sklar’s theorem for discrete distributions [Rüschendorf, 2013].

Kazianka and Pilz [2010], Kazianka [2013] propose using the distributional transform

(DT) from [Rüschendorf, 2013] to develop a simple and intuitive approximation for the

likelihood. Essentially, they simply take the expected jump value of E(v) = 0.5 (where

v ∼ Uniform(0, 1)) and thus transform the discrete data to the continuous domain by the

following:

ui ≡ Fi(xi − 1) + 0.5P(xi) = 0.5(Fi(xi − 1) + Fi(xi)) ,

which can be seen as simply taking the average of the CDF values at xi − 1 and xi. Then,

they use a continuous copula such as the Gaussian copula. Note that this is much simpler

to compute than the simulated likelihood (SL) method in [Nikoloulopoulos, 2013b] or the

continuous extension (CE) methods in [Heinen and Rengifo, 2007, 2008, Madsen, 2009,

Madsen and Fang, 2011], which require averaging over many different random

initializations.

5.3.2.6 Simulated Likelihood for Parameter Estimation

Finally, [Nikoloulopoulos, 2013b] propose a method to directly approximate the

maximum likelihood estimate by estimating a discretized Gaussian copula. Essentially,
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unlike the CE and DT methods which attempt to transform discrete variables to

continuous variables, the MLE for a Gaussian copula with discrete marginal distributions

F1, F2, . . . , Fp can be formulated as estimating multivariate normal rectangular

probabilities:

P(x |γ, R) =

∫ φ−1[F1(x1 | γ1)]

φ−1[F1(x1−1 | γ1)]

· · ·
∫ φ−1[Fp(xp | γp)]

φ−1[F1(xp−1 | γp)]

ΦR(z1, . . . , zp)dz1 . . . dzp , (5.4)

where γ are the marginal distribution parameters, φ−1(·) is the univariate standard normal

inverse CDF, and ΦR(· · · ) is the multivariate normal density with correlation matrix R.

Nikoloulopoulos [2013b] propose to approximate the multivariate normal rectangular

probabilities via fast simulation algorithms discussed in [Genz and Bretz, 2009]. Because

this method directly approximates the MLE via simulated algorithms, this method is called

simulated likelihood (SL). Nikoloulopoulos [2016] compare the DT and SL methods for

small sample sizes and find that the DT method tends to overestimate the correlation

structure. However, because of the computational simplicity, Nikoloulopoulos [2016] give

some heuristics of when the DT method might work well compared to the more accurate

but more computationally expensive SL method.

5.3.2.7 Vine Copulas for Discrete Distributions

Panagiotelis et al. [2012] provide conditions under which a multivariate discrete

distribution can be decomposed as a vine PCC copula paired with discrete marginals. In

addition, Panagiotelis et al. [2012] show that likelihood computation for vine PCCs with

discrete marginals is quadratic as opposed to exponential as would be the case for general

multivariate copulas such as the Gaussian copula with discrete marginals. However,

computation in truly high-dimensional settings remains a challenge as 2d(d − 1) bivariate

copula evaluations are required to calculate the PMF or likelihood of a d-variate PCC

using the algorithm proposed by Panagiotelis et al. [2012]. These bivariate copula
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evaluations, however, can be coupled with some of the previously discussed computational

techniques such as continuous extensions, distributional transforms, and simulated

likelihoods for further computational improvements. Finally, while vine PCCs offer a very

flexible modeling approach, this comes with the added challenge of selecting the vine

construction and bivariate copulas [Czado et al., 2013], which has not been well studied for

discrete distributions. Overall, Nikoloulopoulos [2013a] recommend using vine PCCs for

complex modeling of discrete data with tail dependencies and asymmetric dependencies.

5.3.3 Summary of Marginal Poisson Generalizations

We have reviewed the historical development of the multivariate Poisson which has

Poisson marginals and then reviewed many of the recent developments of using the much

more general copula framework to derive Poisson generalizations with Poisson marginals.

The original multivariate Poisson models based on latent Poisson variables are limited to

positive dependencies and require computationally expensive algorithms to fit. However,

estimation of copula distributions paired with Poisson marginals—while theoretically has

some caveats—can be performed efficiently in practice. Simple approximations such as the

expectation under the distributional transformation can provide nearly trivial

transformations that move the discrete variables to the continuous domain in which all the

tools of continuous copulas can be exploited. More complex transformations such as the

simulated likelihood method [Nikoloulopoulos, 2013b] can be used if the sample size is

small or high accuracy is needed.

5.4 Poisson Mixture Generalizations

Instead of directly extending univariate Poissons to the multivariate case, a separate

line of work proposes to indirectly extend the Poisson based on the mixture of independent

Poissons. Mixture models are often considered to provide more flexibility by allowing the
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parameter to vary according to a mixing distribution. One important property of mixture

models is that they can model overdispersion. Overdispersion occurs when the variance of

the data is larger than the mean of the data—unlike in a Poisson distribution in which the

mean and variance are equal. One way of quantifying dispersion is the dispersion index:

δ =
σ2

µ
. (5.5)

If δ > 1, then the distribution is overdispersed whereas if δ < 1, then the distribution is

underdispersed. In real world data as will be seen in the experimental section, overdispersion

is more common than underdispersion. Mixture models also enable dependencies between

the variables as will be described in the following paragraphs.

Suppose that we are modeling univariate random variable x with a density of f(x | θ).

Rather than assuming θ is fixed, we let θ itself to be a random variable following some

mixing distribution. More formally, a general mixture distribution can be defined as [Karlis

and Xekalaki, 2005]:

P(x | g(·)) =

∫
Θ

f(x | θ) g(θ) dθ , (5.6)

where the parameter θ is assumed to come from the mixing distribution g(θ) and Θ is the

domain of θ.

For the Poisson case, let λ ∈ Rp
++ be a p-dimensional vector whose i-th element λi is

the parameter of the Poisson distribution for xi. Now, given some mixing distribution g(λ),

the family of Poisson mixture distributions is defined as

PMixedPoi(x) =

∫
Rd++

g(λ)
d∏
i=1

PPoiss(xi |λi) dλ , (5.7)

where the domain of the joint distribution is any count-valued assignment (i.e.

xi ∈ Z+,∀i). While the probability density function (Eq. 5.7) has the complicated form
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involving a multidimensional integral (a complex, high-dimensional integral when p is

large), the mean and variance are known to be expressed succinctly as

E(x) = E(λ) , (5.8)

Var(x) = E(λ) + Var(λ) . (5.9)

Note that Eq. 5.9 implies that the variance of a mixture is always larger than the variance

of a single distribution. The higher order moments of x are also easily represented by those

of λ. Besides the moments, other interesting properties (convolutions, identifiability etc.) of

Poisson mixture distributions are extensively reviewed and studied in Karlis and Xekalaki

[2005].

One key benefit of Poisson mixtures is that they permit both positive as well as

negative dependencies simply by properly defining g(λ). The intuition behind these

dependencies can be more clearly understood when we consider the sample generation

process. Suppose that we have the distribution g(λ) in two dimensions (i.e. d = 2) with a

strong positive dependency between λ1 and λ2. Then, given a sample (λ1, λ2) from g(λ), x1

and x2 are likely to also be positively correlated.

In an early application of the model, Arbous and Kerrich [1951] constrain the

Poisson parameters as the different scales of common gamma variable λ: for i = 1, . . . , p,

the time interval ti is given and λi is set to tiλ. Hence, g(λ) is a univariate gamma

distribution specified by λ ∈ R++ —which only allows simple dependency structure. Steyn

[1976], as another early attempt, choose the multivariate normal distribution for the

mixing distribution g(λ) to provide more flexibility on the correlation structure. However,

the normal distribution poses problems because λ must reside in R++ while the the normal

distribution is defined on R.

One of the most popular choice for g(λ) is the log-normal distribution thanks to its
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rich covariance structure and natural positivity constraint3:

Nlog(λ |µ,Σ) =
1

Πd
i=1λi

√
(2π)d|Σ|

exp
(
− 1

2
(logλ− µ)>Σ−1(logλ− µ)

)
. (5.10)

The log-normal distribution above is parameterized by µ and Σ, which are the mean and the

covariance of (logλ1, logλ2, · · · , logλd), respectively. Setting the random variable xi to follow

the Poisson distribution with parameter λi, we have the multivariate Poisson log-normal

distribution [Aitchison and Ho, 1989] from Eq. 5.7:

PPoiLogN(x |µ,Σ) =

∫
Rd+
Nlog(λ |µ,Σ)

d∏
i=1

PPoiss(xi |λi) dλ . (5.11)

While the joint distribution (Eq. 5.11) does not have a closed-form expression and hence as d

increases, it becomes computationally cumbersome to work with, its moments are available

in closed-form as a special case of Eq. 5.9:

αi ≡ E(xi) = exp(µi +
1

2
σii) ,

Var(xi) = αi + α2
i

(
exp(σii)− 1

)
,

Cov(xi, xj) = αiαj(exp(σij)− 1
)
. (5.12)

The correlation and the degree of overdispersion (defined as the variance divided by the

mean) of the marginal distributions are strictly coupled by α and σ. Also, the possible

Spearman’s ρ correlation values for this distribution are limited if the mean value αi is small.

To briefly explore this phenomena, we simulated a two-dimensional Poisson log-normal model

with mean zero and covariance matrix:

Σ = 2log(αi)

[
1 ±0.999

±0.999 1

]
,

3This is because if y ∈ R ∼ Normal, then exp(y) ∈ R++ ∼ LogNormal.
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which corresponds to a mean value of αi per Eq. 5.12 and the strongest positive and negative

correlation possible between the two variables. We simulated one million samples from this

distribution and found that when fixing αi = 2, the Spearman’s ρ values are between -0.53

and 0.58. When fixing αi = 10, the Spearman’s ρ values are between -0.73 and 0.81. Thus,

for small mean values, the log-normal mixture is limited in modeling strong dependencies but

for large mean values the log-normal mixture can model stronger dependencies. Besides the

examples provided here, various Poisson mixture models from different mixing distributions

are available although limited in the applied statistical literature due to their complexities.

See Karlis and Xekalaki [2005] and the references therein for more examples of Poisson

mixtures. Karlis and Xekalaki [2005] also provide the general properties of mixtures as well

as the specific ones of Poisson mixtures such as moments, convolutions, and the posterior.

While this review focuses on modeling multivariate count-valued responses without

any extra information, the several extensions of multivariate Poisson log-normal models have

been proposed to provide more general correlation structures when covariates are available

[Chib and Winkelmann, 2001, Ma et al., 2008, Park and Lord, 2007, El-Basyouny and Sayed,

2009, Aguero-Valverde and Jovanis, 2009, Zhan et al., 2015]. These works formulate the mean

parameter of log-normal mixing distribution, logµi, as a linear model on given covariates in

the Bayesian framework.

In order to alleviate the computational burden of using log-normal distributions as

an infinite mixing density as above, Karlis and Meligkotsidou [2007] proposed an EM type

estimation for a finite mixture of k > 1 Poisson distributions, which still preserves similar

properties such as both positive and negative dependencies, as well as closed form

moments. While [Karlis and Meligkotsidou, 2007] consider mixing multivariate Poissons

with positive dependencies, the simplified form where the component distributions are

independent Poisson distributions is much simpler to implement using an

expectation-maximization (EM) algorithm. This simple finite mixture distribution can be

64



viewed as a middle ground between a single Poisson and a non-parametric estimation

method where a Poisson is located at every training point—i.e. the number of mixtures is

equal to the number of training data points (k = n).

The gamma distribution is another common mixing distribution for the Poisson

because it is the conjugate distribution for the Poisson mean parameter λ. For the

univariate case, if the mixing distribution is gamma, then the resulting univariate

distribution is the well-known negative binomial distribution. The negative binomial

distribution can handle overdispersion in count-valued data when the variance is larger

than the mean. Unlike the Poisson log-normal mixture, the univariate gamma-Poisson

mixture density—i.e. the negative binomial density—is known in closed form:

P(x | r, p) =
Γ(r + x)

Γ(r)Γ(x+ 1)
pr(1− p)x .

As r → ∞, the negative binomial distribution approaches the Poisson distribution. Thus,

this can be seen as a generalization of the Poisson distribution. Note that the variance of

this distribution is always larger than the Poisson distribution with the same mean value.

In a similar vein to using the gamma distribution, if instead of putting a prior on

the Poisson mean parameter λ, we reparametrize the Poisson distribution by the log Poisson

mean parameter θ = log(λ), then the log-gamma distribution is conjugate to parameter

θ. Bradley et al. [2015] recently leveraged the log-gamma conjugacy to the Poisson log-

mean parameter θ by introducing the Poisson log-gamma hierarchical mixture distribution.

In particular, they discuss the multivariate log-gamma distribution that can have flexible

dependency structure similar to the multivariate log-normal distribution and illustrate some

modeling advantages over the log-normal mixture model.
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5.4.1 Summary of Mixture Model Generalizations

Overall, mixture models are particularly helpful if there is overdispersion in the

data—which is often the case for real-world data as seen in the experiments section—while

also allowing for variable dependencies to be modeled implicitly through the mixing

distribution. If the data exhibits overdispersion, then the log-normal or log-gamma

distributions [Bradley et al., 2015] give somewhat flexible dependency structures. The

principal caveat with complex mixture of Poisson distributions is computational; exact

inference of the parameters is typically computationally difficult due to the presence of

latent mixing variables. However, simpler models such as the finite mixture using simple

expectation maximization (EM) may provide good results in practice (see comparison

section).

5.5 Conditional Poisson Generalizations

While the multivariate Poisson formulation in Eq. 5.3 as well as the distribution

formed by pairing a copula with Poisson marginals assume that univariate marginal

distributions are derived from the Poisson, the models in previous chapters of this

dissertation generalizes the univariate Poisson by assuming the univariate node-conditional

distributions are derived from the Poisson [Besag, 1974, Yang et al., 2012, 2013, 2015,

Inouye et al., 2015, 2016a]. Like the assumption of Poisson marginals in previous sections,

this conditional Poisson assumption seems a different yet natural extension of the

univariate Poisson distribution. The multivariate Gaussian can be seen to satisfy such a

conditional property since the node-conditional distributions of a multivariate Gaussian are

univariate Gaussian. One benefit of these conditional models is that they can be seen as

undirected graphical models or Markov Random Fields, and they have a simple parametric

form. In addition, estimating these models generally reduces to estimating simple

node-wise regressions, and some of these estimators have theoretical guarantees on
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estimating the global graphical model structure even under high-dimensional sampling

regimes, where the number of variables (p) is potentially even larger than the number of

samples (n). For details about these graphical models, we refer the reader to Chapter 2 for

information about previous graphical models including the Poisson graphical model

(PGM), the truncated Poisson graphical model (TPGM), the sub-linear Poisson graphical

model (SPGM) and the quadratic Poisson graphical model (QPGM). We refer the reader

to Chapter 4 for details about the Poisson SQR graphical model and to Chapter 3 for

details about the fixed-length Poisson MRF model (FLPGM).

5.5.1 Summary of Conditional Poisson Generalizations

The conditional Poisson models benefit from the rich literature in exponential

families and undirected graphical models, or Markov Random Fields. In addition, the

conditional Poisson models have a simple parametric form. The historical Poisson

graphical model—or the auto-Poisson model [Besag, 1974])—only allowed negative

dependencies between variables. Multiple extensions have sought to overcome this severe

limitation by altering the Poisson graphical model so that the log partition function is

finite even with positive dependencies. One major drawback to the graphical model

approach is that computing the likelihood requires approximation of the joint log partition

function A(θ,Φ); a related problem is that the distribution moments and marginals are not

known in closed-form. Despite these drawbacks, parameter estimation using composite

likelihood methods via `1-penalized node-wise regressions (in which the joint likelihood is

not computed) has solid theoretical properties under certain conditions.

5.6 Model Comparison

We compare models by first discussing two structural aspects of the models: (a)

interpretability and (b) the relative stringency and ease of verifying theoretical assumptions
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and guarantees. We then present and discuss an empirical comparison of the models on three

real-world datasets.

5.6.1 Comparison of Model Interpretation

Marginal models can be interpreted as weakly decoupling modeling marginal

distributions over individual variables, from modeling the dependency structure over the

variables. However, in the discrete case, specifically for distributions based on pairing

copulas with Poisson marginals, the dependency structure estimation is also dependent on

the marginal estimation, unlike for copulas paired with continuous marginals [Genest and

Nešlehová, 2007]. Conditional models or graphical models, on the other hand, can be

interpreted as specifying generative models for each variable given the variable’s

neighborhood (i.e. the conditional distribution). In addition, dependencies in graphical

models can be visualized and interpreted via networks. Here, each variable is a node and

the weighted edges in the network structure depict the pair-wise conditional dependencies

between variables. The simple network depiction for graphical models may enable domain

experts to interpret complex dependency structures more easily compared to other models.

Overall, marginal models may be preferred if modeling the statistics of the data,

particularly the marginal statistics over individual variables, is of primary importance,

while conditional models may be preferred if prediction of some variables given others is of

primary importance. Mixture models may be more or less difficult to interpret

depending on whether there is an application-specific interpretation of the latent mixing

variable. For example, a finite mixture of two Poisson distributions may model the crime

statistics of a city that contains downtown and suburban areas. On the other hand, a finite

mixture of fifty Poisson distributions or a log-normal Poisson mixture when modeling crash

severity counts (as seen in the empirical comparison section) seems more difficult to

interpret; even the model empirically well fits the data, the hidden mixture variable might
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not have an obvious application-specific interpretation.

5.6.2 Comparison of Theoretical Considerations

Estimation of marginal models from data has various theoretical problems, as

evidenced by the analysis of copulas paired with discrete marginals in [Genest and

Nešlehová, 2007]. The extent to which these theoretical problems cause any significant

practical issues remains unclear. In particular, the estimators of the marginal distributions

themselves typically have easily checked assumptions since the empirical marginal

distributions can be inspected directly. On the other hand, the estimation of conditional

models is both computationally tractable, and comes with strong theoretical guarantees

even under high-dimensional regimes where n < p [Yang et al., 2015]. However the

assumptions under which the guarantees of the estimators hold are difficult to check in

practice, and could cause problems if they are violated (e.g. outliers caused by unobserved

factors). Estimation of mixture models tend to have limited theoretical guarantees. In

particular, finite Poisson mixture models have very weak assumptions on the underlying

distribution—eventually becoming a non-parametric distribution if k = O(n)—but the

estimation problems are likely NP-hard, with very few theoretical guarantees for practical

estimators. Yet, empirically as seen in the next section, estimating a finite mixture model

using Expectation-Maximization iterations performs well in practice.

5.6.3 Empirical Comparison

In this section, we seek to empirically compare models from the three classes presented

to assess how well they fit real-world count data.
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5.6.3.1 Comparison Experimental Setup

We empirically compare models on selected datasets from three diverse domains

which have different data characteristics in terms of their mean count values and dispersion

indices (Eq. 5.5) as can be seen in Table 5.1. The crash severity dataset is a small accident

dataset from [Milton et al., 2008] with three different count variables corresponding to

crash severity classes: “Property-only”, “Possible Injury”, and “Injury”. The crash severity

data exhibits high count values and high overdispersion. We retrieve raw next generation

sequencing data for breast cancer (BRCA) using the software TCGA2STAT [Wan et al.,

2016] and computed a simple log-count transformation of the raw counts: blog(x + 1)c, a

common preprocessing technique for RNA-Seq data. The BRCA data exhibits medium

counts and medium overdispersion. We collect the word count vectors from the Classic3

text corpus which contains abstracts from aerospace engineering, medical and information

sciences journals.4. The Classic3 dataset exhibits low counts—including many zeros—and

medium overdispersion. In the supplementary material, we also give results for a crime

statistics dataset and the 20 Newsgroup dataset but they have similar characteristics and

perform similarly to the the BRCA and Classic3 datasets respectively; thus, we omit them

for simplicity. We select variables (e.g. for p = 10 or p = 100) by sorting the variables by

mean count value—or sorting by variance in the case of the BRCA dataset as highly

variable genes are of more interest in biology.

In order to understand how each model might perform under varying data

characteristics, we consider the following two questions: (1) How well does the model (i.e.

the joint distribution) fit the underlying data distribution? (2) How well does the model

capture the dependency structure between variables? To help answer these questions, we

evaluate the empirical fit of models using two metrics, which only require samples from the

4http://ir.dcs.gla.ac.uk/resources/test_collections/

70

http://ir.dcs.gla.ac.uk/resources/test_collections/


Table 5.1: Dataset Statistics

(Per Variable ⇒) Means Dispersion Indices Spearman’s ρ

Dataset p n Min Med Max Min Med Max Min Med Max

Crash Severity 3 275 3.4 3.8 9.7 6 9.3 16 0.61 0.73 0.79
BRCA 10 878 3.2 5 7.7 1.5 2.2 3.8 -0.2 0.25 0.95

100 878 1.1 4 9 0.63 1.7 4.6 -0.5 0.08 0.95
1000 878 0.51 3.5 11 0.26 1 4.6 -0.64 0.06 0.97

Classic3 10 3893 0.26 0.33 0.51 1.4 3.4 3.8 -0.17 0.12 0.82
100 3893 0.09 0.14 0.51 1.1 2.1 8.3 -0.17 0.02 0.82
1000 3893 0.02 0.03 0.51 0.98 1.7 8.5 -0.17 -0 0.82

model. The first metric is based on a statistic called maximum mean discrepancy (MMD)

[Gretton, 2012] which estimates the maximum moment difference over all possible

moments. The empirical MMD can be approximated as follows from two sets of samples

X ∈ Rn1×p and Y ∈ Rn2×p:

M̂MD(G, X, Y ) = sup
f∈G

1

n1

n1∑
i=1

f(xi)−
1

n2

n2∑
j=1

f(yj) , (5.13)

where G is the union of the RKHS spaces based on the Gaussian kernel using twenty one

σ values log-spaced between 0.01 and 100. In our experiments, we estimate the MMD

between the pairwise marginals of model samples and the pairwise marginals of the original

observations:

DMMD
st =

{
M̂MD(G, [x(s)], [x̂(s)]), s = t

M̂MD(G, [x(s),x(t)], [x̂(s), x̂(t)]), otherwise
. (5.14)

where x(s) is the vector of data for the s-th variable of the true data and x̂(s) is the vector

of data for the s-th variable of samples from the estimated model—i.e. x(s) are

observations from the true underlying distribution and x̂(s) are samples from the estimated

model distribution. In our experiments, we use the fast approximation code for MMD from
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[Zhao and Meng, 2015] with 26 number of basis vectors for the FastMMD approximation

algorithm. The second metric merely computes the absolute difference between the

pairwise Spearman’s ρ values of model samples and the Spearman’s ρ values of the original

observations:

Dρ
st = |ρ(x(s),x(t))− ρ(x̂(s), x̂(t))|, ∀s, t . (5.15)

The MMD metric is of more general interest because it evaluates whether the models actually

fit the empirical data distribution while the Spearman metric may be more interesting for

practitioners who primarily care about the dependency structure, such as biologists who

specifically want to study gene dependencies rather than gene distributions.

We empirically compare the model fits on these real-world data sets for several

types of models from the three general classes presented. As a baseline, we estimate an

independent Poisson model (“Ind Poisson”). We include Gaussian copulas and vine copulas

both paired with Poisson marginals (“Copula Poisson” and “Vine Poisson”) to represent

the marginal model class. We estimate the copula-based models via the two-stage Inference

Functions for Margins (IFM) method [Joe and Xu, 1996] via the distributional transform

[Rüschendorf, 2013]. For the mixture class, we include both a simple finite mixture of

independent Poissons (“Mixture Poiss”) and a log-normal mixture of Poissons

(“Log-Normal”). The finite mixture was estimated using a simple

expectation-maximization (EM) algorithm; the log-normal mixture model was estimated

via MCMC sampling using the code from [Zhan et al., 2015]. For the conditional model

class, we estimate the simple Poisson graphical model (“PGM”), which only allows

negative dependencies, and three variants that allow for positive dependencies: the

truncated Poisson graphical model (“Truncated PGM”), the Fixed-Length Poisson

graphical model with a Poisson distribution on the vector length L = ‖x‖1 (“FLPGM

Poisson”) and the Poisson square root graphical model (“Poisson SQR”). Using composite
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likelihood methods of penalized `1 node-wise regressions, we estimate these models via code

from [Yang et al., 2015], [Inouye et al., 2014b], [Inouye et al., 2016b] and the XMRF5 R

package. After parameter estimation, we generate 1,000 samples for each method using

different types of sampling for each of the model classes.

To avoid overfitting to the data, we employ 3-fold cross-validation and report the

average over the three folds. Because the conditional models (PGM, TPGM, FLPGM, and

Poisson SQR) can be significantly different depending on the regularization parameter—i.e.

the weight for the `1 regularization term in the objective function for these models—, we

select the regularization parameter of these models by computing the metrics on a tuning split

of the training data. For the mixture model, we similarly tune the number of components k

by testing k = {10, 20, 30, · · · , 100}. For the very high dimensional datasets where p = 1000,

we use a regularization parameter near the tuning parameters found when p = 100 and fix

k = 50 in order to avoid the extra computation of selecting a parameter. More sampling

and implementation details for each model are available in the supplementary material.

5.6.3.2 Empirical Comparison Results

The full results for both the MMD and Spearman’s ρ metrics for the crash severity,

breast cancer RNA-Seq and Classic3 text datasets can be seen in Fig. 5.3, Fig. 5.4, and

Fig. 5.5 respectively. The low dimensional results (p ≤ 10) give evidence across all the

datasets that three models outperform the others in their classes:6 The Gaussian copula

paired with Poisson marginals model (“Copula Poisson”) for the marginal model class, the

mixture of Poissons distribution (“Mixture Poiss”) for the mixture model class, and the

5https://cran.r-project.org/web/packages/XMRF/index.html
6For the crash-severity dataset, the truncated Poisson graphical model (“Truncated PGM”) outperforms

the Poisson SQR model under the pairwise MMD metric. After inspection, however, we realized that the
Truncated PGM model performed better merely because outlier values were truncated to the 99th percentile
as described in the supplementary material. This reduced the overfitting of outlier values caused by the
crash severity dataset’s high overdispersion.
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Poisson SQR distribution (“Poisson SQR”) for the conditional model class. Thus, we only

include these representative models along with an independent Poisson baseline in the high-

dimensional experiments when p > 10. We discuss the results for specific data characteristics

as represented by each dataset.7

For the crash severity dataset with high counts and high overdispersion (Fig. 5.3),

mixture models (i.e. “Log-Normal” and “Mixture Poiss”) perform the best as expected since

they can model overdispersion well. However, if dependency structure is the only object of

interest, the Gaussian copula paired with Poisson marginals (“Copula Poisson”) performs

well. For the BRCA dataset with medium counts and medium overdispersion (Fig. 5.4),

we note similar trends with two notable exceptions: (1) The Poisson SQR model actually

performs reasonably in low dimensions suggesting that it can model moderate overdispersion.

(2) The high dimensional (d ≥ 100) Spearman’s ρ difference results show that the Gaussian

copula paired with Poisson marginals (“Copula Poisson”) performs significantly better than

the mixture model; this result suggests that copulas paired with Poisson marginals are likely

better for modeling dependencies than mixture models. Finally, for the Classic3 dataset

with low counts and medium overdispersion (Fig. 5.5), the Poisson SQR model seems to

perform well in this low-counts setting especially in low dimensions unlike in previous data

settings. While the simple independent mixture of Poisson distributions still performs well,

the Poisson log-normal mixture distribution (“Log-Normal”) performs quite poorly in this

setting with small counts and many zeros. This poor performance of the Poisson log-normal

mixture is somewhat surprising since the dispersion indices are almost all greater than one

as seen in Table 5.1. The differing results between low counts and medium counts with

similar overdispersion demonstrate the importance to consider both the overdispersion and

the mean count values when characterizing a dataset.

7These basic trends are also corroborated by the two datasets in the supplementary material.
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In summary, we note several overall trends. Mixture models are important for

overdispersion when counts are medium or high. The Gaussian copula with Poisson

marginals joint distribution can estimate dependency structure (per the Spearman metric)

for a wide range of data characteristics even when the distribution does not fit the

underlying data (per the MMD metric). The Poisson SQR model performs well for low

count values with many zeros (i.e. sparse data) and may be able to handle moderate

overdispersion.

Figure 5.3: Crash severity dataset (high counts and high overdispersion): MMD (left) and
Spearman ρ’s difference (right). As expected, for high overdispersion, mixture models (“Log-
Normal” and “Mixture Poiss”) seem to perform the best.
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Figure 5.4: BRCA RNA-Seq dataset (medium counts and medium overdispersion): MMD
(top) and Spearman ρ’s difference (bottom) with different number of variables: 10 (left), 100
(middle), 1000 (right). While mixtures (“Log-Normal” and “Mixture Poiss”) perform well
in terms of MMD, the Gaussian copula paired with Poisson marginals (“Copula Poisson”)
can model dependency structure well as evidenced by the Spearman metric.
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Figure 5.5: Classic3 text dataset (low counts and medium overdispersion): MMD (top) and
Spearman ρ’s difference (bottom) with different number of variables: 10 (left), 100 (middle),
1000 (right). The Poisson SQR model performs better on this low count dataset than in
previous settings.
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5.7 Discussion

While this review analyzes each model class separately, it would be quite interesting

to consider combinations or synergies between the model classes. Because negative

binomial distributions can be viewed as a gamma-Poisson mixture model, one simple idea

is to consider pairing a copula with negative binomial marginals or developing a negative

binomial SQR graphical model. As another example, we could form a finite mixture of

copula-based or graphical-model-based models. This might combine the strengths of a

mixture in handling multiple modes and overdispersion with the strengths of the

copula-based models and graphical models which can explicitly model dependencies.

We may also consider how one type of model informs the other. For example, by the

generalized Sklar’s theorem [Rüschendorf, 2013], each conditional Poisson graphical model

actually induces a copula—just as the Gaussian graphical model induces the Gaussian

copula. Studying the copulas induced by graphical models seems to be a relatively

unexplored area. On the other side, it may be useful to consider fitting a Gaussian copula

paired with discrete marginals using the theoretically-grounded techniques from graphical

models for sparse dependency structure estimation especially for the small sample regimes

in which p > n; this has been studied for the case of continuous marginals in [Liu et al.,

2012]. Overall, bringing together and comparing these diverse paradigms for probability

models opens up the door for many combinations and synergies.

5.8 Conclusion

We have reviewed three main approaches to constructing multivariate distributions

derived from the Poisson using three different assumptions: 1) the marginal distributions

are derived from the Poisson, 2) the joint distribution is a mixture of independent Poisson

distributions, and 3) the node-conditional distributions are derived from the Poisson. The
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first class based on Poisson marginals, and in particular the general approach of pairing

copulas with Poisson marginals, provides an elegant way to partially8 decouple the

marginals from the dependency structure and gives strong empirical results despite some

theoretical issues related to non-uniqueness. While advanced methods to estimate the

joint distribution of copulas paired with discrete marginals such as simulated likelihood

[Nikoloulopoulos, 2016] or vine copula constructions provide more accurate or more flexible

copula models respectively, our empirical results suggest that a simple Gaussian copula

paired with Poisson marginals with the trivial distributional transform (DT) can perform

quite well in practice. The second class based on mixture models can be particularly

helpful for handling overdispersion that often occurs in real count data with the

log-normal-Poisson mixture and a finite mixture of independent Poisson distributions

being prime examples. In addition, mixture models have closed-form moments and in the

case of a finite mixture, closed-form likelihood calculations—something not generally true

for the other classes. The third class based on Poisson conditionals can be represented as

graphical models, thus providing both compact and visually appealing representations of

joint distributions. Conditional models benefit from strong theoretical guarantees about

model recovery given certain modeling assumptions. However, checking conditional

modeling assumptions may be impossible and may not always be satisfied for real-world

count data. From our empirical experiments, we found that (1) mixture models are

important for overdispersion when counts are medium or high, (2) the Gaussian copula

with Poisson marginals joint distribution can estimate dependency structure for a wide

range of data characteristics even when the distribution does not fit the underlying data,

and (3) Poisson SQR models perform well for low count values with many zeros (i.e. sparse

data) and can handle moderate overdispersion. Overall, in practice, we would recommend

8In the discrete case, the dependency structure cannot be perfectly decoupled from the marginal
distributions unlike in the continuous case where the dependency structure and marginals can be perfectly
decoupled.
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comparing the three best performing methods from each class: namely the Gaussian copula

model paired with Poisson marginals, the finite mixture of independent Poisson

distributions, and the Poisson SQR model. This initial comparison will likely highlight

some interesting properties of a given dataset and suggest which class to pursue in more

detail.

This review has highlighted several key strengths and weaknesses of the main

approaches to constructing multivariate Poisson distributions. Yet, there remain many

open questions. For example, what are the marginal distributions of the Poisson graphical

models which are defined in terms of their conditional distributions? Or conversely, what

are the conditional distributions of the copula models which are defined in terms of their

marginal distributions? Can novel models be created at the intersection of these model

classes that could combine the strengths of different classes as suggested in the discussion

section? Could certain model classes be developed in an application area that has been

largely dominated by another model class? For example, graphical models are well-known

in the machine learning literature while copula models are well-known in the financial

modeling literature. Overall, multivariate Poisson models are poised to increase in

popularity given the wide potential applications to real-world high-dimensional

count-valued data in text analysis, genomics, spatial statistics, economics, and

epidemiology.
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Part II

Topic Models with Graphical Model
Components
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Summary of Part II

In the following chapters, we seek to combine the undirected Poisson graphical models

described in Part I with topic models, such as the common Latent Dirichlet Allocation (LDA)

model. In standard topic modeling, the topic distributions are assumed to be independent—

e.g. a multinomial. However, often words within a topic are related—for example, the words

“machine” and “learning” would likely be dependent in a computer science topic. Thus, we

seek to replace the topic distributions with graphical models so that observations even within

a topic can be dependent. In Chapter 6, we discuss two disjoint types of topic modeling

generalizations that enable the components to be graphical models. Then, we design an

instantiation of the first topic model generalization in Chapter 7 and an instantiation of the

second topic model generalization in Chapter 8. In both cases, we present the model, an

estimation algorithm, and experimental results on real-world datasets.
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Chapter 6

Two Types of Topic Model Generalizations1

Topic modeling, as often represented by the standard Latent Dirichlet Allocation

model (LDA) [Blei et al., 2003], is a way of generalizing the idea of mixture distributions.

A mixture distribution assumes that each instance comes from one of k component

distributions. One way of thinking about a mixture is assuming that each instance is

associated with a latent indicator vector that designates which component the instance is

from. The idea of topic models is to relax the assumption that the latent vector must be an

indicator vector by assuming that the latent vector is positive and must sum to one. This

essentially associates a latent weight vector with each data instance that signifies the

instance-specific mixture of the the component distributions. Topic models can be seen as

taking the convex relaxation of the indicator vectors, and thus mixture models can be

viewed as a special case of topic models. LDA uses the independent multinomial as the

component distributions. However, generalizing LDA to non-multinomial distributions can

take two distinct forms. First, instances from LDA can be assumed to come from a

multinomial whose parameters are a weighted mean (based on the instance-specific weight

vector) of the component parameters; we call this generalization as admixtures. Second, the

instances from LDA can be assumed to be a sum of latent vectors drawn from a

fixed-length distribution whose lengths are determined by the instance-specific weight

1Portions of this chapter are from [Inouye et al., 2014b,a, 2015] with some edits for better integration
into this dissertation. [Inouye et al., 2014b,a, 2015] were primarily executed and authored by David Inouye
with guiding contributions and edits by the co-authors.
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vector. Both of these generalizations have LDA as a special case but allow for the

multinomial distribution to be replaced by a graphical model. Thus, we can develop topic

models in Chapters 7 and 8 that use graphical models as the component distributions.

6.1 Topic Model Generalization 1: Weighted Mean of Component
Parameters (Admixtures)

In a simple mixture model, an observation is assumed to come from exactly one of k

possible components. An illustration of this type of model is shown in Fig. 6.1 (left) in which

documents are drawn from exactly one of two component distributions—the “topics” in the

case of document modeling. On the other hand, for admixtures each document is drawn

from a distribution whose parameters can be any convex combination of the component

parameters, allowing each document to be explained by multiple components as illustrated

in Fig. 6.1 (right).2

Given this intuition about admixtures, the probability of a single observation x from

an admixture of some base distribution (e.g. multinomial, von Mises-Fisher, PMRF)—

assuming that the admixture weights w and component canonical parameters Φ = φ1...k are

given—is defined as:

PAdmix.(x |w,Φ) = PBase

(
x

∣∣∣∣∣ φ̄ = Ψ−1

(
k∑
j=1

wjΨ(φj)

))
, (6.1)

where Ψ allows for the mixing to occur in a suitable transformation of the parameter space. In

the context of exponential families, the mixing could occur either in the canonical parameter

space in which case Ψ would be the identity function, or it could occur in the mean parameter

2Fig. 6.1 is only meant as an illustration and not as a rigorous visualization of mixtures or admixtures. It
should be noted that, in general, the KL-divergence should be minimized rather than `2 distance as suggested
by the figure.
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Figure 6.1: (Left) In mixtures, documents are drawn from exactly one component
distribution. (Right) In admixtures, documents are drawn from a distribution whose
parameters are a convex combination of component parameters.

space (such as the mean µ and covariance Σ for a multivariate Gaussian). For this paper,

unless otherwise specified, we will assume that Ψ is equal to the identity function.

If priors are given for the admixture weights w and the topic parameters φ1...k with

parameters α and β hyperparameters respectively, the joint distribution of a single

observation and the parameters is:

PBase

(
x

∣∣∣∣∣ φ̄ =
k∑
j=1

wjφj

)
P(w)

k∏
j=1

P(φj)

This gives the joint distribution over a set of n independent observations as:

PAdmix.(X,W,Φ) = (6.2)

n∏
i=1

PBase

(
xi

∣∣∣∣∣ φ̄ =
k∑
j=1

wi,jφj

)
P(wi)

k∏
j=1

P(φj)

Intuitively, this admixture model formulation means that each observation can be explained

by a mixture of a relatively small number of component distributions parameterized by φj.

In the special case where w is an indicator vector, this distribution becomes a standard
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mixture model where each observation is explained by only one component. In the special

case where k = 1, the admixture simply reduces to every observation being drawn from a

single base distribution. Therefore, this admixture formulation generalizes both single and

mixture distributions.

This admixture model also generalizes previous topic models and provides a general

framework for defining new admixture models based on any parametric distribution. In

the next sections, several examples of previous admixture models are given followed by

the formulation of this paper’s main model—an admixture of Poisson MRFs which, to the

authors’ best knowledge, is the first admixture model to allow dependencies between words.

Example 1 - LDA As shown in Sec. 7.3.1, LDA assumes that each document is draw

from an admixture of multinomials. The admixture weights and the parameters for each

topic multinomial are drawn from a Dirichlet prior. It is important to notice that LDA

mixes in the standard multinomial mean parameter space (i.e. ΨLDA is the canonical to

mean parameter transformation).

Example 2 - Population Admixtures In the genetic community, the term admixture

has been used to describe a population produced by interbreeding several previously-isolated

populations into a new admixed population. Pritchard et al. [2000] use a model equivalent

to LDA to explore this concept. Under this population model, the original ancestors of a

population correspond to topics and individuals correspond to documents.

Example 3 - SAM The Spherical Admixture Model (SAM) as proposed by Reisinger et al.

[2010] is an admixture model where the base distribution is a von Mises-Fisher distribution—

the independent Gaussian analog defined on the unit hypersphere. The model, which is

motivated by the observation that cosine distance is an important document similarity,
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assumes Dirichlet and von Mises-Fisher priors on the admixture weights and component

parameters respectively.

6.2 Topic Model Generalization 2: Sum of Latent Fixed-Length
Variables

In standard topic models like LDA, the distribution contains a unique topic variable

for every word in the corpus. Essentially, this means that every word is actually drawn

from a categorical distribution. However, this does not allow us to capture dependencies

between words because there is only one word being drawn at a time. Therefore, we need

to reformulate LDA in a way that the words from a topic are sampled jointly from a

multinomial. From this reformulation, we can then simply replace the multinomial with an

LPMRF distribution to obtain an LPMRF topic model described in Chapter 8. Our

reformulation of LDA groups the topic indicator variables for each word into k vectors

corresponding to the k different topics. These k “topic indicator” vectors zl are then

assumed to be drawn from a multinomial with fixed length L = ‖zj‖. This grouping of

topic vectors yields an equivalent distribution because the topic indicators are

exchangeable and independent of one another given the observed word and the

document-topic distribution. This leads to the following generalization of topic models in

which an observation xi is the summation of k hidden variables zji :

Generic Topic Model Novel LPMRF Topic Model

wi ∼ SimplexPrior(α) wi ∼ Dirichlet(α)

Li ∼ LengthDistribution(L̄) Li ∼ Poisson(λ = L̄)

mi ∼ PartitionDistribution(wi, Li) mi ∼ Multinomial(p = wi;N = Li)

zji ∼ FixedLengthDist(φj ; ‖zji ‖ = mj
i ) zji ∼ LPMRF(θj,Φj;L = mj

i )

xi =
∑k

j=1 z
j
i xi =

∑k
j=1 z

j
i .
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Note that this generalization of topic models does not require the partition distribution

and the fixed-length distribution to be the same. In addition, other distributions could

be substituted for the Dirichlet prior distribution on document-topic distributions like the

logistic normal prior. Finally, this generalization allows for real-valued topic models for other

types of data although exploration of this is outside the scope of this work.

This generalization is distinctive from the topic model generalization termed

“admixtures” in [Inouye et al., 2014b]. Admixtures assume that each observation is drawn

from an instance-specific base distribution whose parameters are a convex combination of

previous parameters. Thus an admixture of LPMRFs could be formulated by assuming

that each document, given the document-topic weights wi, is drawn from a

LPMRF(θ̄i =
∑

j wijθ
j, Φ̄i = wijΦ

j;L = ‖xi‖1). Though this may be an interesting model

in its own right and useful for further exploration in future work, this is not the same as

the above proposed model because the distribution of xi is not an LPMRF but rather the

distribution of a sum of different LPMRF variables—which is not an LPMRF distribution

in general. One case—possibly the only case—where these two generalizations of topic

models intersect is when the distribution is a multinomial (i.e. a LPMRF with Φ = 0). As

another distinction from APM, the LPMRF topic model directly generalizes LDA because

the LPMRF in the above model reduces to a multinomial if Φ = 0. Finally, the LPMRF

topic model can actually produce topic assignments for each word similar to LDA with

Gibbs sampling [Steyvers and Griffiths, 2007], whereas APM cannot assign topics to

specific words but only gives a topic distribution for each document. Fully exploring the

differences between this topic model generalization and the admixture generalization are

quite interesting but outside the scope of this work.
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Chapter 7

Admixture of Poisson MRFs1

7.1 Abstract

We introduce a new topic model based on an admixture of Poisson Markov Random

Fields (APM), which can model dependencies between words as opposed to previous

independent topic models such as PLSA [Hofmann, 1999], LDA [Blei et al., 2003] or SAM

[Reisinger et al., 2010]. As one contribution, we propose a class of admixture models that

generalizes previous topic models and show an equivalence between the conditional

distribution of LDA and independent Poissons—suggesting that APM subsumes the

modeling power of LDA. Research in both the semantic coherence of a topic models

[Mimno et al., 2011, Newman et al., 2010, Stevens et al., 2012, Aletras and Stevenson,

2013] and measures of model fitness [Mimno and Blei, 2011] provide strong support that

explicitly modeling word dependencies—as in APM—could be both semantically

meaningful and essential for appropriately modeling real text data. Though APM shows

significant promise for providing a better topic model, APM has a high computational

complexity because O(p2) parameters must be estimated where p is the number of words.

In light of this, we develop a parallel alternating Newton-like algorithm for training the

APM model that can handle p = 104 as an important step towards scaling to large

datasets. Also, motivated by simple intuitions and previous evaluations of topic models, we

1The majority of this chapter is from [Inouye et al., 2014b,a] with some edits for better integration into
this dissertation. [Inouye et al., 2014b,a] was primarily executed and authored by David Inouye with guiding
contributions and edits by the co-authors.
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propose a novel evaluation metric based on human evocation scores between word pairs

(i.e. how much one word “brings to mind” another word [Boyd-Graber et al., 2006]). We

provide compelling quantitative and qualitative results on the BNC corpus that

demonstrate the superiority of APM over previous topic models for identifying semantically

meaningful word dependencies. (MATLAB code available at:

http://bigdata.ices.utexas.edu/software/apm/)

(Note: The Poisson MRF in this chapter refers to the SPGM model defined in

Chapter 2 [Yang et al., 2013]. However, extensions of this model to use the SQR graphical

model would be an interesting area of future work.)

7.2 Introduction

Topic models can be understood as a class of statistical models for document

collections that model documents as admixtures over topics. Specifically, each topic is

modeled as a distribution over words, and each document is a separate mixture of such

topics (or specifically, the word distributions comprising the topics). Such an admixture

can be contrasted with a vanilla mixture of topics, where each document would be drawn

from a single topic.

A popular set of topic models is PLSA [Hofmann, 1999], which uses the multinomial

distribution as the word distribution for any topic, and its Bayesian counterpart, LDA [Blei

et al., 2003], which adds Dirichlet priors. While these topic models have proved enormously

useful in modeling varied document collections and have attracted a long line of work with

numerous extensions (see [Blei et al., 2010] for a review of LDA applications and trends),

it has some crucial lacunae that arise from its basic use of the multinomial distribution to

model word distributions for topics. There are several reasons which make the multinomial

distribution an inadequate distribution for documents and topics. The primary issue is that

it does not model dependencies between words: if the word “kernels” appears in a document
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(specifically, a machine learning paper), the appearance of the word “graphs” might be

less likely. Alternatively, if the word “classification” appears, “supervised” is more likely to

appear than in general documents. A second caveat is that the multinomial distribution does

not model absences of words. Lastly, the multinomial word distribution does not leverage

varying document lengths. For instance, with large counts of other words, some specific word

might become less likely. To address the issue of modeling word absences, Reisinger et al.

[2010] proposed the use of von Mises-Fisher distribution for topic distributions. But while

this addresses one issue with multinomials, it does not model word dependencies, nor does

it leverage document lengths in any substantive way.

In standard topic models such as LDA [Blei et al., 2003, Griffiths and Steyvers,

2004], the primary representation for each topic is simply a list of top 10 or 15 words. To

understand a topic, a person must manually consider many of the possible
(

10
2

)
pairwise

relationships as well as possibly larger m-wise relationships and attempt to infer abstract

meaning from this list of words. Of all the
(

10
2

)
pairwise relationships probably a very

small number of them are direct relationships. For example, a topic with the list of words

“money”, “fund”, “exchange” and “company” can be understood as referring to investment

but this can only be inferred from a very high-level human abstraction of meaning. This

problem has given rise to research on automatically labeling topics with a topic word or

phrase that summarizes the topic [Lau et al., 2011, Magatti et al., 2009, Mao et al., 2012].

[Chang et al., 2009] propose to evaluate topic models by randomly replacing a topic word

with a random word and evaluating whether a human can identify the intruding word. The

intuition for this metric is that the top words of a good topic will be related, and therefore,

a person will be able to easily identify the word that does not have any relationship to

the other words. [Mimno et al., 2011, Newman et al., 2010, Aletras and Stevenson, 2013]

compute statistics related to Pointwise Mutual Information for all pairs of top words in a

topic and attempt to correlate this with human judgments. All of these metrics suggest that
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capturing semantically meaningful relationships between pairs of words is fundamental to the

interpretability and usefulness of topic models as a document summarization and exploration

tool. This need for modeling dependencies can also be motivated in part by [Mimno and Blei,

2011] who investigated whether the multinomial (i.e. independent) assumption of word-topic

distributions actually fits real-world text data. Somewhat unsurprisingly, [Mimno and Blei,

2011] found that the multinomial assumption was often violated and thus gives evidence that

models with word dependencies—such as APM—may be a fundamentally more appropriate

model for text data.

Previous research in topic modeling has implicitly uncovered this issue with model

misfit by finding that models with 50, 100 or even 500 topics tend to perform better on

semantic coherence experiments than smaller models with only 10 or 20 topics [Stevens

et al., 2012]. Though using more topics may allow topic models to ignore the issue of word

dependencies, using more topics can make the coherence of a topic model more difficult as

suggested by [Stevens et al., 2012] who found that using 100 or 500 topics did not significantly

improve the coherence results over 50 topics. Intuitively, a topic model with a much smaller

number of topics (e.g. 5 or 10) is easier to comprehend. For instance, if training on newspaper

text, the number of topics could roughly correspond to the number of sections in a newspaper

such as news, weather and sports. Or, if modeling an encyclopedia, the top-level topics could

be art, history, science, and society. Thus, rather than using more topics, APM opens the

way for a promising topic model that can overcome this model misfit issue while only using

a small number of topics.

We propose using Poisson MRFs [Yang et al., 2012] described in Chapter 2, and in

particular the SPGM variant in [Yang et al., 2013],2 for topic distributions and using the

2Because we are not estimating the joint likelihood, we just compute regular Poisson regressions instead
of sublinear Poisson regressions—implicitly setting the SPGM cutoff points R0 and R to high values such
that they do not have an effect. Clearly, using Poisson SQR model would be an interesting area of future
work that avoids this issue with using unintuitive cutoff points.
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resulting admixture of Poisson MRFs (APM) for modeling document collections. These

Poisson MRFs allow modeling multivariate count data and use dependencies among the

count variables to represent the joint distribution compactly. Moreover, since these are

graphical model distributions, the dependencies are Markov with respect to an undirected

graph, which thus provides a visually appealing representation of any topic—see Fig. 7.1—in

contrast to just a list of words as in PLSA/LDA.

We position the Poisson MRF in context of topic models by showing that the

conditional distributions of the classical LDA model can be written as a Poisson MRF
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Figure 7.1: A Poisson MRF can provide interesting insights into a text corpus including
multiple word senses (hubs of graph) and semantic concepts (coherent subgraphs).
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where the underlying graph has no edges and hence no dependencies between words; this

connection—which was only recently discovered in the context of matrix factorization

[Gopalan et al., 2013]—not only puts into relief the assumptions made by LDA but also

opens the door to other approximate inference schemes for LDA (which however we do not

explore here). In other contributions of this paper, we define a new class of models called

admixtures and show that this class generalizes previous topic models, which thus opens

the door to other topic models based on non-Poisson distributions.

Even though APM shows promise for being a significantly more powerful and more

realistic topic model than previous models, the original paper acknowledged the significant

computational complexity. Instead of needing to fit O(k(n+ p)) parameters, APM needs to

estimate O(k(n + p2)) parameters. Therefore, we develop a parallel alternating algorithm

whose independent subproblems are solved using a Newton-like algorithm similar to the

algorithms developed for sparse inverse covariance estimation [Hsieh et al., 2011]. As in

[Hsieh et al., 2011], this new APM algorithm exploits the sparsity of the solution to

significantly reduce the computational time for computing the approximate Newton

direction. However, unlike [Hsieh et al., 2011], the APM model is solving for k Poisson

MRFs simultaneously whereas [Hsieh et al., 2011] is only solving for a single Gaussian

MRF. Another difference from [Hsieh et al., 2011] is that the whole algorithm can be easily

parallelized up to min(n, p).

To help measure the semantic utility of APM, we develop a novel evaluation metric

that more directly evaluates the APM model against human judgments of semantic

relatedness—a notion called evocation introduced by [Boyd-Graber et al., 2006].

Intuitively, the idea is that humans seek to understand traditional topic models by looking

at the list of top words. They will implicitly attempt to find how these words are related

and extract some more abstract meaning that generalizes the set of words. Thus, this

evaluation metric attempts to explicitly score how well pairs of words capture some
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semantically meaningful word dependency. Previous research has evaluated topic models

using word similarity measures [Stevens et al., 2012]. However, our work is different from

[Stevens et al., 2012] in three significant ways: 1) our metrics use evocation rather than

similarity (e.g. antonyms should have high evocation but low similarity), 2) we evaluate

top individual word pairs instead of rough aggregate statistics, and 3) we evaluate a topic

model that directly captures word dependencies (i.e. APM). We demonstrate that APM

substantially outperforms other topic models in both quantitative and qualitative ways.

7.3 Poisson MRFs in the Context of Topic Models

7.3.1 LDA Conditionals Equivalent to Independent Poissons

In this section, we place Poisson MRFs in the context of topic models by showing

the equivalence between the conditionals of LDA and an independent Poisson MRF.3 LDA

assumes the following generative process for a new document given that the topic weights

for the document w and the topic distribution parameters φ1...k are known: 1) Draw x̃ ∼

Poisson(λ̃) 2) For each of the x̃ words: (a) Draw topic index z ∼ Categorical(w) (b) Draw

word v ∼ Categorical(φz). Notice that because x̃ is independent of the other variables

in LDA, it is often simply ignored when estimating the model parameters. In our model,

however, x̃ cannot be ignored because words can be dependent. By marginalizing out the

topic variable z, step 2 can be collapsed into a draw from a multinomial with a single

parameter φ̃, which is simply a weighted average over the topic distribution parameters φz.

This yields the following modified step: 2’) Draw document x ∼ Mult(φ̃=
∑k

j=1wjφj |N =

x̃). Therefore, the probability of a document x givenw and φ1...k is: PPoiss(x̃ | λ̃)PMult(x | φ̃=∑k
j=1 wjφj, N= x̃).

3Gopalan et al. [2013] recently introduced the connection between LDA and Poisson models in the context
of matrix factorization.
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Amazingly, this Poisson-multinomial joint distribution is equivalent to p independent

Poissons [Bishop et al., 2007]:

PInd. Poiss (x |λ1, · · · , λp) =

p∏
s=1

e−λs

xs!
λxss

=
x̃!

x̃!

e−λ̃∏p
s=1 xs!

p∏
s=1

(
λ̃λs

λ̃

)xs

=
e−λ̃

x̃!
λ̃x̃

x̃!∏p
s=1 xs!

p∏
s=1

(
λs

λ̃

)xs
= PPoiss

(
x̃ | λ̃

)
PMult

(
x | θ = (λ1, · · · , λp) /λ̃,N = x̃

)
where λ̃ =

∑p
s=1 λs and x̃ =

∑p
s=1 xs. Therefore, a PMRF directly generalizes the

conditional distribution of PLSA/LDA by relaxing the independence assumption. To more

fully generalize LDA, priors must be added to a PMRF as proposed next.

7.3.2 Adding Priors to a PMRF

Similar to LDA’s prior, a conjugate prior on the parameters of a PMRF can be defined

as being proportional to:

exp{βTθ+βTΘβ−γA (θ,Θ)−λθ‖θ‖2
2−λ‖vec(Θ)‖1},

where ∀s, βs > 0, γ ≥ 0, λθ > 0 and λ > maxi,j βiβj.
4 One observation is that when Θ=0,

exp(θs) is essentially Gam(shape=βs; scale=1). Therefore, for independent Poissons, this is

similar to using Gamma priors. The posterior distribution merely modifies the

hyperparameters to be β̃ = β + x and γ̃ = γ + 1. Therefore, because this prior adds

pseudo-counts β to the observations for parameter estimation, this prior for PMRFs is

analogous to a Dirichlet prior for multinomials as in LDA.

4The conditions on the hyperparameters are needed for normalization. In practice, λθ can be set
arbitrarily small and is thus ignored in subsequent discussions. The λ hyperparameter is used for `1
regularization as discussed in Sec. 7.5.1.
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7.4 Admixture of Poisson MRFs

With the background on Poisson MRFs in Chapter 2 and the development of

admixtures in Chapter 6, an admixture of Poisson MRFs (APM) can be developed.

Relaxing the independence assumption of previous admixture models such as LDA, APM

assumes that the base distribution is a PMRF. This yields the following joint distribution:

PAPM(x,w,θ1...k,Θ1...k) (7.1)

= PPMRF

(
x

∣∣∣∣∣ θ̄ =
k∑
j=1

wjθj, Θ̄ =
k∑
j=1

wjΘj

)

× PDir(w)
k∏
j=1

P(θj,Θj)

where PDir(w |α) is a Dirichlet prior on the admixture weights (similar to LDA) and P(θj,Θj)

is the PMRF prior defined in Sec. 7.3.2. Because of the equivalence described in Sec. 7.3.1,

APM subsumes the expressive power of LDA. The primary difference between an independent

APM and LDA is that LDA mixes in the standard multinomial parameter space whereas

APM mixes in the canonical parameter space. An interesting open area for future research

could be admixing the component PMRFs in a different parameter space such as the mean

parameter space.5 Fundamentally, however, this model is much more expressive than all

previous admixture models because it allows for dependencies between words.

7.4.1 Topic Representation

In the APM model, topics are represented as PMRFs, and therefore, each topic

provides a full graph over words showing word dependencies rather than just a list of words

as in independent models such as LDA (see Fig. 7.3 in Sec. 7.7 for example topic graphs).

5For more information on the relationship between the mean and canonical parameter spaces, see
[Wainwright and Jordan, 2008].
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This representation opens up a whole new area for interpreting, exploring and visualizing

topics using a graph. In addition, all the metrics and algorithms on graphs such as tree

width or shortest path could be used to explore each topic.

7.4.2 Document Representation

Documents could be represented in at least two different ways under the APM model.

First, they could be represented by their admixture weights, and therefore, APM could

be used as a type of dimensionality reduction technique. Second, each document can be

represented as a full graph over words just like a topic because each document is associated

with an admixed PMRF. This graph representation provides a powerful new way to visualize

and summarize a document that was not possible with independent models like LDA.

7.5 Parameter Estimation by Optimizing Approximate Posterior

The parameters of an admixture of Poisson MRFs can be estimated by minimizing the

negative log posterior. Because the true log-likelihood of a Poisson MRF is computationally

intractable for complex multivariate distributions [Wainwright and Jordan, 2008], the pseudo

log-likelihood—which approximates the joint distribution as a product of node conditionals—

will be used instead. With the Dirichlet prior on w and the prior described in Sec. 7.3.2 on

the component parameters, the approximate posterior is:

P ≈ P̂(W,θ1...k,Θ1...k |X) (7.2)

∝
n∑
i=1

{[
p∑
s=1

ηs,ix̂s,i−(γ+1)A (ηs,i)

]
+(α−1)T log(wi)

}
,

where x̂=x+β and ηs,i=
∑k

j=1wi,j(θj,s+Θj,sx̂i,\s) is the canonical parameter of a univariate

Poisson.
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7.5.1 Enforcing Sparsity of Θj by `1 Regularization

For interpretability, generalizability and computational tractability, the parameters

of high-dimensional MRFs are often assumed to be sparse (i.e. a small number of non-zeros

compared to zeros). This sparsity assumption is usually incorporated into the problem by

adding an `1 regularization term to the objective function. This `1 regularized estimator

has been shown to have theoretical guarantees on structural recovery for Bernoulli

MRFs/Ising Models [Ravikumar et al., 2010], Gaussian MRFs [Ravikumar et al., 2011]

and, more recently, Poisson MRFs [Yang et al., 2012, 2013]. For similar reasons, APM

assumes that the parameter matrices (Θj) for each topic PMRF are sparse and, like the

aforementioned methods, estimates this sparse solution by using an `1 regularization term.

Intuitively, this sparsity assumption makes sense because most words are only directly

related to a small subset of other relevant words.

7.5.2 Unconstrained Optimization

Along with the regularization of the Θj parameter matrices, APM requires that the

columns of the admixture weights matrix W be probability vectors (i.e. properly defined

mixture weights that lie on the k-dimensional simplex). This leads to the following

unconstrained optimization problem:

arg min
W,θ1...k,Θ1...k

−P̂ + δW (W) + λ
k∑
j=1

‖vec(Θj)‖1 (7.3)

where λ is the `1 regularization parameter, W is the set of all possible matrices such that

the columns are probability vectors and δW (W) = {0, if W ∈W; ∞, otherwise}.
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7.6 Parallel Alternating Newton-like Algorithm for APM

The parameters for APM are estimated by maximizing the joint approximate

posterior over all variables.6 Instead of maximizing jointly over all parameters, we split the

problem into alternating convex optimization problems. Let us denote the likelihood part

(i.e. the smooth part) of the optimization function as g(W,θ1...k,Φ1...k) and the

non-smooth `1 regularization term as h where the full negative posterior is defined as

f = g + h. The smooth part of the approximate posterior can be written as:

g = − 1

n

n∑
i=1

p∑
s=1

[ k∑
j=1

wijxis(θ
j
s + xTi Φj

s)− exp
( k∑
j=1

wij(θ
j
s + xTi Φj

s)
)]
, (7.4)

where xi is the word-count vector for the ith document, wi is the admixture weight vector

for the ith document, and θj and Φj are the PMRF parameters for the jth component

(see Appendix B.2 for derivation). By writing g in this form, it is straightforward to see

that even though the whole optimization problem is not convex because of the interaction

between the admixture weights w and the PMRF parameters, the problem is convex if

either the admixture weights W or the component parameters θ1...k,Φ1...k are held fixed. To

simplify the notation in the following sections, we combine the node (which is analogous to an

intercept term in regression) and edge parameters by defining zi = [1 xTi ]T , φjs = [θjs (Φj
s)
T ]T

and Φs = [φ1
s φ

2
s · · ·φks ].

Thus, we can alternate between optimizing two similar optimization problems where

one has a non-smooth `1 regularization and the other has the constraint that wi must lie on

6This posterior approximation was based on the pseudo-likelihood while ignoring the symmetry constraint
so that node-wise regression parameters are independent. This leads to an overcomplete parameterization
for APM. For an overview of composite likelihood methods, see [Varin et al., 2011]. For a comparison of
pseudo-likelihood versus node-wise regressions, see [Lee and Hastie, 2013].
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the simplex ∆k:

arg min
Φ1,Φ2,··· ,Φp

− 1

n

p∑
s=1

[
tr(ΨsΦs)−

n∑
i=1

exp(zTi Φswi)
]

+

p∑
s=1

λ‖vec(Φs)\1‖1 (7.5)

arg min
w1,w2,··· ,wn∈∆k

− 1

n

n∑
i=1

[
ψT
i wi −

p∑
s=1

exp(zTi Φswi)
]
, (7.6)

where ψi and Ψs are constants in the optimization that can be computed from the data

matrix X and the other parameters that are being held fixed (see Alg. 2 in Appendix B.4

for computation of Ψs). This alternating scheme is analogous to Alternating Least Squares

(ALS) for Non-negative Matrix Factorization (NMF) [Lee and Seung, 2006] and EM-like

algorithms such as k-means. By writing the optimization as in Eq. 7.5 and Eq. 7.6, we also

expose the simple independence between the subproblems because they are simple

summations. Thus, we can easily parallelize both optimization problems up to min(n, p)

with little overhead and simple changes to the code—in our MATLAB implementation, we

only changed a for loop to a parfor loop.

7.6.1 Newton-like Algorithms for Subproblems

For each of the subproblems, we develop Newton-like optimization algorithms. For

the component PMRFs, we borrow several important ideas from [Hsieh et al., 2011] including

fixed and free sets of variables for the `1 regularized optimization problem. The overall idea

is to construct a quadratic approximation around the current solution and approximately

optimize this simpler function to find a step direction. Usually, finding the Newton direction

requires computing the Hessian for all the optimization variables but because of the `1

regularization, we only need to focus on variables that might be non-zero. This set of free

variables, denoted F , can be simply determined from the gradient and current iterate [Hsieh

et al., 2011]. Since usually there is only a small number of free variables compared to fixed

variables (i.e. λ is large enough), we can simply run coordinate descent on these free variables
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and only implicitly calculate Hessian information as needed in each coordinate descent step.

After finding an approximate Newton direction, we find a step size that satisfies the Armijo

rule and then update the iterate (see Alg. 2 in Appendix B.4).

We also employed a similar Newton-like algorithm for estimating the admixture

weights. Instead of the `1 regularization term, however, this subproblem has the constraint

that the admixture weights wi must lie on the simplex so that each document can be

properly interpreted as a convex mixture of over topic parameters. For this constraint, we

used a dual-coordinate descent algorithm to find the approximate Newton direction as in

[Yu et al., 2011].

Finally, we put both subproblem algorithms together and alternate between the two

(see Alg. 1 in Appendix B.4). For tracing through different λ parameters, λ is initially set

to ∞ so that the model trains an independent APM model first. Then, the initial λ = λmax

is found by computing the largest gradient of the final independent iteration. Every time

the alternating algorithm converges, the value of λ is decreased so that a set of models is

trained for decreasing values of λ.

7.6.2 Timing Results

We conducted two main timing experiments to show that the algorithm can be

efficiently parallelized and the algorithm can scale to reasonably large datasets. For the

parallel timing experiment, we used the BNC corpus described in Sec. 7.8.1 (n = 4049,

p = 1646) and fixed k = 5, λ = 8 and a total of 30 alternating iterations. For the large data

experiment, we used a Wikipedia dataset formed from a recent Wikipedia dump by

choosing the top 10k words neglecting stop words and then selecting the longest

documents. We ran several main iterations of the algorithm with this dataset while fixing

the parameters k = 5 and λ = 0.5. All timing experiments were conducted on the TACC

Maverick system with Intel Xeon E5-2680 v2 Ivy Bridge CPUs (2.80 GHz), 20 CPUs per
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node, and 12.8 GB memory per CPU (https://www.tacc.utexas.edu/).

The parallel timing results can be seen in Fig. 7.2 (left) which shows that the algorithm

does have almost linear speedup when parallelizing across multiple workers. Though we

only had access to a single computer with 20 processors, substantially more speed up could

be obtained by using more processors on a distributed computing system. This simple

parallelism makes this algorithm viable for much larger datasets. The timing results for the

Wikipedia can be seen in Fig. 7.2 (right). These results give an approximate computational

complexity of O(np2) which show that the proposed algorithm has the potential for scaling

to datasets where n is O(105) and p is O(104). The O(p2) comes from the fact that there are

p subproblems and each subproblem needs to calculate the gradient which is O(p) as well

as approximate the Newton direction for a subset of the variables. The first iteration takes

longer because the initial parameter values are näıvely set to 0 whereas future iterations

start from reasonable initial value.
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Figure 7.2: (left) The speedup on the BNC dataset shows that the algorithm scales
approximately linearly with the number of workers because the subproblems are all
independent. (right) The timing results on the Wikipedia dataset show that the algorithm
scales to larger datasets and has a computational complexity of approximately O(np2).

7.7 Preliminary Experiments

Because previous admixture models have been independent, it is difficult to directly

compare APM to previous models. Therefore, first, an experiment was conducted by running
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APM (with k = 5 and p = 500) on approximately 31,000 articles of the Grolier encyclopedia.7

Visualizations of the topics were constructed using the graph visualization program Gephi8

in order to show some qualitative results on the model output and suggest that APM can

provide a more interesting, intuitive and visually appealing representation of topics than

merely a list of words as in standard topic models. Two topics of this run can be seen in

Fig. 7.3 and other topic graph examples are given in the appendix. Also, a simple experiment

was conducted to give some evidence, though inconclusive, that the APM model subsumes

the power of the LDA model because of the model equivalence described in Sec. 7.3.1.

7.7.1 Qualitative Experiment
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Figure 7.3: These APM topic visualizations illustrate that PMRFs are much more intuitive
than multinomials (as in LDA/PLSA), which can only be represented as a list of words.
Word size signifies relative word frequency and edge width signifies the strength of word
dependency (only positive dependencies shown).

The graphs as seen in Fig. 7.3 have many interesting structural features that can

7www.cs.nyu.edu/~roweis/data.html
8www.gephi.org
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be interpreted.9 In the first example (Fig. 7.3(a)), the word “musical” is a hub word that

connects the two concepts of “theatre” and “music”. A similar idea happens in the second

example (Fig. 7.3(b)) where “temperature” connects the concepts of “heat”, “gas” and “deg”.

Another interesting feature is chains of words whose endpoints are not directly related

but only related through other words. For example, the chain “music” ↔ “musical” ↔

“theater” ↔ “plays” suggests that “music” and “plays” are related, albeit indirectly. The

chain “sun” ↔ “gas” ↔ “temperature” ↔ “heat” ↔ “nuclear” in Fig. 7.3(b) shows the

connection that the sun is related to nuclear reactions through the words “heat”, “gas” and

“temperature”. For other chains, the endpoints are not related even though each edge seems

reasonable. For example, the chain “novel” ↔ “eng” ↔ “plays” ↔ “theater” ↔ “musical”

↔ “music” ↔ “church” has logical connections for each edge but “novel” is not usually

associated with “church”.

Though these features give evidence for the usefulness and power of APM, they do

not capture any of the negative dependencies between words—words that do not tend to co-

occur. For example, the words “novel” and “math” would not tend to co-occur. This might

be helpful in excluding documents from certain categories in document categorization. For

example, if the words “history”, “war” and “politics” appear in a document, the document is

unlikely to be science literature. Though it may be more difficult to visualize these negative

dependencies, negative dependencies can provide interesting structural information of the

underlying dataset.

7.8 Evocation Metric

Boyd-Graber et al. [2006] introduced the notion of evocation which denotes the idea

9These graphs were manually filtered to simplify the whole graph. A future area of research could be to
automatically filter the graph to important clusters.
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of which words “evoke” or “bring to mind” other words. There can be many types of

evocation including the following examples from [Boyd-Graber et al., 2006]: [rose - flower]

(example), [brave - noble] (kind), [yell - talk] (manner), [eggs - bacon] (co-occurrence), [snore

- sleep] (setting), [wet - desert] (antonymy), [work - lazy] (exclusivity), and [banana - kiwi]

(likeness). This is distinctive from word similarity or synonymy since two words can have

very different meanings but “bring to mind” the other word (e.g. antonyms). This notion

of word relatedness is a much simpler but potentially more semantically meaningful and

interpretable than word similarity. For instance, “work” and “lazy” do not have similar

meanings but are related through the semantic meanings of the words. Another difference

is that—unlike word semantic similarity— words that generally appear in very different

contexts yet mean the same thing would probably not have a high evocation score. For

example, “networks” and “graphs” both have a definition that means a set of nodes and

edges yet usually one word is chosen in a particular context.

Recent work in evaluating topic models [Mimno et al., 2011, Newman et al., 2010,

Stevens et al., 2012, Aletras and Stevenson, 2013] formulate automated metrics based on

automatically scoring all pairs of top words and noticing that they correlate with human

judgment of overall topic coherence. All of these metrics are based on the common

assumption that a person should be able to understand a topic by understanding the

abstract semantic connections between the word pairs. Thus, evocation is a reasonable

notion for evaluating topic modeling because it directly evaluates the level of semantic

connection between word pairs. In addition, this new evocation metric provides a way to

explicitly evaluate the edge matrices of APM, which would be ignored in previous metrics

because explicit word dependencies are not modeled in other topic models.

We now formally define our evocation metric. Given human-evaluated scores for a

subset of word pairs H and the corresponding weights given by a topic model for this subset

of word pairsM, let us define πM(j) to be an ordering of the word pairs induced byM such
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that Mπ(1) ≥Mπ(2) ≥ · · · ≥ Mπ(|H|). Then, the top-m evocation metric is simply:

Evocm(M,H) =
m∑
j=1

HπM(j) . (7.7)

Note that the scaling of M is inconsequential because M is only needed to define

an ordering or ranking of H. For example, M̂ = α exp(M) would yield the same evocation

score for all scalar values α > 0 because the ordering would be maintained. Essentially,

M merely induces an ordering of the word pairs and the evocation score is the sum of the

human scores for these top m word pairs.

For APM, the word pair weights come primarily from the PMRF edge matrices

Φ1...k—the PMRF node vectors are only used to provide an ordering if there are not enough

non-zeros in the edge matrices. For the other multinomial-based topic models which do not

have parameters explicitly associated with word-pairs, we can compute the most likely

word pairs in a topic by multiplying their corresponding marginal probabilities. This

weighting corresponds to the probability that two independent draws from the topic

distribution produce the word pair and thus is the most obvious choice for

multinomial-based topic models.

Since this metric only gives a way to evaluate one topic, we consider two ways of

determining the overall evocation score for the whole topic model:

Evoc-1 =
∑k

j=1
1
k
Evocm(Mj,H) and Evoc-2 = Evocm(

∑k
j=1

1
k
Mj,H). In words, these are

“average evocation of topics” and “evocation of average topic” respectively. Evoc-1

measures whether all or at least most topics capture meaningful word associations since it

can be affected by uninteresting topics. Evoc-2 is reasonable for measuring whether the

topic model as a whole is capturing word semantics even if some of the topics are not

capturing interesting word associations. This second measure has some relation to the

word similarity measure of topic coherence in [Stevens et al., 2012]. However, [Stevens
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et al., 2012] uses similarity rather than evocation, does not directly evaluate top individual

word pairs and does not evaluate any models with word dependencies such as APM.

7.8.1 Experimental Setup

Human-Scored Evocation Dataset The original human-scored evocation dataset was

produced by a set of trained undergraduates in which 1,000 words were hand selected

primarily based on their frequency and usage in the British National Corpus (BNC)

[Boyd-Graber et al., 2006]. From the possible pairwise evaluations, approximately 10% of

the word pairs were randomly selected to be manually scored by a set of trained

undergraduates. The second dataset was constructed by predicting the pairs of words that

were likely to have a high evocation using a standard machine learning classifier. This new

set of pairs was scored using Amazon MTurk (mturk.com) by using the original dataset as

a control [Nikolova et al., 2009]. Though these scores are between synsets—which are a

word, part-of-speech and sense triplet—, we mapped all of the synsets to word,

part-of-speech pairs since that is the only information we have for the BNC corpus. This

led to a total of 1646 words. In addition, though the evocation dataset has scores for

directed relationships (i.e. word1 → word2 could have a different score than word2 →

word1), we averaged these two scores because the directionality of the relationship is not

modeled by APM or any other topic model.

BNC Corpus Because the evocation dataset was based on the BNC corpus, we used the

BNC corpus for our experiments. We processed the BNC corpus by lemmatizing each word

using the WordNetLemmatizer included in the nltk package (nltk.org) and then attaching

the part-of-speech, which is already included in the BNC corpus. We only retained the

counts for the 1646 words that occurred in the human-scored datasets but processed all 4049

documents in the corpus.
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APM Model Parameters We trained APM on the BNC corpus with several different

parameter settings including various λ and β parameter settings. We also trained two

particular APM models denoted APM-LowReg and APM-HeldOut. APM-LowReg uses a

very small regularization parameter so that almost all edges are non-zero. APM-HeldOut

automatically selects a reasonable value for λ based on the likelihood of a held-out set of

the documents. Thus, the APM-HeldOut model does not require a user-specified λ

parameter but—as seen in the following sections—still performs reasonably well even

compared to the APM model in which many different parameter settings are attempted. In

addition, the APM-HeldOut can stop the training early when the model begins to overfit

the data rather than tracing through all the λ parameters—this could lead to a significant

gain in model training time. The authors suggest that APM-HeldOut is a simple baseline

model for future comparison if a user does not want to specify λ.

Other Models For comparison, we trained five other models: Correlated Topic Models

(CTM), Hierarchical Dirichlet Process (HDP), Latent Dirichlet Allocation (LDA),

Replicated Softmax (RSM), and a näıve random baseline (RND). CTM models correlations

between topics [Lafferty and D., 2006]. HDP is a non-parametric Bayesian model that

selects the number of topics based input data and hyperparameters [Teh et al., 2006]. The

standard topic model LDA was trained using MALLET [McCallum, 2002]. LDA was

trained for at least 5,000 iterations and HDP was trained for at least 300 iterations since

HDP is computationally expensive. RSM is an undirected topic model based on Restricted

Boltzmann Machines (RBM) [Salakhutdinov and Hinton, 2009]. The random model is

merely the expected evocation score if edges are ranked at random. We ran a full factorial

experimental setting where all the combinations of a set of parameter values were trained

to give a fair comparison between models (see Appendix B.3 for a summary of parameter

values). All these comparison models only indirectly model dependencies between words

through the latent variables since the topic distributions are multinomials whereas APM
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can directly model the dependencies between words since the topic distributions are

Poisson MRFs.

Selecting Best Parameters We randomly split the human scores into a 50% tuning split

and 50% testing split. Note that we have a tuning split rather than a training split because

the model training algorithms are unsupervised (i.e. they never see the human scores) so

the only supervision occurs in selecting the final model parameters (i.e. during the tuning

phase). Therefore, we selected the final parameters based on the tuning split and computed

the final evocation scores on the test split. Thus, even when selecting the parameter settings,

the modeling process never sees the test data.

7.8.2 Main Results

The Evoc-1 and Evoc-2 scores with m = 50 for all models can be seen in Fig. 7.4.10

For Evoc-1, the APM models significantly outperform all other models for a small number

of topics and even capture many semantically meaningful word pairs with a single topic. For

higher number of topics, the APM models seem to perform only competitively with previous

topic models. It seems that APM-LowReg performs better with a small number of topics

whereas APM-HeldOut—which generally chooses a relatively high λ—seems more robust for

large number of topics. These trends are likely caused because there is a relatively small

number of documents (n = 4049) so the APM-LowReg begins to significantly overfit the data

as the number of topics increases whereas APM-HeldOut does not seem to overfit as much.

For all the APM models, the degradation in performance as the number of topics increases

is most likely caused by the fact that a Poisson MRF with O(p2) parameters is a much more

flexible distribution than a multinomial, and thus, fewer topics are needed to appropriately

10For simplicity and comparability, we grouped HDP into the topic number that was closest to its
discovered number of topics because HDP can select a variable number of topics.
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model the data. These results also give some evidence that APM can succinctly model the

data with a much smaller number of topics than is needed for independent topic models;

this succinctness could be particularly helpful for the interpretability and intuitions of topic

models.
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Figure 7.4: Both Evoc-1 scores (left) and Evoc-2 scores (right) demonstrate that APM
usually significantly outperforms other topic models in capturing meaningful word pairs.

For the Evoc-2 score, the APM models—including the APM-HeldOut model which

automatically determines a λ from the data—significantly outperform previous topic models

even for a large number of topics. This supports the idea that APM only needs a small

number of topics to capture many of the semantically meaningful word dependencies. Thus,

when increasing the number of topics beyond 5, the performance does not decrease as in

Evoc-1. It is likely that this discrepancy is caused by the fact that many of the edges are

concentrated in a small number of topics even when the number of topics is 10 or 25. As

expected because of previous research in topic models, most other topic models perform

slightly better with a larger number of topics. Though it is possible that using 100 or 500

topics for these topic models might give an evocation score better than APM with 5 topics,

this would only enforce the idea that APM can perform better or at least competitively with

previous topic models while only using a comparatively small number of topics.

111



Qualitative Analysis of Top 20 Word Pairs for Best LDA and APM Models To

validate the intuition of using evocation as an human-standard evaluation metric, we present

the top 20 word pairs for the best standard topic model—in this case LDA—and the best

APM model for the Evoc-2 metric as seen in Table 7.1. The best performing LDA model

was trained with 50 topics, α = 1 and β = 0.0001. The best APM model was the APM-

LowReg model trained with only 5 topics and a small regularization parameter λ = 0.05. It

is important to note that the best model for LDA has 50 topics while the best model for

APM only has 5 topics. As before, this reinforces the theme that APM can capture more

semantically meaningful word pairs with a smaller number of topics than previous topic

models.

Table 7.1: Top 20 words for LDA (left) and APM (right)

Human 

Score

Human 

Score

Human 

Score

Human 

Score

100 run.v ↔ car.n 38 woman.n ↔ man.n 100 telephone.n ↔ call.n 57 question.n ↔ answer.n
82 teach.v ↔ school.n 38 give.v ↔ church.n 97 husband.n ↔ wife.n 57 prison.n ↔ cell.n
69 school.n ↔ class.n 38 wife.n ↔ man.n 82 residential.a ↔ home.n 51 mother.n ↔ baby.n
63 van.n ↔ car.n 38 engine.n ↔ car.n 76 politics.n ↔ political.a 50 sun.n ↔ earth.n
51 hour.n ↔ day.n 35 publish.v ↔ book.n 75 steel.n ↔ iron.n 50 west.n ↔ east.n
50 teach.v ↔ student.n 32 west.n ↔ state.n 75 job.n ↔ employment.n 44 weekend.n ↔ sunday.n
44 house.n ↔ government.n 32 year.n ↔ day.n 75 room.n ↔ bedroom.n 41 wine.n ↔ drink.v
44 week.n ↔ day.n 25 member.n ↔ give.v 72 aunt.n ↔ uncle.n 38 south.n ↔ north.n
38 university.n ↔ institution.n 25 dog.n ↔ animal.n 72 printer.n ↔ print.v 38 morning.n ↔ afternoon.n
38 state.n ↔ government.n 25 seat.n ↔ car.n 60 love.v ↔ love.n 38 engine.n ↔ car.n

Word Pair Word Pair Word Pair Word Pair

As seen in Table 7.1, APM captures many more word pairs with a human score

greater than 50, whereas LDA only captures a few. One interesting example is that LDA

finds two word pairs [woman.n - wife.n] and [wife.n - man.n] that capture some semantic

notion of marriage. However, APM directly captures this semantic meaning with [husband.n

- wife.n]. APM also discovers several other familial relationships such as [aunt.n - uncle.n]

and [mother.n - baby.n]. In addition, APM identifies multiple semantically coherent yet high-

level word pairs such as [residential.a - home.n], [steel.n - iron.n], [job.n - employment.n] and

[question.n - answer.n], whereas LDA finds several low-level word pairs such as [member.n

- give.v], [west.n - state.n] and [year.n - day.n]. These overall trends become even more
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evident when looking at the top 50 word pairs as can be found in Appendix B.5. Both the

quantitative evaluation metrics (i.e. Evoc-1 and Evoc-2) as well as a qualitative exploration

of the top word pairs give strong evidence that APM can succinctly capture both more

interesting and higher-level semantic concepts through word dependencies than previous

independent topic models.

7.9 Related Work

Many probabilistic models for documents have been constructed using the

multinomials. Nigam et al. [2000] introduced a mixture of multinomials to model document

collections, and later, Hofmann [1999] proposed an admixture of multinomials called

Probabilistic Latent Semantic Analysis (PLSA). This model was followed by the very

successful Latent Dirichlet Allocation (LDA) topic model proposed by Blei et al. [2003]

that added priors to the distributions as well as provided a more coherent framework for

extending the model. There have been numerous extensions of LDA that incorporate other

knowledge such as author information [Steyvers et al., 2004], time [Blei et al., 2006] and

topic dependency [Lafferty and D., 2006]. However, none of these models considers

dependencies between words since the base distribution is multinomial.

Replicated Softmax [Salakhutdinov and Hinton, 2009] uses a restricted Boltzmann

machine (RBM) with parameter biases to create a generative model for word count vectors.

The hidden layer is binary-valued and allows for topic parameters to be mixed in the

canonical parameter space (similar to APM). Wordfish [Slapin and Proksch, 2008] is a

Poisson IRT (Item Response Theory) model that attempts to characterize the latent

position of a political party based on political manifestos (e.g. determining left or right

wing political views). Though Wordfish also adds fixed-effect parameters, this model is

similar to an independent APM model with k = 2 (i.e. only one latent dimension). Both

Replicated Softmax and Wordfish significantly differ from APM because they do not
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consider word dependencies.

Sparse Word Graphs [Nallapati et al., 2007] attempts to create graph visualizations

of the topics by combining LDA and Bernoulli MRFs (Ising model) in a two-stage approach.

First, LDA is used to estimate the topic assignments for every word in the corpus. Then,

these topic assignments are used to train k independent Bernoulli MRFs for each topic. To

transform the LDA output into the input for the Bernoulli MRF estimation algorithm, binary

word-document matrices are constructed for each topic based on the LDA topic assignments.

Though this leads to a graph over words for each topic, one major difference with APM is

that this two-stage method is not a unified probabilistic model but rather two separate

probability models. Another significant difference is that Sparse Word Graphs estimates

simpler Bernoulli MRFs instead of PMRFs as in APM.

In [Pleple, 2013], users can interactively add soft constraints to LDA so that the

probability of the words in the constraint set will tend to be similar (e.g. either all low or

all high probability). The soft dependency is added through a latent constraint variable and

only provides indirect dependence of words rather than direct dependence between words as

in APM. Another difference is that these constraints can only be supplied as user-specified

disjoint groups of words rather than automatically-discovered arbitrary structure as in APM.

Collins and Schapire [2001] develop a generalization of PCA by using the likelihood

of exponential families as the loss function instead of squared loss—which would

correspond to Gaussian errors. While exponential PCA is related to admixtures, it does

not place constraints on the admixture weights but rather allows them to be arbitrary real

numbers. This is analogous to the difference between SVD and constrained non-negative

matrix factorization (NMF).
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7.10 Conclusion

We motivated the need for more expressive topic models that consider word

dependencies—such as APM—by considering previous work on topic model evaluation

metrics. We developed a novel topic model based on an admixture of Poisson MRFs that

can model dependencies between words unlike all previous topic models that assume word

independence. Independent Poisson MRFs are shown to generalize the conditional

distributions of LDA, which thus suggests that APM subsumes the expressive power of

LDA and adds significantly greater modeling power than LDA. In addition to APM, a

generalized class of admixture models is defined which opens the way for admixtures of any

parametric distribution. We overcame the significant computational barrier of estimating

the parameters of APM by providing a fast alternating Newton-like algorithm which can be

easily parallelized. We also proposed a new evaluation metric based on human evocation

scores that seeks to measure whether a model is capturing semantically meaningful word

pairs. Finally, we presented compelling quantitative and qualitative measures showing the

superiority of APM in capturing semantically meaningful word pairs. In addition, this

metric suggests new evaluations of topic models based on evaluating top word pairs rather

than top words. One drawback with the current human-scored data is that only a small

portion of the word pairs have been scored. Thus, one extension is to dynamically collect

more human scores as needed for evaluation. The development of APM opens up a whole

new area of research with many interesting open questions in both theory (e.g. scalability,

other admixtures, hyperparameter choice) and applications (e.g. visualization, user

interaction, document exploration). This work also opens the door for exciting new

word-semantic applications for APM such as Word Sense Induction using topic models

[Lau et al., 2012], keyword expansion or suggestion, document summarization, and

document visualization because APM is capturing semantically meaningful relationships

between words.
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Chapter 8

Fixed-Length Poisson MRF Topic Models1

8.1 Abstract

We propose a novel topic model that uses LPMRF graphical model (see Chapter 3)

as a base distribution for the second topic model generalization described in Chapter 6. We

show the effectiveness of our LPMRF distribution over multinomial models by evaluating

the test set perplexity on a dataset of abstracts and Wikipedia. Qualitatively, we show that

the positive dependencies discovered by LPMRF are interesting and intuitive. Finally, we

show that our algorithms are fast and have good scaling. (code available online)

8.2 Related Work

In [Nallapati et al., 2007], the LDA topic assignments for each word are used to

train a separate Ising model—i.e. a Bernoulli MRF—for each topic in a heuristic two-stage

procedure. Instead of modeling dependencies a posteriori, we formulate a generalization of

topic models that allows the LPMRF distribution to directly replace the multinomial. This

allows us to compute a topic model and word dependencies jointly under a unified model as

opposed to the two-stage heuristic procedure in [Nallapati et al., 2007].

1The majority of this chapter is from [Inouye et al., 2015] with some edits for better integration into
this dissertation. [Inouye et al., 2015] was primarily executed and authored by David Inouye with guiding
contributions and edits by the co-authors.
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8.3 LPMRF Topic Model

8.3.1 Optimization Problem

Using the second topic model generalization described in Chapter 6, we can create

a joint optimization problem to solve for the topic matrix Zi = [z1
i , z

2
i , . . . ,z

k
i ] for each

document and to solve for the shared LPMRF parameters θ1...k,Φ1...k. The optimization is

based on minimizing the negative log posterior:

arg min
Z1...n,θ1...k,Φ1...k

− 1

n

n∑
i=1

k∑
j=1

log(PLPMRF(zji |θj,Φj,mj
i ))

−
n∑
i=1

log(Pprior(m
1...k
i ))−

k∑
j=1

log(Pprior(θ
j,Φj))

s.t. Zie = xi, Zi ∈ Zk×p+ ,

where e is the all ones vector. Notice that the observations xi only show up in the

constraints. The prior distribution on m1...k
i can be related to the Dirichlet distribution as

in LDA by taking Pprior(m
1...k
i ) = PDir(m

j
i/
∑

`m
`
i |α). Also, notice that the documents are

all independent if the LPMRF parameters are known so this optimization can be trivially

parallelized.

8.3.2 Connection to Collapsed Gibbs Sampling

This optimization is very similar to the collapsed Gibbs sampling for LDA [Steyvers

and Griffiths, 2007]. Essentially, the key part to estimating the topic models is estimating the

topic indicators for each word in the corpus. The model parameters can then be estimated

directly from these topic indicators. In the case of LDA, the multinomial parameters are

trivial to estimate by merely keeping track of counts and thus the parameters can be updated

in constant time for every topic resampled. This also suggests that an interesting area of

future work would be to understand the connections between collapsed Gibbs sampling and
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this optimization problem. It may be possible to use this optimization problem to speed

up Gibbs sampling convergence or provide a MAP phase after Gibbs sampling to get non-

random estimates.

8.3.3 Estimating Topic Matrices Z1...n

For LPMRF topic models, the estimation of the LPMRF parameters given the topic

assignments requires solving another complex optimization problem. Thus, we pursue an

alternating EM-like scheme as in LPMRF mixtures. First, we estimate LPMRF parameters

with the PMRF algorithm from [Inouye et al., 2014a], and then we optimize the topic matrix

Zi ∈ Rp×k for each document. Because of the constraints on Zi, we pursue a simple dual

coordinate descent procedure. We select two coordinates in row r of Zi and determine if the

optimization problem can be improved by moving a words from topic ` to topic q. Thus,

we only need to solve a series of simple univariate problems. Each univariate problem only

has xis number of possible solutions and thus if the max count of words in a document is

bounded by a constant, the univariate subproblems can be solved efficiently. More formally,

we are seeking a step size a such that Ẑi = Zi + aere
T
` − aereTq gives a better optimization

value than Zi. If we remove constant terms w.r.t. a, we arrive at the following univariate

optimization problem (suppressing dependence on i because each of the n subproblems are

independent):

arg min
−z`r≤a≤z

q
r

−a[θ`r − θqr + 2zT` Φ`
r − 2zTq Φq

r] + [log((z`r+a)!) + log((zqr−a)!)]

+ Am`+a(θ
`,Φ`) + Amq+a(θ

q,Φq)− log(Pprior(m̃
1...k)),

where m̃ is the new distribution of length based on the step size a. The first term is the

linear and quadratic term from the sufficient statistics. The second term is the change in base

measure of a word is moved. The third term is the difference in log partition function if the

length of the topic vectors changes. Note that the log partition function can be precomputed
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so it merely costs a table lookup. The prior also only requires a simple calculation to update.

Thus the main computation comes in the inner product zT` Φ`
r. However, this inner product

can be maintained very efficiently and updated efficiently so that it does not significantly

affect the running time.

8.4 Perplexity Experiments

We evaluated our novel LPMRF model using perplexity on a held-out test set of

documents from a corpus composed of research paper abstracts2 denoted Classic3 and a

collection of Wikipedia documents. The Classic3 dataset has three distinct topic areas:

medical (Medline, 1033), library information sciences (CISI, 1460) and aerospace engineering

(CRAN, 1400). More details about the Classic3 dataset can be found in Chapter 5 Table 5.1.

8.4.1 Experimental Setup

We train all the models using a 90% training split of the documents and compute

the held-out perplexity on the remaining 10% where perplexity is equal to

exp(−L(Xtest|θ1...k,Φ1...k)/Ntest), where L is the log likelihood and Ntest is the total number

of words in the test set. We evaluate single, mixture and topic models with both the

multinomial as the base distribution and LPMRF as the base distribution at

k = {1, 3, 10, 20}. The topic indicator matrices Zi for the test set are estimated by fitting a

MAP-based estimate while holding the topic parameters θ1...k,Φ1...k fixed.3 For a single

multinomial or LPMRF, we set the smoothing parameter β to 10−4. 4 We select the

LPMRF models using all combinations of 20 log spaced λ between 1 and 10−3, and 5

2http://ir.dcs.gla.ac.uk/resources/test_collections/
3For topic models, the likelihood computation is intractable if averaging over all possible Zi. Thus, we

use a MAP simplification primarily for computational reasons to compare models without computationally
expensive likelihood estimation.

4For the LPMRF, this merely means adding 10−4 to y-values of the node-wise Poisson regressions.
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linearly spaced weighting function constants c between 1 and 2 for the weighting function

described in Sec. 3.3.1. In order to compare our algorithms with LDA, we also provide

perplexity results using an LDA Gibbs sampler [Steyvers and Griffiths, 2007] for MATLAB

5 to estimate the model parameters. For LDA, we used 2000 iterations and optimized the

hyperparameters α and β using the likelihood of a tuning set. We do not seek to compare

with many topic models because many of them use the multinomial as a base distribution

which could be replaced by a LPMRF but rather we simply focus on simple representative

models.6

8.4.2 Perplexity Results

The perplexity results for all models can be seen in Fig. 8.1. Clearly, a single LPMRF

significantly outperforms a single multinomial on the test dataset both for the Classic3 and

Wikipedia datasets. The LPMRF model outperforms the simple multinomial mixtures and

topic models in all cases. This suggests that the LPMRF model could be an interesting

replacement for the multinomial in more complex models. For a small number of topics,

LPMRF topic models also outperforms Gibbs sampling LDA but does not perform as well

for larger number of topics. This is likely due to the well-developed sampling methods

for learning LDA. Exploring the possibility of incorporating sampling into the fitting of

the LPMRF topic model is an excellent area of future work. We believe LPMRF shows

significant promise for replacing the multinomial in various probabilistic models.

5http://psiexp.ss.uci.edu/research/programs_data/toolbox.htm
6We could not compare to APM [Inouye et al., 2014b,a] because it is not computationally tractable to

calculate the likelihood of a test instance in APM, and thus we cannot compute perplexity.
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Figure 8.1: (Left) The LPMRF models quite significantly outperforms the multinomial for
both datasets. (Right) The LPMRF model outperforms the simple multinomial model in all
cases. For a small number of topics, LPMRF topic models also outperforms Gibbs sampling
LDA but does not perform as well for larger number of topics.

8.5 Qualitative Analysis of LPMRF Parameters

In addition to perplexity analysis, we present the top words, top positive

dependencies and the top negative dependencies for the LPMRF topic model in Table 8.1.

Notice that in LDA, only the top words are available for analysis but an LPMRF topic

model can produce intuitive dependencies. For example, the positive dependency

“language+natural” is composed of two words that often co-occur in the library sciences

but each word independently does not occur very often in comparison to “information” and

“library”. The positive dependency “stress+reaction” suggests that some of the documents

in the Medline dataset likely refer inducing stress on a subject and measuring the reaction.

Or in the aerospace topic, the positive dependency “non+linear” suggests that non-linear

equations are important in aerospace. Notice that these concepts could not be discovered

with a standard multinomial-based topic model.

8.6 Timing and Scalability

Finally, we explore the practical performance of our algorithms. In C++, we

implemented the three core algorithms: fitting p Poisson regressions, fitting the n topic
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Table 8.1: Top Words and Dependencies for LPMRF Topic Model

Top words Top Pos. Edges Top Neg. Edges Top words Top Pos. Edges Top Neg. Edges Top words Top Pos. Edges Top Neg. Edges

information states+united paper-book patients term+long cells-patient flow supported+simply flow-shells

library point+view libraries-retrieval cases positive+negative patients-animals pressure account+taken number-numbers

research test+tests library-chemical normal cooling+hypothermi patients-rats boundary agreement+good flow-shell

system primary+secondary libraries-language cells system+central hormone-protein results moment+pitching wing-hypersonic

libraries recall+precision system-published treatment atmosphere+height growth-parathyroid theory non+linear solutions-turbulent

book dissemination+sdi information-citations children function+functions patients-lens method lower+upper mach-reynolds

systems direct+access information-citation found methods+suitable patients-mice layer tunnel+wind flow-stresses

data language+natural chemical-document results stress+reaction patients-dogs given time+dependent theoretical-drag

use years+five library-scientists blood low+rates hormone-tumor number level+noise general-buckling

scientific term+long library-scientific disease case+report patients-child presented purpose+note made-conducted

Topic 1 Topic 2 Topic 3

matrices for each document, and sampling 5,000 AIS samples. The timing for each of these

components respectively can be seen in Fig. 8.2 for the Wikipedia dataset. We set λ = 1 in

the first two experiments which yields roughly 20,000 non-zeros and varied λ for the third

experiment. Each of the components is trivially parallelized using OpenMP

(http://openmp.org/). All timing experiments were conducted on the TACC Maverick

system with Intel Xeon E5-2680 v2 Ivy Bridge CPUs (2.80 GHz), 20 CPUs per node, and

12.8 GB memory per CPU (https://www.tacc.utexas.edu/). The scaling is generally

linear in the parameters except for fitting topic matrices which is O(k2). For the AIS

sampling, the scaling is linear in the number of non-zeros in Φ irrespective of p. Overall, we

believe our implementations provide both good scaling and practical performance (code

available online).

8.7 Conclusion

We extend the LPMRF distribution to topic models by using fixed-length

distributions for the second generalization of Chapter 6 and develop parameter estimation

methods using dual coordinate descent. We evaluate the perplexity of the proposed

LPMRF models on datasets and show that they offer good performance when compared to
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Figure 8.2: (Left) The timing for fitting p Poisson regressions shows an empirical scaling
of O(np). (Middle) The timing for fitting topic matrices empirically shows scaling that is
O(npk2). (Right) The timing for AIS sampling shows that the sampling is approximately
linearly scaled with the number of non-zeros in Φ irrespective of p.

multinomial-based models. Finally, we show that our algorithms are fast and have good

scaling. Potential new areas could be explored such as the relation between the topic

matrix optimization method and Gibbs sampling. It may be possible to develop

sampling-based methods for the LPMRF topic model similar to Gibbs sampling for LDA.
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Part III

Generalizing Graphical Models
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Summary of Part III

In the next two chapters, we present two more general graphical models. First, we

propose a novel graphical model for k-wise dependencies instead of merely pairwise

dependencies as in Chapter 4. As an example of a triple-wise dependency in the case of

text analysis, there may be three words that often co-occur together such as “deep”,

“neural” and “network”. Or in biology, there may be three or more proteins that naturally

interact because they belong in the same protein complex. The key idea is to take the

k-root of the original sufficient statistics to ensure that the distribution can be normalized

even with k-wise interactions.

Second, we further investigate the Gaussian-copula model paired with arbitrary

marginals as described in Sec. 5.3.2. Because of its special form, the Gaussian-copula

model can be seen as a semi-parametric graphical model [Liu et al., 2012]. While the

graphical models described in Part I assumed that the univariate conditionals were in the

exponential family, Gaussian-copula models allow for the univariate marginal distributions

to be outside of the exponential family—e.g. the t distribution. Thus, the Gaussian-copula

model can be seen as a generalized semi-parametric graphical model that allows arbitrary

marginal distributions. While this model is well-known, we derive the closed-form solutions

to the conditional distributions; more specifically, we show that the conditional of a

Gaussian-copula model is another Gaussian-copula model with closed-form conditional

marginals. We demonstrate the usefulness of these closed-form solutions via multiple

missing value imputation experiments. In addition, these closed-form solutions provide the

foundation for the graphical model visualization developed in Part IV.
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Chapter 9

General Graphical Models Beyond Pairwise

Dependencies1

9.1 Abstract

We present a novel k-way high-dimensional graphical model called the Generalized

Root Model (GRM) that explicitly models dependencies between variable sets of size k ≥ 2—

where k = 2 is the standard pairwise graphical model. This model is based on taking

the k-th root of the original sufficient statistics of any univariate exponential family with

positive sufficient statistics, including the Poisson and exponential distributions. As in the

recent work with square root graphical (SQR) models [Inouye et al., 2016a]—which was

restricted to pairwise dependencies—we give the conditions of the parameters that are needed

for normalization using the radial conditionals similar to the pairwise case [Inouye et al.,

2016a]. In particular, we show that the Poisson GRM has no restrictions on the parameters

and the exponential GRM only has a restriction akin to negative definiteness. We develop a

simple but general learning algorithm based on `1-regularized node-wise regressions. We also

present a general way of numerically approximating the log partition function and associated

derivatives of the GRM univariate node conditionals—[Inouye et al., 2016a] only provided

algorithm for estimating exponential SQR. To illustrate GRM, we model word counts with a

Poisson GRM and show the associated k-sized variable sets. We discuss methods for reducing

1The majority of this chapter is from [Inouye et al., 2016b] with some edits for better integration into
this dissertation. [Inouye et al., 2016b] was primarily executed and authored by David Inouye with guiding
contributions and edits by the co-authors.
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the parameter space in various situations.

9.2 Introduction

Most standard graphical models are restricted to pairwise dependencies between

variables. For example, the Ising model for binary data and the multivariate Gaussian for

real-valued data are popular pairwise graphical models. However, real-world data often

exhibits triple-wise, or more generally k-wise dependencies. For example, the words deep,

neural and network often occur together in recent research papers—note that this triple of

words refers to something more specific than any of the two words without the third word,

i.e. if a document only contains neural and network but not deep, then this may be a more

classical paper about shallow neural networks. In the biological domain, genetic, metabolic

and protein pathways play an important role in studying the development of diseases and

possible interventions. These pathways are known to be complex and involve many genes

or proteins rather than just simple pairwise interactions.2

Thus, we seek to begin bridging this gap between pairwise models and complex

real-world data that contain complex k-wise interactions by defining a class of k-wise

graphical models called Generalized Root Models (GRM), which can be instantiated for

any k ≥ 1 and any univariate exponential family with positive sufficient statistics including

the Gaussian (using the x2 sufficient statistic), Poisson and exponential distributions. We

estimate the graphical model structure and parameters using `1-regularized node-wise

regressions similar to previous work [Ravikumar et al., 2010, Yang et al., 2015, Inouye

et al., 2015, 2016a]. However, unlike previous work, because the log partition function of

the GRM node conditionals is not known in closed-form—even for the previous work

considering the pairwise case[Inouye et al., 2016a]—we develop a novel numerical

2https://www.genome.gov/27530687/
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approximation method for the GRM log partition function and related derivatives. In

addition, we present a Newton-like optimization algorithm similar to [Hsieh et al., 2011] to

solve the node-regressions—which significantly reduces the number of numerical log

partition function approximations needed compared to gradient descent. Finally, we

demonstrate the GRM model and parameter estimation algorithm on real-world text data.

9.3 Related Work

This proposed work generalizes the square root graphical model (SQR) from

Chapter 4 [Inouye et al., 2016a], which only considers pairwise dependencies. Though SQR

models have great promise, SQR models are limited to pairwise dependencies, and we had

not provided an estimation algorithm for the Poisson SQR model in Chapter 4 because the

node conditional log partition function is not known in closed form. Thus, this proposed

work extends the SQR model class to include k-wise interactions where k > 2 and, in

addition, instantiates a concrete approximation algorithm for the node conditional log

partition function and associated derivatives.

In a somewhat different direction, latent variable models provide an implicit and

indirect way of modeling complex dependencies. Generally, though the explicit

dependencies in latent variable models are only pairwise, many variables can be related

implicitly through a latent variable. For example, mixture models associate a discrete

latent variable with every instance which implicitly introduces dependencies. Other more

complex latent variable models such as topic models [Blei et al., 2010, Lafferty and D.,

2006] can introduce even more implicit dependencies in interesting ways. While latent

variable models have proven to be practically effective in helping to model complex

dependencies, the development of GRM models in this paper is distinctive and somewhat

orthogonal to latent variable models. As opposed to implicitly modeling dependencies

through latent variables, the GRM model explicitly models dependencies between observed
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variables. Thus, the discovered dependencies have an intuitive and obvious explanation in

terms of the data variables. In addition, GRM models can be seen as complementary to

latent variable models because GRM models can be used as base distributions for these

latent variable models. For example, [Inouye et al., 2014b, 2015] explore using count-valued

graphical models in mixtures and topic models. Thus, GRMs can provide new components

from which to build more interesting models for real-world situations. Finally,

node-conditional models such as GRM can be estimated using convex optimization

problems and often have theoretical guarantees [Ravikumar et al., 2010, Yang et al., 2015]

whereas latent variable models often require optimizing a non-convex function and struggle

with theoretical guarantees.

9.3.1 Tensor and Outer Product Notation

We denote tensors (or multidimensional arrays) with parenthesized superscripts as

X(k) where k is the order of the tensor. For example, A(2) ∈ Rp×p is a matrix, A(3) ∈ Rp×p×p

is a three dimensional tensor, and A(k) ∈ Rp×k is a k-th order tensor. We index tensors

using brackets and subscripts, e.g. [A(3)]1,2,3 is a scalar value in the multidimensional array

at index (1, 2, 3). We define [A(`)]s ∈ Rp×`−1
to be a sub tensor created by fixing the last

index to s and letting the others vary—in MATLAB colon indexing notation, this would be

A(:, :, . . . , :, s). For example, if A(3) ∈ Rp×3
, then [A(3)]s ∈ Rp×p is a matrix corresponding to

the s-th slice of the tensor A(3).

We define ◦ to be the outer product operation. For example, x ◦ x = xxT ∈ Rp×p

and x ◦x ◦x ∈ Rp×3
, where [x ◦x ◦x]s1s2s3 = xs1xs2xs3 . For more general sizes, we denote a

k-th outer product to be x ◦k = x ◦ · · · ◦x such that there are k copies of x and the result is

a k-th order tensor. We define x ◦0 = e = [1, 1, · · · , 1]T . We also denote the inner product

operation of two tensors as
〈
A(k), B(k)

〉
=
∑

s1,··· ,sk as1,··· ,skbs1,··· ,sk .
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9.4 Generalized Root Model

With the notation given in the previous section, we will define the GRM model. First,

let the sufficient statistic and log base measure of a univariate exponential family be denoted

as T (x) and B(x) respectively. We will also define the domain (or support) of the random

variable to be D and it’s corresponding measure to be µ(x), which is either the counting

measure or Lebesgue measure depending on whether x is discrete or continuous.

Let us denote a new j-th root sufficient statistic T̃j(x) = j
√
T (x) except in the case

when T (x) = f(x)cj where c is an even positive integer. If T (x) = f(x)cj, then we simplify

T̃j(x) ≡ f(x)c (rather than the usual |f(x)|c). For example, if T (x) = x2, then T̃2(x) ≡ x

(rather than |x|). As in [Inouye et al., 2016a], this nuanced definition is necessary to recover

the multivariate Gaussian distribution. However, for notational simplicity, we will merely

write j
√
x for T̃j(x) throughout the paper. Note that T̃j(x) = j

√
x for the Poisson and

exponential GRM models. Using this simplified notation, we can define the Generalized

Root Model for k ≤ p as:

P(x |Ψ(·)
(·)) = exp

(
k∑
j=1

j∑
`=1

〈
Ψ

(`)
(j),

j
√
x ◦`

〉
+
∑

sB(xs)− A(Ψ
(·)
(·))

)
(9.1)

A(Ψ
(·)
(·)) = log

∫
D

exp

(
k∑
j=1

j∑
`=1

〈
Ψ

(`)
(j),

j
√
x ◦`

〉
+
∑

sB(xs)

)
dµ(x) , (9.2)

where A(Ψ
(·)
(·)) is the joint log partition function, Ψ

(·)
(·) =

{
Ψ

(`)
(j) : j ∈ {1, · · · , k}, ` ≤ j

}
, Ψ

(`)
(j)

are super symmetric tensors of order ` which are zero whenever two indices are the same.

More formally, letting π(·) be an index permutation:

Ψ
(`)
(j) ∈

{
A(`) :

[
A(`)

]
s1,··· ,s`

= [A(`)]π(s1,··· ,s`) ∀π(·),[
A(`)

]
π(su,sv ,··· ,s`)

= 0 ∀{(u, v, π(·)) : u 6= v, su = sv}

}
.

(9.3)

Note that the non-zeros of Ψ
(`)
(j) define `-sized variable sets (or cliques) of the underlying

graphical model.
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9.4.0.1 Special Cases

We now consider several special cases of this model to build some understanding of

the GRMs connection to previous models. The independent model is trivially recovered if

k = 1: P(x |Ψ(1)
(1)) = exp

(
〈Ψ(1)

(1),x〉+
∑

sB(xs)− A(Ψ
(·)
(·))
)

.

9.4.1 Square Root Graphical Model [Inouye et al., 2016a]

Another special case is the previous SQR models (i.e. k = 2) from [Inouye et al.,

2016a] by taking (using the notation from [Inouye et al., 2016a]) Ψ
(1)
(1) = diag(Φ), Ψ

(1)
(2) = θ

and Ψ
(2)
(2) = Φ̃, where diag(Φ) is a column vector of the diagonal entries and Φ̃ has the same

off-diagonal entries as Φ but is zero along the diagonal. Thus, the SQR model can be written

as:

P(x |Ψ(1)
(1),Ψ

(1)
(2),Ψ

(2)
(2))

= exp
(
〈Ψ(1)

(1),x〉+ 〈Ψ(1)
(2),

2
√
x〉+ 〈Ψ(2)

(2),
2
√
x ◦ 2
√
x〉+

∑
sB(xs)− A(Ψ

(·)
(·))
)
.

9.4.2 Simplified Model with Only Strongest Interaction Terms

We consider another special case such that only the strongest interaction (i.e. when

` = j) terms are non-zero:

P(x |Ψ(·)
(·)) = exp

(
k∑
j=1

〈Ψ(j)
(j),

j
√
x ◦j〉 +

∑
sB(xs)− A(Ψ

(·)
(·))

)
. (9.4)

This restricted parameter space forces j-wise dependencies to only be through the j-th root

term. For example, pairwise interactions are only available through the sufficient statistic

2
√
xsxt and ternary interactions are only available through the sufficient statistic 3

√
xsxtxr.

Without this restriction interactions would be allowed through multiple terms, e.g. pairwise

interactions would be allowed through multiple sufficient statistics 2
√
xsxt, 3

√
xsxt, · · · , k

√
xsxt.
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Thus, this simplified model is more interpretable and easier to learn while still retaining the

strongest j-wise interaction terms. For our experiments, we assume this simplified model

unless specified otherwise.

9.4.2.1 Node Conditionals

The node conditionals are as follows (see appendix for full derivation):

P(xs |x−s,Ψ(·)
(·)) ∝ exp

(
k∑
j=1

ηjsx
1/j
s +B(xs)

)
, (9.5)

where x−s is all other variables except xs, ηjs =
∑j

`=1

〈[
Ψ

(`)
(j)

]
s
, ` j
√
x ◦`−1

〉
. This is a

univariate exponential family with sufficient statistics x
1/j
s , natural parameters ηjs and base

measure B(xs). Note that this reduces to the original exponential family if the interaction

terms η2s = · · · = ηks = 0. This node conditional distribution is critical for the parameter

estimation that will be described in later sections.

9.4.2.2 Radial Conditionals

As in [Inouye et al., 2016a], we define the radial conditional distribution by fixing

the unit direction v = x
‖x‖1 of the sufficient statistics but allowing the scaling z = ‖x‖1 to

be unknown. Thus, we get the following radial conditional distribution (see appendix for

derivation):

P(x = zv |v,Ψ(·)
(·)) ∝ exp

(∑
r∈R

ηr(v)zr + B̃v(z)

)
, (9.6)

where R = {`/j : j ∈ {1, · · · , k}, ` ≤ j} is the set of possible ratios,

ηr(v) =
∑
{(`,j):`/j=r}〈Ψ

(`)
(j),

j
√

v ◦`〉 are the exponential family parameters, zr are the

corresponding sufficient statistics and B̃v(z) =
∑

sB(zvs) is the base measure. Thus, the

radial conditional distribution is a univariate exponential family (as in [Inouye et al.,
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2016a]). The radial conditional distributions are critical for showing the normalization of

GRM models.

9.4.2.3 Normalization

The previous exponential and Poisson graphical models [Besag, 1974, Yang et al.,

2015] could only model negative dependencies. However, we generalize the results from the

pairwise SQR model in [Inouye et al., 2016a] and show that GRM normalization for any

k puts little to no restriction on the value of the parameters—thus allowing both positive

and negative dependencies. For our derivations, let V = {v : ‖v‖1 = 1,v ∈ Rp
+} be the

set of unit vectors in the positive orthant. The GRM log partition function A(Ψ
(·)
(·)) can be

decomposed into nested integrals over the unit direction and over the scaling z:

A(θ,Φ) = log

∫
V

∫
Z(v)

exp

(
k∑
j=1

j∑
`=1

〈
Ψ

(`)
(j),

j
√
zv ◦`

〉
+
∑

sB(zvs)

)
dµ(z) dv

= log

∫
V

∫
Z(v)

exp

(∑
r∈R

ηr(v)zr + B̃v(z)

)
dµ(z) dv (9.7)

where Z(v) = {z ∈ R+ : zv ∈ D}, and µ and D are the measure and domain (or support)

of the random variable. Because V is bounded, the joint distribution will be normalizable

if the radial conditional distribution is normalizable—generalizing the results from [Inouye

et al., 2016a] for k > 2. Informally, the radial conditional distribution converges if the

asymptotically largest term of {ηr(v)zr} ∪ {B(zvs)} is monotonically decreasing at least

linearly.3 We give several examples in the following paragraphs.

3For more formal proofs, we refer the reader to [Inouye et al., 2016a].
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9.4.3 Gaussian GRM

For the Gaussian GRM, we take the Gaussian univariate distribution with sufficient

statistic T (x) = x2 and B(x) = 0. When k = 2 (i.e. the standard multivariate Gaussian),

the largest radial conditional term is η1x
2 where η1 = 〈Ψ(1)(1),v2〉 + 〈Ψ(2)(2),v ◦ v〉. Note

that the radial conditional (i.e. a univariate Gaussian) is normalizable only if η1 < 0 for

all v ∈ V , which is equivalent to the positive definite condition on the Gaussian inverse

covariance matrix. We can also consider a Gaussian-like model with k = 3. In this case, we

have that η1 = 〈Ψ(1)
(1),v

2〉+〈Ψ(2)
(2),v◦v〉+〈Ψ

(2)
(2),v

2
3 ◦v 2

3 ◦v 2
3 〉 and we need η1 < 0 ∀v ∈ V . Note

that the Gaussian GRM models for k > 2 are novel models to the authors’ best knowledge.

9.4.4 Exponential GRM

Because the exponential distribution also has a constant base measure like the

Gaussian, the asymptotically largest term is η1x and thus we must have that

η1 < 0 ∀v ∈ V . However, unlike the Gaussian, in the case of the exponential distribution V

is only positive `1-normalized vectors. This is a significantly weaker condition on the

parameters than for a Gaussian and allows strong positive and negative dependencies.

9.4.5 Poisson GRM

For the Poisson distribution, the base measure is the asymptotically largest term

O(−zlog(z)). Thus, as in [Inouye et al., 2016a], the parameters can be arbitrarily positive

or negative because eventually the base measure will ensure normalizability. Note that this

is true for arbitrarily large k.
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9.5 Parameter Estimation

As in [Yang et al., 2015, Inouye et al., 2015, 2016a], we solve a set of independent `1-

regularized node-wise regressions for each node—based on the node conditional distributions

in Sec. 9.4.2.1—using a Newton-like method for convex optimization with an non-smooth `1

penalty as in [Hsieh et al., 2014, Inouye et al., 2014a, 2015]. More specifically we take the

log likelihood of the node conditionals and add an `1 penalty on all interaction terms:

arg min
Ψ

(·)
(·)

−
p∑
s=1

(
1

n

n∑
i=1

(
k∑
j=1

ηjsix
1/j
si − A(ηsi)

))
+ λ

k∑
j==2

j∑
`=1

‖Ψ(`)
(j)‖1 , (9.8)

where ηjsi =
∑j

`=1

〈[
Ψ

(`)
(j)

]
s
, ` j
√
xi ◦`−1

〉
and ‖ · ‖1 is an entry-wise sum of absolute values.

Note that this is trivially decomposable into p subproblems and can thus be trivially

parallelized to improve computation speed. We use the Newton-like method as in [Hsieh

et al., 2011, Inouye et al., 2015] to greatly reduce computation. The initial innovation from

[Hsieh et al., 2011] was that the Hessian only needed to be computed over a free set of

variables each Newton iteration because of the `1 regularization which suggested sparsity of

the parameters. Yet, the number of Newton iterations was very small compared to gradient

descent. In the case of GRM models, whose bottleneck is the computation of the gradient

of A at least under our current implementation, this Newton-like method provides even

more benefit because the gradient only has to be computed a small number of times

(roughly 30) in our case rather than the several thousand times that would be needed for

running thousands of proximal gradient descent steps for the same level of convergence.

In the next section, we derive the gradient and Hessian for the smooth part of the

optimization in terms of the gradient and Hessian of the node conditional log partition

function A(η). Then, we develop a general method for bounding the log partition function

A(η) and associated derivatives even though usually no closed-form exists.
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9.5.0.1 Gradient and Hessian of GRMs

9.5.1 Notation for gradient and Hessian

Let vec(Ψ(`)) ∈ Rp` be the vectorized form of a tensor. For example, the vectorized

form of a p × p matrix is formed by stacking the matrix columns on top of each other to

form one long p2 vector. Also, let [x |x ∈ X ] be analogous to the normal set notation

{x : x ∈ X} except that the bracket and vertical line notation creates a vector from all the

elements concatenated to together. This is similar to a list comprehension in Python. For

our gradient and Hessian calculations, we define the following variable transformations and

give them as examples of this notation:

Bs =
{ [

vec
([

Ψ
(`)
(j)

]
s

) ∣∣∣ ` ≤ j
]

: j ∈ {1, 2, · · · , k}
}

=

{[
vec
([

Ψ
(1)
(1)

]
s

)]
︸ ︷︷ ︸

β1s

,
[
vec
([

Ψ
(1)
(2)

]
s

)
, vec

([
Ψ

(2)
(2)

]
s

)]
︸ ︷︷ ︸

β2s

,
[
vec
([

Ψ
(1)
(3)

]
s

)
, · · ·

]
︸ ︷︷ ︸

β3s

,

· · · ,
[
· · · , vec

([
Ψ

(k)
(k)

]
s

)]
︸ ︷︷ ︸

βks

}
,

Zsi =
{ [

vec
(
` j
√
xsi ◦`−1

) ∣∣ ` ≤ j
]

: j ∈ {1, 2, · · · , k}
}

=

{[
vec
(

1
√
xi ◦0

)]︸ ︷︷ ︸
z1s

,
[
vec
(

2
√
xi ◦0

)
, vec

(
2 2
√
xi ◦1

)]︸ ︷︷ ︸
z2s

,
[
vec
(

3
√
xi ◦0

)
, · · ·

]︸ ︷︷ ︸
z3s

,

· · · ,
[
· · · , vec

(
k k
√
xi ◦k−1

)]︸ ︷︷ ︸
zks

}
.

With this notation, we have that ηjsi = βTjszjsi. Because each node regression is independent,

we focus on solving one of the p subproblems for a particular s using the notation from above:

arg min
Bs

n∑
i=1

fs(Bs |xsi,Zsi) , (9.9)

where fs(Bs |xsi,Zsi) = −
∑k

j=1(βTjszjsi) j
√
xsi + A([βTjszjsi | j ∈ {1, · · · , k}). For notational

simplicity, we suppress the dependence on s and i in the derivations of the gradient and
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Hessian of f(·) (the gradient and Hessian are merely the sum over all instances). The

gradient and Hessian are as follows:

∇f(B |x,Z) =

[(
− j
√
x+

∂A

∂ηj

)
zj

∣∣∣∣ j ∈ {1, 2, · · · , k}] , (9.10)

∇2f(B |x,Z) =



[
∂2A
∂η1∂ηj

zj ◦ z1

∣∣∣ j ∈ {1, 2, · · · , k}] ,[
∂2A
∂η2∂ηj

zj ◦ z2

∣∣∣ j ∈ {1, 2, · · · , k}] ,
...[

∂2A
∂ηk∂ηj

zj ◦ zk
∣∣∣ j ∈ {1, 2, · · · , k}]

 . (9.11)

Note how the gradient and Hessian are simple functions of zj and the derivatives of A(η).

We develop bounded approximations for the A(η) next.

9.5.1.1 Gradient and Hessian of A(η)

Because the node conditional distributions are not standard distributions, we must

either derive the closed-form log partition function as done with the SQR exponential model

in [Inouye et al., 2016a], or we must approximate the log partition function and its first and

second derivatives. To the authors’ best knowledge, even for the simplified SQR model with

k = 2, no closed-form solution to log partition function exists for SQR node conditionals

except for the discrete, Gaussian and exponential SQR models. Thus, we seek a general way

to estimate the log partition function and associated derivatives.
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9.5.2 Reformulated as Expectations

We first note that the gradient and Hessian of A(η) are merely functions of particular

expectations—a well-known result of exponential families:

A(η) = log

∫
D

exp
( k∑
j=1

ηjx
1
j +B(x)

)
dµ(x) (9.12)

∇A(η) = [E(x
1
j ) | j ∈ {1, · · · , k}] (9.13)

∇2A(η) =



[
E(x

1
j

+ 1
2 )− E(x

1
j )E(x) | j ∈ {1, · · · , k}

][
E(x

1
j

+ 1
2 )− E(x

1
j )E(x

1
2 ) | j ∈ {1, · · · , k}

]
...[

E(x
1
j

+ 1
k )− E(x

1
j )E(x

1
k ) | j ∈ {1, · · · , k}

]

 . (9.14)

Thus, we need to compute expectations for at most
(
k
2

)
+ k functions of the form E(xa). To

develop our approximations under a unified framework, let us define the following function

M(a) and its subfunctions denoted f(x) and g(x):

M(a) = log

∫
D
xa exp

( k∑
j=1

ηjx
1
j +B(x)

)
dµ(x) (9.15)

= log

∫
D

exp
(
η1x+B(x)︸ ︷︷ ︸

f(x)

+
∑k

j=2 ηjx
1
j + log(xa)︸ ︷︷ ︸
g(x)

)
dµ(x) . (9.16)

By simple inspection, we see that M(0) = A(η1, η2) and E(xa) = exp
(
M(a)−M(1)

)
. Thus,

by approximating M(a), we can approximate all the necessary derivatives. If g(x) = 0,

then this is simply the log partition function of the base exponential family, which is usually

known in closed form. If g(x) is upper and lower bounded by a linear functions, i.e. blx+cl =

gl(x) ≤ g(x) ≤ gu(x) = bux+ cu, then we can form a modified functions of f(x) that will be

upper and lower bounds of f(x) + g(x):

(η1 + bl)x+ cl = f̂l(x) ≤ f(x) + g(x)≤ f̂u(x) = (η1 + bu)x+ cu . (9.17)
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Assuming η̂l = η1 + bl and η̂u = η1 + bu are valid parameters, we can then use the original

exponential family CDF—which is usually known in closed form—to compute the needed

integrals. If we know the concavity of each region, we can form linear upper and lower bounds

using the theory of convexity. The secant line and the first-order Taylor series approximation

form upper and lower bounds or vice versa depending on concavity. We can bound the tails

of g(x) with a constant function or Taylor series approximation as appropriate. See appendix

for details on linear approximations for g(x).

9.5.3 Approach to Bounding M(a)

Our approach splits the integral into d = O(1) integrals which bound the integral

over different subdomains of the domain. As will be seen later, we will then use the CDF

function of the base exponential family to approximate the integrals over these subdomains

(see appendix for full derivation):

M(a) ≈ log
d∑
i=1

∫
Di

exp(f̂i(x))dµ(x) (9.18)

= log
d∑
i=1

exp
(
ci + A(η̂i) + log

(
CDF

(
max(Di) | η̂i

)
− CDF

(
min(Di) | η̂i

))
, (9.19)

where the domain is split into disjoint subdomains, i.e. {Di : D =
⋃d
i Di,∀i 6= j,Di∩Dj = ∅},

(η̂, b) are either (η̂u, bu) or (η̂l, bl) depending on whether the upper or lower bound is needed,

A(η̂) and CDF(·) are the log partition function and CDF of the original exponential family.

Note that assuming A(η̂) and CDF(·) are available in closed form—as is the case for the

Poisson distribution—this approximation can be computed in O(d) = O(1) time.

9.5.4 Algorithm to Find Appropriate Subdomains Di

We need that every subdomain has a constant concavity (i.e. either concave or convex

over the subdomain) in order to use Taylor series and secant line bounds (and a constant
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bound for the tails). Thus, we use the following algorithm to find subdomains that help

minimize the bounds:

1. Find all real roots of g′′(x), denoted (x′′1, x
′′
2, · · · ) so we know the inflection points.

2. Use inflection points and endpoints of domain (e.g. 0 and∞ for Poisson) to define the

initial subdomains.

3. Compute initial bounds for these subdomains using Eqn. 9.19.

4. Split the subdomain with the largest difference between upper and lower bounds (i.e.

the subdomain with the largest error).

5. Recompute bounds for the two new subdomains formed by splitting the largest error

subdomain.

6. Repeat previous two steps until d domains have been obtained.

Note that the roots of g′′(x) can be solved by expanding to a polynomial and then computing

the eigenvalues of the companion matrix. An illustration of the method can be seen in

Fig. 9.1.

9.6 Results on Text Documents

We computed the Poisson GRM model on two datasets: Classic3 and Grolier

encyclopedia articles. The Classic3 dataset contains 3893 research abstracts from library

and information sciences, medical science and aeronautical engineering (more information

can be found in Chapter 5 Table 5.1). The Grolier encyclopedia dataset contains 5000

random articles from the Grolier encyclopedia (this is the same Grolier dataset used in

Chapter 7). We set k = 3, p = 500 and λ = 0.01 for our experiments. We chose 10 interval

endpoints (i.e. 9 subdomains) for our approximations. Note that this means there are at

least
(

500
3

)
≈ 2 × 107 possible parameters. We give the top 10 positive parameters for

individual, edge-wise and triple-wise combinations. These results illustrate that our model

and algorithm can find interesting pairwise and triple-wise words. Top 50 of both negative
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Figure 9.1: Approximation of the M(a) function with a = 0 and η = [3.0232,−4.4966] for 2
subdomains (left) and for 5 subdomains (right) using the algorithm described in Sec. 9.5.1.1.
The top is the actual values of the summation in Eqn. 9.16 and the bottom is the linear
approximation bx+ c to the non-linear part g(x) as in Eqn. 9.17.

Table 9.1: Table of Tuples

and positive dependencies for single, pairwise and triple-wise dependencies can be found in

the appendix. The timing for these experiments using prototype code in MATLAB on

TACC Maverick cluster (https://portal.tacc.utexas.edu/user-guides/maverick)

was 2653 seconds for the Classic3 dataset and 5975 seconds for the Grolier dataset. Given

the extremely large number of parameters to be optimized, this gives evidence that GRM

models are computationally tractable while still wanting for some improvement.
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9.7 Discussion

While it may seem at first that this model is impractical for even k = 4, we suggest

some ideas for reducing the parameter space. First, if some parameters are known or expected

a priori to be non-zero, we could only allow those parameters to be non-zero. For example,

known genetic pathways could be encoded as k-wise cliques. Thousands of known pathways

could be added which would only incur thousands of parameters, which is very small relative

to all possible parameters. Second, the optimization could proceed in a stage-wise fashion

such that the first a model is fit for k = 1, then this model is used to choose which parameters

to allow in the next model of k = 2, etc. For example, we could first train a model with only

pairwise parameters (k = 2). Then, we could find all triangles in the discovered graph and

only add these parameters for training a model with k = 3. This heuristic would significantly

reduce the number of possible parameters if the parameters are assumed to be sparse (as is

usually the case with `1-regularized objectives). Third, the tensors could be constrained to

be low-rank and thus only O(p) values for each tensor would be needed. For example, we

could assume that the pairwise tensors are low-rank matrices. For higher order tensors, a

similar idea could hold, e.g. Ψ
(`)
(j) =

∑M
i=1 θi ◦`, where M is O(1).

9.8 Conclusion

We generalize the previous SQR [Inouye et al., 2016a] model to include factors of

size k > 2. We study this general distribution by giving the node and radial conditional

distributions, which provides simple conditions for normalization of the GRM class of models.

We then develop an approximation technique for estimating the node-wise log partition

function and associated derivatives for the Poisson case—note that [Inouye et al., 2016a]

only provided an algorithm for approximating the exponential SQR model. Finally, we

qualitatively demonstrated our model on two real world datasets.
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Chapter 10

Closed-Form Conditional Marginals via

Gaussian-Copula Models

10.1 Abstract

Motivated by the comparison of copula and graphical models in Chapter 5, we

investigate a connection between Gaussian-copula models and graphical models in this

chapter. More specifically, we seek to understand the form of the conditionals of

Gaussian-copula distributions paired with non-Gaussian marginals. Conditional

distributions provide a way to estimate missing values given known values. As another

example, conditional distributions allow researchers to reason about hypothetical situations

which were not seen in the training data. These applications require estimation of the

conditional marginal distributions—i.e. the marginal distribution of a variable conditioned

on some but not all other variables. The multivariate Gaussian provides closed-form

solutions to the conditional marginal distributions but many real-world datasets are

non-Gaussian including non-negative, count or discrete data. Therefore, we propose the use

of a Gaussian copula paired with non-Gaussian marginal distributions. As a key concept,

we show that the conditional distribution of a Gaussian copula model can be reduced to

another Gaussian copula paired with closed-form marginals and dependency structure.

This reduction allows for direct access to the mean and median of the conditional marginal

distributions. We also develop two approximations for discrete conditional marginal

distributions. We evaluate these closed-form conditional marginal distributions on several

real-world datasets in terms of missing value imputation.
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10.2 Introduction

To the author’s best knowledge, the general form of these conditional marginal

distributions has not been derived—in particular, showing that a conditional copula model

is another copula model has not been known. Thus, the general closed-form solutions to

the conditional marginals has not been known. The full conditional (i.e. conditioning on all

other variables) for regression or imputation has been derived [Clemen and Reilly, 1999,

Parsa and Klugman, 2011, Wang and Hua, 2014] but not a partial conditional—i.e.

condition on some variables.

Some methods consider conditional copulas for sampling by sampling from one

dimension at a time and building up a complete sample [Cherubini et al., 2004b, Kort,

2007]. Schmitz [2003] provide a good view of conditional distributions connected to the

partial derivatives of the copula CDFs. Kaarik [2006] and Käärik and Käärik [2009] show

that the conditional distribution is a ratio of copula densities and suggests that this can be

used to impute a missing value given previous values—i.e. impute one value based on all

the history before it. Note that this is still the full conditional, i.e. conditioning on all the

history rather than only parts of the history. [Roth, 2013] gives the form of the marginal

and conditional distributions for the multivariate t distribution, which supports the

conjecture that the ideas in this chapter also follow for t copulas as we propose in later

sections.

We derive that the conditional distributions of a Gaussian-copula model is also a

Gaussian-copula model with modified parameters and marginal distributions. The beauty

in this derivation is that the conditional marginal distributions are actually known in closed-

form, even up to normalization constant. Thus, we can compute the likelihood or any

statistic of the marginal distributions such as the median or mean.

144



10.3 Preliminaries

10.3.1 Notation

Let p and n denote the number of dimensions and number data instances respectively.

We will generally use uppercase letters for matrices (e.g. R,W ), boldface lowercase letters

for vectors (i.e x,y) and lowercase letters for scalar values (i.e. xs, ys). Subvectors are

given by subscripts either on a single value as in xs or by a set of values xB where B is a set

indices. Submatrices are indexed in a similar manner so that RBA is the submatrix formed by

removing all rows not in B and all columns not in A. Also, unless noted otherwise, functions

on vectors will be coordinate-wise functions. For example,
√
x = [

√
x1,
√
x2, · · · ,

√
xp] or

Φ−1(v) = [Φ−1(u1),Φ−1(u2), · · · ,Φ−1(up)]. In the case where the coordinate-wise function

has different functions for different variables—i.e. Fs(xs) ∀s —, we will denote F (x) =

[F1(x1), F2(x2), · · · , Fp(xp)]. For subvectors of these functions, we define FB(xB) = (F (x))B.

Finally, we will use the function diag(·) to either extract the diagonal of an input matrix or

make a diagonal matrix from an input vector; for example, diag(W ) = [w11, w22, · · · , wpp]
and (diag(x))st = {xs if s = t and 0 otherwise}.

10.3.2 Copulas

While copula-based models often refer to the multivariate CDF of the copula

distribution (see Sec. 5.3.2 for a definition using multivariate CDFs), we will be working

primarily with the multivariate copula density (i.e. PDF) denoted c(·). Given the marginal

CDFs Fs(·) and corresponding marginal PDFs fs(·), any continuous joint distribution by

Sklar’s Theorem can be represented as:

P(x) = c(F (x))

p∏
s=1

fs(xs), (10.1)

where F (x) = [F1(x1), F2(x2), · · · , Fp(xp)]. Note that each univariate marginal Fs(·) can

be arbitrarily different—including non-parametric univariate distributions. The Gaussian
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copula with correlation matrix R can be derived from the multivariate Gaussian distribution:

cGauss(v |R) =
PGauss(Φ

−1(v))∏p
s=1 PGauss(Φ−1(us))

(10.2)

= |R|−1/2 exp
(
− 1

2
Φ−1(v)T (R−1 − I)Φ−1(v)

)
,

where Φ−1(·) is the inverse CDF of the normal distribution applied coordinate-wise, R is a

correlation matrix, and I is the identity matrix. Essentially, the Gaussian copula is the ratio

of a multivariate normal with covariance R and a standard independent multivariate normal.

We will show that the particular form of the Gaussian copula enables closed-form solutions

to the conditional marginal distributions. We refer the reader to Sec. 5.3.2 for more details

on copula models.

10.4 Conditional Copula Distribution

Now, let us consider conditioning on some set of variables B ⊂ {1, 2, · · · , p}. Let us

denote the complement of B as A and let FA(xA) be the vector formed by concatenating

Ft(xt)∀t ∈ A. Also, let Φ(·), Φ−1(·), and φ(·) denote the CDF, inverse CDF and PDF of the

standard normal distribution.

Theorem 1. Given a joint Gaussian copula model with correlation matrix R, marginal

CDFs Fs(·) and marginal PDFs fs(·), the conditional distribution given a subset of variables

B ∈ {1, 2, · · · , p} is another Gaussian copula model:

P(xA |xB, R, F, f) = cGauss(G(xA) | R̃)
∏
t∈A

gt(xt), (10.3)

where the conditional marginal distributions—i.e. P(xt |xB) are given by the following CDFs
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and PDFs:

Gt(xt) = Φ

(
Φ−1(Ft(xt))− µt

σt

)
(10.4)

gt(xt) =
dGt(x)

dx
=
φ
(

Φ−1(Ft(xt))−µt
σt

)
σt φ(Φ−1(Ft(xt)))

ft(xt) , (10.5)

and where µ = RABR
−1
BBΦ−1(FB(xB)), Σ = RAA − RABR

−1
BBRBA, σ =

√
diag(Σ), and

R̃ = diag(σ)−1Σdiag(σ)−1.

The proof while straightforward is relatively tedious and thus is given in Sec. 10.7.

We now give several useful corollaries below regarding the CDF, PDF, and inverse CDF.

Corollary 1. The CDF and PDF of the conditional marginal distributions P(xt |xB) are

given in closed-form by Gt(xt) and gt(xt) respectively.

For the following corollary, let F−1
t (u) = inf{x ∈ R : Ft(xt) ≥ u} denote the

generalized inverse CDF of Ft(xt).

Corollary 2. The inverse CDF, or quantile function, of the conditional marginal

distributions P(xt |xB) is given in closed-form as:

G−1
t (u) = F−1

t

(
Φ(σtΦ

−1(u) + µt)
)
. (10.6)

Corollary 2 means that the median is known in closed-form and direct sampling

via inverse transform sampling is trivial. Another benefit of having the inverse CDF in

closed form is that the mean of the distribution can be found by numerically computing the

following simple univariate definite integral using adaptive quadrature or similar numerical

integration:

E[xt] =

∫ 1

0

G−1
t (u)du. (10.7)
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10.4.1 Conjecture About Multivariate t-copula Models

We give the following conjecture regarding t-copula models that is similar to

Theorem 1 for Gaussian-copula models.

Conjecture 1. Given a joint multivariate t-copula model with correlation matrix R, degree

of freedom ν > 0, marginal CDFs Fs(·) and marginal PDFs fs(·), the conditional distribution

given a subset of variables B ∈ {1, 2, · · · , p} is another multivariate t copula model:

P(xA |xB, ν, R, F, f) = ct(G(xA) | ν̃, R̃)
∏
t∈A

gt(xt), (10.8)

where the conditional marginal distributions—i.e. P(xt |xB) are given by the following CDFs

and PDFs:

Gt(xt) = Tν+|B|

(
T−1
ν (Ft(xt))− µt

σt

)
(10.9)

gt(xt) =
dGt(x)

dx
=
tν+|B|

(
T−1
ν (Ft(xt))−µt

σt

)
σt tν+|B|(T−1

ν (Ft(xt)))
ft(xt) , (10.10)

and where

T = CDF of standard t distribution

T−1 = Inverse CDF of standard t distribution

t = PDF of standard t distribution

ν̃ = ν + |B|

µ = RABR
−1
BBΦ−1(FB(xB))

Σ =
ν + xTBR

−1
BBxB

ν + |B|
(RAA −RABR

−1
BBRBA)

σ =
√

diag(Σ)

R̃ = diag(σ)−1Σdiag(σ)−1 .
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While we have not proven this yet, we conjecture that this likely follows from the

fact that a conditional multivariate t distribution is another multivariate t distribution with

modified parameters as above and that the marginals of a multivariate t distribution are

univariate t distributions [Roth, 2013]. In addition, we know that the marginal distributions

of a multivariate t distribution are closed-form [Roth, 2013]. Thus, the core properties needed

are still available.1

10.5 Extension to Mixtures

We further extend some of the results to mixtures of Gaussian-copula models. Most

of the required quantities are known in closed-form or require a one-dimensional root finding

algorithm in the case of the inverse CDF or quantile function.

Corollary 3. The conditional distribution of a mixture of k Gaussian-copula models

formulated as:

P(x |R..., F ...) =
k∑
j=1

P(z = j |w)P(x | z = j, R(j), F (j))

is a reweighted mixture of Gaussian-copula models:

P(xA |xB) =
k∑
j=1

P(z = j | w̃)P(xA | z = j, R̃(j), G(j)),

where G(j)(·) and R̃(j) are defined as in Thm. 1 and w̃j =
wjP(xB | z=j,R(j),F (j))∑k

m=1 wjP(xB | z=m,R(m),F (m))
.

1Unlike the multivariate Gaussian, however, the uncorrelated multivariate t distribution —i.e. Σ = I—is
not the product of marginal t distributions. However, this property is likely not needed for the derivation.
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Proof.

P(xA |xB, R..., F ...)

=
P(xA,xB, R

..., F ...)

P(xB, R..., F ...)

=

∑k
j=1 P(z = j |w)P(xA,xB | z = j, R(j), F (j))∑k
m=1 P(z = m |w)P(xB | z = m,R(m), F (m))

=

∑k
j=1wjP(xA,xB | z = j, R(j), F (j))∑k
m=1 wmP(xB | z = m,R(m), F (m))

=

∑k
j=1wjP(xB | z = j, R(j), F (j))P(xA |xB, z = j, R(j), F (j))∑k

m=1wmP(xB | z = m,R(m), F (m))

=
k∑
j=1

w̃jP(xA |xB, z = j, R(j), F (j))

=
k∑
j=1

w̃jP(xA | z = j, R̃(j), G(j)),

where the last step is by Thm. 1.

The CDF of a mixture Fmix(·) is given by the CDFs of the components F (j)(·):

Fmix(x) =
k∑
j=1

wjF
(j)(x) .

Because Fmix(x) is a convex combination of F (j)(x), we know that:

min
j
F (j)(x) ≤ Fmix(x) ≤ max

j
F (j)(x) .

Because of this, we can show bounds for any given u ∈ [0, 1]. Given a particular u ∈ [0, 1],

let y = F−1
mix(u), which we know exists because Fmix(·) is strictly monotonic and continuous.

There exists a j ∈ {1, · · · , k} such that F (j)(y) ≥ Fmix(y). Then, because (F (j))−1)(·) is
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strictly monotonic, we can apply the inverse transformation to both sides of the inequality

to yield:

y ≥ (F (j))−1(Fmix(y))

⇒ F−1
mix(u) ≥ (F (j))−1(u)

≥ min
j

(F (j))−1(u) .

This can be proved similarly for the maximum to yield the following inequalities:

min
j

(F (j))−1(u) ≤ F−1
mix(u) ≤ max

j
(F (j))−1(u) . (10.11)

Thus, the quantile function of a mixture can be upper and lower bounded by the minimum

and maximum of the quantile functions of the components. Using this as a starting point,

a simple univariate root finding algorithm such as Brent’s method can be used to find any

quantile of the mixture, including the median of the mixture.

10.6 Discrete Marginals

There are two possible ways for handling discrete marginal distributions such as the

Poisson when modeling count data (e.g. word counts or protein counts). First, the discrete

data can be augmented to form auxiliary continuous domain variables; this is also known as

the continuous extension (CE) [Denuit and Lambert, 2005, Nikoloulopoulos, 2013b]:

x∗ = x+ (u− 0.5), where u ∼ Uniform.

The one difference from [Denuit and Lambert, 2005] is that we only shift by 0.5 instead

of 1 so that the median and mean are much closer to their discrete counterparts. This

continuous approximation to the discrete marginals can be viewed as evenly spreading the

discrete probability over the unit interval centered at the discrete values. Essentially, this
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moves the count-valued marginal CDF to a piecewise-linear continuous CDF defined over

the domain [−0.5,∞).

A second way is to leave the marginals discrete and handle the discrete marginals

carefully. One difference is that the density function gt(xt) from Theorem 1 can no longer

be defined in terms of the derivative of Gt(xt) but we can define it as the discrete difference:

gt(xt) = Gt(bxtc) − Gt(dxt − 1e). Also, when conditioning on a particular value of x, we

modify F (x) to be F̃ (x) = 0.5(F (x) +F (x− 1)) so that the conditioning value of the copula

is the median value that could have generated x. From a generative point of view, any

u ∈ [F (x− 1), F (x)) could have generated x, and thus, we approximate the u by the median

between these two values.

10.7 Proof of Theorem 1

Proof. For notational reasons, let us define W = R−1. The block matrices of W and R are

related as follows based on well-known block inversion identities:

WBB = (RBB −RBAR
−1
AARAB)−1 (10.12)

= R−1
BB +R−1

BBRBA(RAA −RABR
−1
BBRBA)−1RABR

−1
BB

WBA = −R−1
BBRBA(RAA −RABR

−1
BBRBA)−1 (10.13)

WAB = W T
BA (10.14)

= −(RAA −RABR
−1
BBRBA)−1RABR

−1
BB

WAA = (RAA −RABR
−1
BBRBA)−1 . (10.15)

These can be similarly defined for RBB,RBA,RAB and RAA in terms of WBB,WBA,WAB and

WAA by switching R and W in all the equations.

We will prove by induction on the size of the conditioning set |B|. We will first

introduce a copula decomposition lemma and then proceed with the induction. The lemma
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proof will be in a later section.

Lemma 1. A Gaussian copula in Rp can be decomposed into a smaller Gaussian copula in

Rp−1 multiplied by a product of p− 1 independent factors:

cGauss(F (x) |R)

= cGauss(Φ(diag(σ)−1Φ−1(FA(xA))− µ)) | R̃)

×
p−1∏
s=1

φ(Φ(Φ−1(Fs(xs))−µs
σs

))

σsφ(Φ−1(Fs(xs)))
,

where A = {1, 2, · · · , p− 1}, B = {p}, and Σ, σ, µ and R̃ are defined as in Theorem 1.

10.7.1 Base Case |B| = 1

We can assume that we are conditioning on the last variable xp w.l.o.g. Thus, B = {p}
and A = {1, 2, · · · , p− 1}. First, by simple conditional probability, we know that:

P(xA |xp, R, F, f) =
P(x)

P(xp)
(10.16)

=
cGauss(F (x) |R)

∏p
s=1 fs(xs)

fs(xs)
(10.17)

= cGauss(F (x) |R)

p−1∏
s=1

fs(xs) (10.18)

Using Lemma 1, we arrive at the result after some simplification:

P(xA |xp, R, F, f) = cGauss(F (x) |R)

p−1∏
s=1

fs(xs)

= cGauss(Φ(diag(σ)−1Φ−1(FA(xA))− µ)) | R̃)

×
p−1∏
s=1

φ(Φ(Φ−1(Fs(xs))−µs
σs

))

σsφ(Φ−1(Fs(xs)))
fs(xs)

= cGauss(G(xA) | R̃)
∏
t∈A

gt(xt) .
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For this reduction to be a valid copula model, we must also verify that the derivative of

Gs(x) is gs(x):

dGs(x)

dx
=

d
(
Φ(Φ−1(Fs(x))−µs

σs
)
)

dx

= φ

(
Φ−1(Fs(x))− µs

σs

)
1

σs

d
(
Φ−1(Fs(x))− µs)

dx

= φ

(
Φ−1(Fs(x))− µs

σs

)
1

σs

1

φ(Φ−1(Fs(x)))

dFs(x)

dx

= φ

(
Φ−1(Fs(x))− µs

σs

)
1

σs

1

φ(Φ−1(Fs(x)))
fs(x)

=
φ
(

Φ−1(Fs(x))−µs
σs

)
σsφ(Φ−1(Fs(x)))

fs(x) = gs(x) .

10.7.2 Induction Step

For the induction step, we will generally index the parameters for |B| = k with

superscripts. For example, the induction hypothesis for |B| = k will have parameters G(k)(·)

and R̃(k). We will assume w.l.o.g that we are conditioning on the last k or k+1 variables—i.e.

B(k) = {p− k + 1, p− k + 2, · · · , p} and B(k+1) = {p− k, p− k + 1, · · · , p}. Let us consider
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the case of k + 1:

P(xA(k+1) |xB(k+1) , R, F, f)

=
P(x)

P(xB(k+1))

=
P(x)

P(xB(k))P(xp−k |xB(k))

=
P(xA(k) |xB(k))

P(xp−k |xB(k))

=
cGauss(G(k)(xA) | R̃(k))

∏p−k
t=1 g

(k)
t (xt)

g
(k)
p−k(xp−k)

= cGauss(G(k)(xA(k)) | R̃(k))

p−k−1∏
t=1

g
(k)
t (xt)

Now we invoke Lemma 1 with parameters Σ̄, σ̄, µ̄, R̄ and conditioning value

G
(k)
p−k−1(xp−k−1) =

Φ−1(Fp−k−1(xp−k−1))−µ(k)p−k−1

σ
(k)
p−k−1

:

P(xA(k+1) |xB(k+1) , R, F, f)

= cGauss(Φ(diag(σ̄)−1Φ−1(G(k)(xA(k)))− µ̄)) | R̄)

×
p−k−1∏
s=1

φ(Φ(Φ−1(G
(k)
s (xs))−µ̄s
σ̄s

))

σ̄sφ(Φ−1(G
(k)
s (xs)))

g
(k)
t (xt)

To simplify this expression, we note that

Φ−1(G(k)
s (xs))

= Φ−1(Φ(
Φ−1(F (xs))− µ(k)

s

σ
(k)
s

))

=
Φ−1(F (xs))− µ(k)

s

σ
(k)
s

.
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We can now simplify the independent product terms:

φ(Φ(Φ−1(G
(k)
s (xs))−µ̄s
σ̄s

))

σ̄sφ(Φ−1(G
(k)
s (xs)))

g
(k)
t (xt)

=
φ(Φ

(
Φ−1(F (xs))−µ(k)s −µ̄sσ

(k)
s

σ
(k)
s σ̄s

)
)

σ̄sφ(Φ−1(F (xs))−µ(k)s

σ
(k)
s

)
g

(k)
t (xt)

=
φ(Φ

(
Φ−1(F (xs))−µ(k)s −µ̄sσ

(k)
s

σ
(k)
s σ̄s

)
)

σ̄sφ(Φ−1(F (xs))−µ(k)s

σ
(k)
s

)

φ(Φ−1(F (xs))−µ(k)s

σ
(k)
s

)

σ
(k)
s φ(Φ−1(F (xs)))

=
φ(Φ

(
Φ−1(F (xs))−µ(k)s −µ̄sσ

(k)
s

σ
(k)
s σ̄s

)
)

σ
(k)
s σ̄sφ(Φ−1(F (xs)))

Now we will show that Σ(k+1) = diag(σ
(k)

A(k+1))Σ̄diag(σ
(k)

A(k+1)):

Σ̄−1 = [(R̃(k))−1]A(k+1),A(k+1)

=
[
diag(σ(k))W

(k)

A(k),A(k)diag(σ(k))
]
A(k+1),A(k+1)

= diag(σ
(k)

A(k+1))W
(k)

A(k+1),A(k+1)diag(σ
(k)

A(k+1))

= diag(σ
(k)

A(k+1))W
(k+1)diag(σ

(k)

A(k+1))

= diag(σ
(k)

A(k+1))(Σ
(k+1))−1diag(σ

(k)

A(k+1))

where the second to last step is because W (k+1) is merely the top upper submatrix of W (k).

From this we know that:

σ(k+1) =
√

diag(Σ(k+1))

=

√
diag(σ

(k)

A(k+1))Σ̄diag(σ
(k)

A(k+1))

= [σ
(k)
1 σ̄1, σ

(k)
2 σ̄2, · · · , σ(k)

p−k−1σ̄p−k−1]

156



and

R̄ = diag(σ̄)−1Σ̄diag(σ̄)−1

= diag(σ̄)−1(diag(σ(k))−1Σ(k+1)diag(σ(k))−1)diag(σ̄)−1

= diag(σ(k+1))−1Σ(k+1)diag(σ(k+1))−1

= R̃(k+1) .

Finally, we show that µ(k+1) = µ(k) + diag(σ
(k)

A(k+1))µ̄. Letting p̃ = {p − k − 1}

z = Φ−1(F (x)) and z̄ =
zp̃−µ

(k)
p̃

σ
(k)
p̃

, we derive the formulas in terms of W and using the

following substitution q = W−1
A(k+1)A(k+1)WA(k+1)p̃:

µ(k) = −W−1
A(k)A(k)WA(k)B(k)zB(k)

µ(k+1) = −W−1
A(k+1)A(k+1)WA(k+1)B(k+1)zB(k+1)

µ̄ = −W̄−1
A(k+1)A(k+1)W̄A(k+1)p̃z̄

Let’s expand µ̄:

µ̄

= −(diag(σ(k))WA(k+1)A(k+1)diag(σ(k)))−1

× (diag(σ(k))WA(k+1)p̃σ
(k)
p̃ )z̄

= −diag(σ(k))−1W−1
A(k+1)A(k+1)WA(k+1)p̃σ

(k)
p̃

×

(
zp̃ + µ

(k)
p̃

σ
(k)
p̃

)
= −diag(σ(k))−1q(zp̃ − µ(k)

p̃ ) .
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Now let’s decompose µ(k) in terms of submatrices and subvectors:[
µ

(k)

A(k+1)

µ
(k)
p̃

]

= −
[
WA(k+1)A(k+1) WA(k+1)p̃

W T
A(k+1)p̃

Wp̃p̃

]−1

×
[
WA(k+1)B(k)

Wp̃B(k)

]
× zB(k)

= −

[
W−1
A(k+1)A(k+1) + q(σ

(k)
p̃ )2qT q(σ

(k)
p̃ )2

(σ
(k)
p̃ )2qT (σ

(k)
p̃ )2

]

×
[
WA(k+1)B(k)zB(k)

Wp̃B(k)zB(k)

]
=

[
−W−1

A(k+1)A(k+1)WA(k+1)B(k)zB(k) − q(σ
(k)
p̃ )2qT

−(σ
(k)
p̃ )2qTWA(k+1)B(k)zB(k)

]

+

[
−q(σ

(k)
p̃ )2Wp̃B(k)zB(k)

−(σ
(k)
p̃ )2Wp̃B(k)zB(k)

]

=

[
−W−1

A(k+1)A(k+1)WA(k+1)B(k)zB(k) − qµ(k)
p̃

µ
(k)
p̃

]
.

Now let’s expand µ(k+1):

µ(k+1)

= −W−1
A(k+1)A(k+1)

[
WA(k+1)p̃ WA(k+1)B(k)

] [ zp̃
zB(k)

]
= −qzp̃ −W−1

A(k+1)A(k+1)WA(k+1)B(k)zB(k) .
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Finally, we look at µ
(k)

A(k+1) + diag(σ(k))µ̄:

µ(k) + diag(σ(k))µ̄

= (−W−1
A(k+1)A(k+1)WA(k+1)B(k)zB(k) − qµ(k)

p̃ )

+ diag(σ(k))(−diag(σ(k))−1q(zp̃ − µ(k)
p̃ ))

= −W−1
A(k+1)A(k+1)WA(k+1)B(k)zB(k) − qzp̃

= µ(k+1)

Substituting these equalities back into (10.19), we see that indeed the induction

hypothesis for (k + 1) is true.

10.7.3 Proof of Lemma 1

Proof. We want to decompose the Gaussian copula as per the Lemma 1:

cGauss(F (x) |R) (10.19)

= |R|−1/2 exp
(
− 1

2
Φ−1(F (x))T (R−1−I)Φ−1(F (x))

)
.

Let us substitute z = Φ−1(F (x)) and W = R−1 and decompose the quadratic based on zA

and zp as follows:

cGauss(F (x) |R) = |W |1/2 exp
(
− 1

2
zT (W − I)z

)
(10.20)

= |W |1/2 exp
{
− 1

2

[
zTA(WAA − IAA)zA (10.21)

+ 2zp(WpA − IpA)zA + z2
p(wpp − 1)

]}
= |W |1/2 exp

{
− 1

2

[
zTA(WAA − I)zA (10.22)

+ 2zpWpAzA + z2
p(wpp − 1)

]}
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We now define µ, Σ, σ and R̃ as in the theorem and simplify:

µ = RpAR
−1
pp Φ−1(Fp(xp)) = RpAΦ−1(Fp(xp)) (10.23)

Σ = RAA −RApR
−1
pp RpA = RAA −RApR

T
Ap (10.24)

σ =
√

diag(Σ) (10.25)

R̃ = diag(σ)−1Σdiag(σ)−1, (10.26)

where the simplifications are by the fact that Rpp = 1 and R is symmetric. Note also that

WAA = Σ−1. The notation is suggestive about the role of each variable in terms of the mean,

covariance matrix, standard deviation and correlation matrix of the conditioned set. We

now make the following substitution:

y = diag(σ)−1(zA − µ) (10.27)

zA = diag(σ)y + µ (10.28)

We simplify each term of the quadratic in (10.22) based on these substitutions:

zTA(WAA − I)zA

= (diag(σ)y + µ)T (WAA − I)(diag(σ)y + µ)

= (diag(σ)y)T (WAA − I)(diag(σ)y)

+ 2(diag(σ)y)T (WAA − I)µ

+ µT (WAA − I)µ

= yT (diag(σ)WAAdiag(σ))y − yTdiag(σ)2y

+ 2(diag(σ)y)T (WAA − I)µ

+ µT (WAA − I)µ

= yT (R̃− I)y + yTy − yTdiag(σ)2y (10.29)

+ 2(diag(σ)y)TWAAµ− 2(diag(σ)y)Tµ

+ µTWAAµ− µTµ ,
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where the last equality is merely by adding and subtracting yTy. Note that the first term

has the form of a Gaussian copula with correlation matrix R̃. We will now expand the second

term of the quadratic in (10.22) using substitution and the matrix identities for R and W

described previously:

2zpWpAzA

= 2zp(−R−1
pp RpA(RAA−RApR

−1
pp RpA)−1)(diag(σ)y+µ)

= −2zpRpAWAA(diag(σ)y+µ)

= −2µTWAA(diag(σ)y+µ)

= −2(diag(σ)y)TWAAµ−2µTWAAµ . (10.30)

Finally, we now expand the last term of (10.22):

z2
p(wpp − 1)

= z2
p((R

−1
pp +R−1

pp RpA(RAA −RApR
−1
pp RpA)−1RApR

−1
pp )− 1)

= z2
p((1 +RpAWAARAp)− 1)

= µTWAAµ . (10.31)
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Combining the term expansions from (10.29), (10.30), and (10.31) into (10.22) and canceling

terms, we arrive at the following:

cGauss(F (x) |R)

=
|W |1/2

|R̃|1/2
|R̃|1/2 exp

{
− 1

2
yT (R̃− I)y

}
×exp

{
− 1

2

[
yTy−yTdiag(σ)2y−2(diag(σ)y)Tµ−µTµ

]}
= |diag(σ)|−1 |R̃|1/2 exp

{
− 1

2
yT (R̃− I)y

}
×

exp
{
− 1

2

[
yTy

]}
exp
{
− 1

2
(diag(σ)y + µ)T (diag(σ)y + µ)

}
= cGauss(y | R̃)

|diag(σ)|−1 exp
{
− 1

2

[
yTy

]}
exp{−1

2
(diag(σ)y+µ)T (diag(σ)y+µ)}

= cGauss(y | R̃)

p∏
s=1

σ−1
s

φ(ys)

φ(σsys + µs)
, (10.32)

where the second to last step is by the fact that:

|W |1/2

|R̃|1/2
=

(
|W |

|diag(σ)WAAdiag(σ)|

)1/2

= |diag(σ)|−1

(
|WAA||Wpp −WpAW

−1
AAWAp|

|WAA|

)1/2

= |diag(σ)|−1 |Wpp −WpAW
−1
AAWAp|1/2

= |diag(σ)|−1 |Rpp|1/2

= |diag(σ)|−1 .
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We now undo the substitution of y and zA to get (10.32) in terms of the original variables

and functions:

cGauss(F (x) |R) (10.33)

= cGauss(Φ(diag(σ)−1Φ−1(FA(xA))− µ)) | R̃) (10.34)

×
p−1∏
s=1

φ(Φ(Φ−1(Fs(xs))−µs
σs

))

σsφ(Φ−1(Fs(xs)))
. (10.35)

10.8 Experiments

In the following experiments, we demonstrate that by using the closed-form

conditional marginals of Gaussian-copula models described in Theorem 1, we can predict

missing values better using non-Gaussian marginals rather than Gaussian

marginals—which would correspond to a standard multivariate normal or Gaussian

graphical model. The key idea is that with only a small overhead in using non-Gaussian

marginals, we can form more complex missing value models that give better predictions

than a joint Gaussian model. Thus, in many situations where Gaussian marginals are not

appropriate, we can still use a Gaussian-copula model to make useful predictions.

10.8.1 Experimental Setup

In our experiments, we hold out one hundred observations as a test set and randomly

mark 10% of the values as missing. Note that the variables missing for each test instance is

different so a single regression model cannot be used. For example, in the first test instance,

variables 5, 20 and 101 may be missing whereas for the second test instance variables 1, 15

and 17 may be missing. Thus, only a joint probabilistic model can be used rather than a

regression model.
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We train our models on the rest of the data assuming all values are observed. While it

is possible to estimate a joint model even from data with missing values by marginalizing out

the missing values, we do not consider this in our experiments because model estimation is not

our focus; rather we focus on using the model after estimation. In addition, the closed-form

conditional marginals are agnostic to the original estimation procedure. However, for clarity,

we present the details of our estimation procedure. First, we use the marginal-agnostic

method called the non-paranormal SKEPTIC [Liu et al., 2012], which forms an estimate of

the correlation matrix R̃ based on pairwise Spearman’s ρ statistics. From these correlation

matrix estimates, we then apply the elementary estimator from [Yang et al., 2014b] to

estimate the Gaussian-copula inverse covariance matrix Σ−1—such that non-zeros correspond

to edges in the graphical model. We use a grid of parameters for the two soft thresholding

operators from [Yang et al., 2014b]; more specifically, we used five log-spaced values between

0.5 and 10−5 for ν and ten log-spaced values between λmax and 10−5λmax for λ, where λmax

was the smallest lambda that would yield diagonal estimates—i.e. independent variables.

We skipped any values for ν that did not yield a non-singular matrix and skipped any values

of λ that did not yield a positive definite matrix. Finally, we post-process this result by

normalizing the rows and columns so that R = diag(δ)Σ−1diag(δ) is a valid correlation

matrix—i.e. ones on the diagonal. Note that this estimation of the dependency structure is

completely independent of the marginal estimation. For marginal estimation, we merely use

MATLAB’s built-in functions (e.g. gamfit or expfit) to fit the marginal distributions.

10.8.2 Datasets

We select three diverse datasets to show the wide range of applicability of Gaussian-

copula models. First, we collected a text dataset of natural science research papers from

the department listing of a major university website with 10709 titles and 1000 variables

(i.e. unique words). For each faculty member, we manually searched for their publications
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webpage or CV if available. Then, we scraped the webpages or CVs for text and split their

document based on their last names to approximate selecting titles. We approximated the

publication year by the nearest year in the document and selected only documents with dates

in the past 10 years. Clearly, this text dataset is very noisy; but this is representative of

many real-world text datasets.

Second, we model a dataset of airport delay times to demonstrate that our model

and visualization works for non-negative data as well. This dataset consisted of the average

delay times at 183 airports for the 365 days of the year 2014. This is similar to the airport

delay dataset in Chapter 4 except that we included 183 airports instead of just the top 30

hub airports. Third, we model daily stock returns data for 222 stocks from the six sectors of

energy, finance, health care, public utilities, technology and transportation of the S&P500

from 2003-2012. This dataset shows that the Gaussian-copula model can handle general data

including data with negative values and thick tails. We retrieved the raw data from the free

data section on https://quantquote.com/historical-stock-data. We then extracted

the company name and sectors from http://www.nasdaq.com/screening/company-list.

aspx while manually renaming a few sectors that were marked ‘N/A’ or ‘Other’.

Because we have freedom in selecting the marginal distributions of the data, we

selected data specific distributions. For word count data, we selected the Poisson with

continuous extension and the discrete Poisson marginals because the Poisson is a standard

for count data. For airport delay times, we select the gamma distribution which is defined

over non-negative real values and allows various shapes including the standard exponential

distribution as as special case. Note that both the univariate Poisson and gamma

distributions do not have known multivariate forms yet we can use them in this context

because the Gaussian-copula distribution ties them together. Finally, for stock returns

data, we choose the t distribution because it is well-known that daily returns have heavy

tails (i.e. rare events) unlike the Gaussian distribution which has thin tails. These choices
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emphasize that the Gaussian-copula model is much more flexible than the standard

multivariate Gaussian.

10.8.3 Loss Functions

We use three different loss functions for missing value prediction to fully explore

the differences between the Gaussian-copula models with varied marginals and the standard

Gaussian graphical model. First, we consider the classical squared loss: L2 = ‖y−ŷ‖2
2, whose

corresponding estimator is the mean of the distribution. Second, we evaluate the quantile

loss function Lu =
∑

s uI(ys ≥ ŷs)|ys − ŷs|+ (1− u)I(ys < ŷs)|ys − ŷs|, whose corresponding

estimator is the u-th quantile of the distribution. For example, if u = 0.5, this corresponds

to median regression. We choose to evaluate the quantile loss because the tails of the

distribution often behave differently under a Gaussian model compared to a non-Gaussian

model. Finally, we consider a Spearman’s rank correlation loss based on the predicted

mean/median ŷ compared to the true values y: Lρ = 1−ρ(y, ŷ), where ρ(·) is the Spearman’s

rank correlation function. This measure is more of a global measurement of all the estimated

missing values together rather than each missing value evaluated independently.

10.8.4 Results

The results can be seen in Fig. 10.1, Fig. 10.2 and Fig 10.3 for the research paper titles,

airport delays and daily stock returns respectively. We show the results for the independent

models on the left of each figure and the best dependent model on the right. Note that lower

is better in all figures.

For the research paper titles (Fig. 10.1), we use the high quantiles 0.99 and 0.995

because word counts are usually zero so lower quantiles should almost always be predicted

as zero but the high quantiles should actually predict a one or two. The discrete Poisson

model performs well according to quantile loss but does not perform as well for squared loss.
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The Poisson-CE model performs well for squared loss. Thus, the loss function may suggest

which model is better for a particular application.

When viewing the airport delay results (Fig. 10.2), it is clear that the gamma marginal

distribution with a dependent copula always produces a model that is at least as good (often

significantly better) than the Gaussian model. Likely, the skewness and heavy-tailed part of

the gamma distribution is important for modeling airport delay times.

Finally, we consider the daily stock returns in Fig. 10.3 where we compare the t

distribution to the Gaussian distribution. Again, it is clear that the t marginal distributions

performs at least as well if not better than Gaussian marginals. This aligns with the domain-

knowledge that daily stock returns have heavy tails. Granted, the t distribution is close the

the Gaussian under many properties and thus does not show quite as much difference as the

other datasets.

10.9 Conclusion

We derived the closed-form conditional marginal distributions for Gaussian-copula

models. This enables better missing value prediction under different loss functions than the

standard multivariate Gaussian with only a small computational overhead in terms of

prediction. We showed that these basic results extend to mixtures and Gaussian-copula

models with discrete marginals. Finally, we presented some missing value prediction results

showing that using non-Gaussian marginals can indeed enable better missing value

predictions than the standard multivariate Gaussian model. We hope the simple idea of

closed-form conditional marginals will enable better closed-form solutions to difficult

modeling and prediction problems.
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Figure 10.1: College of natural science research paper titles: The Gaussian-copula with
Poisson marginal clearly outperforms the Gaussian graphical model for quantile regressions
but does not perform as well for squared loss.
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Figure 10.2: Airport delays: The Gaussian-copula with gamma marginals performs better
or matches the performance of Gaussian graphical models.
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Figure 10.3: Daily stock returns: The Gaussian-copula with t distribution marginals
performs better or matches the performance of Gaussian graphical models.
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Part IV

Pretty, Principled and Probabilistic:
Graphical Model Visualization
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Summary of Part IV

The undirected graphical models described in previous chapters can provide a

powerful yet flexible way to represent interesting patterns in high-dimensional data. Yet,

because these models are high-dimensional, inspecting or interpreting an estimated model

can be difficult even for a graphical model expert. Thus, in these next chapters, we seek to

appropriately visualize graphical models in an intuitive, accessible and appealing way that

does not require expert knowledge about graphical models. As a key observation, we notice

that any static visualization of a graphical model would be inadequate. Therefore, we

develop a novel interactive mechanism in Chapter 11 via conditional probability that

enables a user to view different model perspectives. We frame the interaction idea in terms

of asking ‘what if?’ questions so that a user does not need to understand the underlying

probabilistic mechanism to use the interactive visualization.

In Chapter 12, we then propose to visualize these query-specific probabilistic

graphical models by combining the intuitiveness of force-directed layouts with the beauty

and readability of word clouds, which pack many words into valuable screen space while

ensuring words do not overlap via pixel-level collision detection. Although both the

force-directed layout and the pixel-level packing problems are challenging in their own

right, we approximate both simultaneously via adaptive simulated annealing starting from

careful initialization. For visualizing mixture distributions, we also design a meaningful

mapping from the properties of the mixture distribution to a color in the perceptually

uniform CIELUV color space. Finally, we demonstrate our approach via illustrative

visualizations on real datasets.
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Chapter 11

What If? Model and Interaction

Figure 11.1: We operationalize ‘what if’ questions for both text and real-valued datasets
by mapping simple text queries such as “human” or “msft amd” to concrete conditional
probability operations on probabilistic models via quantile functions. Then, we visualize
these query-specific models by combining both force-directed graph layout and pixel-level
collision detection to avoid overlap. Datasets: (left) discrete word counts from natural science
research paper titles, (middle) non-negative real-valued average delay times at airports and
(right) real-valued daily stock returns.

11.1 Abstract

What if? questions are useful for initial exploratory analysis of diverse datasets. For

example, we may ask “if we know a person is six feet tall, what is the best estimate of their

weight?” Or, “if a document contains the word ‘information’, are the words ‘visualization’

and/or ‘technology’ more likely to appear in the document?” In this chapter, we

operationalize such abstract questions into concrete operations on probability distributions

which can in turn be intuitively and faithfully represented visually. Our approach defines:

the probabilistic mechanism via conditional probability; the query language to map text

input to a conditional probability query; and the formal underlying probabilistic model as
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a Gaussian-copula graphical model—which has closed-form solutions even with hundreds of

dimensions.

11.2 Introduction

During initial data analysis ‘what if’ questions are a natural way to interrogate data—

and hopefully in turn better understand the underlying phenomena. For example, suppose

an analyst has just received a set of patient survey responses from a hospital, she may

then want to ask questions like: If a document contains the word “nurse”, what positive or

negative words are also likely to appear? And what if the word “doctor” occurs; are the

most likely words similar to or different from when “nurse” occurs? This may afford insights

into whether patients perceive doctors and nurses differently. As another example, consider

sociologists trying to understand and characterize perceptions of gender. They may want to

ask: If the word “he” appears in a text, what other words also tend to appear? And how do

these differ from the words that are relatively frequently used when “she” appears in a text?

In the hard sciences, meanwhile, a biologist may have protein data from cell

populations under different conditions and may want to ask questions like: If high levels of

protein A are present, what other proteins tend also to be present? Or, suppose there are

low levels of protein A; which other proteins tend to be present in this case? More

generally, biologists often want to understand the underlying structure of biological

pathways in organisms. The dependency structure between DNA, RNA and proteins is

very complex, not least because there are thousands of entities. While probability models

can be estimated for these complex structures, the models are often visualized using a

simple static graph layout [Allen and Liu, 2013], which only provides a single high-level

view. The ability to ask ‘what if’ questions of this model would provide a natural way for

domain experts to study these complex structures. More generally, granting to analysts the

ability to ask unplanned ‘what if’ questions would provide a powerful new tool for gleaning
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understanding of overall trends and/or high level structures hidden in data. For example,

in the case of text analytics, this might facilitate the detection of preprocessing errors (such

as failure to remove important stopwords). And in scientific domains, interrogating data

via arbitrary ‘what if’ queries may support data-driven hypothesis generation. The initial

insights gained from this exploratory phase could critically inform additional in-depth

analysis.

In the visualization community, data filtering can be viewed as helping to answer

‘what if’ questions. As an illustrative example, suppose we have the heights and weights

of National Football League (NFL) players (see Figure 11.2) and the question is: If we

know that a new football player weighs 275 pounds, can we estimate their height? One

way to answer this would be to filter the data to players that weigh between 273 and 277.

However, as can be seen in Figure 11.2, there is no data in the interval 273 to 277 and thus

the filtering operation would be useless. While this filtering issue may seem minor when

only filtering based on one dimension, the problem dramatically increases as the number

of filtering dimensions grows due to the curse of dimensionality. In addition, data filtering

cannot borrow information concerning patterns from other parts of the data. For example,

if we expand the filter to weights between 265 and 285, we will then have a small number

of data points with which to estimate height, but we will not be able to exploit the pattern

that height and weight are correlated because the number of points is so small.

Machine learning models could provide one powerful computational approach to

answering ‘what if’ questions. For example, in the NLF example above, a regression model

could be fit to predict heights from weights. This model could then provide an estimated

height for someone who weighs 275 pounds, even in the case that no one with this exact

weight was present in the training data. Such predictions may be viewed as answering

‘what if’ questions that are mapped onto feature vectors. However, supervised machine

learning requires these ‘what if’ questions to be formulated a priori—requiring
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specification of both the variables used for prediction and the variables to be predicted.

This a priori requirement renders the approach unsuitable for general exploratory data

analysis. Furthermore, this problem becomes significantly more pronounced as the number

of dimensions increases because the number of possible ‘what if’ questions increases

dramatically.

Figure 11.2: Height and weight of National Football League (NFL) players in 2012 for wide
receivers and tight ends. Answering ‘what if’ questions via data filtering (top) can fail when
there is little or no data in the region of interest such as a 275 pound NFL player (gray dashed
line). However, a probabilistic model (bottom) can estimate the height of a (hypothetical)
275 pound player.

To sidestep the requirement of a priori specification, unsupervised machine learning

such as clustering or low-rank matrix factorization may provide an alternative approach to

answering ‘what if’ questions. For example, if the NFL data was clustered via k-means,
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an individual’s weight could be used to determine which cluster they belong to, and the

(mean) height over other individuals also assigned to said cluster could be taken as a height

estimate. Or, if the NFL data was projected onto a low-rank manifold (a line in the case

of two dimensions), then height could be estimated by finding the intersection of the low-

dimensional manifold and 275 pounds. Similarly, if the height is known, the weight could be

estimated by projecting onto the manifold. However, these approaches would not provide

estimates of uncertainty and would require the ‘what if’ question to be specified precisely

(i.e., one would need to specify that an individual weighs exactly 275 pounds exactly rather

than asking the question more broadly about a “heavy” person). By contrast, our proposed

‘what if’ query language maps implicit textual queries to explicit probabilistic queries via

the underlying probability distribution as explained in section 11.4.

In light of these issues, we propose to use probabilistic models such as the Gaussian

mixture model in Figure 11.2 to answer ‘what if’ questions, so that we can smooth over

empty areas in the dataset and borrow power from statistical patterns in other parts of the

dataset. We also propose an intuitive visualization of probabilistic models as a ‘user interface’

to these underlying probabilistic models. In this paper, we attempt to answer the following

questions: (1) What is an appropriate underlying model for ‘what if’ questions? And how

do we enable meaningful user interactions with this model? (1a) How do we operationalize

abstract ‘what if’ questions into concrete operations on probability distributions? (1b) What

is an intuitive way for users to specify ‘what if’ questions and how do we map this input

to probabilistic operations? (2) How should these probabilistic models be visualized to help

user understanding? (2a) What is an meaningful yet aesthetically-pleasing layout of the

variable labels and how do we approximate such a layout? (2b) How do we intuitively

encode probabilistic concepts as color?

The contributions of this paper are initial solutions to these questions. In particular,

we propose the Pretty, Principled and Probabilistic framework, which instantiates a graphical
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model as the underlying formal representation of the data, and then facilitates interrogation

via conditional probability queries. We propose visualizing the results of these using an

approach that is principled (in that it maps onto the underlying model) and pretty (borrowing

aesthetics from word clouds).

In this chapter, we describe our proposed ‘what if’ probabilistic interaction

mechanism and the query language that maps simple textual input queries onto it. Our

proposed mechanism and query language could be used with any probabilistic model, but

here we will argue for our choice of Gaussian-copula probabilistic graphical model class and

mixtures thereof. Then, while our proposed mechanism and query language could apply to

any probabilistic model, we argue for our choice of the Gaussian-copula probabilistic

graphical model class and mixtures thereof that were described in Chapter 5 and

Chapter 10.

11.3 Probabilistic Mechanism: Conditional Probability

We propose conditional probability distributions as the mechanism for answering

‘what if’ questions. At their core, ‘what if’ questions are concerned with inspecting a

particular subspace of the original data space. In the example using the NFL player data

discussed above, the ‘what if’ question seeks to inspect the subspace of possible players

who are 275 pounds (or just about). As described in the introduction, data filtering is one

way to explore this subspace. But data filtering is severely limited because it reduces the

dataset significantly and cannot borrow patterns or trends from other areas of the dataset.

However, if a probabilistic model over the data space is known (or estimated), conditional

probability distributions provide a model-based filtering mechanism that generalizes

beyond the training data—e.g. the heights of (hypothetical) players weighing 75, 175 and

275 pounds can be estimated regardless of whether we have seen data for players with

these particular weights. Additionally, conditional distributions can exploit global patterns
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evident in the data—e.g. the correlation between weight and height. Informally,

conditional distributions are the distribution of filtered observations—given an infinite

amount of data—around the conditioning values as the filter width approaches zero. For

example, we might filter the NFL data to players that weigh between 255 and 295 pounds,

a filter width of 20 pounds. If we had an infinite number of NFL players and we reduced

the filter width to 0.1 pounds, we would be approaching the conditional distribution of

NFL player height given a player weight of 275 pounds.

More formally, if we are modeling data with p variables denoted x = (x1, x2, · · · , xp),

the conditional probability of one subset of variables A ⊂ {1, 2, · · · , p} given the other set

of variables B = AC (such that A ∪ B = {1, 2, · · · , p}) is defined as: P(xA |xB) = P(xA,xB)
P(xB)

,

where P(xA,xB) is the joint distribution over the two variable subsets and P(xB) is the

marginal density at xB. Intuitively, this is a renormalized “slice” of the joint distribution

fixed at the given values of xB. The conditional probability distribution is defined only over

the domain of xA, which has fewer variables than the original distribution because xB is

fixed.

11.4 Query Language

Given the underlying probabilistic mechanism, we now consider how to elicit ‘what if’

queries from users, which entails three steps. First, we choose text-based queries as the input

because they are simple to input, human interpretable, and portable—i.e. they can be easily

represented and passed between different software programs or protocols. An alternative

would be to provide a dropdown menu of possible variables followed by a value input box or

input toggle. While this alternative would be more precise and preclude syntactical errors,

it would likely require more user effort, especially when conditioning on multiple variables.

Moreover, this type of exact input interface could be built on top of a text-based query

language similar to building a database search on top of the SQL query language. Second,
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we assume that each variable has a unique label so that a user does not have to specify the

index of the variable. For example, the labels could be the strings “height” and “weight” for

the NFL data, or if each variable corresponds to the count of a unique word in a document,

then the variable label would be the word itself such as “computer” or “visualization”. This

assumption allows intuitive selection of conditioning variables without knowing the variable

index. Third, we map the text queries to probabilistic queries using the quantile function,

or inverse cumulative distribution function, of each variable. The cumulative distribution

function (CDF) of a random variable is defined as: F (x) = P(X < x), where X is the random

variable and x is a particular value of the variable. The quantile function F−1(·) is defined

as the generalized inverse CDF: F−1(u) = inf{x ∈ R |F (x) = u}, where u is the target

probability. For example, the median is equal to F−1(0.5), i.e. the probability of being less

than the median is u = 0.5. As another example, the probability of being less than the 0.99

quantile is 0.99 and the probability of being greater than the 0.99 quantile is 0.01 = 1−0.99.

Given target quantiles for each variable in the conditioning set denoted {ub∀b ∈ |B|), we

map the text query to the following conditional distribution:P(xA | {xb = F−1(ub),∀b ∈ B}) .

We choose the default target quantile to be u = 0.95 because we want to strongly

emphasize the effect of the variable conditioning. Roughly, this means that we condition on

each query variable being near the top 5% of its possible variable values. This ensures that

the differences between no query and query are pronounced and noticeable; this idea is like

caricature drawings that emphasize the unique characteristics of a person. As an example,

if we conditioned NFL player weights using u = 0.5, i.e. the median value, then the median

height is almost the same with or without the conditioning on the weight and thus would

be nearly unnoticeable; however, if we condition on a high weight of 275 pounds, then the

median height given a weight of 275 pounds is clearly different from the median height of

all players. We also introduce simple “+” and “-” modifiers that can adjust the value of u:

“+” → u = 0.99, “++” → u = 0.999, “-” → u = 0.05, “–” → u = 0.01, “—” → u = 0.001.

180



In particular, these modifiers allow the user to condition on the left tail of the distribution

rather than the right tail.

The true power of using the quantile function for mapping ‘what if’ queries is that

a user does not have to provide a specific value or even know the domain of the variable

values. For example, a user can specify the query “++weight” or “-weight” for the NFL

data and condition on very heavy or light players respectively without having to know the

weight distribution of NFL players. Or, for a biological dataset, a user could specify the

query “proteinA proteinB” and know that they are conditioning on large counts of both

proteinA and proteinB without having to know the distribution of raw counts of proteinA

or proteinB, which may on the order of 10 for proteinA and the order of 100 for proteinB.

In all cases, the interface is the same for the user regardless of the dataset and the burden

of knowing specific values for each variable is allocated to the quantile function.

11.5 Underlying Probabilistic Model

While our proposed approach of mapping implicit ‘what if’ text queries to concrete

probabilistic operations can be used for any probabilistic model, we choose the Gaussian-

copula probabilistic graphical model class because (1) these models are flexible and powerful,

and, (2) the dependency structure can be intuitively represented as a graph over variables,

and, (3) the required operations and statistics have closed-form solutions. The Gaussian-

copula model class has the properties of both probabilistic undirected graphical models and

copula-based probabilistic models.

For our purposes, the two main advantages of the undirected graphical model class

are: (1) the representation of the dependency structure as a graph over variables lends

itself to intuitive graph visualizations, and, (2) the conditional distributions as described in

section 11.3 can be computed in closed-form. The advantage of copula models, such as the

Gaussian-copula model paired with non-Gaussian marginals, is that they afford closed-form
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expressions of the marginal distributions, which in turn provide closed-form solutions to the

quantile functions required for the query mapping described in section 11.4, and by the font

size computation described below. We use the continuous extension (CE) way of handling

discrete data described in Sec. 10.6 of Chapter 10. For more information on copula models

see Chapter 5; for more details about the conditional distributions and some experiments

with Gaussian-copula models see Chapter 10.

We also consider mixture distributions of Gaussian-copula models defined as:

P(x) =
∑k

j=1wjP(x |Rj, F j), where wj are the probability of each mixture component. As

with the Gaussian copula models, the marginal distributions are known in closed-form and

the conditional distributions can be shown to be another mixture of the same form (see

Chapter 10). While the quantile function for the variables in a mixture distribution do not

have a closed-form, it can be computed using standard univariate root finding algorithms

such as Brent’s method. Mixture models are natural in certain contexts such as text

modeling where it is often assumed that the documents exhibit different core themes or

topics corresponding to mixture components. More generally, mixture models greatly

expand the class of distributions that can be modeled and thus are more widely applicable.

11.6 Conclusion

In this chapter, we introduced the idea of ‘what if?’ questions and showed how to

operationalize such questions into concrete probabilistic queries. We developed a simple

query language that enables non-expert users to interact with the system in an intuitive

way without having to understand the underlying probabilistic notions that underlie the

framework. Finally, we discussed our decision to use Gaussian-copula models and mixtures

thereof as the underlying probabilistic models. This chapter builds the foundation for

visualizing graphical models as will be described in the next chapter.

182



Chapter 12

Probabilistic Graphical Model Visualization

12.1 Introduction

Given the probabilistic mechanism, query language and underlying probabilistic

model for handling ‘what if’ queries, we now develop a visualization for query-specific

probabilistic models. We target a high-level visualization that emphasizes key statistics of

the underlying query-specific model rather than a detail-oriented visualization that allows

users to make very specific comparisons. As an analogy, we seek more of a caricature that

quickly enables a user to identify interesting trends encoded in the model but may not be a

perceptually perfect encoding. Similar to this idea, our proposed visualization emphasizes

relative comparison versus absolute comparison between visual objects and considers

aesthetics as well as faithfulness to the underlying model. All of this aligns with our goal of

helping to answer exploratory ‘what if’ questions rather than deeper focused data analysis.

12.2 Visually Encoding a Probabilistic Graphical Model

The first step must determine how to encode the probabilistic model into a visual

representation via model statistics or parameters. The fundamental patterns encoded in

the Gaussian-copula graphical model are the variables and the dependencies between them.

Because we are concerned with models that could have hundreds or even thousands of

variables, we opt to select the top variables to visualize by sorting them with respect to

their median values. Usually, we select between 40 and 100, depending on the dataset to

give a high level overview while still retaining many of the variables. We choose 100 for
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text data because the complexity is simpler to interpret whereas we choose 30 and 40 for

the airport delays and stocks because the acronym meanings are less obvious unless you are

an expert in the area. We choose the median as a location statistic rather than the mean

because the median can be computed in closed-form, whereas the mean would require a

one dimensional numerical integration (see Chapter 10). Note that these median values are

the query-specific model medians rather than the data medians, and therefore the selected

nodes will likely change for every ‘what if’ query. The font size of the variable label is

scaled linearly between the minimum and maximum median values, where the maximum

size is equal to ten times the minimum size; thus, the font size encodes the relative, rather

than absolute, median values. As described in the previous section, we choose this relative

weighting because we seek to emphasize interesting trends or patterns rather than facilitate

absolute comparisons, which might be performed in subsequent, more focused analyses. In

addition, our models accommodate continuous distributions that have negative values (e.g.

marginal t distributions) and thus there is no general way to define a minimum value.

After selecting variables based on their median values, we select the largest positive

graphical model edges (i.e. non-zeros of Θ = −R−1) up to three times the number of selected

variables; this limit avoids the common ‘hairball’ effect if there are a large number of edges

by merely emphasizing the most important edges. We specifically choose to display only

the positive edges because negative edges are much more difficult to interpret. For example,

suppose proteins A, B, C and D are connected like a chain: A-B-C-D. If the edges are

all positive, then it is easy to infer that A and D are positively correlated. However, if

the edges are negative, then B and D may be negatively correlated with A but C may be

positively correlated with A. In addition, to visually represent negative edges, the variables

would actually need to be far apart rather than close together, thereby adding very long

edges in the visual representation. The size of the edge is scaled linearly between zero and

the maximum edge value because the minimum value is known to be zero for all possible
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distributions, unlike in the case of node sizes that could have negative minimum values. For

mixture distributions, we approximate the mixture edge matrix as Θmix = −(
∑k

j=1 wjR
j)−1,

which can be viewed as approximating a mixture correlation matrix by a weighted average

of the component correlation matrices since moments of mixture distributions are a mixture

of the component moments.

For mixture models, we also carefully encode the statistics of the mixture distribution

into a variable color. We choose the CIELUV color space for color selection and manipulation

because they are perceptually uniform as opposed to the RGB or HSV/HSL color space

which are not perceptually uniform. More specifically, we use the polar coordinates version

of the CIELUV color space called LCHuv which has coordinates corresponding to luminance,

chroma (or colorfulness) and hue. First, we assign each mixture component a hue that is

equally spaced around the circle of possible hues so that each hue is easy to distinguish.

Because hue is most often associated a category, this is natural for mixture models which

have components that often correspond to a category or subspace of the distribution. For

example, in text modeling, the hue might correspond to various themes or topics represented

by the mixture components. All components are assigned the same luminance and chroma

value to avoid confusion based on colorfulness or brightness. Ideally, we would like the chroma

to be as large as possible but it must be equal for all hues but this can be challenging because

the CIELUV space has irregular boundaries between real colors and imaginary colors (such

as a dark desaturated yellow). Therefore, we fix the luminance at 74 which gives a wide

range of possible hue and chroma values—and in turn we choose a black background so that

the high luminance colors will have high contrast with the background. Then, given the

component hue values, we select the largest chroma value for which the component colors

are visible. Formally, given a luminance of 74 and equally spaced hue values [h1, h2, · · · , hk]
for each of the k mixture components, we select the chroma value as follows:

c1 = · · · = ck = cmax = arg max
c

IsVisible(L = 74, C = c,H = [h1, · · · , hk]) .
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Given colors for each mixture component, we now assign colors to variables based on

which component would have most likely produced a high values—essentially investigating

the composition of the right tail each variable. We define the tail to be values larger than

the variable’s 99th quantile, i.e. xtail = F−1
mix(0.99). The probability mass contributed by

each component to the tail is given by αj = wj(1 − Fj(xtail)). Note that αj incorporates

information both from the mixture weights wj and from the specific component distribution

through Fj(·). We assign a variable hue to the component hue whose contribution αj is

largest hvar = hj∗ s.t. j∗ = arg max j αj, which means that high values are most likely to

come from the j∗-th component. This provides the user with the information of the dominant

component exhibited in the high values of that particular variable. However, sometimes no

component is truly dominant and so we adjust the variable’s chroma value based on how

dominant the component is compared to the others. To encode a component’s amount of

dominance, we first find the second most dominant component: j̃ = arg max j 6=j∗ αj. We

then compute the information theoretical notion of binary entropy of the tail probability

of being in the dominant component, i.e. αj∗ in comparison to the probability of being

in the second most dominant component, i.e. αj̃ assuming that tail values come from one

of these two components. Letting p = αj∗/(αj∗ + αj̃), the binary entropy can be defined

as: Evar = −plog2(p) − (1 − p)log2(1 − p). This entropy expresses the uncertainty about

the selected component and corresponding hue. In words, if high values of a variable have

a very high probability of coming from the dominant component compared to the second

most dominant component, then entropy will be close to zero whereas if high values are

equally likely to come from the dominant and second most dominant, then the entropy will

be close to one. Thus, we encode this entropy into the variable chroma so that variables

with a strong dominant component will be colorful whereas variables that do not have any

dominant component will appear gray: cvar = cmax(1− Evar) .

Overall, this color scheme provides the user with a quick overview of the mixture
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structure via the variable hues but avoids wrong assumptions if there is significant uncertainty

about the hue selection—i.e. signifying the uncertainty by the lack of chroma or colorfulness.

An alternative to this color scheme would have been to merely take a convex combination of

the component colors based on the αj weights. However, this could introduce many new hues

and could be confusing to the user because sorting hues is confusing and difficult [Borland

and Taylor, 2007]. Thus, we decided to stick with a fixed set of hues and vary the chroma

values. Furthermore, reducing the chroma based on uncertainty implicitly moves the color

towards all the other colors in the LUV color space thereby helping the user recognize that

gray variables are equally near all hues and thus the component is uncertain.

12.3 Layout Aesthetics and Intuition

Now that we have selected the variables, relative font sizes, edges and colors for a

particular ‘what if’ query model, we design a layout of the variable labels that combines

the intuitiveness of force-directed layouts with the beauty and readability of word clouds,

which pack many words into valuable screen space while ensuring words do not overlap via

pixel-level collision detection. In particular, we would like related variables (based on the

edges in the graphical model) to be placed near each other while keeping the layout very

compact yet readable similar to word clouds such as Wordle (wordle.net). On the one

hand, beautiful word clouds such as Wordle (wordle.net) focus on pixel-level collision

detection to enable a compact but readable layout of labels. This space-filling and compact

aesthetic criteria is related to the famous NP-complete cutting and packing problem in

operations research [Bennell and Oliveira, 2008] and thus is intractable in general to

compute exactly. On the other hand, placing related variable labels near each other is akin

to the graph layout problem. Noack [2009] proposes a force-directed graph layout based on

minimizing the potential energy of a representative physical system between nodes. An

interesting extension of the force-directed layout is to add constraints on the nodes to allow
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incorporation of domain knowledge [Dwyer, 2009]. Multidimensional scaling (MDS) is yet

another graph layout solution in which the “ideal” distance between nodes is estimated and

then nodes are placed to minimize the difference between the “ideal” distances and the 2D

Euclidean distance [Kamada and Kawai, 1989]. However, both all of these graph layout

problems are highly non-convex optimization problems and thus intractable to solve

exactly. Given the computational difficulty of both layout problems, therefore, we propose

to approximately optimize both simultaneously via adaptive simulated annealing starting

from careful initialization which will be described in the following sections.

12.4 Layout Computation

12.4.1 Graph Layout Optimization Function

For graph layout, we use a general force-directed optimization function from the graph

layout community defined by [Noack, 2009] called the attraction-repulsion energy model. Let

ps ∈ R2 denote the x and y coordinates of the s-th word. Given the node weights ws ∈ R∀s
and edge weights wst ∈ R∀s, t, [Noack, 2009] defines the attraction-repulsion energy model

as:

f(p1,...,p, wst)=
∑
s,t:s 6=t

(
−wswt

‖ps−pt‖r+1
2

r + 1
+wst

‖ps−pt‖a+1
2

a+ 1

)
(12.1)

where
‖ps−pt‖−1+1

2

−1+1
must be read as log‖ps− pt‖2 (since y−1 is the derivative of log(y)). Note

that the gradient of this energy function gives the “forces” acting on each word and thus

provides good intuition on what is happening for each node. We choose a = 1 and r = −1

because it strikes a compromise between compactness and cluster revealing force models—

see [Noack, 2009] for more information. In addition, we added a gravity term wg
‖ps‖g+1

2

g+1
,∀s

setting wg = 0.1 and g = 2 to help keep the nodes near the center of the visualization.

Finally, we set node weights all to be one and the edge weights to be proportional to the

selected graphical model edge weights. While we select this particular optimization function,
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the code could be easily adapted to implement other optimization functions such as the MDS-

like function in [Kamada and Kawai, 1989] or even non-smooth functions that penalize the

number of overlapping edges as done in [Lee et al., 2006] could be used.

12.4.2 Pixel-Level Feasibility Condition

While other word cloud visualizations ensure non-overlap by using bounding boxes as

in [Barth et al., 2014b], we designed our visualization to enjoy the beauty and compactness

of pixel-level precision as in word clouds like Wordle. To this end, the feasible set of label

positions is constrained by the highly irregular set of positions where no two labels overlap.

The interesting property of this constraint set is that testing for feasibility is relatively

straightforward: merely check whether any label overlaps any other label using a pixel-level

rendering of the labels. However, describing this feasibility set in mathematical notation

is extremely difficult if not impossible given the numerous possible font families, characters

and words. Despite the incredible complexity of this constraint set, simulated annealing can

easily handle this problem because each step in the algorithm can be accepted or rejected

depending on whether it satisfies the non-overlap constraint; no mathematical form of the

constraint set is necessary for simulated annealing. Thus, this non-overlap constraint can

be seamlessly integrated into the optimization function defined in Equation 12.1 above.

One challenge for simulated annealing, however, is that it must start at an initial feasible

solution—a problem we overcome as discussed in later sections.

12.4.3 Layout via Simulated Annealing

Because both the space-filling aesthetic and the graph layout problem are

computationally difficult even by themselves, we decided to use simulated annealing

[Kirkpatrick et al., 1983] to handle both problems in a unified way. Simulated annealing

mimics the behavior of cooling atoms from a liquid to a solid. For example, very slowly
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cooling quartz will create a quartz crystal whereas quickly cooling quartz will produce

quartz glass. Simulated annealing is a principled way to optimize any function—even

highly non-convex or combinatorial—using ideas from random sampling theory.

Essentially, as in physical systems, simulated annealing takes random steps in the domain

such that steps that improve the optimization value are always taken whereas steps that

hurt the optimization value are only taken with a particular probability. Simulated

annealing is simple to implement and only requires the evaluation of the objective function

and a feasibility check at the current iterate. Simulated annealing has been used separately

both for the cutting stock problem [Lai and Chan, 1997] and the graph layout problem [Lee

et al., 2006]. In addition, simulated annealing could easily incorporate domain constraints

similar to [Dwyer, 2009] because it would just need to check feasibility at each iteration.

Therefore, we choose simulated annealing as a principled yet general algorithm to

approximate multiple difficult problems.

For simulated annealing, several parameters must be chosen including proposal

distribution for the next iterate (i.e. the step distribution) and cooling schedule. We choose

to sequentially propose a new position for each label while fixing all other label positions.

We implement an adaptive Gaussian proposal distribution where the standard deviation is

scaled up or down by a factor of 1.2 so that the acceptance rate is close to 23.4%, which is

the theoretical optimal for the different but related Metropolis-Hastings algorithm [Roberts

et al., 1997]. This acceptance rate helps the algorithm to explore the space appropriately

(i.e. many rejections) but still accept useful steps (i.e. some accepts). Note that a rejection

of a step can be caused either by a higher optimization value or by a violation of the

non-overlap constraint. Throughout the iterations, we track an exponential moving average

at an exponential rate of 0.9 and increase or decrease sigma whenever the average

acceptance rate goes above or below a 10% tolerance level around 23.4%. For the

temperature schedule, we manually adjusted the schedule parameters to trade-off between
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accuracy and speed, and we will give our specific values in the next section. Though we did

not find the schedule parameters to be particularly sensitive, an in-depth experimental

analysis may be a useful future work.

12.4.4 Visualization Algorithm

We now describe the visualization algorithm that seeks to optimize the graph layout

function subject to the no overlap constraint. We walk through several important warm-

start phases of the algorithm to initialize reasonably. A visual summary of the phases can

be seen in the supplementary material.

(Phase 1) We randomly initialize the node positions and render the label glyphs to

extract the pixel locations for implementing the pixel-level non-overlap constraint. Then,

we run simulated annealing without any constraints. This places the labels approximately

in the right position according to the optimization function but allows label overlap. For

this phase, we set the cooling schedule to {1, 0.9, 0.92, · · · , 0.999} with five iterations per

temperature.

(Phase 2) Then, we scale the font size so that a target number of constraints denoted

m are violated. In our case, we choose the number of violated constraints to be equal to the

number of displayed labels m = p. We compare m = {p/2, p, 2p} in an experiment and find

that m = p provides a good tradeoff between optimization function value and compactness

of visualization but we place the figure in the supplementary materials because of space

constraints. This font scaling phase is critical because it automatically selects a reasonable

font size without needing to know the underlying optimization function. For example, one

optimization function may fit all the nodes in a 100× 100 coordinate window while another

optimization function may fit all the nodes in a 1 × 1 coordinate window, yet the relative

scale of the optimization function seems uninformative.

(Phase 3) Once the scaling of the fonts has been fixed in phase 2, we need to project
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the current solution onto the feasible set—i.e. the set of positions such that no constraint is

violated. In this phase, we use what we call reverse simulated annealing. Essentially, this

works similar to simulated annealing but instead of slowly cooling the temperature, we slowly

heat up the temperature until the current word is placed in a feasible position. This phase

has some similarity to the placement algorithm of Wordle, which starts at an initial position

and slowly attempts to place a word in an increasing spiral until a feasible placement is found.

However, this phase is critically different from Wordle’s algorithm because the attempted

positions are chosen based on the graph layout optimization function. Thus, the reverse

simulated annealing seeks to place words in a way that is beneficial to the optimization

function. We work greedily from the largest word to the smallest word and attempt to

place each word in a position that does not overlap with any previous placed words. We

compare our reverse simulated annealing algorithm to Wordle’s spiral algorithm and show

that our algorithm performs better both quantitatively in terms of objective function and

qualitatively but again place the figure in the supplementary materials because of space

constraints.

(Phase 4 and 5) In the last two phases, we run constrained simulated annealing so

that the words adjust positions based on the optimization function but they are not allowed

to overlap. These last two phases can be thought of as refinement phases. In phase 4, we

keep the effect of gravity at 0.1 but in phase 5, we increase the effect of gravity to 1 so that

all words are pulled towards the center and the final visualization is even more compact.

We implemented several details-on-demand features for the user. First, a user can

hover over any of the labels and it will highlight connected labels while making unconnected

labels more transparent (see Figure 12.5 or the supplementary materials for examples). This

highlights the underlying structure and allows a user to quickly focus on different areas of

the visualization. Second, we show the nodes name and actual median value in the lower

left hand corner. This enables at least some absolute value details if the user desires some
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exact values.

12.4.5 Comparison to Word Clouds

In Figure 12.1, we display examples from Wordle, a semantic word cloud based on

force-directed layout1 evaluated in [Barth et al., 2014b], and our visualization for the text

dataset of research paper titles described later. The beauty and compactness of Wordle is

largely due to its use of pixel-level collision detection so that for example “gene” can rest in

the top part of the word “molecular”. Yet, words in Wordle are place randomly and so words

that are semantically related like “molecular” and “biology” or “gene” and “expression” can

be in completely different parts of the visualization. The semantic word clouds on the other

hand preserve word relationships as evidence by “gene” and “expression” being near each

other and they cluster the words in a semantically meaningful way. Yet the semantic word

clouds use rectangle bounding boxes and thus the compactness and beauty of Wordle is

not maintained. Our visualization retains the strengths of both visualizations by placing

related words near each other and coloring them in a semantic way, while maintaining a

the very compact and space-filling beauty of Wordle. In addition, neither visualization can

handle dynamic ‘what if’ queries because they do not have any underlying model and neither

visualization can handle non-text datasets as we will show next.

12.5 Qualitative Results

12.5.1 Datasets and Implementation

We select the three diverse datasets of research paper titles, airport delay times and

daily stock returns more fully described in Chapter 10 to show the wide range of applicability

of our ‘what if’ model and visualization. For the research paper titles dataset, we used

1We used the online word cloud generator at http://wordcloud.cs.arizona.edu/index.html.

193

http://wordcloud.cs.arizona.edu/index.html


Figure 12.1: (Left to right) Wordle [Feinberg, 2010], force-directed semantic layout [Barth
et al., 2014b], and our P3 visualization. These example visualizations demonstrate that while
Wordle is much more compact and visually appealing and the semantic layout algorithms
show informative positions and colors, P3 retains the strengths of both—while also providing
dynamic ‘what if’ interactions and modeling non-text data which are both impossible with
the other two. Furthermore, the gray colors of P3 shows that many words such as “analysis”,
“data” or “model” are not dominated by any particular topic even though the semantic word
cloud assigns an exact color. See subsection 12.5.1 for dataset description.

preliminary versions of the P3 visualization to quickly discover that many stopwords or

phrases should be removed, such as “supplementary material”, “international conference

on machine learning” and names of co-authors—although some author names remain in the

dataset, as can be seen in some of the visualizations. At a deeper level, we actually discovered

some erroneous “titles” when preparing the figures for this paper. When querying on the

word “human”, we were surprised that “mathematics” and “astronomy” were also highly

occurring as seen in Figure 12.2 as compared to Figure 11.1 (left). Upon further investigation,

we found that the dataset contained 13 titles which were merely department name listings;

we removed these erroneous titles during further analysis. This example illustrates that our

‘what if’ model and visualization can be useful in providing insight into data errors as well

as structure.

Similar to Chapter 10, we selected the gamma and t distributions for the airport

delays and daily stock returns respectively. However, unlike in Chapter 10, we decided to

use negative binomial instead of the Poisson for the word counts since it is a more flexible

model. These choices emphasize that our ‘what if’ model is significantly more general than

the multivariate Gaussian.
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Figure 12.2: Visualizing ‘what if’ queries can be helpful in noticing data errors or
inconsistencies that might otherwise be difficult to notice. While preparing the figures for
this paper, we noticed the following unexpected high occurrence of the words “mathematics”
and “astronomy” when using the query “human”. Upon further investigation, we found that
13 titles that were merely department name listings.

We implemented a prototype of the ‘what if’ model in MATLAB, which includes

model estimation, conditional query parsing and conditional model computation. Note that

our framework is agnostic to the model estimation algorithm, but we provide estimation

details here for transparency and completeness. We estimated the univariate marginal

distributions using the built-in MATLAB fitting functions. We then used the marginal

CDFs and inverse standard normal CDF to project the data into the Gaussian-copula

space. Finally, we used the QUIC software [Hsieh et al., 2014] to estimate a Gaussian

graphical model using `1-regularized maximum likelihood estimation.

We estimated models using a logarithmic decrease of the regularization parameter λ

and choose λ based on Bayesian Information Criteria (BIC), stopping when the training time

exceeded ten seconds. For the mixture models, we simply used observation metadata to split

the observations into categories corresponding to each mixture component and fit a Gaussian-

copula model for each category. For text, this was the high-level category of the professor’s

research area. For delay times, we treated the seasons of the year as categories. For the
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daily stock returns data, there did not seem to be any natural way to cluster the days.Other

datasets may have natural observation categories or could be clustered in an application-

specific manner. However, we do not explore clustering because model estimation is not the

focus of this paper. We implemented the visualization layout component as D3.js JavaScript

plugin so that it can be used independently of this framework.

12.5.2 Qualitative Analysis of Visualizations

We present example ‘what if’ visualizations for the natural science text, airport

delay times and stock returns data in Figure 12.3, Figure 12.4 and Figure 12.5 respectively.

Larger figures and more examples can be found in the supplementary PDF; live examples

in the browser with the corresponding JavaScript visualization code can also be found in

the supplementary material. We demonstrate the generality of the queries by giving

examples of single word, multiple word and negative queries. For example, the query

“bayesian -nonparametric” in Figure 12.3 considers the scenario when “bayesian” has a

high chance of occurring while “nonparametric” has a low chance of occurring.

Surprisingly, the word word “longitudinal” shows up large and in green, corresponding to

biology even though “bayesian” by itself (as seen in Figure 12.3) is focused in the math and

physics category (which includes statistics). Upon further investigation, we found a series

of papers by one author in biology regarding longitudinal data using Bayesian methods.

This example illustrates the insights that this type of ‘what if’ visualization can produce.

As expected, the airport delay visualizations in Figure 12.4 show that most long delays

occur during winter as evidenced by the prevalence of the yellow color and many are due to

Chicago airport delays at ORD and MDW. Finally, the stock returns visualizations in

Figure 12.5 demonstrate that our proposed ‘what if’ model can even handle real-valued

data with heavy tails. The visualizations show that if one stock in a sector performs well,

other stocks in that sector also seem to perform well. In addition, the bottom of
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Figure 12.5 shows that there appears to be strong clusters of financial stocks that depend

on each other. More details and observations can be found in the figure captions. These

diverse examples show the broad applicability of our ‘what if’ modeling framework for

different types of data and applications.

Figure 12.3: These ‘what if’ visualizations demonstrate how the query intuitively
manipulates the underlying probabilistic model and displays related variables (in this
case words) in an interpretable fashion. Some words only occur in one subject, such as
“electrochemical” in chemistry; these retain the same color in all visualizations. Other
words are related to multiple subjects; for example, “model” is used in many subjects and
thus sometimes appears gray (top left) and sometimes yellow with query “bayesian” (top
middle). Note that queries can be multiple words, affording very different viewpoints such as
the bottom three visualizations which show the diversity of the word “human” usage across
domains. Queries can also include ‘negative’ queries with the minus sign such as “bayesian
-nonparametric”; these condition on a high chance of “bayesian” occurring but a low chance
of “nonparametric” occurring.

12.6 Related Work

12.6.1 Graphical Models Related Work

While we choose Gaussian-copula graphical models because they offer closed-form

solutions to the marginal and conditional distributions, other graphical models have been
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Figure 12.4: These visualizations show that long airport delay times often occur during the
winter and possibly autumn months likely due to weather delays. The no query visualization
(left) readily shows that the Chicago airports (MDW and ORD) have long delays in general.
The query “ORD(IL) JFK(NY)” (middle) conditions on the fact that Chicago and New York
have long delays; the yellow color of many variables suggests that other delays are likely in
the winter. The negative query of “-ORD(IL) -MDW(IL) -JFK(NY)” means that neither
the Chicago or New York airports have long delays and thus there is no cold weather delays
at least in the midwest and northeast; however, distant California airports, namely ACV
and SFO, may have long delays.

Figure 12.5: The query visualization of “msft amd” (left) demonstrates that if technology
companies are performing well, many other technology companies also perform well (e.g.
nvda xlnx). When querying “++hig”, for Hartford Financial Services, other financial
companies do well, and the visualization shows clusters of financial stocks centered around
Lincoln National Corporation (middle) and KeyBank (right).

developed in the literature. Beyond Gaussian graphical models, there are binary [Banerjee

et al., 2008] and discrete [Jalali et al., 2010] graphical models. Yang et al. [2015] derived

theoretical guarantees for learning graphical models for graphical models whose conditional

distributions are in the exponential family—which includes the Poisson, exponential and

Gaussian univariate distributions. For discrete count data, see Chapters 3,4,7 and 8. In

general, these graphical models, even the binary graphical model, do not have closed-form

marginal distributions and thus would be difficult to use for ‘what if’ queries because a

198



median or mean would need to be estimated via sampling or other method.

Principled 2D visualizations of graphical models is limited. Most work in graphical

models simply uses standard graph drawing algorithms. For the Gaussian graphical model,

one visualization could be the biplot [Greenacre, 2010] that positions variables based on the

top two singular vectors of the covariance matrix. The biplot, however, does not consider

any aesthetics and thus, especially when the number of variables is larger than about 20,

the plot becomes difficult to read. In addition, the biplot assumes a multivariate Gaussian

distribution whereas we assume the more general class of Gaussian-copula models that could

non-Gaussian marginals such as a gamma distribution. Another option is to directly visualize

the correlation matrix as a heatmap of correlations, possibly color-coded. Both of these

visualizations could be useful in certain contexts, however, neither one explicitly provides a

way to dynamically interact with the visualization.

12.6.2 Word Clouds Related Work

The most well-known approach to generating word clouds is Wordle, developed by

Feinberg and colleagues [Viegas et al., 2009]. Wordle generates aesthetically pleasing clouds

of words following a heuristic layout procedure [Feinberg, 2010]. Since its introduction,

Wordle has enjoyed great popularity, likely due to its favorable aesthetic properties and

ease of use. A downside of the Wordle algorithm is that it has no clear probabilistic

semantics. Words are sized in proportion to their frequencies and are then placed on the

canvas somewhat arbitrarily; the relative positions of words are meaningless. Treating tags

and words as independent renders word clouds difficult to navigate [Gwizdka and Bakelaar,

2009]. Nonetheless, despite its simplicity, researchers have found Wordles useful for

preliminary analyses [McNaught and Lam, 2010].

Similar to our visualization approach, Cui et al. [Cui et al., 2010] introduced an

approach that reflects semantic relationships between words in their placement. Their
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approach also explicitly conveys temporal trends, thus emphasizing word trends over time.

Further, they proposed informing the initial layout of words by semantic coherence.

Specifically, this is formalized as the cosine similarity between (localized) word

co-occurrence count vectors. The authors calculate dissimilarities between words (one

minus the cosine similarities) and then project words into two-dimensions via

Multi-Dimensional Scaling (MDS). This represents a heuristic approach to semantically

group similar terms. Building on this work, Wu and colleagues introduced a method that

improved the aesthetics of ‘semantics preserving’ word clouds using seam carving [Wu

et al., 2011], a content-aware image resizing method. Barth et al. further extended this line

of work by formalizing the task of generating word clouds in which word placements reflect

semantic similarity in terms of the underlying geometric constraints [Barth et al., 2014a].

They refer to this problem as Contact Representation of Word Networks (CROWN). The

task is to construct a layout in which two bounding boxes touch if there is an edge between

the corresponding nodes. This is NP-hard in general. The authors thus propose several

efficient approximations, and demonstrate empirically that these work well. In follow-up

work [Barth et al., 2014b], Barth and colleagues extend their evaluation, introducing six

quantitative metrics with which to evaluate generated word clouds, the primary of which

they term realized adjacencies, which sums the similarities of all touching word nodes.

Elsewhere, Wang et al. [Wang et al., 2014] recently introduced another approach to

generating word clouds that attempts to preserve some notion of semantics in word

placement, specifically for the application of user-generated restaurant reviews. Their

approach generates and exploits dependency parses of reviews to account for the

grammatical structure of text during word cloud generation (e.g., they retain only nouns,

verbs, and adjectives in reviews). In other related work, Gambette and Veeronis proposed a

word tree cloud [Gambette and Véronis, 2010] in which pairwise similarities between words

are used to induce a tree. Note that all these semantic word cloud methods are restricted

to text data and only provide a static layout of words while our ‘what if’ framework
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provides dynamic visualizations for text and non-text data like delay times and stock

returns. Thus, our approach is both more dynamic and more general than these semantic

word cloud approaches.

12.6.3 Color Related Work

We choose the CIELUV color space because Sharma and Rodŕıguez-Pardo [2012]

gives some evidence that CIELUV is better for emissive displays than the CIELAB color

space, even though Berns [2001] states that the CIE commission wanted to make a distinction

but did not feel there was evidence at the time. Zeileis and Hornik [2006] discusses color

palettes for statistical graphics and was the inspiration for our choice of using fixed chroma

and luminance for the component colors. Ihaka [2003] describe the history of color spaces

and suggested that when size is a critical visual component, luminance should be fixed.

Harrower and Brewer [2011] provide an online tool for the famous ColorBrewer quantitative

and qualitative palettes, which enable careful color distinction even amid different conditions.

While we could have used ColorBrewer palettes for our visualization, we chose to stay in

the CIELUV color space so that we could correctly show gray colors that would appear

appropriately between all the other colors.

12.7 Limitations

First, we note that our ‘what if’ models are descriptive rather than predictive. They

can show historical trends or patterns but are not meant to predict future values. For

example, they are not meant to predict stock prices or the delays at airports tomorrow.

However, they may provide initial insights into a dataset that may help design predictive

models. In addition, we only consider the particular class of Gaussian-copula undirected

graphical models, which might not be a good fit for a certain application. While Gaussian-

copula models are fairly general and can include discrete and continuous data types, other
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models such as time series models or directed Bayesian graphical models may be a better

fit. Applying our ‘what if’ framework and visualization to these types of models would be

an interesting area of future work. On the visualization side, our current implementation

is somewhat slow for more than about 100 or 200 variables. On a computer with an Intel

Xeon(R) CPU 3.60GHz × 8 processor, the computation takes between 15 and 20 seconds

for 100 variables and between 60 and 80 seconds for 200 variables—although the user can

see the begin interacting immediately. Significant improvements in the absolute speed of our

visualization algorithm could likely be made if the collision detection was more advanced

using bounding boxes or similar idea.

12.8 Conclusion

Towards our goal of visualizing dynamic ‘what if’ queries for exploratory analysis,

we first define the probabilistic mechanism to be conditional probability, which is similar

to filtering in the probability space. We develop a query language that does not require

the user to know the appropriate conditioning values but rather merely that they want

to condition on high or low values of particular variable; this enables a simple ‘what if’

interface for the user. We choose the Gaussian-copula graphical model as the underlying

probabilistic model because it has closed-form solutions to the required distributions and

statistics. After developing this underlying model interaction for ‘what if’ queries, we then

develop a probabilistic model visualization that combines the intuitiveness of force-directed

layouts and the beauty of word clouds. Furthermore, we carefully define a color model that

intuitively shows properties of the underlying mixture distribution. Finally, we demonstrate

that our model and visualization is broadly applicable to both text and non-text datasets by

illustrating our framework on text data, non-negative airport delay data, and heavy-tailed

stock return data. While this framework for ‘what if’ visualization is not appropriate for

in-depth analysis, it can be a useful exploratory visualization tool. We hope the fundamental
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idea of tightly integrating probabilistic models and concepts with visualization could open

up the door for innovative visualizations based on a probabilistic foundation.
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Chapter 13

Concluding Thoughts

13.1 Overview

Part I explored the challenge of graphical models to allow positive dependencies

even for the Poisson or exponential case. The original Poisson or exponential graphical

models [Besag, 1974, Yang et al., 2015] only allowed negative dependencies—which is

required to ensure the distribution is normalizable. [Yang et al., 2013] introduced Poisson

variants by truncating the distribution—via hard truncation in the case of TPGM or soft

truncation in the case of SPGM—or altering the Poisson to essentially be a non-negative

and discrete Gaussian (QPGM). These modifications unfortunately either require

unintuitive truncation hyperparameters (TPGM/SPGM) or have Gaussian-esque thin tails

(QPGM). [Allen and Liu, 2012, 2013] ignore the joint consistency and normalization of the

model and suggest that the parameters can still be useful even though no joint distribution

exists. Given these shortcomings of previous models, we propose the LPMRF and SQR

graphical models that both allow positive dependencies. Overall, we suggest using the SQR

graphical model for the general situation because the solution is more elegant but the

LPMRF graphical model actually provides a replacement for the multinomial distribution,

which is critical for the development of LPMRF topic models in the following part and may

be more generally useful as a replacement for the multinomial. We conclude this section

with an extensive comparison of Poisson graphical models with multiple types of

multivariate Poisson generalizations including copula-based models.

In Part II, we explore the combination of count-valued graphical models within
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topic models. In standard topic models such as LDA, words are drawn individually from a

categorical distribution assuming the topic assignments are known. However, multiple

words need to be drawn together in order to incorporate joint graphical model

distributions, which directly model dependencies between words. Thus, we reformulate

topic models in two different ways so that multiple words can be drawn jointly from a

graphical model. We then demonstrate two instantiations of these generalizations in the

novel APM model and LPMRF topic model.

Building on previous models in Part III, we develop a generalization of the SQR

graphical model for the case of k-wise rather than merely pairwise interactions. We show that

this class of models is normalizable for reasonable constraints on the parameters and even

give a tractable algorithm for estimating the parameters. In this part, we also consider the

well-known Gaussian-copula model because it can be viewed as a semi-parametric graphical

model [Liu et al., 2012]. We derive the closed-form solutions to the conditional Gaussian-

copula model; though this derivation is not particularly surprising, we could not find a full

derivation in the literature. In significant contrast to the other graphical models we describe,

these Gaussian-copula graphical models actually have closed-form solutions including the

normalization constant and thus inference, mean estimation and sampling are significantly

easier and faster. Using this derivation, we then show the efficacy of these closed-form

solutions in missing value imputation experiments.

Finally, in Part IV, we strive to make graphical models more accessible to non-experts.

In particular, we define a simple query-based interactive interface for the user that does not

require explicit knowledge of variable values nor any knowledge of the underlying graphical

model. To display the results to the user, we carefully design a visualization that displays

key information about the underlying model including the top variables, the graphical model

edges, and information about the underlying mixture components. The query-based interface

connected to our powerful visualization enables a data scientist to quickly explore the key
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trends and patterns in the dataset by entering ‘what if?’ questions as queries. This could

be useful in forming initial hypotheses about the data and determining which questions to

ask next—a fundamental step in the initial exploratory analysis of new data. Overall, we

hope that these novel graphical models and visualization tools enable data scientists and

machine learning experts to estimate, apply, and understand their models more effectively

and efficiently.

13.2 Future Work

From the experimental comparison results in Chapter 5, the SQR graphical model

performs better than any of the other Poisson graphical models. However, the APM and

LPMRF topic models described in Part II used the SPGM graphical model and the LPMRF

graphical model respectively. Thus, a straightforward area for future work is to use the SQR

graphical model as the basis for these topic models. For the admixture model (generalization

1), the SQR graphical model could directly replace the SPGM model. For the LPMRF topic

model, a fixed-length SQR model could likely be derived and used instead of the LPMRF

model. Thus, the elegant form of the SQR graphical models could be leveraged in the more

complex topic model extensions.

Another interesting area of future work considers the interaction or intersection of

copula-based models and graphical models. We investigated the Gaussian-copula model

which lies at the intersection of these model classes but further connections could be made.

For example, what is the form of the copula associated with the SQR graphical models?

This copula is guaranteed to exist by Sklar’s representation theorem. Knowing the copula

form of SQR models reduces to the problem of determining the graphical model marginal

distributions, which is similar to estimating the normalization constant and thus is usually

computationally difficult. As another question, supposing we could approximate the copula

via sampling or other approximation, how close is this implicit SQR copula to the Gaussian
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copula? Could sampling from a closed-form Gaussian-copula model give good initial samples

for SQR Gibbs sampling? In general, a careful consideration of the similarities and differences

between these two paradigms could reveal powerful synergies.

Finally, while this work has focused on novel models and visualizations, real-world

applications of this work is an important area of future work. Because we focus on the

unsupervised setting in this work, any application will likely be an exploratory analysis of

data rather than an explicit supervised task. In addition, because these models are founded

on theoretical guarantees even in the high-dimensional setting where n < p, strong

applications will likely be in the high-dimensional setting where n is relatively small (e.g.

100 or 1000 observations) rather than when n is very large (e.g. millions of observations).

Biological applications, especially with next generation sequencing and advanced mass

spectrometry, fit these two criteria. They are exploratory in nature because one major

biological goal is to understand the dependency structure between genes or proteins as

opposed to merely predicting an outcome, and they are in the high-dimensional setting

because the number of dimensions is often large (e.g. more than 1000 genes) compared to

the small number of samples (e.g. less than 100 patients).

Another possible application is qualitative coding of free-form survey text data or

free-form medical notes. Informally, qualitative coding is the process of determining the

topics or themes in a text dataset—a task usually manually performed by a human expert.

Both the proposed graphical models and the proposed visualization framework may enable a

human expert to gain a gist of the data much more quickly than reading the text individually

especially when the number of documents is large (e.g. 1000 survey responses). With

more work, an direct qualitative coding tool could be built on top of the graphical models

and visualization that would enable a user to quickly partition the documents into useful

topics—essentially, leveraging the power of the human and the computer interactively. More

generally, we hope that the foundational work in more flexible graphical models, topic models,
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and interactive visualization will expand the understanding of graphical models and open

the door for powerful applications and tools for both experts and non-experts alike.
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Appendix A

Proofs of SQR Normalization

A.1 Proof of Exponential SQR Normalization

The basic intuition is clear by looking at the asymptotic growth of each term.

However, we specifically outline the possibilities:

1. η2 > 0: A(η1, η2)→∞.

2. η2 < 0: A(η1, η2) <∞.

3. η2 = 0: if η1 < 0, then A(η1, η2) <∞, otherwise A(η1, η2)→∞.

In summary, we need that η2 < 0 or (η2 = 0 and η1 < 0).

Case 1: η2 > 0 Let η̂2 = η2/2. First, we seek an exponential lower bound on the partition

function. In particular, we want to find an z̄ such that for all z > z̄, exp(η̂2z) ≤ exp(η1

√
z+

η2z). Taking the log of both sides and solving, we find that the critical points of the above

inequality are at 0 and (−2η1
η2

)2. We take the non-trivial solution of z̄ = (−2η1
η2

)2. Now we

need to check if the region to the right of z̄ is possible by plugging into the original equation.
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Let us try a point z̃ = az̄ where a > 1:

exp(η̂2z̃)
?

≤ exp(η1

√
z̃ + η2z̃) (A.1)

⇒ η̂2z̃
?

≤ η1

√
z̃ + η2z̃ (A.2)

⇒ (η2/2− η2)z̃
?

≤ η1

√
z̃ (A.3)

⇒ −η2

2

(
−2a

η1

η2

)2
?

≤ η1

√(
−2a

η1

η2

)2

(A.4)

⇒ a
−2η2

1

η2

?

≤
√
a
−2η2

1

η2

(A.5)

⇒ a ≥
√
a , (A.6)

where the last line is because we assumed a > 1 and η2 > 0. Thus, we can lower bound the

log partition function as follows:

A(η1, η2) =

∫ z̄

0

exp(η1

√
z + η2z)dz

+

∫ ∞
z̄

exp(η1

√
z + η2z)dz

≥
∫ z̄

0

exp(η1

√
z + η2z)dz +

∫ ∞
z̄

exp(η̂2z)dz︸ ︷︷ ︸
→∞, since η̂2>0

=∞ .

Therefore, if η2 > 0, the log partition function diverges and hence the joint distribution is

not consistent.

Case 2: η2 < 0 Now we will find an exponential upper bound and show that this upper

bound converges—and hence the log partition function converges. In a similar manner to case

1, let η̂2 = η2/2. We want to find an z̄ such that for all z > z̄, exp(η̂2z) ≥ exp(η1

√
z+ η2z)—

the only difference from case 1 is the direction of the inequality. Thus, using the same
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reasoning as case 1, we have that z̄ = (−2η1
η2

)2. Similarly, we need to check if the region to

the right of z̄ is possible by plugging into the original equation. In a analogous derivation,

we arrive at the same equation as Eqn. A.5 except with the inequality is flipped:

⇒ a
−2η2

1

η2

?

≥
√
a
−2η2

1

η2

(A.7)

⇒ a ≥
√
a , (A.8)

where the last step is because we assumed η2 < 0 and a > 1—note that we do not flip the

inequality because
−2η21
η2

is overall a positive number. Thus, this is an upper bound on the

interval [z̄,∞]:

A(η1, η2) =

∫ z̄

0

exp(η1

√
z + η2z)dz

+

∫ ∞
z̄

exp(η1

√
z + η2z)dz

≤
∫ z̄

0

exp(η1

√
z + η2z)dz +

∫ ∞
z̄

exp(η̂2z)dz︸ ︷︷ ︸
Upper bound

≤
∫ z̄

0

exp(η1

√
z + η2z)dz︸ ︷︷ ︸

<∞

+

∫ ∞
0

exp(η̂2z)dz︸ ︷︷ ︸
Exp. log partition

<∞,

where the last step is based on the fact that a bounded integral of a finite smooth function is

bounded away from∞ and the second term is merely the log partition function of a standard

exponential distribution.

Case 3: η2 = 0 This gives the log partition function simply as:

A(η1, η2) =

∫ ∞
0

exp(η1

√
z)dz,
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which has the closed form solution:

A(η1, η2) = 2η−2
1 (η1

√
z − 1) exp(η1

√
z)
∣∣∣∞
0

(A.9)

= lim
z→∞

2η−2
1 (η1

√
z − 1) exp(η1

√
z)−

(
−2η−2

1

)
(A.10)

= 2η−2
1 + lim

z→∞
2η−2

1 (η1

√
z − 1) exp(η1

√
z) . (A.11)

The convergence critically depends on the limit in Eqn. A.11. This limit diverges to ∞ if

η1 ≥ 0 but converges to 0 if η1 < 0. Thus, if η2 = 0, then η1 < 0 for the log partition function

to be finite.

A.2 Proof of Poisson SQR Normalization (Eqn. 4.14)

First, we take an upper bound by absorbing the
√
z term:

A(η1, η2) ≤
∑
z∈Z+

exp
(
η1

√
z + η2z︸ ︷︷ ︸
O(z)

(A.12)

−
∑
s

log(Γ(zvs + 1))︸ ︷︷ ︸
O(zlogz)

)
(A.13)

≤
∑
z∈Z+

exp
(
ηz −

∑
s

log(Γ(zvs + 1))
)
, (A.14)

where η = η2 + |η1|. We continue the bound as follows:

A(η1, η2) ≤
∑
z∈Z+

exp
(
ηz −max

s
log(Γ(zvs + 1))

)
(A.15)

≤
∑
z∈Z+

exp (ηz − log(Γ(z/p+ 1))) , (A.16)

where Eqn. A.16 comes from the fact that arg maxvs log(Γ(zvs + 1)) ≥ 1/p (simple proof by

contradiction).
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Now let us use the ratio test for convergent series where

az = exp
(
η(v)z − log(Γ( z

p
+ 1))

)
:

lim
z→∞

|az+1|
|az|

= exp(η(z + 1)− log(Γ((z + 1)/p+ 1))

− [ηz − log(Γ(z/p+ 1))]) (A.17)

= lim
z→∞

exp

(
η + log

(
Γ(z/p+ 1))

Γ((z + 1)/p+ 1))

))
(A.18)

= exp(η) lim
z→∞

Γ(z/p+ 1))

Γ((z/p+ 1 + 1/p))

(z/p+ 1)1/p

(z/p+ 1)1/p
(A.19)

= exp(η) lim
z→∞

1

(z/p+ 1)1/p

× lim
z→∞

Γ(z/p+ 1))(z/p+ 1)1/p

Γ((z/p+ 1 + 1/p))
(A.20)

= exp(η) lim
z→∞

1

(z/p+ 1)1/p
(1) (A.21)

= exp(η)(0)(1) = 0 < 1, (A.22)

where Eqn. A.20 is by the product of limits rule and Eqn. A.21 is by the well-known

asymptotic properties of gamma functions. Therefore, by the ratio test, the radial

conditional log partition function is bounded for any η1 <∞ and η2 <∞.
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Appendix B

APM Derivations, Algorithm and Visualizations

B.1 Notational Conventions

Matrices are denoted by capital letters (e.g. X, Φ). Column vectors are denoted by

lowercase bold face Roman and Greek letters (e.g. x, θ). Usually, lower case letters are

the columns of their upper case matrix counterparts (e.g. xi is the ith column vector of X)

except for θ which is distinct from a column of Φ. Subscripts indicate either the column of

a matrix (e.g. Φs) or a scalar value indexed on a vector (e.g. xis, θs). Superscripts indicate

an element of a set, which can either be a set of vectors or a set of matrices (e.g. θj ∈ θ1...k,

Φj ∈ Φ1...k, or Φs ∈ Φ1...p).

The subscript \i as in vec(Φs)\i refers to the sub vector when the ith coordinate is

made to be zero. This is important when calculating the `1 regularization because the only

the edge parameters are regularized and therefore the node parameters must be ignored.
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B.2 Reformulation of negative pseudo log likelihood

L = − 1

n

n∑
i=1

PAPM(xi |wi,θ
1...k,Φ1...k) (B.1)

= − 1

n

n∑
i=1

PPMRF

(
xi |θi =

k∑
j=1

wjθ
j,Φi =

k∑
j=1

wjΦ
j
)

(B.2)

= − 1

n

n∑
i=1

[( k∑
j=1

wijθ
j
)T
xi + xTi

( k∑
j=1

wijΦ
j
)
xi −

p∑
s=1

exp
( k∑
j=1

wij(θ
j
s + xTi Φj

s)
)]

(B.3)

= − 1

n

n∑
i=1

p∑
s=1

[ k∑
j=1

wijxis(θ
j
s + xTi Φj

s)− exp
( k∑
j=1

wij(θ
j
s + xTi Φj

s)
)]

(B.4)
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B.3 Parameter Settings

A summary of the parameter settings for the models trained can be seen in

Table B.1. Experiments were run over all possible combinations of the parameters given

and final parameter values determined by evocation score on 50% tuning set. Note that the

output edge matrices of APM (i.e. Φ1...k) are not symmetric because the algorithm ignores

the symmetry constraint thus yielding an overcomplete representation in which two

estimates of the word dependency parameters are computed. These two estimates can be

combined in at least 2 ways:

1. OR: Assume the combined estimate is a non-zero if either estimate is non-zero (i.e.

take the OR of the estimated non-zero edges). Then, merely average both estimates.

2. AND: Assume the combined estimate is non-zero only if both estimates are non-zero

(i.e. take the AND of the estimated non-zero edges). Then, merely average the non-

zero entries.

Note that if the estimator is actually recovering the true neighborhood (i.e. a variable’s

non-zero dependencies with other variables), then these definitions are equivalent. However,

in practice, we have found that the models are quite different yet both give reasonable

results. In general, we observed that AND is easier to interpret and is less likely to overfit

the training data than OR. AND also has the intuitive interpretation that two words are

directly dependent on one another if and only if they are useful in predicting each other (i.e.

they are non-zero coefficients in the node-wise Poisson-like regression problems). This is why

we chose to use AND for APM-LowReg and APM-HeldOut. We suggest that in general

AND is probably a better post-processing step than OR. However, more fully studying the

effects of this post-processing step could be an area of future research.

217



Table B.1: Table of Parameter Settings for Models

Model Parameter settings
APM k ∈ {1, 3, 5, 10, 25}

Trace iteration ∈ {1, 2, · · · , 15} (i.e. different λ values)
β ∈ {0, 0.01, 1}
Post processing of edge set ∈ {AND,OR}

APM-LowReg k ∈ {1, 3, 5, 10, 25}
λ chosen to be very small (usually approximately λmax

215
)

β = 0
Post processing of edge set ∈ {AND}

APM-HeldOut k ∈ {1, 3, 5, 10, 25}
Percentage of held-out documents ∈ {10%, 20%}
λ chosen by held-out training documents
β = {0, 0.1}
Post processing of edge set ∈ {AND}

CTM k ∈ {1, 3, 5, 10, 25}
Default parameters except for two different convergence
criteria

HDP Topic Dirichlet hyperparameter η ∈ {1, 0.01, 0.0001}
Hyperparameter resampling ∈ {yes, no}
Scaling for prior if hyperparameter resampling or first
concentration parameter γ ∈ {100, 10, 1, 0.1}

LDA k ∈ {1, 3, 5, 10, 25, 50}
Topic Dirichlet hyperparameter β ∈ {1, 0.01, 0.0001}
Document Dirichlet hyperparameter α = {1, 0.1, 0.01}
Optimize hyperparameters ∈ {yes, no}

RSM k ∈ {1, 3, 5, 10, 25, 50}
Learning rate ∈ {10−3, 5× 10−4, 10−4, 5× 10−5, 10−5}
Maximum iterations ∈ {103, 104}
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B.4 Algorithms

B.4.1 Main Alternating Algorithm for APM

Algorithm 1: Estimate APM parameters using an alternating scheme

Input : Data matrix X ∈ Zp×n+ , number of topics k, prior hyperparameter
β ≥ 0

Output: Parameters θ1...k
λ , Φ1...k

λ and Wλ for different values of λ

1 W← rand(k, n)

2 for λ←∞, λmax,
λmax

2
, λmax

4
, λmax

8
, · · · do

3 while not converged do
4 [θ1...k; Φ1...k]← EstimateComponentPMRFs(W, X, λ, β)
5 W← EstimateAdmixtureWeights(θ1...k,Φ1...k, X)

6 end

7 end

B.4.2 Component PMRFs Algorithm
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Algorithm 2: Estimates the k node and edge parameters for word index s when
W is fixed

Input : Data matrix X, admixture weights matrix W, word index s, sparsity
parameter λ

Output: Parameter Φs

1 Z ←
[

1 1 · · · 1
x1 x2 · · · xn

]
; Ψs ←Wdiag([x1s x2s · · ·xns])ZT ; Φs ← 0

2 while not converged do
3 ∀i, γi ← exp(zTi Φswi); D ← 0; r ← 0; ε = 0.5; σ = 10−10

4 ∇g(Φs)← −(1/n)(Ψs −Zdiag(γ)WT )
5 F ← {(t, j) : t 6= s and (|∇jtg(φ)| ≥ λ or φjt 6= 0 or t = 1)}
6 while not converged do
7 for (t, j) ∈ F do
8 a =

∑n
i=1 γi(wijzit)

2; b = ∇jtg(Φs) +
∑n

i=1 γiwijzitri; c = φjt+djt
9 µ← −c+ Sλ/a(c− b/a); djt ← djt + µ; ∀i, ri ← ri + µzitwij

10 end

11 end
12 for α← 1, ε2, ε3, · · · do

13 Φ̂s ← Φs + αD

14 f(Φ̂s)← −(1/n)
(

tr(ΨsΦ̂s)−
∑n

i=1 exp(zTi Φ̂swi)
)

+ λ‖vec(Φ̂s)\1‖1

15 if

f(Φ̂s) ≤ f(Φs)+ασ[tr(∇g(Φs)TD)+‖(vec(Φs)+vec(D))\1‖1−‖vec(Φs)\1‖1]
then

16 Φs ← Φ̂s; break
17 end

18 end

19 end

220



B.5 Top 50 Word Pairs for Best LDA and APM Models

Table B.2: Top 50 Word Pairs for LDA (Left) and APM (Right)
Human 

Score

Model 

Rank

Human 

Score

Model 

Rank

100 17 run.v ↔ car.n 100 22 telephone.n ↔ call.n

82 6 teach.v ↔ school.n 97 10 husband.n ↔ wife.n

69 4 school.n ↔ class.n 82 48 residential.a ↔ home.n

63 49 van.n ↔ car.n 76 23 politics.n ↔ political.a

51 24 hour.n ↔ day.n 75 6 steel.n ↔ iron.n

50 14 teach.v ↔ student.n 75 36 job.n ↔ employment.n

44 27 house.n ↔ government.n 75 37 room.n ↔ bedroom.n

44 22 week.n ↔ day.n 72 11 aunt.n ↔ uncle.n

38 26 university.n ↔ institution.n 72 27 printer.n ↔ print.v

38 10 state.n ↔ government.n 60 2 love.v ↔ love.n

38 1 woman.n ↔ man.n 57 7 question.n ↔ answer.n

38 43 give.v ↔ church.n 57 42 prison.n ↔ cell.n

38 16 wife.n ↔ man.n 51 49 mother.n ↔ baby.n

38 7 engine.n ↔ car.n 50 28 sun.n ↔ earth.n

35 8 publish.v ↔ book.n 50 4 west.n ↔ east.n

32 46 west.n ↔ state.n 44 31 weekend.n ↔ sunday.n

32 12 year.n ↔ day.n 41 18 wine.n ↔ drink.v

25 45 member.n ↔ give.v 38 5 south.n ↔ north.n

25 25 dog.n ↔ animal.n 38 38 morning.n ↔ afternoon.n

25 13 seat.n ↔ car.n 38 43 engine.n ↔ car.n

19 32 west.n ↔ area.n 35 32 publish.v ↔ book.n

19 21 fish.n ↔ animal.n 35 15 green.n ↔ green.a

19 20 white.a ↔ black.a 35 30 salt.n ↔ rice.n

16 50 journal.n ↔ book.n 35 34 copy.v ↔ copy.n

16 19 paper.n ↔ book.n 33 19 troop.n ↔ force.n

16 34 tree.n ↔ plant.n 28 12 tea.n ↔ coffee.n

13 35 year.n ↔ week.n 28 50 win.v ↔ prize.n

13 29 ride.v ↔ horse.n 25 13 operational.a ↔ aircraft.n

13 3 train.n ↔ car.n 19 17 smoke.n ↔ fire.n

7 39 institution.n ↔ date.n 19 35 white.a ↔ black.a

7 33 people.n ↔ family.n 13 1 smoke.v ↔ cigarette.n

7 30 teacher.n ↔ teach.v 13 3 eat.v ↔ food.n

7 9 religious.a ↔ church.n 13 8 boil.v ↔ potato.n

6 41 university.n ↔ date.n 13 21 ride.v ↔ horse.n

6 44 plant.n ↔ bird.n 10 44 fall.v ↔ fall.n

0 48 room.n ↔ house.n 7 9 religious.a ↔ church.n

0 47 show.v ↔ first.a 7 20 lock.n ↔ key.n

0 42 record.n ↔ play.v 7 25 teacher.n ↔ teach.v

0 40 high.a ↔ area.n 7 26 check.v ↔ check.n

0 38 urban.a ↔ area.n 7 46 society.n ↔ class.n

0 37 high.a ↔ first.a 0 14 competition.n ↔ compete.v

0 36 member.n ↔ authority.n 0 16 fox.n ↔ animal.n

0 31 subject.n ↔ old.a 0 24 smell.v ↔ smell.n

0 28 title.n ↔ subject.n 0 29 rehabilitation.n ↔ contact.n

0 23 text.n ↔ language.n 0 33 guilty.a ↔ court.n

0 18 give.v ↔ get.v 0 39 cat.n ↔ animal.n

0 15 tell.v ↔ get.v 0 40 similarity.n ↔ sequence.n

0 11 car.n ↔ bus.n 0 41 drive.v ↔ car.n

0 5 drive.v ↔ car.n 0 45 session.n ↔ experience.n

0 2 woman.n ↔ wife.n 0 47 index.n ↔ close.v

Word Pair Word Pair
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Appendix C

Fixed-Length Topic Model Derivations

C.1 LPMRF Gibbs Sampling Derivation

As described in the main paper, we develop an LPMRF Gibbs sampler by considering

the most common form of multinomial sampling, namely by taking the sum of a sequence

of L Categorical variables. Thus, if w1,w2, . . . ,wL ∼ Categorical(θ) and x =
∑L

`=1w` ∼

Multinomial(θ|L), then the probability of any particular sequence is merely the multinomial

probability scaled by the inverse of the multinomial coefficient:

P(w1,w2, . . . ,wL |θ) =

(
L

x1, x2, . . . , xp

)−1

PMult(x =
L∑
`=1

w` |θ, L). (C.1)

In a similar way, we can implicitly derive the probability for a particular sequence of words

whose sum is distributed as an LPMRF:

P(w1,w2, . . . ,wL |θ,Φ) =

(
L

x1, x2, . . . , xp

)−1

PLPMRF(x =
L∑
`=1

w` |θ,Φ, L) (C.2)

= exp(θTx+ xTΦx− AL(θ,Φ)− log(L!)). (C.3)

To develop a Gibbs sampler, we simply need to compute the conditional probability of one of

these words given all the other words. Letting x−` ≡
∑

m 6=`wm, then x = x−` +w`. Thus,

using the fact that the conditional distribution is proportional to the joint distribution, we
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can derive the form of the conditional distribution:

P(w` = es |w1, . . . ,w`−1,w`+1, . . . ,wL,θ,Φ) (C.4)

∝ exp(θT (x−` +w`) + (x−` +w`)
TΦ(x−` +w`)) (C.5)

∝ exp(θs + 2Φsx−`). (C.6)

Thus, each word can be sampled given the state of all the other words thus producing an

LPMRF Gibbs sampler.

C.2 Derivation of LPMRF Log Partition Upper Bound

AL(θ,Φ) ≤ log
[(

sup
x∈XL

exp(xTΦx)

) ∑
x∈XL

exp(θTx−
∑

s log(xs!))
]

(C.7)

(Hölder’s Inequality)

= log
[(

sup
x∈XL

exp(xTΦx)

)
exp(L log(

∑
s exp(θs))− log(L!))

]
(C.8)

(Derived from multinomial)

≤ log
[

exp(L2λΦ,1) exp(L log(
∑

s exp θs)− log(L!))
]

(C.9)

(Convex Relaxation of XL)

= L2λΦ,1 + Llog(
∑

s exp θs)− log(L!), (C.10)

where λΦ,1 is the maximum eigenvalue of Φ. See next section for derivation of Eqn. C.8.

C.2.1 Derivation of Multinomial Partition Function

Lemma 2.
∑
x∈XL exp(θTx−

∑p
s=1 log(xs!)) = exp(L log(

∑
s exp θs)− log(L!))

The derivation is based primarily on the fact that the above expression can be seen as
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the normalizing factor of a reparameterized multinomial (or as a scaled version of a standard

multinomial parameterization).

Proof.

∑
x∈XL

exp(θTx−
p∑
s=1

log(xs!))

=
∑
x∈XL

exp(θTx−
p∑
s=1

log(xs!) + ceTx− ceTx+ log(L!)− log(L!))

(where e = [1, 1, . . . , 1]T and c is a constant)

=
1

L!

∑
x∈XL

exp((θ − c)Tx−
p∑
s=1

log(xs!) + ceTx+ log(L!))

=
1

L!

∑
x∈XL

exp((θ − c)Tx−
p∑
s=1

log(xs!) + Lc+ log(L!))

=
1

L!
exp(cL)

∑
x∈XL

exp((θ − c)Tx−
p∑
s=1

log(xs!) + log(L!))

= exp(Lc− log(L!))
∑
x∈XL

exp((θ − c)Tx−
p∑
s=1

log(xs!) + log(L!))
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Now continuing the simplification letting c = log
(∑p

s exp(θs)
)
, we get the following:

∑
x∈XL

exp(θTx−
p∑
s=1

log(xs!))

= exp(Llog
( p∑

s

exp(θs)
)
− log(L!))

×
∑
x∈XL

exp((θ − log
( p∑

s

exp(θs)
)
)Tx−

p∑
s=1

log(xs!) + log(L!))

= exp(Llog
( p∑

s

exp(θs)
)
− log(L!))

∑
x∈XL

exp(log(ρ)Tx−
p∑
s=1

log(xs!) + log(L!))︸ ︷︷ ︸
Partition function of multinomial = 1

(C.11)

= exp(Llog
( p∑

s

exp(θs)
)
− log(L!))

∑
x∈XL

L!∏p
s=1 xs!

p∏
s=1

ρxss︸ ︷︷ ︸
Partition function of multinomial = 1

= exp(Llog
( p∑

s

exp(θs)
)
− log(L!))

where C.11 is derived by showing that ρ = exp(θ − log
(∑p

s exp(θs)
)
) is a valid standard

multinomial parameter vector because the vector is positive and sums to 1:

p∑
t=1

exp
(
θt − log

( p∑
s

exp(θs)
))

=
1∑p

s=1 exp(θs)

p∑
t=1

exp(θt) =

∑p
t=1 exp(θt)∑p
s=1 exp(θs)

= 1.
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Appendix D

Generalized Root Model Derivations and Full Results

D.1 Node Conditional Derivation

P(xs |x−s,Ψ(·)
(·)) = P(x = xs0 + xses |xs0,Ψ(·)

(·)) (D.1)

∝ exp

(
k∑
j=1

j∑
`=1

〈Ψ(`)
(j),

j
√
xs0 + xses ◦`〉+B(xs)

)
(D.2)

∝ exp

(
k∑
j=1

j∑
`=1

〈Ψ(`)
(j), (

j
√
xs0 + j

√
xses) ◦`〉+B(xs)

)
(D.3)

∝ exp

(
k∑
j=1

j∑
`=1

〈
Ψ

(`)
(j),
∑̀
m=0

(
`

m

)(
j
√
xs0 ◦`−m

)
◦ ( j
√
xses ◦m)

〉
+B(xs)

)
(D.4)

∝ exp

(
k∑
j=1

j∑
`=1

∑̀
m=0

(
`

m

)〈
Ψ

(`)
(j),
(
j
√
xs0 ◦`−m

)
◦ ( j
√
xses ◦m)

〉
+B(xs)

)
(D.5)
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Now we can further simplify:

P(xs |x−s,Ψ(·)
(·)) ∝ exp

(
k∑
j=1

j∑
`=1

∑̀
m=0

(
`

m

)〈[
Ψ

(`)
(j)

]
I(s,m)

, j
√
xs0 ◦`−m

〉
xm/js +B(xs)

)
(D.6)

∝ exp

(
k∑
j=1

j∑
`=1

∑̀
m=1

(
`

m

)〈[
Ψ

(`)
(j)

]
I(s,m)

, j
√
xs0 ◦`−m

〉
xm/js +B(xs)

)
(m = 0 is constant)

∝ exp

(
k∑
j=1

j∑
`=1

(
`

1

)〈[
Ψ

(`)
(j)

]
I(s,1)

, j
√
xs0 ◦`−1

〉
x1/j
s +B(xs)

)
(m ≥ 2 are all zero since subtensors are zero by construction)

∝ exp

(
k∑
j=1

(
j∑
`=1

`

〈[
Ψ

(`)
(j)

]
I(s,1)

, j
√
xs0 ◦`−1

〉)
x1/j
s +B(xs)

)
(D.7)

∝ exp

(
k∑
j=1

ηjsx
1/j
s +B(xs)

)
, (D.8)

where ηjs =
(∑j

`=1 `
〈[

Ψ
(`)
(j)

]
s
, j
√
xs0 ◦`−1

〉)
. See notation section for definition of

[
Ψ

(`)
(j)

]
s
.

This is a univariate exponential family with sufficient statistics x
1/j
s , natural parameters ηjs,

and base measure B(xs). This recovers the SQR node conditional from [Inouye et al., 2016a]

with k = 2.

D.2 Radial Conditional Derivation

As in [Inouye et al., 2016a], we define the radial conditional distribution by fixing the

unit direction v = x
‖x‖1 of the sufficient statistics but allowing the scaling z = ‖x‖1 to be
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unknown. Thus, we get the following radial conditional distribution:

P(x = zv |v,Ψ(·)
(·)) ∝ exp

(
k∑
j=1

j∑
`=1

〈Ψ(`)
(j),

j
√
zv ◦`〉+

∑
sB(zvs)

)
(D.9)

∝ exp

(
k∑
j=1

j∑
`=1

〈Ψ(`)
(j),

j
√

v ◦`〉z
`
j +

∑
sB(zvs)

)
(D.10)

∝ exp

(∑
r∈R

ηr(v)zr + B̃v(z)

)
, (D.11)

where R = {`/j : j ∈ {1, · · · , k}, ` ∈ {1, · · · , j}} is the set of possible ratios, ηr(v) =∑
{(`,j):`/j=r}〈Ψ

(`)
(j),

j
√

v ◦`〉 are the exponential family parameters, zr are the corresponding

sufficient statistics, and B̃v(z) =
∑

sB(zvs) is the base measure. Thus, the radial conditional

distribution is a univariate exponential family.

D.3 Derivation of M(a) Approximation

M(a) ≈ log
d∑
i=1

∫
Di

exp(f̂i(x))dµ(x) (D.12)

= log
d∑
i=1

exp(ci)

∫
Di

exp(η̂ix+B(x))dµ(x) (D.13)

= log
d∑
i=1

exp(ci) exp
(
A(η̂i)

)(
CDF

(
max(Di) | η̂i

)
− CDF

(
min(Di) | η̂i

))
(D.14)

= log
d∑
i=1

exp
(
ci + A(η̂i)

)(
CDF

(
max(Di) | η̂i

)
− CDF

(
min(Di) | η̂i

))
(D.15)

= log
d∑
i=1

exp
(
ci + A(η̂i) + log

(
CDF

(
max(Di) | η̂i

)
− CDF

(
min(Di) | η̂i

))
, (D.16)
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D.4 Linear Bounds of g(x)

Taylor series linear bound Upper bound if concavity = -1 and lower bound if concavity

= 1:

q∗ =


q1 , if q2 =∞
q2 , if q1 = −∞
arg max q1,q2 g(q) , otherwise


ĝ(x) = g(q∗) + g′(q∗)(x− q∗)

= g′(q∗)︸ ︷︷ ︸
b

x+
(
g(q∗)− q∗g′(q∗)

)︸ ︷︷ ︸
c

Secant linear bound Upper bound if concavity = 1 and lower bound if concavity = -1:

b =
g(q2)− g(q1)

q2 − q1

g(q1) = bq1 + c

⇒ c = g(q1)− bq1

Tail bounds We know there are only a finite number of inflection points so let us take the

x value for the last inflection point, denoted x∗. By simple asymptotic analysis, we know

that the largest non-zero term will dominate eventually. Let’s assume w.l.o.g. that ηj∗x
1
j∗

dominates1 and ηj∗ > 0. Then, we know that after the last inflection point, the concavity

will be negative. In addition, we know that the g(x) → ∞ as x → ∞. The function must

be monotonically increasing after the last inflection point. Proof by contradiction: Suppose

the monotonicity is negative after the last inflection point. Then, because the g(x) is a

continuous function and g(x)→∞ as x→∞, the function must eventually have a positive

monotonicity. Yet this would switch from negative monotonicity to positive monotonicity

after the last inflection point. However, this would be an inflection point that is greater than

1If for all j, ηj = 0, then we can take j∗ =∞, ηj∗ = a.
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the assumed last inflection point which leads to a contradiction. The case where ηj∗ < 0 can

be proved similarly. Thus, we can use a constant function for an upper bound if concavity

= 1. and we can use a constant function as a lower bound if concavity = -1. A Taylor series

approximation forms an upper or lower bound depending on concavity.

D.5 Complete Results for Grolier and Classic3 Datasets

The full results of the top 50 words, pairs and triples for the Classic3 dataset can be see

in Tables D.1 and D.2. The results for the Grolier dataset can be seen in Tables D.3 and D.4.
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Table D.1: Top Words and Top Word Pairs for Classic3 Dataset

Top words Top Positive Pairs Top Negative Pairs
-0.63 information 4.98 boundary + layer -0.84 flow - library
-0.69 flow 4.26 heat + transfer -0.64 information - pressure
-0.81 library 3.95 tunnel + wind -0.59 flow - cells
-1.17 pressure 3.32 edge + leading -0.59 pressure - library
-1.41 system 3.15 bone + marrow -0.57 library - patients
-1.41 theory 3.04 angle + attack -0.56 flow - system
-1.42 results 2.87 skin + friction -0.56 information - cells
-1.42 data 2.56 growth + hormone -0.55 information - heat
-1.46 patients 2.32 plate + flat -0.52 information - patients
-1.57 found 2.27 shock + wave -0.52 flow - patients
-1.58 method 2.25 mach + numbers -0.49 theory - patients
-1.63 cells 2.13 number + mach -0.49 information - normal
-1.66 analysis 2.10 number + reynolds -0.47 information - found
-1.72 given 2.06 agreement + good -0.46 information - effect
-1.72 use 2.03 attack + angles -0.46 library - theory
-1.74 number 2.01 document + documents -0.45 library - normal
-1.75 used 1.94 cells + cell -0.45 library - cells
-1.76 study 1.77 journals + journal -0.42 library - effects
-1.79 made 1.54 library + libraries -0.41 flow - retrieval
-1.79 effect 1.53 lift + drag -0.41 flow - growth
-1.81 time 1.51 wing + wings -0.39 library - found
-1.81 body 1.43 shells + cylindrical -0.39 library - cases
-1.84 research 1.42 buckling + shells -0.37 information - wing
-1.86 cases 1.41 temperature + thermal -0.37 information - case
-1.90 normal 1.41 free + stream -0.36 pressure - cells
-1.92 effects 1.40 ratio + aspect -0.35 flow - information
-1.94 present 1.39 equations + differential -0.34 flow - subject
-1.97 discussed 1.37 boundary + layers -0.34 results - library
-1.98 shock 1.37 point + stagnation -0.33 information - effects
-1.99 presented 1.25 shock + waves -0.32 information - temperature
-2.01 wing 1.25 heat + temperature -0.32 information - surface
-2.01 surface 1.23 reynolds + transition -0.31 flow - children
-2.03 large 1.20 wings + aspect -0.31 library - obtained
-2.03 case 1.18 temperature + temperatures -0.30 flow - book
-2.04 obtained 1.16 thin + shells -0.29 flow - research
-2.06 new 1.13 science + scientific -0.29 information - mach
-2.07 paper 1.13 cells + marrow -0.29 theory - cells
-2.08 libraries 1.12 numbers + reynolds -0.29 library - effect
-2.08 high 1.10 cylinder + circular -0.28 information - equations
-2.09 problems 1.09 renal + kidney -0.28 flow - literature
-2.12 methods 1.09 pressure + pressures -0.28 flow - index
-2.12 well 1.04 high + speed -0.28 flow - buckling
-2.13 development 1.03 layer + laminar -0.27 analysis - patients
-2.14 general 1.03 information + retrieval -0.27 information - cases
-2.14 growth 1.02 patients + therapy -0.27 information - shock
-2.17 problem 1.02 patients + cancer -0.26 information - boundary
-2.21 jet 1.01 jet + nozzle -0.26 information - method
-2.21 terms 0.98 group + groups -0.26 information - high
-2.23 systems 0.97 experimental + theoretical -0.25 library - body
-2.24 form 0.95 buckling + stress -0.25 information - ratio
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Table D.2: Top Triples for Classic3 Dataset

Top Positive Triples Top Negative Triples
0.51 layer + skin + friction -0.35 boundary - layer - conditions
0.32 information + retrieval + storage -0.20 number - mach - numbers
0.31 pressure + number + mach -0.09 boundary - layer - wing
0.31 layer + plate + flat -0.06 flow - number - numbers
0.27 flow + given + case -0.05 boundary - layer - time
0.24 flow + plate + flat -0.05 layer - shock - laminar
0.18 number + mach + investigation -0.04 number - mach - solution
0.14 number + mach + conducted -0.04 boundary - layer - jet
0.13 wing + ratio + aspect -0.03 heat - transfer - jet
0.13 number + based + reynolds -0.03 boundary - solutions - turbulent
0.11 pressure + ratio + jet -0.02 flow - mach - reynolds
0.11 heat + transfer + coefficients -0.02 pressure - number - numbers
0.10 system + retrieval + user -0.01 boundary - layer - flutter
0.10 boundary + layer + experiments 0.00 flow - mach - velocity
0.09 mach + free + stream 0.00 number - mach - problems
0.09 pressure + layer + gradient
0.08 heat + temperature + coefficient
0.07 pressure + supersonic + base
0.07 boundary + shock + interaction
0.07 boundary + layer + distance
0.07 layer + shock + interaction
0.07 theory + experimental + experiment
0.06 flow + fluid + steady
0.06 flow + boundary + present
0.06 flow + body + revolution
0.05 flow + case + form
0.05 flow + body + shape
0.05 information + data + base
0.05 boundary + layer + found
0.05 cells + bone + marrow
0.05 flow + theory + approximation
0.05 data + retrieval + base
0.04 results + number + higher
0.04 layer + temperature + compressible
0.04 number + mach + static
0.04 boundary + injection + mass
0.04 number + mach + approximately
0.04 flow + hypersonic + region
0.04 theory + wing + wings
0.04 growth + human + hormone
0.04 number + mach + lower
0.04 heat + transfer + blunt
0.03 number + mach + increasing
0.03 number + boundary + increasing
0.03 boundary + layer + measurements
0.03 number + boundary + reynolds
0.03 flow + body + conditions
0.03 information + field + science
0.03 flow + number + based
0.03 flow + data + experimental
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Table D.3: Top Words and Top Word Pairs for Grolier Dataset

Top words Top Positive Pairs Top Negative Pairs
-1.62 american 8.71 km + mi -0.24 life - languages
-1.79 century 3.98 language + languages -0.22 century - species
-1.82 john 2.96 china + chinese -0.20 city - species
-1.88 called 2.62 plants + plant -0.16 war - species
-1.89 city 2.52 deg + temperatures -0.12 city - sq
-1.92 world 2.52 music + musical -0.09 century - june
-1.95 life 2.41 spanish + spain -0.09 war - languages
-2.04 united 2.15 novel + novels -0.08 war - example
-2.13 system 2.11 art + painting -0.07 city - theory
-2.13 university 2.09 poetry + poet -0.07 city - common
-2.14 family 2.07 agricultural + agriculture -0.07 city - system
-2.15 time 2.05 war + civil -0.07 city - called
-2.16 war 2.00 literature + literary -0.07 century - cells
-2.19 include 1.86 french + france -0.06 war - cells
-2.19 english 1.84 german + germany -0.05 american - eng
-2.25 water 1.78 culture + cultural -0.04 city - english
-2.25 history 1.75 china + asia -0.04 century - president
-2.26 de 1.74 india + asia -0.04 american - ft
-2.27 form 1.71 system + systems -0.04 art - america
-2.33 major 1.68 city + york -0.04 city - found
-2.34 national 1.68 west + east -0.04 city - form
-2.35 french 1.59 africa + african -0.03 city - development
-2.35 william 1.59 deg + mm -0.03 war - form
-2.37 art 1.51 southern + northern -0.03 war - usually
-2.38 found 1.50 architecture + building -0.03 called - deg
-2.40 name 1.48 style + architecture -0.03 war - forms
-2.40 modern 1.44 body + blood -0.02 city - time
-2.43 music 1.44 role + played -0.02 city - united
-2.43 power 1.43 sea + ocean -0.02 war - human
-2.44 king 1.43 cells + blood -0.02 century - july
-2.44 social 1.41 science + scientific -0.02 century - party
-2.45 british 1.41 century + centuries -0.02 war - theory
-2.46 usually 1.38 population + sq -0.02 american - king
-2.47 charles 1.37 social + society -0.01 city - family
-2.48 south 1.36 italian + renaissance -0.01 century - south
-2.49 law 1.36 music + opera -0.01 called - eng
-2.50 north 1.36 ocean + pacific -0.01 city - life
-2.50 repr 1.36 cause + disease -0.01 american - deg
-2.52 species 1.35 cities + urban -0.01 american - east
-2.52 theory 1.34 war + army -0.01 american - city
-2.54 human 1.33 united + countries -0.01 war - water
-2.55 ft 1.31 animals + animal -0.01 city - usually
-2.55 black 1.30 church + christian -0.01 american - cells
-2.56 government 1.30 art + museum -0.01 form - university
-2.57 west 1.29 education + schools 0.00 city - body
-2.58 york 1.28 programs + program 0.00 city - process
-2.58 church 1.27 deg + temperature 0.00 century - american
-2.58 school 1.26 world + war 0.00 ft - english
-2.59 development 1.25 party + leader 0.00 city - cells
-2.59 common 1.25 government + federal
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Table D.4: Top Triples for Grolier Dataset

Top Positive Triples Top Negative Triples
0.31 american + city + york -0.26 city - population - york
0.28 city + population + center -0.12 km - mi - america
0.25 population + deg + mm -0.11 american - km - mi
0.20 major + population + persons -0.06 km - mi - york
0.16 ft + sea + level -0.05 war - north - example
0.15 american + south + america -0.04 km - mi - social
0.15 deg + sq + consists -0.04 km - mi - family
0.14 city + deg + july -0.03 km - mi - own
0.13 war + civil + union -0.03 km - mi - style
0.12 population + deg + elected -0.03 city - population - style
0.12 american + united + english -0.03 km - mi - theory
0.11 war + congress + program -0.03 city - center - sq
0.11 population + sq + persons -0.02 km - mi - law
0.10 american + french + british -0.02 km - mi - human
0.10 language + includes + languages -0.02 km - mi - example
0.10 world + war + japanese -0.02 city - population - greek
0.09 major + time + changes -0.01 km - mi - water
0.09 century + world + laws -0.01 called - km - mi
0.09 life + human + stage -0.01 england - language - languages
0.09 north + south + president -0.01 km - mi - greek
0.09 city + population + university -0.01 time - km - mi
0.08 century + world + war 0.00 km - mi - english
0.08 km + mi + discovered 0.00 mi - population - america
0.08 war + united + received 0.00 population - america - sq
0.08 city + river + historical 0.00 war - km - mi
0.08 century + history + short 0.00 american - city - center
0.07 century + english + story
0.07 war + south + union
0.07 american + war + congress
0.07 world + united + david
0.07 century + history + active
0.07 century + history + wide
0.07 war + united + america
0.07 war + army + june
0.07 city + km + population
0.07 government + national + rise
0.07 century + form + appeared
0.06 war + united + caused
0.06 century + world + separate
0.06 united + people + continued
0.06 city + united + urban
0.06 century + time + applied
0.06 world + united + building
0.06 world + south + iron
0.06 world + population + rate
0.06 city + university + center
0.06 century + time + studied
0.06 american + war + people
0.06 north + km + fish
0.06 world + william + series
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Appendix E

Supplementary Material for Poisson Review, Chapter 5

E.1 Supplementary Datasets and Results

We describe and give results for a crime statistics dataset and the 20 Newsgroup

dataset. As mentioned in the paper, these datasets behave similarly to the the BRCA and

Classic3 datasets respectively but we include them here for completeness and for additional

evidence of the observations described in the paper. The dataset statistics can be seen in

Table 5.1. The results for the crime statistics can be seen in Fig. E.1 and the 20 Newsgroup

results can be seen in Fig. E.2.

1. Crime count dataset (Medium counts, medium overdispersion): Aggregated

crime counts from LAPD during the years 2012-2015.1 The original dataset contains

151 types of crime counts such as “Burglary” and “Vandalism”. This dataset exhibits

a wide range of mean values with weak correlation and weak overdispersion.

2. 20 Newsgroup text dataset (Low counts, medium overdispersion): Standard

text corpus for document classification with almost 1000 forum posts from 20 different

newsgroups. 2

1https://data.lacity.org/A-Safe-City/Crimes-2012-2015/s9rj-h3s6. We removed year 2013 and
November of 2015 which both clearly had a different distribution than other years likely due to different
classification systems.

2http://qwone.com/~jason/20Newsgroups/ We slightly modified this dataset by removing words that
were merely for structure or were clearly outliers: “line”, “subject”, “organ”, “re”, “post”, “host”, “nntp”,
and “maxaxaxaxaxaxaxaxaxaxaxaxaxaxax”. The raw dataset contained very strong outliers, e.g. the word
“1” had a mean of 0.58 and a standard deviation of 5.89 but had a maximum value of 344—more than 50
standard deviations away from the mean. Thus, for each variable, we truncated the values beyond the the
99.5th percentile to be the 99.5th percentile; thus, at most 0.5% of values were truncated per variable.
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Table E.1: Dataset Statistics

(Per Variable ⇒) Means Dispersion Indices Spearman’s ρ

Dataset p n Min Med Max Min Med Max Min Med Max

Crime LAPD 10 1035 25 39 118 1.4 2.1 6.2 -0.19 0.14 0.52
100 1035 0.06 0.77 118 0.91 1.3 16 -0.49 0.02 0.78

20News 10 18846 0.36 0.5 1.4 0.59 1.7 6.2 -0.37 0.03 0.67
100 18846 0.07 0.15 1.4 0.83 1.9 6.2 -0.37 0.05 0.67

E.2 Implementation Details

E.2.1 Copulas Paired with Poison Marginals

As stated in the paper, we estimated the copula-based models using the Inference

Function for Margins (IFM) method via the distributional transform. More specifically, we

first estimated the Poisson marginal distributions. Then, we computed the distributional

transform to map the data from the discrete domain to the continuous domain, i.e.

u = (F (x) + F (x − 1))/2 where F (·) is the Poisson CDF.3 Finally, we estimate the copula

distribution using either the copulafit function in MATLAB or the

RVineStructureSelect function in the VineCopula4 R package for the Gaussian and vine

copulas respectively. For the vine copula, the vine structure and bivariate copulas were

automatically selected in the RVineStructureSelect function; we allowed the following six

bivariate copulas and their rotations: Gaussian copula, Student’s t copula, Clayton copula,

Gumbel copula, Frank copula, and Joe copula.

3We chose the DT transform because it is computationally and conceptually the simplest of estimation
methods even though more complex methods exist for a small number of samples [Nikoloulopoulos, 2016].

4https://cran.r-project.org/web/packages/VineCopula/index.html
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Figure E.1: The results for the LAPD crime statistics dataset with medium count values and
medium overdispersion behave similarly to the results from the BRCA dataset described in
the paper.

E.2.2 Mixture Models

For the finite mixture of independent Poissons, we initialized the EM algorithm with

the best of 10 k-means clusterings and set the maximum number of EM iterations to one

hundred. Note that even in high dimensions, the EM algorithm usually converged in under

20 iterations. For the log-normal mixture, we used 1000 iterations and 400 burn-in iterations

for the MCMC algorithm.
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Figure E.2: The results for the 20 Newsgroup dataset with low count values and medium
overdispersion behave very similarly to the results from the Classic3 dataset described in the
paper.

E.2.3 Conditional Models

We set the truncation value R to the 99th percentile of the non-zeros in the training

dataset. This helped avoid expensive computations if there was one or two very large outliers

since each gradient iteration requires R exponential evaluations per observation. We tested

10 regularization parameters of log-spaced points between λmax and 0.0001λmax where λmax

is the max value of the off diagonals of the training data empirical second moment matrix. In
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the case of the Poisson SQR, we set λSQR
max =

√
λmax because the sufficient statistics are square

roots of the original sufficient statistics. Essentially, this initially estimates an independent

model and slowly moves toward a highly dependent model by reducing the regularization

parameter.

E.3 Sampling Details

For the models based on pairing copulas with Poisson marginals, we first sampled

from the copula either using the copularnd MATLAB function in the case of the Gaussian

copula or RVineSim from the VineCopula R package in the case of the vine copulas; then, we

transformed the copula samples to the discrete domain using the Poisson marginal CDFs.

For the mixture models, sampling is also straightforward; we sampled the Poisson mean from

the finite mixture or log-normal distribution and then sampled a Poisson variable given this

mean. For the PGM, TPGM and Poisson SQR models, we used Gibbs sampling with 5,000

iterations. Because the Poisson SQR conditionals are non-standard, we implemented the

Gibbs iterations using two steps of Metropolis-Hastings rejection sampling. For the FLPGM

models, we used the annealed importance sampling routines provided by the authors of

[Inouye et al., 2015] with 100 annealing steps. Overall, the copula-based and mixture models

have direct sampling routines whereas the conditional models have natural procedures for

Gibbs sampling.
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Appendix F

Visualization Algorithmic Experiments and Extra

Example Visualizations

F.1 Algorithm Phases Figure

The main phases of the visualization algorithm can be viewed in Figure F.1.

F.2 Algorithm Experiment Figures

Figure F.2 shows that the visualization either has too much empty space or distorts

the underlying graph function if the target number of violated constraints is too large or too

small. For Figure F.2, all the phases are executed except for the last strong gravity phase,

which would distort the comparison because it is meant merely as a final clean-up phase.

We compare our reverse simulated annealing algorithm to Wordle’s spiral algorithm

in Figure F.3 and show that our algorithm performs better both quantitatively in terms of

objective function and qualitatively but again place the figure in the supplementary materials

because of space constraints.

F.3 More Example Visualizations

Several more example visualizations for the natural science text dataset, airport

delay times and daily stock returns can be seen in Figure F.4, Figure F.5, and Figure F.6

respectively.
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Figure F.1: Each phase of the layout algorithm is important for a compact though meaningful
layout (via graph layout). The phases are (from left to right, top to bottom): random
initialization, unconstrained simulated annealing, font scaling, feasible projection onto non-
overlap set via reverse simulated annealing, constrained simulated annealing and finally a
strong gravity phase of constrained simulated annealing. See subsection 12.5.1 for dataset
description.
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Figure F.2: During font scaling, if the number of violated constraints is too small (top), the
visualization will not be compact such that there will be empty space. However, if the number
of violated constraints is too large (bottom), the projection phase significantly impairs the
graph layout optimization. We select a value between these two extremes (middle). The
lower quality of projection can be seen by highlighting the word “development” and noticing
that the m = 2p visualization (bottom) puts it farther from “child” (with thick edge) and
“human”. The number of violated constraints is p/2, p and 2p from top to bottom, and the
graph optimization values (lower is better) are -8838, -8710 and -7317 from top to bottom.
We did not run the final strong gravity phase in order to better measure the effect of font
scaling. See subsection 12.5.1 for dataset description.
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Figure F.3: Projecting the labels onto the feasible set (i.e. no overlaps) using the standard
spiral technique (left) does not perform as well as projecting using reverse simulated
annealing on the underlying graph optimization function (right). Quantitatively, the
optimization values after projection (lower is better) were -8391 for the spiral and -8571 for
reverse simulated annealing. Qualitatively, when highlighting the words “vision” (middle)
and “stars” (bottom), the spiral technique (left) shows longer thick edges than the reverse
annealing (right). Furthermore, the spiral technique (top left) shows more empty space than
the reverse annealing (top right). See subsection 12.5.1 for dataset description.
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Figure F.4: These ‘what if’ visualizations demonstrate how the query intuitively manipulates
the underlying probabilistic model and displays related variables (in this case words) in an
interpretable fashion. All of these visualizations differ significantly from the visualization
with no query. Some words only occur in one subject, such as “electrochemical” in chemistry;
these retain the same color in all visualizations. Other words are used in multiple subjects; for
example, “model” is used in many subjects and thus appears gray with no query, but becomes
yellow when using the query “bayesian”. Note that queries can be multiple words, affording
very different viewpoints such as the bottom three visualizations. In addition, queries can
include ‘negative’ queries with the minus sign such as “bayesian -nonparametric”; these
condition on a high chance of “bayesian” occurring but a low chance of “nonparametric”
occurring.
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Figure F.5: These visualizations show that long airport delay times often occur during the
winter and possibly autumn months likely due to weather delays. The no query visualization
readily shows that the Chicago airports (MDW and ORD) have long delays in general.
Querying on “ORD(IL) JFK(NY)” means that Chicago and New York have long delays and
the yellow color suggests that other high delays likely belong to winter days. The negative
query of “-ORD(IL) -MDW(IL) -JFK(NY)” means that neither the Chicago or New York
airports have long delays and thus there is no cold weather delays at least in the midwest
and northeast; however, distant California airports, namely ACV and SFO, may have long
delays.

245



Figure F.6: The query “joy”, an energy company, demonstrates that if one energy company
is doing well, many other energy companies also do well (e.g. cnx and dnr). However, if
technology companies are doing well as suggested by the ”msft amd” query, other technology
stocks perform well (e.g. nvda). Similar patterns exist for health care stocks when querying
“alxn -joy” since alxn is a pharmaceutical company. Finally, when querying “++hig”, for
Hartford Financial Services, other financial companies do well, and the visualization shows
three clusters of financial stocks centered around Lincoln National Corporation, JP Morgan
Chase and KeyBank.
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