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Abstract 

 

Normal Aging and Alzheimer’s Disease: Hippocampal and Episodic 
Memory Differences 

 

Ashley Michele Marnell, M.A. 

The University of Texas at Austin, 2016 

 

Supervisor:  Thomas P. Marquardt 

 
Alzheimer’s Disease (AD) and normal aging (NA) are characterized by structural 

brain changes as well as cognitive changes that appear over the lifespan. The 

hippocampus is an area susceptible to early atrophy in both AD and NA; however the 

differential causes of atrophy are not entirely clear. Hippocampal volume loss in AD is 

attributed to neuronal death due to underlying pathology. AD often is diagnosed years 

after the onset of pathology and subsequent atrophy. NA is a continuation of cognitive 

decline that does not become dementia. Episodic memory (EM) is processed within the 

hippocampus and is one of the first systems to show deficits in conjunction with both 

patterns of aging. This review focuses on hippocampal volume loss and EM decline in 

NA and AD.  
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Introduction 

Different neural aging patterns occur over the course of life. There are changes 

that are expected and follow a typical pattern of decline with age. Other changes are 

unexpected and develop from neuropathological processes. These pathologies can lead to 

dementia. The most common cause of dementia is Alzheimer’s Disease (AD) (Davis et 

al., 2013; Mueller et al., 2010). AD is marked by the development of beta-amyloid 

plaques and neurofibrillary tangles (Brookshire, 2014). Normal aging (NA) can present 

with and without underlying pathology in the cortical tissue. Regardless, both NA and 

AD have patterns of cortical atrophy.  

Hippocampal atrophy (HCA) occurs with or without underlying pathology, and is 

therefore seen in AD and NA (Apostolova et al., 2012). Moderate and severe AD atrophy 

can be visualized on neuroimaging and is distinguishable from NA. However, preclinical 

AD is difficult to differentiate from NA due to a minimal degree of HCA in each. 

 NA and AD have behavioral and cognitive deficits that mirror the underlying 

neuroanatomy. Episodic memory (EM) is a memory system affected in both NA and AD 

(Sexton et al., 2010). EM is processed in the HC. Consequently, EM deficits are one of 

the earliest hallmarks in both AD and NA (Jahn et al., 2013). Due to the similarities 

found in both aging patterns, understanding differences will help identify early signs of 

AD. The purpose of this review is to describe hippocampal atrophy patterns unique to 

early AD and NA and discuss how these patterns relate to EM deterioration.  
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Neuroanatomical Overview 

CORTICAL ANATOMY 
 The brain is comprised of the hindbrain, midbrain and cerebral cortex (Gardner, 

1968). The Rolandic fissure divides the cortex into the left and rights hemispheres with 

specific functions reserved for each. The hemispheres are connected by the corpus 

callosum, which facilitates information moving laterally to each hemisphere 

continuously. Each hemisphere is further divided into four parts: frontal, parietal, 

occipital, and temporal lobes. Each lobe supports a unique set of functions (Gardner, 

1968; Gibb, 2012). Within the context of this review, the temporal lobe is the most 

important for the integral role the lobe has in relation to anatomical and behavioral 

correlates in NA and AD.  

 The hippocampus (HC) is a structure located deep in the medial temporal lobes 

and is primarily engaged in processing memory and emotions. The HC is divided into 

three major sections: the dentate gyrus, subiculum, and CA subfields (Amaral & Witter, 

1989). On a coronal view, the subiculum lies medial and inferior to the rest of the HC. 

The role of the subiculum is relatively unknown, though researchers have asserted spatial 

concepts may be developed in that area (O’Mara et al., 2009). The dentate gyrus (DG) is 

the innermost structure of the HC and is responsible for neurogenesis within the HC 

(García-Fuster et al., 2013). The CA subiculum is further divided into CA1-3 and weaves 

through the HC between the DG and subiculum. This structure is responsible for 

temporal processing and temporal encoding (Wang & Diana, 2016). Researchers have 

observed that HC is an area vulnerable to atrophy with or without pathological 
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underpinnings (Jagust, 2013). Although a network of brain regions supports memory, the 

HC plays a central role. As the HC degenerates, memory functions decline.  

MEMORY 
Neuroanatomical correlates of memory are found throughout the cortex 

(Eichenbaum & Cohen, 2004). Memory is divided into short-term memory and long-term 

memory, which are further divided into additional facets of memory (see Figure 1).  

Episodic memory (EM) is an extension of long-term memory.  

 EM is the ability to encode and retrieve specific events, or episodes over a 

lifetime (Tulving & Markowitsch, 1998; Nilsson et al., 2003). An example of an event is 

a soccer game.  Remembering the specific details of what happened during the soccer 

game (i.e. date, teams, location, etc.) is possible with EM. EM is processed primarily in 

the HC and is one of the first functions to decline in NA and AD (Jahn et al., 2013).  

Deficits in EM manifest as problems remembering events that were processed 

beyond the time frame of STM. EM is created using encoding and retrieval. Encoding is 

the first step and registers incoming information from the current event and determines 

how that episode will be remembered (Tulving, 1983). The second and last step is 

retrieval and takes place when the memory of the event is recalled.  The accuracy of the 

representation of the recalled memory is dependent on the amount of detail stored when 

the event took place (Tulving, 1983; Eichenbaum & Cohen, 2001). Encoding and 

retrieval are supported by the hippocampus and surrounding association areas (Wang and 

Zhou, 2002). Damage to these areas will cause distortions along with gaps in detail 

within the memory, which is apparent in both NA and AD. 
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As the brain ages, degeneration occurs throughout the cortex. Cortical atrophy 

occurs in several regions in tandem. For example, frontal lobe and parietal atrophy occur 

in conjunction with HCA in both NA and early AD (Yao et al., 2012). This review 

focuses on EM and HCA because of the unique vulnerability to pathology and aging 

observed in the HC that is not present in other cortical systems.  

Figure 1:  The divisions of memory. Adapted from Eichenbaum & Cohen (2001) and 
LaPointe (2005). 
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Figure 1 shows the overall breakdown of memory facets. Adapted from Eichenbaum & 
Cohen (2001) and LaPointe (2005) 
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Normal Aging 

HIPPOCAMPAL ATROPHY IN NORMAL AGING 
NA is characterized by noticeable declines in physical and cognitive domains 

such as orientation, short-term memory, and executive functioning in conjunction with 

cortical atrophy (Manasco, 2014).  In terms of NA atrophy, there are expected and 

unexpected patterns that occur within the HC.  

The literature surrounding HCA in NA is rapidly changing. HCA was thought to 

occur due to neuronal shrinkage as a result of aging (Freeman et al., 2008).  However, 

recent research has revealed that HCA in NA is more likely caused by underlying agents 

such as vascular deficits or pathology (Jagust, 2013).   Some atrophy has been attributed 

to beta-amyloid plaques, which are present in 20-40% of NA adults, but the direct effect 

of this underlying pathology is unclear (Jagust, 2013).   AD pathology occurring in NA 

adults does not cause cognitive deficits as severe as the deficits in dementia. Jack et al. 

(2015) investigated causes of NA atrophy using gender, age, and protein deposits as 

variables. They found that deficits as well as atrophy existed as a function of NA rather 

than due to AD pathology.  

The rate that HCA occurs depends on factors such as the number of synaptic 

connections, genetics, sex, and age (Burke & Barnes, 2006; Jack et al., 2015). Age has 

been shown to be the greatest contributing factor (Nilsson, 2003). Scahill et al. (2003) 

conducted a longitudinal investigation that focused on subjects ranging from 31 to 89 

years. They found that the rate of atrophy was positively related to the age of the subjects. 

The degree of atrophy in NA progressed in a random nonlinear pattern among 
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participants that were less than 70 years of age. After 70 years of age, an accelerated 

atrophy pattern distinct from the younger-aged groups was noted.  

After 70 years of age, the HC volume may be 7 to 8% less than the original 

volume (Bayles et al. et al., 1987). Barnes et al. (2009) quantified the rate at which HCA 

occurs in NA. The researchers analyzed longitudinal studies that had tracked the decline 

of HC volume. Using the average volume decreases and average length of study, the 

atrophy occurred at a rate of 1.4%. The slow rate of decline creates difficulties for 

researchers to observe and compare significant reductions of HCA to behavioral deficits 

because the changes would not be clinically relevant until decades later (Terry & 

Katzman, 2001).  

Other attempts to find significant HCA patterns have been undertaken. Promising 

methods in Alzheimer’s research have come from tracking atrophy in the individual HC 

subfields (De Flores et al., 2015). Researchers (Chadwick et al., 2014; Bender et al., 

2013) tracked HC subfield volumes in adults with ages ranging from 52 to 82 years but 

failed to produce consistent results. Studies observing HC subfield measurements in NA 

are not common, and the results are variable. Therefore, little evidence has been found 

suggesting which subfields are most likely to have atrophy due to shrinkage rather than 

pathology.  

EPISODIC MEMORY IN NORMAL AGING 
Episodic memory (EM) decline is slow due to the gradual rate of atrophy in NA 

(Tromp et al., 2015). The changes in NA are subtle; therefore the differences in EM 

throughout aging are not easily followed using NA progression as the sole context for 
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comparison. Researchers (Davis et al., 2013; Tromp et al., 2015; Berna et al., 2012) have 

attempted to create methods to effectively differentiate EM decline in NA from AD. Two 

designs that have been found to be effective are cross-sectional and longitudinal.  

Methodological Designs and Outcomes 

A cross-sectional study examines a behavior across two different groups (i.e. a 

young group and old group with similar demographics). A longitudinal study observes 

changes in one group over a long period of time. Researchers have used both methods to 

track EM decline but they do not produce uniform results from study to study.  

Berna et al. (2012) compared middle-aged adults (mean age of 55;0 years) and 

older adults (mean age of 73;9 years). They analyzed EM using an open-ended recall task 

that asked each participant to tell about three different events in their life. They 

concluded there were no differences in decline between the groups as a function of age. 

However, there are several studies that disprove this conclusion (Koen & Yonelinas, 

2014).  

Koen and Yonelinas (2014) found that EM deficits were greater in older adults 

who were considered normally aging. Nilsson (2003) and Rönnlund et al. (2005) found 

significant declines in EM with NA populations. Nilsson (2003) analyzed research 

findings related to NA and types of memory. He concluded that EM was unique because 

of the consistent demonstration of a temporal pattern of decline associated with NA 

progression. Rönnlund et al. (2005) used a cross-sectional design and longitudinal design 

to observe the effect NA has on EM within a 35 to 80 year age range. A battery of recall 

tasks (i.e. action recall, nouns, and statements) was used to measure verbal EM. 

Rönnlund et al. found comparable results in both designs that showed NA progression 

was strongly associated with EM decline after 60 years of age.  
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Reasons for Episodic Memory Research Differences 
Berna et al. (2012) speculated that differences within the methodology, timeline, 

and the samples in each study were the primary cause of discrepancies between EM 

studies. They noted that the criterion measured and analysis methods were not identical in 

the studies. Berna et al. analyzed the level of detail within the recalled information. They 

created a list of 11 details that should be present in the participant’s narratives (i.e. age, 

date, climate, preceding events, emotions) and assigned one point to each detail included. 

Rönnlund et al. (2005) used criterion measures designed to assess EM (recall of action 

and statements, verbal noun recognition, and verbal/action noun recall). Berna et al. 

(2012) analyzed details present during recall, while Rönnlund et al. (2005) analyzed 

recall ability across 30 to 70 years. Using the same criterion measures across studies will 

ensure a better comparison and eliminate effects of other variables such as timeline and 

sample characteristics.  

The most efficacious study design is longitudinal, but is difficult to carry out (De 

Flores et al., 2015) due to attrition and difficulty in acquiring a sample size with a large 

age range. Johnson (2004) compared the two methods. Cross-sectional studies are more 

feasible to design, but do not provide an accurate result when observing aging processes. 

The manner in which individuals age are variable, which makes controlling sample 

characteristics difficult. Longitudinal studies allow for continuity and minimize the risk 

of competing demographic factors between two separate groups. Although attrition 

compromises the validity in longitudinal studies, this problem can be minimized with 

large sample sizes (Rönnlund et al., 2005).  



 9 

 Extreme differences in the samples from each study were the main cause of 

contradictory results (Berna et al., 2012; Rönnlund et al., 2005; De Flores et al., 2015; 

Rossler et al., 2002). Rönnlund et al. found that demographic characteristics among the 

participants significantly affected the outcomes. For example, they found higher educated 

participants had better recall regardless of age. Furthermore, studies that encompassed 

participants from a large age range (35 to 85 years) saw greater deficits in EM than 

studies with smaller age ranges (55 to 75 years) (Berna et al., 2012). Controlling for 

differences between cohorts and including a wider age range will increase the certainty 

that the results are valid estimates of EM decline in NA.  

NORMAL AGING SUMMARY 
 Recent evidence suggests that NA age related brain volume loss is related not 

only to neuronal shrinkage but also to multiple underlying causes. However, the unique 

contributions of the underlying causes are unknown. Neurofibrillary tangles and beta-

amyloid plaques have been observed within the NA HC, which may contribute to 

neuronal death in NA. Despite the presence of pathology, individuals considered to be 

NA have no significant cognitive deficits. Atrophy in NA continues at a stable rate 

without marked acceleration.  

 There have been discrepancies in studies attempting to find significant EM 

deficits in NA. However, there is evidence to show EM deficits can occur as a function of 

age independent of pathology. Reasons for these discrepancies include study design and 

mismatched demographic characteristics in the sample populations.  
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Alzheimer’s Disease 

DEFINING ALZHEIMER’S DISEASE 
Alzheimer’s Disease (AD) is the most recognized and prevalent cause of 

dementia (Alzheimer’s Association, 2014). AD is characterized by the aberrant presence 

and development of neurofibrillary tangles and beta-amyloid plaques. The culmination of 

these proteinopathies causes neuronal death and subsequent cortical atrophy (Brookshire, 

2007; Apostolova et al., 2012). AD is incurable and results in death 5 to 20 years after 

diagnosis (Apostolova et al., 2012).  

AD atrophy manifests as memory, cognitive, language, and behavioral 

impairments that increase in severity as the disease progresses. The Alzheimer’s 

Association (2010) predicts that approximately 16 million Americans will be diagnosed 

with AD by 2050. On average, AD is diagnosed at 65 years of age (Mendez, 2012), but 

cases have seen in individuals 55 years and younger  (Moon, 2015).  

AD has been classified into a series of stages to help describe the progression for 

research and clinical purposes. Preclinical AD is characterized by development of 

pathology without any presenting behavioral symptoms (Tondelli et al., 2012). This stage 

can begin as early as 10 years before Alzheimer’s dementia is diagnosed (De Flores et al., 

2014; Sperling et al., 2014).  

 Predementia is a clinical term used to describe a stage presenting with cognitive 

deficits that do not impede daily activities (De Flores et al., 2015). This stage may or may 

not be associated with Mild Cognitive Impairment (MCI). MCI is used to describe 

individuals with symptoms falling between NA and AD with noticeable deficits that are 
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often confined to one domain (i.e. memory, executive functioning, attention) (Tang et al., 

2015; Christensen & O’Brien, 2000). Individuals with MCI may progress to AD or 

continue without any additional cognitive decline (Petersen, 2016).  

Three AD stages are used in both research and clinical settings (see Table 1). 

They are classified by the severity of AD pathology and symptoms present: 1) Early/Mild 

AD, 2) Middle/Moderate AD, and 3) Late/Severe AD (Bayles, 1975; Frisoni et al., 2009; 

Burke et al., 2015).  

Bayles (1975) and Frisoni et al. (2009) compiled evidence that tracked AD 

progression. Early AD is characterized by mild cognitive deficits that impede daily 

activities on a basic level. The individual might need help with complex tasks (i.e. 

finances, cooking, driving, medical attention). They will present with poor ability to 

recall events that happened with complete and accurate detail. 

Moderate AD presents with behaviors that are correlated with the degree of 

underlying atrophy. At this stage there is moderate difficulty completing basic tasks and 

the individual may need reminders to eat, bathe, or find an object. There are increased 

memory deficits for activities that happened further in the past and individuals in this 

stage may not recognize familiar persons or locations (Bayles, 1975; Frisoni et al., 2009; 

Burke et al., 2015).  

Late AD atrophy is characterized by severe deficits in all behavioral and cognitive 

domains. The person will be withdrawn with impaired ability to control emotional 

responses. Help is required for completing basic activities (i.e. feeding, dressing) 

(Bayles,1975; Frisoni et al., 2009; Burke et al., 2015).  
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Table 1: Stages of Alzheimer’s Disease. Adapted from Bayles, 1975; Frisoni et al., 
2009; Burke et al., 2015 

 

AD behavioral deficits rarely are present at pathology onset and make early 

identification procedures unreliable (Sperling et al., 2014). Imaging studies provide an 

earlier detection method. One of the main goals of AD imaging studies is to determine 

structural markers to assist in early diagnosis (Scheltens et al., 1992; Sluimer et al., 

2009). A strong indicator of AD is rapid and significant atrophy in the hippocampus and 

surrounding areas. 

HIPPOCAMPAL ATROPHY IN ALZHEIMER’S DISEASE 
The overall HCA rate in AD is rapid and unpredictable. Atrophy rate is affected 

by age, dementia onset, health factors, sex, and education level (Leoutsakos et al., 2012; 

Tschanz et al., 2011; Xie et al., 2009). Calculating an average HCA rate is possible 

(Barnes et al., 2009), but does not provide enough HCA information due to variability 

Stage Early/Mild AD Middle/Moderate AD Late/Severe AD  
 

Clinical 
Progression 

• Forgets details/new 
information 

• Poor word recall 
• Irritability 
• Problem solving 

impaired 
• Spatial disorientation 
• Difficulty with advanced 

tasks 
♦ Driving 
♦ Finances 
♦ Medicine 

• Decline in long-term 
memory 

• Empty Speech 
• Severe logistic deficits 
• Misperception/loss of 

time 
• Fail to recognize friends 

and family.  
• Need reminders for basic 

routines: 
♦ When to eat. 
♦ When to bathe. 
♦ Bathroom location 

• Problems with one-step 
commands 

• Emotional lability 
• Withdrawn 
• Little conversation 
• Need assistance 

♦ Dressing 
♦ Feeding 
♦ Bowel movement 

 

Cumulative 
Atrophy 

• Entorhinal Cortex 
• Hippocampal 

Association area 
• Cingulate gyrus 

• Hippocampus 
• Prefrontal Gyrus 
• Sensorimotor Cortex 

• Primary visual cortex 
• Visual association areas 
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among individuals with AD pathology. Direct examination of longitudinal studies 

tracking HCA will provide better information to identify early AD atrophy. 

Fjell et al. (2009) and Apostolova et al. (2012) examined early atrophy patterns 

over a 2-year period. Each study employed a large sample size, which allowed 

generalization of the results to the population. These results replicated previous studies 

that observed the HC and entorhinal cortex showed the most atrophy because atrophy 

originated in those structures. However, overall HC volume loss is not a dependable early 

AD diagnostic tool (Scheltens et al., 1992; Fjell et al., 2009; Mueller et al. 2010; 

Apostolova et al., 2012). Examination of individual structures within the HC creates 

specificity and increases diagnostic accuracy.  

Hippocampal Subfields 
HC volume can be attributed to different atrophy combinations in hippocampal 

subfields. Mueller et al. (2010) found there were inherent differences in HC subfield 

atrophy in AD and other aging patterns (i.e. MCI and NA). The researchers compared 

total HCA to the atrophy in each subfield to test which volume would provide the best 

indicator of early AD atrophy.  

The HC consists of the subiculum, dentate gyrus, and three cornu ammonis 

sectors labeled CA1-3 respectively (Mueller at al., 2010; De Flores et al., 2015). Mueller 

et al. (2010) showed HC subfields do not atrophy simultaneously or uniformly. Instead, 

each part atrophies at a different rate in response to pathology causing cell death. In AD, 

CA1, subiculum, and the entorhinal cortex showed severe atrophy while CA2 and the 
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dentate gyrus were relatively spared. Additionally, Mueller et al. (2010) found that CA1-

2 atrophy could be an indicator of a transition from MCI to AD.  

The summation of subfield atrophy resulted in a significant reduction in overall 

hippocampal volume in AD. The investigators also found overall HC volume in early AD 

was difficult to distinguish from MCI, which indicates HC subfields are a more effective 

diagnostic marker (De Flores et al., 2015).  

AD gradually affects the entire brain (See Table 1). Using HC subfields will 

increase diagnostic accuracy, but including other cortical areas will continue to increase 

accuracy (Mueller et al., 2010). Including early memory deficits to detect AD will further 

increase diagnostic accuracy because a clinical component is added that can be observed 

without imaging (Bäckman et al., 2001). However, the onset of pathology and deficits are 

not simultaneous which often leads to memory deficits presenting after AD atrophy has 

set in (Sperling et al., 2014; De Flores et al., 2015).  

EPISODIC MEMORY IN ALZHEIMER’S DISEASE 
 

EM is one of the first behavioral symptoms to manifest in AD and presents after 

significant HCA has occurred. Researchers (see review by Tromp et al., 2015; Leube et 

al., 2008, Tomadesso et al., 2015) have attempted to remedy this ineffectiveness by 

conducting studies that apply what is known about preclinical AD in terms of atrophy and 

severity in order to detect early EM deficits. 

Bäckman et al. (2001) investigated whether EM deficits associated with 

preclinical AD could be detected accurately. Research was unclear in terms of whether 
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supported or unsupported retrieval tasks were more sensitive (Bäckman et al., 2001). 

Therefore, the investigators used recognition (supported retrieval) and free recall 

(unsupported retrieval) to find the most efficacious method. They found that EM 

impairment is detectable over six years before AD is diagnosed. However, this was 

accomplished using statistical analysis. The researchers postulated that these deficits 

could not be detected using clinical tests alone.  

Bäckman et al. (2001) found individuals in preclinical AD have difficulty 

encoding and consolidating episodic information. Wang and Zhou (2002) found similar 

results when examining individuals with MCI using visual and verbal episodic memory 

tasks. They found cognitively impaired individuals encoded 22.8% less information 

compared to age-matched peers. They attributed these weaknesses to atrophy in the 

entorhinal cortex, which is considered to be the source of neural encoding. Entorhinal 

atrophy is expressed more boldly in early AD than MCI, which suggests that EM deficits 

occur due to problems in cognitive consolidation of new episodes (Weintraub et al., 

2012). Within the same study, Wang and Zhou (2002) found that the impaired group 

retrieved 6.84% less information than the control group. Although this is less than the 

percentage found in encoding, a measurable decrease in both processes suggests EM is 

impaired early.  

Lange et al. (2002) discovered a longitudinal pattern of decline in EM word recall 

and story retell tasks that took place slowly over 3 years before AD was diagnosed. A 

slow behavioral decline, however, is possible despite rapid hippocampal degeneration. 

Relatedly, the pattern observed by Lange et al. (2002) allowed them to deduce that 
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individuals with mild EM deficits coupled with a sudden atrophic decline are at risk for 

AD. However, this fact alone does not aid in early detection; identifying factors that 

differentiate AD EM deficits from other cognitive decline are needed.  

Tomadesso et al. (2015) conducted a study that used imaging paired with EM 

assessments to specifically investigate EM deficits in predementia. They compared 

individuals with MCI to NA adult performances in recall of recent events (within the past 

10 years) and remote events (occurring 20 to 30 years prior). The researchers found each 

group had similar difficulty recalling remote events.  More importantly, they observed 

that recent events were difficult for the MCI and NA groups, but were more difficult for 

the MCI group to recall than the NA group. Forgetting recent events is consistent with 

anterograde amnesia which is a deficit seen in both AD and NA. This study showed that 

even in predementia, there are marked differences in EM when compared to NA. 

However, more studies targeting MCI and predementia are needed to increase the 

likelihood of identifying early AD from EM decline.  

ALZHEIMER’S DISEASE SUMMARY  
 Atrophy in AD is attributed to cell death catalyzed by underlying proteinopathies. 

Atrophy manifests in the HC and surrounding areas and continues to grow at a rapid rate 

as the amount of pathology grows. When distinguishing preclinical AD from NA, overall 

HCA is not an effective tool because volumes for each group are similar. A better way to 

distinguish the two aging patterns is to assess degeneration in the specific hippocampal 

subfields.  



 17 

 EM is processed within the HC and consequently is one of the first cognitive 

deficits to be observed. While EM deficits are significant and severely limit the 

individual’s activities of daily living in moderate and severe AD, the deficits are subtler 

in MCI and predementia. Researchers have attempted to describe EM deficits in 

predementia. However, only recently have researchers identified how EM deficits in 

predementia differ from deficits in NA.  
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Normal Aging and Alzheimer’s Disease Parallels 

Later stages of AD are distinguishable from NA due to significant increases in 

rate and degree of atrophy (Scahill et al., 2003). NA and preclinical AD, however, do not 

have obvious differences. Overall, the two aging patterns have significant similarities in 

areas of atrophy, cortical makeup, and episodic deficits.  

HIPPOCAMPAL ATROPHY 

Neurological underpinnings are the biggest causes of confusion when 

distinguishing preclinical AD from NA. Freeman (2008) observed that in NA volume 

loss, the number of neurons remained the same without neuronal death. However, other 

studies have observed a marked degree of neuronal death associated with NA that closely 

matches that of preclinical AD (Jack et al., 2015). This adds support to the argument that 

NA atrophy has an underlying cause that is not simply the result of old age.   

On average, AD HCA can manifest years before there is enough evidence to 

diagnose AD during the preclinical stage (Tondelli et al., 2012). The similarities in 

cortical make-up allow for a comparable rate of atrophy to occur in both NA and 

preclinical AD. Once AD pathology begins, the atrophy rates of NA and early AD are not 

comparable (Barnes et al, 2009). At the time AD is diagnosed, HCA is significantly 

greater in AD than NA. As AD progresses into the middle and late stages, atrophy rates 

increase in relation to the amount of pathology in the cortex causing increased cell death 

(Brookshire, 2007; Apostolova et al., 2012).  Although total HC volume loss indicates the 

general amount of pathology present, this measure cannot be used to effectively 

distinguish preclinical AD from NA.  

Only measuring total HC volume loss does not clearly differentiate one from the 

other (Mueller et al. 2010; Apostolova et al., 2012). This is because different subregions 
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atrophy at different rates depending on what is causing that atrophy. Therefore total HC 

atrophy in preclinical AD may appear similar to NA because the average volume loss is 

the same. While research has shown different subfields atrophy when exposed to AD 

proteinopathies, there are few studies that study HC subfields and NA (De Flores et al., 

2015).  

Hippocampal atrophy causes many deficits in both NA and AD, but the most 

noteworthy are episodic memory deficits. EM deficits in NA are comparable to 

predementia AD because they do not impede daily activities (De Flores et al., 2015). 

However, the parallels do not move past this stage. The degree of atrophy in NA reflects 

the degree of severity seen in EM deficits in NA. 

EPISODIC MEMORY  

Researchers found that the entorhinal cortex was one of the first areas to atrophy 

in AD (Mueller et al., 2010; De Flores et al., 2015). This area correlates with encoding 

because this process originates in the entorhinal cortex. Encoding deficits will cause the 

individual to incorrectly store an event or omit details from the event. Therefore, when 

the person goes to retrieve the event, information on when the event occurred, who was 

there or what happened might be missing. This is consistent with anterograde amnesia, an 

extension of episodic memory seen in AD (Weintraub et al., 2012, Nestor et al. (2003).  

Currently, there is not a reliable manner to differentiate EM deficits in NA and 

AD and predict underlying atrophy (Bakkour et al., 2013; Bäckman et al., 2001). Mild 

EM deficits often co-occur with severe HC atrophy as well as moderate atrophy. 

However, function reflects structure more closely in NA than in AD (Bakkour et al., 

2013). Therefore, EM deficits will often be proportional to the degree of hippocampal 
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atrophy in NA. Regardless, using EM alone to predict atrophy is not efficacious because 

there are other behavioral components in addition to EM that characterize AD and NA.  
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Unknown Factors Surrounding Alzheimer’s Disease and Normal Aging 

Research has yielded promising methods to detect AD earlier in the disease, but 

there are fundamental aspects of AD that are unknown. The origin of AD pathology is a 

factor that has not been discovered (Davis et al., 2013). Researchers have attempted to 

identify what causes beta-amyloid plaques and neurofibrillary tangles to develop and 

cause neuronal death. Individuals have been found to have genetic predisposition to 

familial AD. However, genetic components only account for a small percentage of AD 

cases and do not guarantee an AD diagnosis (Burke et al., 2015). Furthermore, because 

the origin of AD pathology is unknown, scientists are unable to predict when NA will 

progress to AD. An inadequate amount of information has lead to unanswered questions 

surrounding areas and causes of atrophy as well as demographic factors.  

HC subfields have produced promising results to diagnose AD and even predict 

changes from MCI to AD (Mueller et al., 2010; De Flores et al., 2015). However, 

researchers have not found a subfield that predicts a change from NA to AD. This lack of 

information stems from inadequate study designs comparing HC subfields in NA 

populations. Researchers are building on these methods to increase efficient observation 

and comparisons. Causes of atrophy in NA are more complex than areas of atrophy.  

Research has demonstrated that AD pathology occurs in NA individuals without 

the accompanying deficits in AD (Jagust, 2013). Within these individuals, there is 

reduced cortical thickness coupled with cognitive deficits that are apparent compared to 

NA counterparts without pathology. However, NA individuals with pathology are not 

comparative to individuals with early AD because neither atrophy nor behavioral decline 

is close in severity. NA individuals with pathology may never progress to MCI or AD, 

thus the trajectory from NA to AD is variable and unknown. Researchers have cited 



 22 

cognitive reserve as a possible cause of the differentiation in NA and AD with shared 

pathology (Rentz et al., 2010).  

Cognitive reserve is a term used to generalize the effect several demographic 

factors can have on how an individual responds to presence of AD pathology (Rentz et 

al., 2010). The researchers determined individuals with higher cognitive reserve had less 

cognitive deficits in the face of AD pathology (i.e. episodic memory measurements). 

However, the elements that individually make up cognitive reserve are diverse as they 

consist of demographic factors unique to each person. This in turn adds a degree of 

variability that does not identify what specifically preserves cognitive function. The 

effect various demographic characteristics have on formation of AD and subsequent 

progression is another unknown element.  

The greatest demographic factors that have been shown to affect aging with AD 

are gender, socio-economic status (SES), and education (Seo et al., 2011; Jack eta al., 

2015). Other factors such as health and IQ have also been taken into account in other 

studies (Stern et al., 1992). Overall, individuals with higher education levels have less 

cognitive deficits than those with lower levels (Rentz et al., 2010). There is, however, 

uncertainty in this distinction because studies have shown that education levels, gender, 

and SES are interrelated and affect one another. For example, men tend to have higher 

education levels as well as SES, and proved to have higher cognitive reserve in the study 

done by Rentz et al. (2010). Therefore, the actual influence of specific, individual 

demographic features on AD is unknown.  

Although there are breakthroughs in early AD diagnostic tools, the progress is 

limited. This will change as researchers determine what causes AD pathology to form and 

then disrupt NA. Several reasons that have contributed to unknown AD origin are 

inadequate methods to track HC subfield atrophy in NA as well as inadequate 
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understanding of the effect demographic factors have on cognitive reserve in AD and 

NA.  
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Conclusion 

NA and AD patterns of aging are least distinguishable during the earlier stages of 

AD in terms of degree of atrophy and behavioral correlates. Beyond early stages, AD 

atrophy and EM deficits increase rapidly due to accelerated neuronal death while NA 

remains stable and muted. In addition to underlying cause, subfield atrophy contributes to 

differentiating HCA rates in NA and AD. Although EM deficits correlate with the pattern 

of atrophy observed in NA and AD, they cannot accurately predict degree of atrophy in 

AD as in NA. EM is slowly progressive without significant observable structural damage 

in NA, while EM is more apparent in AD due to areas of atrophy targeting specific 

neurological correlates in the entorhinal cortex. As AD progresses, other facets of 

memory and cognition will deteriorate as more of the brain is affected. However, cortical 

atrophy in NA will not produce EM deficits as severe as the deficits observed in AD. 

Despite advances in AD treatment and diagnostics, the cause of pathology in NA and AD 

is unknown. Furthermore, the aspect of degeneration that causes NA to change into AD is 

also unknown. This is crucial information that, once discovered, will lead research to 

identify when AD begins to become apparent. Until then, researchers will continue to 

explore differential pathological patterns in NA from AD.  
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