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STRATEGIC POLITICAL RESOURCE ALLOCATION 

Nick Mastronardi, Ph.D. 
The University of Texas at Austin, 2009 

Kenneth Hendricks 

Economics is the study of the allocation of resources. Since Arrow's Fundamental 

Welfare Theorems, we know that competitive-markets achieve Pareto allocations when 

governments correct market failures.  Thus, it has largely been the mission of economists to 

serve as ‘Market Engineers’: To identify and quantify market failures so the government can 

implement Pareto-improving policy (make everyone better without making anyone worse). 

Do Pareto- improving policies get implemented?  How does policy become 

implemented?  Achieving a Pareto efficient allocation of a nation’s resources requires studying 

the implementation of policy, and therefore studying the allocation of political resources that 

influence policy. 

Policy implementation begins with the electoral process.  In this dissertation, I use 

auction analysis, econometrics, and game theory to study political resource allocations in the 

electoral process.  

This dissertation consists of three research papers:  

Finance-Augmented Median-Voter Model 

Vote Empirics 

Colonel Blotto Strategies 

The Finance-Augmented Median-Voter Model postulates that candidates' campaign 

expenditures are bids in a first-price asymmetric all-pay auction in order to explain campaign 

expenditure behavior.  

Vote Empirics empirically analyzes the impacts of campaign expenditures, incumbency 

status, and district voter registration statistics on observed vote-share results from the 2004 

congressional election. 
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Colonel Blotto Strategies postulates that parties' campaign allocations across 

congressional districts may be a version of the classic Col Blotto game from Game Theory.  While 

some equilibrium strategies and equilibrium payoffs have been identified, this paper completely 

characterizes players' optimal strategies. 

In total, this dissertation solves candidates' optimal campaign expenditure strategies 

when campaign expenditures are bids in an all-pay auction.  The analysis demonstrates the need 

for understanding exactly the impacts of various factors, including strategic expenditures, on 

final vote results.  The research uses econometric techniques to identify the effects.  Last, the 

research derives the complete characterization of Col Blotto strategies.  Discussed extensions 

provide testable predictions for cross-district Party contributions. 

I present this research not as a final statement to the literature, but in hopes that future 

research will continue its explanation of political resource allocation.  An even greater hope is 

that in time this literature will be used to identify optimal "policy-influencing policies"; 

constitutional election policies that provide for the implementation of Pareto-improving 

government policies. 
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Abstract 

I introduce a micro-founded model of campaign finance where candidates compete for elected 
office.  Their expenditures earn shares of a pivotal voting mass via advertising. Given the discrete nature 
of electoral outcomes, the expenditures are bids in a first-price asymmetric all-pay auction. In equilibrium, 
candidates employ mixed-Nash expenditure-level strategies. The model is used to analyze the influence of 
campaign finance on the electoral process while explaining that (1) candidates rarely employ the strategy 
of expending 100% of their budgets and that (2) there exists variation in expenditure strategies. 
Augmenting the Median Voter Model with this paper’s simple financial game yields intuitive equilibria 
and, in the case when the pivotal voting mass goes to zero (the importance of the finance game 
diminishes), the model returns the classical MVM result.   

Chapter 1.  Finance-Augmented Median-Voter-Model 

mailto:mastronardi@mail.utexas.edu
http://mastroresearch.googlepages.com/
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1 Introduction 

A recurring debate in American politics concerns the constitutionality and 

desirability of campaign finance reform.  Calls for deregulation argue that limitations are 

infringements on the 1st amendment liberty "freedom of speech."  On the other hand, 

those in favor of campaign finance regulation argue that expenditures are too significant 

a factor in electoral outcomes and should therefore be controlled.  The Lucas-critique 

plagues current finance-reform analysis.  Reform policies can result in systematic 

differences in expenditure behavior.  This paper seeks a structural explanation of 

campaign expenditures which can be used to identify the counterfactual expenditure 

strategies under different reforms.   

The standard model of the electoral process is the Median-Voter-Model.  While 

MVM is simple and intuitive, it does not account for the role of campaign finances.  

Campaign expenditures constitute a sizeable sum, rarely equal 100% of budgets, and 

exhibit variation across candidates. 

Table 1 

Year 

Total Presidential 

Campaign Expenditures 

Total House Campaign 

Expenditures 

Total House 

Finances Raised 

2004 $845M $880M $1.7B 

Table 2 

Year 

Average 

Candidate 

Expenditure 

Average 

Candidate 

Budget 

Variance in 

Candidates’ 

% Funds Expended 

2004 $1M $2M 4% 
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How do we explain campaign expenditure behavior?  More specifically, can we 

explain with a micro-founded structural model why candidates rarely employ 100% 

expenditure strategies, and that there exists variation in expenditure strategies? 

Although it has been suggested empirically that expenditures may have minor 

impact on election results, this research shows that campaign finance can have a non-

negligible impact; elections exhibit expenditure behavior like bids in an asymmetric all-

pay auction.  

The organization for the remainder of this paper is as follows: 

 Section 2 provides a brief review of the debate concerning the influence of

campaign finance on the electoral process

 Section 3 briefly outlines the Finance-Augmented Median Voter Model

 Section 4, I explain how to compute the model and derive the equilibrium

 Section 5 states the equilibrium results and provides qualitative analysis

 Section 6 concludes.

2 Literature Review 

Levitt (94) and Gerber (98) both address the influence of campaign finance on 

electoral results empirically.  They show that candidates’ expenditures have marginal 

impact on votes earned, however their models’ candidates always exhaust their 

budgets. To account for this weakness, and conduct counterfactual analysis of campaign 

finance reform policies not subject to the Lucas critique, it is desirable to seek a micro-

founded structural model of expenditures. 

Prat (00) develops a structural model of campaign spending and the electoral 

process.  He asserts that campaign spending buys advertising which sways pivotal 
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voters, yet also assumes that candidates exhaust their entire budget (as well as makes 

restrictive assumptions on special-interest contribution behavior.) 

The contribution of this paper is to explain the role of campaign finances on the 

electoral process similar to Prat, in that spending sways pivotal voters through 

advertising, while allowing less than 100% expenditure strategies and variation in 

expenditure strategies.   

Given the discrete nature of electoral outcomes, I model candidates’ 

expenditure decisions as bids in a First-Price Asymmetric All-Pay auction.  Amann & 

Leininger (96) solve Nash strategies to the Fpaapa, and suggest applicability in politico-

economy.  I use their proof in calculating candidates' optimal expenditure strategies and 

extend their findings by solving Nash strategies under additive asymmetries in the 

auction environment.   

3 The Model 

This model extends the Median-Voter-Model by allowing campaign expenditures 

to influence the amount of votes received by each candidate.  The environment consists 

of a voting district d in which a unit mass of voters belong to one of three categories 

(𝑏0, 𝑏1, 𝜇), and there are two office-seeking candidates (P0, P1).  Voters of type 𝑏0 

resolutely back the Party-0 candidate P0.  Similarly  𝑏1 voters vote for candidate P1.  

More interestingly, voters of type 𝜇 respond to political advertising bought with 

campaign expenditures.   

Under a proportional advertising technology, if P0 expends x and P1 expends y, 

then P0 earns 𝜇 ∙
𝑥

𝑥+𝑦
 pivotal voters and P1 earns  𝜇 ∙

𝑦

𝑥+𝑦
 pivotal voters.1  

1 I discuss more general advertising technologies later. 
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The players of the game are the 2 candidates who must decide how much they 

will expend on their campaign.  The strategy space for a candidate is any positive dollar 

level.  Candidate P0 chooses expenditure level 𝑥 ≥ 0, and candidate P1 chooses 𝑦 ≥ 0.  

Table 3 

Candidate 

Resolute Voting Mass Expenditure Total Votes Earned 

P0 𝑏0 𝑥 𝑏0 +  𝜇 ∙
𝑥

𝑥 + 𝑦

P1 𝑏1 𝑦 𝑏1 + 𝜇 ∙
𝑦

𝑥 + 𝑦

For the payoff-structure, candidates are risk-neutral representatives of the party. 

The implications of relaxing the payoff structure are discussed in Section V.  Candidates’ 

payoffs are allowed to be asymmetric (includes case 𝑣0 = 𝑣1) .  

Table 4 

Candidate Payoff if Win Payoff if Lose 

P0 𝑣0 − 𝑥 −𝑥 

P1 𝑣1 − 𝑦 −𝑦 

Payoff valuations are assumed common knowledge.  In the future, this 

assumption can be relaxed with only minor complications to the equilibrium.  Having 

political contributions as public record, parties’ candidates have a very good idea about 

how much the office is valued by the other candidate’s party.  I assume that the 

candidates know each others’ valuations. 

The mathematical formulation of the game is as follows: 

P0: 𝑚𝑎𝑥𝑥       𝑣0𝕀𝑤𝑖𝑛 0
− 𝑥  𝑠𝑡     𝑥 ≥ 0 

P1: 𝑚𝑎𝑥𝑦       𝑣1𝕀𝑤𝑖𝑛 1
− 𝑦  𝑠𝑡     𝑦 ≥ 0 
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The condition for which candidate wins is standard ‘majority wins’: 

Table 5 

Condition Winning Candidate 

𝑏0 +  𝜇 ∙
𝑥

𝑥 + 𝑦
 >  𝑏1 + 𝜇 ∙

𝑦

𝑥 + 𝑦
P0 

𝑏0 +  𝜇 ∙
𝑥

𝑥 + 𝑦
 <  𝑏1 + 𝜇 ∙

𝑦

𝑥 + 𝑦
P1 

4 Derivation of Equilibrium & Calculation of Election Probabilities 

THM 1: 

Either only 1 candidate runs (the other concedes), or both candidates run and 

both candidates employ non-trivial mixed-Nash equilibrium expenditure strategies. 

Proof of thm1: 

Consider the two possible conditions. 

Table 6 

Condition Qualitative Description Case 

 𝑏1 − 𝑏0 > 𝜇 

The resolute-voter mass-gap is 

larger than the mass of 

available swing voters. 

Concession. 

The candidate from the 

disadvantaged party never enters. 

 𝑏1 − 𝑏0 < 𝜇 

The mass of voters responsive 

to advertising can influence the 

election outcome. 

Lemma 1:  

Both candidates run and engage in 

an expenditure game with a 

Mixed-Nash Equilibrium. 
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Proof of lemma1: 

In order to leverage the similarity among possible sub-states for  𝑏1 − 𝑏0 < 𝜇 ,   I fully 

characterize the parameter state space.  I divide the regions according to which 

candidate would win if both expend their full valuation.  This allows me to identify the 

candidate with the overall (Finance-Augmented Median Voter Model, FAMVM) 

advantage in that region. 

𝑏 ≡ 𝑏1 − 𝑏0 is the horizontal axis. 

𝜇 is the vertical axis 

Characterization of districts’ 𝒃,𝝁,𝒗 state space 

Figure 1 

0-1 1

Concession to P1
Concession to P0

I.

II.

III.IV.

V.

VI.

Equivalently

Light green indicates set of valuations such that,  
if both candidates were to expend their valuation, 
the game would result in a tie. 
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Table 7 

Condition State Qualitative Description 

0 ≤ 𝜇 <  𝑏1 − 𝑏0 = 𝑏 I. Concession. 
Previously Discussed. 

𝜇 > 𝑏 > 0 
& 

𝑏1 + 𝜇 ∙ (
𝑣1

𝑣0 + 𝑣1
) > 𝑏0 + 𝜇 ∙ (

𝑣0

𝑣0 + 𝑣1
) 

II. b>0, ∴ P1 has MVM advantage. 
Valuations s.t. if both fully 

expend,  
P1 would win.   

P1 retains an FAMVM 
advantage.   

𝜇 > 𝑏 > 0 
& 

𝑏0 + 𝜇 ∙ (
𝑣0

𝑣0 + 𝑣1
) > 𝑏1 + 𝜇 ∙ (

𝑣1

𝑣0 + 𝑣1
) 

III. b>0, ∴ P1 has MVM advantage. 
But, valuations s.t. if both fully 

expend, 
P0 would win.   

 P0 obtains an FAMVM 
advantage. 

𝜇 > (−𝑏) > 0 
& 

𝑏1 + 𝜇 ∙ (
𝑣1

𝑣0 + 𝑣1
) > 𝑏0 + 𝜇 ∙ (

𝑣0

𝑣0 + 𝑣1
) 

IV. b<0, ∴ P0 has MVM advantage. 
But, valuations s.t. if both fully 

expend,  
P1 would win.  

P1 obtains an FAMVM 
advantage. 

𝜇 >  −𝑏 > 0 
& 

𝑏0 + 𝜇 ∙ (
𝑣0

𝑣0 + 𝑣1
) > 𝑏1 + 𝜇 ∙ (

𝑣1

𝑣0 + 𝑣1
) 

V. b<0, ∴ P0 has MVM advantage. 
Valuations such that if both fully 

expend,  
P0 would win. 

P0 retains an FAMVM 
advantage. 

0 ≤ 𝜇 < (−𝑏) VI. Concession. 
Previously Discussed. 

Consider Case II. (Similar analysis of cases III-V) 

P0: 𝑚𝑎𝑥𝑥       𝑣0𝕀𝑤𝑖𝑛 0
− 𝑥  𝑠𝑡     𝑥 ≥ 0 

P1: 𝑚𝑎𝑥𝑦       𝑣1𝕀𝑤𝑖𝑛 1
− 𝑦  𝑠𝑡     𝑦 ≥ 0 

Where 

{𝑏0 +  𝜇 ∙
𝑥

𝑥+𝑦
 >  𝑏1 + 𝜇 ∙

𝑦

𝑥+𝑦
 } ⇒  𝑤𝑖𝑛0 

{𝑏1 +  𝜇 ∙
𝑦

𝑥+𝑦
 >  𝑏0 +  𝜇 ∙

𝑥

𝑥+𝑦
} ⇒  𝑤𝑖𝑛1 
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Equivalently (multiply thru by ‘x+y’, use 𝑏 = 𝑏1 − 𝑏0, and collect terms) 

{𝑥 ∙  −𝑏 + 𝜇 > 𝑦 ∙  𝑏 + 𝜇 } ⇒  𝑤𝑖𝑛0 

{𝑦 ∙  𝑏 + 𝜇 > 𝑥 ∙  −𝑏 + 𝜇 } ⇒  𝑤𝑖𝑛1 

Define 𝐺0 and  𝐺1  to be the expenditure-level strategy CDFs for P0 and P1 

respectively.  Thus, 𝐺1(𝑥 ∙
𝜇−𝑏

𝜇+𝑏
 ) is the probability that P1 expends less than 𝑥 ∙

𝜇−𝑏

𝜇+𝑏
 , 

yielding that P0 would win for his expenditure of x. Similarly 𝐺0(𝑦 ∙
𝜇+𝑏

𝜇−𝑏
 ) is the 

probability that P1 wins for expenditure y.  Characterizing these functions is the goal of 

our analysis.  Showing that 𝐺0 and 𝐺1 are non-trivial distributions (not the delta-

function) implies that candidates are employing true mixed-Nash strategies in 

equilibrium. 

P0: 𝑚𝑎𝑥𝑥       𝑣0 ∙ 𝐺1(𝑥 ∙
𝜇−𝑏

𝜇+𝑏
 ) − 𝑥  𝑠𝑡     𝑥 ≥ 0 

P1: 𝑚𝑎𝑥𝑦       𝑣1 ∙ 𝐺0(𝑦 ∙
𝜇+𝑏

𝜇−𝑏
 ) − 𝑦  𝑠𝑡     𝑦 ≥ 0 

To obtain closed-form expressions for 𝐺0 and 𝐺1, differentiate with respect to 

the endogenous variable (Appendix 1) or, more simply, recognize that a candidate will 

receive an equal expected payoff for any expenditure-level he would mix among.  If he 

did not, then that expenditure level would no longer be a best-reply, and therefore in 

the support of his optimal strategy.   

Defining 𝑘0 and 𝑘1 to be the optimal expected payoff values for P0 and P1 respectively 

yields: 𝑣0 ∙ 𝐺1  𝑥 ∙
𝜇−𝑏

𝜇+𝑏
− 𝑥 = 𝑘0 

𝑣1 ∙ 𝐺0  𝑦 ∙
𝜇 + 𝑏

𝜇 − 𝑏
− 𝑦 = 𝑘1 
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Rearranging and changing variables yields the following expressions for 𝐺0 and 𝐺1 

𝐺0 𝑥 =
𝑘1 + 𝑥 ∙ (

𝜇 − 𝑏
𝜇 + 𝑏

)

𝑣1

𝐺1 𝑦 =
𝑘0 + 𝑦 ∙ (

𝜇 + 𝑏
𝜇 − 𝑏

)

𝑣0

I now impose 2 interpretable economic boundary conditions, Propositions 1 & 2, in 

order to identify  𝑘0 and 𝑘1. 

Proposition1: In case II (and IV) P0 will never expend more than his valuation  𝑣0. 

Expending $0 earns a 0 payoff while expending >𝑣0 always earn payoffs<0. 

Therefore, there is no chance P0 expends >  𝑣0 .  ∴  𝐺0 𝑣0 =1 ∎ 

By Proposition1: 

𝐺0 𝑣0 =
𝑘1 + 𝑣0 ∙ (

𝜇 − 𝑏
𝜇 + 𝑏

)

𝑣1
= 1   ⇒    𝑘1 = 𝑣1 − 𝑣0 ∙ (

𝜇 − 𝑏

𝜇 + 𝑏
) 

Proposition2:  In case II, P1 will never expend more than 𝑣0 ∙ (
𝜇−𝑏

𝜇+𝑏
).    ∴   𝐺1(𝑣0 ∙

(
𝜇−𝑏

𝜇+𝑏
))=1. 

Considering the MVM advantage and his finances, any extra would be superfluous. 

Wtf 𝑦  st:  𝑏0 + 𝜇 ∙
𝑣0

𝑣0+𝑦 
= 𝑏1 + 𝜇 ∙ (

𝑦 

𝑣0+𝑦 
) ⇒ 𝑦 = 𝑣0 ∙ (

𝜇−𝑏

𝜇+𝑏
) ∎ 

By Propostion2: 𝐺1(𝑣0 ∙ (
𝜇−𝑏

𝜇+𝑏
)) =

𝑘0+𝑉0∙ 
𝜇−𝑏

𝜇+𝑏
∙(
𝜇+𝑏

𝜇−𝑏
)

𝑣0
= 1 ⇒  𝑘0 = 0 
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Corollary to Proposition2:   In region II (with risk-neutral preferences), P1 is able to 

ensure that P0 earns 0 expected payoff in equilibrium.         𝑘0 = 0 

Substituting 𝑘0 and 𝑘1 and simplifying, we characterize 𝐺0 and 𝐺1 

𝐺0 𝑥 =
𝑣1 − 𝑣0 ∙

𝜇 − 𝑏
𝜇 + 𝑏

+ 𝑥 ∙
𝜇 − 𝑏
𝜇 + 𝑏

𝑣1

𝐺0 𝑥 = 1 −
𝑣0

𝑣1
∙
𝜇 − 𝑏

𝜇 + 𝑏
+

𝑥

𝑣1
∙ (
𝜇 − 𝑏

𝜇 + 𝑏
) 

𝐺1 𝑦 =
𝑦

𝑣0
∙ (
𝜇 + 𝑏

𝜇 − 𝑏
) 

Regions III-V are analogous.  In III, since P0 has obtained the FAMVM advantage, we now 

get 

𝐺0 𝑥 =
𝑥

𝑣1
∙ (

𝜇−𝑏

𝜇+𝑏
) & 𝐺1 𝑦 = 1 −

𝑣1

𝑣0
∙

𝜇+𝑏

𝜇−𝑏
+

𝑦

𝑣0
∙ (

𝜇+𝑏

𝜇−𝑏
) 

Regions IV (b<0), since P1 has obtained the FAMVM advantage we get the same as II. 

𝐺0 𝑥 = 1 −
𝑣0

𝑣1
∙

𝜇−𝑏

𝜇+𝑏
+

𝑥

𝑣1
∙ (

𝜇−𝑏

𝜇+𝑏
) & 𝐺1 𝑦 =

𝑦

𝑣0
∙ (

𝜇+𝑏

𝜇−𝑏
) 

Regions V (b<0), since P0 has retained the FAMVM advantage we get the same as III. 

𝐺0 𝑥 =
𝑥

𝑣1
∙ (

𝜇−𝑏

𝜇+𝑏
) & 𝐺1 𝑦 = 1 −

𝑣1

𝑣0
∙

𝜇+𝑏

𝜇−𝑏
+

𝑦

𝑣0
∙ (

𝜇+𝑏

𝜇−𝑏
) 

Thus we have completed the proof of lemma1; both candidates run and employ 

non-trivial mixed-Nash expenditure strategies for Regions II-V described by above 

equations. 

Further, we have exhausted all cases in our State-Space and have also completed 

the proof of Thm1∎ 
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With the characterized mixing strategies, I calculate the probabilities of winning (Region 

II). 

Probability 𝑃0 wins =  𝑑𝐺1 𝑦 ∙ 𝑑𝐺0 𝑥 

𝑥∙ 
𝜇−𝑏
𝜇+𝑏

0

𝑣0

0

Probability 𝑃1 wins = 1 − Probability 𝑃0 wins 

Evaluation of the integral for the probability of P0 winning gives 

𝑥

𝑣0

𝑣0

0

∙ 𝑑𝐺0 𝑥 =
𝑥

𝑣0

𝑣0

0

∙
𝜇 − 𝑏

𝜇 + 𝑏
∙

1

𝑣1
𝑑𝑥 

=
𝑥2

2 ∙ 𝑣0 ∙ 𝑣1
∙
𝜇 − 𝑏

𝜇 + 𝑏
 𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒𝑑 𝑎𝑡 𝑣0  𝑎𝑛𝑑 0 𝑟𝑒𝑠𝑝𝑒𝑐𝑡𝑖𝑣𝑒𝑙𝑦 

Probability 𝑃0 wins = 

𝑣0

2 ∙ 𝑣1
∙
𝜇 − 𝑏

𝜇 + 𝑏

THM 2:  The candidate with the FAMVM advantage has probability of winning the 

election > ½. 

In Region II, we are in the case that 

𝑏1 + 𝜇 ∙ (
𝑣1

𝑣0 + 𝑣1
) > 𝑏0 + 𝜇 ∙ (

𝑣0

𝑣0 + 𝑣1
) 

With 𝑏 ≡ 𝑏1 − 𝑏0,  rearranging terms implies 

𝑣1 ∙ (𝜇 + 𝑏) > 𝑣0 ∙ (𝜇 − 𝑏) 

Probability 𝑃0 wins =
𝑣0

2 ∙ 𝑣1
∙
𝜇 − 𝑏

𝜇 + 𝑏
<

1

2
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Probability 𝑃1 wins = 1 −
𝑣0

2 ∙ 𝑣1
∙
𝜇 − 𝑏

𝜇 + 𝑏
>

1

2

Analogous calculations and analysis hold for Regions III-V. ∎ 

5 Results/Equilibrium 

For each possible state of the voting district, the Equilibrium Expenditure Strategy 

Distributions (CDFs) of the Party Candidates are as follows 

Table 8 

P0 strategy: 𝐺0 𝑥 State P1 strategy: 𝐺1 𝑦 

1𝕀0  , concede I 1𝕀0  , win 

1 −
𝑣0

𝑣1

∙
𝜇 − 𝑏

𝜇 + 𝑏
+

𝑥

𝑣1

∙ (
𝜇 − 𝑏

𝜇 + 𝑏
) 

II 𝑦

𝑣0

∙ (
𝜇 + 𝑏

𝜇 − 𝑏
) 

𝑥

𝑣1

∙ (
𝜇 − 𝑏

𝜇 + 𝑏
) 

III 
1 −

𝑣1

𝑣0

∙
𝜇 + 𝑏

𝜇 − 𝑏
+

𝑦

𝑣0

∙ (
𝜇 + 𝑏

𝜇 − 𝑏
) 

1 −
𝑣0

𝑣1

∙
𝜇 − 𝑏

𝜇 + 𝑏
+

𝑥

𝑣1

∙ (
𝜇 − 𝑏

𝜇 + 𝑏
) 

IV 𝑦

𝑣0

∙ (
𝜇 + 𝑏

𝜇 − 𝑏
) 

𝑥

𝑣1

∙ (
𝜇 − 𝑏

𝜇 + 𝑏
) 

V 
1 −

𝑣1

𝑣0

∙
𝜇 + 𝑏

𝜇 − 𝑏
+

𝑦

𝑣0

∙ (
𝜇 + 𝑏

𝜇 − 𝑏
) 

1𝕀0  , win VI 1𝕀0  , concede 
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The Probabilities of a Candidate Winning in each Region 

Table 9 

𝑃0 State P1 

0 I 1 

𝑣0

2 ∙ 𝑣1
∙
𝜇 − 𝑏

𝜇 + 𝑏
<

1

2
II 

1 −
𝑣0

2 ∙ 𝑣1
∙
𝜇 − 𝑏

𝜇 + 𝑏
>

1

2

1 −
𝑣1

2 ∙ 𝑣0
∙
𝜇 + 𝑏

𝜇 − 𝑏
>

1

2
III 𝑣1

2 ∙ 𝑣0
∙
𝜇 + 𝑏

𝜇 − 𝑏
<

1

2

𝑣0

2 ∙ 𝑣1
∙
𝜇 + 𝑏

𝜇 − 𝑏
<

1

2
IV 

1 −
𝑣0

2 ∙ 𝑣1
∙
𝜇 + 𝑏

𝜇 − 𝑏
>

1

2

1 −
𝑣1

2 ∙ 𝑣0
∙
𝜇 + 𝑏

𝜇 − 𝑏
>

1

2
V 𝑣1

2 ∙ 𝑣0
∙
𝜇 + 𝑏

𝜇 − 𝑏
<

1

2

1 VI 0 

Probability a Candidate Expends Less Than or Equal to an Expenditure Level 
Vs. Expenditure Level  

Figure 2 

1

State-Space Region II

Cumulate Probability

Expenditure Level

CDF of P1 CDF of P0

Equilibrium Expenditure Strategy Distributions
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The above graph shows the candidates’ strategies for a district in State-Space 

Region II.  If the district were still located in Region II, but rotated more 

counterclockwise, toward III,  P1’s advantage wanes.  His resolute-voter mass-gap gets 

smaller and his finance advantage decreases while the mass of pivotal voters and 

importance of the finance game increase.   

The Equilibrium states that P1 would now mix over a larger support, with an 

upper-bound now closer to his valuation.  Since, his strategy 𝐺1 𝑦  is still linear, 

meaning his mixing distribution is still Uniform, his expected expenditure level increases 

along with variance of expenditure strategy.   

Correspondingly, P0’s disadvantage wanes, and the size of his mass point at 0 

diminishes.  In conjunction, the slope of 𝐺0 𝑥  increases meaning P0 mixes among his 

non-zero expenditure-levels each with an equally higher probability than before.  

Eventually, for a district on the boundary between Regions II and III of the State 

Space, where the resolute-voter mass-gap advantage and the Finance-Advantage 

cancel, we are in a symmetric competitive case.  The strategies (G distributions) are 

different since P1 has more resolute voting mass and P0 has a larger budget, but both 

candidates win the office equal probability and neither candidate plays a mass at 0.  

 A graphical representation of strategies along the symmetric-competitive case: 

Figure 3 

1

On Boundary Between State II and State III
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Rotating counterclockwise again, into State-Space Region-III, P1 plays the strategy with 

the mass point at 0, and P0 need not mix over his entire support.   

Figure 4 

Region IV is trivially similar to region III (the colors, subscripts and x’s and y’s 

reverse). The same is true between Regions II and V. 

As we rotate from Region V into Region VI (or similarly from Region II into Region 

I), we converge to the concession strategy.  Both players’ strategy distributions converge 

pointwise to the delta function at 0 (remember; in Region IV, V and VI, b<0).  

Figure 5 

1

State III

1

State V (moving into VI)
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Also intuitive, the classical MVM result is embedded in the b-axis of the state 

space, where 𝜇 = 0 and finances have no role.  Regions I and VI yield MVM. 

Figure 6 

The results are robust for relaxations of the assumptions.  I relax the advertising 

technology from proportional to proportional to the ratio of the expenditures to the 

power 𝜎. The model still results in uniform candidate mixing strategies among all non-

zero expenditure levels (Appendix2).  In Region II, increasing the power of the 

exponents, 𝜎, makes the game more competitively symmetric.  I caution the reader 

however, the state-space is not identical.  The symmetric competitive boundary adjusts 

with 𝜎. 

0-1 1

Concession to P1
Concession to P0

I.

II.

III.IV.

V.

VI.

Equivalently

Classical MVM Result
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A graphical representation, for an increase in 𝜎 > 1:  In Region II’ (II’=II after 

considering new regional boundaries). 

Figure 7 

Second, assuming candidate risk-neutrality results in Uniform Distributions of 

candidate mixing strategies.  Introducing risk-aversion will perturb the curvature of the 

distribution strategies as well as slightly change the supports of the strategy 

distributions and boundary conditions.  Risk-aversion meddles with the simplicity of the 

all-pay calculations, but is still tractable.  It can be shown that, had we made both 

candidates have the same degree of crra, the candidates would both decrease the 

probability of very high expenditures and increase the probability of low expenditures; 

resulting in concave G distribution strategies.   

The probabilities each candidate wins can be seen graphically with 3 axes.   

On the x-y plane we have the 𝒃,𝝁,𝒗 State-Space same as before.  

Along the z-axis are the probabilities that the candidates win:  blue for 𝑃0, red for P1. 

1

State II' -
with increase in advertising technology parameter
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Figure 8 

6 Conclusion 

This paper has used micro structure to analyze the influence of finances in the 

electoral process while being mindful that candidates do not always employ 100% 

expenditure strategies and that there exists variation in expenditure strategies.   

It showed that modeling candidates campaign expenditures as bids in an 

asymmetric all-pay auction yield intuitive mixed-Nash equilibrium strategies.  Campaign 

finances can influence the electoral process:  expenditure levels and probabilities that 

candidates win.  All the while, the classical MVM result is preserved in the Finance-

Augmented Median Voter Model.   

b>0

0

b<0

Probability Candidates Wins

1

Probabilities exactly ½ along this 

boundary and the other 

symmetric competitive case (its 

image reflected across the 𝜇 axis). 
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Appendix 1 

Calculation of G’s via differential equations 

(without making argument that expected payoffs are necessarily constants 𝑘0 and 𝑘1). 

From Page 8, in Region II: 

P0: 𝑚𝑎𝑥𝑥       𝑣0 ∙ 𝐺1  𝑥 ∙
𝜇−𝑏

𝜇+𝑏
− 𝑥  𝑠𝑡     𝑥 ≥ 0 

P1: 𝑚𝑎𝑥𝑦       𝑣1 ∙ 𝐺0(𝑦 ∙  
𝜇+𝑏

𝜇−𝑏
 ) − 𝑦        𝑠𝑡     𝑦 ≥ 0 

To find the candidates’ optimal expenditures, differentiate wrt x and y respectively. 

𝑣0 ∙ 𝑔1  𝑥 ∙
𝜇 − 𝑏

𝜇 + 𝑏
∙
𝜇 − 𝑏

𝜇 + 𝑏
− 1 = 0 ⇒ 𝑔1  𝑥 ∙

𝜇 − 𝑏

𝜇 + 𝑏
=

1

𝑣0
∙  

𝜇 + 𝑏

𝜇 − 𝑏

𝑣1 ∙ 𝑔0  𝑦 ∙
𝜇 + 𝑏

𝜇 − 𝑏
∙
𝜇 + 𝑏

𝜇 − 𝑏
− 1 = 0 ⇒ 𝑔0  𝑦 ∙

𝜇 + 𝑏

𝜇 − 𝑏
=

1

𝑣1
∙
𝜇 − 𝑏

𝜇 + 𝑏

Here again we can see that the optimal expenditure strategies are to mix uniformly, at 

locations other than mass points.  To account for mass points with this method, recover 

the Cdfs. 

𝐺0 𝑥 =
𝑥

𝑣1
∙
𝜇 − 𝑏

𝜇 + 𝑏
+ 𝑘 1 

𝐺1 𝑦 =
𝑦

𝑣0
∙  

𝜇 + 𝑏

𝜇 − 𝑏
+ 𝑘 0 

Application of economic boundary conditions, identical to the analysis on page 8, 

identifies the new, but related constants 𝑘 1 and 𝑘 0. 
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Appendix 2 

Generalized Advertising Technology: 

Proportion of Pivotal Mass won by P0 and P1 for expenditures x and y respectively 

𝑃0:   𝜇 ∙
𝑥𝜎

𝑥𝜎 + 𝑦𝜎
 ,     𝑃1:   𝜇 ∙

𝑦𝜎

𝑥𝜎 + 𝑦𝜎

Region boundaries defining the symmetric cases now change. 

New Region II defined by 

𝜇 >  𝑏1 − 𝑏0  &  𝑏1 + 𝜇 ∙ (
𝑣1

𝜎

𝑣0
𝜎 + 𝑣1

𝜎
) > 𝑏0 + 𝜇 ∙ (

𝑣0
𝜎

𝑣0
𝜎 + 𝑣1

𝜎
) 

P0 will win when 

𝑦 < 𝑥 ∙ (
𝜇 − 𝑏

𝜇 + 𝑏
)

1
𝜎

And P1 wins when 

𝑥 < 𝑦 ∙ (
𝜇 + 𝑏

𝜇 − 𝑏
)

1
𝜎

Yielding the following equations (analogous to those on page 7) 

𝑣0 ∙ 𝐺1  𝑥 ∙ (
𝜇 + 𝑏

𝜇 − 𝑏
)

1
𝜎 − 𝑥 = 𝑘0,𝜎  

𝑣1 ∙ 𝐺0  𝑦 ∙ (
𝜇 + 𝑏

𝜇 − 𝑏
)

1
𝜎 − 𝑦 = 𝑘1,𝜎  

The support for P0 will still be [0, 𝑣0], however, the new support for P1 will be 

[0,𝑣0 ∙ (
𝜇−𝑏

𝜇+𝑏
)

1

𝜎 ].   Thus we obtain 

𝐺0 𝑥 = 1 −
𝑣0

𝑣1
∙ (
𝜇 − 𝑏

𝜇 + 𝑏
)

1
𝜎 +

𝑥

𝑣1
∙ (
𝜇 − 𝑏

𝜇 + 𝑏
)

1
𝜎

𝐺1 𝑦 =
𝑦

𝑣0
∙ (
𝜇 + 𝑏

𝜇 − 𝑏
)

1
𝜎
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Since in Region II  b>0  and, stipulating 𝜎 > 1 

(
𝜇 − 𝑏

𝜇 + 𝑏
) < 1 ⇒ (

𝜇 − 𝑏

𝜇 + 𝑏
) < (

𝜇 − 𝑏

𝜇 + 𝑏
)

1
𝜎 < 1 

Thus, the mass point at 0 in P0’s strategy decreases for increases in 𝜎 = 1. 
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Chapter 2: Vote Empirics 

Incumbency, Campaign Expenditures, and Partisan Registration: 
How These Factors Impact Electoral Results? 

Abstract 

This paper uses aggregate US congressional district level data to identify how incumbency, candidate 
expenditures, and district voter registration statistics impact final vote shares.  We estimate the factor 
impacts two ways; 1) a reduced-form (semi-parametric) production function specification similar to Levitt 
(94) and 2) an agent-based discrete-demand estimation set-up as in BLP (95).  The first method 
hypothesizes that the final amount of votes a candidate receives consists of a fraction of the voters 
registered to his party, his base, plus a non-parametrically estimated fraction of remaining swing voters 
depending on relative advertising expenditures.  By introducing district level partisan voter registration 
statistics, we mitigate the endogeneity of expenditures and estimate factor impacts consistent with 
previous literature.  The BLP model is more general and includes the first as a special case.  We provide 
and test the restrictions that deliver the classic reduced form regressions.  Also, discrete-demand random 
coefficients provide a natural insertion of voter registration statistics.  Last, we discuss proper inclusion of 
strategic voting and structural models of voter participation into BLP estimates of vote factor impacts. 

mailto:kyle.kretschman@mail.utexas.edu
mailto:mastronardi@mail.utexas.edu
mailto:watson@eco.utexas.edu
http://mastroresearch.googlepages.com/
http://www.eco.utexas.edu/~watson/
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1 Introduction 

While campaign expenditures are a prevalent topic in the media every election 

cycle, other factors such as incumbency and districting also have real influence on 

electoral results.   

Constitutionalists and policy makers would like to know these factors’ impacts.  As 

outlined in the Federalist Papers, Madison organized the Constitution to prevent the 

culmination of political power by factions.  If a group can significantly influence electoral 

results, they hold real political power; they can influence policy for their gain at the cost 

of others.   The purpose of this paper is positive: to estimate the effects of these three 

factors on observed aggregated district vote results via two methods: 1) A reduced-form 

semi-parametric production function, similar to Levitt (94) and 2) An agent-based 

discrete demand estimate, as in BLP (95).  We show that the first can be understood as a 

special case of the second.  Using Congressional election data, we test the viability of 

the reduced-form literature’s restrictions.    

The reduced-form vote production function specification hypothesizes that 

candidates receive a fraction of the voters in their district registered to their party (their 

base, allowed to depend on incumbency status) and compete for the remaining swing 

voters thru campaign expenditures.  We non-parametrically estimate how candidates’ 

relative campaign expenditures apportion the non-base swing voters.  Overall, the 

model is semi-parametric and turns factors of production (district registration statistics, 

incumbency, and expenditures) into final vote results.  The specification yields results in 

line with Levitt and Gerber simply by inclusion of voter registration statistics to mitigate 

the endogeneity, as opposed to instruments or use of repeat races to difference out 

qualitative regressors.  Moreover, the non-parametric estimate of advertising 

expenditure influences is consistent with IO advertising literature.   
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BLP’s discrete product-demand estimation methodology lends itself naturally to 

observed aggregate vote share data.  The market is a district, the products are the 

candidates, the characteristics are incumbency status and expenditures, the market 

share is the vote share, and the consumer-heterogeneity random-coefficient 

distribution is the partisan voter registration distribution.  Rekkas (06) applied the BLP 

methodology to Canadian elections.  She did not have voter registration statistics and 

had to estimate random-coefficient distribution parameters.   This paper uses 2004 US 

congressional data, includes voter registration statistics, relates the estimation method 

to seminal reduced-form work, and discusses a critical difference between discrete 

product-demand and voting for future applications of BLP to politico-economy. In 

Extensions, we discuss adapting the model to accommodate strategic voting.  With 

product demand, when consumers choose the option not to consume they get no 

product, yet voters always get a representative.  Econometrically, the mass of voters 

who vote for a candidate are those that either get a very high shock for that candidate 

or get a very low shock for the other candidate.  They may vote to ‘block’ a candidate.  

We do not estimate this model in this version of this paper, but discuss steps for doing 

so.   

Last, the paper discusses the possible presence of endogeneity.  We argue that 

our use of exogenous voter registration variation data as a regressor mitigates standard 

political-campaign endogeneity concerns (larger vote shares imply more support and 

larger expenditures).  Nonetheless, we employ a standard instrument (lagged 

expenditures) and conduct the Hausman test for endogeneity for both specifications. 

We find that including partisan voter registration statistics yields consistent factor 

impact estimates. 
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The organization for the remainder of this paper is as follows: 

 Section 2 discusses relevant literature and this paper’s contribution

 Section 3 presents the reduced-form semi-parametric model

 Section 4 presents the discrete-demand model of voting

o Provides general estimation equation

o Introduces voter registration distribution as random coefficient

distribution

o Focuses on multi-variate logit estimation with log(expenditures)

 Section 5 compares the two methodologies and tests the equating restrictions

 Section 6 explains the data

 Section 7  provides and interprets empirical results

 Section 8 concludes

 Section 9 discusses next-step extensions for structural vote empirics.

2 Literature Review 

There have been many studies in Economics and Political Science literature that 

empirically analyze the relationship between earned vote shares and candidate 

characteristics.   See Gerber (2004) for a thorough summary of the reduced form 

empirical literature.  The contributions of this paper are to perform similar analysis but 

1) to include district partisan voter registration statistics as an exogenous source of

variation, 2) to estimate a structural discrete-demand model to identify factor influence 

parameters, and 3) finally to explain the relationship between the two methodologies’ 

estimates.   

Gerber (98) and Levitt (94) both estimate electoral factor impacts via reduced-

form.  They differ in their techniques for dealing with endogeneity; that final vote shares 

and candidate expenditures may be co-caused by a factor such as candidate quality.  An 
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eloquent candidate may garner more supporters, more votes, more financial support, 

and have larger expenditures.  Gerber tries several instruments.  Levitt introduces the 

unobserved qualitative regressor, but then uses repeat races to difference it out and 

obtain consistent estimates.  Alternatively, we introduce a new regressor, partisan voter 

registration statistics, and argue that this variable explains most indirect causation that 

may be causing biased estimates. 

Berry Levinsohn Pakes (1995) introduce a structural discrete demand model 

which has been employed across industries to estimate the impacts of product 

characteristics using observed product market share.  In this paper, we apply their 

methodology to explain the impact of candidate characteristics on observed candidate 

vote share received.  Rekkas (07) applied BLP methodology to Canadian election data.  

She did not have voter registration statistics and thus had to estimate parameters of the 

random-coefficient heterogeneity distribution.  In addition, the Canadian elections are 

generally multi-party, requiring more parameters in an already parameter-heavy 

framework.  We apply the discrete-demand analysis to 2004 US House elections, where 

most districts only had two concerted candidates running.  Our district-level partisan 

voter-registration statistics are naturally suited to serve as the random-coefficient 

distribution for heterogeneous voters.   Last, we discuss extensions to the BLP 

framework to accommodate strategic voting.  
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3 The Reduced-Form Semi-Parametric Specification 

A candidate’s final vote count, denoted 𝑏𝑓 , is assumed to be the sum of his base 

voters, denoted 𝑏𝑜 , plus the swing voters he won through his advertising expenditures.  

The total mass of swing voters, denoted 𝜇, consists of all the non-base voters and are 

apportioned in a fashion dependent upon the campaign expenditures, x and y. Let x be 

the candidate’s own expenditure, and y is his opponent’s.  A semi-parametric attempt at 

the production function at this stage would suggest the following. 

𝑏𝑓 = 𝑏0 + 𝜇 ∙ 𝑓 𝑥,𝑦 + 휀 

This expression requires modification however, since base voters are not directly 

observable.  We assume that base voters are a fraction, 𝛾𝑏 , of the voters in the district 

registered to their party, 𝑏𝑟  which is observable.  In this same fashion, the mass of swing 

voters must also be refined since some may not participate in the election.  Let 

𝛾𝜇 represent the fraction of swing voters that participate in the election.  Thus, the 

expression becomes 

𝑏𝑓 = 𝛾𝑏 ∙ 𝑏
𝑟 + 𝛾𝜇 ∙  𝜇 ∙ 𝑓 𝑥,𝑦 + 휀

Since swing-voters are all the non-base participating voters, we can express 𝜇 in 

terms of the voter registration statistics.  For a candidate from the Democratic Party 

(Party 0 with expenditure x), with opponent from the Republican Party (Party1 with 

expenditure y), we write 

𝑏0
𝑓

= 𝛾𝑏 ∙ 𝑏0
𝑟 + 𝛾𝜇 ∙ [1 − 𝛾𝑏 ∙  𝑏0

𝑟 + 𝑏1
𝑟 ] ∙ 𝑓 𝑥,𝑦 + 휀

Last, we control for incumbency.  We suggest that being an incumbent garners a 

candidate a larger fraction of voters registered to his party to be his base.  Consequently 

we reduce the swing mass to account for this enlarged base. 

𝑏0
𝑓

= (𝛾𝑏 + 𝛾𝐼 ∙ 𝕀𝐼0 ) ∙ 𝑏0
𝑟 + 𝛾𝜇 ∙ [1 − (𝛾𝑏 + 𝛾𝐼 ∙ 𝕀𝐼0 ) ∙ 𝑏0

𝑟 − (𝛾𝑏 + 𝛾𝐼 ∙ 𝕀𝐼1 ) ∙ 𝑏1
𝑟] ∙ 𝑓 𝑥,𝑦

+ 휀 
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This estimable expression can be read as follows:  Party0’s final vote share 

consists of the fraction of voters registered for his party that were not susceptible to 

advertising, his base which depends on his incumbency status, plus a fraction of the 

voting component of advertising susceptible swing voters where the fraction depends 

on the candidates’ relative advertising expenditures. 

Ideally, with sufficient data and computational resources we would like to totally 

non-parametrically identify the factor effects with at least a 3-dimensional Taylor 

approximation of at least 2nd order; 𝑏𝑜
𝑓

(𝑥,𝑦, 𝑖).  The interaction terms in the multi-

dimensional approximation would allow many plausible interpretations, such as that 

campaign expenditures may affect voter turnout, but come at the cost of introducing 

more parameters and potentially reducing the significance of the estimate of each.  It is 

for this reason we only use a 2nd order 2-dimensional Taylor polynomial and impose 

structure to account for the influence of the remaining factors. While we do lose some 

indirect effects of the factors, we feel that the imposed structural specification capture 

the major effects of each factor. 

Regarding endogeneity, we argue that by including district-level partisan voter 

registration statistics in the vote production function, the regression does not suffer 

biased factor impact estimates.  We formally test this claim and provide regression 

results with and without a standard instrument, lagged expenditures (Hausman test of 

endogeneity; Results, Section 7).  We find that we can reject the presence of 

endogeneity. Moreover, our estimated factor impact parameters from this equation are 

consistent to those estimated by Levitt and Gerber. 

 Controlling for district partisan registration statistics, we argue, explains any 

indirect causation that may be biasing expenditure impact estimates.   Moreover, while 

candidate quality may co-influence vote-share and funds raised, we also argue that 

candidates spend their desired expenditure level free independent of backer financing.  

As is supported by the data, candidates can and do go into large amounts of debt 
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spending money they had not raised.  Our finding that the marginal returns to 

advertising expenditures are decreasing justifies why this phenomenon is observed only 

infrequently.  Last, we argue that while Presidential elections are high-visibility and 

contain many public debates, House elections are generally much lower profile.  Voters 

rarely know more about the candidate than what they observe via advertising, which is 

already captured in the regression.   

4 The Discrete-Demand Model 

4.1 Baseline Model 

In the nature of BLP (95) we assume a utility-maximizing agent facing a discrete 

candidate voting decision; whether to vote for the candidate of Party0, Party1, or not 

vote. 

This decision is represented as follows: 

𝑚𝑎𝑥𝑥𝑗 𝜖 𝑥0 ,𝑥1 ,𝑥𝑛∅ 𝑈𝑖 𝑥𝑗  = 𝑥 𝑗 ∙ 𝛽 
′ + 𝛿𝑗 + 휀𝑖𝑗

Where the variables have the following interpretations 

Table 10 

variable Interpretation 

𝑥 𝑗  Vector of candidate j’s observable characteristics: 

Incumbency status, Campaign expenditure level 

𝛽  Vector of coefficients explaining utility impact of candidate characteristics 

𝛿𝑗  Mean utility from candidate characteristics unobserved by econometrician 

휀𝑖𝑗  Idiosyncratic utility error component to agent i from voting for candidate j 



32 

For agent i to vote for candidate 𝑥0, the following conditions hold. 

Agent i must get more utility from voting for candidate 0 than for candidate 1 

𝑥 0 ∙ 𝛽 
′ + 𝛿0 + 휀𝑖0 > 𝑥 1 ∙ 𝛽 

′ + 𝛿1 + 휀𝑖1

Equivalently,       휀𝑖1 < (𝑥 0 − 𝑥 1) ∙ 𝛽 ′ + (𝛿0 − 𝛿1)+휀𝑖0

(Utility shock to agent i for candidate1 must be sufficiently less than the one for 

candidate0) 

Agent i must get more utility from voting for candidate 0 than not voting, normalized 

to 0) 

𝑥 0 ∙ 𝛽 
′ + 𝛿0 + 휀𝑖0 > 0

Equivalently,   휀𝑖0 > −𝑥 0 ∙ 𝛽 
′ − 𝛿0

(Utility shock for candidate0 must be sufficiently large to overcome utility from not 

voting) 

These conditions (and the candidate1 analog of the second) can be seen in the 

following graphical representation.  The axes represent the possible utility shocks for 

the candidates to agent i.  The distinct regions indicate the region of the shock space in 

which agents take particular actions. 
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Figure 9 

The model predicts that the aggregate mass of voters that vote for Candidate 0 

(candidate 0’s market share) equals the mass of idiosyncratic agents receiving utility 

shocks that result in the optimal action “vote for candidate 0.”  In this 2 candidate (2 

good) market, that mass is the double integral over the bi-variate density distribution 

f(휀𝑖0, 휀𝑖1). 

Predicted Vote Share for Candidate 0 ≡  𝑏0 𝛽 , 𝛿  

𝑏0 𝛽 ,𝛿  = 𝑑𝐹(

 (𝑥 0−𝑥 1)∙𝛽   ′ +(𝛿0−𝛿1)+휀𝑖0

−∞

∞

휀𝑖𝑜

휀𝑖0, 휀𝑖1) 

Where 휀𝑖𝑜 = −𝑥 0 ∙ 𝛽 
′ − 𝛿0

No Vote

Vote for Candidate 0

Vote for Candidate 1
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We are now able to estimate the effects of each of the factors of vote share 

Θ = (𝛽 ,𝛿 ) using observed aggregate district vote shares.  The estimation equation using 

one candidate is: 

Θ = 𝑎𝑟𝑔𝑚𝑖𝑛
Θ=(𝛽   ,𝛿   )

[𝑏0
𝑑𝑎𝑡𝑎 − 𝑑𝐹(

(𝑥 0−𝑥 1)∙𝛽   ′ +(𝛿0−𝛿1)+휀𝑖0

−∞

∞

−𝑥 0∙𝛽   ′−𝛿0

휀𝑖0, 휀𝑖1)]2

𝑁

𝑖=1

Assuming the error terms are distributed extreme value simplifies the previous 

calculations.  In this case, the double integral over possible epsilon shock pairs, 

representing Candidate 0’s predicted vote share, reduces to 

𝑏0 𝛽 , 𝛿  =
exp(𝑥 0 ∙ 𝛽 

′ + 𝛿0)

1 + exp 𝑥 0 ∙ 𝛽 ′ + 𝛿0 + exp(𝑥 1 ∙ 𝛽 ′ + 𝛿1)

Using log expenditure, rather than expenditures directly, simplifies the algebra 

𝑏0 𝛽 ,𝛿  =
exp(𝑥 𝐼𝑜 ∙ 𝛽

 ′
𝐼𝑜

+ 𝛿0) ∙ 𝑥𝜌

1 + exp  𝑥 𝐼𝑜 ∙ 𝛽
 ′
𝐼𝑜

+ 𝛿0 ∙ 𝑥𝜌 + exp(𝑥 𝐼1 ∙ 𝛽
 ′
𝐼1

+ 𝛿1) ∙ 𝑦𝜌

Consequently, the estimation equation also simplifies.  We follow the argument 

of Rusk (89) to justify the assumption of extreme-value distribution over idiosyncratic 

utility shocks.   

Last, the model also predicts Republican vote share similarly. Estimating both 

simultaneously using GMM is feasible given the model’s prediction for mass of agents 

that don’t vote.  The GMM parameter estimation equation under the bi-variate: 

Under extreme-value error distribution the parameter estimation equation: 

𝑚𝑖𝑛
Θ=(𝛽   ,𝛿   )

[𝑏0
𝑑𝑎𝑡𝑎 −

exp(𝑥 0 ∙ 𝛽  
′

+ 𝛿0)

1 + exp  𝑥 0 ∙ 𝛽  
′

+ 𝛿0 + exp(𝑥 1 ∙ 𝛽  
′

+ 𝛿1)
]2

𝑁

𝑖=1

 

Following Berry (94) this system is invertible and yields a linear estimation 

equation.  We employ the linear regression for the IV and endogeneity tests in section 7. 
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4.2 Random Coefficients 

Prior to estimating this equation, we specify exactly how incumbency, campaign 

expenditures, and voter registration statistics enter.  BLP (95) introduces random 

coefficients into their regression equation under the argument that different product 

characteristics can influence heterogeneous consumers differently.  In this vote share 

model we also have heterogeneous agents; those that register Democrat, those that 

register Republican, and those that register non-partisan. 

In BLP, when product characteristic k’s coefficient, 𝛽𝑘 , is assumed to be random, 

for example distributed normally as pictured below, the interpretation is as follows: 

Figure 10 

Most consumers’ utility are influenced by product characteristic k according to 𝛽𝑘    (a 

change in characteristic k has a 𝛽𝑘    effect on utility and thus also an observed market 

share effect).  𝜙(𝛽𝑘 ,𝑙) of consumers are utility influenced differently by characteristic k, 

by amount 𝛽𝑘 ,𝑙 .  

In our vote share model, the random coefficients are slightly simpler.  We do not 

have a continuum of heterogeneous types.  Rather, we only have 3 types of agents; 

those that register Democrat, those that register Republican, and those that do register 

non-partisan.  With only three types of agents, we only need a discrete 3-point 

distribution of types.  Moreover, our data provides the relative populations of each for 

each district.   
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In district i where 40% of registered voters register Democrat, 35% Republican, 

and 25% non-partisan, for candidate characteristic k, the distribution of voters’ 

impacted vs. impact is as follows (where the support values are what is to be 

estimated). 

Figure 11 

Agent heterogeneity enters the utility expression as follows.   

The utility for an agent from voting for the Democrat candidate, 𝑥0: 

𝑈 𝑥0 = .4 𝑥 0 ∙ 𝛽 ′0 + 𝛿0,0 + .25 𝑥 0 ∙ 𝛽 ′𝑛 + 𝛿0,𝑛 + .35 𝑥 0 ∙ 𝛽 ′1 + 𝛿0,1 + 휀0 

An agent in the district has a .4 chance of being an agent that registered 

Democrat, in which case his utility is influenced according to the first set of parameters.  

Similarly, .25 of the voters in the district are registered non-partisan (n), in which case 

their utility is influenced according to the second set of parameters.  Last, the registered 

Republicans are influenced by the third set.  The candidate characteristics consist of the 

candidate’s incumbency status and campaign expenditures.  An agent’s utility by voting 

for candidate 𝑥0: 𝑈 𝑥0 = 𝑥𝑟 ,0 ∙  𝑥𝐼𝑜 ∙ 𝛽𝐼0,0
+ 𝑥𝑒𝑜 ∙ 𝛽𝑒0,0

+ 𝛿0,0 + 𝑥𝑟 ,𝑛 ∙  𝑥𝐼𝑜 ∙ 𝛽𝐼0,𝑛
+ 𝑥𝑒𝑜 ∙

�𝑒0,𝑛+𝛿0,𝑛          +𝑥𝑟,1∙𝑥𝐼𝑜∙𝛽𝐼0,1+𝑥𝑒𝑜∙𝛽𝑒0,1+𝛿0,1+휀0 

.4

.3

.2

Mass of Voters Impacted vs. Utility Impact of Characteristic k
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𝛽𝑒0,𝑛
 is the utility impact on non-partisan registered voters from Democratic 

expenditures.   𝛽𝐼0,1
is the utility impact (and thus observed vote share impact) on 

Republican-registered voters from the Democratic candidate being the incumbent.  

The mean utility to voters registered Democrat from the econometrically 

unobserved characteristics for the Democratic candidate is 𝛿0,0.  The mean utility from 

the unobserved characteristics to Republican registered voters for the same candidate is 

𝛿0,1.  

Inserting these random coefficient equations into the general estimation 

equation becomes unsightly and is only presented in the appendix.  Assuming the 

extreme-value distribution on the error term, we can again provide the closed-form 

predicted vote share for the Democratic candidate, 

𝑏0 𝛽 , 𝛿  = 

exp(𝑥𝑟 ,0 ∙  𝑥𝐼𝑜 ∙ 𝛽𝐼0,0
+ 𝑥𝑒𝑜 ∙ 𝛽𝑒0,0

+ 𝛿0,0 + 𝑥𝑟 ,𝑛 ∙  𝑥𝐼𝑜 ∙ 𝛽𝐼0,𝑛
+ 𝑥𝑒𝑜 ∙ 𝛽𝑒0,𝑛

+ 𝛿0,𝑛 + 𝑥𝑟 ,1 ∙  𝑥𝐼𝑜 ∙ 𝛽𝐼0,1
+ 𝑥𝑒𝑜 ∙ 𝛽𝑒0,1

+ 𝛿0,1 )

1 +   exp[𝑥 𝑗 ∙ 𝛽 𝑗
′

+ 𝛿 𝑗j ]

4.3 Estimation Equation 

The model predicts fractions of registered voters that vote Republican, vote 

Democrat, and that do not choose to vote.  GMM easily allows us to use two of these 

three predictions to identify model parameters for generic shock distributions.  Further, 

we can easily accommodate instrument specifications via GMM.  In particular, our 

general estimation set up takes the following form: 

Θ = 𝑎𝑟𝑔𝑚𝑖𝑛
Θ=(𝛽   ,𝛿   )

𝑚𝑖(Θ

𝑁

𝑖=1

)′ ∙ Ω ∙ 𝑚𝑖(Θ) 

Where 

𝑚𝑖 Θ =
𝑏0

data − 𝑏0
predicted

𝑏1
data − 𝑏1

predicted

𝑖𝑛𝑠𝑡𝑟𝑢𝑚𝑒𝑛𝑡 𝑟𝑒𝑠𝑡𝑟𝑖𝑐𝑡𝑖𝑜𝑛𝑠

 and 𝛺= optimal weighting matrix 
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5 Methodology Comparison 

The relationship between the two estimation methodologies is that the reduced-form 

approach is a special case of the discrete demand approach with several restrictive 

assumptions in place.   

1. The reduced-form approach stipulates that a positive fraction of voters registered to

the party necessarily vote for that party.  Within the framework of BLP, this

stipulation implies that for some agents there does not exist a pair of epsilon shocks

large enough to induce the agent to either vote for the other party’s candidate, or

abstain.   Mathematically, the stipulation imposes a restriction on the epsilon shock

distributions; that the distributions have zero mass beyond some regional boundary.

2. As currently specified, the reduced-form equation says that both parties get the

same fraction of base voters from among their registered voters after controlling for

incumbency.  Within the BLP framework, this requires 𝛿0,0 = 𝛿1,1 and 𝛿0,1 = 𝛿1,0.

Democratic registered voters get the same unobserved base-level utility from

Democratic candidates as Republican registered voters get from the Republican

Candidate, and that Democratic voters get the same unobserved base-level utility

from Republican candidates as Republican voters get from Democratic candidates.

3. The reduced-form equation stipulation that all non-base swing voters are subject to

the same f(x,y) apportionment rules is equivalent to the BLP framework with the

restriction that  𝛽𝑒0,0
= 𝛽𝑒1,1

= 𝛽𝑒0,1
= 𝛽𝑒1,0

= 𝛽𝑒0,𝑛
= 𝛽𝑒1,𝑛

.

4. The reduced-form stipulation that both parties registered voters are influenced

equivalently by incumbency implies that 𝛽𝐼0,0
= 𝛽𝐼1,1

.

5. The stipulation that non-partisan voters are not influenced by incumbency, nor are

Republican voters by Democratic incumbency and Democratic voters by Republican

incumbency requires the BLP coefficient restriction that 𝛽𝐼0,𝑛
= 𝛽𝐼0,𝑛

= 𝛽𝐼0,𝑛
= 𝛽𝐼0,𝑛

=

0.
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6. Assumptions about the joint distribution of candidate shocks imply an exact

strategic relationship on relative expenditure levels.  For example, assuming the

shocks are distributed logit implies that larger expenditures by the Democratic shifts

the indifference boundary (fig pg 6) yielding more mass (hence vote share) in favor

of the Democratic candidate:  how much specifically depends on the logit

assumption.

6 Data 

The original data set consists of US Congressional district-level voter registration 

statistics by party, the party of incumbency, and candidate disbursements from the 

2004 Congressional House elections.  The voter registration statistics come from the 

states’ Secretary of State Offices, and incumbency and disbursements from the Federal 

Election Commission. Summary Statistics: 

Table 11 

Variable Obs Mean Std. Dev. Min Max 

Dem Incumbent 105 0.4571429 0.5005491 0 1 

Rep Incumbent 105 0.4857143 0.502193 0 1 

% Registered Dem 105 0.4157627 0.1108439 0.24358 0.69135 

% Registered Rep 105 0.3464863 0.1059193 0.1006 0.62965 

% Registered Other 105 0.2377509 0.0763271 0.08755 0.4882 

Dem Expenditure 105 688288.3 636094.2 1994 2752272 

Rep Expenditure 105 688288.3 636094.2 1994 2752272 

% Dem Votes 105 0.3490476 0.1171663 0.07 0.62 

% Rep Votes 105 0.3248571 0.1345871 0.06 0.59 

% Not Voting 105 0.3254364 0.088934 0.0012909 0.6044151 

Dem Expend 2002 93 692776.9 594569.9 6757 2985329 

Rep Expend 2002 90 829494.9 1079567 1532 8150237 

Senate Race 105 0.9047619 0.2949514 0 1 
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We collected data on 154 Congressional districts from 17 states.  We do not have 

data on districts from states that fit at least one of the following categories 

 charge for voter registration statistics

 do not keep voter registration statistics by party

 keep voter registration statistics by county, yet have multiple districts per

county.

From these states, we only use districts in which 

 Two candidates run, one Republican one Democrat

 Both make concerted expenditures, above $1000.

Candidate expenditure level data comes from the Federal Election Commission 

databases http://www.fec.gov/press/press2005/20050609candidate/house.pdf.  We define 

candidate expenditures as their “net disbursements.” The graph displays variation in 

relative expenditure levels across districts.  The variation is sufficient to non-

parametrically identify the coefficients of the Taylor approximation of the advertising 

technology function.  

7 Results 

7.1 Reduced-Form Estimates 

To estimate the non-parametric component of our regression equation, we must specify 

a known value for our Taylor approximation to be an approximation around.  We 

stipulate that when both candidates expend the mean level of expenditures, they split 

the advertising response swing mass evenly.  This translates into a 2nd-order Taylor 

approximation around the point ($775K, $775K, 1/2).  We tried alternate specified 

values and they did not greatly change the results and are presented in the appendix.   

http://www.fec.gov/press/press2005/20050609candidate/house.pdf
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The regression equation results are 

𝑏0
𝑓

= (𝛾𝑏 + 𝛾𝐼 ∙ 𝕀𝐼0 ) ∙ 𝑏0
𝑟 + 𝛾𝜇 ∙ [1 − (𝛾𝑏 + 𝛾𝐼 ∙ 𝕀𝐼0 ) ∙ 𝑏0

𝑟 − (𝛾𝑏 + 𝛾𝐼 ∙ 𝕀𝐼1 ) ∙ 𝑏1
𝑟] ∙ 𝑓 𝑥,𝑦 + 휀

Table 12 

𝑏0
𝑓 Robust R-squared     = 0.971 

Coef. Std. Err. t P>|t| 

𝜸𝒃 -0.0844223 0.1256908 -0.67 0.503 

𝜸𝑰 0.4356608 0.0736011 5.92 0 

𝜸𝝁 0.6536725 0.047061 13.89 0 

𝒇𝒙 2.23E-08 3.05E-08 0.73 0.465 

𝒇𝒚 3.92E-09 3.56E-08 0.11 0.913 

𝒇𝒙𝒙 -2.73E-14 2.17E-14 -1.26 0.21 

𝒇𝒚𝒚 1.66E-14 1.32E-14 1.26 0.211 

𝒇𝒙𝒚 9.46E-15 2.43E-14 0.39 0.698 

The estimates of 𝛾𝑏  and 𝛾𝐼 says that on average, candidates receive 34% of their 

registered party voters and another 45% if they are the incumbent.  While the estimated 

advertising technology function is found to be non-linear and thus have non-constant 

effects, we can still make intuitive inferences from the signs of the coefficients.  

Table 13 

𝑓𝑥 > 0 Larger expenditures earn you more votes 

𝑓𝑦 < 0 Larger expenditures by your opponent are a detriment to your votes 

𝑓𝑥𝑥 < 0 Decreasing marginal returns to advertising 

𝑓𝑦𝑦 > 0 Increasing marginal returns to opponent advertising 
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The non-parametric estimates of the coefficients of the Taylor approximation 

strongly suggest that the advertising technology is consistent with a common 

advertising technology specification from previous literature 

𝑓 𝑥,𝑦 =
𝑥𝜎

𝑥𝜎 + 𝑦𝜎

The 2nd order Taylor approximation coefficients of 𝑓 𝑥, 𝑦 =
𝑥𝜎

𝑥𝜎+𝑦𝜎
 at (x, y=x, .5) are 

Table 14 

𝑓𝑥  𝑓𝑦  𝑓𝑥𝑥  𝑓𝑦𝑦  𝑓𝑥𝑦  

𝜎

4𝑥
−

𝜎

4𝑥
−

𝜎

4𝑥2

𝜎

4𝑥2
0 

These coefficients are very similar to our estimated coefficients in signs and in 

relative magnitudes.  In fact, given the point we approximate around, equal x and y at 

mean the expenditure level ($775K≅ 1𝑒6), a 𝜎 ≅ .1 yields all appropriate orders on the 

coefficients.  In addition, the estimated coefficient on 𝑓𝑥𝑦  is insignificant, consistent with 

the approximation. 

The following table provides all the parameter estimates when the advertising 

technology is replaced with this one-parameter common advertising technology.  Note 

that the structural parameter estimates remain the same.   

Table 15 

𝑏0
𝑓 Robust R-squared     = 0.9698 

Coef. Std. Err. t P>|t| 

𝜸𝒃 -0.0562745 0.1151149 -0.49 0.626 

𝜸𝑰 0.3930532 0.0536565 7.33 0 

𝜸𝝁 0.6494347 0.0423069 15.35 0 

𝝈 0.0347582 0.0299608 1.16 0.249 
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Of interest, the decreasing marginal returns to own advertising are consistent 

with the notion that swing voters actually have a distribution where some are closely 

ideologically aligned with your party and others are less.  The first dollar wins over the 

swing voters nearest your platform, and it becomes increasingly harder to win over 

candidates further away from your platform, to compel them to traverse more 

ideological distance and vote for your party.   

Running the same regressions to identify the parameters using the Republican 

vote shares yields very different estimates.   

Table 16 

𝑏1
𝑓 Robust R-squared     = 0.9763 

Coef. Std. Err. t P>|t| 

𝜸𝒃 0.4994873 0.0731154 6.83 0 

𝜸𝑰 0.2664751 0.0529905 5.03 0 

𝜸𝝁 0.4010537 0.0469246 8.55 0 

𝒇𝒙 1.95E-07 6.80E-08 2.87 0.005 

𝒇𝒚 -1.19E-07 6.70E-08 -1.77 0.08 

𝒇𝒙𝒙 -8.45E-14 2.77E-14 -3.05 0.003 

𝒇𝒚𝒚 4.06E-14 6.56E-14 0.62 0.538 

𝒇𝒙𝒚 6.65E-14 5.75E-14 1.16 0.25 

Either the reduced-form specification is the wrong functional form, republican 

voters respond to factors differently and the specification lacks sufficient parameters, or 

both.  We now present the discrete-demand model which has the capability to handle 

each of these possibilities. 

7.2 Discrete Demand Estimates 

A strong attribute of the discrete-demand model with random coefficients is the 

large number of interpretable parameters.  Of course, restrictions can always be 

imposed in order to reduce the number of parameters and improve standard errors, and 

the restrictions themselves can be tested.  Ideally, as more data becomes available, we 

would like to re-estimate the model again allowing all factors to effect voters 
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heterogeneously, the whole suite of 24 parameters, as well as distribution parameters 

on the tri-variate utility shock distribution.  In the interim, we provide the specification 

most similar to the reduced-form specification:  

Normalized Multi-variate logistic with log(expenditures) 

 𝛿0,0 = 𝛿1,1,  𝛿0,1 = 𝛿1,0

 𝛽𝑒0,0
= 𝛽𝑒1,1

= 𝛽𝑒0,1
= 𝛽𝑒1,0

= 𝛽𝑒0,𝑛
= 𝛽𝑒1,𝑛

 𝛽𝐼0,0
= 𝛽𝐼1,1

 𝛽𝐼0,𝑛
= 𝛽𝐼0,𝑛

= 𝛽𝐼0,𝑛
= 𝛽𝐼0,𝑛

= 0

Table 17 

W restrictions Coef. Std. Err. z P>|z| 

𝛽𝐼0 0.3177208 0.1162822 2.73 0.006 

𝛽𝑠 0.1211039 0.1657457 0.73 0.465 

𝛽ln(𝑒0) 0.0862229 0.0475662 1.81 0.07 

𝛿0 -1.292568 0.6175504 -2.09 0.036 

𝛽𝐼1 0.3180796 0.1656882 1.92 0.055 

𝛽𝑠 0.1211039 0.1657457 0.73 0.465 

𝛽ln(𝑒1) 0.2072883 0.0646763 3.21 0.001 

𝛿1 -2.977698 0.7974894 -3.73 0 

7.3 Endogeneity Tests 

Given the challenges of employing instrumental variables in non-linear 

regressions, we defer to the discrete-demand model’s linear regression (multivariate 

logistic shocks under inversion) to test the hypothesis that inclusion of voter registration 

statistics mitigates the endogeneity of candidate expenditures.  We provide the factor 

impact parameter estimates for  

1. the model without registration statistics with and without lagged expenditures

to instrument for campaign expenditures

2. the model with voter registration statistics with and without lagged expenditures

The first set of estimates is without using voter registration statistics or lagged 

expenditures. The second set is without voter registration statistics, but with lagged 
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expenditures to instrument for expenditures.  The difference between the results 

indicates the presence of endogeneity.  An unaccounted-for regressor, such as 

candidate candor, is co-causal to both vote-share and expenditures. 

Table 18 

no IV 
no vr stat 

Coef. Std. Err. z P>|z| 

𝛽𝐼0 0.5198979 0.0555395 9.36 0 

𝛽𝑠 0.1752861 0.1335472 1.31 0.189 

𝛽ln(𝑒0) 0.0722224 0.0185874 3.89 0 

𝛿0 -1.284006 0.2522709 -5.09 0 

𝛽𝐼1 0.5198979 0.0555395 9.36 0 

𝛽𝑠 0.1752861 0.1335472 1.31 0.189 

𝛽ln(𝑒1) 0.0722224 0.0185874 3.89 0 

𝛿1 -1.421965 0.2544053 -5.59 0 

Table 19 

IV 
no v r stats 

Coef. Std. Err. z P>|z| 

𝛽𝐼0 0.3604734 0.1064815 3.39 0.001 

𝛽𝑠 0.1118347 0.1779473 0.63 0.53 

𝛽ln(𝑒0) 0.127989 0.0475618 2.69 0.007 

𝛿0 -1.835196 0.6185379 -2.97 0.003 

𝛽𝐼1 0.3604734 0.1064815 3.39 0.001 

𝛽𝑠 0.1118347 0.1779473 0.63 0.53 

𝛽ln(𝑒1) 0.127989 0.0475618 2.69 0.007 

𝛿1 -1.978821 0.6154552 -3.22 0.001 

The Hausman test of Endogeneity (test of estimate equality) demonstrates that, 

with >98% confidence, we fail to reject the presence of endogeneity.  For instance, 𝜌 , 
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the exponent of expenditures under the first specification is .07, but after 

instrumenting, is .12 .  

𝑏0 𝛽 ,𝛿  =
exp(𝑥 𝐼𝑜 ∙ 𝛽

 ′
𝐼𝑜

+ 𝛿0) ∙ 𝑥𝜌

1 + exp  𝑥 𝐼𝑜 ∙ 𝛽
 ′
𝐼𝑜

+ 𝛿0 ∙ 𝑥𝜌 + exp(𝑥 𝐼1 ∙ 𝛽
 ′
𝐼1

+ 𝛿1) ∙ 𝑦𝜌

Endogeneity biases the estimate of the returns of advertising to be too 

nonlinear; too large an impact of expenditures on vote-share for low dollar 

expenditures, and too high an impact on vote-share for high dollar expenditures, 

relative to your opponent. 

Now, introducing voter heterogeneity instead of the lagged expenditures, we 

achieve similar estimates as we got when we instrumented with lagged expenditures. 

Table 20 

Vote Reg stats 
no IV 

Coef. Std. Err. z P>|z| 

𝛽𝐼0 0.3177208 0.1162822 2.73 0.006 

𝛽𝑠 0.1211039 0.1657457 0.73 0.465 

𝛽ln(𝑒0) 0.0862229 0.0475662 1.81 0.07 

𝛿0 -1.292568 0.6175504 -2.09 0.036 

𝛽𝐼1 0.3180796 0.1656882 1.92 0.055 

𝛽𝑠 0.1211039 0.1657457 0.73 0.465 

𝛽ln(𝑒1) 0.2072883 0.0646763 3.21 0.001 

𝛿1 -2.977698 0.7974894 -3.73 0 

For a district with mean voter registration statistics, we now estimate 𝜌  to be 

.12, just as was estimated using lagged expenditures as an estimate.  In fact, the 

Hausman tests rejects the null: the parametric estimates are systematically different. 

Thus, we conclude that controlling for co-causal influence on vote share and 

expenditures using district-level partisan voter registration statistics mitigates as much 

endogeneity-based estimate bias as does using the instrument lagged expenditures. 
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Methodologically, the generality provided by the discrete-demand model makes 

it strongly preferable for estimating vote impact effects.  Previous reduced-form 

equations can still be well approximated by imposing restrictions on the discrete-model, 

but by starting with the discrete demand model the specific restrictions can be tested to 

see if they are justified.  In this paper, even though our reduced form specification is 

semi-parametric (general for a reduced-form specification), and delivers impact effect 

estimates consistent with previous literature, we are able to test the restrictions needed 

to generate the reduced-form specification.  The data rejects the imposition of the 

restrictions.  

Moreover, introducing partisan district voter registration statistics through 

random-coefficients provides a natural insertion of voter heterogeneity.  Incorporating 

registration statistics in this fashion provides interpretable parameters.  Also, not having 

to estimate random coefficient distribution parameters yields more significant estimates 

for the other parameters.   

While we find that impact on overall vote share by candidate expenditures is 

nonlinear, and at mean expenditure levels the marginal impact is quite small, most of 

the action of campaign expenditures occurs on the boundary of the non-voting region.  

Campaign expenditures are more successful at convincing non-voters to vote (‘get out 

the vote’ dollars) than at convincing voters with tendencies for the opponent to vote for 

you.  In fact, since we estimate the mean utility for a voter to vote for either candidate 

to be negative (intuition: without expenditures voters prefer not to vote), expenditures 

are largely responsible for voter turnout, especially for the challenger.  Policy 

implications of this finding are ambiguous.  Expenditures are important but have 

decreasing marginal impact, and most of their influence is in generating larger voter 

turnout (itself a controversial topic). 

Incumbency is a large significant advantage for a candidate.  Normatively, the 

welfare effect is not well understood.  On one hand, with incumbency candidates can 

 8 Conclusion 
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commit to longer-term efforts.  On the other, decreasing the importance of incumbency 

results in more competitive electoral races and truer representation. 

Less ambiguous, we find that district demographics are an important factor in 

vote results.  Voters with different registration characteristics have different 

preferences and respond differently to candidate characteristics; incumbency and 

campaign expenditures. State legislatures are responsible for drawing their state’s 

congressional boundaries (districting).  It is well known that these state legislatures can 

and do manipulate the boundaries to benefit the party in power in the state.  This paper 

demonstrates that voter heterogeneity is large, and thus that the party in power in state 

legislatures hold real federal political power. 
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Product demand is not perfectly analogous to candidate demand.  A consumer 

must not always obtain a product, yet a voter always gets a representative.  The 

difference manifests itself when considering a voter’s incentives to vote for a particular 

candidate; to vote for a candidate a voter must either receive a lot of utility from voting 

for that candidate, or be very against being represented by the other candidate.  

Framing the critique econometrically: interact tastes for voting with the difference 

between the random utilities of having a particular candidate in office.  Modification of 

the discrete-demand model proceeds as follows: 

 The utility from voting Democratic:

𝑈𝑖 𝑥0 = 𝑥 0 ∙ 𝛽 
′ + 𝛿0 + 휀𝑖0

 The utility from voting Republican:

𝑈𝑖 𝑥1 = 𝑥 1 ∙ 𝛽 
′ + 𝛿1 + 휀𝑖1

Conditional on voting, a voter always votes for the candidate he would prefer to 

have as his representative. We now consider the utility from not voting vs. voting. 

 The utility from voting:

𝑈𝑖 𝑥𝑣 = 𝑝𝑟𝑜𝑏 𝑝𝑖𝑣𝑜𝑡𝑎𝑙 ∙  𝑈𝑖 𝑥+ − 𝑈𝑖 𝑥−  + 𝛿𝑣 + 휀𝑖𝑣  

𝑈𝑖 𝑥+ = max{𝑈𝑖 𝑥0 ,𝑈𝑖 𝑥1 }  

 𝑈𝑖 𝑥− = min{𝑈𝑖 𝑥0 ,𝑈𝑖 𝑥1 } 

 Normalizing the utility from not-voting to zero.

{We do not explicitly solve or estimate the model, but in doing so, the prob(pivotal) 

would be a function of the district’s voter registration statistics, incumbency, and 

relative expenditures.} 

The voter’s decision tree: 

10 Appendix: Strategic Voting (‘Blocking’; the Williams Critique) 
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Figure 12 

Solving the voter’s participation and incentive indifference conditions yields a 

similar graphical characterization of what masses of voters choose {vote Dem, vote Rep, 

no vote} for a given shock distribution.  The difference in the model manifests itself in a 

new non-linear boundary between not-voting and voting Democrat, and not-voting and 

voting Republican.  The intuition is the same as the motivation of the model.  If a voter 

receives a really bad shock for a candidate, he will vote for the other candidate.  Since 

he is going to get a candidate, the voter chooses to strategically block the candidate he 

has severe distastes for. 

Figure 13 

voter

Not 
voting

Voting

Vote 
Dem

Vote
Rep

No Vote

Vote for Candidate 0

Vote for Candidate 1

A voter that 'blocks'
  candidate 1



52 

Chapter 3: Colonel Blotto Strategies 

A Complete Characterization:  
Balance Between Balance and Imbalance 

Abstract 

In Gross and Wagner's (1950) original Colonel Blotto game, two officers must simultaneously 

decide how to best allocate their finite endowment of resources across multiple battlefields. In their 
original version of the game (2 battlefields and plurality objectives) the equilibrium payoffs and some 
equilibrium strategies are known. This paper finishes the characterization by deriving the complete set of 
Nash Equilibrium strategies. As players’ resource endowments converge, the set of equilibrium converges 
and suggests an equilibrium selection.  We provide an algorithm for characterization, prove its 
completeness, and discuss extensions of the analysis. 

mailto:smacdonell@mail.utexas.edu
mailto:nickmastronardi@gmail.com
http://mastroresearch.googlepages.com/
http://www.eco.utexas.edu/~sm23344/
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The Colonel Blotto game is a constant-sum game of allocation mismatch with 

application in military campaigns, political campaigns, network defense, and strategic 

hiring situations such as pro sports and the economics job market.  In Gross and Wagner 

(1950) two officers, Colonel Blotto and Enemy, with potentially asymmetric resources of 

soldiers B and E, compete in multiple battlefields.  The officers must decide how to 

allocate their limited resources (Air Force assets) across battlefields simultaneously. The 

officer with more air-assets at a particular field wins that battle.  Their objective is to 

win battles.   

Let 𝑏𝑖  & 𝑒𝑖  denote Blotto’s &Enemy’s respective allocations to battlefield i.  

Asymmetric resources, Plurality game: 

The probabilities Colonel Blotto wins on each battlefield: 

Figure 14 

Table 21 

Blotto Enemy 

Objective 
𝑚𝑎𝑥𝑏1 ,𝑏2

 𝑃𝑟𝑜𝑏(𝑤𝑖𝑛𝐵
𝑖 )

2

𝑖=1

 𝑚𝑎𝑥𝑒1 ,𝑒2
 𝑃𝑟𝑜𝑏(𝑤𝑖𝑛𝐸

𝑖 )

2

𝑖=1

 

Constraint 
 𝑏𝑖

2

𝑖=1

≤ 𝐵     &  𝑏𝑖 ≥ 0 ∀ 𝑖  𝑒𝑖

2

𝑖=1

≤ 𝐸    &     𝑒𝑖 ≥ 0 ∀ 𝑖 

0

1

Battlefield 1

0

1

Battlefield 2

1 Introduction 
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In case of a tie, the battlefield goes to the officer with greater resources.  This 

assumption is standard in the literature (Kvasov) and in equilibrium never occurs. 

In the 2008 Congressional elections, the Democratic Party allocated $748M 

across 435 districts.  The Republican Party allocated $713M across the same set of 

districts.  Suppose some districts inherently favor the Democrats while others favor the 

Republicans.    Suppose further that that there is uncertainty in the environment; the 

resource mismatches do not perfectly explain election results in each particular district. 

Even if Republicans outspend Democrats in a district, the probability Republicans win 

that district might still be less than one.  

Asymmetric Resources, 435 districts, Uncertainty and Battlefield Advantages: 

The probabilities Colonel Blotto wins in each district: 

Figure 15 

0

1

District 1 - with uncertainty

0

1

District 2 - with inherent advantage for Blotto

0

1

District 3 - with uncertainty and inherent disadvantage

0

1

District 435 - generalized district

…...
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Even more confounding, Colonel Blotto’s political campaign may have tastes for 

majority instead of straight plurality.  The political party’s payoff function may be: 

𝑚𝑎𝑥{𝑏𝑑 }𝑑=1
𝐷  1 − 𝛼 𝕀𝑏𝑑>𝑒𝑑

𝐷

𝑑=1

+ 𝛼𝕀𝑚𝑎𝑗𝑜𝑟𝑖𝑡𝑦

Last, it is also possible that different battlefields may have different importance 

weights.  The ultimate goal for Blotto theorists is to characterize all Blotto equilibria 

(payoffs, strategies) for these generalized battlefields, and also for varying degrees of 

complementarities between them: from plurality to the straight majority objective. The 

problem however is that while the game is intuitive and easy to describe, the complete 

strategy characterization methodology is involved, even for Gross and Wagner (1950) 

original game.   

In this research paper, we provide an algorithm that completely characterizes all 

Nash equilibrium strategies and prove the characterization’s completeness.  As players 

resource endowments converge, the complete set of equilibrium and suggests an 

equilibrium selection.  Last, we discuss applications of the algorithmic analysis: n>3 

battlefields, non-constant battlefield weights, inherent battlefield advantages, and 

natural Nash equilibrium refinements for the game.  

The organization for the remainder of this paper is as follows: 

 Section 2 Provides a brief review of preceding literature and our contribution

 Section 3 Completely Characterizes the Benchmark-Blotto Nash-strategies

o 3.1 Region 1 Nash Equilibrium construction

o 3.2 Region 2 Nash Equilibrium construction

o 3.3 Strategy Characterization algorithm

o 3.4 Proof of Completeness or Nash Characterization

 Section 4 Provides a simple re-derivation of the payoff state space

 Section 5 Concludes
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Section2: Literature Review 

Borel (1921) posited the first Colonel Blotto game in the early 1900’s.  Gross and 

Wagner (1950) found equilibrium strategies and payoffs for 2 battlefields.  Similarly, 

Roberson (2006) has found equilibrium strategies and payoffs when the number of 

battlefields is greater than 2. …  Our contribution in this paper is to completely 

characterize the set of Nash strategies for the 2 battlefield game, consider some Nash 

equilibrium refinements, and discuss the application of the strategy characterization 

algorithm to the n>2 battlefield game and other variants.    

Sahuguet and Persico (2006), Kovenock and Roberson (2007), Kvasov (2007), 

Golman and Page (2009), Blackett (1958), Bellman (1969), Borel (1921), Roberson 

(2006), Szentes and Rosenthal (2003), and Weinstein (2005) have all done work on Col 

Blotto games. 

Szentes and Rosenthal (2003) equate the Col Blotto game to a multi-unit all-pay 

auction with a necessarily binding budget constraint.  When Col Blotto has tastes for a 

majority, the game is comparable to a budget-constrained multi-unit all-pay auction 

with complementarities across the items.  In the limiting case that Col Blotto only cares 

if he wins the majority, the game is comparable to the budget-constrained all-pay 

version of the chop-sticks auction.  

In characterizing the Col Blotto strategies we use two attributes of constant-sum 

game Nash equilibrium previously identified by Vega-Redondo (2003, 47-50): 

1. Players always obtain the same equilibrium payoff in any Nash equilibrium.

2. Every Nash strategy is a best response to any of the opponent’s Nash strategies

a. This property is generally referred to as “Equilibrium Interchangeability”

b. This result implies the product space of Nash strategies is rectangular.
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Section3: Complete Nash-Strategy Characterization 

In this section we provide the equilibrium payoffs (Roberson 06) for the 2-player 

2-battlefied asymmetric-resource Colonel Blotto plurality game.  Section 3.1 constructs 

the necessary conditions for all Nash equilibrium under the case that B>2E (Region 1).  

Section 3.2 constructs the slightly more complicated necessary conditions for all Nash 

equilibrium under the case that B<2E, but B>3E/2 (Region 2).  Section 3.3 describes the 

algorithm for identifying all Nash equilibrium for a generic region. Section 3.4 proves 

that the completeness of the characterization; that the set of conditions imposed by the 

algorithm is both necessary and sufficient to identify all possible Nash equilibrium 

strategies to the game.  

Figure 15 displays payoffs over the state-space of possible resource-

endowments. 

Blotto-Enemy Resource State Space  

Figure 15 

B

E E=B

i

ii

iii

iv
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With the following payoffs: 

Table 22 

Region Blotto’s Expected Payoff Enemy’s Expected Payoff 

i 2 0 

ii 3/2 1/2 

iii 4/3 2/3 

iv 5/4 3/4 

n (n+1)/n (n-1)/n 

3.1:  Region 1 Characterization 

This section completely characterizes the set of Nash equilibrium strategies for 

when Blotto has more than double the resources of Enemy, B>2E.  We first characterize 

the set of resource-constrained Nash equilibrium strategies, and then relax the 

assumption to consider all feasible allocations. 

The intuition for the region is simple.  If Col Blotto has twice the forces of Enemy, 

he can guarantee himself victory on both battlefields by deploying forces (E+휀, E+휀) 

and earning payoff of 2.  However, there are many other Nash strategies as well.  We 

take the general approach of searching for all resource-constrained mixed-strategies 

that satisfy first-order necessary conditions. 

Colonel Blotto faces the following optimization problem. 

𝑚𝑎𝑥𝑏1,𝑏2
  𝕀𝑤𝑖𝑛 1

𝐵 + 𝕀𝑤𝑖𝑛 2
𝐵    𝑠𝑡   𝑏1 + 𝑏2 ≤ 𝐵

Since left-over resources don’t enter the objective function, we temporarily assume the 

officers’ resource constraints binds.  We relax this later.  Substituting the equality: 

𝑚𝑎𝑥𝑏1
  𝕀𝑏1>𝑒1

+ 𝕀𝐵−𝑏1>𝐸−𝑒1
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Rearranging to isolate the strategic random variable, 𝑒1 (from the perspective of Blotto) 

yields 

𝑚𝑎𝑥𝑏1
  𝕀𝑏1>𝑒1

+ 𝕀𝑒1>𝐸−𝐵+𝑏1

Since we are pursuing a general approach of solving for resource-binding mixed-

Nash equilibrium strategies, we define 𝐺𝐵and 𝐺𝐸to represent the two officers’ mixing 

distributions over possible field 1 allocations.  Characterizing these CDFs is the objective 

of our analysis. 

For Blotto:  𝑚𝑎𝑥𝐺𝐵 (𝑏1)𝐺𝐸 𝑏1 + 1 − 𝐺𝐸 𝐸 − 𝐵 + 𝑏1 

For Enemy:   𝑚𝑎𝑥𝐺𝐸(𝑒1)𝐺𝐵 𝑒1 + 1 − 𝐺𝐵 𝐵 − 𝐸 + 𝑒1 

The intuition for the expressions is sensible.  Since CDFs are monotonically 

increasing, we can see that larger allocations to battlefield 1 increase expected payoff 

on that battlefield, but also decrease expected payoff on battlefield 2 (since the 

allocation to battlefield 2 must be smaller) denoted by the negative coefficient on the 

last term.   

Since players earn equal expected payoff (𝑘𝐵  &  𝑘𝐸), for any strategy they mix 

among: 

𝐺𝐸 𝑏1 + 1 − 𝐺𝐸 𝐸 − 𝐵 + 𝑏1 =  𝑘𝐵  

𝐺𝐵 𝑒1 + 1 − 𝐺𝐵 𝐵 − 𝐸 + 𝑒1 =  𝑘𝐸  

WLOG, assume Blotto has the resource advantage, B>E.  Define  𝛿 = 𝐵 − 𝐸.  

𝐺𝐸 𝑏1 − 𝐺𝐸 𝑏1 − 𝛿 =  𝑘𝐵 − 1 

𝐺𝐵 𝑒1 + 𝛿 − 𝐺𝐵 𝑒1 =  1 − 𝑘𝐸  
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These two equations are necessary conditions for the officers’ resource-binding 

mixed-Nash equilibrium strategies, 𝐺𝐸and 𝐺𝐵.  As expected, we can see that the 

advantaged player can always expect payoffs > 1 (disadvantaged<1) since CDFs are 

weakly increasing.  Important for the Nash-strategy set characterization, the officers’ 

optimal resource-binding battlefield-1 allocation mixed strategy must satisfy 𝛿-

periodicity.  

The necessary conditions state that for any battlefield 1 allocation in Enemy’s 

support, the difference in Blotto’s battlefield 1 allocation mixed-strategy cumulative 

distribution at that allocation and the point 𝛿 above is always a constant.  A similar 

statement holds for Enemy.  A line (Uniform CDF) satisfies this requirement.  In addition, 

the Heaviside-step-function with standardized step interval length of 𝛿 and a constant 

step-height also satisfies. 

Figure 16 

In general, any periodic functions with period length of 𝛿 or 
𝛿

𝑖
 ∀𝑖𝜖ℕ

satisfy the FONCs.  For example, when 𝑖 = 2 the step-function has period 
𝛿

2
 and the

FONCs are still satisfied.  Smooth periodic functions including lines are elements of the 

class of Heaviside step functions with period length 
𝛿

𝑖
 when 𝑖 → ∞.

...

...

G

arg1 arg1+ arg2 arg2+
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FONC Property: The essential conclusion is that every resource-constrained 

equilibrium strategy must satisfy 𝛿-periodicity (𝑖 = 1), and have constant step-height, 

for all points in the opponents support. 

We use the FONC property to conjecture a support, and coarse mixed-Nash mass 

distribution property, for the players’ strategies.  The conjectured set of strategies is 

necessary, proven section 3.4, and is also sufficient in region 1, although subsequent 

regions require an extra condition for sufficiency. 

In the case of region 1, using the fact the equilibrium strategy CDF must be 𝛿-

periodic, we postulate the following characterization of the players’ supports. 

Figure 17 

Lemma 1:  over the domain [0,E+r] or battlefield 1 allocations, the support of possible 

equilibrium Blotto allocations and Enemy allocations are disjoint, and their union is full. 

  Allocation 
  in battlefield 1

E B

(delta)

(delta)

Postulated Support of Enemy's battlefield 1  allocations 
implied by resource-constrained necessary conditions

Postulated Support of Blotto's battlefield 1  allocations 
implied by resource-constrained necessary conditions

Region 1
E=.4, B=1
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Alternatively, we can view this conjectured support of resource-constrained 

Nash strategies for region 1 on the simplex.   

Figure 18 

Vega Redondo (03) shows that constant-sum games satisfy Equilibrium 

Interchangeability; any element in a players’ set of Nash strategies, when paired with 

any opponent Nash strategy, are best-responses to each and constitute a Nash 

equilibrium.  Topologically, the product space of the set of Nash strategies is 

rectangular.  Using Equilibrium Interchangeability, we characterize the complete set of 

resource-constrained Nash equilibrium for region 1: 

Table 23 

Resource constrained  (simplex frontier) Blotto Enemy 

strategy set [E,E+r] [0,E] 

strategy payoffs 2 0 

Necessary Allocation Sets

       Region 1

Wlog:  B=1, E=.4, delta=.6 

  Allocation 
  in battlefield 1

  Allocation 
  in battlefield 2

B
1

E
.4

E

B

(.6,.4)=(B-E,B-(B-E))

(.4,.6)

   The resource-constrained Nash-necessary 
allocation set  consists of all mass distributions 

  over the allocations on the lines
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The next step of the Region 1 complete strategy characterization construction 

relaxes the assumption that players only play resource-constrained strategies.  

Consistent with our intuition that for Blotto to earn expected payoff of 2 he should play 

at least E in each battlefield, and consistent with our analysis that Blotto should never 

play any probability mass on allocations that could potentially earn Enemy positive 

payoff from playing a resource-constrained strategy, we now relax (expand) Blotto’s 

strategy set to include all allocations north-east of (E,E) in Blotto’s simplex.   

Mathematically, relaxing the assumption that the resource-constraint binds 

expands our postulated set of Blotto allocations to include all feasible allocations larger 

than the join of the boundaries of the support of Enemy’s strategies.  While this now 2-

dimensional set is no longer ordered and not representable by a CDF in order to check 

whether it satisfies FONC property of 𝛿-periodicity over Enemy’s support, any of the 

bivariate-distribution’s marginal distributions do.   Further, using lemma1, the join of 

Enemy’s support boundaries is the meet of Blotto.  

Last, our construction bounds the region.  Again, following the reasoning the 

Blotto should not play mass on allocations less than the join of Enemy’s boundary (in 

this region (E,E)), we bind the region of Blotto’s resource-constraint-relaxed strategies 

with the lines b1=E and b2=E.  Formally, the set of allocations over which our 

construction allows Blotto to play probability mass is the set of allocations located 

within the convex-hull of his support boundaries and their meet.  For Enemy we bound 

his set of allocations by the same algorithm, which in region 1 is degenerate; it is just the 

set of all feasible Enemy allocations. 
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Figure 19 

Table 24 

General, all feasible allocations, Region 1 Blotto Enemy 

strategy set Red Triangle Blue Triangle 

expected payoffs 2 0 

3.2 Region 2 Characterization 

Region 2 consists of all possible resource endowments where Enemy has more 

than half of Blotto’s resources (E>B/2), but still less than two-thirds (E<2B/3).  Blotto’s 

previous (from region 1, section 3.1) resource-minimizing Nash strategy (E,E) is no 

longer feasible; it now lays north-east of Blotto’s feasible allocation simplex frontier. 

Also, our support construction is slightly different.  For resource-endowments in this 

region, the support-construction component of our strategy characterization algorithm 

conjectures that Blotto and Enemy each now both have 2 disjoint resource-constrained 

Necessary Allocation Sets

       Region 1

Wlog:  B=1, E=.4, delta=.6 

  Allocation 
  in battlefield 1

  Allocation 
  in battlefield 2

B
1

E
.4

E

B

(.6,.4)=(B-E,B-(B-E))

(.4,.6)

The Nash-necessary allocation set 
consists of all mass distributions 
over the allocations in the regions
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support cells.  In order to satisfy the second characteristic of the FONC Property, that 

the resource-constrained CDF must have constant step-height, each of these cells must 

receive equal probability mass (1/2 each). 

For region 2, the resource-constrained support-construction step of the 

construction algorithm is demonstrated graphically in Fig 20. The postulated supports 

again satisfy the properties of lemma 1. 

Figure 20 

Graphing the predicted resource-constrained supports on the simplex in Region 2 yields: 

Figure 21 

  Allocation 
  in battlefield 1

E B

(delta)

(delta)

Postulated Support of Enemy's battlefield 1  allocations 
implied by resource-constrained necessary conditions

Postulated Support of Blotto's battlefield 1  allocations 
implied by resource-constrained necessary conditions

Region 2
B=1, E=.6

Necessary Allocation Set

       Region 2

Wlog:  B=1, E=.6, deta=.4 

  Allocation 
  in battlefield 1

  Allocation 
  in battlefield 2

B
1

E
.6

E

B

(.4,.2)

(.4,.6)

       The resource-constrained necessary allocation set  
consists of  the set of all mass distributions summing to 1/2  

  over the allocations in these regions 
  (similar for Enemy)

(.8,.2)

(.6,.4)

(.2,.8)

(.2,.4)
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We caution the reader.  The analog of region 1 is not as simple; all possible mass 

distributions over the resource-constrained cells (in this case, ½ on each) do not 

constitute Nash strategies.  We impose a further restriction on the possible mixed-

strategy mass distribution for a player; the strategy restriction can be easily interpreted 

graphically and is depicted in Fig 22.  The intuition behind imposing a further restriction 

on Blotto strategies is that if Blotto plays particular pairs of allocations with a high 

probability, then Enemy will be incentivized to deviate from his conjectured support to 

play an alternate allocation and earn higher expected payoffs.  A similar story restricts 

Enemy’s potential mixed-strategies.  Enemy playing particular pairs of allocations with 

high probability can incentivize Blotto to deviate from his support to play an alternative 

allocation and win both battlefields with enough probability to earn larger expected 

payoff. The conditions must hold for all possible Enemy allocations outside of his 

support. 

Mixed-Strategy Mass Restriction  

𝐺𝑏 𝑥
∗ +  1 − 𝐺𝑏 𝐸 − 𝑥∗  <

1

2
 ∀𝑥∗not in Enemy′support 

Figure 22 

Necessary Allocation Set

       Region 2

Wlog:  B=1, E=.6, deta=.4 

  Allocation 
  in battlefield 1

  Allocation 
  in battlefield 2

B
1

E
.6

E

B

Potential Enemy allocation *
  *=  (x, E-x)

j

k

Total mass Blotto distributes 
over segments j & k must be < 1/2
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𝐺𝑒 𝑦
∗ +  1 − 𝐺𝑒 𝐸 − 𝑦∗  <

1

2
 ∀𝑦∗not in Blotto′s support 

Figure 23 

The formal characterization at the end of the section proves that such allocations 

by Enemy are not in his support, therefore are not Nash strategies, and Blotto cannot 

play strategies in equilibrium to which they would be a best-response imposing the 

restriction on Blotto’s set of mixed-strategies. Similar reasoning is provided for 

restricting Enemy’s mixed-Nash strategies. 

The restricted strategies do provide some intuition however.  Consider a pairing 

of one Enemy support cell and the Blotto support cell directly north-east.  All Blotto 

allocations in his support cell are best-responses to any allocation in the Enemy support 

cell (or any Enemy allocation strictly south and west of that allocation).  If Blotto knew 

Enemy was playing an allocation in that Enemy support cell, any Blotto allocation in his 

support cell would guarantee him both battlefields and payoff of 2.  Inversely, if Enemy 

knew Blotto were playing an allocation in his support cell, Enemy’s best-response would 

be to play an allocation in any other support cell to guarantee a payoff of 1.   (It is 

impossible for Enemy to win both). 

Necessary Allocation Set

       Region 2

Wlog:  B=1, E=.6, deta=.4 

  Allocation 
  in battlefield 1

  Allocation 
  in battlefield 2

B
1

E
.6

E

B

m

n

Potential Blotto allocation *
  *=(y,B-y)

Total mass Enemy distributes 
over segments m& n must be < 1/2
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When Enemy plays an allocation with more resources in battlefield 1, we call this 

“Enemy attacks heavy in 1” and do so similarly for battlefield 2, and for Blotto.  The 

characterization states that half the time Enemy attacks heavy in battlefield 1, and half 

the time attacks heavy in battlefield 2.  Blotto tries to match the battlefield goes heavy 

in.  Half the time he guesses right and earns payoff 2, and half the time he doesn’t for 

payoff of 1, and overall expected payoff 3/2 leaving Enemy expected payoff ½.     

We now relax the assumption that the players play resource-constrained 

strategies in Region 2.  The algorithm relaxing the assumption is analogous to Region 1.  

For each support cell pair, a best-response to Blotto is any allocation north-east of the 

join of Enemy’s support cell boundaries, and by lemma 1, this region can be defined as 

the set of allocations north-east of the meet of Blotto’s support cell boundaries.  

Enemy’s best-response to any allocation in Blotto’s support cell is any allocation not 

south and west of the meet of Blotto’s support cell boundaries.  Taking the intersection 

of the boundaries from the neighboring Blotto support cells yields the resource-

minimizing Nash allocation for Enemy for that set of strategies.  Again, taking the convex 

hull of the support cell boundaries together with the resource-minimizing allocation 

binds the set of Nash strategies that the player can play that set’s probability mass over.  

The final step for the region 2 Nash strategy characterizations is to consider the 

implication of the mixed-strategy mass restriction under the resource relaxed situation. 

The mass restriction becomes a mass restriction over the distribution within pairs of 

trapezoids. 
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Figure 24 

3.3 Strategy Characterization Algorithm 

1. Find resource-binding allocation support cell boundaries

2. Take the meet of the support cell boundaries

3. Take the convex-hull of these three allocations

4. Require each disjoint region to contain equal probability mass

5. Restrict mass distributions considering best-responses

Necessary Nash-Allocation Sets

        Region 2

 Wlog:  B=1, E=.6 

  Allocation 
  in battlefield 1

  Allocation 
  in battlefield 2

B
1

E
.6

E

B

  *= A worst-case scenario
        (because on frontier)

Threatening allocation by Enemy

j=prob(Enemy wins battlefield1
  when employing *)

k=prob(Enemy wins battlefield2
  when employing *)

j+k<1/2
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3.4 Formal Characterization 

W.L.O.G. assume that Blotto is the advantaged player and normalize his total 

resources to one (B=1). The complete set of Nash Equilibrium Blotto strategies, Ω𝐵, is 

the set of pdfs, 𝑓𝐵(𝑏1,𝑏2) allowing the inclusion of atoms, with the following two 

properties: 

Property 1b) The mass of 𝑓𝐵(𝑏1, 𝑏2) over triangle 𝑇𝑖
𝑏  is 

1

𝑛
 where 𝑇𝑖

𝑏

satisfies: 𝑏1 ≥ 𝐸 −  𝑛 − 𝑖 𝛿, 𝑏2 ≥ 𝐸 −  𝑖 − 1 𝛿, 𝑏1 + 𝑏2 ≤ 1 ∀𝑖 =

1,2,… ,𝑛. Alternatively  𝑓𝐵 𝑏1,𝑏2 𝑑𝑏1𝑑𝑏2 =
1

𝑛
.

𝑇𝑖
𝑏

Property 2b) ∀ 𝑖 < 𝑛 ∀ 𝑥1 ∈ [𝐸 −  𝑛 − 𝑖 𝛿, 𝑖𝛿] the mass of 𝑓𝐵(𝑏1,𝑏2) 

over trapezoid 𝑗𝑏
𝑥1  minus the mass over triangle 𝑘𝑏

𝑥1  is less than or equal

to 0. Here 𝑗𝑏    is defined as the portion of 𝑇𝑖
𝑏  such that  𝑏1 < 𝑥1 and

region 𝑘𝑏  is defined as the portion of 𝑇𝑖+1
𝑏  such that 𝑏2 ≥ 𝐸 − 𝑥1.

Alternatively,  𝑓𝐵 𝑏1,𝑏2 𝑑𝑏1𝑑𝑏2 −  𝑓𝐵 𝑏1,𝑏2 𝑑𝑏1𝑑𝑏2 ≤  0.
𝑘𝑏𝑗𝑏

 

The complete set of Nash Equilibrium Enemy strategies, Ω𝐸 , are the set of pdfs, 

𝑓𝐸 𝑒1, 𝑒2 , with the following two properties: 

Property 1e) Each triangle 𝑇𝑖
𝑒   contains mass 

1

𝑛
 where 𝑇𝑖

𝑒   satisfies:

𝑒1 > (𝑖 − 1)𝛿, 𝑒2 > (𝑛 − 𝑖)𝛿, 𝑒1 + 𝑒2 ≤ 𝐸 ∀ 𝑖 = 1,2,… ,𝑛. For 𝑖 = 1 the 

first inequality is weak. For 𝑖 = 𝑛 the second inequality is weak. 

Alternatively  𝑓𝐸 𝑒1, 𝑒2 𝑑𝑒1𝑑𝑒2 =
1

𝑛
.

𝑇𝑖
𝑒

Property 2e) ∀𝑖 < 𝑛 ∀ 𝑥1 ∈ [𝑖𝛿,𝐸 − (𝑛 − 𝑖 + 1)𝛿] the mass of 𝑓𝐸(𝑒1, 𝑒2) 

over trapezoid 𝑗𝑒
𝑥1  minus the mass over triangle 𝑘𝑒

𝑥1  is less than or equal

0 where 𝑗𝑒  is defined as the portion of 𝑇𝑖+1
𝑒  such that  𝑒1 ≤ 𝑥1  and region

𝑘𝑒  is defined as the portion of 𝑇𝑖
𝑒  such that 𝑒2 > 1 − 𝑥1. Alternatively,

𝑓𝐸 𝑒1, 𝑒2 𝑑𝑒1𝑑𝑒2 −  𝑓𝐸 𝑒1, 𝑒2 𝑑𝑒1𝑑𝑒2 ≤  0.
𝑘𝑒𝑗𝑒
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To show that these two definitions completely characterize the set of Nash 

Equilibrium we first prove that all strategy pairs satisfying the above conditions 

constitute a Nash Equilibrium. In a later section we show that no other strategies are a 

part of any Nash Equilibrium. 

Proof: All Characterized Strategies are Part of a Nash Equilibrium. 

Proposition 1: Any 𝑒1 that is in2 𝑇𝑖𝑒
𝑒  is strictly greater than all 𝑏1that are in 

𝑇𝑖𝑏
𝑏 where 𝑖𝑏 < 𝑖𝑒  (should such a  𝑇𝑖𝑏

𝑏  exist) and strictly3 less than all

𝑏1that are in  𝑇𝑖𝑏
𝑏 where 𝑖𝑏 ≥ 𝑖𝑒 .  Also, any 𝑒2 that is in 𝑇𝑖𝑒

𝑒   is strictly

greater than all 𝑏2 that are in any  𝑇𝑖𝑏
𝑏 where 𝑖𝑏 > 𝑖𝑒  (should such a  𝑇𝑖𝑏

𝑏

exist) and strictly4 less than all 𝑏2 that are in any  𝑇𝑖𝑏
𝑏  where 𝑖𝑏 ≤ 𝑖𝑒 . 

Consider the bounds for 𝑒1 in  𝑇𝑖𝑒
𝑒 . It is bounded below by (𝑖𝑒 − 1)𝛿. Changing 

the two other constraints to equalities and solving we find that in 𝑇𝑖𝑒
𝑒  𝑒1 is bounded

above by 𝐸 −  𝑛 − 𝑖𝑒 𝛿, the lower bound of 𝑏1in  𝑇𝑖𝑏
𝑏   when 𝑖𝑏 = 𝑖𝑒 . Similar algebra for 

the other bounds confirms the rest of the proposition. 

Given Proposition 1, we know that against any Blotto strategy from our 

definition, when Enemy plays in 𝑇𝑖
𝑒  his probability of winning battlefield 1 is 

𝑖−1

𝑛
 and his 

probability of winning battlefield 2 is 
𝑛−𝑖

𝑛
. The total expected payoff is then 

𝑛−1

𝑛

anywhere in any 𝑇𝑖
𝑒 . Similarly, against any Enemy strategy from above, when Blotto

2 Here we abuse notation and refer to a coordinate, 𝑥1, as being “in” a two dimensional 
region so long as there exists another coordinate 𝑥2 such that (𝑥1, 𝑥2) is in that region. 
3 Weakly in the case where 𝑖𝑒 = 𝑛. 
4 Weakly in the case where 𝑖𝑒 = 1. 
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plays in 𝑇𝑖
𝑏  his probability of winning battlefield 1 is 

𝑖

𝑛
 and his probability of winning 

battlefield 2 is 
𝑛−𝑖+1

𝑛
. The total expected payoff is then 

𝑛+1

𝑛
 anywhere in any 𝑇𝑖

𝑏 .

We now show that there are no allocations for Enemy or Blotto that provide a 

higher expected payoff than we found in the previous paragraph. Note that if either 

player were to have a payoff improving deviation from the strategies we defined, they 

must have a full expenditure payoff improving deviation.5 Therefore, we only need to 

show that there are no optimal full expenditure deviations. As all allocations in any 𝑇𝑖
𝑒

and any 𝑇𝑖
𝑏  have the same expected payoffs for Enemy and Blotto, respectively, we only

need to check full expenditure deviations outside of those triangles. 

Consider a generic full expenditure deviation (𝑒1
∗, 𝑒2

∗). Given that (0,E) is in 𝑇1
𝑒

and (E,0) is in 𝑇𝑛
𝑒  we know that (𝑒1

∗, 𝑒2
∗) must lie between some 𝑇𝑖

𝑒  and 𝑇𝑖+1
𝑒 .6 Here let

(𝑒1, 𝑒2) be a non-deviating allocation in 𝑇𝑖
𝑒 . Examining Property 2b with 𝑥1 = 𝑒1

∗ we see

that that allocation (𝑒1
∗, 𝑒2

∗) provides an expected payoff weakly dominated by the

expected payoff from playing (𝑒1, 𝑒2). Given the bounds on such a deviation, we note 

that the realized payoff to enemy of playing  𝑒1
∗, 𝑒2

∗  against the Blotto strategy we

describe above will be the same as if he had played (𝑒1, 𝑒2) unless Blotto plays in 𝑇𝑖
𝑏  or

𝑇𝑖+1
𝑏 . If Blotto plays in 𝑇𝑖

𝑏  the deviant strategy may do better7 on Battlefield 1 (and will

do the same on Battlefield 2). The cost is that if Blotto plays in 𝑇𝑖+1
𝑏  the deviant strategy

may do worse on Battlefield 2 (and will do the same on Battle field 1). Using the 

notation of Property 2b, any 𝑏1 in 𝑗𝑏
𝑒1
∗

will lose to 𝑒1
∗ (while it would have lost to 𝑒1) and

any 𝑏2 in 𝑘𝑏
𝑒1
∗

will beat 𝑒2
∗ (while it would have lost to 𝑒2). Property 2b then says that by

5 As the expected payoff functions must be weakly increasing in expenditure in either 
battlefield. 
6 By “between” we mean that the values of 𝑒1

∗ and 𝑒2
∗ lie between any value of 𝑒1 and 𝑒2

in 𝑇𝑖
𝑒  and 𝑇𝑖+1

𝑒 , respectively, respectively.
7 By “do better” we mean 𝑒1

∗ would be larger than Blotto’s Battlefield 1 allocation,
whereas 𝑒1 would be less. 
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moving from any (𝑒1, 𝑒2) in 𝑇𝑖
𝑒  to (𝑒1

∗, 𝑒2
∗) the additional probability of winning on

Battlefield 1 must be weakly less than the additional probability of losing on Battlefield 

2. Therefore no full expenditure deviation (𝑒1
∗, 𝑒2

∗) is payoff improving, and therefore no

deviation is payoff improving. The same logic is behind Property 2e) and prevents Blotto 

from having any payoff improving full expenditure deviations.  

Thus, if both Blotto and Enemy were to play strategies as we described, they 

would both be playing best responses to the other’s strategy. Therefore all of the 

strategies we describe are Nash Equilibrium strategies. 

3.3 Sufficiency 

In this section we prove that there are no other strategies which could be part of 

Nash Equilibrium. Because of equilibrium interchangeability, all we need to show in 

order to prove that a strategy is not a part of any Nash Equilibrium is that the strategy 

does not form a Nash Equilibrium when paired with a strategy that we’ve already shown 

was a part of a Nash Equilibrium. In particular for Enemy we make use of the strategy 

𝑓𝐸
1 𝑒1, 𝑒2  where he plays uniformly over the full expenditure boundary in each 𝑇𝑖

𝑒 . For

Blotto we make use of the following two strategies: 𝑓𝐵
1(𝑏1,𝑏2) where he plays uniformly

over the full expenditure boundary in each 𝑇𝑖
𝑏  and 𝑓𝐵

2(𝑏1, 𝑏2)  where he plays with mass

1

2𝑛
at both (𝐸 −  𝑛 − 𝑖 𝛿, 𝑖𝛿) and (𝑖𝛿,𝐸 −  𝑖 − 1 𝛿) in each 𝑇𝑖

𝑏 .8

We now prove the completeness of our definition by contradiction. Suppose 

there exists a Nash Equilibrium Enemy Strategy that is not described by our definition. 

Such a strategy must then either violate Property 1e) or satisfy Property 1e) and violate 

Property 2e). In proving that all our strategies were indeed part of a Nash Equilibrium, 

8 A simple algebraic or graphical analysis shows that these strategies satisfy our 
conditions. 
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we’ve already shown how a violation of Property 2e) provides Blotto with an optimal 

deviation, so we rule out that possibility. 

 Consider possible violations of Property 1e): Deviation 1) Enemy could play with 

some mass over a region 𝑆 where ∃𝑖 such that ∀ 𝑒1
∗, 𝑒2

∗ ∈ 𝑆,∀ 𝑒1, 𝑒2 ∈ 𝑇𝑖
𝑒 , 𝑒1

∗ ≤ 𝑒1

and 𝑒2
∗ ≤ 𝑒2 with one of those inequalities always holding strictly. We already have a

contradiction as this could not be a best response to 𝑓𝐵
2(𝑏1, 𝑏2) which has blotto playing

the lower bounds of 𝑒1and 𝑒2 in 𝑇𝑖
𝑒  with positive mass.  𝑒1

∗, 𝑒2
∗  provides a strictly lower

expected payoff than playing in 𝑇𝑖
𝑒 .

This only leaves two possible types of deviations by enemy: He could play with 

mass other than 
1

𝑛
 over some 𝑇𝑖

𝑒  (Deviation 2) and/or he could play with mass over a

convex region 𝑆 where ∀ (𝑒1
∗, 𝑒2

∗) ∈ 𝑆,∀ 𝑒1, 𝑒2 ∈ 𝑇𝑖
𝑒  either 𝑒1

∗ > 𝑒1 or 𝑒2
∗ > 𝑒2

(Deviation 3). Given the bounds of the 𝑇𝑖
𝑒 ’s any such region 𝑆 must be a subset of one

of the triangles 𝐷𝑗
𝑒 , indexed by 𝑗 = 1,2,…𝑛 − 1, where ∀ 𝑒1, 𝑒2 ∈ 𝐷𝑗

𝑒 , 𝑒1 > 𝐸 −

𝑛 − 𝑖 𝛿, 𝑒2 > 𝐸 − 𝑖𝛿, 𝑒1 + 𝑒2 ≤ 𝐸.9

We simultaneously prove that neither of these deviations is possible. Consider a generic 

𝑇𝑖
𝑒  and 𝐷𝑖

𝑒  and assume that ∀𝑗 = 1,2,… , 𝑖 − 1 the mass over 𝑇𝑗
𝑒  is 

1

𝑛
  and is 0 over 𝐷𝑗

𝑒 .10

In other words, there has not “yet” been a Deviation 2 or Deviation 3. 

Suppose the mass over 𝑇𝑖
𝑒  is strictly less than 

1

𝑛
. Then, when Blotto plays

(𝐸 −  𝑛 − 𝑖 𝛿, 𝑖𝛿), 11 he wins Battlefield 1 with probability less than 
𝑖

𝑛
 but still wins 

Battlefield 2 with probability 
𝑛−𝑖+1

𝑛
for a total expected payoff strictly less than 

𝑛+1

𝑛
, 

9 Technically the first two inequalities should be weak. However, in strategy 𝑓𝐵
2 .  ,

Blotto plays with positive mass a respective 𝑏1 and 𝑏2 equal to each of the first two 
boundaries. Therefore, given that ties go to Blotto, playing any mass on either of those 
boundaries is not a best response for Enemy as he could improve his expected payoff 
with an 𝜖 deviation. 
10 If such 𝑗’s exist. 
11 Which he does with probability 

1

2𝑛
in strategy 𝑓𝐵

2(. )
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which is Blotto’s constant expected payoff in all equilibrium. Similarly, if the mass over 

𝑇𝑖
𝑒  is strictly more than 

1

𝑛
 then when Blotto plays (𝐸 −  𝑛 − 𝑖 𝛿, 𝑖𝛿), he wins Battlefield 

1 with probability greater than 
𝑖

𝑛
but still wins Battlefield 2 with probability 

𝑛−𝑖+1

𝑛
 for a

total expected payoff strictly greater than 
𝑛+1

𝑛
 again a contradiction. Therefore, the mass 

over 𝑇𝑖
𝑒  must equal 

1

𝑛
. 

Now suppose Enemy plays some positive mass over 𝐷𝑖
𝑒 . Now, when Blotto plays

(𝑖𝛿,𝐸 −  𝑖 − 1 𝛿)12 he then expects to win in Battlefield 1 with probability greater than 

𝑖

𝑛
and expects to win in Battlefield 2 with probability 

𝑛−𝑖+1

𝑛
 therefore his total expected 

payoff is greater than 
𝑛+1

𝑛
another contradiction. Therefore the mass over 𝐷𝑖

𝑒  must

equal zero. 

As the above analysis holds for all 𝑖 = 1,2,… ,𝑛 − 1, simple induction shows that 

the mass over all such 𝑇𝑖
𝑒  and 𝐷𝑖

𝑒  must equal 
1

𝑛
 and 0, respectively. The remaining mass 

of 
1

𝑛
must then be distributed over the only region left, 𝑇𝑛

𝑒 . We’ve ruled out any

potential Enemy strategies that deviate from our characterization of possible Nash 

Equilibrium Enemy’s strategies. Therefore, the characterization is complete. The proof 

of the completeness of our characterization of the Blotto strategies follows similarly. 

Therefore, given equilibrium interchangeability our characterization of the set of Nash 

Equilibrium is complete. 

Q.E.D. 

12Which he does with probability 
1

2𝑛
in strategy 𝑓𝐵

2(. )
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Section 4:  Re-Derivation of Payoff Space 

The preceding analysis is useful for a simple derivation of Fig1, the payoff state-

space boundaries.  As Enemy’s resources increase relative to Blotto, 𝛿 consequently 

decreases (Blotto’s triangles shrink and Enemy’s grow), eventually an entire extra 𝛿-step 

cell for the resource-constrained case (triangle on the simplex construction) will fit into 

both players’ allocation support.  

Let 𝑥𝐵  denote how many 𝛿-steps fit into Blotto’s support. 

𝐵 = 𝑥𝐵 ∙ 𝛿 + 𝑟  ∀   𝑥𝐵 ∈ ℕ,   and  𝑟 ∈ [0, 𝛿) 

As Enemy’s resources increase (and 𝛿 decreases), r will increase until it equals 𝛿.  

At that point 𝑥𝐵  increments and r resets.  Thus, the boundaries to the state space 

emerge when r=0.  Re-substituting for 𝛿, and solving E in terms of B when r=0 yields 

exactly the state-space boundaries depicted in Fig1. 

𝐸 =
𝑥𝐵 − 1

𝑥𝐵
∙ 𝐵     ∀   𝑥𝐵 ∈ ℕ

Section 5:  Conclusion 

This paper provides a complete characterization of the Nash equilibrium to the 

Gross & Wagner’s original 2-player 2- battlefield Colonel Blotto game with plurality 

objectives.  We provide an algorithm for constructing the set of all Nash strategies, and 

prove the completeness of the characterization.  A complete characterization of all 

equilibrium strategies is useful for many reasons. For potential empirical analysis of 

Blotto applications, it is necessary to know all potential optimal allocation strategies.  

Second, understanding the complete characterization algorithm lends can aid in solving 

more complicated and more realistic variants of the game.  
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