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With endless amounts of statistics in American football, there are 

numerous ways to evaluate quarterback performance in the National Football 

League.  Owners, general managers, and coaches are always looking for ways to 

improve quarterback play to increase overall team performance. In doing so, one 

may ask: Does the performance in the first quarter have any effect on the fourth 

quarter performance? This paper will investigate the linear dependence of the 

first quarter NFL QB rating on the fourth quarter NFL QB rating for 17 NFL 

starting quarterbacks from the 2014-2015 season. The aim is to use Bayesian 

hierarchical linear modeling to attain slope and intercept estimates for each 

quarterback in the study and attempt to determine what is causing the 

dependence, if any.  Then, if a linear dependence is detected, investigating 

whether or not the statistic used is a viable measure of performance. 
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Chapter 1: Introduction

In recent years, the use of advanced statistical practice has become more of a

fixture in the world of sports. One could argue that the success of “MoneyBall” has

had a domino e�ect across all major sports in the United States, resulting in increased

use of more sophisticated statistical analysis for decision making within the sport.

American Football, the nation’s most popular and lucrative sport, is no stranger to

this current phenomenon. Organizations with in the National Football League (NFL)

now have the ability to use the endless amounts of data of player statistics and game

conditions to make better in game decisions in an e�ort to win more. Analyzing down

and distance, the current down and how far until the team can reach the next set

of downs, impacts play calling by coaches, measuring the e�ect of rush yards per

games has on scoring, using overall player grades from scouting o�cials and expert

projections to predict when a collegiate player will be drafted by an NFL team are

just some examples of how NFL organizations or enthusiasts of the game are using

statistics for more informed decision making (Almar and Mehrotra, 2011). However,

no position in American football is more scrutinized that the quarterback position.

This player is typically the leader of the team, the player who gets to much credit for

a win, or all the blame for a loss (Farmer, 2012). That being said, this position is the

one most often analyzed by NFL experts, scouts, and countless others in an e�ort to

increase productivity from that position.

One popular game statistic is the NFL’s own quarterback rating. The NFL

quarterback rating is a metric used to quantify a quarterback’s ability on an arbitrary

scale of 0 to 158.3. It is comprised of four variables: percentage of completion per

attempt, average yards gained per attempt, percentage of touchdown passes per

attempt, and percentage of interceptions per attempt. Each variable is scaled between
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the values of 0 and 2.375 and each component a, b, c, and d represent individual

summary statistics:

a =
1

# of completions

# of passing attempts

≠ .3
2

◊ 5 (1)

b =
1

total passing yards

# of passing attempts

≠ 3
2

◊ .25 (2)

c =
1

# of touchdown passes

# of passing attempts

2
◊ 20 (3)

d = 2.375 ≠
1

# of interceptions

# of passing attempts

2
◊ 25 (4)

If the completion percentage in (1) is greater than 77.5%, then assign a value of 2.375.

If the completion percentage in (1) is less than 30%, then assign a value of 0. If yards

per attempt in (2) is greater than 12.5 or less than 3.0, then assign a value of 2.375

or 0 respectively. If touchdowns per pass attempt in (3) is greater than 11.875%,

then assign a value of 2.375. If interceptions per pass attempt in (4) is greater than

9.5%, then assign a value of 0. Using the calculations above, an individual’s NFL

quarterback rating for a game, half, or quarter can be calculated by the following:

Passer Rating =
1

a+b+c+d

6

2
◊ 100. (5)

The purpose of this report will be to investigate the linear dependence of a quarterback’s

first quarter rating to his fourth quarter rating. Does the first quarter performance of

an NFL quarterback greatly e�ect his fourth quarter performance? A sample of 17 of

the 32 NFL quarterbacks who started at least 8 games was taken and their respective

first and fourth quarter ratings were calculated for all complete games played (see
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Appendix for Table 1). If any sort of linear dependence is found, it will be necessary

to investigate what might be causing it. However, enthusiasts of the game would

claim that performances on a quarter by quarter basis should be independent of one

another. If a dependence is found it might cast doubt on the statistic itself, raising

the question of whether or not the statistic is an accurate measure of performance for

the quarterback position.

In order to quantify the linear dependence of a quarterbacks first and fourth

quarter performance, a Bayesian hierarchical linear model will be implemented using

the R statistical software package. Chapter two will introduce the basic notions of

hierarchical data structures and a discussion of Bayesian inference and simulation,

as well as a detailed description of the model and the Gibbs sampler for the model.

Chapter three will present the results of the model. Chapter four will wrap up the

discussion of the model, including possible limitations and extensions.
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Chapter 2: Methodology

2.1 Bayesian Models

Bayesian inference is the process of fitting a probability model to a set of data

and summarizing the result by a probability distribution on the parameters of the

model and on the unobserved quantities such as predictors for new observations. The

probability distribution on the parameters conditioned on the observed data, known

as the posterior distribution, can simply be derived using Bayes’ rule:

p(◊|y) = p(◊, y)
p(y) = p(◊)p(y|◊)

p(y) . (6)

Where ◊ represents the population parameters of interest or a vector of unobservable

quantities and y is a vector of the observed data. Typically, the denominator p(y) is

dropped since it does not depend on ◊ and is treated as a normalizing constant. Thus

giving:

p(◊|y) Ã p(◊)p(y|◊). (7)

The components of the posterior distribution, p(◊) and p(y|◊), are known as the prior

distribution and likelihood function respectively (Gelman et al., 2004). The prior

distribution, p(◊), is one’s belief about the distribution of the unknown parameter(s)

before taking the observable data into account. The likelihood function, p(y|◊), is

the distribution of the observed data given the parameters. These, seemingly simply,

expressions envelope the foundation of Bayesian inference, whose primary task is to

update probabilities of unknown quantities as more evidence is obtained.
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2.2 Hierarchical Structure

A Bayesian hierarchical model is a statistical model that uses multiple levels

to estimate the parameters of the posterior distribution using the methods established

in the previous section. In general, a hierarchical structure consists of three stages:

I y

i

≥ p(y
i

|◊
i

, „) independent

II ◊

i

≥ p(◊
i

|„) independent and identically distributed (i.i.d)

III „ ≥ p(„).

Where p(y
i

|◊
i

, „) is the likelihood, p(◊
i

|„) is the prior of the unknown parameter ◊

and is conditioned on a hyperparameter (the parameter of a prior distribution) „, and

p(„) is the distribution of the hyperparameter known as a hyperprior.

The basis of Bayesian hierarchical modeling is to think conditionally. Condi-

tional independence often allows for easier representation of a joint posterior distribu-

tion. Using the ideas of Bayesian inference, posterior inference can be calculated by

the following:

p(◊
i

, „|y
i

) Ã p(y
i

|◊
i

, „)p(◊
i

, „). (8)

However, the above can be simplified further due to the conditional independence of

the data, y

i

, and „ for known values of ◊. Additionally, p(◊
i

, „) can be made into the

product of p(◊
i

|„)p(„) using Bayes’ rule. Hence, posterior inference can be achieved

by:

p(◊
i

, „|y
i

) Ã p(y
i

|◊
i

)p(◊
i

|„)p(„). (9)
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While the hierarchical form of analysis and organization helps in the understanding of

multiparameter problems, the resulting posterior distribution is often not in the form

of a well-known distribution and sampling from that target density requires simulation

to achieve numerical approximations for complicated integrals (Gelman et al., 2004).

2.3 Simulation

As mentioned in the previous section, many times the joint posterior distribution

is an unknown distribution and is challenging to sample directly (Ho�, 2009). However,

there are several simulation algorithms, generally referred to as Markov Chain Monte

Carlo (MCMC), that allow one to approximate the target posterior distribution.

MCMC simulation is a general method based on drawing values of the unknown

parameters from approximate distributions and then correcting those draws to better

approximate the target posterior distribution (Gelman et al., 2004). The overall idea

of an MCMC is that it is a collection of random variables in which the next draw is

conditionally independent of all previous draws, i.e. only depends on the last value

drawn. The e�ectiveness of this process is not so much the conditional independence

but rather that with each step in the simulation the target distribution is being

converged upon.

One particular MCMC that is common and relatively straightforward to imple-

ment is known as a Gibbs sampler. In certain cases, the joint posterior distribution can

be factored into a set of full conditional distributions. In a Gibbs sampler, the target

distribution can be approximated by sampling all of the full conditionals (Gelfand &

Smith, 1900). The Gibbs sampler algorithm is defined by:
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Start with a model, p(◊1, ..., ◊

d

|y) = p(◊1, ..., ◊

d

)

1. Initialize values for each conditional �(0) = (◊(0)
1 , ..., ◊

(0)
d

)

2. Repeat for j = 1, 2, ..., M

• Generate ◊

(j+1)
1 from p(◊1|◊(j)

≠1)

• Generate ◊

(j+1)
2 from p(◊2|◊(j)

≠2)
...

• Generate ◊

(j+1)
i

from p(◊
i

|◊(j)
≠i

)

3. Return �1
, ..., �M

Here p(�
i

|�≠i

) is the full conditional density. For example, suppose there exists

normally distributed data y = (y1, y2, ..., y

i

)T and y

i

≥ N(µ, ‡

2) i.i.d. Next, define the

likelihood and, for ease of calculation, a non-informative prior on the parameters.

Likelihood:

f(y|µ, ‡

2) Ã ( 1
‡

2 )n
2
exp[≠ 1

2‡

2

nÿ

i=1
(y

i

≠ µ)2]

Prior:

p(µ, ‡

2) Ã 1
‡

2 .

Now define the joint posterior distribution and the appropriate conditional distribution

for µ and ‡

2.

Joint Posterior:

p(µ, ‡

2|y) Ã ( 1
‡

2 )n
2 +1

exp[≠ 1
2‡

2

nÿ

i=1
(y

i

≠ µ)2]
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Conditionals: Let · = 1
‡

2

p(µ|‡2
, y) ≥ N(ȳ, (n·)≠1)

p(· |µ, y) ≥ Gamma(n

2 ,

1
2

nÿ

i=1
(y

i

≠ µ)2).

Now that the conditionals are defined, the Gibbs sampler will be defined by the

following:

1. Initialize µ

(0) and ·

(0)

2. Sample:

µ

(t+1) ≥ N(ȳ, (n·

(t))≠1)

·

(t+1) ≥ Gamma(n

2 ,

1
2

nÿ

i=1
(y

i

≠ µ

(t+1))2)

with ‡

2(t+1) = 1
·

(t+1)

3. Return all sampled µ’s and ‡

2’s.

Once the process has repeated itself for the chosen amount of iterations, the resulting µ

and ‡

2 vectors can be summarized using descriptive statistics to give estimates for the

parameters. The above algorithm forms a Markov chain whose stationary distribution

is the sought after target distribution. The Gibbs sampler will be the preferred

simulation algorithm to estimate the linear dependence of an NFL quarterbacks first

and fourth quarter performance.

8



2.4 Model Specification

The Bayesian hierarchical linear model chosen to quantify the dependence of a

quarterbacks first and fourth quarter performance will take the form of:

y

ij

= —0i

+ —1i

x

ij

+ ‘

i

, ‘

i

≥ N(0, ‡

2), (10)

where y

ij

represents the the fourth quarter NFL quarterback rating of the ith quar-

terback in the jth game, x

ij

represents the first quarter NFL quarter back rating of

the ith quarterback in the jth game. Also, —0i

and —1i

are the true value coe�cients

for the ith quarterback with —1i

being the particular parameter of interest. For ease

of notation, coe�cients will be represented as a vector —i = (—0i

, —1i

)T and claim

that —i ≥ MV N(µ, �) where µ = (µ0, µ1)T and � is the co-variance matrix. The ‘

i

is the error term for each individual quarterback and it will be assumed that every

quarterback will have equal variance. In order to proceed with Bayesian inference, a

likelihood and prior will need to be established. Letting ⁄ = 1
‡

2 and � represent all

the parameters of interest. Then likelihood will be defined as:

L(y|�) =
nŸ

i=1
⁄

mi
2

exp[≠⁄

2

miÿ

j=1
(y

ij

≠—0i

≠—1i

x

ij

)2]◊
nŸ

i=1
|�≠1| 1

2
exp[≠1

2(—i≠µ)Õ�≠1(—i≠µ)].

This leads to the hierarchical nature of this model as appropriate priors will need to

be set on the parameters ⁄, µ, �≠1.
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The following priors were chosen:

1. p(⁄) ≥ Gamma(a, b)

p(⁄) Ã ⁄

a≠1
exp[≠b⁄]

2. p(µ) ≥ MV N(‹, �)

p(µ) Ã |�|≠ 1
2
exp[≠1

2(µ ≠ ‹)Õ�≠1(µ ≠ ‹)]

3. p(�≠1) ≥ Wisart

p

(V, r) Note: r = p

p(�≠1) Ã |�≠1| r≠p≠1
2

exp[≠1
2tr(V ≠1�≠1)].

The Wishart distribution is a probability distribution that allows for sampling all the

elements of the variance-covaraince matrix at once. It depends on a scale matrix, V,

that must be non-negative and symmetric, the dimensions of the matrix, r, and degrees

of freedom, p (Sawyer, 2007). Now, using the properties of hierarchical structures, the

joint posterior distribution is simply the product of the likelihood function and the

prior distributions for ⁄, µ, �≠1.

Joint Posterior distribution:

p(�|y) Ã ⁄

nÿ

i=1
m

i

2
exp[≠⁄

2

nÿ

i=1

miÿ

j=1
(y

ij

≠ —0i

≠ —1i

x

ij

)2] ◊ |�≠1|n
2
exp[≠1

2

nÿ

i=1
(—i ≠ µ)Õ�≠1(—i ≠ µ)]

◊ |�|≠ 1
2
exp[≠1

2(µ ≠ ‹)Õ�≠1(µ ≠ ‹)] ◊ |�≠1|
r≠p≠1

2
exp[≠1

2tr(V ≠1�≠1)] ◊ ⁄

a≠1
exp[≠b⁄]

The above joint posterior distribution is not a well known or studied distribution and

therefore sampling directly from it would be di�cult and computationally expensive.

However, the joint posterior can be easily factored into various conditional distributions

for each of the parameters being estimated.
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Conditional Distributions:

1. p(⁄|�≠⁄

, y) ≥ Gamma

Q

a
a + 1

2

nÿ

i=1
m

i

, b + 1
2

nÿ

i=1

miÿ

j=1
(y

ij

≠ —0i

≠ —1i

x

ij

)2

R

b

2. p(�≠1|�≠�≠1
, y) ≥ Wishart

r=p

(V ≠1 +
nÿ

i=1
(—i ≠ µ)(—i ≠ µ)T

, n ≠ 1)

3. p(µ|�≠µ, y) ≥ MV N(m, R), where R = (�≠1 + n�≠1)≠1

and m = R(�≠1‹ + �≠1
nÿ

i=1
—i)

4. p(—i|�≠—i , y) ≥ MV N(C≠1
d, C

≠1), where C = (⁄X Õ
iXi + �≠1)

and d = (⁄X Õ
iYi + �≠1µ).

since the all of the conditionals follow a well-known distribution they can each be

sampled directly via a Gibbs sampler in an attempt to estimate the target joint

distribution. First, each parameter must be initialized. Second, loop over the number

of iterations (size=10000) sampling each conditional using updated values from the

previous iteration. Lastly, store the results as a sequence of dependent vectors. Now

that all of the model specifications are set, the next chapter will illustrate the results

from [R].
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Chapter 3: Results

The following are a series of tables and figures summarizing the results from the

posterior draws for each parameter in the model. Basic descriptive statistics (mean,

standard deviation, and a 95% Highest Posterior Density Interval) will be used to

make inferences on the parameters of interest. It is also important to note that data

was re-scaled in an e�ort to minimize working with large numbers and reduce the

variance. Each observation was decreased by a factor of 10.

Figure 1: Plot of Variance, ‡

2, by Iteration

Table 2: Posterior summary for ‡

2

Variable Mean St. Dev 95% HPD Interval

Lower Upper
‡

2 17.12 1.96 13.86 20.67

12



Figure 1 shows that the Gibbs sampler was able to converge on a mean value of 17.12

for the variance of the error term of the model. Recall that constant variance for the

error terms was assumed for each quarterback.

Figure 2: Mu Plot

Table 3: Posterior Summary for Mu Vector

Variable Mean St. Dev 95% HPD Interval

Lower Upper
µ0 5.804 0.706 4.575 7.056
µ1 0.281 0.098 0.093 0.465

The µ is the overall mean vector for the —i vector. Figure 2 shows that µ0 converges

to a value of 5.804 and µ1 converges to a value of 0.281. Furthermore, the mean of

the —i vector from the simulation is (5.828, 0.281)T . Figure 2 gives indication that

Gibbs sampler is estimating the posterior density accurately.

13



Figure 3: Histogram of Intercept Estimate by Quarterback
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Figure 4: Histogram of Slope Estimate by Quarterback

The above histograms are for each quarterback and their respective —i. Figure 3 shows

the distributions for —0i

appear uni-modal, symmetric, and centered around the same

values. Figure 4 shows the distributions for —1i

also appear uni-modal and symmetric,

however with some variation on where each is centered. Furthermore, Figure 4 suggests

that the —1i

coe�cients are all non-zero and di�erent for each quarterback.
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Table 4: Posterior Summary for Beta Coe�cients

Quarterback Beta Estimates Mean St. Dev

P. Manning b0 5.809718 0.750604
b1 0.251903 0.1191344

A. Rodgers b0 5.833417 0.7464262
b1 0.3502758 0.1169767

T. Romo b0 5.837565 0.7452475
b1 0.2128107 0.1144709

A. Luck b0 5.815487 0.7522658
b1 0.3340474 0.1359572

J. Culter b0 5.844975 0.7456315
b1 0.1219323 0.1305554

D. Carr b0 5.829248 0.7425274
b1 0.3236261 0.1560151

B. Roethlisberger b0 5.862418 0.7515192
b1 0.4819442 0.1359499

T. Brady b0 5.839651 0.744044
b1 0.2676116 0.1271415

R. Fitzpatrick b0 5.845904 0.7485258
b1 0.4248229 0.1536825

M. Ryan b0 5.809979 0.7452962
b1 0.2692171 0.1214298

A. Smith b0 5.861901 0.7496621
b1 0.1914642 0.1306859

E. Manning b0 5.837468 0.752544
b1 0.2388777 0.1073831

K. Orton b0 5.804879 0.7495401
b1 0.3804939 0.1256985

16



Table 4: Table continues below

Quarterback Beta Estimates Mean St. Dev

M. Sta�ord b0 5.814849 0.7464286
b1 0.1647227 0.1176735

A. Dalton b0 5.81679 0.7441632
b1 0.3487378 0.1263923

G. Smith b0 5.809777 0.7427529
b1 0.1594236 0.1293962

B. Bortles b0 5.806428 0.7475632
b1 0.2506498 0.1501717

Table 4: Table continues below

95% HPD Interval

Lower Upper
4.489431 7.19387

0.018795444 0.4766624
4.54383 7.22966

0.12573386 0.5776482
4.512706 7.183581

-0.006634039 0.4363538
4.534302 7.242404

0.071489906 0.5972236
4.558264 7.218049

-0.117458089 0.382976
4.571297 7.224965

0.01503042 0.6185323
4.480187 7.178335
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Table 4: Table continues below

95% HPD Interval

0.213229403 0.7385129
4.546988 7.19978

0.018028702 0.5083352
4.505083 7.188078

0.120963795 0.7138439
4.496279 7.173408

0.031937846 0.5032389
4.493393 7.17052

-0.059172946 0.4483934
4.520174 7.210705

0.032005453 0.4472401
4.456427 7.149828

0.131520707 0.6201513
4.489762 7.168328

-0.061027333 0.3926259
4.466392 7.153525

0.099306186 0.5868898
4.510141 7.186309

-0.100862121 0.405886
4.48995 7.157375

-0.040856943 0.5386876

Table 4 outlines the —i by quarterback, allowing for specific interpretation of linear

dependence of first and fourth quarter performance by each individual. The —0

parameter, in general, is the expected fourth quarter NFL QB rating for a specific

individual when that person’s first quarter rating is 0. The —1 parameter, in general,

18



is the expected increase in an individuals fourth quarter NFL QB rating for every one

unit increase in that person’s first quarter NFL QB rating. The HPD intervals for each

quarterback are all generally positive, leading to the belief that and individual’s first

quarter performance does have positive influence their fourth quarter performance.

Figure 5: Scatter Plot NFL QB Rating by Beta Coe�cient

Figure 5 compares a quarterback’s year end NFL QB rating to their respective —1

estimate from the Gibbs sampler. The scatter plot, overall, has a weak positive

association, r=.2420629. However, upon closer inspection, there appears to be two

distinct groupings, a group of quarterbacks in the upper left portion and a group of

quarterbacks in the lower right portion. The quarterbacks in the upper left portion

all have relatively high —1 coe�cients, while the quarterbacks in the lower right

portion have relatively low —1 coe�cients. The grouping of quarterbacks (D.Carr,

19



B.Bortles, A.Dalton, R.Fitzpatrick, K.Orton, and B.Roethlisberger) with higher —1

coe�cients are all, for the exception of B.Roethlisberger, “journeymen” quarterbacks

(quarterbacks who have played for multiple teams in their career) or quarterbacks

with less than 5 years of NFL experience. This leads to a suggestion and belief that

the end of game performance of more experienced and talented quarterbacks are less

e�ected by how they start the game as opposed to the less experience and talented

quarterbacks. This notation will be further elaborated on in the next chapter.
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Chapter 4: Discussion and Extension

4.1 Discussion of Results

The overall goal of this paper was to investigate the linear dependence of an

NFL quarterback’s fourth quarter performance based on how that individual performs

in the first quarter. As an enthusiast of the game, one would guess that the outcome

of the first quarter would have absolutely no e�ect on the fourth quarter. Once players

reach the NFL, they are considered to be some of the best athletes in their respective

sport and are usually expected to perform at a high level. However, as is the case

in any sport, there are some huge learning curves in adjusting to a higher level of

competition. With this in mind, it is not unreasonable to think that some players are

greatly e�ected by how they start a game.

The results in the previous chapter are intriguing because they suggest that,

no matter the individual, there is some form of a positive matter of association

between the performance in the first quarter and the performance in the fourth

quarter. Summarizing Table 4, the —i coe�cients for each quarterback are all positive

with averages ranging from 5.804879 to 5.862418 for —0 and .1219323 to .4819442 for

—1. It is a safe assumption that the —1 for each respective quarterback are all positive

as 9 of the 17 95% HPD intervals fail to contain zero. The intervals for T. Romo, J.

Cutler, A.Smith, M.Sta�ord, G.Smith, and B. Bortles do contain zero, however the

majority of the interval contains positive values, confidently suggesting there is some

positive e�ect of the first quarter performance on the fourth quarter performance for

these individuals. All quarterbacks have approximately the same —0 value, around

5.8, but there is more variation in the values of —1. The value of the —1 coe�cient

indicates the severity of dependence for an individual, the lower the value of —1 the

less dependent an individual is on their first quarter performance and the higher the
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values of —

i

the more dependent an individual their first quarter performance. As

stated in chapter 3 and illustrated in Figure 5, when the —1 estimates of a quarterback

are plotted against their respective end of year NFL quarterback rating it becomes

clear which quarterbacks are more dependent of their beginning game performance.

While it should be reiterated that this is not a claim of causation, there is

evidence that supports some dependency of a quarterbacks first quarter performance

on their fourth quarter performance. Furthermore, it could be suggested that the

value of the —1 could be directly correlated to the level of quarterback. Based on this

sample of 17 quarterbacks, the individuals whose NFL QB rating were near the top of

the 2014 rankings tend to have a smaller —1 coe�cient. As one would hypothesize,

these quarterbacks show minimal dependence of how they start a game to how they

finish a game. On the contrary, players near the bottom of the 2014 NFL quarter

ranking typically have minimal professional experience or are players who frequently

change teams tend to have larger —1 coe�cients. These players, while still having

tremendous athletic ability, seem to be more a�ected by recent in game outcomes.

These results are promising and this information could potentially be used to help

players improve their performance, influence in game coaching decisions for particular

players, or even decisions about keeping the player on the roster.

In summary, steps have been taken in exploring the relationship of beginning

and end game performance of an NFL starting quarterback. Those familiar with the

game should not be surprised that more experienced and talented quarterbacks are

less dependent on previous results. However, this study does show that, no matter

of talent level, there is some positive matter of association and it would be of great

interest to extend this further. Recall that the model only has one co-variate, the

first quarter rating. It could prove beneficial to add more co-variates such as the
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second and third quarter ratings, years of experience, or the result of the game. Any

additional information gathered could only benefit teams in their attempt in becoming

a more successful NFL franchise.

4.2 Extension

It is not uncommon for those in the sports community to scrutinize and argue

against the NFL quarterback rating as an accurate performance measure. The rating,

established in 1973, has arbitrary bounds on all the factors outlined in equations (1),

(2), (3), and (4) from chapter 1, resulting in an equally arbitrary number of 158.3 as a

perfect passer rating. Critics claim that it is an overly complicated formula giving

to much weight to completion percentage and touchdown percentage (Alberto, 2009).

Passing yards per attempt is a component that can be easily inflated, leading to a

higher non-representative passer rating. For example, a quarterback could throw a

short pass, typically defined as an attempt less than 10 yards, that is then taken for

many more yards by its recipient. The play, arguably, is influenced more so by the

receiver as opposed to the quarterback but the result is still reflected in his passer

rating. This example, and countless others, are reasons why many enthusiasts of

the game feel the NFL quarterback rating is an archaic method used to measure the

player’s performance (Alberto, 2009). This realistically leads to the argument that the

linear dependence found in this paper could be attributed to the ine�cient summary

given by the NFL QB rating.

Sports analysts would surmise that performances do not depend on a quarter

by quarter basis, leading to the hypothesis that the —1i coe�cient should be zero for

every quarterback. A possible solution to this problem could be investigating the

more recent statistic created by ESPN, the prominent sports television channel in

America, the Total Quarterback Rating (QBR). Total QBR measures much more
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than the four components outlined in the NFL QB rating. ESPN’s Total QBR takes

into account factors such as expected points, division of credit for a play, a “clutch”

index, plus other in game situations not easily represented by basic football statistics

(Oliver, 2011). The same methodology in this paper could be used to check the linear

dependence of the first quarter performance on the fourth quarter performance using

Total QBR as the measure of performance. If the results lead to the —1i

coe�cients

converging to zero, then the intercept estimate, the —0i

, would fully summarize the

quarterback’s performance and when plotted against the quarterbacks end of year

Total QBR it should show a positive correlation, implying that ESPN’s Total QBR

is a statistic that properly quantifies a quarterback’s performance. However, the

reason this analysis has not been attempted in this paper is because the formula for

computing each component has not been made public (Oliver, 2011). Making analysis

on a quarter by quarter basis for each quarterback impossible.

Another possible solution to gain insight on the linear dependence of perfor-

mance by quarter is to create a new statistic altogether. This statistic should be

created in a way such that the —1i

is zero, i.e. that performances by quarter are indepen-

dent of one another and the intercept estimate would be the predictor of quarterback

performance. The overall goal being that when the intercept estimate is plotted against

the individual’s year end rating, it will show a positive correlation. While in principle

this may seem like an easy task, the intangibles of the sport are incredibly di�cult

to quantify and therefore di�cult to estimate and/or predict. Extensive time, along

with trial and error, would be required to properly decide on the components needed

to make up the statistic as well as weights for each component. With the amount of

data continually produced and made available it is only a matter of time until more

precise measures of player performance are created. It can be confidently stated that
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more sophisticated statistical techniques, similar to the methods mentioned in this

paper, will continue to be used to gain more insight on players and their respective

performance. Hopefully these potential insights will create better decision making on

an organizational scale and thus leading to a even more exciting game for fans of the

sport to watch.
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Appendix

Table 1. First and Fourth Quarter NFL QB Ratings:

Quarterback Game First Qtr Fourth Qtr

P. Manning 1 73.6 75

2 148.4 112.5
3 94.9 101.7
4 112 150.4
5 113.8 85.7

6 109.6 93.2

7 81.3 79.4

8 92.8 40.3

9 76 143.4
10 141.7 42.6

11 118.8 85.4

12 116.7 98.8

13 77.1 25

14 119.8 56.6

A. Rodgers 1 82.3 125.2
2 77.1 52.1

3 108.9 95.1

4 118.8 158.3
5 158.3 93.8

6 155.8 54.2

7 126.5 113.9
8 89.6 110.7
9 130.9 78.1

10 108.3 135.4
11 29.5 46.5

12 95.3 128.3
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Quarterback Game First Qtr Fourth Qtr

13 2.1 94.3

T. Romo 1 58.8 107.7
2 94.9 82.3

3 99.2 139.6
4 143.5 149

5 87.2 84.4

6 116.1 75.9

7 131.3 113.3
8 48.6 65.2

9 119 62.5

10 72.9 145.5
11 103.6 47.9

12 97.2 2.1

13 104.2 145.4
14 144.7 2.1

15 158.3 41.3

A. Luck 1 31.3 86.1

2 120.2 81.7

3 119.9 149.6
4 117.8 151.5
5 30.6 126.4
6 142.8 44.2

7 79.9 132.9
8 85.4 58.6

9 64.6 52.1

10 119.8 66.9

11 70.1 68.8

12 70.4 149.3
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Quarterback Game First Qtr Fourth Qtr

13 30.5 70.4

14 36.8 2.1

J. Cutler 1 153.3 47

2 61.3 158.3
3 109.7 77.8

4 128.6 73.5

5 94 36.6

6 74.2 88.5

7 86.8 54.6

8 23.8 134.4
9 24.8 3.8

10 88.6 89.3

11 63.9 49

12 141.1 17.6

13 74.7 97.9

14 60 127.2
15 81.7 47.2

D. Carr 1 126.3 96.1

2 2.1 66.4

3 75.3 14.9

4 118.8 65.6

5 52.8 96.7

6 78.5 83.5

7 24.2 106.5
8 83.3 71

9 64.2 42.4

10 65.2 147.1
11 50.7 83.6
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Quarterback Game First Qtr Fourth Qtr

12 60.9 149.7
13 83.3 141.3
14 33.3 9.8

B. Roethlisberger 1 118.8 76.2

2 88.1 37.1

3 52.1 126.4
4 117.9 84.9

5 50.9 95.8

6 107.6 84.7

7 66.4 84.5

8 104.6 138.9
9 67.6 152.1
10 69.8 143.9
11 90.5 131.5
12 58.8 104

13 53.6 135.4
14 118.8 108.8
15 84.2 92.7

16 57.2 158.3
T. Brady 1 88.3 33.5

2 89.6 2.1

3 52.1 68.1

4 56.3 6.3

5 158.3 90.3

6 82.2 158.3
7 149.3 116

8 137 106.3
9 83.7 120.8
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Quarterback Game First Qtr Fourth Qtr

10 4.7 156.3
11 108.5 79.6

12 86.5 109.5
13 70.8 158.3
14 22.2 86

15 78 13.1

R. Fitzpatrick 1 118.8 117.7
2 0 72.2

3 97 52.4

4 7.8 105.4
5 2.1 109.4
6 97.2 123.5
7 49.5 93.3

8 85.4 61

9 139 158.3
10 68.8 105.2

M. Ryan 1 109.5 94.6

2 70.1 65.6

3 136.8 53.7

4 95.3 83.6

5 72.1 0

6 83.6 81.7

7 149.6 96.3

8 72.2 126.2
9 50 60.1

10 103 85.4

11 149 91.7

12 114.2 129.2
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Quarterback Game First Qtr Fourth Qtr

13 58.3 116

14 100.8 94.2

15 58.8 89.6

A. Smith 1 106 65.5

2 62.5 89.6

3 55.4 130.1
4 86.8 150.7
5 113.2 0

6 71.9 104.7
7 88 120.8
8 152.1 59.2

9 77.6 99.2

10 92.5 42.4

11 65.1 103.4
12 28.1 123.6
13 96.4 81.8

14 113.5 20.4

15 107.4 70.7

E. Manning 1 57.4 100

2 64.6 27.9

3 88.7 114.6
4 149 75

5 104.7 134.9
6 129.2 84.7

7 81.3 116.8
8 43.2 116.9
9 124 70.8

10 139.2 23.3
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Quarterback Game First Qtr Fourth Qtr

11 146.3 124.2
12 97.9 74

13 135.7 37.8

14 108.1 130.1
15 155.1 88.2

16 94.4 89.8

K. Orton 1 80.8 121.4
2 76.5 102.6
3 87.5 120.4
4 139 158.3
5 116.3 80.9

6 80.8 47.2

7 154.2 118.8
8 69.8 65.6

9 76.4 76.6

10 35.4 62.1

11 88.1 113.5
12 156.3 90.6

M. Sta�ord 1 149.3 112.5
2 88.8 33.3

3 19.3 93.8

4 111.3 2.1

5 129.2 97.9

6 157.3 46.3

7 41 101

8 81.3 97.3

9 116.3 98.4

10 95.8 68.3
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Quarterback Game First Qtr Fourth Qtr

11 71.7 31.7

12 101.7 78

13 124.6 119.2
14 59.2 63.8

15 87.5 53.8

16 92.6 84.4

A. Dalton 1 92.2 189.6
2 72.9 56.3

3 117.4 116.7
4 70.4 92.7

5 92.6 141.1
6 48.8 71.6

7 210.4 61.3

8 50 41.7

9 23.3 4.6

10 124.3 156.3
11 94.9 73.4

12 28.1 81.3

13 87.5 39.6

14 65.3 120.8
15 47.3 50.7

16 55.6 128.8
G. Smith 1 58.1 102.8

2 141.1 46.4

3 52.3 68.5

4 72.9 55.3

5 127.8 52.1

6 104.5 99.3
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Quarterback Game First Qtr Fourth Qtr

7 60.4 31.7

8 142.1 51.2

9 94.8 68.8

10 34 86.6

11 153.5 128.3
B. Bortles 1 98.1 89.6

2 72.1 23.8

3 122.2 133.3
4 0 55.6

5 63.3 158.3
6 77.8 97.1

7 92.7 59.8

8 5 94.8

9 104.2 89

10 67.6 63.3

11 77.1 25.5

12 57.1 38.2

13 89.2 55.9
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