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As the ultimate fate of nearly all stars, including our Sun, white dwarfs

(WDs) hold rich and informative histories in their observable light. To determine

a fundamental parameter of WDs, mass, we perform the first measurement of the

average gravitational redshift of an ensemble of WDs. We find a larger mean mass

than that determined from the primary and expansive technique known as the spec-

troscopic method. The potential inaccuracy of this method has broad astrophysical

implications, including for our understanding of Type 1a supernova progenitors and

for constraining the age of the Universe.

This motivates us to investigate the WD atmosphere models used with the

spectroscopic method, particularly the input theoretical line profiles, by develop-

ing a new experimental platform to create plasmas at WD photospheric conditions

(Te ∼ 1 eV, ne ∼ 1017 cm−3). Instead of observing WD spectra to infer the plasma

conditions at the surface of the star, we set the conditions and measure the emer-

gent spectra in the laboratory. X-rays from a z-pinch dynamic hohlraum generated
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at the Z Pulsed Power Facility at Sandia National Laboratories irradiate a gas cell

to initiate formation of a large (120x20x10mm or 24 cm3) plasma. We observe

multiple Balmer lines from our plasma in emission and in absorption simultane-

ously along relatively long (∼ 120mm) lines of sight perpendicular to the heating

radiation. Using a large, radiation-driven plasma aides us to achieve homogeneity

along our observed lines of sight. With time-resolved spectroscopy we measure

lines at a range of electron densities that spans an order of magnitude, and we do

this within one pulsed power shot experiment. Observing our plasma in absorption

not only provides the signal-to-noise to measure relative line shapes, it allows us to

measure relative line strengths because the lines share the same lower level popu-

lation. This constrains the theoretical reduction factors used to describe ionization

potential depression or the occupation probabilities associated with these Balmer

lines. We compare our measured line shapes with the theoretical ones used in WD

atmosphere models as part of the first fruits of this rich experimental platform.
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Chapter 1

Introduction

What is she going to share today? I don’t care. It’ll be great. It’ll be cool.

She’s my big sis, so everything she does or says is cool. By definition. I’m just

getting my feet wet with this whole school thing. Don’t even do a full day yet. It’s

a half-day for us. Next year in first grade it’ll go longer. So I hear.

Carrie busts in through the door, noticeably tired from marching band prac-

tice. Doesn’t stop me from ambushing her.

“Tell me about the stars!”

She drops her backpack to the floor, and the thick, sharp thud of a dense

book scythes across the den. Mathematics? She lets out a sigh, then a smile. Her

second wind. Leaps into the couch, legs crossing in mid flight, proceeds to recount

today’s lesson in her Astronomy class, a high school course taught at the local junior

college’s planetarium.

I don’t understand any of the details. I’m only five! But I close my eyes and

her stories morph into life. The blackness of the inside of my eyelids becomes lit-

tered with twinkling lights. I’m suddenly up, up, way up! And I see our planet Earth
1



below me. It’s a ball, and it’s spinning! And in the distance, more balls. Planets.

All circling the Sun (don’t stare). I feel the space between things. Outer space.

There’s so much room. Everything’s so big, everything’s so far, but I see it all! It’s

so wonderful.

Tell me more!

1.1 Retired Stars

I like to think of white dwarfs (WDs) as retired stars. These objects, having

performed the alchemy of turning hydrogen into helium in their cores via ther-

monuclear fusion (for billions of years), are content to hang up their cleats and

relax by simply cooling off with time (Mestel 1952). We participate in extending

this analogy by observing these stars to learn from their light, like an eager audience

gathered to witness elders disseminate wisdom. We listen (observe) because they

have lived it. They have done it before. They tell us what is going to be.

The most massive stars (! 8 M#, where M# is the symbol for the mass

of the Sun) end their main sequence (hydrogen-fusing) lives as supernovae (e.g.,

Woosley & Weaver 1986; Smartt 2009). However, stars this massive are scarce

(e.g., Miller & Scalo 1979). The overwhelming majority of all stars – more than

97 % – transition out of the main sequence to become WDs (e.g., Fontaine et al.

2001). This includes our Sun. Therefore, WDs are representative.

Our host star, when it comes to mass, is a fairly ordinary main sequence star.
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Let us briefly review the prognosis of a main sequence star like our Sun (see, e.g.,

Chandrasekhar 1939; Salpeter 1955; Iben 1991; Hansen et al. 2004).

1.1.1 Stellar Evolution: Prequel to a White Dwarf

A stars shines because of what happens in its interior (or, as we encounter in

Section 1.1.2, because of what happened in its interior). Here in its center the star

is hot enough and dense enough for nuclear fusion to occur. Hydrogen nuclei com-

bine into helium nuclei, producing photons (light) in the process. During this main

sequence phase of its life, which lasts several billion years, helium ash accumulates

in the center of the star with hydrogen fusion continuing in a surrounding shell.

We refer to it as ash because it cannot yet fuse (burn) into even heavier elements

at its temperature and density. With decreased thermal support supplied by fusion

in the center of the star, the helium core begins to contract under its own gravity,

heating up in the process. This heating causes the rate of hydrogen shell-burning to

increase, which puffs up the star, increasing its volume and decreasing its overall

density to transition it into the red giant phase.

The core is now hotter and denser. It ceases to contract when electron de-

generacy pressure prevents it from going any further. Eventually the star becomes

sufficiently hot for helium to fuse into carbon and oxygen. In a degenerate envi-

ronment, though, ignition leads to a thermal runaway, so this event is known as the

helium flash. For more massive stars (! 5 M#), the core is not degenerate. Helium

burning is therefore stable and does not flash. The shell-burning process contin-

ues with subsequently heavier elements accumulating in the core and sweeping into
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concentric burning shells as the stellar interior gets hotter. For stars with masses

similar to that of our Sun, the process fails to go beyond helium fusion.

After tens or a few hundreds of millions of years (depending on mass), the

red giant phase ends with the envelope of the star becoming no longer gravitation-

ally bound. The star lazily sheds a significant fraction, if not most, of its mass,

leaving its glowing hot (effective temperatures can approach 200, 000K; Werner

et al. 1991) carbon/oxygen ember of a core nearly naked – a pre-white dwarf star

(e.g., Schoenberner 1983; Blöcker 1995).

1.1.2 Stellar Evolution: Life of a Retiree

With nuclear fusion sputtering out, the star has no (significant) mechanism

to generate energy. It is now a white dwarf, and, like a thermometer removed from

a pot of boiling water, exponentially cools, asymptotically approaching the ambient

temperature of its environment (outer space). Most of the stellar mass and radius

is commandeered by its electron degenerate core, which makes for a fantastic con-

ductor and can be considered isothermal. A thin, non-degenerate envelope blankets

the core, and since energy transport is not as efficient here, it regulates the rate of

cooling.

The cooling evolution of a WD is relatively slow because, even though the

object starts off quite hot, its surface area from which to expel heat is small – com-

parable in size to that of our Earth. Evolutionary models for single WDs describe in

detail how the star cools, taking into account a number of factors, including proper-

ties of the progenitor, stellar mass, surface composition and convection, and phase
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Table 1.1. Spectral Types of White Dwarfs

Spectral Type Photosphere

DA HI
DB HeI
DC Continuum
Hot DQ CI, CII, OI, OII
Cool DQ C2

DO HeII, HeI, H
DZ Metals

separation and crystallization in the core (e.g., Wood 1995; Althaus & Benvenuto

1998; Montgomery et al. 1999; Salaris et al. 2010; Renedo et al. 2010; Chen &

Hansen 2011).

We classify WDs by their surface composition or spectral type as observed

in the optical part of the electromagnetic spectrum (see, e.g., Sion et al. 1983).

Though the classification scheme undergoes refinements (Liebert & Sion 1994) and

discoveries perpetually surprise the community (e.g., Dufour et al. 2007), thus pre-

cluding an official, static scheme, we boldly present a compilation of WD spectral

types in Table 1.1. The table connects the kinds of WDs with their dominant spec-

troscopic feature(s) (or, for the DC, lack thereof). In this context, a metal is any

element heavier than helium (except for carbon, which has its own designation).

Spectral type DA (hydrogen-dominated atmosphere) tops the list since most WDs

reside in this category1. The next most abundant type is DB (helium-dominated

atmosphere). All other types make up trace amounts. Several suffixes can be ap-
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pended as well. A DAV, for instance, is a DA white dwarf that is variable, which

means that its brightness periodically oscillates in time. Magnetic WDs with and

without detectable polarization are denoted with “P” and “H” suffixes, respectively.

Sometimes it can be appropriate to hybridize a spectral type when abundances are

comparable (i.e., DAZ, DAB, or DBA); the dominant constituent is always first.

Since the photosphere is the part of the WD we can actually see (with our

own eyes), it follows that its features supply us with the fundamental stellar atmo-

spheric parameters, namely, effective temperature, Teff , and surface gravity, log g,

upon which studies in WD astronomy and the rest of astrophysics critically depend.

For this reason, the WD photosphere is the focus of this dissertation. Let us peruse

a few of the research threads founded upon WD photospheres or atmospheres.

1.2 WD Photospheres/Atmospheres as a Foundation for Astro-
physics

Cosmochronology

Since these objects cool with time, the coolest WDs are therefore the oldest.

Identifying the coolest WDs puts strict observational constraints, independent of

cosmological models, on the ages of stellar populations within our Galaxy and,

since it can be no younger than its constituents, the Universe (Winget et al. 1987;

Peebles 1993; Hansen et al. 2007). The accuracy with which one determines an

1The relative fraction of DAs to non-DAs changeswith T eff and is difficult to precisely determine.
See, e.g., Greenstein (1986); D’Antona (1987); Fontaine &Wesemael (1987); Tremblay& Bergeron
(2008) for discussions.
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individualWD age first rests in the accuracy of the Teff measurement. This specifies

its temporal location along its cooling evolution, and this evolution significantly

depends on the WD mass.

Asteroseismology

Strike a chime, pluck a guitar string, or puff into a trumpet. The pitch and

timbre you hear uniquely describe the instrument releasing the music. As such,

astronomers apply the same physical principles to diagnose the interiors of stars

when instabilities in their envelopes cause their brightnesses (sounds) to vary at

regular periods (pitches). For stars that pulsate at multiple periods, the ensemble

of frequencies (timbre) paints a picture of their internal composition. We use this

to probe the properties of dark matter axions (Bischoff-Kim et al. 2008b; Córsico

et al. 2012), constrain the details of crystallization in dense plasmas (Montgomery

& Winget 1999; Winget et al. 2009), and measure WD cooling evolution in real

time (e.g., Kepler et al. 1991; Mukadam et al. 2013). Asteroseismological studies

remain unconstrained and never pass the starting line, however, until they estab-

lish surface boundary conditions from accurate atmospheric parameters. See, e.g.,

Winget & Kepler (2008), and references therein, for a review on WD asteroseis-

mology, including on the various kinds of variable WDs; and Hermes et al. (2012,

2013b,a) for a description of the newly-discovered variable WDs of extremely low

mass.

Supernova Progenitors

The initial stellar configuration for a Type Ia supernova is a close binary
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system consisting of a massive WD near the Chandrasekhar limit (Chandrasekhar

1931) and a mass-transferring companion. The donation of mass prompts the en-

velope of the WD to contract and heat, igniting thermonuclear fusion, which adds

carbon and oxygen to the core, exceeding the mass limit and thus detonating into

a supernova (e.g., Wheeler & Hansen 1971; Whelan & Iben 1973). Since the pro-

genitor conditions of this event – especially the unique mass – are so consistent, the

resulting light curves are also consistent, motivating their use as standard candles

to measure extragalactic distances (e.g., Colgate 1979; Hamuy et al. 1995), which

allows for the observation of our accelerating Universe (Riess et al. 1998). The de-

tailed understanding of these supernovae starts with understanding their progenitors

(e.g., Wheeler 2012), which depends upon the observed atmospheric conditions of

the WD.

1.3 Straddling Two Fields

In the pages to follow I detail the work that has brought me, an astronomer,

into the field of experimental physics to perform experiments at a major facility, the

Z Pulsed Power Accelerator at Sandia National Laboratories. My rise as a labora-

tory astrophysicist coincides with the development of the Z Astrophysical Plasma

Properties (ZAPP) Collaboration (Rochau et al. 2014), uniting academia with na-

tional laboratories to fruitfully exchange their respective expertise, to uniquely ad-

dress outstanding puzzles in astrophysics, and to spawn a new generation of scien-

tists possessing skill sets that span multiple fields of physics.

Chapter 2 describes our determination of the mean mass of DAWDs using a
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gravitational redshift technique. We find a discrepancy with the mean mass as deter-

mined from the spectroscopic method. This result, along with recent modifications

to the theoretical line profiles used in WD atmosphere models (e.g., Tremblay &

Bergeron 2009), motivate us to perform experiments to test theoretical line profiles

of hydrogen at WD photospheric conditions (Te ∼ 1 eV, ne ∼ 1017 cm−3). In Chap-

ter 3 we develop an experimental platform to measure these relative line shapes of

hydrogen Balmer lines. The experiments use a z-pinch dynamic hohlraum as an

x-ray source to initiate plasma formation inside a gas cell. We continue to evolve

the experimental platform, focusing on the gas cell design in Chapter 4. Chapter

5 describes the data acquisition using streaked visible spectroscopy as our primary

diagnostic instrument. We elaborate on our data processing and calibration meth-

ods. Chapter 6 discusses how we extract line profiles and plasma conditions from

our time-resolved spectroscopic data. We present the results of the comparisons

of our measured line profiles with theoretical profiles in Chapter 7, summarize our

conclusions, and provide an outlook to future work.

Though I don’t hang around the observatory nearly as often as I did at the

start of my graduate career, I still gaze at the spectral features emanating from white

dwarf stellar photospheres, fascinated by the stories – the mysteries – they yearn to

share with me. It’s just not from atmospheres that reside lifetimes away. It’s from

ones right here on Earth. Ones that I make.
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Chapter 2

Gravitational Redshift in DAWhite Dwarfs

A young graduate student. I don’t know what I’m doing. I’ve been spinning

my wheels. It’s January 2009. I’m supposed to do my second-year defense in May.

But I don’t really have a project, so I certainly don’t have any results to report.

Lately I’ve been fixated on two concepts: gravitational redshift and the SPY

survey (I’ll discuss this survey in this chapter). I can’t remember how I got inter-

ested in gravitational redshift, but I find it fascinating – as a way to determine the

mass of a white dwarf. I have no clear idea of how to do it, but I just have this

feeling that something can be said about an ensemble characteristic of gravitational

redshifts of white dwarfs. You see, unless you have an independent measure of the

space motion of the white dwarf (like if it’s in a binary system), it’s impossible to

disentangle the stellar radial velocity from the gravitational redshift. So you can’t

derive a mass.

At the same time, I’ve discovered the SPY survey. And it’s such a rich data

set. High-resolution. Tons of white dwarfs. There’s no other survey like it!
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Don and Mike have heard me ranting about these two concepts for our past

few meetings. I haven’t really had anything productive to say about either of them

except that I think they’re extremely intriguing. But today our conversation goes

further.

It’s not even noon and I’m already letting out a heavy sigh of embarrass-

ment as I point out to Don that, once again, we are sporting the same tee-shirt.

Thanks, Department of Astronomy, for always re-supplying us with McDonald Ob-

servatory apparel at beginnings of semesters, Christmas parties, and other convivial

occasions.

I apologize. I take back the sarcasm. The shirts are great, really. It’s on me.

I’m the one who needs more shirts. More options in the morning.

“Great minds think alike!” Don finds it funny. Sips his coffee.

Mike pays no mind to the trivial exchange.

(I’m paraphrasing the next bit of dialogue.)

“Okay, Ross. But how are you supposed to get a mass from gravitational

redshift if the white dwarf is not in a binary?” Mike says this more to himself than

to me as an idea starts to coalesce in his brain. But maybe he’s tired. He gives up on

developing the idea and throws up his arms. “If only we could just average a bunch

of stars together.”

Don grabs the proto-idea like a baton. His eyes light up. “Wait, Mike. We

can!”
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Within minutes I’m running back to my office to begin work on an idea, the

results of which I’ll present at my second-year defense four months from now.

Dictating the life and evolution of a star, mass is one of the most fundamen-

tal stellar properties. There are several methods for mass determination of white

dwarfs (WDs), though each has its limitations.

The most-widely used WD mass determination method involves comparing

predictions from atmosphere models with observations to obtain effective temper-

atures (Teff) and/or surface gravities (log g). One can then compare these quanti-

ties with predictions from evolutionary models (e.g., Althaus & Benvenuto 1998;

Montgomery et al. 1999). Shipman (1979), Koester et al. (1979), and McMahan

(1989) use radii determined from trigonometric parallax measurements along with

Teff from photometry to determine masses. Of course this technique is limited to

target stars with measured parallaxes, so users of photometry have more often used

observed color indices, or magnitudes through broadband (hundreds or thousands

of Å in visible or infrared wavelengths, respectively) filters, to determine both Teff

and log g (e.g., Koester et al. 1979; Wegner 1979; Shipman & Sass 1980; Weide-

mann & Koester 1984; Fontaine et al. 1985). With the exception of the parallax

variant (Kilic et al. 2008), the photometric method is seldom used in recent WD

research.

Another variant of this method uses mainly spectroscopic rather than pho-

tometric observations (e.g., Bergeron et al. 1992; Finley et al. 1997; Liebert et al.
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2005). With more recent large-scale surveys, such as the European Southern Obser-

vatory (ESO) SN Ia progenitor survey (SPY; Napiwotzki et al. 2001) and the Sloan

Digital Sky Survey (SDSS; York et al. 2000), the comparison of observed WD

spectra with spectral energy distributions of theoretical atmosphere models has be-

come the primary WD mass determination method, yielding masses for thousands

of WDs (e.g., Koester et al. 2001; Kleinman et al. 2004; Eisenstein et al. 2006;

Kepler et al. 2007; Limoges & Bergeron 2010; Kleinman et al. 2013).

This spectroscopic method, however, is still developing. Kowalski& Saumon

(2006) improve the interpretation of cool DA (hydrogen-dominated; see Table 1.1)

atmospheres by accounting for the opacity due to the far red wing of the hydrogen

Lyα absorption line. Independent from this effect, cool WDs have been particu-

larly difficult to analyze (Bergeron et al. 2007; Koester et al. 2009a; Tremblay et al.

2010; Saumon et al. 2014). For a number of years an unphysical increase in the

derived mean surface gravity (and mass) of DAs with decreasing effective tem-

perature appeared in spectroscopic studies (e.g., Liebert et al. 2005; Kepler et al.

2007; DeGennaro et al. 2008). Recent work in 3D modeling of convection in DA

atmospheres stymies this artifact (Tremblay et al. 2011b, 2013a,b). Yet another

important component of atmosphere models – line profiles – continues to be the

subject of investigation (Tremblay & Bergeron 2009; Santos & Kepler 2012).

With the spectroscopic method in constant flux and new work resulting in

significant systematic changes to our determination of WD properties (e.g., Trem-

blay & Bergeron 2009), we look to other mass determination methods that are in-

dependent of atmosphere models to constrain or benchmark the accuracy of this
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primary method. One is the astrometric technique (e.g., Gatewood & Gatewood

1978). Another is pulsational mode analysis (e.g., Winget et al. 1991). Unfortu-

nately, neither of these methods are widely applicable to WDs. The former requires

stellar systems with multiple stars, and the latter is limited to WDs and pre-WDs

which lie in a narrow Teff and log g parameter space of pulsational instability.

Another method that is mostly independent of atmosphere models uses the

gravitational redshift of absorption lines. The difficulty in disentangling the stellar

radial velocity shift from the gravitational redshift has caused this method to only

be used for WDs in common proper motion binaries or open clusters (Greenstein

& Trimble 1967; Koester 1987; Wegner & Reid 1991; Reid 1996; Silvestri et al.

2001). The simplicity of this method, however, prompts us to extend the investiga-

tion beyond those cases.

This chapter details the work of Falcon et al. (2010b). By using a large,

high-resolution spectroscopic data set, we circumvent the radial velocity–gravitational

redshift degeneracy to measure a mean gravitational redshift of WDs in our sample

and use that to arrive at a mean mass. We uncover an intriguing agreement with the

mean DA WD mass of Tremblay & Bergeron (2009), whose newly calculated line

profiles systematically increase masses determined using the spectroscopic method

compared to the masses resulting from previously used line profiles. This becomes

a main motivator for our laboratory work of measuring hydrogen line profiles from

photoionized plasmas (Falcon et al. 2010a, 2013a,b).
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2.1 Gravitational Redshift

In the weak-field limit, the general relativistic effect of gravitational redshift

(z) can be understood, classically, as the energy (E) lost by a photon as it escapes a

gravitational potential (Φ) well:

z =
−∆E

E
=

−Φ

c2
. (2.1)

The fractional change in energy can be written as a fractional change in observed

wavelength (−∆E/E = ∆λ/λ). In our case, the gravitational potential is at the

surface of a WD of massM and radius R. In terms of a velocity, the gravitational

redshift is

vg =
c∆λ

λ
=

GM

Rc
, (2.2)

where G is the gravitational constant and c is the speed of light.

For WDs, vg is comparable in magnitude to the stellar radial velocity, vr,

both of which sum to give the apparent velocity we measure from absorption lines:

vapp = vg +vr. These two components cannot be explicitly separated for individual

WDs without an independent vr measurement or mass determination.

The method in this chapter is to break this degeneracy not for individual

targets but for the sample as a whole. We make the assumption that our WDs are

a comoving, local sample. After we correct each vapp to the local standard of rest

(LSR), only random stellar motions dominate the dynamics of our sample. We

assume, for the purposes of this investigation, that these average out. Thus, the

mean apparent velocity equals the mean gravitational redshift: 〈vapp〉 = 〈vg〉. The

idea of averaging over a group of WDs to extract a mean gravitational redshift is
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not new (Greenstein & Trimble 1967), but the availability of an excellent data set

prompts its exploitation. We address the validity of the comoving approximation in

Section 2.3.1.

2.2 Observations

We use spectroscopic data from SPY. These observations, taken using the

UV-Visual Echelle Spectrograph (UVES; Dekker et al. 2000) at Kueyen, Unit Tele-

scope 2 of the ESO Very Large Telescope (VLT) array, constitute the largest, homo-

geneous, high-resolution (0.36 Å or ∼ 16 km s−1 at Hα) spectroscopic data set for

WDs. We obtain reduced data online through the publicly available ESO Science

Archive Facility (see Napiwotzki et al. (2001) for details on the data reduction).

2.2.1 Sample

As explained in Napiwotzki et al. (2001), targets for the SPY sample come

from the WD catalog of McCook & Sion (1999), the Hamburg ESO Survey (HE;

Wisotzki et al. 2000; Christlieb et al. 2001), the Hamburg Quasar Survey (Hagen

et al. 1995; Homeier et al. 1998), the Montreal-Cambridge-Tololo survey (MCT;

Lamontagne et al. 2000), and the Edinburgh-Cape survey (EC; Kilkenny et al.

1997). The magnitude of the targets is limited to B < 16.5, where B follows

the Johnson-Morgan photometric system (Johnson & Morgan 1953).

Our main sample consists of 449 analyzed hydrogen-dominated WDs (see

Figure 2.1 for the distribution of targets in Galactic coordinates). This is the subset

of the SPY sample that meets our sample criteria (explained below) and that shows
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Figure 2.1 Distribution of targets in Galactic longitude, l, and latitude, b. We mark
the targets in our main sample as black points and the thick disk WDs as pink
squares. We indicate the direction of the movement of the Sun with respect to the
LSR (blue cross; Kerr & Lynden-Bell 1986). Since the observations are from the
ESO VLT in the Southern Hemisphere, no targets with a declination above +30◦

are in our sample, hence the gap in the left side of the plot.

measurable vapp in the Hα (and Hβ) line cores while not showing measurable vapp

variations in time. A variable velocity across multiple epochs of observation sug-

gests binarity. The method of SPY to search for double degenerate systems is to

detect variable radial velocity. For our study, however, we are interested only in

non-binary WDs since these presumably have no radial velocity component in ad-

dition to random stellar motion after being corrected to the LSR. We exclude known

double degenerates and common proper motion binary systems (Finley & Koester
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1997; Jordan et al. 1998; Maxted & Marsh 1999; Maxted et al. 2000; Silvestri et al.

2001; Koester et al. 2009b) even if we do not find them to show variable vapp.

We choose “normal” DAs (criterion 1) from Koester et al. (2009b). Classi-

fication as a normal DA does not include WDs that exhibit He absorption in their

spectra in addition to H absorption, and it does not include magnetic WDs.

In Falcon et al. (2012) we investigate a sample of 32 non-binary helium-

dominated WDs. This includes the first gravitational redshift study of a group of

WDs without visible hydrogen lines.

For our main sample, we are also only interested in thin disk WDs (criterion

2), so we exclude halo and thick disk candidates as kinematically classified by Pauli

et al. (2006) and Richter et al. (2007). We assume the rest are thin disk objects, the

most numerous Galactic component (for descriptions of stellar populations, see,

e.g., Binney & Merrifield 1998). Our sample selection is also consistent with the

results for the targets in common with Sion et al. (2009). Richter et al. (2007) find

only 2% and 6% of their 632 DA WDs from SPY to be from the halo and thick

disk, respectively. For WDs within 20 pc, Sion et al. (2009) find no evidence for

halo objects and virtually no thick disk objects. We note that unique identification

of population membership for WDs is difficult and sometimes not possible because

of ambiguous kinematical properties (e.g., Pauli et al. 2003). Based on corrections

for these intrinsic contaminations by Napiwotzki (2009), we expect any residual

contamination in our sample to be at most ∼ 6%. A contamination this size will

have a negligible impact on our conclusions. We explain the significance of requir-

ing thin disk WDs in Section 2.3.1, and we explore a mini-sample of thick disk
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WDs in Section 2.4.4.

The gravitational redshift method becomes very difficult for hot DAs with

50, 000K ! Teff ! 40, 000K (see the Teff gap in Figure 2.7). As the WD cools

through this Teff range, the Balmer line core, which we use to measure vapp (Section

2.3), disappears as it transitions from emission to absorption; fortunately only∼ 5%

of the DAs from SPY lie in this range.

2.3 Velocity Measurements

In the wings of absorption lines, and in particular, for the hydrogen Balmer

series, the effects of collisional broadening cause asymmetry, making it difficult

to measure a velocity centroid (Shipman & Mehan 1976; Grabowski et al. 1987).

These effects are much less significant, however, in the sharp, non-LTE line cores

formed in the highest levels of the atmosphere (greatest stellar radii) where pres-

sures are lower, and furthermore with decreasing principal quantum number, mak-

ing both the Hα and Hβ line cores suitable options for measuring an apparent veloc-

ity, vapp. Higher-order Balmer lines are intrinsically weaker (the Hγ line core, for

example, is seldom observable in our data), so finite signal-to-noise (S/N) prevents

the number of observable Hβ line cores from matching the number of observable

Hα line cores.

We measure vapp for each target in our sample by fitting a Gaussian profile

to the Hα line core using GAUSSFIT, a nonlinear least-squares fitting routine in

IDL (see Figure 2.2 for an example). When available, we combine this measure-

ment with that of the Hβ line core centroid as a mean weighted according to the
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Figure 2.2 Example UVES spectrum for a target in our sample. We measure vapp by
fitting Gaussian profiles (solid, red lines) to the non-LTE Balmer line cores using
a nonlinear least-squares fitting routine. For context we extend the fits beyond the
line cores using a 2nd-order polynomial. The line cores are well-resolved, allowing
for precise centroid determinations.

uncertainties returned by the fitting routine. We include Hβ line core centroid in-

formation in 372 of our 449 vapp measurements. If multiple epochs of observations

exist, we combine these measurements as a weighted mean as well. Apparent ve-

locity measurements of a given observation (i.e., Hα and Hβ line core centroids)

are combined before multiple epochs.

Table 2.1 (full version available online; Falcon et al. 2010b) shows our mea-

sured vapp for Hα and Hβ (when observed) for each observation.
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2.3.1 Comoving Approximation

We measure a mean gravitational redshift by assuming that our WDs are a

comoving, local sample. With this assumption, only random stellar motions domi-

nate the dynamics of our targets; this falls out when we average over the sample.

For this assumption to be valid, at least as an approximation, our WDs must

belong to the same kinematic population; in the case of this work, this is the thin

disk. We achieve a comoving group by correcting each measured vapp to the kine-

matical LSR described by Standard Solar Motion (Kerr & Lynden-Bell 1986).

There are reasons to believe that the targets in our sample will not signifi-

cantly lag behind our choice of LSR due to asymmetric drift. Although WDs are

considered “old” since they are evolved stars, it is the total age of the star (main

sequence lifetime, τnuc, and cooling time, τcool) that is of consequence. WDs with

M ∼ 0.6 M# have main sequence progenitors with M ∼ 2 M# (e.g., Williams

et al. 2009). This corresponds to τnuc ∼ 1.4Gyr (Girardi et al. 2000). τcool is on the

order of a few hundred million years for most of the WDs in our sample (Teff of a

few times 104K) and ∼ 2.5Gyr for our coolest WDs (Teff ∼ 7000K); the total age

spans a range of roughly 1.5 to 4 Gyr (F/G type stars).

We also make certain that our WDs reside at distances that are small when

compared to the size of the Galaxy, thereby making systematics introduced by the

Galactic kinematic structure negligible. Figure 2.3 shows the distances (from spec-

troscopic parallax; Pauli et al. 2006) to the targets in our sample. The mean distance

of the targets in the histogram is less than 100 pc, and all are within 600 pc. Over
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Figure 2.3 Distribution of distances (from spectroscopic parallax) of SPY WDs
from Pauli et al. (2006). The shaded, green histogram shows the targets in our
sample. The mean is 94.5 pc; the median is 89.2 pc. These distances are short
enough to support our comoving approximation. We list the number of targets in
each distribution.

these distances, the velocity dispersion with varying height above the disk remains

modest (Kuijken & Gilmore 1989), and differential Galactic rotation is negligible

(Fich et al. 1989). In Section 2.4.3.2, we perform an empirical check to the assump-

tions made in this section.
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2.4 Results
2.4.1 Mean Apparent Velocities

We present the distribution of our measured apparent velocities in Figure

2.4. Table 2.1 lists individual apparent velocity measurements, and mean apparent

velocities are in Table 2.2.

Figure 2.4 Histograms of measured apparent velocities, vapp, with a bin size of
5 km s−1. The mean vapp for all targets in our sample (shaded) is 32.57 ± 1.17 km
s−1; the median is 31.94 km s−1; the standard deviation is 24.84 km s−1. Using vapp

measured from Hα only (red, descending lines): the mean vapp is 32.69 ± 1.18 km
s−1; the median is 32.05 km s−1; the standard deviation is 24.87 km s−1. Using
vapp measured from Hβ only (blue, ascending lines): the mean vapp is 31.47 ±
1.32 km s−1; the median is 31.55 km s−1; the standard deviation is 25.52 km s−1.
The overplotted curves are the Gaussian distribution functions used to determine
Monte Carlo uncertainties. We list the number of targets in each distribution.
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Table 2.2. Mean Apparent Velocities

Sample Number of WDs 〈vapp〉 δ〈vapp〉 σvapp 〈δvapp〉 〈M/R〉 δ〈M/R〉
(km s−1) (km s−1) (km s−1) (km s−1) (M"/R") (M"/R")

Main 449 32.57 1.17 24.84 1.51 51.19 1.84
Hα 449 32.69 1.18 24.87 1.78 51.37 1.85
Hβ 372 31.47 1.32 25.52 3.17 49.45 2.07
Thick 26 32.90 9.59 48.99 1.57 51.70 15.07

Though our main method uses information from both the Hα (Column 7

of Table 2.1) and Hβ (Column 9) line cores to determine vapp for a given observa-

tion (Column 11), we also perform our analysis using Hα only and Hβ only. We

measure Hβ line core centroids for 372 of our 449 targets.

Figure 2.5 shows the distribution of measurement uncertainties associated

with each target. Hβ centroid determinations are typically less precise than those for

Hα (see Column 6 of Table 2.2), which is expected since the Hα line core is nearly

always better defined. We find that the improved precision achieved by combining

Hα and Hβ information is not significant when determining the uncertainties to our

mean apparent velocities. These uncertainties are dominated by sample size. In

fact, we must increase (worsen) our typical measurement uncertainty of∼ 2–10 km

s−1 to note a ∼ 7% increase in the uncertainty of the mean; a significant increase

to measurement uncertainties of ∼ 50 km s−1 enlarges the uncertainty of the mean

by a little more than a factor of two. Thus, using only Hα (or Hβ) centroids is suf-

ficient for the kind of investigation employed in this chapter, and lower-resolution

observations are also suitable as long as the Balmer line core is resolved.

The quoted uncertainties of the mean apparent velocities (Column 4 of Ta-
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Figure 2.5 Histograms of apparent velocity measurement uncertainties, δvapp, cor-
responding to the samples in Figure 2.4. The bin size is 0.4 km s−1. The overplotted
curves are the empirical distribution functions used to determine Monte Carlo un-
certainties. Note that measurements of the Hα line core are more precise than for
Hβ. For aesthetics, we leave off two Hβ δvapp of 13.06 and 17.57 km s−1.

ble 2.2) come from Monte Carlo simulations. For each sample, we recreate a large

number of instances (10,000) of the vapp distribution by randomly sampling from a

convolution of the empirical vapp distribution (Gaussian characterized by the param-

eters in Columns 3 and 5 of Table 2.2) and the empirical measurement uncertainty

distribution. We adopt the standard deviation of the resulting simulated mean val-

ues as our formal uncertainties. Since the input distributions for our simulations

are empirical, our uncertainties are subject to the normal limitations of Frequentist
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Table 2.3. Mean Masses

Sample Number of WDs 〈vapp〉 δ 〈vapp〉 〈Teff 〉 σTeff 〈M〉 δ 〈M〉
(km s−1) (km s−1) (K) (K) (M#) (M#)

Main 449 32.57 1.17 19400 9950 0.647 +0.013
−0.014

Thick 26 32.90 9.59 19960 11060 0.652 +0.097
−0.119

Hota 366 31.61 1.22 21670 9700 0.640 0.014
Coola 75 37.50 3.59 9950 1090 0.686 +0.035

−0.039

a“Hot” refers to WDs with Teff > 12, 000K and “cool” to WDs with 12, 000K> Teff >
7000K.

statistics. We plot the empirical distribution of our main sample in Figure 2.4 (black

curve) along with the distributions for the Hα (dashed, blue curve) and Hβ (dashed,

red curve) samples. The corresponding empirical distributions of our measurement

uncertainties are in Figure 2.5.

For convenience, Table 2.2 also lists the quantity 〈M/R〉, which is propor-

tional to 〈vg〉 (Equation 2.2) and, as we argue in Section 2.3.1, 〈vapp〉.

2.4.2 Mean Masses

The mean apparent velocity, 〈vapp〉, (or 〈M/R〉) is our fundamental result

since it is this quantity that is model independent. To translate this to a mean mass

(Table 2.3), we must invoke two dependencies: (1) we need an evolutionary model

to give us a mass-radius relation, and (2) since the WD radius does slightly contract

during its cooling sequence, we need an estimate of the position along this track for

the average WD in our sample (i.e., a mean Teff).

27



Our evolutionary models useMHe/M& = 10−2 andMH/M& = 10−4 for the

surface-layer masses; these are canonical values derived from evolutionary stud-

ies (e.g., Lawlor & MacDonald 2006). See Montgomery et al. (1999) for a more

complete description of our models. Our dependency on evolutionary models is

small. We are interested in the mass-radius relation from these models, and this

is relatively straightforward since WDs are mainly supported by electron degener-

acy pressure, making the WD radius a weak function of temperature. We estimate

that varying the C/O ratio in the core affects the radius by less than 0.5%, whereas

changingMH/M& from 10−4 to 10−8 results in about a 4% decrease in radius. See

Section 2.4.3.1 for more discussion on the dependency of the hydrogen layer mass.

Figure 2.6 plots M/R versus Teff with cooling tracks from evolutionary

models for a range of WD masses. We use 〈Teff〉 = 19, 400 ± 300K from the

spectroscopically determined values of Koester et al. (2009b) (see Figure 2.7), and,

after plotting 〈M/R〉 from Table 2.2, we interpolate to arrive at a mean mass of

0.647+0.013
−0.014 M# for 449 non-binary thin disk normal DA WDs from the SPY sam-

ple.

To compare this result with that of the spectroscopic method, we use at-

mospheric parameters, Teff and log g, from Koester et al. (2009b) along with the

mass-radius relation from evolutionary models to derive individual masses for 441

of the targets in our sample (Koester et al. (2009b) did not publish individual WD

masses). We derive a sharply peaked mass distribution (Figure 2.8) with width (not

uncertainty) σ = 0.13 M# and a mean mass of 0.575 ± 0.002 M# – significantly

lower than the value we obtain from the gravitational redshift method. We com-
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Figure 2.6 Left: plot of M/R versus Teff with cooling tracks from evolutionary
models for a range of WD masses. The intersection of the mean measured apparent
velocity, vapp, (vertical, black line) and mean Teff from Figure 2.7 (horizontal, pur-
ple line) indicates a mean mass of 0.647+0.013

+0.014 M#. Right: a version of Figure 2.7
with an abbreviated temperature range. We leave off 13 WDs with Teff > 50, 000K
from the plot.

pute the uncertainty of the mean using Monte Carlo simulations following the same

method described in Section 2.4.1, except instead of using a single Gaussian to

represent the mass distribution, we use multiple Gaussians (curve in Figure 2.8).
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Figure 2.7 Distribution of spectroscopically determined Teff of normal DAs from
Koester et al. (2009b, dashed, black histogram). The bin size is 1500K. The solid,
green histogram shows the non-binary thin disk SPY targets, and the shaded, pur-
ple histogram shows the targets in our sample. The mean is 19, 400 ± 300K; the
median is 17,611K; the standard deviation is 9950K. The overplotted curve is the
empirical distribution function used to determine Monte Carlo uncertainties. We
list the number of targets in each distribution.

2.4.3 Systematic Effects
2.4.3.1 From Evolutionary Models

The hydrogen layer masses in DAs are believed to be in the range of 10−4 !

MH/M& ! 10−8, constrained by hydrogen shell burning in the late stages of stellar

evolution (Althaus et al. 2002; Lawlor & MacDonald 2006) and convective mixing

(Fontaine & Wesemael 1997). In their asteroseismological studies, Bischoff-Kim
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Figure 2.8 Distribution of spectroscopic masses of normal DAs from Koester et al.
(2009b) we derive using the published atmospheric parameters, Teff and log g,
(dashed, black histogram). The bin size is 0.025 M#. The solid, green histogram
shows the non-binary thin disk SPY targets, and the shaded, orange histogram
shows the targets in our sample. The means are 0.567 ± 0.002 M# (vertical, black
line), 0.580 ± 0.002 M# (vertical, green line), and 0.575 ± 0.002 M# (vertical, or-
ange line), respectively. Note that the mean spectroscopic masses are similar, indi-
cating that the application of our sample criteria to SPY is not introducing signifi-
cant additional systematic effects. All the means are also significantly less than the
mean mass derived from the gravitational redshift method (vertical, blue line). The
overplotted curve is the empirical distribution function used to determine Monte
Carlo uncertainties. We list the number of targets in each distribution.

et al. (2008a) also find evidence to support this range of hydrogen layer masses, and

this is consistent with the results of Castanheira & Kepler (2009).

Our evolutionary models use the fiducial value of MH/M& = 10−4 for
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“thick” hydrogen layers. First, this is suggested by the pre-WD evolutionarymodels

of, e.g., Lawlor & MacDonald (2006), who find that the overwhelming majority of

their DA models have thick hydrogen layers. Second, if thin layers were the norm,

then convective mixing below 10,000K would lead to a disappearance of DAs at

these temperatures (Fontaine & Wesemael 1997). Both of these reasons lead us to

choose thick hydrogen layers for our models.

We find that using a mid-range hydrogen layer mass of MH/M& = 10−6

decreases the mean mass we derive for our main sample by 0.012 M#, while using

a thin layer mass of MH/M& = 10−8 decreases the derived mean mass by an addi-

tional 0.003 M# (total mass difference of 0.015 M#). Assuming no hydrogen layer

(MH/M& = 0) yields a mean mass that is ∼ 0.018 M# lower than that obtained

with the fiducial value ofMH/M& = 10−4.

It is worth noting that the spectroscopic method shares this dependency

on evolutionary models and that most of the studies listed in Table 2.5, including

Liebert et al. (2005), Kepler et al. (2007) and Tremblay & Bergeron (2009), employ

mass-radius relations that use thick hydrogen layers. Column 7 of Table 2.5 notes

the assumed hydrogen layer mass in the evolutionary models used in each study.

Furthermore, our results are qualitatively less sensitive to the mass-radius relation:

for the gravitational redshift method, vg ∝ M/R, while the surface gravity used by

the spectroscopic method scales as g ∝ M/R2.
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2.4.3.2 Dynamical

We use the kinematical LSR described by Standard Solar Motion (Kerr &

Lynden-Bell 1986) as our reference frame for the comoving approximation. To

determine if this is a suitable choice, we investigate 〈vapp〉 in the U , V orW direc-

tions (by convention, U is positive toward the Galactic center, V is positive in the

direction of Galactic rotation, andW is positive toward the North Galactic Pole).

For 237 targets in the direction of the Galactic center (l ≤ 90◦ or l ≥ 270◦)

and 212 opposite the Galactic center (90◦ < l < 270◦), 〈vapp〉 = 31.81 ± 1.71 and

33.43 ± 1.64 km s−1, respectively. In the direction of the LSR flow (l = 90◦, b =

0◦; 196 targets) and opposite the flow (253 targets), 〈vapp〉 = 33.61 ± 2.09 and

31.77± 1.34 km s−1. North (185) and south (264) of the Galactic equator, 〈vapp〉 =

31.59 ± 1.84 and 33.26 ± 1.53 km s−1.

These empirical checks provide independent evidence that the local WDs

in our sample move with respect to kinematical LSR with the following values:

(U, V, W )=(−1.62± 3.35, +1.84± 3.43,−1.67± 3.37) km s−1, which is consistent

with no movement relative to the LSR. Therefore, we find our choice of reference

frame to be suitable for this study.

2.4.3.3 Observational

SPY targets are magnitude-limited to B < 16.5, but these targets come

from multiple surveys with varying selection criteria, making the combined criteria

difficult to precisely determine (Koester et al. 2009b). For this reason, our results

pertain mostly to non-binary thin disk normal DA WDs from SPY. Although the
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selection bias is likely to have a minimal effect, a detailed comparison of our results

with that of the general DA population awaits a closer examination of the selection

criteria (see Napiwotzki et al. 2001, 2003).

If we approximate our sample to be free of any target selection bias, our es-

timates show that we have a net observational bias toward lower mass WDs. There

are two competing effects: first, at a given Teff , a larger mass (smaller radius) results

in a fainter WD, thus biasing the detection of fewer higher mass WDs over a given

volume, and second, a larger mass (smaller radius) also results in a slower cooling

rate due to a larger heat capacity as well as a diminished surface area. This means

more higher-mass WDs as a function of Teff . We estimate the observational mass

bias correction as follows.

Let P (M) be the distribution of WDs as a function of mass for a magnitude-

limited sample of WDs. For simplicity, we take it to have the form of a Gaussian;

we take the mean to be 〈M〉 ∼ 0.65 M# and σ ∼ 0.1 M#. As a reference, the

spectroscopic mass distribution of DAs shows a sharp Gaussian-like peak with high

and low mass wings (e.g., Bergeron et al. 1992; Liebert et al. 2005; Kepler et al.

2007).

Effect (1): ignoring color, the apparent flux of a star scales asFapp ∼ L&/D2

and the luminosity as L& ∼ R2T 4
eff , where L&, R, and Teff are the luminosity, radius,

and effective temperature of the star; D is its distance. In the non-relativistic limit,

the radius, R, of a WD scales as R ∝ M−1/3 (Chandrasekhar 1939), and for a
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(moderately relativistic) 0.6 M# WD this relation is approximately R ∝ M−1/2, so

L& ∝
T 4

eff

M
. (2.3)

If Fcutoff is the lower limit on flux for the survey, a given WD is visible out to a

distance of

D ∼
(

L&

Fcutoff

)1/2

∝ T 2
eff

M1/2
. (2.4)

If we make the simplifying assumption that all the WDs are at the observed average

temperature, 〈Teff〉, and that they are distributed uniformly, the volume, V , in which

a WD is visible is

V ∼ D3 ∝ M− 3
2 . (2.5)

Thus, P (M) is biased by this factor.

Effect (2): from simple Mestel theory (Mestel 1952), the WD cooling time,

τ , scales as

τ ∝
(

M

L&

) 5
7

, (2.6)

which, from Equation 2.3, yields

τ ∝
(

M2

T 4
eff

) 5
7

∼ M10/7T−20/7
eff . (2.7)

Again, assuming that the WDs are all at 〈Teff〉, the observed distribution will be

biased by a factor of τ ∝ M10/7.

Thus, the final biased distribution we observe is given by the product of

these factors:

Pbias(M) ∝ V τ P (M)

∝ M−1/14P (M). (2.8)
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This very weak mass bias results in 〈M〉bias = 0.649 M#, which is a mass bias of

∆M = −0.001 M#. While this is just a crude estimate, it suggests that the bias

correction is likely much smaller than the size of our stated random uncertainties.

2.4.3.4 Mass Conversion

In our mean mass determination in Section 2.4.2, we implicitly assume that

〈M/R〉 = 〈M〉/〈R〉. These quantities are not entirely equal, and by performing

an estimate using a simple analytical form for the WD mass distribution, we find

that there is a difference of ∼ 0.5% (i.e., 〈M/R〉 ) 1.005 × 〈M〉/〈R〉), which is

negligible compared to the mean mass differences we find.

2.4.4 Thick Disk DAs

The kinematics of thick disk stars prohibit us from placing them in the

same comoving reference frame as thin disk stars. In Section 2.4.3.2, we show

that the kinematical LSR described by Standard Solar Motion is a suitable choice

of reference frame for the SPY thin disk WDs. As expected, using vapp of our

thick disk targets corrected to that LSR (the reference frame suitable for the thin

disk) give discrepant values for 〈vapp〉 in opposite directions. Since our thick disk

sample is small (26 targets), our 〈vapp〉 uncertainties are too large to discern a

suitable reference frame. If we correct by the average lag in rotational veloc-

ity of the thick disk with respect to the thin disk (∼ 40 km s−1; Gilmore et al.

1989), then 〈vapp〉 = 32.90 ± 9.59 km s−1 for our thick disk sample. Individ-

ual vapp measurements are listed in Table 2.4. Using 〈Teff〉 = 19, 960K, we find
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〈M〉 = 0.652+0.097
−0.119 M#. This is evidence that the mean mass of thick disk DAs

is the same as for thin disk DAs within the mass difference of the two samples,

0.005 ± 0.119 M#.
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One should also note that the dispersion of vapp (Column 5 of Table 2.2) is

clearly larger than that for the thin disk DAs. Since the vapp distribution is a con-

volution of the true mass distribution and the random stellar velocity distribution,

this is consistent with a larger velocity dispersion as expected for the thick disk

population (Gilmore et al. 1989).

2.5 Discussion
2.5.1 The log g Upturn

At the time we published the work of Falcon et al. (2010b), a major problem

plaguing the field of WDs was the apparent systematic increase in mean log g for

DAs toward low (" 12, 000K) Teff , as determined from spectroscopic fitting of

absorption line profiles (Bergeron et al. 2007; Koester et al. 2009a). Recent work

on the 3D modeling of convection in DA atmospheres may finally put this issue

to rest (Tremblay et al. 2011b, 2013a,b). Here in Sections 2.5.1.1 and 2.5.1.2, we

discuss our contribution to constraining this problem.

2.5.1.1 The Problem

This apparent increase is specific to the spectroscopic method. It is absent

in photometric log g determinations (Kepler et al. 2007; Engelbrecht & Koester

2007), which are not strongly dependent on line profiles. A number of effects are

known to exist that make theoretical line profile modeling for cool WD atmospheres

more difficult than for hotter WDs, such as helium contamination from dredge-up

(Bergeron et al. 1990; Tremblay & Bergeron 2008) and the treatment of convective
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efficiency (Bergeron et al. 1995a).

The number of studied cool WDs is already relatively low due to the inher-

ent difficulty of observing cool (dim) objects, but the addition of the log g upturn

problem and the subtleties of cool WD atmosphere modeling (e.g., Saumon et al.

2014) has thus far kept that number low by prompting many spectroscopic analyses

to be designed to exclude cooler WDs (e.g., Bergeron et al. 1992; Harris et al. 2003;

Madej et al. 2004; Liebert et al. 2005; Kepler et al. 2007; DeGennaro et al. 2008).

This is tremendously unfortunate. Understanding cool WDs has broad astrophys-

ical relevance, such as in determining the age of the Galactic disk (Winget et al.

1987) and in setting constraints on the physics of crystallization in high-density

plasmas (Winget et al. 2009).

Furthermore, decades of focus on hotter WDs (due to the much larger data

set and due to the neglect of cooler WDs) have perhaps given researchers in our field

a false comfort with these objects. There is a feeling that since hot WD atmospheres

are more straightforward to model than cool atmospheres, the spectroscopically

determined surface gravities (and masses) must be correct for the hot WDs and not

for the cool WDs, given the log g upturn problem. Recent calculations for Stark

broadening of hydrogen lines in WD atmospheres (Tremblay & Bergeron 2009)

show that hot WD modeling is still maturing.

2.5.1.2 Avoiding the Upturn

The gravitational redshift method is independent of log g determinations

from atmosphere models and allows us to constrain changes in mean masses across
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Teff bins.

Figure 2.9 Distribution of Teff versus log g for 419 of our WDs. Spectroscopic
parameters for all targets are from Koester et al. (2009b). Note the abrupt increase
in the mean log g around 12,000K. We also plot cooling tracks from evolutionary
models for 0.5, 0.6 and 0.7 M# WDs.

Figure 2.9 plots spectroscopically determined values of Teff and log g from

Koester et al. (2009b) for the targets in our sample, clearly exposing the upturn.

This reflects to state of the field before the recent work on 3D WD atmosphere

models. We plot evolutionary models for 0.5, 0.6 and 0.7 M# DA WDs to il-

lustrate how a higher surface gravity implies a higher mass and to show the ex-

pected weak dependence on Teff . Using the mass-radius relation from evolution-

ary models, we derive mean spectroscopic masses 〈M〉 hot = 0.563 ± 0.002 M#
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for 358 WDs with Teff > 12, 000K and 〈M〉 cool = 0.666 ± 0.005 M# for 75

WDs with 12, 000K> Teff > 7000K; ∆〈M〉 = 0.103 ± 0.007 M#. The mass

difference is even larger in the SDSS data; Kepler et al. (2007) find 〈M〉 hot =

0.593 ± 0.016 M# and 〈M〉 cool = 0.789 ± 0.005 M# (12, 000K≥ Teff ≥ 8500K);

∆〈M〉 = 0.196 ± 0.021 M#.

In Figure 2.10, we show our distribution of vapp (distribution of uncertainties

in Figure 2.11) for targets with Teff > 12, 000K (green histogram with ascending

lines) and with 12, 000K> Teff > 7000K (pink histogram with descending lines).

The corresponding 〈vapp〉 determinations are 31.61 ± 1.22 and 37.50 ± 3.59 km

s−1, respectively, which translate to 〈M〉 hot = 0.640 ± 0.014 M# and 〈M〉 cool =

0.686+0.035
−0.039 M# (see Figure 2.12). This is consistent with no change in mean mass

across a temperature split at Teff = 12, 000K, in agreement with the photometric

studies by Kepler et al. (2007) and by Engelbrecht & Koester (2007). Prior to 3D

DA atmosphere models, no previous large spectroscopic study has seen consistency

in mean mass across these temperatures.

2.5.2 Comparison With Other Studies

Table 2.5 lists four studies that employ the gravitational redshift method to

determine masses for common proper motion WDs. Because of the small sample

sizes (9, 35, 34, and 41 WDs), the uncertainties of the mean masses found by these

studies are relatively large – too large to discern a difference in mean mass from

that of the spectroscopic method (Silvestri et al. 2001). Other than with the results

of Koester (1987), whose sample consists of only 9 DAs, our mean mass agrees
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Figure 2.10 Histogram of measured apparent velocities, vapp, for targets with
spectroscopically determined Teff from Koester et al. (2009b). The bin size is
7.5 km s−1. The green histogram with ascending lines corresponds to targets with
Teff > 12, 000K and the pink histogramwith descending lines to 12, 000K> Teff >
7000K. The mean vapp for the green histogram is 31.61 ± 1.22 km s−1; the median
is 31.71 km s−1; the standard deviation is 23.22 km s−1. The mean vapp for the pink
histogram is 37.50 ± 3.59 km s−1; the median is 36.20 km s−1; the standard devia-
tion is 31.00 km s−1. The overplotted curves are the Gaussian distribution functions
used to determine Monte Carlo uncertainties. We list the number of targets in each
distribution.

with that of all these studies, and we improve upon the uncertainties (precision) by

more than a factor of two.

The mean mass of 512 SPY non-binary thin disk normal DAs from Koester

et al. (2009b), as we figure from their spectroscopically determined values of Teff
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Table 2.5. Mean DA Masses From Selected Studies

Study Number of WDs 〈M〉 δ 〈M〉 σM Method Assumed Notes
(M!) (M!) (M!) H-Layera

Koester et al. (1979) 122 0.58 0.10 0.12b Photo Thin/No
Koester (1987) 9 0.58 · · · 0.11 GRS Thin/No CPM WDs
McMahan (1989) 50 0.523 0.014 · · · Spectro Thin/No
Wegner & Reid (1991) 35 0.63 0.03 · · · GRS Thin/No CPM WDs
Bergeron et al. (1992) 129 0.562 · · · 0.137 Spectro Thin/No Teff ! 14, 000K
Bragaglia et al. (1995) 42 0.609 · · · 0.157 Spectro Thin/No Teff > 12, 000K
Bergeron et al. (1995b) 129 0.590 · · · 0.134 Spectro Thick Revised Bergeron et al. (1992)

w/ thick H-layers
Reid (1996) 34 0.583 0.078 · · · GRS Thick CPM WDs
Vennes et al. (1997) 110 0.56* · · · · · · Spectro Thin/No 75, 000K! Teff ! 25, 000K
Finley et al. (1997) 174 0.570* · · · 0.060* Spectro Thick Teff ! 25, 000K

some w/ cool companions
Silvestri et al. (2001) 41 0.68 0.04 · · · GRS Thick CPM WDs
Madej et al. (2004) 1175 0.562* · · · · · · Spectro Thick Teff ≥ 12, 000K
Liebert et al. (2005) 298 0.603 · · · 0.134 Spectro Thick Teff > 13, 000K

0.572* · · · 0.188
Kepler et al. (2007) 1859 0.593 0.016 · · · Spectro Thick Teff > 12, 000K
Tremblay & Bergeron (2009) ∼ 250 0.649 · · · · · · Spectro Thick 40, 000K> Teff > 12, 000K

overlap w/ Liebert et al.
Koester et al. (2009b)c 606d 0.567e 0.002e 0.142e Spectro Thick SPY
Koester et al. (2009b)c 512d 0.580e 0.002e 0.136e SPY non-binary thin disk WDs
Koester et al. (2009b) overlapc 441 0.575e 0.002e 0.128e
Limoges & Bergeron (2010) 136 0.606 · · · 0.135 Spectro Thick Teff > 13, 000K
Tremblay et al. (2011a) 1089 0.613 · · · 0.126 Spectro Thick 40, 000K> Teff > 13, 000K

S/N> 15
Gianninas et al. (2011) 1171 0.661 · · · 0.160 Spectro Thick
Gianninas et al. (2011) 958 0.638 · · · 0.145 Teff > 13, 000K
Kleinman et al. (2013) 3577 0.623 0.002 · · · Spectro Thick S/N≥ 15
Kleinman et al. (2013) 2217 0.593 0.002 · · · S/N≥ 15

Teff > 13, 000K
This Work 449 0.647 +0.013

−0.014 · · · GRS Thick SPY non-binary thin disk WDs

Note. — Masses marked with an asterisk are peaks/widths of mass distributions from Gaussian fitting.
aHydrogen layer mass used in mass-radius relation from evolutionary models. “Thick” corresponds to MH/M! ≈ 10−4 and “Thin/No” to MH/M! "

10−8 or no hydrogen layer.
bTwo-thirds of the stars are within 0.12 M! .
cMasses do not appear in this reference. We compute masses from the published values of logg and Teff using the mass-radius relation from evolutionary models.
dExcludes double degenerates.
eWe compute these means, uncertainties, and standard deviations (see Section 2.4.2).
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Figure 2.11 Similar to Figure 2.5 but corresponding to targets with Teff > 12, 000K
(green) and to targets with 12, 000K> Teff > 7000K (pink).

and log g, is 0.580 ± 0.002 M#, and if we restrict the comparison to 441 WDs in

our sample, 〈M〉= 0.575 ± 0.002 M#. Both values are significantly smaller than

the mean mass we derive using the gravitational redshift method.

Using atmosphere models that implement the new Stark-broadened line pro-

files from Tremblay & Bergeron (2009) and an updated treatment of the microfield

distribution, the SPY sample shows an increase of ∼ 0.03 M# in the mean mass

(Koester, private communication), but this resulting mean mass is still significantly

less than our value. In fact, our mean mass is significantly larger than the determi-

nations from all the previous spectroscopic studies listed in Table 2.5 except that of
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Figure 2.12 Same as Figure 2.6 but for targets with Teff > 12, 000K (green)
and with 12, 000K> Teff > 7000K (pink). 〈M〉 hot = 0.640 ± 0.014 M# and
〈M〉 cool = 0.686+0.035

−0.039 M#.

Tremblay & Bergeron (2009) and Gianninas et al. (2011).

The recent work of Tremblay & Bergeron (2009) uses atmosphere models

with modified Stark broadening calculations to re-analyze the WDs from Liebert

et al. (2005). They find a larger mean mass (0.649 M#) than previously determined

for the Palomar-Green sample (0.603 M#). The mean mass we derive using the

gravitational redshift method agrees well, thus providing independent observational

evidence in support of these new atmosphere models.

Other studies incorporate the line profiles of Tremblay & Bergeron (2009).
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Limoges & Bergeron (2010) find a smaller mean mass (0.606 M#) for WDs in the

Kiso Schmidt ultraviolet excess survey. Tremblay et al. (2011a) re-analyze WDs

from SDSS Data Release 4. Though they find a 0.02 M# increase in mean mass

from that of Kepler et al. (2007), the value still remains less than ours. Gianninas

et al. (2011) measure a large mean mass (0.661 M#), but when restricting their sam-

ple toWDs with Teff > 13, 000K, it agrees with ours at 〈M〉= 0.638 M#. The most

recent SDSS Data Release 7 contains the largest number of WDs (3577). Klein-

man et al. (2013) find a smaller mean mass including WDs with Teff < 13, 000K

(0.623 ± 0.002 M#) or excluding them (0.593 ± 0.002 M#).

It is necessary to keep in mind that these are the mean masses determined

for each specific sample and that selection biases or subtle differences in the atmo-

sphere models or analysis techniques likely introduce systematic differences from

a true WD mean mass. Therefore the comparison with minimal systematic un-

certainty is between our gravitational redshift determination and the spectroscopic

mass determinations from the same SPY sample.

2.6 Conclusions

We show that the gravitational redshift method can be used to determine a

mean mass of a sample of WDs whose dynamics are dominated by random stel-

lar motions. For 449 non-binary thin disk normal DA WDs from SPY, we find

〈vg〉 = 〈vapp〉 = 32.57 ± 1.16 km s−1. Using the mass-radius relation from evo-

lutionary models, 〈M〉 = 0.647+0.013
−0.014 M#. This is in agreement with the results

of previous gravitational redshift studies. It is significantly higher than all spectro-
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scopic determinations prior to that of Tremblay & Bergeron (2009), with which it

agrees well. Tremblay & Bergeron (2009) incorporate new calculations of Stark-

broadened hydrogen line profiles and a different treatment of the microfield distri-

bution into their atmosphere models. Though subsequent spectroscopic analyses

use these new line profiles, only the mean mass from Gianninas et al. (2011) (in

addition to Tremblay & Bergeron 2009) agrees with our determination.

We find that the targets in our sample move with respect to the kinematical

LSR described by Standard Solar Motion (Kerr & Lynden-Bell 1986) with the fol-

lowing values: (U, V, W )=(−1.62±3.35, +1.84±3.43,−1.67±3.37) km s−1. This

is consistent with no movement relative to this LSR.

Our results provide evidence that the mean mass of thick disk DAs is the

same as for thin disk DAs within 0.005 ± 0.119 M#.

The gravitational redshift method is independent of spectroscopically de-

termined surface gravity from atmosphere models and is insensitive to the log g

upturn problem (Section 2.5.1). 〈vapp〉 = 31.61 ± 1.22 and 37.50 ± 3.59 km s−1

for targets with Teff > 12, 000K and with 12, 000K> Teff > 7000K, respectively.

This translates to 〈M〉 hot = 0.640 ± 0.014 M# and 〈M〉 cool = 0.686+0.035
−0.039 M#,

which disagrees with spectroscopic results prior to 3D modeling of convection in

DA atmospheres by showing no significant change in the mean mass of DAs across

a temperature split at Teff = 12, 000K. This confirms the results of Kepler et al.

(2007) and Engelbrecht & Koester (2007), who find no log g increase in their pho-

tometric investigations.
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Back in Don’s office. It’s a couple weeks or so since I darted out of this

room salivating at the promise of a scientific idea. Now I slump down into a chair,

enervated, intellectually detumescent.

“I’m sorry, Don.”

“Sorry for what?”

“I got an answer for the mean mass, but it’s way too large. I did something

wrong. Or the method doesn’t work. I don’t know.”

“What did you get?”

“Zero point six four nine solar masses.” I state my number with staccato

speech, I suppose, to reflect the measurement precision I had hoped to achieve.

“There’s no way the white dwarf mean mass is that far above 0.6 solar masses,

right? I made a mistake.”

I’m obviously disappointed. I see Don smirk, prompting me to raise an

inquisitive eyebrow.

“Well, maybe not. I hear Pierre has a student who’s doing some good work.”

“Pierre?”

“University of Montreal. I think the student’s name is Pier-Emmanuel. You

should look up his work.”

“Um...okay.”
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I trot out of Don’s office. Maybe fifteen minutes later I fly back in.

“Don! Tremblay and Bergeron redid their atmosphere models! They re-

analyzed the WDs from the PG survey and got a higher mean mass!”

“What’d they get?”

“0.649 solar masses!”

“See, maybe your method isn’t wrong. Maybe you’re onto something.”
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Chapter 3

Developing a Laboratory Experiment

At a lot of schools – I don’t know, maybe most – the two are one. Here at

the University of Texas, though, Astronomy and Physics are separate departments.

They’re in the same building, but they’re not even on adjacent floors. Mathemati-

cians provide a few-floor partition. (Astronomy occupies the top stories. I always

found this fitting. That we’re at least a little bit closer to the stars, albeit infinitesi-

mally closer.) So I don’t attend seminars in the Physics Department very often.

Today Don suggested I go to one. Okay. Sure.

I head downstairs with Mike and some undergrads. The speaker is a sci-

entist visiting from Sandia National Labs. Never heard of it. Remember, I’m in

Astronomy. We just don’t get the exposure to that kind of career path.

This is the moment when my graduate experience becomes one quite un-

orthodox for students of astronomy.

Jim (Bailey, the speaker) tells us about the Z Facility. He tells us about his

research. He tells us about how he’s using Z to create iron plasmas at the same

conditions (temperature, density) as the inside of the Sun.
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I’m salivating. (There I go again.) An idea starts to. . . But if he can make a

plasma with. . .Maybe we could. . . But surely. . .

I whip my head around and shoutMike! telepathically. He doesn’t hear me.

But I doubt he would have even if I had the gift. (Or if he had it. I’m not sure how

it works. Do I need it? Does he? Do we both?) His mouth is ajar. Is that saliva I

detect?

Oh, Don. Now I know why you sent me here.

The history of laboratory experiments relevant to white dwarf photospheres

follows the progress of theoretical line shapes, particularly for Stark-broadened hy-

drogen. During the 1960s and early 1970s, the frequency of shock-heated (e.g.,

Berg et al. 1962; McLean & Ramsden 1965; Bengtson et al. 1969), pulsed dis-

charge (e.g., Vujnović et al. 1962; Hill & Gerardo 1967; Morris & Krey 1968),

and stabilized arc experiments (e.g., Wiese et al. 1963; Shumaker & Popenoe 1968;

Wiese et al. 1972) was high, tracking with the dynamic advances in theory (e.g.,

Kolb & Griem 1958; Baranger 1958c,b,a; Griem et al. 1959, 1962; Kepple & Griem

1968; Smith et al. 1969). As time went on, improving the precision of diagnostic

techniques contributed more to the experimental motivation (e.g., Baessler & Kock

1980; Helbig & Nick 1981) in addition to testing the latest theory (e.g., Vidal et al.

1973).

Astronomical observation frequently uses line shape theory – white dwarf
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(WD) photospheres in particular are an ideal astrophysical environment for its ap-

plication (e.g., Dimitrijević et al. 2011). Until now, however, this field has not

been a significant motivator for experiments. With new advances in theory (e.g.,

Tremblay & Bergeron 2009; Santos & Kepler 2012), new experimental capabilities

available at modern facilities, and a wealth of spectroscopic observations that did

not exist much more than a decade ago (e.g., Kepler et al. 2007; Kleinman et al.

2013), this is changing.

3.1 Motivation

As we discuss in Chapter 2, the spectroscopic method is a widely used tech-

nique responsible for determining parameters for thousands ofWDs (e.g., Kleinman

et al. 2004; Liebert et al. 2005; Eisenstein et al. 2006; Kepler et al. 2007; Koester

et al. 2009b; Limoges & Bergeron 2010; Castanheira et al. 2010; Kleinman et al.

2013). Atmospheric parameters form the foundation (and limit the ultimate accu-

racy) of many other research areas, such as determining the age of the Universe

(Winget et al. 1987), using asteroseismology to study matter at high temperatures

and densities in the deep interiors of WDs (e.g., Winget & Kepler 2008), constrain-

ing the mass of supernova progenitors (e.g., Williams et al. 2009), and probing

properties of dark matter axions (Bischoff-Kim et al. 2008b).

While this method is powerful and precise ( δTeff
Teff

∼ 5% and δlogg
logg ∼ 1%

are typical for a given star), its accuracy is suspect. In Chapter 2 we show that the

mean mass of WDs determined from spectroscopic investigations disagrees with

the mean mass determined from an alternate technique which uses gravitational

54



redshifts (Falcon et al. 2010b, 2012). The gravitational redshift technique is largely

independent of atmosphere models and line-broadening theory. It is only relevant,

however, to a large space-velocity averaged sample of nearby WDs where radial

velocities relative to the Solar System can be averaged out, or the handful of bright

WDs in binary systems where the gravitational redshifts can be disentangled from

the stellar radial motion. Astronomers need a solution that applies to individual

WDs – to all observed WDs, in all stellar populations and regions of the Galaxy.

Astronomers need the spectroscopic method benchmarked.

WD atmosphere models are still advancing. The models currently being

used by spectroscopists in the community incorporate the latest hydrogen line pro-

files of Tremblay & Bergeron (2009). In re-analyzing the hydrogen-atmosphere

WDs from the Palomar-Green Survey (Liebert et al. 2005), the spectroscopic fits of

Tremblay & Bergeron (2009) yield significant systematic increases in Teff ∼ 200–

1000K and in log g ∼ 0.04–0.1 compared to the previous analysis of the same

sample of WDs which used the line profiles of Lemke (1997) following the the-

ory of Vidal et al. (1973). This work demonstrates that modified hydrogen line

profiles greatly impact the interpretation of WD spectroscopic observations. The

experimental basis for the line profile theories, however, does not presently pro-

vide accurate enough constraints to discern which theoretical model is optimal, if

any, and at which conditions. The ultimate arbiter of the differences in relative line

shapes produced by different theoretical models can only be laboratory experiment.
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3.1.1 The Laboratory Perspective

The differences in the new theory and the resulting impact on the WD atmo-

spheric parameters motivate us to perform new experiments to measure hydrogen

Balmer line shapes with which to compare theoretical ones. In this chapter we de-

scribe an experimental platform for creating hydrogen plasmas at WD photospheric

conditions (Te ∼ 1 eV1, ne ∼ 1017 cm−3) (Falcon et al. 2010a, 2013a). Using this

platform we measure hydrogen Balmer line profiles in emission and in absorption.

Not only are we the first to measure hydrogen line profiles in absorption at these

conditions, but we are the first to measure spectral lines in emission and absorption

simultaneously. This allows for the investigation of plasmas not in local thermo-

dynamic equilibrium and their time evolution, which we list in Section 7.5.2 as a

focus for future work. Our experiment is unique in that it uses a radiation-driven

plasma source which offers some advantages over previous experiments. This is

only possible given the x-ray capability of the Z Pulsed Power Facility (Matzen

1997; Spielman et al. 1998; Matzen et al. 2005) at Sandia National Laboratories.

3.2 Experimental Setup

A brief overview before elaborating in the following subsections: we place a

gas cell assembly a distance away (324mm) from an x-ray source along a radial line

of sight (LOS). X-rays irradiate the gas cell, transmit through a thin (1.44±0.02 µm)

Mylar window, and are absorbed by a gold wall at the back of the cell cavity, heating

1When referring to temperature, we use units such that the Boltzmann constant kB = 1.
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it to an electron temperature of a few eV. The gold re-emits as a continuum, heating

the hydrogen through photoionization.

We observe the hydrogen plasma along lines of sight perpendicular to the

x-ray radiation and parallel to the gold wall using lens-coupled optical fibers, which

deliver the light to time-resolved spectrometer systems.

3.2.1 X-ray Source

Our experiment is part of the Z Astrophysical Plasma Properties (ZAPP)

Collaboration (Rochau et al. 2014), a group of experiments conducted in coordina-

tion at the Z Pulsed Power Facility at Sandia National Laboratories. ZAPP exper-

iments are performed simultaneously in a large (> 60m3) vacuum chamber each

making use of the same x-ray source to initiate plasma formation.

The source of x-rays is a z-pinch dynamic hohlraum (e.g., Spielman et al.

1998; Nash et al. 1999; Stygar et al. 2001; Sanford et al. 2002; Slutz et al. 2003;

Bailey et al. 2006; Rochau et al. 2007, 2008), located at the focal point of the Z

Pulsed Power Accelerator (Stygar et al. 2007). The accelerator supplies 25.8MA

of current (Rochau et al. 2014) that passes through a nested array of tungsten wires

(see, e.g., Deeney et al. 1998; Cuneo et al. 2005; Ampleford et al. 2012). 240

and 120 wires, each 11.4µm in diameter, make up the outer (40-mm diameter)

and inner (20-mm diameter) arrays, respectively. The magnetic pressure from the

induced magnetic field (from the current) implodes the tungsten wire plasma onto

the central (z) axis. Here the z-pinch stagnates (filled, red circle in Figure 3.1)

and shock heats the tungsten plasma to temperatures around 200 eV (Sanford et al.
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Figure 3.1 Top view schematic of the experimental setup inside the vacuum cham-
ber. The gas cell sits 324mm away from the z pinch. We observe the hydrogen
plasma along lines of sight perpendicular to the x-rays. This figure is not drawn to
scale.

2002). Since the tungsten is optically thick and has a high atomic number (Z = 74),

it radiates nearly as a Planckian (Foord et al. 2004).

All this takes place within a current return canister whose cylindrical wall

(segmented, gold annulus in Figure 3.1) contains nine rectangular apertures (11x13

mm) out of which x-ray radiation escapes. Our gas cell intercepts the x-rays leaving

the z pinch along one of these radial lines of sight, as do two other ZAPP experi-

ments along two other lines of sight (Mancini et al. 2009; Hall et al. 2009, 2010,
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2011, 2014). One ZAPP experiment makes use of x-rays escaping in the upward

axial direction (Bailey et al. 2007, 2009; Nagayama et al. 2012a, 2014a,b).

3.2.2 Plasma Formation

For the initial design of the experiment, we simulate the heating of the gas

cell using the two-dimensional radiation-hydrodynamics code LASNEX (Zimmer-

man et al. 1978). In this simulation the radiation from the z pinch peaks at slightly

below 230 eV and accounts for the time-dependent radius of the z pinch (Macfar-

lane et al. 2002; Rochau et al. 2005; Jones et al. 2006a). We take the start time

of the simulations to be the time of interaction of the outer and inner wire arrays

(see Deeney et al. 1998) in the z-pinch dynamic hohlraum occurring ∼32 ns before

the maximum power of the radiation pulse. The radiation drive is launched in the

simulations directly in front of the gas cell and is geometrically diluted to account

for the distance from the source. The simulations include the Mylar window, the

hydrogen gas fill, and the walls of the cell.

The results of these simulations draw out a qualitative picture of the plasma

formation within our initial gas cell design. We supplement these results with the

latest description of the z-pinch radiation for radial lines of sight (Loisel et al. 2014),

which comes from measurements of the specific z-pinch dynamic hohlraum config-

uration (i.e., Marx capacitor bank charge, nine-slot current return canister) we em-

ploy. The maximumpower and full-width-at-half-maximumof the z-pinch pulse (as

measured by the total-energy-and-power diagnostic; Ives et al. 2006) are typically

∼ 220W and" 4 ns, respectively (Rochau et al. 2014). In Section 6.1, we quantify
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this qualitative picture with measurements from experiments using matured gas cell

designs (see Section 3.2.3 and Chapter 4).

Figure 3.2 Observing LOS view (perpendicular to incident radiation) schematic of
the gas cell cavity cross-section, drawn to scale. Z-pinch x-rays (black arrows)
transmit through the Mylar window (red) and are absorbed by the gold wall at the
back end of the cell cavity. The gold wall re-emits (blue) to heat the hydrogen gas.

The plasma formation picture: z-pinch photons are geometrically diluted as

they travel the distance to the gas cell (black arrows in Figure 3.2; black curve in

Figure 3.3 as determined by Loisel et al. 2014). The∼ 1.4-µm thick Mylar window

attenuates the radiation as it enters the cell (red arrows; dashed, red curve assuming

room-temperature x-ray transmission from Henke et al. 1993), eliminating all pho-

tons below∼ 70 eV. For photons at these high energies, the mean free path through

hydrogen is large compared to the size of the gas cell. In other words, hydrogen

is transparent to these photons, so they stream through the gas and do not directly

contribute to the plasma heating. We illustrate this by plotting the absorption mean
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Figure 3.3 Radiation environment of the gas cell. The black curve is the spectral
irradiance of the x-ray photons incident on the gas cell (Loisel et al. 2014). These
photons transmit through the Mylar window as they enter the cell (red curve). They
are absorbed by a gold wall, which re-emits as a continuum approximated as a ∼
few eV Planckian; we show two examples within our range of estimated temper-
atures (blue curves). The green curve is the absorption mean free path through
hydrogen gas at room temperature and 10Torr. The minima (the photon energies
most easily absorbed) are within the photon energy range of the gold wall radiation.

free path of hydrogen gas at room temperature and 10Torr (our typical initial con-

ditions) as a function of photon energy (green curve). In the photon energy range

of the attenuated x-rays, the mean free path is much larger than the width of the gas

cell (2 cm in the direction perpendicular to the gold wall). The x-rays are instead

absorbed by the gold wall and heat it to a∼ few eV electron temperature. It then re-
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emits as a continuum (blue arrows; blue curves in Figure 3.3 which we approximate

as Planckian emission). The hydrogen is optically thick to the gold wall radiation;

the minima values of the mean free path are in its photon energy range. This radi-

ation photoionizes the hydrogen and is attenuated such that the radiation intensity

and associated ionization fraction of the plasma decreases with increasing distance

away from the gold wall. We confirm this qualitative picture in Section 3.4.1.

The plasma formation in our gas cell is similar to that in the boundary region

of a Strömgren sphere (Strömgren 1939) surrounding a hot O star. Both plasmas

are predominantly hydrogen, and both sources of ionizing radiation are approxi-

mated as Planckian emitters with∼ few-eV temperatures, though the density in our

gas cell (∼ 1018 particles cm−3) is significantly higher than that of the interstel-

lar medium (e.g., Redfield & Falcon 2008) or a denser nebula (e.g., Osterbrock &

Ferland 2006).

If we calculate an order-of-magnitude Strömgren “distance” from the gold

wall, we find that this balance of photoionization and recombination should occur at

∼ 10mm, which is within the dimensions of our gas cell cavity. The plasma within

the vicinity of a Strömgren sphere can also be approximated as isothermal, and, for

a hot O star, an electron temperature Te ∼ 1 eV is typical (Shu 1991; Osterbrock &

Ferland 2006). The LASNEX simulations of the environment in our gas cell predict

Te ∼ 1 eV given a gas fill pressure of 15Torr.

For an initial fill pressure of∼ 10−15Torr, we require an ionization fraction

! 10% to reach electron densities in our target range of ne ! 1017 cm−3. We revisit

this point in Section 3.4.1.
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3.2.3 Gas Cell

Oh! That’s a good one! I quickly grab my notebook.

“Will you please repeat that, Greg?”

“Huh?”

“What you just said. About the Mylar puffing out ’cause the cell’s pressur-

ized. I’m totally gunna quote that somewhere. I want to make sure I got it down

accurately.”

I flip my notebook around to show him what I wrote:

‘‘We use x-rays to pop balloons!’’ - GAR,

06.14.2012

The pulsed power shot configuration for the ZAPP experiments requires

a blast shield, which is used to mitigate debris within the the vacuum chamber

resulting from the z pinch. Its nominal outer diameter is ∼ 625mm at its base,

and our gas cell assembly sits immediately outside this blast shield at a distance of

324 ± 2mm from the z-pinch axis.

The gas cell design changes with time due to many factors, including: re-

sponding to lessons learned of experimental shortfalls, accommodating growing
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and additional functionality, and improving reliability and efficiency. In this sub-

section we describe the culmination of many iterations and modifications of the de-

sign, our Absorption-Continuum-Emission (ACE) gas cell, named for its capability

of observing the hydrogen plasma along three lines of sight. This is also the design

generating most of the data we scrutinize for the scientific target of this work, in-

vestigating hydrogen Balmer line shapes relevant for WD atmosphere models. We

take a closer look at the evolution of the gas cell (and our experimental methods)

leading up to the ACE design in Chapter 4.

Figure 3.4 Front view drawing of the ACE gas cell design. Three lines of sight
observe the plasma inside the central cavity.

Figure 3.4 shows a front view drawing of the ACE design. The plasma forms
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inside a rectangular central cavity that is 120x30x20mm. A Mylar window faces

the z-pinch x-rays and interfaces between the vacuum chamber and the pressurized

gas cell. This window is offset 30mm in front of the central cavity (in the radial

direction towards the z pinch; see Figure 3.2). This offset results in an extended

lifetime (compared to initial experiments which had no offset) of the quasi-steady-

state period of plasma conditions in our experiment (see Section 3.4.2) by delaying

the arrival time of a shock (predicted by the LASNEX simulations) that propagates

from the ionizedMylar into our observed LOS. A thin foil (not shown) partitions the

cavity within the buffer (orange) from the central cavity. 5-mm diameter apertures

in this foil open up both cavities to each other so that both are pressurized with the

gas fill. The function of the buffer is to provide spatial separation between a fused

silica window (interfaces between the vacuum chamber and the gas cell) and the hot

plasma so that the window does not melt or become a plasma itself, thus interfering

with our observation of the hydrogen. Inside the buffer cavity, we insert a black,

apertured Delrin R© disk to baffle light reflecting within the space.

For each LOS, a tubular, stainless steel shield protects the optics from radi-

ation and debris. We look more closely at these optics in Figure 3.5. Light from

the plasma exits the gas cell by passing through the fused silica window (Newport

model 05QW40-30), tilted to stifle direct reflections, and a 3-mm diameter limit-

ing aperture. An achromatic doublet lens (Thorlabs model AC060-010-A-ML) then

focuses the light onto the end of a 100-µm diameter optical fiber. Figure 3.5 also

shows the buffer end plate, to which the fused silica window couples, the optical

fiber coupling hardware (purple component in Figure 3.5), and the lens mounting
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Figure 3.5 Optical setup at the end of our gas cell fiber. The fused silica window
couples to the buffer end plate and interfaces between the pressurized gas cell (to
the right; not shown) and a vacuum chamber housing the experiment. Light from
the experiment passes through this window and a 3-mm diameter limiting aper-
ture before focusing through an achromatic doublet lens onto the end of an optical
fiber. We also show the adjacent hardware coupling these components. Screws are
omitted for clarity.
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hardware. Two screws connect the lens mounting hardware to the buffer end plate.

We use these screws to align the optical LOS, and three additional set screws allow

us to make fine adjustments to the alignment. We characterize our LOS collection

beam in Section 5.3.3.

Inside the central cavity a stainless steel plate coated with 5µm of gold

lines the back wall. A polyhedral stainless steel block, also coated with 5µm of

gold, rests on one end. The surface of this block is tilted with respect to the plain

normal to the z-pinch x-rays and pitched with respect to the horizontal plane. This

allows the x-rays, the optics in one of the horizontal lines of sight, and the optics in

the vertical LOS to each have a direct view of this surface. The x-rays heat up this

gold surface just as they do the back wall, allowing it to function as a back-lighting

surface for absorption measurements. An axial spacer placed between the central

cavity and the vertical-LOS buffer fixes the distance separating the vertical-LOS

optics from the back-lighting surface to equal that of the (horizontal) absorption-

LOS optics from the back-lighting surface.

For ZAPP experiments, usually all the hardware installed inside the center

section vacuum chamber is destroyed with each pulsed power shot. Ours is the

first experiment performed at Z to reuse hardware. This is because it is the first

experiment to place its hardware outside the blast shield. We place it so far from

the z pinch in order for the x-rays to illuminate a large area (see Section 3.4.2). With

newly manufactured hardware, the gas cell assembly is a shiny sight to see before

the experiment (Figure 3.6). After the experiment, it is not (Figure 3.7).

Most of our gas cell components are constructed of type 306L stainless steel.
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Figure 3.6 The experimenter with his ACE gas cell, both anticipating the upcoming
visit of a chunk of white dwarf atmosphere to the terrestrial laboratory. Because we
often reuse many hardware components, it is rare to see the assembly so pristine.

Only the central cavity, the thin apertured foil partitioning the central cavity and

buffer cavity, the axial spacer, optical-fiber coupling hardware, and lens mounting

hardware are constructed of type 6061-T6 aluminum. These first three are dam-

aged beyond reuse each experiment (along with the gold-coated components). The

latter two are protected by the optics shield. The components we reuse between ex-

periments include the mounting hardware (platform base, legs, and handle), optics

shields, and buffers (and buffer end plates).
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Figure 3.7 Debris and soot from the blast of the experiment humble the appearance
of the gas cell. We thank it for serving as such a hospitable host to the visiting
chunk of white dwarf atmosphere.

3.2.4 Gas Fill

The gas cell is evacuated (" 5 × 10−5 Torr) with the chamber. We then fill

the cell with research-purity (99.9999% or 1 part in 105) H2 gas, making use of

a fill and purge procedure repeated three times to rid the system of any lingering

contaminants. Fill pressures range up to∼ 30Torr, and we measure this pressure in

situ using a piezoresistive pressure sensor (Omega Engineering, Inc. model PX72-

1.5GV). We describe our method for determining the pressure in Appendix A.
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Assuming the gas fill is at room temperature, the Ideal Gas Law gives us the

total particle density. We assume no material escapes the gas cell volume on the

time scale of our experiment (< 1
2 µs) so that the total atom density of the gas fill

equals the sum of the neutral and ion (electron) densities of the created plasma.

3.3 Data

Chapter 5 contains a detailed account of our data acquisition, processing,

and calibration procedures. Here we give a brief preview.

We record time-resolved optical spectra from the lines of sight traversing

our gas cell using multiple spectrometer systems. Each LOS has its own indepen-

dent system that collects light from the experiment using a lens-coupled optical

fiber, transmitting the signal through additional fiber, through a spectrometer, and

to a streak camera with a micro-channel plate intensifier. The setup is similar to that

used previously at Z (Bailey et al. 1990, 1997, 2000; Dunham et al. 2004; Bailey

et al. 2008; Falcon et al. 2010a, 2013a; Gomez et al. 2014a).

Figures 3.8 and 3.9 show example, uncalibrated time-resolved spectra (streak

images) in false color of the hydrogen plasma from experiment z2484 in emission

and absorption, respectively. We label the lasers, which we use as wavelength fidu-

cials, the comb and impulse, which we use as timing fiducials, and the observed

hydrogen Balmer spectral lines. In both streak images the hydrogen gas is invisible

until the z-pinch x-rays arrive to heat the gold wall. For these images, we fix this

time, the onset of the x-rays, at 1000 ns. The back-lighting continuum in the ab-

sorption data (Figure 3.9) decreases in time as the gold back-lighting surface cools.

70



Figure 3.8 Uncalibrated, time-resolved spectrum in false color of hydrogen Balmer
emission lines from experiment z2484 with the wavelength fiducials (lasers) and
timing fiducials (comb, impulse) labeled.

It is important to note that the signal-to-noise (S/N) significantly increases when we

observe the lines in absorption. This allows us to measure higher principal quan-

tum number (of the upper electronic energy level), n, lines than in the emission

case. It also allows us to observe transitions originating from the same lower en-
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Figure 3.9 Uncalibrated, time-resolved spectrum in false color of hydrogen Balmer
absorption lines from experiment z2484. We can observe higher n lines in absorp-
tion due to the increased S/N. The intensity of the back-lighting continuum de-
creases over the lifetime of the experiment as the gold back-lighting surface cools.

ergy level (n = 2), which simplifies the interpretation of our data and provides a

unique perspective on relative line strengths (Sections 6.2.2.1 and 6.2.2.2).
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3.4 Experimental Context

Besides the ability to observe our plasma in absorption, what distinguishes

this experiment from others in the past that have investigated hydrogen Balmer line

profiles in the range of conditions Te ∼ 1 eV and ne ∼ 1017 cm−3 is the plasma

source. Here it is radiation-driven. This decouples the heating source from the

plasma we are studying in the sense that the initial conditions of the hydrogen gas

(i.e., fill pressure) have a negligible effect on the radiation temperature of the gold

wall. The gold temperature can be increased, for example, by moving the gas cell

closer to the z pinch to decrease geometrical dilution of the incident radiation or

by using a thinner Mylar window to decrease attenuation. This “decoupling” gives

us potentially finer control of the experimental conditions as well as the ability to

explore a broad range of plasma conditions.

3.4.1 Achievable Range of Electron Densities

We demonstrate that our plasma achieves the target electron density in Fig-

ure 3.10, which plots an Hβ emission line profile from experiment z2090 with the

same line from the wall-stabilized arc experiment by Wiese et al. (1972). In Chap-

ters 6 and 7, we further investigate the range of ne our platform can achieve. This

includes reaching higher densities thanWiese et al. (1972), which allows us to build

upon the benchmark of their seminal work.

In Section 3.2.2 we use simulations to describe the formation of our hy-

drogen plasma as photoionization due to the gold wall radiation. We confirm this

picture experimentally by using an alternate gas cell design, the “Dual Distance”
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Figure 3.10 Hβ spectrum (filled, blue circles) integrated over a 150-ns quasi-steady-
state period from experiment z2090. The filled, red diamonds are the data from
the stabilized arc experiment of Wiese et al. (1972), which determines an electron
density ne = 5.7 × 1016 cm−3. The qualitative agreement demonstrates that our
plasma reaches the intended range of electron density.

gas cell (Section 4.1.2), to simultaneously measure our plasma along two lines of

sight at different distances from the gold wall during a single experiment. In exper-

iment z2300 we observe our plasma in absorption along lines of sight that are 5 and

10mm away from the gold wall. In experiment z2302 the lines of sight are 10 and

15mm away. Both experiments use the same nominal gas fill pressure of∼ 30Torr.

We estimate the electron density by fitting our observed Hβ spectral lines to the

tabulated profiles from Lemke (1997), which follow the line broadening theory of
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Vidal et al. (1973). We discuss our fitting methods, including how we convert our

measured absorption data to transmission, in Section 6.2.1.

Figure 3.11 The electron density of our hydrogen plasma, estimated from Hβ trans-
mission line fits, decreases with increasing distance from the gold wall. Dashed
lines connect determinations from simultaneous observations of lines of sight 5 and
10mm away from the gold wall from experiment z2300 (blue) and of lines of sight
10 and 15mm away from the wall from experiment z2302 (red). Solid vertical lines
show the standard deviations of ne values inferred from 5-ns line-outs spanning
30–45 ns after the onset of x-rays. This vertical line is larger than the symbol size
for only the data point corresponding to the LOS closest to the gold wall. Solid,
horizontal lines represent the 4-mm nominal LOS beam diameters.

Figure 3.11 plots the inferred ne as a function of LOS distance from the

gold wall, showing the decrease with increasing distance. Dashed lines connect
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values determined from the lines of sight that are 5 and 10mm away from the gold

wall from experiment z2300 (blue) and 10 and 15mm away from the wall from

experiment z2302 (red). Each data point is the mean ne inferred from fits to three

consecutive 5-ns line-outs (defined in Section 5.2.2) spanning 30–45 ns after the

onset of x-rays. The solid, vertical lines represent the standard deviation of inferred

ne for these three line-outs. For the 10 and 15mm points, the standard deviations

are smaller than the symbol size. The solid, horizontal lines are the 4-mm nom-

inal LOS beam diameters used for these experiments. We note that the extracted

line transmissions we fit for these determinations do not include self-emission cor-

rections (Section 6.2). Since this should result in overestimations of only ∼ few

percent (Section 7.1.2), it does not change our qualitative results.

3.4.2 Comparison with other Experimental Platforms

Forming a hydrogen plasma using radiation requires a sufficient number

of ionizing photons distributed over a relatively large surface area. This is only

possible with a large input of energy to the experimental system, which, in our

case, is supplied by the large amount of x-rays from a z-pinch dynamic hohlraum.

To understand how our radiation-driven plasma source compares with other

plasma sources, we look to the discussions of Konjević & Roberts (1976); Kon-

jević & Wiese (1976); Konjević (1999) and Konjević et al. (2002). Though these

reviews do not include experiments investigating hydrogen specifically, they pro-

vide an excellent contextual description of the plasma sources, diagnostic methods,

and experimental considerations pertinent for laboratory studies of Stark-broadened
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spectral lines.

As pointed out in Wiese et al. (1972), the two most desirable properties of

a plasma source are that it is stationary (in a steady state of plasma conditions) and

homogeneous (in a uniform state of plasma conditions). None are truly stationary

or homogeneous, but different sources can achieve either or both of these properties

to some degree.

Shock-heated experiments (e.g., Doherty & Turner 1955; Berg et al. 1962;

McLean & Ramsden 1965; Bengtson et al. 1969; Hey &Griem 1975; Okasaka et al.

1977; Djurović et al. 2005) observe a plasma in a shock front that travels through

a tube. If the shock front is planar and the boundary layers negligible, then one

achieves a homogeneous plasma by observing along a LOS that is tangential to the

plane of the shock front. Since this plasma is not stationary, the temporal resolution

of the observation must be sufficient. The experimental setup must also be highly

reproducible to repeat the experiment many times to accumulate a satisfactory sig-

nal level. In the published literature, hydrogen has not always been the primary

component of the gas fill. This means that some composition other than hydrogen

was the focus of scientific inquiry and scrutinizing the subtleties associated with

experimenting on hydrogen specifically may not have been a priority of the work.

One may also achieve homogeneity using pulsed discharges (e.g., Vujnović

et al. 1962; Hill & Gerardo 1967; Morris & Krey 1968; Torres et al. 1984) by

appropriately arranging the observing optics (i.e., by observing a discharge plasma

“end-on” along its axis) and while paying special attention to the boundary layers.

These plasmas are also not stationary and must be highly reproducible. Again,
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hydrogen has not always been the primary component of the gas fill.

Stabilized arc experiments are stationary, which is advantageous for data

collection and for achieving high S/N data. These plasmas are not radially homo-

geneous, so when they are observed “side-on” (perpendicular to the arc axis) (e.g.,

Wiese et al. 1963; Shumaker & Popenoe 1968; Wiese et al. 1972; Ershov-Pavlov

et al. 1987), one must correct for the radial temperature distribution using, for exam-

ple, an Abel inversion (Bockasten 1961). Some investigations observe the plasma

“end-on” (e.g., Baessler & Kock 1980; Helbig & Nick 1981; Halenka & Musielok

1986; Djurović et al. 1988), but, like the pulsed discharge experiments, properly

addressing the boundary layers in the plasma is a significant difficulty. Also, with

the exception of Wiese et al. (1963, 1972) and Wiese et al. (1975), the experiments

we list here operate arcs in gases that are mostly argon with only small amounts

of hydrogen. The reason is for plasma diagnostics using Ar spectral lines as well

as to observe the hydrogen at desired optical depths. However, the shapes of the

hydrogen profiles are affected by Ar lines due to blending; removing these lines

introduces a systematic uncertainty.

Our discussion does not include all possible plasma sources. We attempt to

cover the ones most relevant to our investigation. For example, though experiments

using radio frequency discharge plasmas (e.g., Schlüter & Avila 1966; Bengtson

et al. 1970) observe many high n lines, the electron densities are too low for our

interests. Laser-driven optical discharge plasmas (e.g., Carlhoff et al. 1986; Uh-

lenbusch & Viöl 1990) are stationary, but they are too high density, leaving only

the lowest n Balmer lines separated (not overlapping) enough to be useful. Laser-
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induced optical breakdown plasmas span a large range of conditions but are tran-

sient, inhomogeneous, and spatially small (Parigger et al. 1995, 2003).

Figure 3.12 Hβ emission line profiles integrated over 10-ns durations (red curves)
throughout a 150-ns quasi-steady-state period from experiment z2090 (the same in-
tegration we plot in Figure 3.10). The combined 150-ns integration curve (filled,
blue circles) includes the standard deviation (∼ 15% at half of the maximum spec-
tral power) of the shorter time integrations, illustrating the level to which they stay
similar.

The plasma generated in our experiment is not quite stationary like the stabi-

lized arc plasmas, but with our time-resolved measurements (Section 3.3) we mon-

itor smooth changes in the plasma conditions (Section 7.1). In some experiments,

our plasma can reach a quasi-steady-state where the Balmer line shapes remain rel-
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atively constant for some time. We illustrate this in Figure 3.12, which plots 10-ns

integrations of the Hβ emission line (red curves) throughout a 150-ns quasi-steady-

state period from experiment z2090 (the same integration we plot in Figure 3.10).

The standard deviation (∼ 15% at half of the maximum spectral power) of these

red curves is a measure of the stability of the spectral line throughout time.

Our plasma is also heated by radiation coming off of a relatively large

(120x10mm) planar surface. This reduces the limitations of observation imposed

by the localized heating that occurs with pulsed discharges or arcs. We are not

concerned with accurately integrating our observed LOS over an arc or annulus of

constant radius about an axis as is needed for “end-on” observations. Nor are we

concerned with performing Abel inversions for “side-on” observations, which can

yield erroneous emission measurements if the opacity of the plasma is not properly

handled (Nagayama et al. 2008). We are free to change the distance of our LOS

from the gold wall, thus probing different ionizations within the same plasma. The

large heating surface allows us to observe longer path lengths than can be achieved

in other plasma sources, and we can vary these lengths more readily. Observing

longer path lengths means we can measure spectral lines that are more optically

thin without having to increase the density or integrate over long exposure times.

The large surface also aides us in achieving homogeneity (along lines of sight at a

constant distance from the wall) by minimizing the sensitivity of the plasma heat-

ing to small inhomogeneities in the gold wall temperature. More importantly, the

long path length minimizes the effect of boundary layer plasmas contributing to

inhomogeneity (e.g., Bengtson & Chester 1976).
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Perhaps the most distinguishing feature of our experiment is the ability to

observe hydrogen Balmer lines in absorption in addition to emission. Just as x-rays

from the z-pinch heat the gold wall at the back end of the gas cell cavity, they also

heat another gold surface that is angled so as to have a clear line of sight to both the

observing optics and the z-pinch radiation. The re-emission from the gold provides

a bright, smooth continuum background useful for absorption measurements across

our visible wavelength range (Iglesias 2006).

It is interesting to note that, because experiments have never before had such

a back-lighter available that allowed for absorption measurements, there has never

been a convention in line profile studies to specify emission versus absorption line

profiles. “Line profile” has always implied “emission line profile”. In fact, one

must search the literature carefully in order to encounter this more precise jargon,

but even then, it is used in a hybrid form in the context of self-absorption of an

emission line (e.g., Burgess & Mahon 1972). We also point out that the spectral

lines in WD observations, from which atmospheric parameters are determined, are

all measured in absorption.

3.5 Conclusions

We describe an experimental platform to create hydrogen plasmas in the

range of conditions that exist in white dwarf photospheres (Te ∼ 1 eV, ne ∼

1017 cm−3). Here we measure hydrogen Balmer line profiles in emission and, for

the first time, in absorption, and, also for the first time, in emission and absorption

simultaneously. We will use these profiles to constrain the latest theoretical WD
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atmosphere models, which, when used with the spectroscopic method, are respon-

sible for determining fundamental parameters (i.e., effective temperature, mass) for

thousands of WDs. We perform our experiment at the Z Pulsed Power Facility at

Sandia National Laboratories, making use of its powerful x-ray capability to initi-

ate plasma formation in a gas cell. Our plasma source is radiation-driven, which is

unique compared to past experiments and which decouples the heating source from

the plasma to be studied.
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Chapter 4

Evolving a Laboratory Experiment

It’s so backwards. This.

Being at the observatory seems so natural now. Staying awake is so easy.

Innumerable stars gaze down upon you (condescending in the archaic definition),

peeling back your eyelids with awe. Yes, it’s solitary time, those nights, but aren’t

they so peaceful? Don’t you feel like if you just sit there long enough, outside

the telescope, on the cold metal of the catwalk in the dark, that you’ll just absorb

wisdom from those elders up above. Like Kubrick’s/Clarke’s man-apes acquiring

knowledge from the mysterious monolith.

Oh, but the night. Yes, it’s easy to stay up, to push the nocturnal envelope.

I guess I’m just used to learning taking place in an intimate environment, beneath

the cloak of night, in the absence of the brilliant Sun saturating the world with

too many photons to count, life getting lost in the noise of television commercials,

traffic lights, hallway gossip.

Here, it’s different. Right now I’m encroaching upon the night from

the wrong direction. It’s 4:45 am! I’ll be at the lab by 6:00 to start a really
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longday (not night) punctuated by a shot experiment. There will be

dozens of people bustling around, seemingly as many as stars lining the celestial

sphere. The shot schedule will demand a constant sense of urgency. Walkie-talkie

radio chatter will clog the ether.

The complete opposite. Is it even possible to gain knowledge by doing

things this way?

Just you wait and see.

Similar to observatories in the astronomy realm, the Z Facility, for its frac-

tion of time allocated to fundamental science, solicits proposals from principal in-

vestigators. For the accepted proposals, Z then schedules days for shot experiments.

Because of the time needed to refurbish the facility between shot experiments, only

one is conducted per day. An experimenter receives groups of a few subsequent

days (a series) and at different times throughout the year. Our experiments, for ex-

ample, may occur for one week – a series of five experiments in five days – for three

series each separated by a couple or a few months.

Unlike at observatories, gathering data at Z means destroying much hard-

ware. Some of this hardware, collectively called “load hardware”, is responsible

for coupling the impressively high current from the accelerator pulse through the

wire array to create the z-pinch dynamic hohlraum. Other hardware, the “experi-

ment hardware”, consists of gas cells or targets for the ZAPP experiments (Rochau
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et al. 2014). Some of our experiment hardware survives, as mentioned in Section

3.2.3. All hardware is custom-made, and some components require precise and

delicate fabrication (i.e., assembling the wire arrays), which means a lead time of

several weeks.

The facility, diagnostic instruments, and experiments also each operate and

are maintained through the diligence of dozens of people in intricate coordination.

These three factors, as well as others, contribute to a unique environment

in which we conduct our experiments. This results in a nonlinear evolution, most

specifically for our gas cell design and experimental approach. The paucity and

preciousness of each experiment limits how systematically we can investigate de-

tails of our experimental platform. We cannot afford to make a single modification

at a time, assess, and move on to the next concern, as is good practice for thor-

ough work. We must address multiple fronts in parallel in order to make reasonable

progress, while keeping in consideration that lead times often mean that the hard-

ware for the upcoming experiment series is already being manufactured before we

receive results from the previous.
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Table 4.1. Catalogue of Experiments

Experiment Date Cell Type Fill Pressure SVS Data Type LOS Length LOS Distance
(Torr) (mm) (mm)

z2084 04.14.2010 15 Emission 60 10
z2085 04.15.2010 0 Emission 60 10
z2086 04.16.2010 3 Emission 60 10
z2090 05.05.2010 15 Emission 60 10
z2091 05.07.2010 15 Emission 60 10
z2127 07.27.2010 15 Emission 60 10
z2128 07.28.2010 15 Emission 60 10
z2129 07.29.2010 15 Emission 60 10
z2153 01.18.2011 7.5 Emission 60 10
z2154 01.20.2011 7.5 Emission 60 10
z2155 01.21.2011 30 Emission 60 10
z2175 03.07.2011 15 Emission 60 10
z2176 03.08.2011 Short 30 Emission 30 10
z2218 06.27.2011 30 Emission 60 10
z2219 06.28.2011 Short 30 Emission 30 10
z2220 06.29.2011 0 Emission 60 10
z2221 06.30.2011 Long 30 Emission 120 10
z2222 07.01.2011 Long 30 Emission 120 10
z2242 08.17.2011 Transmission 15 Absorption 120 10
z2243 08.18.2011 Transmission 0 Absorption 120 10
z2244 08.19.2011 Transmission 15 Absorption 120 10
z2267 11.28.2011 Transmission 30 1 Absorption 110 10

2 Continuum 10 10
z2268 11.30.2011 Transmission 0 1 Absorption 110 10

2 Continuum 10 10
z2269 12.01.2011 Transmission 30 1 Absorption 70 10

2 Continuum 10 10
z2270 12.02.2011 Transmission 0 1 Absorption 110 10

2 Continuum 10 10
z2298 02.06.2012 Dual Distance 30 1 Absorption 110 10

2 Absorption 110 5
z2299 02.07.2012 Dual Length 30 1 Absorption 30 10

2 Absorption 70 10
z2300 02.08.2012 Dual Distance 30 1 Absorption 110 10

2 Absorption 110 5
z2301 02.09.2012 Dual Length 15 1 Absorption 30 10

2 Absorption 70 10
z2302 02.10.2012 Dual Distance 30 1 Absorption 110 10

2 Absorption 110 15
z2308 02.28.2012 Dual Length 30 1 Absorption 30 10

2 Absorption 70 10
z2309 02.29.2012 Dual Distance 30 1 Absorption 110 10

2 Absorption 110 5
z2310 03.01.2012 Dual Distance 15 1 Absorption 110 10

2 Absorption 110 5
z2363 06.11.2012 TEA 30 1 Emission 100 10

2 Absorption 100 10
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Table 4.1 (cont’d)

Experiment Date Cell Type Fill Pressure SVS Data Type LOS Length LOS Distance
(Torr) (mm) (mm)

3 Continuum 10 10
z2364 06.12.2012 TEA 30 1 Emission 100 10

2 Absorption 100 10
3 Continuum 10 10

z2365 06.13.2012 TEA 30 1 Emission 100 10
2 Absorption 100 10
3 Continuum 10 10

z2366 06.14.2012 TEA 30 1 Emission 100 10
2 Emission 100 10
3 Continuum 10 10

z2367 06.15.2012 TEA 10 1 Emission 100 10
2 Emission 100 10
3 Continuum 10 10

z2388 07.31.2012 ACE 10 1 Absorption 120 10
2 Emission 120 10
3 Continuum 10 10

z2389 08.01.2012 ACE 10 1 Emission 120 10
2 Absorption 120 10
3 Continuum 10 10

z2409 09.17.2012 ACE 10 1 Emission 100 10
2 Absorption 100 10
3 Continuum 10 10

z2410 09.18.2012 ACE 10 1 Emission 100 5
2 Absorption 100 5
3 Continuum 10 10

z2411 09.19.2012 ACE 10 1 Emission 100 15
2 Absorption 100 15
3 Continuum 10 10

z2412 09.20.2012 ACE 20 1 Emission 100 5
2 Absorption 100 5
3 Continuum 10 10

z2413 09.21.2012 ACE 0 1 Emission 100 10
2 Absorption 100 10
3 Continuum 10 10

z2482 03.04.2013 ACE 10 1 Emission 120 10
2 Absorption 120 10
3 Continuum 10 10

z2483 03.05.2013 ACE 10 1 Emission 120 10
2 Absorption 120 10
3 Continuum 10 10

z2484 03.07.2013 ACE 10 1 Emission 120 10
2 Absorption 120 10
3 Continuum 10 10

z2552 09.24.2013 Dual Length 10 1 Absorption 70 10
2 Absorption 30 10

z2553 09.25.2013 ACE 10 1 Emission 120 10
2 Absorption 120 10
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Table 4.1 (cont’d)

Experiment Date Cell Type Fill Pressure SVS Data Type LOS Length LOS Distance
(Torr) (mm) (mm)

z2554 09.27.2013 ACE 10 1 Continuum 10 10
2 Absorption 120 10
3 Emission 120 10

z2588 12.04.2013 ACE 10 1 Emission 120 10
2 Absorption 120 10
3 Continuum 10 10

z2589 12.06.2013 ACE 10 1 Emission 120 5
2 Absorption 120 5
3 Continuum 10 10

z2590 12.09.2013 ACE 10 1 Emission 120 10
2 Absorption 120 10
3 Continuum 10 10
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Having described the critical features of the gas cell design and overall ex-

perimental approach in Chapter 3, we now document some of the modifications

made during development and the reasoning behind them. We discuss this in the

context of our catalogue of experiments, listed in Table 4.1. The gas fill pressure

(Column 4) is the nominal or target value. Column 5 lists the SVS system used.

The data type (Column 6) is the intent of the experiment. The LOS Length (Col-

umn 7) and LOS Distance (Column 8) are the nominal line-of-sight (LOS) lengths

of plasma observed and line-of-sight distances away from the gold wall, respec-

tively. We group experiments into series.

The most significant developments include observing the hydrogen plasma

in absorption, which drastically improves the signal-to-noise ratio (S/N) of our data,

allowing us to measure higher principal quantum number (n) lines. Another is the

capability to observe multiple lines of sight simultaneously during a single experi-

ment using multiple spectrometer systems.

4.1 Gas Cell Designs
4.1.1 Early Development

Our first two experiment series (z2084–6, z2090–1) in April and May 2010

fielded the cell design illustrated in Figure 4.1. We label the primary components,

including the central cavity (gray), gas fill ports, Mylar window, tubular optics

shield, and buffer (green), each of which serves the same function as described

for the ACE gas cell in Section 3.2.3. Designed to observe the plasma in emission

and along only one 60-mm LOS, the central cavity is cylindrical. Other differences
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include the thin foil (not shown) separating the central cavity from the buffer; its

aperture is 3 or 4mm in diameter rather than 5mm. The buffer diameter is also

smaller at 40mm, and no additional offset spaces the Mylar from the observed

LOS. The fused silica window (not shown) is not yet tilted. We adhere a BK 7

bi-convex lens (Newport model KBX010AR.14) inside the lens mount (dark blue)

with epoxy in line between the optical fiber and the fused silica window. Figure 4.1

also shows the mounting hardware that secures the assembly to the floor of the Z

vacuum chamber and aligns the gas cell with the vertical plane of the z pinch.

Figure 4.1 Isometric view of the initial gas cell design fielded April and May 2010.

By our third series (z2127–9), we made multiple modifications to the de-
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sign. (1) We tilted the fused silica window so that its normal was not parallel with

the LOS of the optics. This mitigates optical reflections along this LOS that may

complicate our observed signal. (2) We doubled the diameter of the buffer cavity

from 40 to 80mm (see Figure 4.2). A larger cavity allows increased dilution of

scattered light. (3) We inserted thin, black, apertured Delrin R© disks into the buffer

cavity. These disks provide baffling outside their apertures, which are centered

along the optical LOS. Starting with experiment z2127, all following experiments

incorporate the titled fused silica window and larger buffer. We used the Delrin R©

baffles for experiments z2127–9 and z2153. Starting with z2154, we stopped using

them after observing contaminant (non-hydrogen) spectral features in our data and

mistakenly concluding that the source was the Delrin R©. We did not resume using

these baffles until z2365.

In the measured emission data from the first two experiment series, we ob-

served a drastic brightening of the signal to occur relatively late in time. (Recall

that our data are time-resolved.) We attributed this to an ionization wave propagat-

ing from the Mylar, having been ionized from the z-pinch x-rays, and intersecting

our observed LOS. To extend the lifetime of each experiment, (4) we modified the

gas cell hardware to extend the distance of the Mylar window 30mm closer to the z

pinch and hence 30mm farther from our observed LOS (starting with z2128), as we

show in Figure 4.2. Before this modification, theMylar window resided only 20mm

in front of the gold wall. The figure also points out a window cover, which we used

for a few experiment series to minimize the chance of the Mylar window getting

ruptured during the installation of the cell assembly into the Z vacuum chamber.
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Figure 4.2 Isometric view of the modified gas cell design fielded July 2010.

We discuss the KF flange connected to the end of the optics shield in Section 4.1.4.

At this point, the gas cell has two lines of sight from which to observe the

plasma. We couple an optical fiber to each lens mount but only use one to collect

emitted light from the experiment and send to a spectrometer system. The other

fiber projects laser light through the cell cavity. With the two fibers co-aligned,

our collection LOS not only observes the plasma but also the laser simultaneously.

We initially used this technique to confirm the lifetime of our optics. If the laser

disappears from view at some time during the streak record, we may interpret that as
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the fused silica window becoming opaque, optics becoming misaligned, apertures

collapsing or closing off, or other scenarios. This was the configuration for the

first two experiment series. Having confirmed the longevity of our observation, for

z2127–9 and z2153–5 we removed the second optical fiber and replaced it with

a “cave” – a tubular, black, rubber cavity (light trap) into which our collection

LOS observes in order to minimize the background signal of our plasma emission

measurement. Measuring no effect, we abandoned the “cave” after the January

2011 experiment series.

For the last experiment of the January 2011 series, z2155, we increased the

diameter of the apertures in the thin foils partitioning the buffer from the central

cavity from 3 or 4mm to 6mm. We did this to test the hypothesis that contaminant

spectral features observed in our data originated from material ablating from these

apertures and interloping our LOS. We used these larger diameter apertures through

experiment z2270.

Experiment z2176 fielded a gas cell shortened from 60 to 30mm. By ob-

serving weaker emission lines (using the same initial conditions) we confirmed that

the emission came from the central cavity. Observing lines of equal strength means

that the length of the central cavity makes no difference, which implies that the ob-

served emission comes from elsewhere, such as from the buffer cavity or from the

aperture between the buffer and the central cavity. This experiment also suggested

that, by using a longer cell, we would increase our observed signal, which is critical

for measuring higher n lines that are intrinsically weaker. Fielding a longer cell

would require modifications to the load hardware (see Section 4.2) in addition to
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our gas cell hardware.

The next series continued these modifications to field gas cells with three

different lengths: z2218 at 60mm, z2219 at 30mm, z2220 again at 60mm, and

z2221–2 at 120mm. Now needing to observe a longer LOS, we switched the lens

coupled to the optical fiber to one with a longer effective focal length (Newport

model KBX013AR.14) to achieve better collimation for our lines of sight.

The emission lines we observed using the “long” gas cell became more in-

tense. The S/N of the higher n lines, however, still was not sufficient for our sci-

entific goal: to measure the relative line shapes of hydrogen Balmer lines. Thus,

a strategy emerged to use a gold wall as a back-lighting surface and observe the

hydrogen in absorption.

4.1.2 Intermediate Development and Alternate Designs

The August 2011 series (z2242–4) introduced the “Transmission” gas cell

design (Figure 4.3). It features a gold-coated back-lighting surface (not shown)

inside the central cavity. This surface is angled so that it is visible to a horizontal

LOS, a vertical LOS, and the z-pinch x-rays. The x-rays heat this surface just as they

heat the gold wall at the back end of the cell cavity, creating a bright, continuum

back-lighter useful for absorption measurements across a broad wavelength range.

The “Transmission” gas cell was our first design to use two spectrometer systems

to make two measurements during a single experiment (see Section 4.2), doing so

in the last experiment series of 2011 (z2267–70). The cell uses the “long” gas cell

size so that the plasma LOS is nominally 120mm. z2269 fielded an intermediate
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length cell with a plasma LOS ∼ 70mm.

Figure 4.3 Isometric view of the “Transmission” gas cell design fielded August and
November 2011.

Starting with z2267, we implemented some additional hardware external to
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the gas cell assembly. We placed two limiting apertures at∼ 43 and∼ 58mm away

from the z-pinch axis and along the LOS to the cell. These apertures have rectan-

gular holes. They serve us by attenuating radiation re-emitted from sources other

than the z pinch (that become heated by the z pinch). This enhances experiment-

to-experiment reproducibility of the radiation incident on the cell by ensuring that

z-pinch radiation dominates. It does not, however, mitigate penumbra effects (e.g.,

Dawson et al. 1984; Wang et al. 2002) due to the finite size of the z pinch and aper-

ture holes nor shape the intensity of the incident radiation to a uniform distribution

across the length of the cell. A flattening filter may be used for this, but due to the

time-dependent radius and emitted power of the pinch, its precise design may not

be straightforward. We leave it for future work to investigate the dependence of the

heating of the gold in the central cavity (and hence plasma formation) on the spatial

distribution of the z-pinch radiation incident on the gas cell. Given those results,

one may use a 3D view factor code such as VISRAD (MacFarlane 2003) with the

z-pinch model from Loisel et al. (2014) to optimize a design for a flattening filter.

The two February 2012 experiment series unveiled two new designs, which

we name “Dual Distance” and “Dual Length” in Table 4.1. The “Dual Distance”

gas cell (Figure 4.4) boasts multiple configurations that allow two anti-parallel,

horizontal lines of sight to observe the plasma at different distances from the gold

wall. The “Dual Length” design (Figure 4.5) also has two anti-parallel, horizontal

lines of sight but at the same distance from the gold wall. A triangular gold-coated

wedge sits in the central cavity of the cell, forbidding the two lines of sight from

meeting, and it is off-center so that each LOS traverses a different length.
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Figure 4.4 Isometric cross-section view of the “Dual Distance” gas cell design
fielded February 2012. The apertures in the foils separating the central cavity from
the buffer cavities allow lines of sight to observe different distances away from the
gold wall.

For experiments z2298–302, we modified the interior of the central cavity,

making it rectangular as illustrated in Figures 3.2, 4.4, and 4.5. Before z2298, the

central cavity was cylindrical. A cylindrical cavity has only one preferred line of

sight – in the center (zero radius). The rectangular cavity provides the flexibility

to vertically translate a LOS (within some range) while observing the same nomi-

nal plasma conditions. Experiments z2308–10 fielded “Dual Distance” and “Dual

Length” cells with cylindrical cavities, but all since (of any design) have rectangular
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Figure 4.5 Isometric cross-section view of the “Dual Length” gas cell design fielded
February 2012. The gold wedge back-lighting surface splits the central cavity into
two unequal volumes, allowing two lines of sight to observe different lengths of
plasma.

cavities.

Before the June 2012 experiment series, we modified the “fiber couple”

(pink component in Figures 4.4 and 4.5) and “lens mount” (light gray component)

hardware components so that the two couple together with a relatively fine thread.

We use these for z2363 and all following experiments. Set screws fasten the optical

fiber to the “fiber couple”, and epoxy adheres the lens onto the “lens mount”. To

collimate the optic, we adjust the distance between the end of the optical fiber and
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the lens. Before the threaded design, this adjustment was coarse as it only relied

upon our ability to slide the cylindrical “fiber couple” within the “lens mount” along

the direction of the optical LOS to optimize the position. The threaded components

allow for fine adjustment of this collimation. Figure 3.5 shows a closer view of this

optical setup.

The June 2012 experiment series (z2363–7) unveiled yet another cell de-

sign – a combination of the “Transmission” gas cell and the previous one used for

emission measurements. We refer to this design as the “TEA” configuration, which

stands for: Transmission–Emission–Absorption. This gas cell allows three lines of

sight to record data. As designed, the “TEA” configuration suffers some shortfalls,

which we now address.

4.1.3 Matured Development

For the next experiment series (z2388–9), we modified the “TEA” configu-

ration gas cell to correct its shortfalls. We name this improved design the “ACE”

configuration (Figure 3.4) not only to shed vestiges of its fallen progenitor but

also to be more descriptive of the three lines of sight that define it: Absorption–

Continuum–Emission. Both designs consist of slightly-angled, intersecting, hori-

zontal lines of sight with which to observe the plasma in emission and absorption.

As illustrated in Figure 4.6, the “TEA” configuration (top) exposes its apertures (in

polyhedral blocks and not in thin foils) to the z-pinch x-rays while the apertures in

the “ACE” configuration (bottom) are not visible to the x-rays, residing wide of the

Mylar window and perpendicular to the observing lines of sight. The back-lighting
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surface remains exposed. As discovered during the June 2012 experiment series,

leaving the apertures exposed allows them to heat up from the incident x-rays, and

the re-emission of the hot apertures interlopes our lines of sight, overwhelming our

measurements with foreground and background continuum signal. For this same

reason the “Dual Distance” design, too, is fundamentally flawed.

Also to mitigate undesired emission from the apertures and provide a larger

tolerance, we modified these apertures again, settling at 5mm in diameter. We use

this size diameter since.

The ACE design incorporates the feature of the “Dual Length” cell that

allows the horizontal (emission and absorption) lines of sight to observe at different

distances from the gold wall. Unlike the “Dual Length” cell, though, the ACE cell

cannot observe two different distances with two lines of sight simultaneously. Both

horizontal lines of sight observe one of three positions: 5, 10, or 15mm away from

the gold wall. We illustrate how each of these positions probe our experimental

plasma in Section 6.1.2.

Starting with z2389 we decreased the thickness of the gold coating of the

interior components of the central cavity from 25 to 5µm in order to decrease hard-

ware expenses. Also to decrease expenses and because it serves no function now

that they are shielded from the x-rays, from z2409 and on we abandoned coating

the thin foils (with the apertures) with gold, leaving them as bare aluminum.

The September 2012 experiment series sawminor modifications to optimize

the “ACE” configuration gas cell. We changed the lens coupled to the optical fiber

100



Figure 4.6 Front-view drawings of the central cavity for the “TEA” configuration
gas cell (top) and the “ACE” configuration gas cell (bottom). For the former design,
the apertures are exposed to the z-pinch x-rays.

to an achromatic doublet lens (Thorlabs model AC060-010-A-ML; shown in Fig-

ure 3.5) to reduce chromatic aberration across our observed spectral range. These

lenses are also mounted inside a threaded hardware. We modified the “lens mount”
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to couple with this thread. Not only is this more convenient than adhering an un-

mounted lens to the “lens mount” using epoxy, it prevents damage to the lens that

may occur during handling, such as leaving residue on the lens, and it makes the

optical fiber assemblies more uniform.

We implemented a 3-mm diameter limiting aperture (Figure 3.5) between

the lens and the fused silica window. This reduces the size of our collection beam,

granting more clearance of the aperture in the (now aluminum) thin foil between the

buffer and central cavity. Combined with beam profiler measurements, the 3-mm

limiting apertures make the collection beams of the optical fiber assemblies more

uniform and more easily characterized, and characterizing the collection optics is

an essential component of the calibration of our measurements (see Section 5.3).

We also revived the “cave” for the emission LOS by adhering a short (∼

2 cm),∼ 1-cm diameter, black, rubber tube on the inside buffer wall opposite of the

emission LOS at the end of its LOS. We used these tubular baffles for experiments

z2409–13 but removed them for the March 2013 series (z2482–4) and on because

they interfered with our calibration procedure.

4.1.4 Protecting the Gas Cell Fibers

A ∼ 4-mm thick tubular, stainless steel shield protects the fused silica win-

dow, lens, and optical fiber end for each LOS where the fiber assembly couples to

the gas cell. Its first function is to prevent x-rays from denaturing any of the op-

tical components throughout the duration of the experiment (< 0.5 µs). This may

include radiation-induced attenuation (e.g., Weiss 1992) or emission inside the op-
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tical fiber. Its second function is to fend off debris from the z pinch (which arrives

tens to hundreds of µs after the radiation and after our streak record) in the hope

of preserving hardware for another experiment. With the debris, soot fills the gas

cell cavities and cakes onto the inside surface of the fused silica window. We dis-

pose of the window after each experiment but typically reuse the remaining optical

components.

The optics shield is of finite length. Hence, the gas cell fiber extends beyond

the jurisdiction of the shield, running ∼ 1m away from the z-pinch axis to a port

in the wall of the chamber where its connects to the feed-through fiber (see Section

5.1). For this portion of the fiber, we need a solution to continue the functions of

the optics shield while being sufficiently flexible to form to the path of the fiber to

the feed-through port. Over the course of our experiments, we have implemented

various strategies.

We first used bicycle brake cable housing (Jagwire part #90Y0026), which

has coil-wound steel beneath its plastic liner. The inner diameter is perfectly sized

to feed through the optical fiber once the fiber is stripped to its 125-µm plastic

buffer. Though novel, fabricating gas cell fibers this way is tedious and time-

consuming when several fibers are needed.

We next fed optical fibers through 3
4 -inch diameter stainless steel flexible

vacuum roughing hose, saving the hassle of stripping fibers. The hose connects to

the optics shield via a KF flange (Figures 4.2 and 4.3). Though the KF connection is

convenient and the tubing sturdy, the assembly becomes awkward and cumbersome;

the short length of fiber that extends past the end of the tubing is especially fragile
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and prone to kinking.

Following the idea of the vacuum hose, we attempted a tin-plated copper

grounding braid (McMaster-Carr part #6949K62) to encase the fiber like a sleeve.

It is lighter, more flexible, and adjustable in length. It is also more difficult to feed

optical fiber through this sleeve.

When procuring a type of shield for the fiber, one must consider the invest-

ment of resources. The requirement of flexibility inherently makes this shielding

physically weaker than the rigid optics shield. This means it is more vulnerable

to larger particles of debris or shrapnel that may strike our gas cell assembly on

occasion. Though rare, we indeed witness punctured or even severed gas cell fibers

reinforced with any of the types of shielding discussed. When this occurs, we ques-

tion the investment and consider wholly foregoing shielding. Before committing

such a rash rebuttal, we need an investigation of the radiation effects specific to our

z-pinch environment on our collection optics, in particular the effects of transverse

x-rays on our optical fibers.

4.2 Additional Notes on the Evolution of the Experiment

Starting with the January 2011 experiment series (z2153–5), the Marx gen-

erator charge voltage of the Z accelerator was increased from 80 to 85 kV as directed

by the primary ZAPP experiment investigating the opacity of iron at the conditions

of the solar interior (Bailey et al. 2007, 2009; Nagayama et al. 2012a, 2014a,b). In-

creased charge voltage leads to increased current through the wire array load which

increases the ultimate x-ray yield.
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For the experiments z2153–5 we filled the gas cells with helium rather than

hydrogen to investigate the feasibility of exploring this composition in future work

(Section 7.5.3; Falcon et al. 2013b). Similarly, experiment z2590 used carbon diox-

ide as the gas fill.

In the June 2011 series (z2218–22), we modified the current return canister

of the load hardware to have nine slots instead of eighteen. This time it was our

experiment that prompted a modification that affected all the ZAPP experiments. In

this design, each slot is wider, allowing a broader x-ray LOS to escape the z-pinch

dynamic hohlraum. This change coincided with and allowed for the implementation

of our “long” (120mm) gas cell design.

In the autumn of 2011, we moved the location of our spectrometer sys-

tem from the floor below the Z accelerator, where the laser-triggered gas switches

(Lechien et al. 2008, 2010) are operated and maintained, to the Laser Target Bay,

one of the buildings housing the Z-Beamlet laser (Rambo et al. 2005). This permit-

ted the space to incorporate an additional, duplicate spectrometer system, and then

eventually a third system. Taken at face value, this increases our data acquisition by

two- and three-fold. Upon implementing calibrations (see Section 5.3), however,

it also increases the richness of our data set by providing powerful constraints to

diagnose our plasma.

4.3 Summary

We elaborate on the development of our experimental platform to create

hydrogen plasmas at white dwarf photospheric conditions, focusing on the gas cell
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design. The gas cell evolves from observing the plasma in emission to observing

it in absorption, significantly increasing the S/N of our data and allowing us to

measure higher n lines. The cell also evolves from observing one to two to three

lines of sight simultaneously during one pulsed power shot experiment, broadening

our diagnostic capabilities.
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Chapter 5

Data Acquisition, Processing, and Calibration

Phew. Gas cell is installed into the vacuum chamber. Lid’s on. They’re

pumping down. Schedule’s looking good. We have time for lunch (not guaranteed

on shot days). How about a little levity? Something to spell my flow (Csikszent-

mihalyi 1991) for a short while before we get back to the final shot preparations.

Nothing heavy.

Ah. Just this walk to the cafeteria is nice. I lift my face toward the sun,

let the crisp, dry air imbibe my stress through my skin. Then turn to observe the

three of us. We form quite the ambulatory spectacle. Well, I think so at least. It’s

no Reservoir Dogs. It’s no “the walk”. But we’re in a line. Greg’s tall, built like

a linebacker. Don’s optimism puts a slight skip in his step, almost an equestrian

trot. And me – I feel the ambivalence in my gait as it struggles to assimilate the

mannerisms of either mentor. I feel the antiphony. It’s like a puppy dog darting

back and forth between two people playing catch. I can only wonder if it’s visible

to others. And silly-looking.

We collect our food and sit down at a table. Greg starts up the conversation.

“I’m concerned that we’re not making enough progress. We get together for shots
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and do a lot of work for that week. But then we step away and don’t do much ’til

the next shot series. Too much starting and stopping.”

So much for something light.

“Yes, I agree.” Don agrees.

“So I’ve been looking to hire a post-doc. Someone to be here at the lab

full-time and focus on this project. I maybe had one candidate, but it fell through,

and I haven’t been able to find anyone else.”

I’m listening, nodding.

Don lifts his chin, lifts his eyebrows even more, looks at Greg in a manner

that conveys cahoots, “What about a grad student?”

My teeth suspend their incision into my cheeseburger, my nose settling di-

rectly above the warmth of the sesame bun. Don’s suggesting. . .

“Not just any grad student,” smiles Greg. He turns his head, squares up to

address me. “Well, what do you think about coming in as a full-time intern?”

Um.

He continues. “That’s what I did. That’s how I finished up my grad school.”

“I completely support it if you want to do that, Ross.” Don’s sold.

Um.

“I think we can make a lot of progress – if you’re up for it.”

“Um. . .move here?”
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That evening I call up my best friend in Albuquerque, the guy with whom

I hang out when I’m in town for experiments, a guy who also works at Sandia, a

guy to whom Greg introduced me. “Hey, Nate. If I move to Albuquerque in, like, a

couple weeks or sooner, can I live with you?”

The Z Pulsed Power Facility at Sandia National Laboratories employs a

number of instruments to diagnose its range of experiments (e.g., Spielman et al.

1997; Sanford et al. 1997; Chandler et al. 1999; Spielman et al. 1999; Nash et al.

2001; Lake et al. 2004; Jones et al. 2006b; Ives et al. 2006; Sinars et al. 2011;

Gomez et al. 2012). In our experiment, the primary diagnostic instrument we use is

streaked visible spectroscopy (SVS). This chapter describes how we acquire time-

resolved spectra using this diagnostic and process the data. We apply calibrations

to measure absolute spectral radiance with our spectrometer systems (e.g., Dunham

et al. 2004; Johnston et al. 2012), which aides us to measure spectral line profiles

and constrain atomic energy level populations corresponding to those lines. It also

allows us to implement optical pyrometric techniques (e.g., Foley 1970; Lyzenga

& Ahrens 1979; Partouche-Sebban et al. 2002; Miller et al. 2007) to measure the

Planckian temperature of the back-lighting surface in our gas cell used for spectral

absorption measurements. Aside from absolute spectral radiance, our calibrations

include correcting for the relative instrumental efficiency across wavelength, which

is critical for transmission measurements (e.g., Bailey et al. 2009) as well as for

studying line shapes (e.g., Wiese et al. 1972).
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5.1 Collecting Light from the Experiment

Lens-coupled optical fibers attached to the gas cell assembly collect light

emitted from the experiment and deliver it to time-resolved spectrometer systems.

We use three systems, but here we focus our description on the first two. Each of

these two consists of identical components.

A series of four optical fibers (three connections) link each line of sight

(LOS) to its spectrometer. The first connects the gas cell to a vacuum feed-through

port that interfaces between the vacuum chamber containing the ZAPP experiments

(Rochau et al. 2014) and the LOS 110 diagnostic boat. This diagnostic boat is one

of nine alcoves concentrically located immediately outside the vacuum chamber,

smaller than the vacuum chamber, designated according to the azimuthal position

with respect to other diagnostic radial lines of sight, and aptly named because they

reside below the water level of the Z water section (see, e.g., Stygar et al. 2007).

The feed-through fiber connects to a long (∼ 41m) transit fiber that leads out of

the Z Facility high bay and into an adjacent building where the SVS diagnostic

resides. This transit fiber finally connects to an optical fiber positioned at the input

of the spectrometer. For optimal transmission at blue wavelengths, all optical fibers

are high-OH silica core/clad step-index multimode fibers. The numerical aperture

is 0.22 ± 0.02. All fibers also have a 100-µm core diameter to match the core

diameter of the gas cell fiber. We choose its core diameter to function with the

optics characterizing the LOS collection beam (Figure 3.5; Section 5.3.3).

The spectrometer is a 1-m focal length, f /7 aperture Czerny-Turner de-

sign (McPherson, Inc. model 2061). We use 150 groove mm−1 gratings in order
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Figure 5.1 Schematic of the light travel path from the experiment through a series of
optical fibers, the spectrometer, and the streak camera before depositing onto film
for a single line of sight.

to capture a broad wavelength range. The streak camera (EG&G model L-CA-

24; Olsen 1989), which includes an S20 multi-alkali photocathode (e.g., Varma
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Figure 5.2 Schematic of the streaked visible spectroscopy diagnostic showing
optical-fiber (red) and coaxial (black) connections. We list the details of the num-
bered components in Table 5.1
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& Ghosh 1973; Hallensleben et al. 2000) and a P20 phosphor on an optical fiber

output window, sweeps the spectrum over ∼ 450 ns with ∼ 1–2 ns temporal res-

olution. A micro-channel plate intensifier (MCP; Ladislas Wiza 1979) amplifies

the phosphor emittance exiting the camera, outputting to Kodak T-MAX 400 film.

The entrance to each spectrometer is conveniently fiber-coupled and has a two-lens

(Newport model APAC12, Thorlabs model AC254-050-A-ML) optical setup to op-

timize the fiber input to the numerical aperture of the spectrometer (e.g., Johnston

et al. 2010). We use a 100-µm entrance slit. Figure 5.1 shows a schematic illustrat-

ing the path the light from the experiment travels to the film for a single LOS. We

discuss the series of optical fibers as well as the optical setup at the end of the gas

cell fiber observing the experimental plasma in Section 5.3.2. This SVS diagnostic

setup is similar to that used in previous work at Z (Bailey et al. 1990, 1997, 2000;

Dunham et al. 2004; Bailey et al. 2008; Falcon et al. 2010a, 2013a; Gomez et al.

2014a). Figure 5.2 further illustrates the SVS components, and Table 5.1 provides

the details.

5.2 Reduction and Processing

Our time-resolved spectrum, or streak image, starts its life on T-MAX 400

film. A Perkin-Elmer microdensitometer digitizes the film data, and we convert the

film density to units of radiant exposure (erg cm−2) using a NIST-calibrated step

wedge filter (see, e.g., Bland-Hawthorn et al. 1993; Knapp et al. 2012). We then

translate the two position axes of the image into time and wavelength.
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Table 5.1. Streaked Visible Spectroscopy Diagnostic Components

Number SVS Component Vendor Model

1 O/E Converter Highland Technology J730-1 Fiberoptic-to-Electrical
Converter, 21A730.1B

2a Master Delay Generator Stanford Research Systems DG535 Digital Delay Generator
2b 1 Camera Delay Generator – –
2c 2 – – –
3a Impulse Generator NSTec H-OE-51 Time/Mark Impulse

Generator 13
3b Comb Generator – –
4a Optical Fiber Splitter Thorlabs FCMM50-50A
4b – – –
4c – – –
5 Oscilloscope Tektronix DPO3054 Mixed Signal

Oscilloscope
6 USB Flash Drive Edge Tech DiskGo Classic, 2 GB
7a 1 Spectrometer McPherson, Inc. 2061 1m focal length, f /7

Czerny-Turner Monochromator
7b 2 – – –
8a 1 Streak Camera EG&G L-CA-24 Streak Camera
8b 2 – – –

1 Streak Camera Power Supply EG&G L-PS-36
2 – – –
1 Streak Camera Power Supply EG&G L-ME-5

Monitor
2 – – –

9 Blue Laser Modu-Laser Stellar-Por 457/4.5 Argon Ion
Laser

10 Green Laser CVI Melles Griot 05-LGR-193 Green Cylindrical
Helium Neon Laser

Green Laser Power Supply CVI Melles Griot 05-LPL-903-065 Laboratory
Helium Neon Laser Power Supply

11 Red Laser JDS Uniphase 1122 Helium Neon Laser Head
Red Laser Power Supply – 1202-1 HeNe Laser Power Supply

12 LDLS Energetiq Technology, Inc.
13 Transit Fiber Bundle
14 Chamber Feed-Through
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5.2.1 Applying the Temporal Dispersion

We set the scale of the temporal axis using a stream of equally-spaced laser

pulses (comb) exposed onto the film during the experiment. By measuring the ap-

parent comb spacing as a function of position across the streak image and fitting

a 2nd-order polynomial, we correct for a smoothly and relatively slowly varying

sweep rate. We use a single laser pulse (impulse) as a timing fiducial to establish

the relative time between data recorded with each spectrometer system (SVS1 and

SVS2). Separate units supply the comb and impulse (component numbers 3b and

3a, respectively, in Figure 5.2 and Table 5.1), and we use optical fiber splitters to

deliver the same comb (4c) and impulse (4b) to both spectrometers (7a,b) simulta-

neously.

5.2.2 Applying the Spectral Dispersion

Before setting the spectral axis, we slice the streak image into a sequence

of spectra each integrated over some short (few ns out of the few hundred ns streak

duration) time interval, which we refer to as line-outs. Streaked lasers exposed onto

the film prior to the experiment provide absolute wavelength fiducials throughout

time. Our observed wavelength range encompasses two lasers at 4579 Å (blue;

component 9 in Table 5.1) and 5435 Å (green; component 10). For each line-out,

we use these lasers to measure and apply a linear spectral dispersion. By applying

the dispersion in time steps rather than to the image as a whole, we correct for

subtle warping of the image in the spectral direction. Similarly, by measuring the

comb spacing at a single spectral position2 in Section 5.2.1, we neglect any warping
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corresponding to the temporal direction.

Since the lasers are highly monochromatic (∆λ ∼ 0.02–0.03 Å), we recover

instrumental broadening by measuring the laser profiles, which are best described

as Voigt functions. Using the 150 groove mm−1 grating, the measured Voigt full-

width-at-half-maximum, which we adopt as the instrumental resolution, is ∼ 10 Å.

We approximate this Voigt width as

fV ≈ 0.5346fL +
√

0.2166f 2
L + f 2

G, (5.1)

where fL and fG are the full-widths-at-half-maxima of Lorentzian and Gaussian

profiles, respectively (Olivero 1977).

5.2.3 Correcting for Transit Time Delay

Following the results of Cochrane et al. (2001), we correct our data for the

wavelength-dependent optical fiber transit time delay given our total measured fiber

length of 55m. This delay manifests as bluer photons exiting a fiber after redder

photons that enter the fiber at the same time. Therefore this correction is crucial for

extracting line-outs that sample a unique time interval.

2The optical fiber(s) delivering the comb (and impulse) enters the spectrometer near its exit slit
so as to pass into the streak camera without encountering the grating. Therefore, technically, a
“spectral” position of the comb has no meaning, but we use this simplified terminology since that
axis becomes the spectral axis.
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5.3 Calibrations

“Greg, absolute calibrations are really hard.”

I’m stuck in my own head, shuffling my thoughts in preparation for our

meeting. He ricochets a response quickly. As if he’s had this one primed for some

time.

“Yeah, absolutely!” Immediately followed by: “Get it?”

My jaw slacks. His grin glistens. Yes, Greg. I get it.

Our data are now a sequence of line-outs in units proportional to spectral

power (erg s−1 Å−1). To properly compare data from SVS1 and SVS2 (and amongst

experiments), we perform additional processing, including correcting for (1) the

wavelength-dependent instrumental efficiency of the SVS system, (2) light attenu-

ation through the optical path from the experiment to the spectrometer, and (3) the

geometry or collection efficiency of the observed LOS in the experimental platform.

We represent this as

L(λ) =
Lun(λ)Einst(λ)

Tlink(λ)AΩ
, (5.2)

where L(λ) is our absolutely-calibrated spectral radiance as a function of wave-

length λ in units of erg s−1 sr−1 cm−2 Å−1, Lun(λ) is the uncalibrated spectrum,

Einst(λ) is the unitless absolute instrumental efficiency of the SVS system, Tlink(λ)
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is the transmission of the transit fiber link, A is the observed area, and Ω is the

observed solid angle.

We divide our calibration procedure into components to achieve suitable

signal-to-noise (S/N) from a continuum light source when needed (see Section

5.3.1), to accommodate the logistics of the experimental setup, which spans! 50m

across two buildings, and, most practically, to coordinate activities within a large,

highly-subscribed facility such as Z. Calibrating components also enables us to eval-

uate which ingredients may limit performance (Section 5.3.4.2). For the component

of our calibration described in Section 5.3.3, we employ a technique to determine

the observed area and observed solid angle of our plasma which we observe along

an extended (∼ 120mm long,∼ 3mm in diameter) line of sight. Our methods may

be applied to a number of experiments performed at the Z Facility using the SVS

diagnostic.

In this section, we follow the specific experiment z2553, for which one line

of sight (LOS) observes the plasma in emission, and the other observes in absorp-

tion using a gold wall, irradiated by x-rays, as a back-lighting source.

5.3.1 Instrumental Efficiency

Multiple components within the spectrometer system attenuate the light and

its spectral shape between entering the fiber-coupled input of the spectrometer and

ultimately recording onto film. To measure this instrumental efficiency, we observe

a continuum light source before it enters the spectrometer and as it appears on

the film having passed through the instrument. The ratio of these spectra is the
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relative instrumental efficiency across wavelength. We then place the data onto an

absolute scale using lasers as absolute power fiducials. After applying this two-part

correction, we have absolute spectral radiance as a function of wavelength at the

spectrometer entrance.

5.3.1.1 Relative Efficiency Versus Wavelength

Our continuum light source is a laser-driven light source (LDLS; Energe-

tiq Technology LDLS EQ-99FC). We choose this light source because its spectral

shape is relatively smooth over our wavelength range of interest and because this

shape is temporally stable (Zhu et al. 2012). Since we make optical fiber connec-

tions to spectrometers and other fibers, our definition for light source includes the

LDLS plus an additional length of optical fiber. The light exits our light source (the

fiber end) at a range of angles up to the maximum angle allowed by its numerical

aperture; we assume that, when connected to the spectrometer (and to the fiber link

in Section 5.3.2) for calibrations, we recreate the mode-filling conditions that exist

during the experiment. Figure 5.3 shows the spectral power (colored diamonds)

measured with an absolutely calibrated power meter (Thorlabs S120VC) by pass-

ing the light source through absolutely calibrated band-pass filters (blue for Oriel;

black for Melles Griot). The vertical lines are the absolute measurement uncertain-

ties. The full-width-at-half-maximum of each filter, whose profiles are nearly (but

not quite) Gaussian, is smaller than the symbol size. We fit the spectrum with a

5th-order polynomial (green curve) to obtain a smooth function with which to di-

vide with the light source spectrum on film later in this section. We use the mean of
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the deviations between measured and fitted values as the uncertainty (dashed, green

curve).

Figure 5.3 Power spectrum of our continuum light source, a laser-driven light source
plus additional optical fiber, measured using absolutely-calibrated band-pass filters
(diamonds). We show absolute measurement uncertainties (vertical lines). The full-
with-at-half-maximum of each filter is smaller than the symbol size. A 5th-order
polynomial fit (solid, green curve) overlays the data. For its uncertainties (dashed,
green curves) we use the mean of the deviations between measured and fitted values.

Now we pass this light source through the spectrometer system (spectrom-

eter plus streak camera) to collect a streaked spectrum on film. We divide the re-

duced image into a sequence of 5-ns line-outs. At each spectral element we define
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Figure 5.4 Wavelength-dependent fractional uncertainty of the measured spectral
power due to the streak determined using the standard deviation of a sequence of
line-outs. The elevating values at the blue boundary are due to low signal levels
because of the decreasing instrumental sensitivity. We omit the spectral regions
containing the lasers and comb. Throughout most of our wavelength range of inter-
est, the spectra remain constant within< 2% for both SVS systems.

the fractional uncertainty due to the streak as

σstreak(λ) =
σP (λ)

〈P (λ)〉
√

N
, (5.3)

where σP (λ) is the standard deviation of the spectral power P at wavelength λ over

N line-outs, and 〈P (λ)〉 is the mean of the spectral power at wavelength λ over

those N line-outs. Figure 5.4 plots σstreak(λ) as a function of wavelength. We find
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that the spectral power, and hence shape, remains constant within < 2% through-

out most of our wavelength range for both SVS systems. We therefore use 〈P (λ)〉

as the wavelength-dependent spectral power of our continuum light source on film

(Figure 5.5). The green curves are these spectra passed through a Butterworth fil-

ter (Butterworth 1930) to remove high-frequency noise; the uncertainties (dashed,

green curves) reflect σstreak(λ).

Figure 5.5 Spectral power as a function of wavelength of our continuum light source
going through SVS1 (blue) and SVS2 (red). We pass the spectrum through a But-
terworth filter (solid, green curves) and show the uncertainties due to the streak
(dashed, green curves). The gaps in each spectrum are the regions containing the
laser fiducials and comb.

To extract the relative instrumental efficiency for each SVS system (Fig-
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Figure 5.6 Relative instrumental efficiency for SVS1 (solid, blue) and SVS2 (solid,
red) with uncertainties (dashed). Each curve is normalized to unity at the blue laser
wavelength (4579 Å).

ure 5.6), we divide this light source spectrum recorded on film by the light source

spectrum measured using the power meter and band-pass filters; we use the filtered

curves and polynomial fit, respectively. Next we place each efficiency curve onto

an absolute scale.

5.3.1.2 Absolute Efficiency Versus Wavelength

We use our two lasers as absolute power fiducials in addition to using them

as wavelength fiducials. Like we do for the continuum light source, we make power
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measurements of the lasers before they enter the spectrometer using an absolutely-

calibrated power meter. Then we pass the lasers through the spectrometer system,

recording the light onto film. As we mention in Section 5.2.2, we recover instru-

mental broadening by measuring the laser profiles from the line-outs we extract

from the streak data. We integrate these profiles over wavelength to get the laser

energy on the film at this time in the streak. By dividing the laser energy we mea-

sure before it enters the spectrometer (measured power multiplied by the duration

of time integration) by this energy on film, we get the scaling factor to absolute

units. This maps how energy on the film translates to energy as it enters the SVS

system.

Since we measure precise integrations of the laser profiles, we avoid am-

biguous determinations due to the changing signal in time from the experimental

data, such as the back-lighter continuum, by performing this measurement on dif-

ferent film than the experimental film. Figure 5.7 plots our determined absolute

scaling factors through time, as an example, for the green laser passed through

SVS2. This includes four exposures on different film each time (different colors).

The absolute scale of the time axis is arbitrary; we only require the relative scale for

this exercise. For individual trials we find no significant trend throughout the streak;

the standard deviations are similar with a mean standard deviation of 4.8% of each

respective mean. Between films, however, we can see systematic shifts such that the

standard deviation of the means is 8.6%. We find similar results for the other cases

(i.e., blue and green lasers through SVS1 and blue laser through SVS2). Despite

these shifts, we find agreement between absolute scaling factors determined using
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Figure 5.7 Examples of absolute scaling factors determined from lasers recorded
onto film prior to the experiment. Different colors correspond to different film
exposures. Individual trials show similar stability throughout the time of the streak;
the mean of the standard deviations is 4.8% of the respective means. Different film
exposures, however, may show systematic trends.

the experimental film and the film exposed prior to the experiment. Therefore we

attribute the shifts to a random uncertainty potentially due to the film processing or

a streak camera voltage instability.

We use the mean of these measurements over all films as our absolute scal-

ing factor for each laser with the standard deviation as the uncertainty. Dividing

these absolute scaling factors from each laser, weighted by their uncertainties, by
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Figure 5.8 Absolute scaling factor curves for experiment z2553 for SVS1 (solid,
blue) and for SVS2 (solid, red) with uncertainties (dashed). The difference in scale
between the two curves is due to the different MCP gain voltages used for each
spectrometer system.

the relative instrumental efficiency from Section 5.3.1.1 gives us an absolute scal-

ing factor curve or absolute instrumental efficiency, Einst(λ). Multiplying the data

by Einst(λ) thus gives us the wavelength-dependent absolute spectral energy as it

enters the spectrometer. Figure 5.8 shows the absolute scaling factor curves for ex-

periment z2553 for SVS1 (solid, blue) and for SVS2 (solid, red) at the spectrometer

settings we use during the experiment (i.e., grating position, MCP gain voltage, et

cetera). The dashed curves are the uncertainties. Since we measure the lasers (dia-
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monds) independently from the relative efficiency determination, the corresponding

absolute scaling factors provide additional validation of the relative shapes of the

curves. We plot the two curves on different vertical scales. Since SVS1 observes

our plasma in emission, the incoming signal is intrinsically lower than that of the

absorption LOS, so we use a higher MCP gain voltage which results in a decreased

Einst(λ).

5.3.2 Light Attenuation During Optical Path from the Experiment

Continuing to move out from the spectrometer system and toward the gas

cell, the next step corrects for light attenuation through the optical path from the

experiment to the spectrometer. Light exits the gas cell by passing through the

gas cell fiber (∼ 2.2m). This includes a fused silica window (Newport model

05QW40-30), a 3-mm diameter limiting aperture, and an achromatic doublet lens

(Thorlabs model AC060-010-A-ML). Figure 3.5 illustrates this optical setup. The

gas cell fiber couples to three other optical fibers in series – a vacuum chamber

feed-through fiber (∼ 5.1m), a long (∼ 41m) transit fiber, and a spectrometer input

fiber (∼ 6.7m), as shown in Figure 5.1.

We determine the absolute spectral transmission of this fiber link by measur-

ing the ratio of the spectral powers of our continuum light source passing through

the entire link and through the light source only. We use a small, concave grating

spectrometer (StellarNet Inc. BLACK-Comet-HR) to measure this; since we want

to recover a ratio, it is not necessary that this spectrometer be relatively calibrated

across wavelength nor absolutely calibrated as the instrumental efficiency will can-
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cel out. When measuring the light passing through the fiber link, we capture the

entire emergent beam. This is a critical point for Section 5.3.3.

Figure 5.9 Measured absolute spectral transmission for an optical fiber coupler
(solid) with absolute uncertainty (dashed). We remove high-frequency noise us-
ing a Butterworth filter (green curve). As an independent measure of wavelength-
dependent transmission, we also determine transmissions of three lasers using a
power meter (colored diamonds). It is necessary to account for the transmission of
this component when determining the transmission of the transit fiber link.

This ratio, however, does not yet quite recover the attenuation of the fiber

link for which we need to correct for our experiment. It includes the attenuation due

to one too many ST R©-female/ST R©-female optical fiber couplers (e.g., Pasternack

model PE900002), which comes from connecting our light source to the fiber link.
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We measure the spectral transmission of a single coupler using this same “ratio”

technique. The two configurations are (a) light source plus optical fiber and (b)

light source plus two optical fibers, where the combined length of the two fibers in

the latter configuration equals the length of the single fiber in the former. Therefore

the only component that differs between the configurations is a single coupler. Fig-

ure 5.9 plots our measured spectral transmission for an optical fiber coupler. The

green curve is the measured transmission passed through a Butterworth filter. As an

independent check, we also include transmissions determined for three lasers each

passed through the fiber configurations and measured with a power meter. Not only

is it important to account for the transmission of this component for the sake of an

ultimate absolute radiance level, but Figure 5.9 reveals a measurable dependence

on wavelength.

The throughput of couplers depends on the mating surfaces between fiber

ends. We ensure the ends are polished and perform wipes during disconnects since

anything causing gaps of even a few µm will result in transmission losses (e.g.,

Wagner & Sandahl 1982; Tomita 1982; van Etten et al. 1985). The best practice is

to minimize disconnects and junctions. Our transmission measurements may also

depend upon the specific optical fiber used, particularly on the concentricity of the

fiber core with respect to the cladding, buffer, and jacket. Since all the fiber we

use throughout our experiment originates from the same batch, we neglect any such

dependence. We assume our measurement is characteristic for any coupler within

our system and remove its contribution to attenuation (transmission) before arriving

at Figure 5.10. This plots the spectral transmission, Tlink(λ), for the transit fiber link

129



Figure 5.10 Measured absolute spectral transmissions for the transit fiber link going
to SVS1 (solid, blue) and to SVS2 (solid, red) with their corresponding uncertain-
ties (vertical lines). We remove high-frequency noise using a Butterworth filtering
technique and plot the resulting (green) curves.

going to each SVS system (colored curves) with the corresponding uncertainties

(vertical lines). This uncertainty includes an estimate of that due to disconnecting

and reconnecting fibers (3 %; Dunham et al. 2004) since one connection (transit

fiber to chamber feed-through fiber) is broken between calibration measurements

and gas cell installation into the Z chamber. This estimate may encompass the

variability of the gap distance between fiber ends inside the coupler. The green

curves are, again, the measured transmissions passed through a Butterworth filter.
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Dividing the data (after multiplying by the absolute scaling factor curve,

Einst(λ)) by the high-frequency-filtered spectral transmission curve, Tlink(λ), re-

covers the photons lost during the optical path from the experiment.

5.3.3 Geometry

At this point our data are in units of spectral power (erg s−1 Å−1). The final

step converts this to spectral radiance (erg s−1 sr−1 cm−2 Å−1) by dividing by the

emitting source area, A, and by the emitting source solid angle, Ω, that we observe.

To determine these quantities, we must characterize our LOS collection beam.

5.3.3.1 Observed Beam Area

We illuminate the gas cell fiber with broadband light using the light source

described in Section 5.3.1.1, taking care to overfill the acceptance cone of the op-

tical fiber, and image the two-dimensional (2D) beam spot onto a CCD camera

beam profiler (Thorlabs model BC106-VIS). The path the light follows includes

the achromatic doublet lens and the 3-mm diameter limiting aperture. Figure 5.11

plots the azimuthally averaged and normalized beam profile at five distances along

the collection beam LOS for the two gas cell fibers initiating the feed for each SVS

system. Both beams are quite similar. The profile shape changes throughout the

length of the beam, morphing from nearly flat-top (uniform) to nearly Gaussian to

flatter again.

Recall that, in our measurements of the attenuation of the transit fiber link

in Section 5.3.2, we pass the light source through the link and capture the entire
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Figure 5.11 Gas cell fiber collection beam profile (solid curves) and uncertainties
(dashed curves) determined from measured 2D beam spot images. We average over
all azimuths and normalize the profile to its value at zero radius. A broadband light
source illuminates the gas cell fibers corresponding to SVS1 (blue) and SVS2 (red).
We measure the profiles at five LOS distances. We also plot our determined beam
radius (dashed, vertical lines), which captures the entire emergent beam.

emergent beam. This means that our definition of beam area or diameter when

measured with the beam profiler must also capture the entire beam. A Gaussian

width, for example, does not satisfy this definition. We instead define the beam

diameter as the difference between the locations in the wings of the profile that

immediately rise above the noise level, which, in our case using the beam profiler,

are only a few counts above the steady median dark level of three counts. The

dashed, vertical lines in Figure 5.11 show our adopted beam radii. We account for

the spatial sensitivity (the relative sensitivity across the area) of our collection beam

in our determination of the observed solid angle in Section 5.3.3.2.

Figure 5.12 plots our measured beam diameters (colored diamonds) as a

function of LOS distance; the uncertainties (solid, vertical lines) result from aver-

aging the profile over azimuths or, in other words, the eccentricity of the 2D beam

spot. Since the gas cell fiber optics include an achromatic lens as well as a 3-mm
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Figure 5.12 Measured collection beam diameters along the LOS for the gas cell
fibers feeding SVS1 (blue diamonds) and SVS2 (red diamonds). The black diamond
is the 3-mm diameter limiting aperture at the end of the gas cell fiber. The zoomed-
in scale reveals that the subtle changes in beam diameters with LOS distance can
be described with 2nd-order polynomials (dashes, colored curves). We shade the
distances corresponding to the central cavity of the gas cell – where we observe our
experimental plasma – as well as the adjacent buffer cavities.

diameter limiting aperture, we neglect any dependence of the beam diameter on

wavelength. The plot shows the limiting aperture (black diamond). Its uncertainty

comes from the machine tolerance specified in the hardware drawing. A 2nd-order

polynomial (dashed, colored curve) describes how the beam diameter of each gas

cell fiber changes with distance. Over the distances corresponding to our region of
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interest, the central cavity of the gas cell (shaded region), the differences between

the beam diameter extrema are merely 1.9 and 2.2%, for the emission (SVS1) and

absorption (SVS2) lines of sight, respectively. We also illustrate the distances cor-

responding to the gas cell buffers flanking the central cavity.

Using the polynomial fits of the beam diameter as a function of LOS dis-

tance, we can now recover the beam area, A, at any distance along each LOS, as-

suming axial symmetry. Now we must consider the physical source of emitted light

we observe for each LOS. For the emission LOS, the emitted light comes from an

extended volume of plasma inside the central cavity of our gas cell. Throughout the

LOS distance that traverses this observed region (∼ 69–189mm from the lens), the

collection beam area changes very little since the beam is quite nearly collimated.

We therefore approximate a single value and use the mean area throughout this re-

gion, arriving at Aem = 0.0627± 0.0007 cm2, where the uncertainty is the standard

deviation of A. For the absorption LOS, the emitted light predominantly comes

from the back-lighting surface, so we use the beam area corresponding to this dis-

tance (∼ 183mm from the lens), Aabs = 0.0623±0.0005 cm2. For this uncertainty,

we use the mean uncertainty of the beam areas measured at the five different LOS

distances for this gas cell fiber.

5.3.3.2 Observed Solid Angle

Because we know the geometry of the optical setup at the end of the gas cell

fiber (i.e., fiber end numerical aperture and diameter, limiting aperture diameter,

achromatic lens specifications, relative distances of the components) so precisely,
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we can ray-trace (e.g., Spencer & Murty 1962) the angles of emission from a the-

oretical source at any position from the lens such that the emitted ray enters the

fiber within its acceptance cone. Therefore we determine an observed solid angle,

Ω, assuming axial symmetry. Since the collection beam has finite size, we model

two cases: on-axis (Ωon), which centers on the optical axis of the lens, and off-axis

(Ωoff), which perpendicularly extends 1.5mm (the nominal beam radius) from the

LOS axis. Figure 5.13 plots our inferred solid angles as blue diamonds and squares,

respectively. We use a beam area-weighted linear interpolation of these results to

obtain an effective solid angle, Ωeff , for an emitting surface perpendicular to the

LOS axis for a given LOS distance (green triangles). The area-weighting includes

the relative spatial sensitivity apparent in the measured beam profiles (Figure 5.11)

by assuming that these profiles, which describe light emerging from the gas cell

fiber, also describe the collection of light, relative across the beam area, propagat-

ing in the opposite direction. We define our effective solid angle as the integral over

the beam radius, r, such that

Ωeff =
2

R2
max

∫ r=Rmax

r=0

rΩint(r)Y (r)dr. (5.4)

Rmax is the maximum beam radius (dashed, vertical lines in Figure 5.11), Ωint(r)

is the solid angle linearly interpolated between the on-axis and off-axis solid angles

(Ωint = (Ωoff − Ωon)
r

Rmax
+ Ωon), and Y (r)is the area-normalized beam profile:

Y (r) =
φbeam(r)

2
R2

max

∫ r=Rmax

r=0 rφbeam(r)dr
, (5.5)

which uses the (peak-) normalized measured beam profile φbeam(r) from Figure

5.11.
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Figure 5.13 Observed solid angles for an emitting surface perpendicular to the op-
tical axis along the LOS determined by ray-tracing. We use 2nd-order polynomial
fits (dashed curves) to the on-axis (blue diamonds) and off-axis (blue squares) ray-
tracing results to interpolate across the LOS distance. A beam area-weighted linear
interpolation supplies the effective solid angles (green triangles). For clarity we
only plot values for the optical fiber corresponding to SVS1.

As with the observed area, A, to approximate single values we treat the

emission and absorption lines of sight differently. For the emission LOS, we use

the mean Ωeff throughout the observed (emitting) region of the plasma to get Ωem
eff =

(6.87 ± 0.29) × 10−5 sr. The uncertainty has two components added in quadra-

ture: the standard deviation of Ωeff throughout the emitting region and the mean

of the uncertainties at each distance of the 2nd-order polynomial fit to the de-
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termined Ωeff values. The absorption LOS uses Ωeff at the back-lighter distance

and, as the uncertainty, the latter component used for the emission LOS. We get

Ωabs
eff = (7.21 ± 0.19) × 10−5 sr.

5.3.4 Results

We now have fully processed spectra, L(λ), from both spectrometer sys-

tems. Figure 5.14 shows an example of emission data from SVS1 (blue) and absorp-

tion data from SVS2 (red), both produced from a photoionized hydrogen plasma

during experiment z2553 at some particular 20-ns line-out within the streak. Verti-

cal lines show the absolute uncertainties, σ, at selected wavelengths. The continuum

in the SVS2 data is emitted from a gold back-lighter. On the top and bottom panels

we plot the vertical axis of these data on a linear and logarithmic scale, respectively.

5.3.4.1 Validation

In the subsequent experiment, z2554, we configure SVS1 to observe the

same physical area on the back-lighting surface3 as SVS2 but through a minimal

length (∼ few mm) of intervening hydrogen plasma. Therefore, the absolute spec-

tral radiance of the back-lighter emission measured from two independent spec-

trometer systems should agree, especially in the redward spectral regions where

line (bound-bound) absorption and bound-free continuum absorption are minimal.

3Recall that the normal of the back-lighting surface is not parallel to the observing lines of sight
but is twice-angled with respect to two orthogonal planes. This forbids the projected LOS beam
spots from congruently overlapping, but they do indeed overlap for more than half of their projected
areas.
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Figure 5.14 Example 20-ns line-out absolute radiance spectra from SVS1 (blue) and
SVS2 (red) from experiment z2553 of a photoionized hydrogen plasma in emission
and in absorption with a continuum back-lighter, respectively. Vertical lines illus-
trate the uncertainties at selected wavelengths. The gaps in the data are the regions
where the wavelength fiducials and comb reside. The top and bottom panels plot
the data with the vertical axis on a linear and logarithmic scale, respectively.
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We apply our calibrations to the SVS data recorded from z2554. This uses

the same normalized instrumental efficiency (Figure 5.6) as used for z2553 since the

configuration of the SVS system remained undisturbed throughout the experiment

series. The absolute scaling factor curve (Figure 5.8) differs for SVS1 because of

the change in MCP gain voltage (to accommodate the back-lighter emission, which

is much brighter than the hydrogen plasma emission from the previous experiment).

The curve is nominally the same for SVS2, but we perform new measurements

of the laser powers to use as absolute power fiducials. We also repeat the fiber

link transmission measurement (Figure 5.10) after cleaning the fiber ends at the

junctions that are disconnected in the process of installing new hardware between

experiments. We reuse the same gas cell fibers used for z2553. The fiber corre-

sponding to SVS2 observes the same LOS for both experiments, so the observed

area and observed solid angle are both the same. The SVS1 fiber now observes the

back-lighter (instead of the hydrogen plasma in emission) at ∼ 176mm from its

lens, which is similar to the distance at which SVS2 observes (∼ 183mm).

Figure 5.15 plots the absolute radiance spectra, revealing a discrepancy be-

tween the data obtained from each SVS system. Redward of Hβ at 5300 Å, the two

observed back-lighter continua differ by 33.7±12.7% ( |L
SVS2−LSVS1|

〈L〉 ). This may be

due to one or more of the following: (1) we are underestimating our uncertainties,

(2) an additional systematic uncertainty plagues the calibrated data betwen the two

SVS systems, such as a poor optical fiber connection, or (3) the two lines of sight

are not observing the same emission.

Since the components in Equation 5.2 are multiplicative and independent of
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Figure 5.15 Similar to the top panel of Figure 5.14 but for experiment z2554. SVS1
(blue) and SVS2 (red) are absolute radiance spectra observing through a short (∼
7mm) and a long (∼ 114mm) length of absorbing hydrogen plasma, respectively.
At 5300 Å, the spectra differ by 33.7 ± 12.7%.

time, an uncertainty in the calibration means that the fractional discrepancy appar-

ent in Figure 5.15 will apply to all line-outs. If the two lines of sight observe the

same emission, for all times we can match the continua levels from each SVS with

a single scaling factor. Figure 5.16 plots the observed spectral radiance at a par-

ticular wavelength, 5300 Å, throughout time for SVS1 (blue) and SVS2 (red). We

indeed find such a factor that scales the SVS2 data (green) to match those of SVS1.

Performing this exercise at multiple wavelengths covering 4440–4530, 5170–5400,

140



Figure 5.16 Observed spectral radiance at 5300 Å obtained with SVS1 (blue) and
SVS2 (red) from experiment z2554. That these curves differ by a scaling factor
(green) gives evidence that the discrepancy apparent in Figure 5.15 is due to an
uncertainty in the calibration.

and 5470–5630 Å to include shared spectral regions between both SVS spectra that

avoid absorption lines, fiducials, and artifacts, we find a mean scaling factor of

0.711 ± 0.017 where the uncertainty is the standard deviation of the factors found

at different wavelengths.

We are confident that the discrepancy is due to an uncertainty in the calibra-

tion and that the two lines of sight both observe the back-lighter as intended. To

determine whether this uncertainty is random (isolated) or systematic, we turn to
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experiment z2552, which uses the “Dual Length” cell design (see Section 4.1.2) to

simultaneously observe two different lengths of our hydrogen plasma in absorption.

In this geometry, both lines of sight observe a back-lighting surface but a different

one. However, each should be heated the same way from the z-pinch dynamic

hohlraum radiation.

As with z2554, experiment z2552 uses the same normalized instrumental

efficiency. The absolute scaling factor curves are nominally the same as for z2554

and include independent measurements of the laser powers to use as absolute power

fiducials. The fiber link transmission measurements are also independent. We use

different gas cell fibers. The distances of the back-lighting surfaces from the lenses

in the gas cell fibers are ∼ 141 and ∼ 101mm for SVS1 and SVS2, respectively.

We again see the SVS2 spectra at higher levels than those of SVS1; we find a mean

scaling factor of 0.733±0.023. The agreement with that found for experiment z2554

gives evidence that the discrepancy in question is systematic and not random.

Without an independent validation for our absolute calibration, we cannot

say whether or not we are underestimating our uncertainties. We also cannot iden-

tify the source of the vexatious systematic discrepancy nor the scaling factor to

correct our data to the true absolute level. In Section 6.1 we further investigate

strategies to determine this elusive scaling factor.

Setting this unidentified systematic uncertainty aside, we continue on to de-

scribe our random uncertainties under the assumption that they remain independent

and will only scale with the same factor that will correct our data to the true absolute

level.
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Table 5.2. Absolute and Relative Uncertainties of our Calibrated Data

Experiment SVS σ σrel

(%) (%)

z2552 1 5.1 3.6
2 9.0 3.5

z2553 1 7.6 3.9
2 8.2 4.2

z2554 1 5.1 3.7
2 12.1 4.2

z2588 1 12.8 3.7
2 7.5 3.7

5.3.4.2 Uncertainties

The ultimate absolute uncertainties, σ, (vertical lines) plotted in Figures

5.14 and 5.15 result from a propagation throughout all the steps of the calibration

procedure outlined in Equation 5.2. We define the relative uncertainty, σrel, (not

plotted for clarity), or the uncertainty in the shape of our spectra, as that coming

from the normalized instrumental efficiency and the transmission during the transit

from the experiment; the other calibration components contribute uncertainty that

does not depend on wavelength as we determine them.

Table 5.2 lists absolute (σ) and relative (σrel) uncertainties for the calibrated

SVS data from selected experiments. These are averages over wavelength (the same

spectral regions we use in Section 5.3.4.1) and over time (10–210 ns, where 0 ns is

the onset of z-pinch x-rays and back-lighter emission) since the values remain con-

stant over these abscissae. Between instruments and between the experiments we
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Table 5.3. Uncertainty of Each Component of the Calibration Procedure

Experiment SVS σLun σEinst σTlink
σA σΩ

(%) (%) (%) (%) (%)

z2552 1 0.71.3
0.2 2.1 3.2 0.9 3.2

2 0.71.5
0.4 8.4 2.9 0.9 1.0

z2553 1 2.48.5
0.6 5.4 3.5 1.2 2.5

2 0.92.0
0.4 6.6 3.8 0.8 2.6

z2554 1 1.22.3
0.5 3.6 3.2 1.0 0.3

2 0.51.0
0.2 11.2 3.7 0.8 2.6

z2588 1 1.95.8
0.8 1.7 3.3 2.6 11.7

2 0.71.3
0.3 5.0 3.3 0.9 4.3

z2589 1 · · · 1.9 3.2 1.2 2.5
2 1.51.8

0.9 2.2 3.2 0.8 2.6

list in Table 5.2 the absolute uncertainty varies within the ∼ 5–13% range. Again,

this is the random uncertainty excluding the unidentified systematic discrepancy

between SVS systems. The relative uncertainty is consistently∼ 4%.

Table 5.3 lists the uncertainty of each component of the calibration proce-

dure (i.e., Lun, Einst, Tlink, A, and Ω from Equation 5.2) for selected experiments.

As with Table 5.2, the values in Table 5.3 are averages over wavelength. Only σLun

has any dependence on time, which comes from using the comb to set the scale

of the temporal axis (Section 5.2.1). We list the mean along with the minimum

(subscript) and maximum (superscript) values over the 200-ns range. σLun does not

include the uncertainty due to the film processing. As it is, the uncertainties for this

component and for the observed area, A, are the smallest across experiments, and

σTlink
is the most consistent. We note that the Ω component is the only component
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whose uncertainty we determine through modeling as opposed to measurement.

For experiment z2588, σA and σΩ conspicuously differ from those of the

other experiments. The culprit is the particular gas cell fiber we use. It happens to be

the most poorly collimated of the bunch. Furthermore, SVS1 observes the emission

LOS for this experiment. Recall that for the uncertainties in the observed area and

observed solid angle for emission lines of sight, we use the standard deviations of

the inferred A and Ωeff , respectively, throughout the LOS distances. These LOS

distances traverse the entire length of the plasma (Section 5.3.3.2). Consequently,

these uncertainties are relatively large.

5.4 Conclusions

What begins as an ensemble of optical photons generated inside our gas cell

ends up as a collection of calibrated spectra ripe for analysis and physical inter-

pretation. We illustrate the light travel path of photons from the experiment and

detail the processing of our time-resolved data acquired using the Streaked Visible

Spectroscopy diagnostic at Z, emphasizing our calibration methods.

We fall short of validating the accuracy of our absolute calibration, finding a

systematic uncertainty between the data from each SVS system. However, what is

most critical for our purpose of measuring relative line shapes, especially for mea-

suring in absorption or transmission, is the relative calibration across wavelength.

We apply calibrations to our data and determine the uncertainties.
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Chapter 6

Analyzing a Laboratory Experiment

Dark skies. Pristine view of the stars. And Earthward, blackness. I know

somewhere down there – way down there – the Atlantic ripples with memories

long-descended from the historic wakes of the Niña, the Pinta, and the Santa Marı́a.

No. I’m not headed to Spain. Sorry to fake you out. I’m on my way to Poland.

Krakow to be more precise. Time for another installment of the European White

Dwarf Workshop.

I’ll be a day late. Couldn’t miss Emma’s birthday party yesterday. The big

2! Jirod snapped some great photos of her running around the park with all her

toddler friends, dancing around the water sprinkler, opening gifts. And a timeless

one of her kissing me on the cheek. Sweet daughter.

I pull out my laptop, ready to put together slides for my talk later in the

week. I’ve got a nice starting point – the talk I gave three months ago in Tallahassee

for the International Conference on High Energy Density Laboratory Astrophysics.

Okay. . . let’s see here. . . change the date. . . change the name of the confer-

ence. . . and. . . and. . . hmmm. . .
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After nineteen and a half minutes or so (the time it takes to listen to the

first four tracks of Diorama by Silverchair) I decide that I don’t need to add any

new slides. I’ll perhaps hide one, but that’s about it. I’ll essentially show the same

talk I gave in Florida, but the presentation will be utterly different. Because of my

audience. The previous one consisted of experimental physicists, laboratory folk.

This one’ll be astronomers. Yeah yeah, it doesn’t seem like much of a shift, but the

mindset is quite different. The scientific interests are different. The experience and

dynamic of the community are different.

My job with this talk is not only to share the work we’ve been doing and re-

ceive feedback. It’s to inform members of the white dwarf community, particularly

those who study stellar atmospheres, that we are no longer bound by our planet’s

gravity to observe the objects of our interest from afar. We can reach out and ma-

nipulate these objects. We can create extreme astrophysical environments. Here.

On Earth. Address a whole new tome of scientific puzzles in a whole new way.

When I put it like that. . .

I need to rehearse.

The observing lines of sight traversing our gas cell deliver three kinds of

data, from each of which we can use spectral fitting procedures to extract different,

complementary information about our plasma. We preview the three kinds of data

before elaborating throughout this chapter.
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Heated by radiation from the z-pinch dynamic hohlraum, the gold surfaces

within our cell re-emit continuum (Lcont
λ ). As we describe in Chapter 3, the gold

surfaces serve two functions. The first is to form the hydrogen plasma through

photo-ionization. The second (which developed during the evolution of our experi-

ments; see Section 4.1.2) is to provide a back-lighter for absorption measurements.

From these data we measure the emission from our gold, and, assuming it emits

as a Planckian in our observed wavelength range, we extract the temperature, Trad,

describing this radiation that heats the plasma.

Adding in foreground plasma transforms the continuum data into absorp-

tion data (Labs
λ ). As such, all absorption data contain the information of continuum

data, albeit obscured to some degree. This depends upon the kind of absorption.

For our plasma and in our wavelength range, this is mostly line absorption due to

electronic transitions between bound-bound energy levels, and, when the electron

density is high, absorption lines may significantly obfuscate the back-light. Di-

viding the absorption data by their continua yields transmission data. We use the

shapes of transmission lines to extract the electron density, ne, of our plasma. We

also measure the population of the lower electronic energy level, nl, associated with

each line, which, for our case, is from the Balmer series, meaning n = 2 (we use n

to describe both number density and principal quantum number, though we include

a subscript with the former).

Removing the back-light leaves emission (Lem
λ ) from only the plasma itself.

(This implies that the absorption data contain a component of self-emission. We

discuss this in Section 6.2.) These data can also provide us with ne, as well as n2
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and the upper level population nu.

For the scope of this work, we focus on the absorption data and use the

emission data only en route to extracting transmission data for spectral fitting. We

discuss future work utilizing the emission data in Sections 7.5.1 and 7.5.2.

6.1 Back-lighting Continuum

Our initial LASNEX (Zimmerman et al. 1978) simulations of the plasma

formation in the gas cell (Section 3.2.2) opine that the gold, having absorbed z-

pinch x-rays, heats to an electron temperature of a∼ few eV and then cools off with

time. More detailed simulations using, as input, the most up-to-date description of

the z-pinch dynamic hohlraum radiation incident on our gas cell (Loisel et al. 2014)

will better constrain the precise behavior of the gold.

Since gold possesses many electrons, we expect it to emit continua when

sufficiently heated, and indeed we observe continuum emission from our back-

lighting surface (Figures 3.9, 5.14, and 5.15) that decreases with time (Figure 5.16).

Let us assume this gold emission is Planckian in the wavelength range we observe

so that we may fit our measured continua spectra accordingly. The fitting model is:

Lcont
λ = Bλ(Trad)C1 + C2, (6.1)

where Bλ(Trad) is the Planckian emission function at temperature Trad, C1 is a

scaling factor, and C2 is an additional, constant background level. Notice that, with

respect to Chapter 5, we now move the wavelength λ out of the parentheses to the

subscript.
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This fit strongly relies on the accuracy of the absolute calibration. In Section

5.3.4.1 we show that this calibration is suspect and suggest that a scaling factor

exists that will correct our data to the true absolute value. We include C1 in our

fitting model in anticipation of this factor. Similarly we also addC2 for any scenario

in which our measurement deviates from Planckian emission.

6.1.1 Measurements

We inspect the SVS1 data from experiment z2554 which uses the vertical

LOS of the ACE gas cell (Figure 3.4) to observe a back-lighting surface through a

minimal (∼ 7mm) length of hydrogen plasma.

Figure 6.1 plots our continuum fits to 10-ns line-outs beginning at 20, 40,

60, 80, 100, and 120 ns after the onset of x-rays (the z pinch). The solid, black

curves are the spectral regions included in the fitting. We omit the regions where

the laser fiducials and comb reside, and we exclude the Hβ and Hγ absorption lines

(dotted, black curves) from the fit. We show three cases: (A; solid, red curves)

fixing the scaling factor C1 = 1 and the constant C2 = 0; (B; solid, blue curves)

fixing C1 = 1 while allowing the constant C2 (horizontal, dashed, blue lines) to be

a free parameter; and (C; solid, green curves) allowing C1 to be a free parameter

while fixing C2 = 0. Notice that we decrease the scale of the vertical axis with each

row. Also, in successive frames we see the red cut-off (dotted) of each spectrum

pushing redward. This is a manifestation of the circular format of the streak image;

earlier in time corresponds to closer to the edge of the image.

Figure 6.2 shows the best-fit Planckian temperatures, Trad, for the sequence
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Figure 6.1 Continuum fits to selected line-outs of the gold back-lighter emission
obtained with SVS1 from experiment z2554. The three fitting cases are (A; solid,
red curves) solely Planckian emission, (B; solid, blue curves) Planckian emission
with a constant background (horizontal, dashed, blue lines), and (C; solid, green
curves) Planckian emission with a scaling factor. We give the fit parameters in
Figure 6.3
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Figure 6.2 Planckian temperatures, Trad, determined from fitting 10-ns continuum
line-outs measured using SVS1 from experiment z2554. We plot the results from
the fitting cases described in the text, case A (red), case B (blue), and case C (green).

of 10-ns continuum line-outs throughout the streak for fitting case A (red), case B

(blue), and case C (green). The uncertainties (solid, vertical lines) come from fitting

our +σ and −σ absolute uncertainty spectra. We highlight (yellow) the fits plotted

in Figure 6.1.

Case B produces fits with lower χ2
red than case A. The additional constant

background C2, which monotonically increases with time (Figure 6.3), does well to

match the measured emission. However,C2 is negative early in time, crosses zero at
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∼ 80 ns, and asymptotes to a positive value late in time. Assuming the back-lighter

emission is Planckian, the behavior of C2 cannot be explained by, say, scattered

light in the gas cell, which would be positive at all times.

Figure 6.3 Constant C2 values (blue) determined from case B fits and scaling factor
C1 values (green) determined from case C fits to continua measured using SVS1
from experiment z2554.

Since we believe our absolute calibration to be inaccurate by some scaling

factor, case C should reveal this factor. Early in time, though, fits for this case C

fail to converge. In this wavelength range and at these temperatures, the shape of

the continuum is not sufficient to uniquely constrain a Planckian temperature. As

with C2 from case B, C1 monotonically increases with time. We plot these values

153



in Figure 6.3, highlighting (yellow) the fits shown in Figure 6.1. The left and right

axes correspond to the constant C2 and the scaling factor C1 from cases B (blue)

and C (green), respectively.

6.1.2 Revisiting the Simulations of our Plasma Formation

Our LASNEX simulations begin by modeling the z pinch. Its radiation de-

posits energy into the gold wall inside our gas cell cavity. Then the gold re-emits

to heat the hydrogen gas fill. Equipped with measurements of the gold emission,

we can now bypass the first steps in the LASNEX simulations, which depend on

the accuracy of the z-pinch radiation model (Rochau et al. 2008; Loisel et al. 2014)

and of the energy conversion in the gold, and begin a simulation with the radiation

that drives our hydrogen plasma formation. This subsection presents a preliminary

investigation into this simulation primarily to demonstrate this application of the

back-lighter emission measurements but also to further describe the behavior of the

plasma. For this investigation we assume our measured back-lighter emission is

the same as the gold wall emission. We are currently assessing how the hardware

geometry and potential issues with heat transfer within the gold affect this assump-

tion.

We use the one-dimensional radiation-magnetohydrodynamics code Helios-

CR (Macfarlane et al. 2006). The simulation sets up a planar geometry with 20mm

of hydrogen gas, corresponding to the dimensions of our gas cell cavity. For the

initial conditions, we use a static (no bulk motion) gas with a pressure of 10Torr at

room temperature. On one side of the hydrogen (corresponding to the gold wall),
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we irradiate the gas with time-dependent Planckian emission described by our in-

ferred radiation temperatures, Trad, from the SVS1 data from experiment z2554

(Section 6.1.1). This side of the hydrogen is fixed while the opposite side is free

to expand. The simulation does not include the motion of the gold wall, which is

likely to affect the conditions within a few mm of the wall. The code solves Navier-

Stokes, Maxwell’s, and energy conservation equations for separate electron and ion

temperatures in a Lagrangian reference frame. It uses the Spitzer model (Spitzer &

Härm 1953) for the electron thermal conductivity. We choose a multi-angle model

with two angles with which the code computes the radiation transport for multiple

photon energy groups. The collisional-radiative modeling includes collisional pro-

cesses such as collisional ionization, recombination, excitation and de-excitation,

as well as radiative processes such as photoionization, stimulated emission, spon-

taneous decay, radiative recombination, dielectronic recombination, autoionization,

and electron capture. See Macfarlane et al. (2006) for more details about Helios-

CR, including sources for atomic data.

For computational efficiency, we perform the simulation in a mode that de-

termines level populations assuming local thermodynamic equilibrium (LTE) and

uses pre-calculated opacity tables. With more patience the simulation can calculate

populations and opacities in-line (NLTE) and use a detailed configuration account-

ing (e.g., Hansen et al. 2006) for the atomic energy level structure. This is the more

appropriate strategy since our plasma is radiation-driven and therefore will depart

from LTE. We leave NLTE simulations for future investigation.

Figures 6.4, 6.5, and 6.6 plot simulated electron temperature, Te, electron
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Figure 6.4 Helios-CR simulation in LTE mode of electron temperature as a function
of distance from the gold wall and of time. We highlight our three possible LOS
positions: 5 (green), 10 (blue), and 15mm (red) away from the gold wall. Each is
3mm in diameter. Closer to the wall the plasma heats up more quickly and to hotter
temperatures than farther from the wall.

density, ne, and ionization, respectively, as a function of distance from the gold wall

and of time. We highlight the three possible LOS positions available with the ACE

gas cell (Section 4.1.3). These are 5 (green), 10 (blue), and 15mm (red) away from

the gold wall, and each uses our nominal LOS beam diameter of 3mm (Section

5.3.3.1). The plasma is hottest, densest, and most ionized closest to the wall where

it rises to relatively stable conditions within a few tens of ns. Farther from the

wall, the time to reach quasi-stable conditions elongates. The figures also show the
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Figure 6.5 Helios-CR simulation in LTE mode of electron density as a function
of distance from the gold wall and of time. Across space and time the plasma
experiences electron densities ranging an order of magnitude.

plasma slowly expanding beyond its 20-mm initial size.

In Figure 6.7 we look more closely at Te (top panel), ne (middle panel),

and ionization (bottom panel) for distances from the gold wall corresponding to

our 5 (green), 10 (blue), and 15mm (red) observing lines of sight. The dotted,

solid, and dashed lines are the inner, central, and outer distances, respectively, of

the lines of sight where “inner” is closest to the gold wall. This shows the range

of plasma conditions probed by each LOS. At 100 ns, for example, the difference

between Te at the inner and outer boundaries of the LOS are 26, 77, and 35% of Te
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Figure 6.6 Helios-CR simulation in LTE mode of ionization (electron density di-
vided by total particle density) as a function of distance from the gold wall and of
time. The behavior follows from that illustrated Figure 6.4.

at the center of the LOS for the 5, 10, and 15mm positions, respectively. For ne the

corresponding values are 6, 40, and 21%, and for the ionization they are 8, 37, and

21%. Aside from an ionization wave apparent in Figure 6.5, conditions decrease

with increasing distance from the gold wall.
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Figure 6.7 Simulated electron temperature (top panel), electron density (middle
panel), and ionization (bottom panel) for lines of sight that are 5 (green), 10 (blue),
and 15mm (red) away from the gold wall. This shows the range of plasma con-
ditions that span the nominal 3mm diameter of the LOS. In general the conditions
decrease from the boundary closest (dotted) to the gold wall through the central axis
(solid) to farthest (dashed) from the gold wall.
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6.2 Absorption

Our plasma emits because it is hot. Observing it when it is back-lit by

an emission source that is even hotter (brighter) yields absorption spectra. Thus,

absorption spectra contain three components:

Labs
λ = Lcont

λ Tλ + Lem
λ . (6.2)

Lcont
λ describes the back-lighter (Section 6.1). Tλ and Lem

λ both describe our exper-

imental plasma but in different ways. These are separable if on the same relative

scale.

Figure 5.14 shows an example of our simultaneously measured emission

(Lem
λ ) and absorption (Labs

λ ) data, but it does not yet illustrate the relative levels

of the two because of the systematic uncertainty in absolute scaling between data

obtained with each SVS system we discover in Section 5.3.4.1. We find, however,

that for the previous and subsequent experiments, z2552 and z2554, the absolute

levels of the SVS1 data consistently differ from that of the SVS2 data by scaling

factors of 0.711±0.017 and 0.733±0.023, respectively. We assume this systematic

holds throughout this experiment series so that we may correct the SVS1 data from

z2553 to place it on the same relative scale as the SVS2 data. Figure 6.8 shows the

relative levels of emission (blue) and absorption (red) spectra from z2553 once we

apply this scaling for 10-ns line-outs beginning at 50 (solid), 90 (dotted), and 130 ns

(dashed) after the onset of x-rays. For the scaling, we use the mean of the values

from z2552 and z2554, 0.722 ± 0.014. At Hβ the emission is always a significant

fraction of the absorption level. Elsewhere it is not. Notice, though, that as the back-
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Figure 6.8 Spectral radiance line-outs from experiment z2553 acquired with SVS1
(blue) corrected to the same absolute scale as those acquired with SVS2 (red). The
line-outs each span 10 ns and begin at 50 (solid), 90 (dotted), and 130 ns (dashed)
after the onset of x-rays. The plasma emission increases with time as the back-
lighter emission decreases, diminishing the contrast between the two. For clarity,
we omit the uncertainties of the spectral levels.

lighter cools with time (as its emission decreases) the emission from the hydrogen

plasma increases, worsening the contrast between the competing emissions. At

5300 Å, for example, the spectral radiance of the emission data is 2.1±0.2, 3.8±0.3,

and 8.5 ± 0.7% of that of the absorption data at 50, 90, and 130 ns, respectively.

Figure 6.9 shows the emission level at 4500 Å (blue diamonds) and at 5300 Å (red

diamonds) increase with time with respect to the absorption level for the data from
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experiment z2553. We highlight (yellow) the line-outs plotted in Figure 6.8.

Figure 6.9 The emission level at 4500 Å (blue diamonds) and at 5300 Å (red dia-
monds) increases with time as a percentage of the absorption level, diminishing the
contrast between the two and increasing the significance of the emission subtrac-
tion. We highlight (yellow) the line-outs plotted in Figure 6.8.

By making some assumptions and approximations, we can now remove the

plasma self-emission from the absorption data to get emission-subtracted absorp-

tion or corrected absorption data:

Labs,cor
λ = Labs

λ − Lem
λ = Lcont

λ Tλ. (6.3)

We first assume that, for experiment z2553, we may adjust the SVS1 data, accord-

ing to the scaling factors determined from z2552 and z2554, to place it on the same
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scale as the SVS2 data. We then approximate the length of plasma the emission

LOS observes (∼ 120mm) to equal that of the absorption LOS (∼ 114mm); the

two differ by ∼ 5%. We also approximate the nature of the emission from each

LOS to be the same, though the absorption LOS includes a ∼ fewmm region ad-

jacent to a gold back-lighting surface that the emission LOS does not. Figure 6.10

shows an example emission-subtracted absorption spectrum (solid, red) for the re-

gion surrounding the hydrogen Balmer lines versus its raw spectrum (dotted, red)

for a 10-ns line-out from experiment z2553. Recall that early in time the emission

is small compared to the absorption at all wavelengths and less so later in time. This

plots an intermediate case at 80 ns. The subtracted emission (dotted, blue) is most

significant at Hβ. and has a major effect on the shape of the center of the line.

The usual strategy to address plasma self-emission for absorption measure-

ments is to require a back-lighter that is sufficiently bright to overwhelm self-

emission (e.g., Perry et al. 1996; Bailey et al. 2009; Nagayama et al. 2014a). Our

simultaneous emission and absorption measurements allow us to remove the former

from the latter, and, to our knowledge, we are the first to do so for the study of line

profiles. Consequently, this technique, and in particular the approximations we list,

deserve further investigation for sensitivity and soundness.

6.2.1 Transmission

The corrected absorption spectra leave us one step away from transmission

spectra (Equation 6.3): dividing by a continuum. Since our focus is line shapes,

we choose an approach where we draw a continuum in the spectral vicinity of each
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Figure 6.10 Example emission-subtracted absorption spectrum (solid, red) plot-
ted with its raw absorption (dotted, red) and with the subtracted emission (dotted,
blue). These 10-ns line-outs begin at 80 ns after the onset of x-rays from experiment
z2553. The subtraction is most significant at the Hβ spectral region.

absorption line – a method employed in both the astronomy (e.g., Bergeron et al.

1992) and high energy density physics (e.g., Nagayama et al. 2014a) communi-

ties. This circumvents the need to explicitly include in our fitting model additional

continuous opacity sources, namely, that due to the bound-free continuum (e.g.,

Däppen et al. 1987) and the H− ion (e.g., Griem 1997). This sufficiently diagnoses

the plasma when using the transmission of Hβ and/or Hγ. The line transmission

of Hδ, however, is quite weak. As ne of our observations increases we witness this
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line disappear into the continuum (Section 7.3.2).

Figure 6.11 Example 10-ns corrected absorption line-out (black curve) beginning at
50 ns after the onset of x-rays from experiment z2553. We determine straight-line
continua (dashed blue) to determine line transmission by fitting 1st-order polynomi-
als to the spectral regions (red) surrounding the H Balmer lines. The green curve is
the measured back-lighter continuum from experiment z2554; we scale it to match
the absolute level of the black curve.

Figure 6.11 shows an example corrected absorption spectrum (black curve)

with the straight-line continua (dashed blue) used to obtain line transmission for

Hβ, Hγ, and Hδ. We determine these straight lines by fitting a 1st-order polyno-

mial (straight line) to the spectral regions (red) flanking the absorption line. This

spectrum is from a 10-ns line-out beginning at 50 ns after the onset of x-rays from
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experiment z2553. We also plot the back-lighter continuum measured using SVS1

from experiment z2554. We scale this continuum to match the absolute level of the

corrected absorption spectrum in the 4476–4560Å (2.735–2.77 eV) spectral region.

Note that for Hβ and for Hγ, the straight-line approximation of the local contin-

uum is quite similar to the measured shape of the green curve. For Hδ, however,

the presence of the bound-free continuum becomes obvious as the blue wing of this

line merges with the red wing of Hε (beyond the plot window), thus significantly

lowering the spectrum below the unattenuated continuum (green).

We fit the transmission due to bound-bound absorption of each hydrogen

Balmer line for a homogeneous (single Te, ne, and nl) plasma:

T line
λ = ψ ∗ EXP

{
−κline

λ R
}

, (6.4)

where ψ is the measured instrumental broadening from Section 5.2.2, κline
λ is the

opacity due to photoexcitation for a given bound-bound transition while neglecting

stimulated emission (e.g., Mihalas 1978; Rybicki & Lightman 1979), and R is the

length of the observed plasma4.

For this case we express the opacity as

κline
λ =

πe2

mec
fl→unlwu(ne)φ

line
λ (Te, ne), (6.5)

where e is the charge of the electron,me is the mass of the electron, c is the speed of

light, fl→u is the oscillator strength of the transition from the lower to upper energy

level, and nl is the population of the lower energy level. The reduction factor of

4Do not confuse this length R with the stellar radius from Equation 2.2.
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the upper energy level wu(ne) is a function of electron density ne. It describes the

lowering of the ionization potential (e.g., Unsöld 1948) or occupation probability

(Däppen et al. 1987; Hummer & Mihalas 1988) of this level. The hydrogen line

profile φline
λ (Te, ne) is a function of electron temperature Te and electron density ne.

Since it depends relatively weakly on Te and dominantly on ne, we approximate

φ to depend only on the latter. We explore this approximation in Section 6.3.1.

Combining the physical constants into a single factor, Cκ, Equation 6.4 becomes

T line
λ = ψ ∗ EXP

{
Cκfl→unlwuφ

line
λ (ne)R

}
. (6.6)

The values of the oscillator strengths we incorporate into our fits come from

Baker (2008), which are reported to high precision (< 0.3 % uncertainty). We fix

the LOS length R according to the dimensions of our gas cell design. This leaves

nl, wu(ne), and φline
λ (ne) as free parameters.

6.2.2 Spectral Fitting Strategy

These first two, nl and wu, are both factors. They manifest as the depth or

strength of the absorption line. The line profile φ is area-normalized, so it describes

the shape of the line. We first look at φ.

6.2.2.1 Line Shape

This is the focus of our study. Theoretical Stark-broadened line profiles

can be calculated using different techniques that address plasma effects in different

ways (e.g., Griem et al. 1959; Kepple & Griem 1968; Brissaud & Frisch 1971; Vidal
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et al. 1973; Stamm et al. 1984). White dwarf atmosphere models incorporate these

line profiles to produce synthetic spectra with which to compare observed spectra

to determine atmospheric parameters. The choice or treatment of the profiles sig-

nificantly affects the inferred atmospheric conditions (Tremblay & Bergeron 2009).

To discern which line profile model is most accurate, we compare out mea-

sured line shapes with the theoretical ones, which are nearly identical for lines with

low (n ≤ 2) principal quantum number, n, but deviate more with increasing n.

Higher electron density exacerbates the discrepancy.

The Hβ line has a sufficiently low upper level (n = 4) for different theories

to produce a similar line shape. Thus we fit Hβ to diagnose the plasma conditions,

ne and nl (Section 7.1). We investigate using Hγ as a plasma diagnostic in Sec-

tion 7.1.3. With these parameters in hand, we force calculated lines transmissions

(Equation 6.4) onto the measured higher n lines, Hγ and Hδ, and compare the good-

ness of fit amongst line profile theories. Although our interest is in the line shape,

this area-normalized profile possesses an intrinsic depth. Therefore it is necessary

to constrain relative line strengths when comparing relative line shapes.

In the scope of this work, we are not interested in the line shift, so our fits

also allow an additional free parameter, a small translation of the position of the line

in photon energy or wavelength, to account for any systematic uncertainty in our

wavelength calibration. This shift is always small. Median values from Hβ (and

Hγ) transmission fits to the z2553 data are " −0.0015 eV. This magnitude is equal

to the photon energy spacing between spectral elements at Hβ.
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6.2.2.2 Reduction Factor

Two factors, nl and wu, comprise the line strength we fit for each of the

Balmer lines. These factors are indistinguishable without an additional constraint.

We have two.

(1) These absorption lines share the same lower level population, nl. (2)

Theory describes the reduction factor, w, for each line. It is ≤ 1, and it decreases

with increasing n and with increasing ne. We discuss the physical meaning of w in

Section 7.3.

As with line profiles, different theories approachw in different ways. There-

fore we can use our measurements to discriminate between theories. For each the-

ory, we use the calculated w4 (which is nearly if not unity) in the Hβ transmission

fit to determine nl. Then we fix nl for the line strengths of Hγ and Hδ to fit for w5

and w6, respectively.

6.3 Diagnostic Sensitivity

We fit data that possess noise and measurement uncertainty. This limits the

accuracy to which we determine fit parameters. We also approximate the line pro-

file, φ, to have a negligible dependence on electron temperature, Te, and therefore

depend solely on electron density, ne. Furthermore, our fitting model assumes that

our experimental plasma either (1) is homogeneous and exists at a single plasma

condition or (2) can be sufficiently and uniquely described by a homogeneous

plasma. We leave it for future work to further measure or constrain the inhomo-
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geneity present in our plasma transverse to (Figures 3.11 and 6.7) and along our

observing lines of sight and to assess its affect on our results.

To investigate the sensitivity of our spectral fitting technique to the afore-

mentioned factors, we perform a synthetic data analysis (e.g., Nagayama et al.

2012b,a) of our diagnostic transmission line, Hβ.

We create synthetic Hβ transmission data for a range of electron density, ne,

and lower level population, n2. We simulate random noise (S/N= 50) and convolve

instrumental resolution (Voigt profile with ∼ 10 Å full-width-at-half-maximum)

typical of our experimental data. For these synthetic data we choose to use the tab-

ulated Stark-broadened line profiles from Lemke (1997), which follow the theory of

Vidal et al. (1973), and the reduction factor (as a function of ne) for Hβ prescribed

by Seaton (1990). Since we use the same φ and w4 to synthesize and fit the data,

our analysis is insensitive to these choices.

Figure 6.12 shows the results from fitting our synthetic data using the model

described by Equation 6.6. For this parameter space, the values recovered from the

fits (red diamonds) agree within uncertainties (red, horizontal and vertical lines)

with the parameters we use to create the synthetic data (black diamonds). These fit

uncertainties are random uncertainties and are most sensitive to noise (see Section

7.1.1). They are largest in the lower right-hand corner of the plot where the Hβ

lines are narrower (decreasing ne) and deeper (increasing n2).

For these synthetic data, we use theoretical line profiles calculated for an

electron temperature Te = 1.00 eV. Recall that we simplify our fitting model by
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Figure 6.12 Recovered ne and n2 (red) from fits to synthetic Hβ transmission data
(black) using the model described by Equation 6.6. The green, dashed, vertical
line shows synthetic data points also plotted in Figure 6.15. Agreement within
fit uncertainties (red, horizontal and vertical lines) shows that our fitting model
successfully determines parameters in this range for a homogeneous plasma with
Te = 1.00 eV from data with our typical S/N and instrumental resolution.

neglecting the dependence of φ on Te (Equation 6.6). Operationally, this means that

we fit using profiles calculated for Te = 1.00 eV. In other words, we assume that

the electron temperature of our experimental plasma is 1.00 eV. We now test this

approximation by repeating this exercise – by using the same fitting model with φ

corresponding to Te = 1.00 eV – to fit data synthesized at different Te.
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6.3.1 Line Profile Dependence on Electron Temperature

Figures 6.13 and 6.14 show the results of our fits of synthetic data created

using line profiles corresponding to Te = 0.50 eV and Te = 2.00 eV, respectively.

We tether fits (red) to synthetic data (black) with red, dotted lines to illustrate the

direction of discrepancy in parameter space.

Figure 6.13 Same as Figure 6.12 but fitting synthetic data created using theoretical
line profiles calculated for Te = 0.50 eV. The orange, dashed, vertical line shows
synthetic data points also plotted in Figure 6.15. Even though the fitting model
assumes Te = 1.00 eV, it successfully recovers n2 for most of the parameter space,
struggling for lines with low ne and high n2. The fits underestimate intermediate ne

values at all n2.

For Te < 1.00 eV (less than that corresponding to φ in our fitting model) the
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Figure 6.14 Same as Figure 6.12 but fitting synthetic data created using theoretical
line profiles calculated for Te = 2.00 eV. The purple, dashed, vertical line shows
synthetic data points also plotted in Figure 6.15. For high ne the fits systematically
overestimate ne and n2. The overestimate of ne increases with increasing n2.

fits are successful at recovering n2 except for lines with low ne and high n2. We

recover the highest ne values and underestimate the intermediate ones. For Te >

1.00 eV (greater than that corresponding to φ in our fitting model) we overestimate

ne and n2 at their highest values.

In Figure 6.15 we focus on the dependence on electron temperature by plot-

ting the synthetic test results for determining ne at a fixed n2 (6×1014 cm−3) versus

Te. The results of our Helios-CR simulation (Figure 6.4) motivate the range of elec-
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Figure 6.15 Recovered ne (red) from fits to synthetic Hβ transmission data at a
single n2 value (6 × 1014 cm−3) for a range of Te. The fits assume Te = 1.00 eV.
Dashed, vertical lines show the plasma conditions corresponding to Te = 1.00 eV
from Figure 6.12 (green), Te = 0.50 eV from Figure 6.13 (orange), and Te =
2.00 eV from Figure 6.14 (purple). Blue, dashed, horizontal lines connect fits to
synthetic data created at the same ne. For two rows of ne we print the ratio of fit to
synthetic value to illustrate the trend with respect to Te.

tron temperatures we explore. Dashed, vertical lines point out the plasma conditions

coinciding with Te = 1.00 eV from Figure 6.12 (green), Te = 0.50 eV from Figure

6.13 (orange), and Te = 2.00 eV from Figure 6.14 (purple). To illustrate trends as a

function of Te, we connect fits to data synthesized at the same ne with blue, dashed,

horizontal lines. For two cases, ne = 1 × 1017 cm−3 and ne = 7 × 1017 cm−3, we
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print the ratio of the fit value to the synthetic value for all Te. The uncertainty of the

last digit is in parentheses.

6.4 Conclusions

Of the three kinds of data we simultaneously measure from the three lines of

sight observing our experiment, we use the first, continuum data, to further describe

our experimental platform. Assuming the gold back-lighter emits as a Planckian

in our observed wavelength range, we fit for its temperature, Trad, as it cools with

time. We then feed these measurements into a Helios-CR (Macfarlane et al. 2006)

simulation to investigate the dynamics of the plasma formation and temporal be-

havior.

We correct our absorption data for plasma self-emission by subtracting our

measured emission data. Once we divide by a continuum in the spectral vicinity

of each absorption line, we extract transmission data. Fitting the Hβ transmission

line yields our plasma conditions (ne and nl). We describe our strategy for compar-

ing theoretical line shapes against our measured line shapes as well as theoretical

reduction factors for absorption lines against our measured reduction factors.

We conduct a synthetic investigation to quantify the accuracy to which we

can determine our plasma conditions, over some range of ne and n2, from fitting

Hβ. This accounts for noise in our measured spectra and instrumental resolution.

We also test our approximation that the line shape φ has a negligible dependence

on electron temperature, Te, by using line profiles calculated for Te = 1.00 eV to fit

data synthesized using line profiles corresponding to the range of Te = 0.5–2.50 eV.
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We find that, in general, we systematically underestimate ne when Te < 1.00 eV and

overestimate ne when Te > 1.00 eV. The level of discrepancy depends on the region

in parameter space, but for an intermediate n2 (6×1014 cm−3), the underestimation

at low Te can be ! 20% but only at intermediate ne. The overestimation at higher

Te can be up to ∼ 40% for the highest Te and ne.
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Chapter 7

Results, Summary, and Future Directions

“10 kV.”

The tinny intercom speaks, voicing yet another way in which this life is

backwards from astronomy. (Okay, for this one, I’m wrangling in space exploration

and placing it under the astronomy umbrella. I appreciate your patience.) I’m used

to TV counting down for a space shuttle launch, but. . .

“20 kV.”

. . . here it’s a count up. This is when they charge the Marx capacitor banks,

storing up voltage in preparation for the pulsed power shot.

“30 kV.”

Jim paces about in the north hallway of Building 983, home of Z.

“40 kV.”

Down the hall, Don’s giddy. Waiting outside the doors to the Z high-bay so

he can see the blue and/or yellow flash of leaked electrical charge out of the water

section.
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“50 kV.”

Alan and I stand next to the SVS systems in the next building, double-

checking triple-checking quadruple-checking our checklist and our notes. We didn’t

forget anything, did we, Alan?

“60 kV.”

Taisuke sits at his desk in his office in Building 970, maybe 100 yards away.

“70 kV.”

Getting close.

“80 kV.”

The town holds its breath.

“85 kV. Z is arming to fire.”

BOOM!!!

Or maybe it’s

BANG!!!

I haven’t yet decided which best describes it. But it jolts us. Jim lets out

a sigh of relief. Don leaps into the air in joy. Alan and I pull the film and shut

down the SVS systems. Taisuke’s office shudders. He turns to the window, smiles.

Albuquerque continues with its day. After you, ma’am. Don’t forget to pick up

Suzie from day care. I’ll just have a Caesar salad. Keep the change. Two adult

tickets for the new Robert Rodriguez, please.
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I hope we got data.

Let us consider the current state of theoretical line profiles used in white

dwarf (WD) atmosphere models. Tremblay & Bergeron (2009) (hereafter TB) re-

vamped WD atmosphere models by modifying line profiles calculated using the

unified theory of Stark broadening of Vidal et al. (1973) (hereafter VCS) to account

for the loss of upper energy level transitions due to high electric microfields. They

do this by following the lead of Seaton (1990) to incorporate the occupation prob-

ability formalism of Hummer & Mihalas (1988) into the line profile calculation.

When put into an atmosphere model this significantly improves the consistency of

atmospheric parameters (i.e., effective temperature, Teff , and surface gravity, log g)

inferred from different hydrogen Balmer lines, observed spectroscopically. Addi-

tionally, it results in a systematic increase in these inferred parameters.

For DA WDs from the Palomar-Green Survey (Liebert et al. 2005), TB

use their modified line profiles to determine an increased mean mass of 〈M〉 =

0.649 M#. We use gravitational redshifts – a method independent of theoretical

line profiles – to determine the mean mass of DA WDs in the solar neighborhood.

We find 〈M〉 = 0.647+0.013
−0.014 M# (Chapter 2; Falcon et al. 2010b). This is in ex-

cellent agreement with TB. Subsequent spectroscopic studies incorporating TB line

profiles, however, do not find mean masses that agree with that determined from the

gravitational redshift method. These include Limoges & Bergeron (2010), Trem-

blay et al. (2011a), and Kleinman et al. (2013), who find 〈M〉 = 0.606, 0.613, and
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0.623 M#, respectively.

This prompts us to look more deeply intoWD atmosphere models, and since

such a relatively subtle change makes a significant impact in the interpretation of

observed WD spectra, we turn our focus to the theoretical line profiles. For the WD

astronomy community, TB profiles now replace VCS profiles as tabulated by Lemke

(1997). TB compare their profiles as well as VCS profiles with laboratory data from

the wall-stabilized arc experiment of Wiese et al. (1972), which provides a sequence

of relevant emission lines (hydrogen Balmer series) at relevant conditions (ne = 1.5

to 10 × 1016 cm−3). They choose to consider the experiments with the lowest and

highest electron density, ne. For the former, the experimental data favor TB profiles

over VCS profiles. For the latter, they cannot draw a stringent conclusion, finding

difficulty in fitting either flavor of profiles at the reported plasma conditions.

This higher ne regime is clearly interesting for the purpose of discriminating

between theoretical line profile models. However, few laboratory experiments push

into high ne (! 1017 cm−3) for the investigation of hydrogen Balmer line shapes,

and for the ones that do, none besides Wiese et al. (1972) and Wiese et al. (1975)

measure multiple lines. As TB show, the difference in line shape between their pro-

files and those determined using VCS increases with increasing principal quantum

number (of the upper energy level of the transition), n. Therefore, leveraging mul-

tiple lines in an experiment is critical, especially when plasma diagnostics that are

independent from line shapes are not available.
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7.1 The Hydrogen Balmer β Line as a Plasma Diagnostic

We design our experiment to reach these high electron densities and to ob-

serve multiple Balmer lines (Chapters 3 and 4; Falcon et al. 2010b, 2013a). Hence,

we provide new laboratory data at these plasma conditions using a fundamentally

different experimental approach. Then we extend to higher ne to conduct the first

investigation in this regime of multiple hydrogen Balmer line shapes measured si-

multaneously. Furthermore, this extension is continuous; we measure the range of

ne in a single experiment and in the same plasma through time-resolved spectro-

scopic measurements. As we mention in Section 6.2.2.1, we use the Hβ line to

diagnose our plasma conditions (ne and nl) since we expect the discrepancy be-

tween line profile theories (VCS and TB) to be negligible here.

Figures 7.1, 7.2, and 7.3 show fits, using Equation 6.6 with a Levenberg-

Marquardt minimization (Levenberg 1944; Marquardt 1963), of our measured Hβ

line transmission from 10-ns line-outs beginning at 10, 50, and 100 ns, respectively,

after the onset of x-rays from experiment z2553. We perform the fits using different

theoretical line profiles; for each we display the goodness-of-fit expressed by the re-

duced chi squared, χ2
red, and the best-fit electron density, ne, and lower level (n = 2)

population, n2. For these fits we use the reduction factor for Hβ, w4(ne), as for-

mulated by Seaton (1990). For this work and for the purpose of comparing the line

shapes used inWD atmosphere models, this is the most appropriate choice, because

this is the formalism used in the community (e.g., Bergeron et al. 1991; Tremblay &

Bergeron 2009). Despite that, using other theoretical prescriptions make a negligi-

ble (" 0.02%) difference for the ne determination. Although among theories w4 is
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Figure 7.1 Measured Hβ transmission line-out (black diamonds) of our hydro-
gen plasma from 10–20 ns after the onset of x-rays from experiment z2553. The
uncertainties (black, vertical lines) represent the S/N. We show fits using Vidal
et al. (1973) (VCS; red), Tremblay & Bergeron (2009) (TB; blue), and Xenomorph
(XENO; green; Gomez et al. 2014b) line profiles and print the corresponding χ2

red,
ne, and n2 values.

within a∼ few% of unity, at ne = 1×1017 cm−3 the description of Seaton (1990) is

∼ 2% less than w4 as determined using the ionization depression of Ecker & Kröll

(1963), for example. At ne = 4 × 1017 cm−3 this difference increases to ! 6%, so

the choice of reduction factor introduces a measurable systematic difference in the

determined n2. This manifests as, on average, a ∼ 3% higher inferred n2 from Hβ

when using w4 derived from Seaton (1990) compared to that derived from Ecker &
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Figure 7.2 Same as Figure 7.1 but for a 10-ns line-out beginning at 50 ns after the
onset of x-rays.

Kröll (1963).

Using VCS (red) and TB (blue) line profiles provide relatively good (low

χ2
red) fits early in time when ne is lowest, but as the Hβ line widens with time,

the fits are poorer (Figure 7.4), predicting more structure in the line center than

observed as well as narrower line wings. Then after ∼ 110 ns, the fits are extremely

poor. Before this time, though, the increasing, but still intermediate, poorness of fit

is either due to our data or our fitting model. Systematic uncertainties, such as the

plasma self-emission subtraction (Section 6.2), may be compromising the integrity
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Figure 7.3 Same as Figures 7.1 and 7.2 but for a 10-ns line-out beginning at 100 ns
after the onset of x-rays.

of our data. Let us assume this is not the case and consider a folly in our fitting

model. An invalid assumption about our plasma, such as its homogeneity along

our observed LOS, could harm the fit (we review our experimental assumptions in

Section 7.4.1). Our choice of line profile could also be insufficient.

VCS profiles are not state-of-the-art for the plasma conditions of our experi-

ment so their use as a plasma diagnostic may be suspect. WD astronomers use them

because the works of Schoning (1994) and Napiwotzki & Rauch (1994) show that,

once incorporated into a WD atmosphere model, whose radiation traverses plasmas
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Figure 7.4 Goodness-of-fit versus time expressed by the reduced chi squared, χ2
red,

for fits to Hβ line transmission data measured from z2553 using VCS (red), TB
(blue), and Xenomorph (green) line profiles. This includes χ2

red values for the fits
plotted in Figures 7.1, 7.2, and 7.3. We plot times through 110 ns after the onset of
x-rays. Defined this way, Xenomorph profiles provide the best fits.

with a range of Te and ne, the subtleties of theoretical line shapes vanish. Since then,

line profile calculations have improved. Those following the Model Microfield

Method (Brissaud & Frisch 1971; Seidel 1977; Stehlé 1994; Stehlé & Hutcheon

1999), generalized theory of Stark broadening (Ispolatov & Oks 1994; Oks et al.

1995; Touma et al. 2000), and computer simulation method (CSM; e.g., Stamm

et al. 1984; Cardeñoso & Gigosos 1989; Stambulchik & Maron 2006) produce line

profiles in better agreement with laboratory data, particularly those from the exper-
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iments of Wiese et al. (1975), Grützmacher & Wende (1977), and Grützmacher &

Wende (1978), because these calculations include more sophisticated atomic kinetic

effects, namely those from non-stationary ions (ion dynamics). Indeed, Gigosos &

Cardeñoso (1996) and Gigosos et al. (2003) specifically designate their CSM pro-

files for plasma diagnosis.

VCS profiles, as tabulated by Lemke (1997), also do not account for asym-

metries. Neither do TB profiles, and although laboratory studies have measured

asymmetric line shapes for some time (e.g., Kudrin & Sholin 1963; Halenka 1988;

Djurović et al. 2005), only recently has significant progress been made with CSM

theory to address this phenomenon (e.g., Olchawa 2002; Stambulchik et al. 2007;

Djurović et al. 2009). This progress, however, is only for the first two Balmer lines,

Hα and Hβ.

In addition to fitting our data with VCS and TB profiles, we fit them with

Xenomorph (Gomez et al. 2014b) line profiles (XENO; green curves in Figures

7.1, 7.2, and 7.3). These are CSM calculations. Figure 7.4 reveals that using these

results in fits with smaller χ2
red than that of VCS or TB. This is because, besides

including more sophisticated physics, these calculations handle asymmetries in a

physically self-consistent way (Gomez et al. 2014b). This subtlety is most evident

in the line center and red wing of the fitted Hβ transmission line in Figure 7.3. For

all cases, the fits become poor after ∼ 110 ns, primarily due to decreasing signal

level (Figure 6.10).

Through fits to our measured Hβ line transmission, we observe the electron

density of our plasma increase throughout the first 90 ns after the onset of x-rays
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Figure 7.5 Electron density versus time determined from fits to Hβ line transmission
data measured from z2553 using VCS (red), TB (blue), and Xenomorph (green) line
profiles. The uncertainties (vertical lines) are the fit uncertainties (due to noise) and
those due to calibration added in quadrature.

from the z pinch and then plateau (Figure 7.5). Throughout these plotted times we

match the ne range observed by Wiese et al. (1972) and then exceed it by approx-

imately a factor of three. With other data, beyond the scope of this work, we infer

electron densities up to nearly ne ∼ 1018 cm−3. Though different theoretical line

shapes provide different goodness-of-fit (Figure 7.4), they infer electron densities

in general agreement. Including up to the line-out beginning at 110 ns after the on-

set of x-rays, the mean of the maximum difference between ne inferred using the
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Figure 7.6 Lower level (n = 2) population versus time determined from fits to
Hβ line transmission data measured from z2553 using VCS (red), TB (blue), and
Xenomorph (green) line profiles and the reduction factor w4 derived from Seaton
(1990). The uncertainties (vertical lines) are the fit uncertainties (due to noise) and
those due to calibration added in quadrature.

different theoretical line shapes for each line-out is ∼ 7%, and the mean of the

standard deviations for each line-out is 〈σ〉 ∼ 4%. For n2 we see a spike soon

(∼ 10–20 ns) after the onset of x-rays followed by a gradual increase with time

(Figure 7.6). Again, the different theoretical line shapes infer n2 in general agree-

ment; the mean maximum difference between inferred n2 is∼ 5%, and 〈σ〉 ∼ 3%.

We discuss the uncertainties (vertical lines) in Section 7.1.1.
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Experiment z2553 is not an oddball case. Other independent experiments

(z2554 and z2588) which have similar initial conditions also yield Hβ transmis-

sion line fits with similar χ2
red. We infer similar ne values that smoothly increase

throughout the first∼ 100 ns after the onset of x-rays (Section 7.1.4) and increasing

n2 with a spike at ∼ 10–20 ns.

7.1.1 Uncertainties

For each line-out the uncertainties for the transmission data points (black,

vertical lines in Figures 7.1, 7.2, and 7.3) represent the S/N. These are most appro-

priate to consider when fitting to models, because along with the best-fit parameters,

the fitting should also determine the random uncertainties σfit of these parameters.

Such fitting does not handle systematic uncertainties, so it is not appropriate to

include σrel (defined in Section 5.3.4.2) for instance.

We estimate the noise level for each transmission line when fitting the adja-

cent spectral regions (red in Figure 6.11) for the straight line (dashed blue in Figure

6.11) used to convert the corrected absorption Labs,cor
λ to transmission Tλ; the stan-

dard deviation of the red spectral points about the dashed, blue straight line becomes

the noise level.

To determine the uncertainties due to the calibration σcal, we perform two

additional fits. These are fits to line transmissions determined from the ±1-σ cases

of the corrected absorption (i.e., T±σ = Labs,cor±σ
Lcont , where σ is the absolute uncer-

tainty defined in Section 5.3.4.2). The differences of the fit parameters compared to

the original (0-σ) case are the uncertainties due to calibration.
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Figure 7.7 Uncertainties in ne due to the fit or noise (filled diamonds with solid
lines) and the calibration (open diamonds with dashed lines) for Hβ transmission
line fits throughout time from experiment z2553. For simplicity we only show fits
using VCS line profiles since fits using all line profiles exhibit the same qualita-
tive trends. Fit uncertainties remain constant and calibration uncertainties decrease
when using line-outs of 5 (blue), 10 (red), or 20 (green) ns durations.

Figures 7.7 and 7.8 show the fit (filled diamonds with solid lines) and cal-

ibration (open diamonds with dashed lines) uncertainties for the inferred ne and

n2, respectively, from Hβ transmission line fits throughout time from experiment

z2553. The calibration uncertainties are not necessarily symmetric (| + σcal| .=

| − σcal|), so for simplicity we plot the mean of the ±σ cases. All these uncertain-

ties correspond to fits using VCS line profiles; the following qualitative trends do
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Figure 7.8 Same as Figure 7.7 but for best-fit n2. The qualitative trend is the same
as the fit uncertainties remain constant and calibration uncertainties decrease when
using line-outs of 5 (blue), 10 (red), or 20 (green) ns durations.

not depend upon the choice of the theoretical line shape model. For ne the calibra-

tion uncertainties are less than the fit uncertainties until ! 60 ns when they swap.

For n2 the fit uncertainties are, in general, less than the calibration uncertainties.

The fit uncertainties are also nearly constant throughout time at ∼ 2 and ∼ 1% for

ne and n2, respectively. The calibration uncertainties increase with time. This is

because the emission subtraction increases with time, which means that the uncer-

tainty due to the subtraction increases as well. The adopted uncertainties printed in

Figures 7.1, 7.2, and 7.3 and plotted in Figures 7.5 and 7.6 are the fit and calibration
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uncertaintties added in quadrature (i.e., σadopt =
√

(σfit)2 + (σcal)2).

We use these figures along with Figure 7.4 to motivate our choice to focus

our analysis on the first∼ 110 ns after the onset of x-rays for the scope of this work.

We also show the difference in these uncertainties when fitting line-outs of

different durations: 5 (blue), 10 (red), and 20 (green) ns. The line-out duration does

not affect the fit uncertainties. In general the calibration uncertainties decrease with

longer line-outs because longer line-outs have less noise. This results in more cer-

tain determinations of the straight-line continua (dashed, blue lines in Figure 6.11)

used to extract line transmission. Therefore, as a compromise between minimiz-

ing calibration uncertainties and maintaining temporal resolution of the changing

conditions of our plasma, we choose 10 ns as our nominal line-out duration.

7.1.2 Exploring the Emission Correction

We show in Figure 6.9 that the emission subtraction is increasingly impor-

tant in time for the transmission extraction. With Figures 7.9 and 7.10 we quan-

tify this importance for the determination of ne and n2, respectively, by comparing

these parameters inferred from fitting emission-corrected transmission (the normal

case from corrected absorptionLabs,cor
λ ) versus transmission from measured absorp-

tion with no emission correction (subtraction). Neglecting the emission subtraction

in the transmission extraction results in overestimating ne and underestimating n2

from spectral fitting for all theoretical line shapes. The overestimate in ne is roughly

a few percent for early in time; after ∼ 70 ns when the relative levels of the mea-

sured emission become a significant fraction of the measured absorption (Figure
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Figure 7.9 Inferred ne from fits to transmission extracted from emission-corrected
absorption versus that from fits to transmission extracted from absorption with no
emission correction. The latter case overestimates ne, especially for the highest
values. We plot the unity line (dashed). Straight line segments connect the points
chronologically for one fitting case, Xenomorph (green), where time begins in the
bottom left of the plot window.

6.9), it increases to more than tens of percent.

To illustrate the time evolution we connect the data points (filled diamonds)

with straight line segments. Since the inferred parameters follow the same qualita-

tive trends for all line shapes (Figures 7.5 and 7.6), we connect the points only for

the fits using Xenomorph (green) for clarity, where earlier in time corresponds to

the lowest values in the bottom left of the plots. This evolution is nearly monotonic
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Figure 7.10 Inferred n2 from fits to transmission extracted from emission-corrected
absorption versus that from fits to transmission extracted from absorption with no
emission correction. The latter case significantly underestimates n2, especially for
the highest values. We plot the unity line (dashed). Straight line segments connect
the points chronologically for one fitting case, Xenomorph (green), where time
begins in the bottom left of the plot window.

for ne. The spike early in time is apparent for n2. Also for n2 we see the increas-

ing uncertainty in time for the emission-corrected case. The case with no emission

correction does not show this because it is the uncertainty due to the emission sub-

traction that dominates the calibration uncertainty σcal, which contributes most to

the adopted uncertainty later in time.
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7.1.3 The Hydrogen Balmer γ Line as a Plasma Diagnostic

Figure 7.11 Measured Hγ transmission line-out (black diamonds) of our hydrogen
plasma from 10–20 ns after the onset of x-rays from experiment z2553. The uncer-
tainties (black, vertical lines) represent the S/N. We show fits using VCS (red), TB
(blue), and Xenomorph (green) line profiles and print the corresponding χ2

red, ne,
and n2 values.

Let us consider using the Hγ transmission line to diagnose our plasma by

performing the same exercise as we do for Hβ. As an example, Figure 7.11 shows

fits using VCS (red), TB (blue), and Xenomorph (green) line profiles of our mea-

sured Hγ line transmission from a 10-ns line-out beginning at 10 ns after the onset

of x-rays from experiment z2553. No line shape stands out as providing the best

or worst fit as indicated by the reduced χ2. In fact, the goodness-of-fit for all line

195



shapes is quite similar. It starts out χ2
red ∼ 1 early in time when the line is deepest

and most well-defined and even slightly decreases throughout the plasma evolution

as the line shallows and broadens, thus worsening the S/N.

Figure 7.12 Uncertainties in ne (red) and in n2 (blue) due to the fit or noise (filled
diamonds with solid lines) and the calibration (open diamonds with dashed lines)
for Hγ transmission line fits throughout time from experiment z2553. Fit uncer-
tainties dominate over calibration uncertainties and increase with time as the line
broadens. Since the uncertainties are qualitatively similar between fits using differ-
ent theoretical line shapes, we plot the results of the fits using only Xenomorph line
profiles.

Figure 7.12 shows uncertainties that are qualitatively reversed from those

corresponding to Hβ. Instead of the fit uncertainties σfit yielding to the calibration
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uncertainties σcal, they dominate. Instead of σfit remaining constant throughout

time, they increase, and now it is σcal that stays relatively constant. Both of these

properties are consistent with two main points: because Hγ is weaker than Hβ,

its fits are (1) more sensitive to S/N, and (2) much less sensitive to the emission

subtraction, which most significantly contributes to σ cal. The trends are similar for

fits using different theoretical line shapes, so here we plot σ corresponding to only

one, Xenomorph.

Figure 7.13 Inferred ne from fits to Hβ line transmission versus that from fits to
Hγ line transmission. Hγ fits underestimate ne throughout most of the plasma
evolution. We plot the unity line (dashed). Straight line segments connect the
points chronologically, where time begins at the leftmost point. We include points
up to the line-out beginning at 100 ns after the onset of x-rays.
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Figure 7.14 Inferred n2 from fits to Hβ line transmission versus that from fits to Hγ
line transmission. In general, Hγ fits underestimate n2 early in time and overesti-
mate later in time. We plot the unity line (dashed). Straight line segments connect
the points chronologically for one fitting case, Xenomorph (green), where time be-
gins at the leftmost point. We include points up to the line-out beginning at 100 ns
after the onset of x-rays.

Hγ transmission line fits also infer different plasma conditions than Hβ.

They underestimate ne throughout most of the evolution then either match (using

Xenomorph) or exceed (VCS and TB) late in time when the values are highest

(Figure 7.13). The fits overestimate n2 early in time, underestimate at intermediate

times, and then overestimate again at the latest times (Figure 7.14). In other words,

they exaggerate the temporal evolution inferred from the Hβ fits. Preliminary in-
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vestigations into hypotheses for this discrepancy involving systematic uncertainties

in the transmission extraction show low likelihood. These do not include the hy-

pothesis that saturation or relatively high optical depths (τ > 1 at line center) may

be affecting our Hβ transmission line measurement. We encounter this discrepancy

again in Section 7.2.

We chronologically connect the points with line segments. For clarity in

Figure 7.14, we do this for only one case, Xenomorph (green). The leftmost point

corresponds to the first 10-ns line-out beginning at the onset of x-rays. An important

point that Figure 7.14 may not clearly illustrate is that the n2 values inferred from

Hγ follow the same qualitative trend as that from Hβ – the values spike early in

time. This is evidence that this spike is real and not a consequence of, say, heavy

saturation of the measured Hβ absorption line. Hγ is much weaker than Hβ and

likely safely unsaturated with measured optical depths at the line center of τ " 1.

We also investigate the sensitivity of the inferred parameters from Hγ trans-

mission line fits to the emission subtraction. This subtraction modestly affects the

line shape (∆ne " few percent) because Hγ is not deep. Correspondingly the Hγ

emission is not strong. The inferred n2 remains unscathed early in time when the

back-lighter emission is bright. Later in time (! 30 ns), however, fits to Hγ trans-

mission without emission correction significantly underestimate n2; ∆n2 ∼ 10–

60%. Therefore, the emission subtraction can, in general, be neglected when infer-

ring ne from Hγ but not n2.
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Figure 7.15 Electron density determined from fits to Hβ line transmission show
qualitative reproducibility in their absolute values and time evolutions among ex-
periments z2553 (red), z2554 (blue), and z2588 (green). These fits use Xenomorph
line profiles. Filled diamonds connected by straight line segments correspond to
line transmissions corrected for self-emission. Open diamonds connected by dashed
line segments make no emission correction.

7.1.4 Reproducibility of Plasma Conditions

Figure 7.15 confirms the qualitative reproducibility of our hydrogen plas-

mas. Experiments z2553 (red), z2554 (blue), and z2588 (green) share similar initial

conditions. The gas fill pressures are 10.63±0.05, 9.49±0.04, and 10.53±0.05Torr

(Table A.1), respectively, and each observes the plasma at a distance of 10mm from

the gold wall that provides the photoionizing radiation. The peak electrical cur-
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rents delivered to the wire arrays are 28.3, 28.6, and 26.9MA, and the total radial

LOS x-ray yields from the z-pinch dynamic hohlraums as measured by bolometers

(Spielman et al. 1999) are 1.72, 1.51, and 1.49MJ, respectively. This all translates

to hydrogen plasmas whose electron densities rise from ne ∼ 4 × 1016 cm−3 to

ne ∼ 30 × 1016 cm−3 in ∼ 100 ns after the onset of z-pinch x-rays to the gas cell.

This figure includes our inferred ne from fits to Hβ line transmission mea-

sured during experiment z2553 using Xenomorph line profiles (Figure 7.5). We

assume the plasma emission from z2554 is the same as that from z2553 so that we

may use it to perform the emission correction. We cannot easily make this cor-

rection for the absorption spectra from experiment z2588 because of a systematic

uncertainty in the relative levels of the SVS1 and SVS2 data, so we neglect it in

our transmission fits to determine ne (open diamonds connected by dashed line seg-

ments). As we show in Figure 7.9 and see again here with the determinations from

z2553 and z2554, this causes a slight overestimation of ne until late in time when

this overestimation becomes large.

7.2 Line Profile Comparison

Equipped with ne and n2 determined from our measured Hβ (and Hγ) for

each line-out, we calculate the Hγ and Hδ (or just Hδ) transmission lines and plot

them against our measurements.
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Figure 7.16 Measured Hγ and Hδ line transmission (filled diamonds) and absolute
transmission (open diamonds) from the first six 10-ns line-outs from experiment
z2553. We plot calculated transmission lines using ne and n2 inferred from Hβ
transmission line fits using VCS (red), VCS with reduction factor wu determined
using an ad hoc βcrit value (pink), TB (blue), and Xenomorph (green) line pro-
files. We print the corresponding χ2

red values for all line profile fits and ne from the
Xenomorph fit.
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Figure 7.17 Same as Figure 7.16 but for the following six 10-ns line-outs through
110 ns after the onset of x-rays.
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7.2.1 Using Conditions Inferred from Hβ

Figures 7.16 and 7.17 plot 10-ns line-outs of our measured line transmis-

sion (filled diamonds) and absolute transmission (open diamonds) from experiment

z2553. Recall from Section 6.2.1 that we extract line transmission by drawing

straight lines in the spectral vicinity of the absorption lines and absolute transmis-

sion by using our measured back-lighting continuum shape. At all times we see the

combined influence of the Hε line (blueward of the plot window) and the bound-

free continuum pulling Hδ away from the unattenuated continuum (dashed line at

transmission T = 1), particular at its blue wing.

Using ne and n2 determined from fits to the Hβ transmission line (not plot-

ted), we calculate line transmissions for Hγ and Hδ using the theoretical line pro-

files of VCS (red), TB (blue), and Xenomorph (green).

Our calculations use the reduction factors or occupation probabilities, wu,

from Seaton (1990), who follow the formalism from Hummer & Mihalas (1988)

to define this value as an integration over a probability distribution of electric mi-

crofields:

wu =

∫ βcrit

0

P (β)dβ. (7.1)

The unitless parameter β describes the characteristic electric microfield that an atom

experiences due to a charged particle. Since a plasma consists of many particles,

the ensemble distribution is P (β), and βcrit is the critical field beyond which elec-

trons in an upper energy level, nu, are ionized. As discussed in Tremblay & Berg-

eron (2009), different expressions exist for βcrit (e.g., Hummer & Mihalas 1988;
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Seaton 1990; Stehlé & Jacquemot 1993). For the most part, WD atmosphere mod-

els have either incorporated wu from Hummer & Mihalas (1988), which uses P (β)

from Holtsmark (1919), or wu from Seaton (1990), which uses P (β) from (Hooper

1968). Before Tremblay & Bergeron (2009), however, βcrit was multiplied by an ad

hoc factor of two because Bergeron (1993) finds that doing so results in an improved

consistency between fits to different hydrogen Balmer lines in observedWD spectra

as well as laboratory data. For this reason, we also include VCS profiles with the

modified wu using βcrit × 2 (pink) in the calculated line transmission comparisons

with our measured transmission.

We first look at Hγ and clearly see, in the line shapes, the manifestation of

the discrepancy from Figures 7.13 and 7.14. The calculated widths are larger than

the measurement (i.e., ne inferred from Hβ is greater than that from Hγ), and the

calculated line depths or strengths are too small early in time and too large late in

time.

For Hδ the calculations stratify into two groups. VCS and Xenomorph line

shapes are very similar, and VCS with βcrit × 2 and TB are nearly identical. Conse-

quently,the χ2
red values within each group are similar. It was the goal of Tremblay &

Bergeron (2009) to develop profiles that fit the observations of multiple hydrogen

Balmer lines consistently, as the VCS profiles with the ad hoc reduction factors do,

but with a physical grounding. It is then expected that these calculations agree with

each other.

However, all of the fits for both Hγ and Hδ are, in general, poor. The ex-

ceptions, for Hγ, are at 30, 40, and 50 ns when the inferred n2 from Hβ agrees with
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that from Hγ. Hδ shares these first two exceptions, but the 50-ns line-out apparently

suffers from a noisy artifact.

For the 60-ns line-out and after, the VCS fits to Hγ have the lowest χ2
red with

the Xenomorph fits close behind, though these fit poorly in the Hγ line center. The

worst fits, which are consistently too deep, are the ones using VCS with βcrit × 2.

Late in time after ∼ 80 ns, χ2
red for Hδ is low because this is when Hδ disappears.

We discuss this disappearance in Section 7.3.2.

7.2.2 Using Conditions Inferred from Hγ

Let us perform the same exercise but use the plasma conditions, ne and n2,

inferred fromHγ transmission line fits. Figures 7.18 and 7.19 plot 10-ns line-outs of

our measured line transmission (filled diamonds) and absolute transmission (open

diamonds) from experiment z2553 with these Hγ transmission line fits using VCS

(red), VCS with the modified wu using βcrit × 2 (pink), TB (blue), and Xenomorph

(green). We plot the Hδ transmission lines calculated with these fit parameters.

All of the Hγ fits are good with χ2
red ∼ 1. The Hδ calculations agree better

with the measured line transmissions than those using the plasma conditions in-

ferred from Hβ fits. Unlike the Hβ transmission line fits, no theoretical line profile

stands out as performing clearly better fits than the rest.

One shortfall of using plasma conditions inferred from Hγ rather than from

Hβ to calculate transmission lines to compare is that these conditions have more

scatter between theoretical line profiles. We see this for ne in Figure 7.13. This

means that the calculated lines at each time in Figures 7.18 and 7.19 span some
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Figure 7.18 Same as Figure 7.16 except we plot the Hγ transmission line fit and Hδ
calculated using ne and n2 inferred from the Hγ fit.
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Figure 7.19 Same as Figure 7.18 but for the following six 10-ns line-outs through
110 ns after the onset of x-rays.
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range of conditions.

7.3 Measuring the Reduction Factor or Occupation Probability

When submerged within an electric microfield the ionization energy of atoms

in a plasma decreases. This effect, known as the lowering of the ionization potential

or ionization potential depression (e.g., Ecker & Kröll 1963; Stewart & Pyatt 1966),

can manifest as the probability that an atom exists in some state relative to that when

the atom is surrounded by non-interacting particles, i.e., the occupation probability

(Hummer & Mihalas 1988). Recent laboratory experiments measure the ionization

potential depression in hot aluminum plasmas (e.g., Ciricosta et al. 2012; Hoarty

et al. 2013; Preston et al. 2013) and may be reaching conflicting conclusions. The

interpretation of their results are in question (Iglesias 2014).

Our experiments provide a unique perspective on this problem by measuring

multiple absorption lines that share the same lower level population n l. Figure 7.20

plots our measured reduction factor for Hγ, w5, (filled diamonds) as a function of

electron density, ne. We infer w5 by fitting the Hγ transmission line while fixing ne

and n2 to those inferred from Hβ. Straight line segments chronologically connect

the fit results, where time begins with the leftmost point. We also plot the theoretical

w5(ne) from Seaton (1990, dotted curve), which is used in WD atmosphere models.

Though we measure a trend with ne, notice that at low ne (early in time),

the inferred w5 values are unphysical; a probability cannot exceed one (solid, hor-

izontal line). In Sections 7.1.3 and 7.2 we discuss the discrepancy between our

plasma conditions inferred from Hβ versus those from Hγ. Because of this discrep-
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Figure 7.20 Inferred reduction factor w5 versus electron density from fits to Hγ line
transmission. Fits using different theoretical line profiles (colored diamonds) are
chronologically connected with line segments; they differ because of the slightly
different input n2 values. We also plot the theoretical w5(ne) from Seaton (1990,
dotted curve). The inferred parameters early in time are unphysical because they
exceed one (solid, horizontal line).

ancy, forcing theoretical line shapes onto Hγ prevents the fits from capturing the

measured total integrated transmission because it does not allow the fits to subtly

adjust their shape to match the precise measured shapes. These potential adjust-

ments are within the noise of the spectra, so without them the fits are still sufficient

( χ2
red " 2). Also, the differences in input n2 values, though only∼ few% (Section

7.1, Figure 7.8), are readily apparent in the inferred w5.

210



7.3.1 A Revised Approach

These points prompt us to revise our strategy to measure w5. Let us remove

our dependency on the line shape to focus on the total integrated line strengths.

Neglecting the instrumental convolution, ψ, we recover the argument of the expo-

nential in Equation 6.4 by taking the natural logarithm of our measured line trans-

mission, i.e., −κline
λ R ≈ ln(T line

λ ). It then follows from Equation 6.5 that

κHγ
λ

κHβ
λ

=
f2→5w5(ne)φ

Hγ
λ

f2→4w4(ne)φ
Hβ
λ

. (7.2)

Since φ is area-normalized, |φHβ
λ | = |φHγ

λ |, and these factors cancel. The reduction

factor for Hβ is approximately equal to unity, so

w5(ne) ≈
w5(ne)

w4(ne)
=
κHγ

λ f2→4

κHβ
λ f2→5

. (7.3)

We plot our w5 values measured following this method in Figure 7.21. The

unphysical values early in time retreat to ≤ 1, and the differences between colored

curves due to inferred n2 values vanish. Now the only differences between these

curves are the horizontal translations because of slight differences in the inferred ne

between fits using VCS (red), TB (blue), and Xenomorph (green) theoretical line

profiles.

Our measurements decrease more steeply with ne than predicted by reduc-

tion factors from Seaton (1990, dotted curve). Further work is ongoing to scrutinize

the validity and robustness of this approach and to quantify uncertainties, particu-

larly those due to emission subtraction.

211



Figure 7.21 Inferred reduction factor w5 versus electron density following Equation
7.3, which uses measured opacities, κλ, of Hβ and Hγ. Shortfalls apparent in Figure
7.20 – the unphysical values early in time and the dependency on φ – disappear. We
measure a steeper dependence on ne than predicted by any theory.

7.3.2 Witnessing the Disappearance of Hδ

Because of the weakness of the Hδ transmission line and the encroaching

bound-free continuum, it is not as straightforward to measure the corresponding

reduction factor w6. The development of this strategy is still in progress.

However, because our time-resolved absorption/transmissionmeasurements

observe a plasma whose ne increases in time, we see the evolution of Hδ. Early

in time Hδ is distinct (Figure 7.16), but late in time it merges into its blueward
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Table 7.1. Measured Electron Density of Plasma When Hδ Disappears

Line Profile ne

(1016 cm−3)
z2553 z2554

Hβ Hγ Hβ Hγ

VCS 29 34 30 31
TB 30 30 33 23
XENO 27 20 28 21

neighbor Hε and the bound-free continuum (Figure 7.17). For experiment z2553,

we observe this event at ∼ 80 ns after the onset of x-rays. Using Xenomorph line

profiles in the Hβ transmission line fit, our inferred electron density at this time is

ne ∼ 27 × 1016 cm−3. Inferred from Hγ, ne ∼ 20 × 1016 cm−3.

We confirm this measurement by locating this event in the following exper-

iment, z2554. The spectra from z2554 are not entirely independent since we use

the measured emission from z2553 to correct the absorption. We see Hδ disappear

at ∼ 70 ns. From transmission line fits using Xenomorph profiles to Hβ and Hγ, at

this time we infer ne ∼ 28 × 1016 and ∼ 21 × 1016 cm−3, respectively.

Since fits using different theoretical line profiles infer slightly different val-

ues, we list ne from each in Table 7.1. This includes ne inferred from Hγ, which

has increased scatter compared to Hβ (Section 7.2.2), especially late in time.

This determination is unique for multiple reasons. (1) The measurement is

in absorption for lines that share the same lower level population nl. This simplifies
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the interpretation of measured relative line strengths. An emission measurement re-

quires knowledge of multiple upper level populations, nu, which must be assumed

along with local thermodynamic equilibrium (an additional requirement of the ex-

perimental plasma) or simulated with hydrodynamic calculations. (2) No other ex-

periment has simultaneously measured multiple spectral lines of a hydrogen plasma

at ne > 1017 cm−3. This allows us to measure existing lines (Hβ and Hγ) and non-

existing lines (Hδ) at the same time. (3) Because our data are time-resolved and we

probe a range of ne, we observe the continuous change that leads to the disappear-

ance of Hδ. This allows for a precise measurement of the conditions at which this

event occurs.

7.4 Summary

The spectra of radiation-driven hydrogen plasmas we measure using our ex-

perimental platform provide many insights. Some of these supplement previous

work, and some are quite new. Here we summarize our conclusions but first de-

scribe the main assumptions we make in the analysis of our measurements. Listing

out these assumptions also stimulates ideas for future work.

7.4.1 Assumptions

We assume:

• That our observed plasma is homogeneous in composition (purely H), elec-

tron density, ne, and lower level population, nl, along our LOS. This is specif-
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ically relevant to our spectral fitting procedures (Section 6.2.1). Gradients in

the plasma conditions exist. Our plasma is finite and has boundaries, so our

observing lines of sight traverse a transition from a relatively cool plasma/gas

that resides in the buffer cavity to the hydrogen plasma in the central cavity

exposed to the gold wall radiation. Our LOS collection beams, which are

parallel to the gold wall (and perpendicular to the gold wall radiation), also

have a finite diameter (Section 5.3.3.1), and we measure ne decreasing with

increasing distance from the gold wall (Section 3.4.1). When we observe

our plasma in absorption, the LOS additionally traverses a transition region

adjacent to the gold back-lighting surface. Our assumption is that these gra-

dients have minimal effects on our observations and that the goodness of our

Hβ transmission line fits, particularly when using Xenomorph line profiles

(Section 7.4), indicates that this is so.

• That the electron temperature of our plasma, which we measure indirectly,

is consistent with Te ∼ 1 eV, as predicted by simulations (Sections 3.2.2

and 6.1.2), so that it does not significantly affect the inference of our plasma

conditions, ne and n2, as we investigate in Section 6.3.1.

• That during the formation of our hydrogen plasma and throughout the dura-

tion of the experiment, the radiation from the gold wall (2 eV" Trad " 5 eV;

Section 6.1.1) is sufficient to completely dissociate the initial gas fill parti-

cles of H2, leaving only neutral hydrogen, protons, and electrons. We assume

there are no additional sources of line broadening beyond these particles, such

as from molecules, influencing our measured line profiles.
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• That we extract transmission spectra that give accurate relative line shapes

and strengths within our quoted uncertainties. This includes successful cali-

brations to correct for the instrumental efficiency (Section 5.3.1), the attenua-

tion of light during the transit from the experiment to the SVS system (Section

5.3.2), and the observed geometry within the gas cell (Section 5.3.3). It then

includes the combination of data from multiple SVS systems, particularly

correcting the measured absorption by subtracting the measured emission

(Section 6.2). We assume scattered light within the gas cell to be negligi-

ble.

• That our strategy to extract and analyze line transmission (Section 6.2.1)

rather than absolute transmission successfully circumvents the bound-free

continuum (e.g., Däppen et al. 1987) and H− ion (e.g., Griem 1997) opac-

ity sources, allowing us to, like the previous bullet point, accurately measure

relative line shapes and strengths.

7.4.2 Conclusions

• Ours is the first experiment to measure the spectra of multiple hydrogen

Balmer lines (Hβ, Hγ, and Hδ) simultaneously at ne > 1017 cm−3 – greater

than that achieved by Wiese et al. (1972, 1975). We measure the spectral

lines at a range of electron densities, 4 × 1016 " ne " 3 × 1017 cm−3. The

only other experiments to spectroscopically measure hydrogen in the range

of 1017 cm−3 < ne < 1018 cm−3 are those of Djurović et al. (2005), Katagiri

et al. (2007), Parigger et al. (2003, 2008), and Djurović et al. (2009). Only
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two of these, however, measure more than one line – this line being Hβ. Kata-

giri et al. (2007) also measure Hγ but do not achieve sufficient S/N to analyze

it, and though Parigger et al. (2008) measure Hα, Hβ, and Hγ, they do not do

so simultaneously. Therefore, we provide unique line profile measurements

relevant to a regime of hydrogen plasma conditions with limited exploration.

• Within one experiment, our plasma matches the conditions achieved by the

benchmark stabilized-arc discharge experiment of Wiese et al. (1972) and

then, for the data we show in this work, exceeds it by a factor of three. This

is because we measure the evolution of our plasma with time-resolved spec-

troscopy, and the electron density of our plasma smoothly increases through-

out the first ∼ 100 ns of our experiment (Figure 7.5), resulting in a continu-

ous measurement throughout the range of ne mentioned in the previous bullet

point.

• We obtain data, not analyzed for the scope of this work, for which we infer

electron densities approaching ne ∼ 1018 cm−3.

• We demonstrate the robustness and reproducibility of our experimental plat-

form by inferring similar conditions and temporal evolutions of our plasmas

among multiple experiments (Figure 7.1.4).

• We show that both the theoretical line profiles currently used in WD atmo-

sphere models, those of Tremblay & Bergeron (2009) and those previously

used from Lemke (1997), which follow the theory of Vidal et al. (1973), do

not fit our measured Hβ transmission line as well (larger reduced χ2) as the
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theoretical line profiles of Gomez et al. (2014b) for a range of ne relevant to

WD atmospheres. Despite this, all diagnose the line shape (ne) and strength

(n2) similarly.

• Xenomorph line profiles (Gomez et al. 2014b) fit our measured Hβ trans-

mission line best with the lowest reduced χ2 for a range of ne because these

calculations better capture the observed asymmetry throughout the entire line

profile.

• Among those calculated fromVidal et al. (1973), Tremblay&Bergeron (2009),

and Gomez et al. (2014b), no theoretical line profile fits our measurement Hγ

transmission lines best. They all fit well with reduced χ2 ∼ 1 throughout our

range of ne.

• The conditions (ne and n2) we infer from fits to the measured Hβ line trans-

mission from our experimental plasma do not agree with those inferred from

fits to the Hγ line transmission (Section 7.1.3). Hγ fits infer lower ne and

exaggerate the temporal evolution of n2. Our preliminary investigations find

no clear hypothesis involving a systematic uncertainty in the transmission

extraction to explain this discrepancy. However, saturation may be compro-

mising our Hβ line transmission measurement. If it is not, then it is possible

that, for all the theoretical line profiles we investigate here, the relative line

shapes between Hβ and Hγ are inaccurate.

• We compare calculated Hγ and Hδ transmission lines, using the plasma con-

ditions inferred from fits to our Hβ transmission lines, to our measured trans-
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mission spectra to find, in general, poor agreement for all theoretical line pro-

files. No theoretical line profile consistently agrees best to the data through-

out our entire range of ne. At ne ! 1017 cm−3, however, fits to Hγ using

VCS profiles appear to fit best with the lowest χ2
red. Assuming our measured

relative line shapes and strengths of Hβ and Hγ are accurate and that our

line shape comparison strategy is sound, this is consistent with none of the

theoretical line profiles we investigate sufficiently calculating Hγ and Hδ.

• We compare calculated Hδ transmission lines, using the conditions inferred

from fitting Hγ, to find relatively good agreement for all theoretical line pro-

files. This is evidence that the relative calculations of Hγ and Hδ are accurate

for all the theoretical line profiles we investigate in this work throughout our

range of ne. This may also suggest that our Hβ transmission line measure-

ment is systematically erroneous.

• Wemake the first measurements ofw5(ne), the reduction factor or occupation

probability associated with Hγ, using spectroscopic absorption data. Since

we measure spectral lines from the Balmer series in absorption, each shares

the same lower level (n = 2) population, which constrains the relative line

strengths and allows us to measure the reduction factor, wu, of a line as a

function of electron density, ne.

• We are the first to observe and temporally resolve the disappearance of the

Hδ absorption line into Hε and the bound-free continuum. Observing this

in absorption better constrains the measurement than observing in emission
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because a single level population describes the relative line strengths rather

than multiple. We find the event to occur in the hydrogen plasmas of two

different experiments at ne ∼ 20 × 1016 to 30 × 1016 cm−3.

7.4.3 Astrophysical Implications

Here we describe a potential implication of our results that reverberates

throughoutWD astrophysics – a higher mean mass for WDs. This affects numerous

studies (Section 1.2), including a significant (up to ∼ 1Gyr) decrease in the age of

the Galactic disk as determined from WD cosmochronology.

The plasma conditions we infer from fits to our measured Hβ and Hγ trans-

mission lines do not agree. Without an independent plasma diagnostic, we cannot

definitively say which set of inferred conditions are truly accurate, if either. Even

with another diagnostic, such as optical Thomson scattering (e.g., Gawron et al.

1988; Harvey-Thompson et al. 2012a,b), it is not clear that we can infer conditions

to the precision necessary to discriminate between the Hβ and Hγ transmission

line fit determinations, since this line-fitting method is so precise (σadopt " few or

several percent; Figures 7.7, 7.8, and 7.12).

Let us suppose that one of these determinations (from Hβ or Hγ) is more

accurate than the other. We have motivations to choose either. Theoretically, Hβ is

a lower energy transition, so it should be simpler to calculate than Hγ. Experimen-

tally, Hβ has larger optical depth. This results in a higher S/N measurement than

Hγ. It also leaves open the possibility of saturation or large optical depth issues sys-

tematically affecting our measurement. We continue to scrutinize our experiment
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to understand potential measurement uncertainties.

Let us assume that our Hβ measurement is more accurate and therefore so

are the inferred plasma conditions. This is interesting in the context of the spec-

troscopic method used in WD astrophysics because of a long-standing problem in

inferring different atmospheric parameters (i.e., Teff and log g) from different hy-

drogen Balmer lines (e.g., Bergeron et al. 1992). As we discuss in Section 7.2.1, an

ad hoc modification (βcrit × 2) to the reduction factors or occupation probabilities,

wu, introduced by Bergeron (1993) improves the consistency of conditions inferred

from different Balmer lines when using VCS line profiles. Tremblay & Bergeron

(2009) further improve the consistency with their approach to calculating H line

profiles and without using the ad hoc wu values.

However, all three methods – VCS with wu from Seaton (1990), VCS with

wu modified by using βcrit × 2, and TB with wu from Seaton (1990) – infer system-

atically lower surface gravities, log g, from lines with increasing principal quantum

number, n.

Fitting the Hβ absorption line observed in WD spectra infers the highest

log g and hence highest mass. If the Hβ determination is indeed most accurate,

this results in a higher spectroscopic mean mass, which improves the agreement

with the mean mass determined using the gravitational redshift method (Chapter 2;

Falcon et al. 2010b).
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7.5 The Next Generations

We design our experimental platform to measure time-resolved spectra of

relatively large photoionized plasmas from multiple lines of sight simultaneously.

Future investigationsmay extend beyondWD astrophysics, beyond plasma physics,

and beyond atomic processes. Here we list some future directions.

7.5.1 Testing Complete Redistribution

A widely used assumption or approximation in the theory of radiative trans-

fer is complete redistribution in frequency (e.g., Mihalas 1978), whose key conse-

quence, for our interest, is that the emission and absorption profiles of spectral lines

are identical. In theory, this assumption is valid at large optical depth (Holstein

1947). Other theoretical cases exist where this assumption fails (e.g., van Trigt

1976). To our knowledge, the validity of complete redistribution has never been

investigated in the laboratory with line profile measurements. Therefore, the simul-

taneous measurements of our plasma in emission and absorption provide the first

opportunity to do so.

7.5.2 Plasmas Not in Local Thermodynamic Equilibrium

The simultaneous collection of emission and absorption data also allow the

measurement of the populations of both the upper and lower energy levels of elec-

tronic transitions, respectively. For plasma diagnosis or analysis, this means shed-

ding any dependence on assumptions of relative level populations, such as local

thermodynamic equilibrium. It also means not relying on hydrodynamic simula-

222



tions to determine these populations. Therefore, the simultaneous measurements

offer a unique probe of plasmas not in local thermodynamic equilibrium. Since we

are the first to spectroscopically measure hydrogen plasmas in absorption at these

conditions, simultaneous measurements have never before been exploited in this

way.

7.5.3 Other Plasma Compositions

Using a gas cell provides versatility to our experimental platform because

it readily accepts fills of many compositions with minimal or zero modifications to

our hardware design or fielding procedures. As mentioned in Section 1.1.2, hydro-

gen dominates the photospheric composition of most WDs, and we classify these as

spectral type DA. Beginning our experiments with hydrogen is the logical choice.

We are now poised to explore astrophysical problems with WD photospheres com-

posed of other elements.

7.5.3.1 Helium

Helium-dominated (DB) WDs are the next most abundant spectral type

(e.g., Koester et al. 1981; Voss et al. 2007; Bergeron et al. 2011). One potential

area of exploration is the pressure shifts of helium lines, whose laboratory mea-

surements (e.g., Kobilarov et al. 1989; Heading et al. 1992; Pérez et al. 2003; Omar

et al. 2006) need further scrutiny and an extended ne range to validate the precise

theoretical calculations (e.g., Dimitrijevic & Sahal-Brechot 1990) critical for obser-

vational investigations (e.g., Falcon et al. 2012).
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We confirm the feasibility of measuring neutral helium emission lines using

our platform in experiments z2153–5.

7.5.3.2 Hydrogen/Helium

The neutral or van der Waals broadening of hydrogen lines by helium is

critical to model the atmospheres of cool WDs with mixed compositions (e.g. Berg-

eron et al. 1991; Koester et al. 2005). Since ours are some of the few experiments

to measure any hydrogen line profiles at ne > 1017 cm−3 and the only ones to do

so for multiple lines simultaneously, we suspect we will be the first to probe hydro-

gen/helium plasmas at these conditions to measure the aforementioned broadening

mechanisms.

7.5.3.3 Carbon/Oxygen

WDs with photospheres dominated by neutral and singly ionized carbon

and oxygen (hot DQ) are still a relatively new class (Dufour et al. 2007). Initial

spectroscopic fits to their observed spectra were quite poor (Dufour et al. 2008),

stimulating new line profile calculations (Dufour et al. 2011) that are ripe for labo-

ratory support.

In experiment z2590 we achieve plasma formation using a carbon dioxide

gas fill. Due to a low x-ray yield from that particular pulsed power shot experiment,

we require more experiments to assess the feasibility of experimentally measuring

relevant carbon/oxygen spectral lines and to confirm the accessible range of plasma

conditions.
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7.6 Closing Remarks

At the end of this dissertation I remind you that this project is just begin-

ning. Laboratory astrophysics performed this way – by engaging astronomers in

experimental physics – is just beginning. It is the assimilation amongst different

scientific fields that unites resources (telescopic and laboratory observation), gener-

ates perspective (from the astrophysics and high energy density communities), and

inspires countless minds (students, researchers, and the public).

We demonstrate a complete cycle. We work with astronomical observations

to highlight a clear astrophysical problem concerning white dwarf photospheres.

To address that problem, we design an experimental platform that creates and mea-

sures macroscopic (24 cm3) quantities of white dwarf photospheres. We build this

platform up from scratch, developing and maturing it. We perform, analyze, and

interpret unique laboratory measurements.

With all that we discover through and because of the process, we never stop

asking questions.

“Why couldn’t I have learned this even a week ago? It would have saved

me so much trouble. And computation time.”

Ever-wise Taisuke consoles me. “You’ll be saying that for the rest of your

life.”
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Clicks of chopsticks provide accompaniment as the waiter refills my water,

refills Thomas’ water, bypasses Guillaume’s full glass, refills Taisuke’s green tea.

We each deliver a ‘thank you’ without disturbing our conversation. Deeply involved

as always. And spilling over from the morning’s discussions at work. As always.

Random versus systematic uncertainties. Free parameters versus fixed pa-

rameters. Unreduced chi squared versus reduced chi squared. The world of spectral

fitting routines is just so incredibly sexy, I can’t believe it doesn’t boast more mag-

azines covers. Rolling Stone, I’m looking at you.

I fumble the unagi with my chopsticks. My hand retreats. And the four of us

observe the carefully-crafted nigiri, now overturned like a supine tortoise, undo its

strip of seaweed to release its clump of cradled rice. Slowly. Making sure I witness

the excruciating consequence of lacking skill with chopsticks.

I’m getting better. Not yet adept. But Taisuke’s taught me a lot. About

Japanese culture, customs, cuisine. Just as Guillaume’s taught us about French

culture, customs, cuisine. Just as I’ve provided explanation for a lot of the weird

things we do here in the States.

“It’s like I not only have to do something myself to understand some tech-

nical concept, but I have to hurt myself while doing it for it to really sink in.”

“Hindsight. . . ” Guillaume doesn’t need to finish the saying, as common in

France as it is here.

A waitress delivers our miso soup. With the meal. As Taisuke explains to us

is the custom. We’re used to having soup before the meal. Here. But in Japan miso

226



soup is treated differently. It’s like French fries (I know Guillaume’s right there.

Just a coincidence.)

“You don’t eat your fries before the meal. You eat them with the meal.”

The waitress smiles, nods. Her accent is deliciously charming. “Yes. Yes.

You learn lot from other cultures. We learn lot, too. Good to mix.”

Something zaps me. Inside. Mental. Psychological. Whatever. Not corpo-

real.

Draws my attention to the elegant tableau positioned in my periphery. Our

group. Astronomers and experimental physicists. Observers and theorists. Those

at this restaurant and those not. A representation having intimated quietly, patiently

for some months, years, now deciding to yell out its existence to me. Making sure

I see how it all fits together. Where it’s going. It. Our expertise. Our backgrounds.

Our strengths. Our weaknesses.

Everyone’s eyebrows raise. Casting inquisitive stares. Looking at me as if

my eyes have gone whichever direction is opposite of cross-eyed.

“Yes. . . cultures. . . or scientific disciplines. . . ”
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Appendix A

Measuring the Gas Fill Pressure

Laboratory experiments investigating plasmas generated inside gas cells of-

ten depend upon the precise determination of the particle or atom volume density,

which follows from measurement of the gas fill pressure. In particular, those study-

ing photoionized plasmas, such as ours, rely on knowing the particle density in

order to understand plasma formation, to design experiments, and to diagnose ex-

periments. However, performing experiments at the Z Facility, especially with our

experimental configuration, provides unique challenges to measuring this gas fill

pressure.

A.1 Challenges

Recall that we field our gas cell inside a large (> 60m3) vacuum chamber.

Relatively long (" 9m) feed lines supply the cell with gas fill. Measuring the pres-

sure outside of the vacuum chamber may infer pressures different from inside the

cell for multiple reasons, such as the conductivity of the feed lines or obstructions

in the system. Also, because of the inherent high-risk of “single shot” experiments,

it is a necessary assurance to confirm that gas successfully fills the cell. This mo-

tivates the first criterion for our method to measure the gas fill pressure: (1) in situ
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measurement.

In order to permit sufficient x-ray flux into the cell, we use a thin (∼ 1.5–

µm) Mylar window. This window can be susceptible to leaks and, if adjustments

are not made, prevent the experiment from reaching the intended initial conditions.

More troublesome, leaks can interfere with the conductive properties of the load

hardware, possibly faulting the z pinch from executing properly. This is especially

critical in the ZAPP environment where the consequence could be a failure to ob-

tain data for multiple, independent experiments (Rochau et al. 2014). Our second

criterion is: (2) real-time monitoring.

In the center of the Z vacuum chamber, the current return canister hous-

ing the z pinch has nine rectangular apertures (11x13mm) in its circular wall that

provide radial lines of sight to the z pinch allowing radiation to escape to irradiate

samples and through which for diagnostic instruments to observe. Closer to the

pinch, angular space for hardware becomes increasingly limited, and all hardware,

samples, and diagnostics coordinate so that all lines of sight are clear. Our third

criterion is: (3) the pressure measurement device must be small.

Coupling this device to a gas cell inside the vacuum chamber means de-

stroying the device with each experiment. (4) The pressure measurement device

must be relatively inexpensive.

Lastly, there is an additional systematic uncertainty for measuring pres-

sures at Z. The radiation and shock environment is unforgiving. This can cause

permanently-installed (outside the vacuum chamber) pressure sensors to drift out of
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calibration, necessitating frequent re-calibration. Also, the daily operating sched-

ule of a major facility such as Z requires highly integrated and coordinated perfor-

mances by many people in order to execute a pulsed power shot experiment safely,

timely, and successfully. (5) The measurement method must accommodate the Z

environment both physically and logistically.

To satisfy these criteria we arrive upon a “disposable” method that cou-

ples a piezoresistive pressure sensor to our gas cell. Piezoresistive pressure sen-

sors work by measuring the change in resistivity of a deformed diaphragm due to

applied pressure. This diaphragm is a thin silicon membrane with a wheatstone

bridge arrangement of gold wires etched onto the surface. Its deformation leads to

a change in length or cross-section of the wires which changes the resistivity and

hence output voltage (e.g., Smith 1954; Barlian et al. 2009). The sensor we procure

(Omega Engineering Inc. PX72 series) is small, relatively inexpensive, sensitive to

our pressure range of interest (< 100Torr), and independent of gas composition.

We perform calibration measurements prior to the Z experiment in a separate labo-

ratory so as not to interfere with daily Z operations. This appendix describes these

calibration measurements and our procedure to extract in situ gas fill pressures for

our experiment – as well as another ZAPP experiment (Mancini et al. 2009; Hall

et al. 2009, 2010, 2011, 2014) – fielded at the Z Facility.

A.1.1 The Pressure Sensor

Our pressure sensor (model PX72-1.5GV) couples to the gas cell with a

stainless steel nut for 1
8-inch tube fitting (Swagelok SS-200-NFSET). A bundle of
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conformable coaxial cables (Belden Inc. RG-405/U Type 1671A) – each with one

end severed, stripped, and soldered to a lead on the pressure sensor – deliver the

excitation voltage to the sensor and the differential voltage sensitive to differential

pressure to a multimeter or other absolutely-calibrated voltage measurement device.

For the experiment we make two voltage measurements that are in the tens

of mV range, the zero voltage, V0, corresponding to zero gas fill pressure and the fill

voltage, Vfill, when the gas cell is filled. We divide the difference of these voltages

by the linear proportionality factor, ∆V
∆P , we measure prior to the experiment during

calibrations to arrive at our gas fill pressure, P :

P =
Vfill − V0

∆V
∆P

. (A.1)

A.2 Calibrations

The primary calibration measurement records how the voltage produced by

the sensor changes with pressure, ∆V
∆P . By using this, rather than a direct absolute

conversion, we shed the concern of any zero voltage (V0) the sensor my possess. For

the PX72-1.5GV model, V0 can be positive or negative with a magnitude typically

" a few mV.

For the calibration measurements we place a blanked-off gas cell into a test

chamber to recreate the vacuum environment at Z. After evacuating the test cell

and chamber to a vacuum pressure of < 5 × 10−5 Torr, we valve off the cell from

the chamber and fill it with neon gas (which is inert and minimally hazardous) in

steps, recording the voltage from the pressure sensor (using an absolutely-calibrated
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Figure A.1 Calibration measurements of pressure versus voltage for a particular
sensor of the PX72-1.5GV model. For each set of measurements, we fit a line (red)
to determine ∆V

∆P . We repeat these measurements for the same sensor. Though the
offset (V0) may vary, the slope (∆V

∆P ) is reproducible within∼ 0.2 %

Fluke 189 True-rms Digital Multimeter) and the pressure from another transducer

(Omegadyne, Inc. model PX01C1-020A5T). Determining a valid ∆V
∆P requires that

the differential pressure measured by the Omegadyne transducer is accurate. The

absolute level of the pressure measurements is not important. We confirm that ∆P

is accurate to within 0.01 % when compared against an absolutely-calibrated ca-

pacitance manometer (Jacobs 1999) (MKS 626B Baritron R© ). The responses of

both our pressure sensor and the Omegadyne transducer are independent of gas
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composition. Figure A.1 plots example measurements of pressure versus voltage

for a PX72-1.5GV model sensor. We fit lines using a Levenberg-Marquardt least-

squares minimization (Markwardt 2009) to recover the linear proportionality fac-

tors or slopes, ∆V
∆P . Again, any offsets in either axis are unimportant when determing

these.

A.2.1 Reproducibility

Since we measure ∆V
∆P away from Z, we must confirm that, when we place

the sensor in the Z vacuum chamber with the gas cell, our ∆V
∆P value remains valid

and is reproduced as measured. The ambient temperature away from Z and at Z

are both nominally at room temperature, so we assume ∆V
∆P is free of temperature

effects. The actual sensitivity of our pressure sensors to temperature, however,

deserves further investigation.

Figure A.1 plots repeated calibration measurements (five) for a particular

pressure sensor. We see that V0 may vary between sets of measurements, but the

mean of the slopes 〈∆V
∆P 〉 = 0.6178mV Torr−1 with a standard deviation σ =

0.0015mV Torr−1, showing that ∆V
∆P is highly reproducible. We adopt σ as the

reproducibility in ∆V
∆P for a particular sensor. For this test sensor σ = 0.2 % of the

measured ∆V
∆P . Performing the same exercise of making (five) repeated measure-

ments for another pressure sensor (of the same model), we find a reproducibility

of σ = 0.1 %, giving evidence that the linear proportionality factors, ∆V
∆P , for all

sensors are similarly reproducible.

To determine a characteristic value for a typical sensor, we measure ∆V
∆P for
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multiple (four) sensors and find a mean value of 0.6039mV Torr−1 with a standard

deviation of 0.0118mV Torr−1, or 2.0 %. Later in Section A.3 when we convert

voltage to pressure, this characteristic value, ∆V
∆P

char, may be substituted for ∆V
∆P

for a particular sensor, if needed, while using the standard deviation as the charac-

teristic reproducibility, σchar. To optimize precision and to bypass any systematic

uncertainty of an arbitrary sensor possessing a ∆V
∆P value that departs from the norm,

we use the measured ∆V
∆P for individual pressure sensors.

A.2.2 Excitation Voltage

Figure A.2 shows how ∆V
∆P changes with excitation voltage, VE, for a partic-

ular sensor. This demonstrates the need to supply a precise and constant excitation

voltage to the pressure sensor during calibration and during the experiment at Z.

Not doing so necessitates correcting for mismatched excitation voltage.

The blue diamond in Figure A.2 is the “typical” ∆V
∆P (at VE = 5V) as quoted

by the manufacturer. The extrema (connected by the blue, vertical line; also at

VE = 5V) span our entire range of measured ∆V
∆P at all VE. As the manufacturer

concurs, to ultimately extract precise pressures requires calibration measurements

beyond theses nominal values.

Measuring this response to excitation voltage for multiple (six) sensors, we

find that 〈∆V
∆P /VE〉 = 0.120mV Torr−1V −1 with σ = 0.002mV Torr−1V −1 for this

collection of sensors. This is the characteristic value of ∆V
∆P /VE for the PX72-1.5GV

sensor. Its characteristic reproducibility of 1.7 % describes how this value may vary

between different pressure sensors of the same model.
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Figure A.2 ∆V
∆P as a function of excitation voltage, VE, for a particular sensor (black

diamonds). ∆V
∆P is linearly (red line) sensitive to VE, demonstrating the need for a

precise, constant power supply. Our measured values fall within the range quoted
by the manufacturer (blue), whose nominal values are not sufficient to extract a
precise pressure.

Looking further into dependencies on excitation voltage, we revisit the dis-

cussion on reproducibility. In Section A.2.1 we find that σ ≤ 0.2 % for two different

test sensors and assume all sensors are similar. This is for VE = 5.00V. Repeating

the exercise for two test sensors using VE = 6.00V, we again find small values of

0.1 %. For two sensors using VE = 7.00V, we find 0.1 and 0.4 %. All measured

values of reproducibility are minuscule. We take the conservative approach and use

the greatest of these values, ∼ 0.4 %, for σ of ∆V
∆P for all VE.
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Also in Section A.2.1, we find the standard deviation of ∆V
∆P among sensors,

or characteristic reproducibility to be σchar = 2.0 % of ∆V
∆P

char when using VE =

5.00V. For three sensors measured using VE = 6.00V, we find σchar = 2.2 %, and

for seven sensors measured using VE = 7.00V, σchar = 2.5 %.

A.3 Extracting Pressures

We are now ready to attach our sensors to gas cells and place the assemblies

into the vacuum chamber at Z.

Figure A.3 plots data (black) supplied by a pressure sensor measuring the fill

pressure for a hydrogen gas cell used in experiment z2553. Time starts at 0 s when

an automated LabVIEW program begins recording a voltage measurement (from a

National Instruments PXI-6259 Multifunction Data Acquisition device) each sec-

ond, providing us with a large number of measurements. We note that this samples

the voltage differently than the power meter used for the calibration measurements.

The power meter displays values that are averages over many measurements, which

smooths away the noise observed in Figure A.3. A National Instruments PXI-4110

Programmable DC Power Supply delivers the excitation voltage to the pressure sen-

sor. The figure shows a fill and purge of our gas cell (a practice to rid the cell of

contaminant gases) as well as the end of data recording when the z-pinch blast de-

stroys the sensor. For clarity, we remove the idle time between 1500–7850 s. This

reveals a slight pressure leak (and confirmed by additional transducers monitoring

the gas fill) in our gas cell manifested by the subtle drop in the voltage level bridging

these times. We notice a leak this small only because of the real-time monitoring
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Figure A.3 Example pressure sensor data measuring the fill pressure for a gas cell
used in experiment z2553. We leverage the time aspect of our data record by fitting
polynomials (red curves) to selected regions (yellow) to precisely measure the zero
voltage, V0, and fill voltage, Vfill.

aspect inherent in our method.

We leverage the large number of voltage measurements across time to de-

termine V0 and Vfill to high precision by fitting polynomials (red curves) to selected

regions of the data (yellow). For the zero voltage we fit the data recorded before the

first fill; the last fit value is V0. For the fill voltage we fit the data recorded before

the z pinch; the last fit value is Vfill. Here we use 4th-order and 2nd-order polyno-

mials, respectively. This implicitly assumes that any physical change in pressure in
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Table A.1. Measured H2 Gas Fill Pressures

Experiment Sensor ∆V
∆P P σP

(PS###) (mV Torr−1) (Torr) (Torr)

z2482 035 0.8264 22.96 0.07
z2483 036 0.8269 19.93 0.06
z2484 037 0.8509 17.85 0.06
z2552 039 0.8031 17.96 0.07
z2553 040 0.8487 10.63 0.05
z2554 041 0.8580 9.49 0.04
z2588 044 0.8583 10.53 0.05
z2589 045 0.8388 9.71 0.04
z2590a 046 0.8400 10.71 0.04

aThis experiment features a CO2 gas fill instead of the
usual H2.

the gas cell, such as from a leak, is smooth and relatively slow in time and that the

observed high-frequency fluctuations in the data are truly noise.

For this example, using the formal uncertainties returned by the fitting rou-

tine, we find Vfill − V0 = 9.03 ± 0.02mV, which is ∼ 0.2 % uncertainty. Using our

measured ∆V
∆P for this particular sensor with the adopted reproducibility σ = 0.4 %

and propagating the uncertainties accordingly, we extract P = 10.63 ± 0.05Torr.

Performing the method on other Z experiments with other pressure sensors (of the

same model) each with their own calibration measurements, we find ∼ 0.4 % un-

certainty in measured gas fill pressure to be typical. Table A.1 gives our measured

gas fill pressures, P , (column 3) and uncertainties, σP , (column 4) for selected ex-
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periments. This table also lists the unique pressure sensor used for each experiment

(column 2) following our naming convention (PS###) as well as its measured linear

proportionality factor, ∆V
∆P .

A.3.1 Systematic Uncertainties

The most significant systematic uncertainty that could lead to an inaccurate

measured pressure is in the determination of V0. It is essential when selecting the

data region to fit for V0 (e.g., yellow region before the first fill in Figure A.3), that the

sensor has sufficient time to equilibrate its zero voltage. Sometimes this relaxation

is immediate. Sometimes the relaxation takes tens of minutes. This varies between

sensors, which hints that it is quite plausibly a result of our fabrication process (i.e.,

soldering the stripped coaxial cables to the pressure sensor leads). The time scale,

though, points toward a temperature effect.

Another possible source of systematic uncertainty is the choice of poly-

nomial used to determine V0 and Vfill. In our example we choose 4th-order and

2nd-order polynomials, respectively, but often polynomials of various degrees are

suitable. If we instead use 3rd-order and 2nd-order polynomials, our determined P

increases 0.2 %. This is within our uncertainty. However, if we use 4th-order and

3rd-order polynomials or 3rd-order and 3rd-order polynomials, P increases by 0.8

and 0.9 %, beyond our uncertainties but on the same order.
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Appendix B

Additional Photographs

In December 2013, two hydrogen plasmas and one carbon/oxygen plasma

akin to those that make up DA and hot DQ white dwarf atmospheres, respectively,

filled the gas cells shown in Figure B.1. These cells, resting side by side, correspond

to experiments z2588, z2589, and z2590, though I cannot say which one is which.

As with the cell in Figure 3.7, debris from the z-pinch blast litters the faces

of these cells. For the cell on the left and the cell in the center, we see holes in the

axial spacers (Section 3.2.3) resulting from shrapnel. Figure B.2 views one of the

punctured axial spacers from the side revealing both the entrance and exit wounds.

In Figure B.3 I don Tyvek R© coveralls and nitrile gloves, the personal pro-

tective equipment required when working with our beryllium-contaminated gas cell

hardware once it has survived a pulsed power shot experiment at the Z Facility. I

title this frontal portrait Laboratory Gothic. The Z Machine is my house. The gas

cell is my pitchfork.

The photograph in Figure B.4, taken at a local Chinese restaurant during

lunch, depicts the collaborative nature of our laboratory work. On this day, G.

Loisel, T. Nagayama, and I (none pictured) discussed the “Dual Length” gas cell

design (Section 4.1.2) using a visual aide created with objects available at our table.

241



Figure B.1 Gas cells fielded for experiments z2588, z2589, and z2590 in December
2013.
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Figure B.2 An axial spacer punctured from shrapnel from the z-pinch blast.

This schematic is a top view of the gas cell. Z-pinch x-rays (forks) are incident on

the central gas cell cavity (horizontal white napkin), flanked by two buffer cavities

(vertical white napkins). The sugar (and sugar substitute) packets illustrate different

regions of the hydrogen plasma. Both lines of sight, which observe the plasma
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Figure B.3 Laboratory Gothic: A reverent experimenter spends a quiet moment
with his gas cell.

perpendicularly to the x-rays, first traverse a boundary plasma (pink packet) at the

interface of the buffer and central cavities. Then each line of sight goes through an

intermediate region of the hydrogen plasma that is at the same plasma conditions but

a different length (white packets) before seeing the region immediately adjacent to

the back-lighting surface (yellow packet). Assuming geometric symmetry, the two
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Figure B.4 Schematic of the “Dual Length” gas cell used during discussions at a
local Chinese restaurant. X-rays from the z-pinch (forks) are incident on the central
gas cell cavity (horizontal white napkin) surrounded by its two buffer cavities (ver-
tical white napkins). We illustrate different hydrogen plasma regions with colored
sugar (and sugar substitute) packets. This is not made to scale.

lines of sight are identical except for a different length of the intermediate plasma

region (white packets). The schematic is not constructed to scale.
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M. A., & González, M. Á. 2009, Phys. Rev. E, 79, 046402
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Gawron, A., Maurmann, S., Böttcher, F., Meckler, A., & Kunze, H.-J. 1988,

Phys. Rev. A, 38, 4737

Gianninas, A., Bergeron, P., & Ruiz, M. T. 2011, ApJ, 743, 138

Gigosos, M. A., & Cardeñoso, V. 1996, Journal of Physics B Atomic Molecular

Physics, 29, 4795
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Stehlé, C., & Hutcheon, R. 1999, A&AS, 140, 93
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