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Virtual memory in modern computer systems provides a single abstrac-

tion of the memory hierarchy. By hiding fragmentation and overlays of physical

memory, virtual memory frees applications from managing physical memory

and improves programmability. However, virtual memory often introduces no-

ticeable overhead. State-of-the-art systems use a paged virtual memory that

maps virtual addresses to physical addresses in page granularity (typically 4

KiB ).This mapping is stored as a page table. Before accessing physically ad-

dressed memory, the page table is accessed to translate virtual addresses to

physical addresses. Research shows that the overhead of accessing the page

table can even exceed the execution time for some important applications. In

addition, this fine-grained mapping changes the access patterns between vir-

tual and physical address spaces, introducing difficulties to many architecture

techniques, such as caches and prefecthers.
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In this dissertation, I propose architecture mechanisms to reduce the

overhead of accessing and managing fine-grained virtual memory without com-

promising existing benefits. There are three main contributions in this disser-

tation.

First, I investigate the impact of address translation on cache. I exam-

ine the restriction of virtually indexed, physically tagged (VIPT) caches with

fine-grained paging and conclude that this restriction may lead to sub-optimal

cache designs. I introduce a novel cache strategy, speculatively indexed, phys-

ically tagged (SIPT) to enable flexible cache indexing under fine-grained page

mapping. SIPT speculates on the value of a few more index bits (1 - 3 in our

experiments) to access the cache speculatively before translation, and then

verify that the physical tag matches after translation. Utilizing the fact that a

simple relation generally exists between virtual and physical addresses, because

memory allocators often exhibit contiguity, I also propose low-cost mechanisms

to predict and correct potential mis-speculations.

Next, I focus on reducing the overhead of address translation for fine-

grained virtual memory. I propose a novel architecture mechanism, Embedded

Page Translation Information (EMPTI), to provide general fine-grained page

translation information on top of coarse-grained virtual memory.

EMPTI does so by speculating that a virtual address is mapped to

a pre-determined physical location and then verifying the translation with a

very-low-cost access to metadata embedded with data. Coarse-grained vir-

tual memory mechanisms (e.g., segmentation) are used to suggest the pre-
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determined physical location for each virtual page. Overall, EMPTI achieves

the benefits of low overhead translation while keeping the flexibility and pro-

grammability of fine-grained paging.

Finally, I improve the efficiency of metadata caching based on the fact

that memory mapping contiguity generally exists beyond a page boundary.

In state-of-the-art architectures, caches treat PTEs (page table entries) as

regular data. Although this is simple and straightforward, it fails to maximize

the storage efficiency of metadata. Each page in the contiguously mapped

region costs a full 8-byte PTE. However, the delta between virtual addresses

and physical addresses remain the same and most metadata are identical. I

propose a novel microarchitectural mechanism that expands the effective PTE

storage in the last-level-cache (LLC) and reduces the number of page-walk

accesses that miss the LLC.
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Chapter 1

Introduction

Virtual memory has been introduced to computer systems for efficiency,

programmability, and security. It creates a contiguous address space for each

process, such that programmers are not required to deal with fragmentation

or overlays of physical memory explicitly. In addition, virtual memory enables

fine granularity memory mapping. In state-of-the-art systems, this mapping

is usually achieved with 4 KiB pages. By mapping virtual memory to physical

memory with such fine-grained pages, non-contiguous physical memory can be

efficiently utilized to satisfy contiguous virtual memory allocations. Virtual

memory also provides various metadata, including access permissions, page

attributes, and access information, which are necessary for correct and efficient

system operation. In fact many additional uses of metadata such as tracking

access counts [59] and monitoring memory accesses [85] have been proposed.

1.1 The Cost of Fine-Grained Paged Virtual Memory

Everything comes at a cost. State-of-the-art virtual memory cannot

provide all features mentioned above while keeping the overhead low. Three

major issues with current virtual memory systems are summarized below:

1



(1) The fine-grained virtual to physical mapping may change access

patterns between virtual and physical address spaces. This indirection brings

difficulties to many architecture techniques. For example, virtually indexed,

physically tagged (VIPT) caches can only be indexed with partial addresses

within a page boundary. For physical address based prefetching mechanisms,

crossing page boundaries can be harmful [23]. These either directly hurt per-

formance, or constrain trade-off options, leading to sub-optimal designs.

(2) Main memory and most caches are physically addressed. Before

accessing them, address translations must be performed. In standard 4 KiB

paged virtual memory, the memory mapping is stored in page tables with

each entry containing the translation information and other metadata for a

page. To reduce page table storage, radix tree structures are employed in most

architectures, including x86 [41] and ARM [6]. Each translation is obtained by

a page walk with multiple sequential memory look-ups. Mechanisms such as

translation lookaside buffers (TLBs) and memory-management unit (MMU)

caches are used to accelerate this look-up process. But these on-chip structures

cannot be scaled up efficiently. For page walk intensive workloads, up to 83.1%

of execution time may be spend on page walks in a processor with a 2-level

TLB and MMU caches [9].

(3) Metadata caching is critical. While dedicated buffering structures,

such as TLB and MMU caches, are used for better performance, the total

capacity is constrained by limited on-chip storage. Caching metadata in the

regular data cache hierarchy also plays an important role in reducing the la-

2



tency of address translation [64, 72]. Current caching schemes for metadata

that simply treat metadata as regular data fail to maximize storage efficiency.

The redundancy of page-grained metadata has been investigated by Basu et

al. [9] who find that the per-page permissions are identical for vast majority

of pages. Prior research [89, 70] also suggests that the contiguity of address

mapping generally exists beyond a page boundary. Therefore, the mapping of

many pages in the same contiguously-mapped region can be represented with

a single delta between virtual addresses and physical addresses and a single

set of permissions.

1.2 The Real Implications of Fine Granularity

Enormous effort has been spent on reducing the cost of fine-grained vir-

tual memory, mainly in two directions. The first is to strictly keep fine-grained

virtual memory and focus on improving microarchitectural support, such as

introducing larger and more efficient TLBs and MMU caches. The second

direction completely gives up on fine granularity and employs a coarser gran-

ularity, exchanging flexibility, compatibility, programability, and fine-grained

metadata for lower overhead. Instead of going to either extreme, I identify

better tradeoffs between fine and coarse granularity memory management. As

an example, previous work [70] and my experiments (Figure 6.2) show that

memory mapping is frequently contiguous across page boundaries, even with

the standard 4KiB paged virtual memory. Maintaining fine-grained mapping

within a contiguously-mapped region is not necessary, yet it wastes storage

3



space and incurs runtime overhead. At the same time, coarser memory map-

ping granularity can be carefully used within the contiguously-mapped region

without hurting the flexibility of fine-grained memory mapping. In this disser-

tation, I explore a pay-as-you-go approach for supporting fine-grained pages.

Compatibility-wise, I do not compromise the ability to use fine-grained paging.

Programmers are always free from porting source code. Performance-wise, I

propose various schemes to remove the unnecessary overhead, utilize the “free”

contiguity mentioned above, and make sure the cost of fine-grained virtual

memory is paid only when necessary.

1.3 Thesis Statement

Current fine-grained paged virtual memory provides appealing features

with significant overhead, e.g., long translation latency and changed access pat-

terns. Future virtual memory systems can reduce this overhead and approach

the overhead of coarse-grained paging without compromising programmability,

efficiency, and metadata.

1.4 Contributions

The goal of my dissertation is to enable efficient fine-grained paged

virtual memory mechanisms that resolve the issues mentioned above, with-

out compromising existing benefits. To achieve this goal, I develop user-

transparent, low-overhead architecture mechanisms on top of existing, stan-

dard computer systems that improve system efficiency while maintaining back-
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ward compatibility. In the first part of this dissertation I analyze issues in ex-

isting state-of-the-art systems, and evaluate their impact. In the second part

of the dissertation, I propose various novel architecture mechanisms to address

these issues, quantitatively evaluate the effectiveness of proposed mechanisms,

and compare with prior work. To summarize the main contributions of my

dissertation:

• I examine the restriction of virtually indexed, physically tagged (VIPT)

caches with fine-grained paging and conclude that this restriction may

lead to suboptimal cache designs. I introduce a novel cache strategy,

speculatively indexed, physically tagged (SIPT) to enable flexible cache

indexing under fine-grained page mappings. SIPT speculates on the

value of a few more index bits (1 - 3 in our experiments) to access the

cache speculatively before translation and then verify the physical tag

match after translation. Utilizing the fact that a simple relation generally

exists between virtual and physical addresses, because memory allocators

often exhibit contiguity, I also propose low-cost mechanisms to predict

and correct potential mis-speculations.

• I propose a novel architecture mechanism, Embedded Page Translation

Information (EMPTI), to provide general fine-grained page translation

information on top of coarse-grained virtual memory. EMPTI does so

by speculating that a virtual address is mapped to a pre-determined

physical location and then verifying the translation with a very-low-cost

5



access to metadata that is embedded with the data. Coarse-grained vir-

tual memory mechanisms (e.g. segmentation) are used to suggest the

pre-determined physical location for each virtual page. Overall, EMPTI

achieves the benefits of low overhead translation while keeping the flex-

ibility and programmability of fine-grained paging.

• I revisited prior research on address mapping contiguity and redundancy

of per-page permissions, and propose Delta Caching to achieve more

efficient, yet flexible metadata caching. Delta caching provides up to

4× higher storage density than when 4KiB page table entries are stored

as data, and does not compromise mapping flexibility and fine-grained

metadata. By converting DRAM accesses incurred during page walks

into LLC hits, delta caching removes a substantial fraction of page walk

overhead, when combined with existing techniques, Delta Caching out-

performs THP.

1.5 Dissertation Organization

The rest of this dissertation is organized as follows: Chapter 2 provides

background on virtual memory and clarifies terminologies; Chapter 3 discusses

challenges this dissertation tries to address; Chapter 4 revisits design con-

strains in virtually indexed, physically tagged (VIPT) caches. I propose spec-

ulatively indexed, physically tagged (SIPT) caches to remove these constrains.

I evaluate the benefit in terms of both performance and energy. Chapter 5

focus on reducing the cost of virtual to physical translation. I present and

6



evaluate Embedded Page Translation Information (EMPTI). With EMPTI,

low translation overhead and fine-grained paging can be achieved at the same

time. Chapter 6 address the inefficiency of current metadata storage in the

data cache hierarchy by introducing Delta Caching. Chapter 7 concludes this

dissertation.
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Chapter 2

Background and Terminology

2.1 Fine-Grained Virtual Memory

The standard 4 KiB paged virtual memory has evolved into the domi-

nant memory management scheme. Its strength is that virtual pages are a sin-

gle abstraction for all memory-management needs and their fine-grained nature

and flexible mapping enable numerous optimizations and system functions.

Page-based virtual memory works by having applications only use virtual ad-

dresses, which are then mapped to physical addresses via an OS-maintained

page table. Because of increasing memory capacities, current systems utilize

a multi-level hierarchical page table structure. As an example, current 64-bit

x86 processors from Intel [41] and AMD [1] use a 4-level page table.

Before accessing data, a memory operation must translate the virtual

address into a physical one, requiring a page walk with up to 4 memory accesses

for address translation, on top of the memory access for the data (Figure 2.1).

For each level, the corresponding entry can be located by adding an offset

from part of the virtual address to the base address from a pre-defined register

(CR3 in x86) or the result of last level. By repeating this look-up 4 times,

an L1 Page Table Entry (PTE, Figure 2.2) from the hierarchical page table is
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loaded to the MMU. The MMU then decodes the PTE, and uses the upper

bits of the page base address or physical frame number (PFN) to locate the

physical base address of the page. The metadata in the permission bits are

also checked. With the PFN and offset bits within the virtual address, the

actual data can then be located and accessed in physical memory.

2.1.1 Translation Lookaside Buffers

To overcome the latency of indirection, translation lookaside buffers

(TLBs) are used [29]. By caching address mapping information in a dedicated

hardware buffer, TLBs eliminate the overhead of fetching paging information

from memory in most cases. However, some applications have poor spatial lo-

cality and exhibit frequent TLB misses, which significantly impairs application

performance as memory is repeatedly accessed to perform translations [57, 9].

Various techniques have been proposed to improve the efficiency of
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TLBs. TLB clustering [69] enlarge the reach of a TLB by storing mapping

of contiguous pages as one TLB entry. Prefetching is another technique that

has been proposed for improving TLB hit rate and shows benefits for some

applications [44, 55, 76]. However, the effectiveness of these techniques is

limited by their ability to identify access patterns, which proves challenging

for applications that make irregular memory accesses.

An early alternative to TLBs is the use of inverted page tables [16].

Instead of caching translations on chip, inverted page tables act as a large

in-memory cache of translations. Part of the virtual address is used directly,

or after hashing, as a physical address into the inverted page table, and on

a hit, the inverted page table returns a tag to verify whether the translation

information is valid for the virtual address that queried it. Inverted page tables

decrease, but do not eliminate, the number of memory accesses required to fill

a TLB entry.

2.1.2 Memory-Management Unit (MMU) Caches

Another approach is to utilize the hierarchical page structure to increase

coverage by caching page directory entries (L2 PTEs, L3 PTEs, and L4 PTEs

in Figure 2.1) in a dedicated MMU cache [8, 12, 41, 11]. This approach

increases translation caching coverage effectively for some applications, but

still suffers from memory accesses for page table levels that are closer to the

leaves of the page table radix tree.
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2.2 Coarse-Grained Virtual Memory

The standard 4 KiB paged virtual memory provides appealing features

such as flexible address mapping and fine-grained metadata. However, address

translation in such a fine granularity can still be very costly even with state-

of-the-art processors with a 2-level TLB and MMU caches [9]. In contrast,

another solution is to coarsen the granularity of address mapping. Although

various schemes have been previously proposed or implemented, in general,

there are three approaches to employ coarser granularity. One big issue with

all these schemes is compatibility with many existing system features and

optimizations.

2.2.1 Direct Segments

Direct segments [18, 20, 9] use range-based translation, in which large

contiguous virtual regions are mapped to contiguous physical ones. Regions

and segments make translation simple and practically eliminate all translation

overhead. However, the absence of fine granularity protection and mapping

does place limitation on system management and application characteristics.

This can significantly limit their applicability. Developers need to find memory

allocations that can be safely managed by direct segments. Source code modi-

fication is also required to opt-in or opt-out of direct segments explicitly. And,

there is significant porting effort of libraries. This deficiency can be addressed

by increasing the number of regions and thus more closely approaching the

flexibility of fine-grained pages only when necessary. However, when the num-
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ber of regions grow, the same issues as TLB coverage and TLB misses arise.

Segments have been popular in the past for specialized high-performance and

embedded systems, but have lost popularity to ubiquitous standardized paging

schemes or have been combined with paging [73, 74].

2.2.2 Coarse-Grained Pages

Superpages [82, 81, 63] and hugepages [14, 53, 5] enlarge the standard

translation granularity to improve the effectiveness of the TLB and reduce

translation overhead. By enlarging the granularity of address mapping and

management, the coverage of the TLB can be increased. However, larger

page sizes increase the working set size [83], rely on large contiguous memory

regions, and fail to provide fine granularity protection. Holes between small

non-continuous regions can lead to wasted memory. A single 4KiB dirty page

can cause the write back of the whole mostly clean large page in current

hardware implementations [5, 14]. Even for applications with suitable memory

behavior, it is challenging to use coarse-grained pages because the optimal

page size depends on the application, system, and dynamic characteristics

of the inputs. Note that academic research on superpages addresses some

of these limitations, but not all [82, 81]. For example, in NUMA systems,

large pages may lead to performance loss due to load imbalance and poor

locality, which might entirely offset the benefits from fewer page walks [27].

In addition, forming coarser pages requires management in the OS and adds

overhead that can be significant. This is apparent with the THP mechanism of
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Linux for which I measure significant management costs with some benchmarks

(e.g., 24% for IS.C and 10% for mcf), and the active effort to improve OS

support [52].

2.2.3 Redundant Memory Mappings

Redundant Memory Mappings (RMM) [46] maintain both region-based

translation information and fine-grained pages for the same addresses to im-

prove performance while maintaining compatibility when fine-grained pages

are a necessity. The TLB reach is increased with a range TLB and the regular

TLB can take care of any non-contiguous spaces. However, the fine granu-

larity metadata is not available in a range TLB and extra OS-management

effort is required. For example, the OS may be required to allocate consecu-

tive physical pages to consecutive virtual pages eagerly at allocation time and

set accessed and dirty bits at allocation time, instead of relying on hardware

to maintain this information dynamically, increasing overhead and potentially

significantly coarsening the granularity of writing data out of memory. The

OS must also maintain and apply policies for breaking regions and coalescing

pages.

2.3 L1 Cache Indexing

Due to its critical impact on performance, much effort has been invested

to improve L1 performance. The L1 presents challenging tradeoffs between hit

rate and access latency. Access latency includes the virtual memory address
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translation latency (TLB lookup), tag array access and matching, and the

data access itself. In order to push latency down, all three components should

ideally overlap. Tag and data accesses are overlapped by accessing all ways

simultaneously and delivering only tag-matching data (with a switch or mul-

tiplexer). Overlapping those two accesses with address translation is more

challenging because an access can not start before the address is known. The

simplest cache design indeed performs translation before L1 access begins.

This design is called a physically-indexed physically-tagged (PIPT) cache be-

cause virtual addresses (VAs) are not used at all in the L1. While simple,

the translation overhead is not hidden and access latency is often considered

too high. Current designs solve the latency problem and enable access and

translation overlap in one of two ways.

2.3.1 Virtually Indexed, Virtually Tagged Caches

The first solution is to translate virtual addresses (VAs) after the L1

is filled, thus accessing the cache purely with VAs. This design is known

as virtually-indexed virtually-tagged (VIVT) and eliminates the translation

latency for accessing the cache. However, relying purely on VAs for most

memory accesses (as most are L1 hits) presents significant complications for

cache management and coherence because software maps multiple VAs to the

same physical address (synonyms) and may also map the same virtual address

to multiple physical addresses across different address spaces (homonyms).

Prior work has developed solutions, but the design is more complicated than
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the VIPT alternative, described below [48, 30].

2.3.2 Virtually Indexed, Physically Tagged Caches

The second solution relies only on the offset bits of the VA for com-

puting L1 array locations; the offset bits are not translated and can hence

be used at the same time translation proceeds. Before data is delivered, the

tag is compared to the fully translated physical address (PA). This design

is called virtually-indexed physically-tagged (VIPT). Virtually indexed, physi-

cally tagged (VIPT) caches are more appealing and popular among all three

variants (PIPT, VIVT and VIPT) because they combine the strong correctness

and simple coherence guarantees of PIPT caches with practically zero-latency

translation. All addresses have the full physical address available through the

tags for correctness and coherence. At the same time, the latency of transla-

tion can be fully hidden by accessing the cache arrays in parallel with only the

page offset bits that are never modified by address translation. However, the

important tradeoff made is the constraints on cache parameters. Specifically,

each set is limited in capacity to a single virtual memory page. Therefore, the

cache capacity is coupled with its associativity: capacity = #ways×4KiB, as-

suming common 4KiB page granularity. For example, many current processors

have 32KiB 8-way set-associative caches [10, 15, 19]. While high associativ-

ity reduces the conflict miss rate it also adds latency, which is potentially a

suboptimal design point when compared to a larger lower-associativity cache.

Furthermore, L1 cache access energy is also coupled with associativity because
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all ways are typically accessed in parallel to reduce latency.
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Chapter 3

Problem Statement and Motivation

3.1 VIPT Cache Design Space with Fine-Grained Page
Mapping

With a conventional virtually indexed, physically tagged (VIPT) data

L1 cache, the cache associativity is inflated in order to provide sufficient capac-

ity while meeting the VIPT indexing constraint. For example, Intel Haswell

processors, have a 32KiB 8-way set-associative L1 data cache with 4-cycle ac-

cess latency. This constraint in VIPT caches design may lead to suboptimal

configurations.

I explore the capacity and associativity design space with Cacti 6.5 [62],

and use the Haswell L1 cache configuration as the baseline. I simulate L1

caches with the configurations and parameters summarized in Table 3.1 and

present the latency of the different configurations relative to the baseline in

Figure 3.1. For each capacity and associativity, I sweep the number of read

ports and the number of banks and show the range and mean of relative

latencies for each configuration. The baseline for each bank/port configuration

is always 32KiB with 8 ways.

While both capacity and associativity affect latency, associativity has
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Technology 32 nm
Cache line size 64 Bytes

Capacity 16 KiB, 32 KiB,
64 KiB, 128 KiB

Associativity 2-way, 4-way, 8-way,
16-way, 32-way

Access mode Parallel data and tag access
Ports 1 or 2 for read,

1 for write
Banks 1, 2 or 4 banks

Table 3.1: L1 cache configurations.
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Figure 3.1: L1 cache latency relative to
32KiB 8-way baseline.

the greater impact. This is especially the case when increasing associativity

from 4 to 8 ways. For example, we can reduce the latency of a 32KiB cache to

2 cycles by reducing its associativity to 2 ways. However, this configuration is

not possible with VIPT and 4KiB pages because it needs 13 index bits, one

more than the 12 offset bits of the page. Configurations that are not feasible

for VIPT are shaded light blue while those that are feasible are shaded dark

blue. Unfortunately, perhaps the most desirable configurations are currently

infeasible.

The next question is what impact these tradeoffs have on application

performance. I run applications from SPEC CPU 2006 [35] suite and SPEC

CPU INT 2017 [80] with reference inputs. In addition to the large-memory

footprint applications of SPEC INT 2017 (>8GiB for many), I also evalu-

ate large-memory big-data applications: graph500 (graph processing) [32] and

DBx1000 with the ycsb workload (database) [87], each configured to use more

than 4GiB of memory. For each application I collect 500 million instructions at

a SimPoint [79]. While different applications exhibit different characteristics,
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Figure 3.2: IPC with various L1 cache configurations for an OOO core, nor-
malized to the baseline L1.
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Figure 3.3: IPC with various L1 cache configurations for an in-order core,
normalized to the baseline L1.

both big-data applications and the large-footprint SPEC 2017 applications are

not outliers w.r.t. SPEC CPU 2006 applications.

I simulate both an OOO core with a 3-level cache hierarchy and an

in-order core with a 2-level cache hierarchy. Based on the results shown in

Figure 3.1, four desirable configurations are selected. The detailed parameters

are listed in Table 4.1 of Chapter 4. Note that these configurations are not

feasible due to the VIPT cache-indexing constrains.

In conclusion, relaxing the indexing constrains in a VIPT cache and

enabling larger capacity and/or lower latency can be very beneficial. How-

ever, it is correct only if the extended bits also remain the same after address

translation. Handling these extra index bits and guaranteeing the correctness
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properly is challenging.

3.1.1 Challenge I: Enabling Effective Cache Indexing

I propose speculatively indexed, physically tagged caches, where every

cache access starts with speculatively accessing the L1, assuming that all nec-

essary index bits will remain the same after translation. Then correctness is

validated after address translation, which is done in parallel to tag matching

with the VA. If the speculation succeeds, the data can be served as fast as a

VIPT cache. If it fails, another access with index bits from the newly trans-

lated physical address will be issued, and in this case SIPT works in the same

way as a PIPT cache. Obviously, the speculation efficiency is critical to SIPT.

I propose to use a light-weighted predictor to improve speculation accuracy.

Ideally, the predictor identify accesses with unchanged index bits, continues

speculation with them, and furthermore, predicts the correct index bits in the

PA for those accesses in which index bits are changed by translation.

3.2 Deficiency of Address Translation in Fine-grained
Paging

When a translation misses in the TLBs, a page walk is required to

complete translation. As illustrated in Figure 2.1, the page walk in hierar-

chical page tables requires multiple memory accesses. These memory accesses

increase the pressure on the memory sub-system. For example, with x86 4-

level page tables, one data access may require 5 memory accesses in the worst
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case. In addition, most caches and main memory are physically addressed, the

translation must be completely finished before issuing the memory access for

data. The page walk latency is on the critical path of these data accesses. It

should be noticed that previous work suggests page walks typically hit in the

data cache hierarchy [45]. However, because of the large gap in the latency of

main memory and the caches, even the few page-walk requests that miss the

caches have significant overhead [24].

3.2.1 Challenge II: Page Walk Latency

The first challenge addressed in this dissertation is the long latency of

page walks. Many techniques have been proposed to improve the TLB hit rate

by prefetching or coalescing TLBs [44, 55, 76, 69], but they all rely on cer-

tain access pattern of applications. Various MMU cache schemes [8, 12, 11] are

used to enlarge the coverage of partial translations if a TLB miss occurs. How-

ever, even a perfect MMU cache may still suffer from the numerous accesses

to the last level of the page walk. Both TLBs and MMU caches are on-chip

structures and scaling them to match the growing of memory capacity is im-

possible. Even with large, multi-level TLBs to reduce the frequency of page

walks and MMU caches to reduce the number of memory accesses per page

walk, the page walk overhead can still exceed execution itself [9]. Reducing the

latency of page walks, especially when a page walk access misses the last-level

data cache is critical. As an orthogonal solution to reduce address transla-

tion overhead, I propose Embedded Page Translation Information (EMPTI)
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to embed translation information and other metadata with data. Thus, the

data access and address translation can be done with only one memory access

and the latency of the page walk can be avoided. However, this simple idea

has one big flaw: even if we have data and translation information co-located

and they can be accessed with one access, we still need to know the location

first. I propose to resolve this issue by utilizing coarse-grained virtual memory

schemes and employ EMPTI on top of them.

3.3 The Absence of Fine-Grained Metadata in Coarse-
grained Virtual Memory

Coarse-grained virtual memory schemes such as direct segments, huge

pages, and RMM can effectively reduce address translation overhead. By en-

larging the granularity of address mapping, the address space can be managed

with minimal amount of translation information. However, coarsening the

granularity of translation sacrifices the fine-grained metadata that is available

with fine-grained pages. Not having this metadata can be problematic. For

instance, many libraries need to be ported if changing the page size and protec-

tion and clean/dirty status may incur large overheads when not fine enough.

Even as previous work [9, 46] claims that many memory regions do not require

fine-grained metadata, they rely on developers to modify code and give direc-

tives for opt-in and opt-out coarse-grained virtual memory. These directives

have to be precise and absolutely correct. In addition, coarse-grained transla-

tion requires address coalescing. Because the coarse-grained mapping admits
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no exceptions in a single contiguous region, any conflicts need to be resolved

by employing smaller regions. In summary, I conclude that the absence of fine-

grained metadata in coarse-grained virtual memory reduces programmability

and flexibility, introducing significant challenges in many contexts.

3.3.1 Challenge III: Coupled Translation and Metadata

The second challenge addressed in this proposal is coupling transla-

tion and metadata. Conventionally, translation information and metadata

are managed in the same structure and maintained in the same granularity.

This legacy unnecessarily limits our design space and introduces the dilemma

that we wish to utilize coarse-grained translation for speed but desire the pro-

grammability and flexibility benefits of fine-grained metadata. I propose to

separate the granularity of address mapping and metadata management in a

novel way that maintains the full richness of current metadata at fine-grained

page granularity while achieving efficient translation. Specifically, a coarse-

grained virtual memory (e.g. direct segments) will be used to manage address

translation, but this translation is treated as a speculative hint. When access-

ing memory translation information in EMPTI will be checked to validate the

speculation. If speculation fails, the conventional page walk will be employed

to ensure the correctness. With EMPTI, metadata are always maintained in

fine granularity and the per fine-grained page translation information enables

gaps in mostly contiguous regions.
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3.4 Metadata in the Data Cache Hierarchy

The overhead of page-table based virtual memory address translation

and metadata access continues to be a significant challenge [9]. I observe

that while translation-specific caching structures (e.g., TLBs and page-walk

caches [8]) are very important, the regular data cache hierarchy also plays

an important role in reducing the latency of address translation [64, 72]. My

study in Chapter 6 shows that PTEs can take substantial LLC capacity. On

an Intel Core i5-4590 processor with 32GiB main memory, PTEs take up to

4MiB out of the 6MiB LLC.

3.5 Redundancy in Metadata

Previous work suggests two types of redundancy in metadata. First,

it is not necessary to keep a copy of permissions for every page because the

vast majority of pages (more than 99%) use the same permissions (readable

and writable) [9]. In addition, the physical address takes the largest space in

a PTE (Figure 3.4a), while previous work [70] suggests that the OS naturally

assigns contiguous physical pages to contiguous virtual pages (Figure 3.4b).

Thus, all pages in the same contiguously-mapped region share the same delta

between virtual addresses and physical addresses. By storing one delta for a

contiguously-mapped region instead of physical addresses for all pages, signif-

icant cache space can be saved and more pages can be cached with the same

capacity.
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Figure 3.4: Natural address mapping contiguity.

3.5.1 Challenge IV: Efficient Metadata Caching

Metadata are usually small-sized supporting data to serve various func-

tionality of the system. Yet, metadata can take a substantial fraction of cache

capacity in state-of-the-art processors. At the same time, the highly redundant

nature of metadata indicates opportunities for more efficient representation

and storage. I propose to use Delta Caching for better caching efficiency of

page tables. Delta caching modifies the PTE by replacing the physical frame

number with the delta between virtual address and physical address. All pages

in the same contiguously-mapped region can be represented with it. For each

page, instead of storing a full 8B PTE, a 2B pointer to a separate delta array
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is stored. Because this pointer (2-byte in our design) is much shorter than

8-byte PTE, the overall cache efficiency increases.
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Chapter 4

Flexible L1 Caches with Fine-grained Paging

As discussed in Chapter 3, relaxing index restrictions expands the de-

sign space of L1 caches and enables more trade-offs. In this chapter, we focus

on how to make these appealing cache configurations feasible. 1

4.1 Speculatively Indexed, Physically Tagged Caches

We proposed speculatively indexed, physically tagged (SIPT) caches

to handle the situation that cache indexing bits beyond the page boundary

may change during address translation. The simplest variant of SIPT always

speculatively accesses the cache assuming that all necessary index bits will

remain the same after translation, including those beyond the page granularity.

SIPT, Like VIPT, performs address translation in parallel to accessing the

cache arrays (Step 1 in Figure 4.1). For performance, all ways are accessed

together so that overall latency can be reduced. After address translation,

all cache tags read in Step 1 are compared with the physical addresses to

1This chapter is based on a published work [89], T. Zheng, H. Zhu and M. Erez, “SIPT:
Speculatively Indexed, Physically Tagged Caches,” 2018 IEEE International Symposium on
High Performance Computer Architecture (HPCA), Vienna, 2018, pp. 118-130. I proposed
and evaluated the main ideas and collaborated with H. Zhu and M. Erez to accomplish this
work.
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select the correct cache line. At the same time, SIPT compares those index

bits that were speculated with their values after address translation (Step 2

in Figure 4.1). If all speculated bits indeed are the same the “fast” access

completes (Step 3). If any of the speculated bits do not match, the cache

request must be repeated with the correct index bits from the PA (Step 4),

slowing down the access. Fast accesses are as fast as a VIPT cache, or faster

if the relaxed design constraints enable a lower-latency configuration. A slow

access, on the other hand, only issues after address translation like a PIPT

cache. In addition every slow access wastes energy and contends for the L1

cache port. Note that there are no coherence implications because only the

L1 cache is accessed speculatively and no action (other than another access)

is taken on a misprediction (tag mismatch).

Core

L1	Cache

TLB

Index	
unchanged

Core

L1	Cache

Fast access Slow accessTLB

Index	
changed1 1

1 1

2 2
3 3

4
Wrong 

speculation

Figure 4.1: SIPT cache access when speculated index is unchanged (left) and
changed (right).
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4.1.0.1 Speculation Accuracy

Figure 4.2 shows the percentage of memory accesses that are specu-

lated correctly, depending on how many speculative index bits are required.

Each component of each stacked bar in the figure represents fast accesses for

the number of bits required and all other accesses are slow. The most strict

scenario, hugepage includes only those accesses from huge pages (for which 21

address bits are guaranteed not to change).2 While some applications (e.g.,

libquantum and zeusmp) have most accesses targeting transparently mapped

huge pages, many others have the vast majority of accesses to normal 4KiB

pages. Those applications with a low correct speculation rate are likely to

suffer performance degradation with SIPT compared to the VIPT baseline.

Reasonable L1 configurations, however, do not use 2MiB sets (221) and

only require 1 − 3 index bits beyond the page granularity. In these scenarios,

the correct prediction rate is much higher overall. If only a single speculative

index bit is needed (e.g., for a 32KiB 4-way L1), all but two applications

(gromacs and CactusADM) have majority fast accesses.

4.1.1 Naive SIPT Performance

To evaluate the performance of this naive version of SIPT, which al-

ways speculates, we evaluate different SIPT configurations with the detailed

2We run Linux 3.12 with transparent hugepage management turned on and collected our
traces on a system that is regularly used and which had an uptime of weeks. In the disser-
tation, we will include results with a fragmenter form Ingens [52] running in the background
to mimic an extremely fragmented system.
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Figure 4.2: Fraction of correct speculations vs. the number of index bits that
must be predicted.

parameters shown in Table 4.1, and compare to the baseline L1. We focus on

OOO core and only show the results for the 32KiB 2-way SIPT configuration

(with 2 extra index bits), which performs the best as an ideal cache in an OOO

processor. Figure 4.3 summarizes the results and shows the IPC normalized to

the baseline, and compares with the ideal cache. The figure also shows relative

extra accesses due to misspeculation
(

accessesSIPT

accessesbaseline
− 1

)
.

SIPT caches with lower associativity and shorter latency achieve IPC

improvement in many applications; e.g., h264ref, and perlbench, exhibit 7.3%

and 8.9% IPC speedup. However, because speculative bits are used, naive

SIPT suffers a high misspeculations rate. For example, in some applications,

e.g., calculix and gromacs, less than 5% speculations succeed with 2 extra

index bits. When misspeculations happen, SIPT generates slow accesses.

Similarly in Figure 4.4, we show the relative energy
(

ESIPT

Ebaseline

)
of the
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In-Order processor with Out-of-Order processor with
2-level cache hierarchy 3-level cache hierarchy

Core
2-wide, in-order 6-wide issue, OOO

3.0 Ghz 192-ROB, 3.0 GHz

TLB
L1: 64-entry, 4KiB pages; 32-entry, 2 MiB pages, 2-cycle

L2: 1024-entry unified, 7-cycle

L1

Configuration Latency Energy per access Static power
32KiB 8-way VIPT 4-cycle 0.38 nJ 46 mW
32KiB 2-way SIPT 2-cycle 0.1 nJ 24 mW
32KiB 4-way SIPT 3-cycle 0.185 nJ 30 mW
64KiB 4-way SIPT 3-cycle 0.27 nJ 51 mW
128KiB 4-way SIPT 4-cycle 0.29 nJ 69 mW

Slow access in SIPT starts right after TLB access

L2
256 KiB, 8-way, 12-cycle,

None private, 0.13 nJ per access,
102 mW static power

LLC
1 MiB, 16-way, 20-cycle, 2 MiB 16-way, 25-cycle,

shared, 0.29 nJ per access, shared, 0.35 nJ per access,
532 mW static power 578 mW static power

DRAM 8-bank, 4-channel, DDR3, 16 GiB total
Note LLC size increase proportional to

core count for multi-core evaluation.

Table 4.1: Simulated system configurations
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Figure 4.3: IPC and additional L1 accesses with a naive SIPT 32KiB/2-way/2-
cycle cache for an OOO core normalized to the baseline L1.

whole cache hierarchy and also compare with the ideal cache. Some appli-

cations such as libquantum and GemsFDTD exhibit energy savings close to

ideal. However, many other applications exhibit significant gaps between naive
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Figure 4.4: Cache hierarchy energy of naive SIPT 32KiB/2-way/2-cycle for an
OOO core normalized to baseline.

SIPT and ideal. On average, naive SIPT reduces total cache energy to 74.4%,

which is 8.5% worse than ideal. We also show the relative dynamic energy(
Edynamic

Ebaseline total

)
for both SIPT and baseline. SIPT reduces dynamic energy sig-

nificantly.

Overall, due to a high misspeculation rate, the naive SIPT is far from

ideal. We now aim to both reduce extra L1 accesses and increase the number

of fast accesses.

4.2 Predicting and Bypassing Misspeculations

In this section we evaluate a light-weight predictor that determines

whether a fast access is likely to succeed, and speculation should proceed, or

whether cache access should wait until after translation. Our goal is to make

a speculate/no-speculate binary decision and we take inspiration from the rich
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literature on branch direction prediction. Specifically, because we seek a light-

weight predictor that can be used during instruction fetch, we evaluate a small

Perceptron predictor [43].

We base our Perceptron predictor design (Figure 4.5) directly on the

smallest global-history configuration proposed by Jimenez and Lin [43]. We

add a global history register x1x2...xh that tracks the last h speculation out-

comes as ones and zeros (fast access success or extra cache access failure).

The predictor itself has 64 entries each being a perceptron of h + 1 weights

w0w1...wh. We use the memory operation program counter (PC) to index the

64-entry predictor table. Because we only use the PC, the prediction can be

overlapped with other pipeline stages.

Perceptron calculates a prediction (y) by performing a dot product of

the history and the weights of a specific entry in the table plus a learned bias:

y = w0 + [x1x2...xh] · [w1...wh]. If y is positive, we predict the index will not

change and will continue with a fast access using the speculative index. If

y is negative we bypass speculation and wait for the physical address before

accessing the cache. Other than the smaller number of entries, all details,

training algorithm, and other parameters precisely follow those of Jimenez

and Lin [43] and we do not describe them.

We estimate the overhead of this perceptron predictor at just 624B of

storage and a small amount of logic (6b weights, 13 weights per perceptron,

64 perceptrons). We model perceptrons as RAM with Cacti [36] (Table 3.1).

The dynamic energy for reading a perceptron is only 0.34% of a baseline L1
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cache access. The static power is only 0.0007% of the baseline L1 cache.

Song et al. [34] suggest a 32-bit integer addition consumes 1
10

the energy of

reading 32 bits from a register file. Since x1x2...xh are ones and zeros, y =

w0 +[x1x2...xh] · [w1...wh] is essentially adding h+1 (13 in our implementation)

6-bit integers and therefore estimated to consume less energy than reading the

perceptron. Training consumes similar energy. This predictor introduces no

extra latency and only negligible area and energy overheads.

PC

Table

of

perceptrons
…
...

Selected	perceptron

Global	history

𝑥"𝑥# …… 𝑥%
Match:        1
Not match: 0

>=0: Speculate
<0:   Bypass

Outcome

Prediction

Training

𝑤'𝑤"𝑤# ……𝑤%

Figure 4.5: Perceptron-based predictor.

We evaluate the predictor by considering four possible outcomes. If

the speculated bits are unchanged by translation and the predictor decides to

speculate, we call it correct speculation. If the speculated bits are changed by

translation and the predictor decides to bypass, we call it correct bypass. If the

speculated bits are unchanged by translation but the predictor chooses bypass,

an opportunity for a fast access was squandered, we call this opportunity loss.

Finally, if the speculated bits are changed by translation and the predictor

chooses to speculate, an extra access is generated, we call this extra access.
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Figure 4.6: Break down of prediction results into the four possible outcomes;
each group of 3 bars represents 1, 2, and 3 speculative index bits (from left to
right, respectively).

This simple perceptron predictor achieves more than 90% accuracy in

all applications; in fact most applications have far fewer than 5% extra L1

accesses and negligible opportunity loss (Figure 4.6). We also evaluated the

sensitivity of the predictor parameters such as increasing the number of per-

ceptrons and increasing the history length. Our experiments did not show

strong sensitivity to these parameters, most likely because the prediction rate

is already high. Note that we do not warm up the predictor and the results

include all mispredictions. We also evaluated the sensitivity of the predictor

parameters such as increasing the number of perceptrons and increasing the

history length. Our experiments did not show strong sensitivity to these pa-

rameters, most likely because the prediction rate is already high. We do not

warm up the predictor and the results include all mispredictions. We also

evaluated various counter-based predictors, but their average accuracy is only

∼ 85% and not consistent across applications. We omit the results for brevity

and because the perceptron already has low overhead.
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4.3 Partial Index Prediction

Intuitively, if the speculation bypass predictor is so accurate at predict-

ing whether speculative indexing can proceed, perhaps it can be extended to

predict the actual post-translation index value. Consider an SIPT design that

requires a single speculative index bit. In this case, if the bypass predictor

predicts to bypass, it is in effect indicating that the speculative bit is most

likely not remaining the same. Therefore, flipping the bit in these cases will

lead to the correct post-translation index. Because the prediction accuracy is

so high, few extra accesses are added by this technique.

When there are multiple speculative tag bits, we need to predict their

exact values, which is generally hard because with 3 speculative bits, it is likely

that they may take any of 8 possible values. This requires a complex predictor

or resulting many misspeculations. However, in the context of SIPT, predicting

values is doable because of spatial locality in memory address mapping. Prior

work [47, 9] establishes that memory addresses are usually mapped in coarse-

grained blocks even without considering huge pages. And Pham et al. [70, 69]

suggests the spatial contiguity between the virtual page numbers and physical

page numbers.

Linux manages free pages using the buddy algorithm. Free pages are

grouped into 1, 2, 4, . . . 1024 contiguous page frames and page groups of each

size are then stored in linked lists. This scheme keeps the overhead of tracking

free pages low.
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Consider the scenario in which a user program allocates a large number

of pages. This is common behavior when programs set up data structures

during their initialization. The number of pages at fine-grained groups is

unlikely to satisfy such requests. As a result, the buddy algorithm has to

break large groups to satisfy bursts of memory allocation requests, which can

lead to a significant amount of contiguous physical pages being mapped to

a contiguous virtual address space. Other allocators, such as slab and eager

paging [47], maintain contiguity explicitly. OS features such as Hugepages

and page coloring also increase the occurrence of contiguously mapped memory

blocks; page coloring tries to maintain the same low-order address bits between

the VA and PA to maximize usage of the LLC.

VA

PA

A

A

B

B

delta delta

Figure 4.7: Deltas between virtual and physical addresses are constant within
a single large block.

The fact that large contiguous blocks exist aids with predicting spec-

ulative index bits. For all addresses in one contiguous range (A and B for

example in Figure 4.7), the delta between a virtual address and its corre-

sponding physical address is the same. Software may even optimize for SIPT,
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though prediction rates are already high.

PC Table

of

deltas

…
...

Selected	delta

Virtual	address Index Speculated

Add delta to speculated index   

Figure 4.8: The index delta buffer predicts the delta between the speculative
virtual address bits and corresponding physical address bits.

The prediction benefits from, but does not solely rely on, a coarse-

grained memory mapping. Even when memory is highly fragmented and lacks

multi-page contiguity, or when applications make only small allocations, deltas

within each page are fixed. Thus only the first access to a page will mispredict;

there are typically many L1 accesses per page.

Instead of predicting a value, we predict the VA to PA delta, which

is the same for the entire range. Specifically for SIPT, only the delta of the

speculative partial tag bits is required. We propose the index delta buffer

(IDB) to predict these narrow delta values. Similar to a branch target buffer

(BTB), the IDB is a PC-indexed table with each entry storing a (speculative)

index delta.

In addition to updating the prediction history, we also update the ex-

pected deltas, which remain stable as long as the same regions are accessed.3

3Deltas may also change when memory is remapped explicitly with munmap, by copy-on-
write, or on major page faults. We find that such events are very infrequent and similar
analysis is included in Table 5.1
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Figure 4.9: Prediction accuracy of the combined predictor when attempting
to predict 1, 2, and 3 speculative index bits (the left, middle, and right bar
within each group, respectively).

To compute the speculative index, we add the delta to the virtual address and

truncate if it overflows. Figure 4.8 shows the design of IDB. For simplicity,

we keep the same number of IDB entries as the perceptron-based bypass pre-

dictor. The storage overhead of IDB is very small because each entry is the

same size as the (already small) number of speculative bits. The IDB is also

accessed during fetch or decode and is off the critical path. The predicted 3-bit

delta is added to the VA after address generation. The latency of the 3-bit

add, which does not propagate the carry, should not increase cycle latency.

4.3.1 Combined Speculation Bypass and Index-Bit Value Predic-
tion

Our overall index-bit predictor proceeds in two stages. First, the per-

ceptron predictor is queried. If perceptron predicts to speculate, the specula-

tive index is used immediately. If perceptron predicts to bypass speculation,

the IDB is queried and its predicted index bit values are used to access the

cache with a speculative index. Like naive SIPT, this combined predictor al-

39



ways accesses the L1 before translation. As long as IDB predicts correctly,

slow accesses are converted to fast ones. However, because we more aggres-

sively access the L1, more extra accesses are likely. When there is only one

speculative index bit, we do not use the IDB and follow the intuitive reversed

prediction technique explained earlier.

Figure 4.9 presents the accuracy and effectiveness of the combined spec-

ulation bypass and IDB predictor. We consider three possible outcomes. The

first is are correctly-speculated fast access by the bypass predictor (in which

case the IDB is not accessed). The second is the fraction of accesses that were

predicted to bypass speculation and for which the IDB predicted the correct

speculative index bit values (IDB hits); these would be slow accesses without

the IDB that are fast accesses with it. All remaining accesses are slow and

generate extra L1 accesses. Note that we also label as IDB hits those fast

accesses that use the reversed bypass prediction. As with the perceptron by-

pass predictor, IDB consumes little area and power. We estimate the total

overhead of the combined predictor at < 2% of L1 cache area and energy.

When only a single bit value needs to be predicted, over 90% (and

usually close to 100%) of all accesses are fast accesses. This is in contrast to the

speculation bypass predictor alone, which leaves up to 80% of accesses waiting

for address translation to complete; all seven applications with low speculation

rate, now have majority fast accesses (e.g., CactusADM and gromacs both go

from under 20% fast accesses to more than 95% fast accesses). With 2 and 3

speculative index bits, the combined predictor successfully convert many slow
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accesses into fast ones. For example, gcc, calculix and xz 17 exhibited nearly

no fast accesses with the bypass predictor because of poor locality between

virtual and physical address. With the IDB, however, more than 70% of

accesses are fast.

Figure 4.10 shows that SIPT with IDB approaches the performance

of the ideal cache. The IDB enables many more fast accesses and the slow

L1 accesses do not significantly hamper performance. Overall, the 32KiB 2-

way SIPT cache (with 2 speculative index bits) achieves an average (harmonic

mean) of 5.9% IPC speedup, only 2.3% away from ideal. In some applications

(e.g., h264ref, cactusADM, calculix, leela 17, exchange2 17, and gromacs),

SIPT shows more than 10% performance improvement and never underper-

forms baseline.
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Figure 4.10: IPC and additional L1 accesses with a 32KiB/2-way/2-cycle SIPT
cache with IDB for an OOO core normalized to the baseline L1.

Figure 4.11 tells a similar story for energy that the SIPT with combined

41



predictor approaches the efficiency of an ideal cache. The energy numbers are

a bit further from ideal (2.4%) than speedup because of the extra L1 accesses

generated by the aggressive index-bit value speculation.
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Figure 4.11: Cache hierarchy energy with a 32KiB/2-way/2-cycle SIPT+IDB
for an OOO core normalized baseline.

4.3.2 Multicore Evaluation

We focus on single-core evaluation because the L1 is so tightly inte-

grated with the core. We also evaluate SIPT in a multicore system. We

simulate a quad-core processor and also quadruple the capacity of the last-

level cache. We construct 11 multi-programmed workloads by mixing appli-

cations used in the single-core evaluation; every application is used at least

once and the workloads are listed in Table 4.2. We recycle traces until the

last core completes its initial trace to maintain a consistent level of resource

contention. We report sum-of-IPC speedup, which is a simple metric that
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captures overall throughput improvement (speedup is relative to the multicore

with the baseline cache, not a single-threaded baseline).

Mix0 h264ref, hmmer, perlbench, povray
Mix1 mcf, gcc, bwaves, cactusADM
Mix2 gobmk, calculix, GemsFDTD, gromacs
Mix3 astar, libquantum, lbm, zeusmp
Mix4 mcf, perlbench, leslie3d, milc
Mix5 h264ref, cactusADM, calculix, tonto
Mix6 gcc, libquantum, gamess, povray
Mix7 sjeng, omnetpp, bzip2, soplex
Mix8 graph500, ycsb, mcf, povray
Mix9 mcf 17, xalancbmk 17, x264 17, deepsjeng 17
Mix10 leela 17, exchange2 17, xz 17, xalancbmk 17

Table 4.2: Multi-programmed workloads.

Figure 4.12 examine SIPT for an OOO quad core. The most obvious

difference between the two sets of results is that using application mixes de-

creases the variability in SIPT impact between different workloads. This is

expected. Also as expected, using a multicore does not change any of the

conclusions about the benefits of SIPT for private L1 caches.

The 32KiB 2-way cache performs the best of all configurations. Overall,

the average IPC improvement is 8.1%, slightly better than we observed with

a single core. The reason for the increased speedup is larger pressure on the

LLC and main memory, such that L1 cache performance has a greater role.

In fact, individual application speedup on each core is nearly-identical to the

single-core experiments. We expect this because there is no sharing and no

contention in this multiprogrammed environment.

SIPT is also able to reduce the total cache energy, but to a smaller

degree than with a single core. We attribute this to the longer overall run
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times resulting from interference at other levels of the memory hierarchy; the

static energy component is relatively larger in the multicore so the impact of

SIPT is lessened.
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Figure 4.12: IPC, extra L1 accesses, and cache hierarchy energy of SIPT with
IDB for an OOO quad core; IPC and energy normalized to the baseline L1
cache.

4.4 Further Discussion

4.4.1 Way Prediction

Way prediction [37] saves access energy compared to set associative

caches where all cache lines in the same set are fetched in parallel. By pre-

dicting the data location within the cache set, only the predicted cache line

is fetched. If the prediction is correct, no additional access latency is intro-

duced. When the prediction is wrong, a second access is required to search

the remaining cache lines in the set.

We evaluate the simple way prediction mechanism described in [37] that

the MRU way in a set is always predicted. A small amount of metadata (3 bit
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way/2-cycle SIPT with IDB, and 32KiB/2-way/2-cycle SIPT with both IDB
and way prediction.

sje
ng

de
ep

sje
ng

_1
7
m

cf

m
cf

_1
7

h2
64

re
f

x2
64

_1
7

gc
c

go
bm

k

om
ne

tp
p

hm
m

er

pe
rlb

en
ch

bz
ip

2

lib
qu

an
tu

m

bw
av

es

ca
ct

us
ADM

ca
lc
ul

ix

ga
m

es
s

Gem
sF

DTD

po
vr

ay

gr
om

ac
s

gr
ap

h5
00

yc
sb

xa
la
nc

bm
k_

17

le
el
a_

17

ex
ch

an
ge

2_
17

xz
_1

7

Ave
ra

ge
0.0

0.2

0.4

0.6

0.8

1.0

N
o
rm

a
li
ze

d
 E

n
e
rg

y

Normalized Energy Normalized Ideal Energy

Figure 4.14: Cache hierarchy energy normalized to the baseline L1. Each group
from left to right: baseline L1 with way prediction, 32KiB/2-way/2-cycle SIPT
with IDB, and 32KiB/2-way/2-cycle SIPT with both IDB way prediction.

per set for an 8-way set associative cache) is accessed before cache is accessed.

Although, fancy predictors may increase the accuracy of way prediction, we

find that the accuracy of this simple predictor is already high and robust

across applications. Unlike SIPT, way prediction requires the virtual address,

thus cannot be fully overlapped with early pipeline stages. Employing more

complex metadata may introducing extra latency to cache accesses. We stay

with this simple prediction mechanism and optimistically modeled no extra
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latency for accessing way prediction metadata.

Because way prediction and SIPT are complementary, we apply way

prediction to both the baseline and our 32KiB/2-way/2-cycle SIPT cache with

combined speculation bypass and IDB prediction. The results are shown in

Figure 4.13. And Figure 4.14 shows the normalized cache energy. In addition

to being ideally indexed, ideal caches also assume way prediction always ac-

cesses the correct way. We model the energy of way prediction by reducing

the relative dynamic energy according proportionally to the associativity (e.g.,

one-eighths of dynamic energy consumed in the baseline 8-way cache on a way

prediction hit).

When applied to the baseline cache, way prediction achieves 89% ac-

curacy and reduces cache energy by 24% on average. However, the remaining

misses still reduce performance by 2% overall. When applied on top of SIPT,

because of reduced associativity (from 8 in baseline to 2 in SIPT), the way

prediction accuracy increases to 97.3% on average, and there is only a 0.3%

performance drop compared to SIPT alone. At the same time, it saves 2.2%

additional cache energy (compare to SIPT alone), superior than ideal way

prediction. By reducing associativity to 2, SIPT alone already saves signifi-

cant cache energy, and there is only limited space for further reduction. The

saving from applying way prediction on top of SIPT is very stable among all

applications because of the robust and high accuracy.
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4.4.2 The Predictability of Partial Index Bits

The efficiency of SIPT relies on the accuracy of partial index-bit pre-

diction. We evaluate SIPT with a regularly used machine that has an uptime

of weeks. However, this is not necessarily the worst condition an application

faces. We now discuss a few sensitivity studies with more severe operating

conditions, including running applications with artificially highly fragmented

physical memory and with Linux’s transparent huge page mechanism turned

off (thus only fine-grained 4KiB pages). We also include the impact of these

parameters on the performance of the in-order machine Table 4.1.

Fragmented Memory. On a long-running system with a large number of

co-running applications, the physical memory may be fragmented. When run-

ning applications on fragmented physical memory, the lack of physical memory

contiguity may decrease the predictability of partial index bits. We use a tool

from Kwon et al. [52] to fragment memory and quantify fragmentation using

the unusable free space index [31], a value between 0 (unfragmented) and 1

(highly fragmented). Importantly, this index does not represent lack of mem-

ory, but rather an inability to satisfy large contiguous requests. It can be

calculated with Fu(j) =
TotalFree−

∑i=n
i=j 2iki

TotalFree
where TotalFree is the size of the

free space, 2n is the largest allocation that can be satisfied, j is the order of

the desired allocation size (2MiB for THP), and ki is the number of free page

blocks of size 2i. We maintain an unusable free space index > 0.95; an extreme

level of fragmentation at nearly all times and not representative of typical op-
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eration. Again, we never run out of physical memory in any experiment.

To evaluate SIPT under highly fragmented physical memory, we repeat

the same simulations we conducted before with traces collected under this

extreme condition.

4KiB Pages. Most Linux distributions enable transparent huge pages (THP)

by default. We are aware that under certain circumstances, THP hurts per-

formance [28] and should be disabled but believe this is not the general case.

However, an interesting question is what impact disabling THP has on SIPT

prediction accuracy and performance. Similarly, we repeat the same simula-

tions with THP disabled, which forces all pages to 4KiB.

Removing > 4KiB Contiguity. A more challenging (but unrealistic) con-

dition is to force zero contiguity beyond 4KiB pages such that all 4KiB pages

are mapped with different deltas. This essentially eliminates all benefits from

contiguous memory mapping, thus IDB only works for references within the

exact same page. We force this in simulation by tracking the page number of

the last access for each IDB entry. We then apply delta prediction only if the

same page is accessed and choose a random delta if a different page is accessed;

this mimics zero contiguity without modifying the OS. Note that this scenario

presents locality and randomness that exceed that of any reasonable system

and dynamic VA to PA remappings.

Figure 4.15 shows the average IPC, cache energy normalized to the
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baseline, and the prediction accuracy (the percentage of correct speculation

and IDB hit) for all four SIPT configurations on both OOO and in-order

cores. As expected, running with fragmented physical memory or disabling

THP does degrade the behavior of SIPT. However, the degradation is not

significant. For instance, with a 32KiB 2-way SIPT cache (2-bit speculation)

on OOO core, the prediction accuracy drops from 86.7% to 84% when running

with fragmented physical memory, 83.1% when THP is disabled, and 73%

when no > 4KiB contiguity. The IPC improvement also drops from 5.9% to

5.3%, 4.8% and 3.8%, and cache energy increases from 67.8% to 68.3%, 70%

and 71.2%. A similar trend can be observed in all SIPT configurations on

both OOO and in-order cores. As mentioned in Section 4.3, our prediction

mechanisms benefits from contiguous memory mapping but does not solely

rely on it. Using extremely fragmented memory or disabling THP has limited

impact.

4.4.3 Implications for Instruction Schedulers

Modern processors commonly support speculative scheduling to enable

back-to-back execution of dependent instructions [68, 49]. The speculation

relies on deterministic instruction latencies with support for rare instruction

replay when latency varies for certain instructions. Load instruction latency

is variable because of cache misses and way prediction and SIPT introduce

another source of variability. As suggested in [49], an ideal selective replay

mechanism (replay only necessary instructions) is not feasible for wide issue
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Figure 4.15: IPC, cache hierarchy energy, and prediction accuracy on OOO and
in-order core with various operating conditions; IPC and energy normalized
to the baseline L1.

OOO processors and replay mechanisms require trading off design complexity

(HW resources) and accuracy (performance impact). SIPT is very accurate

and can use existing speculative-scheduling approaches to recover from its rare

mispredictions, which are a fraction of cache misses that are already addressed

by the scheduler. Impact on the scheduler can be further reduced because

SIPT has a built-in confidence estimator. Similarly to prior designs, expensive

selective-replay resources can be reserved for more challenging loads [68, 67,

49]. Loads that SIPT predicts their speculated bits to be unchanged, an

alternative simpler replay mechanism with larger penalty can be used instead

of selective replay. In many applications (e.g. libquantum, zeusmp) nearly all

loads do not require selective replay.
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Chapter 5

Low-overhead Translation with

Fine-grained Metadata

As already discussed in Chapter 3, a page walk will suffer long la-

tency when the translation misses in the cache hierarchy and requires DRAM

accesses. Previous work attempts to reduce the overhead of translation by

increasing the granularity of both translation and metadata. In this chapter,

we introduce a novel mechanism to achieve low-overhead translation without

compromising metadata granularity.

5.1 Embedded Page Translation Information

The idea behind Embedded Page Translation Information (EMPTI)

follows a simple insight: in the vast majority of cases, a load instruction that

requires DRAM access for address translation also misses in the processor’s

cache hierarchy (Figure 5.1). In such a situation, if both the translation in-

formation and data are located in the same memory block and can be served

with just a single DRAM access, the page walk effectively takes zero latency.

When the memory access for a page walk is required, we first consult a

coarse-grained translation mechanism to get a physical address (the preferred
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Figure 5.1: Percentage of page walks that are last-level-cache (LLC) misses
which also trigger data LLC misses. Results are for a simulated quad-core
system with a 64-entry L1 TLB per core, a shared 1024-entry second level
TLB, an 8MiB unified LLC, and 8GiB main memory.

location), and then speculatively access that location. Before inserting data

into the last-level-cache (LLC) we use the translation information to verify

that we indeed accessed the correct location.

We refer to the information co-located with data, which includes a

representation of the full virtual address and the permissions and access infor-

mation, as an embedded PTE (EPTE). When the data and translation meta-

data return from DRAM, EMPTI verifies that the physical location accessed

matches the desired virtual address and that the access is valid (Figure 5.2).

In the most aggressive variant of EMPTI, we embed the EPTE within each

memory block and can thus complete both the data fetch and TLB fill in one

DRAM access. Note that we choose a single process to be promoted to use

EMPTI; naturally, this is the process that requires very large memory capacity.

We include the permission and other access information explicitly in

each EPTE, but represent much of the address information implicitly. For
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L2	$

L3	$

L1	$

TLB

Memory

Core

Memory	
BlockPTE Data

Figure 5.2: Page walk and data access served by a single memory access with
EMPTI. The light and dark portions of a memory block represent the embed-
ded PTE (EPTE) and data portions, respectively.

example, even in a small x86 system with 4GiB physical memory and 4KiB

pages, each virtual page number (VPN) is represented by 36 bits (48 bits

of usable virtual address minus 12 bits of offset [41]) and 20 of those bits

(220 = 4GiB) are implicit in the physical address chosen as the preferred

location (more bits are implicit when physical memory is larger than 4GiB).

Thus, each EPTE requires a maximum of 30 bits: 16 bits for the address tag

(fewer with larger physical memory), 11 bits for the permissions and access

bits that include the execute/disable (XD) bit, and a valid bit; the valid bit

is necessary because the preferred location may sometimes be allocated to a

different process. Figure 5.3 depicts an EPTE.

Note that we do not store the accessed and dirty bits in an EPTE

because those bits are sticky in the actual PTE and will never be reset by
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hardware [41]. Phrased differently, because all the information communicated

by hardware to software does not depend on a particular initial state, there is

no need to store it in the EPTE and only the PTE must be updated.

029

Permission

28 12 11

XDTagV

13

A D

Ignore Access and Dirty bits from Permission field

Figure 5.3: Embedded Page Table Entry (EPTE).

Figure 5.5 illustrates how a load instruction from the promoted process,

which misses the TLB, accesses memory. The VPN is used to generate the

speculative preferred physical address. The corresponding memory block and

its EPTE are then read into the processor. The tag in the EPTE is combined

with the physical address bits that implicitly match the preferred location and

compared to the virtual address of the load. If the two match and the EPTE

is valid, the permission bits are checked as usual and the TLB is filled from

the EPTE. An EPTE may be invalid because the OS may choose to ignore

the Embedded Page Translation Information optimization and map a page to

a physical address that is not its preferred address. In such a case, the valid

bit is unset to indicate that the regular TLB procedure should be followed.

Preferred Address Mapping. For evaluation and explanation, we use the

lower-significance bits of the VPN as its preferred physical address for EMPTI;
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this straightforward mapping works well for targeted Figure 5.4 HPC appli-

cations. Note that EMPTI can be generalized by combining it with other

mapping schemes, for example, if direct mapping yields a high conflict rate,

direct segments or redundant memory mappings. In a combined architecture,

addresses are mapped in coarse granularity (segments or ranges), however,

metadata is always kept in fine granularity with EPTEs.

Cache Interactions. With EMPTI, both data and its translation metadata

are read together. Any EPTE access also fetches data, even if the data is

already in the processor cache. Therefore, the cache is queried using the

preferred physical address and if the data is already in the cache, the cache fill

is canceled and only the EPTE is forwarded to the MMU. Canceling the data

fill is rarely needed, as shown in Figure 5.1.

0% 

10% 

20% 

30% 

Co
nf
lic
t	R

at
e	
(%

)

97%

Figure 5.4: Direct mapped conflict rate with various memory capacities (foot-
print/memory).

55



Access Memory

Promoted process

Page walk requires memory

access

Yes

Load 

data and EPTE in preferred

loca�on

Yes

Check permission

Valid and match

Follow standard 

page walk

No

Execute excep�on

handling rou�ne
Excep�on

Insert data into LLC &

complete page walk
No excep�on

No

Not match or invalid

Figure 5.5: Application memory access with Embedded Page Translation In-
formation.

5.1.1 EPTE Storage

The key feature of EMPTI is that the memory controller accesses both

the data and its EPTE at the same time. To support this using standard

cache line-granularity memory access, we embed the EPTEs within memory

in a way visible only to the memory controller. I discuss several embedding

options below as well as the architectural modifications needed for accessing

the EPTEs. The embedding options offer different tradeoffs in complexity

and performance. All options are implementable with the standard memory

system designs used by commodity processors.

ECC Embedding. In the most aggressive forms of Embedded Page Trans-

lation Information, an EPTE is embedded withing each memory block. This

requires identifying 32 bits of EPTE storage in each 512-bit memory block.
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We describe how some of the ECC bits used for memory protection may be

safely repurposed for EPTE storage. While some prior work has used ECC

bits for various purposes, to the best of our knowledge there have not been

proposals that use more than a handful of bits and for which an evaluation of

the impact on reliability has been published.

A standard ECC DIMM has 12.5% redundancy and uses a 72-bit wide

channel where 64 pins are used for data and 8 for ECC information. Thus,

each 512-bit memory block has 64 bits of redundant storage. Recent work by

Kim et al. [51] has proposed a single-pin-correct triple-pin-detect (SPC-TPD)

ECC code that uses just 32 bits for each 512-bit memory block, yet has equiv-

alent correction capabilities to current SECDED ECC and detection coverage

similar to chipkill-level ECC. This is possible because SPC-TPD treats an en-

tire memory block as one long codeword, rather than forming codewords from

individual (or paired) bus beats as done with other designs [42, 22].

With just 32 bits needed for ECC, the 32-bit EPTE can be effectively

stored within each memory block (Figure 5.6). Note that SPC-TPD was de-

signed for a 64-bit wide data channel with 4 bits of redundancy per bus beat

but we use it to protect a 68-bit data channel after adding the 4-bit wide (with

burst 8) EPTE component. We conducted detailed error analysis using the

methodology described by Kim et al. [51] and conclude that the expected error

rate increases by just 6% compared to that reported for the original SPC-TPD

design; this small difference has no practical impact on reliability considering

the already very low memory failure and error rates with ECC enabled.
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Accessing EPTE Storage. The translation hardware only reads EPTEs.

This is done at the memory controller by forwarding EPTE information to the

MMU. Software must populate EPTEs as we discuss in the following section.

This can only be done by the operating system and requires a new privileged

store-EPTE instruction. This instruction accepts the physical address into

which the EPTE should be embedded and the 32-bit EPTE value. The in-

struction then performs a read-modify-write on the physical address to embed

the EPTE, and encodes the new ECC symbols for protecting both the data

and the EPTE. It may also be beneficial to provide a privileged DMA opera-

tion that sets EPTEs as it copies data, which is useful when a new frame is

allocated.

64-bit Data 8-bit ECC

64-bit Data 8-bit ECC

..
.

8 Bursts

(a) Original data allocation with ECC
DIMM

64-bit Data

64-bit Data

EPTE

..
.

8 Bursts

32-bit 
ECC

(b) Data allocation when storing EPTE
with ECC redundancy

Figure 5.6: Storing EPTE with ECC redundancy

DRAM Row-Buffer Embedding. With row-buffer embedding, EMPTI

does not attempt to retrieve both the data and EPTE in a single memory

access. The performance impact of two separate memory accesses is kept

low by locating the EPTE within the same DRAM row buffer as the data.

The EPTE information for every memory block within a single memory frame

is the same. Thus, it is not necessary to replicate the EPTE. We do not

wish to expose the EPTE to software directly, just as with the ECC-based
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embedding. We therefore augment the hardware address mapping logic to

account for EPTE locations. We do so in a way that maximizes the likelihood

that both data and its EPTE are mapped to the same DRAM row.

We show an example of this mapping for a system with 4KiB frames and

8KiB row buffers in Figure 5.7. In this configuration, 2 EPTEs are stored in

the last 64B memory block of each DRAM row. Thus, one frame fits entirely in

the DRAM row along with its EPTE, while the second frame has one memory

block mapped to a different DRAM row. On average, 127 of every 128 data

blocks and their EPTE can be accessed with a single DRAM row activation

command (if necessary) followed by two DRAM column read commands. The

two reads are issued back-to-back and thus the latency of translation is made

negligible, though it still incurs some bandwidth overhead. One memory block

out of every two frames is mapped to a different DRAM row and accessing

it requires higher overhead, or EPTE access can simply be skipped. The

mapping also works with larger virtual memory pages where only a single

EPTE is stored in each memory row.

This technique has a low storage overhead of just 512 bits for every

8KiB DRAM row, or ∼ 0.8%. Its implementation overhead is also low because

it only requires modifying the DRAM address generation logic in the memory

controller as also discussed by Chou et al. [17]. The last memory block of

every two frames requires a more complex, though still deterministic, address

translation, which can be accomplished with simple low-cost logic.

Note that this general idea of row-buffer embedding has been first pro-
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posed for ECC storage [21, 33, 88] and it is commonly believed a variant is in

use for DRAM ECC protection in some NVIDIA GPUs.

DRAM	ROW	0

Memory	block	for	
data	in	1st page

0 1

61 62 63

0 1

61 62

Memory	block	for	
EPTEs

Memory	block	for	
data	in	2nd page

DRAM	ROW	X

63 63 63 63

61 62 63	

0 1

61 62

Figure 5.7: Visual representation of mapping data and EPTE storage to
DRAM rows.

5.1.2 Software Support

Software plays a role in using EMPTI as it decides which process and

pages to promote to use EMPTI and then maintains EPTEs. Note that the

focus of this paper is on the EMPTI mechanism itself and its impact on per-

formance, and we only outline the necessary software changes. We start with

describing how memory is allocated and deallocated for the process that is

promoted to use Embedded Page Translation Information before discussing

EPTE maintenance and process promotion and demotion.
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Memory Allocation and Deallocation. The allocation process with EMPTI

is illustrated in Figure 5.8. When the OS allocates a frame, it first checks

whether the process is the promoted process. For the promoted process, the

OS attempts to allocate the preferred physical frame for the requested virtual

page from the frame free list. This likely requires a more sophisticated data

structure for tracking the free list, but we leave such a design for future work.

If the preferred frame is available, it is allocated by updating the page table.

The OS then issues store-EPTE instructions to initialize the EPTEs of the

newly-allocated frame. The page table is then updated to mark the page as

promoted to ensure the EPTE is kept up to date. Note that with row-buffer

embedding, only a single store-EPTE is needed. If the preferred frame is not

available, a different frame is allocated. The OS must then unset all EPTEs in

that frame to prevent false positives when hardware attempts to speculatively

read an EPTE. This same procedure is followed when allocating a frame for a

non-promoted process.

Note that initializing the EPTEs can be done simultaneous with frame

data initialization; with current OS policies, it is standard practice to initialize

the data of a frame to either all-zeros or a copy of another frame (when using

copy-on-write). Thus, the overhead of EMPTI is small if hardware provides a

special DMA operation for simultaneously copying data and setting EPTEs.

Deallocating a single frame is straightforward. In addition to updating

the page table and adding the frame to the free list, all EPTEs in the frame

are invalidated. This adds overhead to deallocation that may not be present
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in the standard OS flow, but we show such cases are rare (other than on pro-

cess termination). EMPTI also introduces overhead when a promoted process

terminates because its page table must be traversed frame by frame and all

EPTEs invalidated. Because promoted processes have large footprints, it is

likely that the time spent invalidating EPTEs will be small compared to the

lifetime of the process. These overheads are smaller with row-buffer EPTE

storage.

EPTE Maintenance. Every time the OS updates a PTE, the changes are

reflected to the EPTE with a store-PTE; an EPTE exists only if the process

is promoted and the PTE is marked as having an EPTE. The OS never needs

to read an EPTE because any state that is modified within the TLB is written

only into the PTE itself.

EPTEs must also be updated when a page-directory entry is changed.

This is because permissions are computed hierarchically with higher transla-

tion levels determining overall access control. Without Embedded Page Trans-

Allocate Memory

Promoted process

Check 
direct mapped 

frame

Yes

No

Use direct mapped frame 
Update page table & 

set up EPTE

Find a free frame
TakenFree

Update page table & 
set EPTE invalid

Promoted Not promoted

Figure 5.8: Workflow for memory allocation.
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lation Information, by just changing a single page directory entry, the OS may

change the permissions or invalidate an entire branch of the hierarchical page

table. While this overhead may sound high, our analysis suggests that such

changes are very rare and will not impact performance.

We analyze the potential overhead of updating PTEs by counting memory-

management system calls and page faults observed when running our bench-

marks as well as their run time overhead (using Linux time [60], strace [61],

and LMbench [58]). We measure on a single-socket Haswell-based system and

the set of benchmark applications include PARSEC [13], NAS Parallel Bench-

marks [7], HPC Challenge Benchmarks [56], Graph500 [32], SPEC CPU2006

Benchmarks [35], and BioBench [4]. Figure 5.9 shows that all but one of

our benchmarks spend roughly 1% or less of their time processing page faults

(dedup spends 3.9%). The overall rate of page faults is small and the average

number of page faults per allocated page across the entire duration of an appli-

cation is typically very small (the exception is ferret with with 18.3 page faults

per page). Table 5.1 shows that the total number of memory management sys-

tem routines called by each application (mmap, munmap, and mprotect) is also

small. This implies an infrequent EPTE update rate.

5.2 Evaluation Methodology

We compare the execution time of traditional 4KiB pages, Linux’s

transparent huge pages (THP) mechanism that use the processor’s support

for 2MiB pages, and Embedded Page Translation Information. The system
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Figure 5.9: Percentage of total run time and average page faults per allocated
page.

mmap munmap mprotect run time (sec)
CG (B/C/D) 28/28/28 1/1/1 21/21/21 20.37/56.04/4878.21
IS (B/C/D) 7/7/7 0/0/0 3/3/3 3.31/40.03/44.84

UA (B/C/D) 28/28/28 1/1/1 21/21/21 58.43/229.82/4498.34
Graph500 scale25 218 199 15 2252.07

GUPS-16G 4 0 3 219.44
canneal 26 2 15 63.12
dedup 35 18 22 33.33
ferret 43 27 26 92.37

freqmine 78 43 16 109.91
streamcluster 33 5 15 103.89

astar 12 11 0 133.76
mcf 14 6 4 331.12

mummer 5 4 0 8.84
tiger 69 64 0 751.57

Table 5.1: Number of mmap, munmap, and mprotect calls.

configuration is listed in Table 5.2. We use a performance model that relies

on per-application parameters measured on real hardware (described in Sec-

tion 5.2.1). We do not use a simulator. As explained in prior work, studying

translation issues requires observing long execution durations of large-memory

applications—something that cannot be done in a simulatorFurthermore, the

details of memory and translation caching of high-end processors are both
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complex and proprietary; making accurate modeling effectively impossible.

We gather results for a set of memory intensive applications from a

wide variety of benchmark suites, include PARSEC [13], NAS Parallel Bench-

marks [7], HPC Challenge Benchmarks [56], Graph500 [32], SPEC CPU2006

Benchmarks [35], and BioBench [4]. These applications have also been used

in prior research on reducing the overhead of address translation [46, 9]. The

detailed parameters of each application are listed in Table 5.3. Note that

we intentionally focus on high performance computing applications that have

exclusive ownership of the vast majority of memory and our system is not

virtualized and thus has a lower baseline address translation overhead.

Processor Intel i5-4590 (Haswell)
4 cores, 3.3GHz

L1 Cache 32KiB instruction, 32KiB data, Private
L2 Cache 256KiB, Private
L3 Cache 6MiB, Shared
L1 DTLB 4KiB 64-entry 4-way

2MiB 32-entry 4-way, 1GiB 4-entry
L2 TLB Unified 8-way, 1024-entry

MMU cache L4 2-entry L3 4-entry, L2 32-entry 4-way
Main memory 32GiB
Linux kernel 3.13.0

Table 5.2: System configuration.

5.2.1 Performance Model

We directly measure the total run time and page-walk overhead for

each application with both standard 4KiB pages and THP using the Intel

performance counter monitors available on the Haswell microarchitecture and

later generations. We estimate the run time with EMPTI using a performance

model that is similar to the model introduced by prior work [46, 9]. The model
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Workload Benchmark Input Data Set Size (MiB)
NAS CG B / C / D 404 / 979 / 16711

parallel IS B / C / D 160 / 1560 / 4640
bench UA B / C / D 128 / 493 / 7296

canneal

native

2679
PARSEC dedup 4173

bench ferret 2867
freqmine 2387

streamcluster 383
HPCC GUPS 16GiB 16409

Graph500 Graph500 25 37070
SPEC 473.astar

Reference
384

CPU2006 429.mcf 1684
Bio mummer

Default
467

Bench tiger 611

Table 5.3: Application parameters.

is straightforward: EMPTI eliminates the overhead of page walks that are LLC

misses and we therefore simply exclude the time necessary for those memory

accesses from the total execution time. To do this we first subtract the page

walk overhead measured with 4KiB pages from the total execution time mea-

sured with performance counters dedicated to these events. We then add back

the estimated time of servicing page walks from the cache hierarchy, effectively

excluding the memory access time. Again, we rely on performance counters

and a simple additive latency model based on level of hierarchy and translation

structure that serviced each request; we also assume no overlap in translation

processing – this is reasonable given their relatively high latency and the fact

that the processor we use has a single hardware page walker. Because we are

running on MMU cache equipped processors, the impact of reducing page walk

latency from caching partial translations is always included. Since a conflict

generates a memory access before the followed regular page walk procedure,

we conservatively estimate the performance of a conflicted access by doubling
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the page walk latency. The details of this model and parameters collected are

summarized in Table 5.4.

Note that unlike prior work [46, 9], we measure the ideal execution time

separately for 4KiB pages and THP. The reason is that some of the applica-

tions we use exhibit relatively large THP management overheads and thus

have a higher ideal execution time than with 4KiB pages. This is particu-

larly evident when running CG.D and Graph500 with THP enabled. These

applications exhibit an extremely high unusable free space index, which sug-

gests severe external fragmentation and likely increases various management

overheads [31].

Row-Buffer Embedding Performance Model. The model above as-

sumes that data and its EPTE are always fetched in a single access, as is

the case with ECC embedding. However, with row-buffer embedding, two ac-

cesses to the same DRAM row are required. With commodity hardware, we

Collected Statistics
T4K/THP Total execution cycles with (4K / THP)

PW4K/THP Cycles spent in page-walks (4K / THP)

PL1/PL2/PL3 Page walks served by L1/L2/L3 cache (4K)

Parameters
C1/C2/C3 L1/L2/L3 cache latency (4/11/30 cycles)

CR Conflict rate

Model
Ideal execution time E4K/THP = T4K/THP − PW4K/THP

EMPTI page walk cycles PWEMPTI = C1 ∗ PL1 + C2 ∗ PL2 + C3 ∗ PL3

Conflict overhead TConflict = (PW4K − PWEMPTI) ∗ CR ∗ 2
EMPTI total run time TEMPTI = E4K + PWEMPTI + TConflict

Table 5.4: Performance model and measured parameters. The 4K/THP no-
tation indicates that two parameters are measured – once when running with
4KiB pages and a second time with THP.
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cannot introduce the second access with appropriate timing low-enough over-

head. Thus, to estimate performance for EMPTI with row-buffer embedding,

we construct a microbenchmark to estimate the worst-case latency impact of

separately fetching data and its EPTE from the same DRAM row. This mi-

crobenchmark has two phases. In the first phase it accesses a long sequence

of random addresses that cannot be prefetched. In the second phase, the

same set of accesses is repeated but each is paired with a second access to the

immediately adjacent cache line.

We first run a single-threaded instance of this microbenchmark and

measure a 4% overhead for paired accesses. We then run a set of multi-threaded

experiments under four scenarios with different levels of memory bandwidth

requirements. The first scenario is increasing the number of threads in the

microbenchmark from 1 to 4 where we measure an 8% maximum overhead.

The second repeats this experiment while performing both reads and writes

(50/50 ratio) and the overhead is similar. In the third scenario we run a single
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Figure 5.10: Row-buffer embedding overhead.
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thread of the microbenchmark and introduce a second thread that performs

strided memory reads. We change the stride to control bandwidth utilization

and vary bandwidth from 1 to 18GiB/s. We measure a row-buffer embedding

overhead of 4− 7% in this experiment with a linear relation between overhead

and overall bandwidth. The fourth scenario repeats the above experiment

where the bandwidth-consuming thread performs an equal number of reads

and writes. In this case total bandwidth consumption is 1 − 21GiB/s and

overhead is 4 − 13% (linear relation). These results are shown in Figure 5.10.

Note that the maximum bandwidth measured on our system with a bandwidth

stress test is 24GiB/s (theoretical peak of 25.6GiB/s).

The actual number may vary depending on the configuration of the

specific machine and the policy employed by its memory controller. However,

on our typical state-of-the-art processor, we conclude that row-buffer embed-

ding has, very-conservatively, approximately 13% greater page-walk overhead

than ECC embedding.

5.3 Evaluation Results

Figure 5.11 shows the run time of each application with 4KiB pages,

THP, and EMPTI broken down into the time spent in execution, the time

spent servicing page walks, and overhead introduced by conflict and row-buffer

embedding. We include both ideal results (with no conflict) and two results

with 5% and 10% conflict. The results are normalized to the total run time

with standard 4KiB pages. We also show the arithmetic mean across all run
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Figure 5.11: Performance of 4KiB pages, THP, Embedded Page Translation
Information with 0%, 5%, 10% conflicts (left to right).

times and also the average across just those applications that are page-walk

intensive; we define page-walk intensive applications as those applications in

which more than 10% of the 4KiB execution time was spent servicing page

walks (IS, Graph 500, GUPS, canneal, astar, mcf, mummer, and tiger).

There are three important takeaways from this experiment. First,

EMPTI very effectively reduces the overhead of page walks. Across all ap-

plications, with EMPTI the page walk overhead (fraction of time spent on

page walks) is 6.4% compared to 17.7% with 4KiB pages. The improvement

is even more significant for page walk-intensive applications where EMPTI re-
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duces the overhead from 29.36% to 9.27% on average and up to as high as a

6.5× improvement for GUPS.

Second, in all but two cases, EMPTI matches or exceeds the perfor-

mance observed with THP. EMPTI reduces the overhead of fine-grained page

walks to the point that they are either insignificant or are lower than the man-

agement overheads needed to maintain and create transparent huge pages in

Linux. For example, both the CG.D and Graph500 benchmarks exhibit severe

fragmentation with THP, which may lead to various management overheads.

As a result, EMPTI performs significantly better with those applications. THP

outperforms EMPTI by a negligible amount with the streamcluster benchmark

and by about 11% with the tiger benchmark; tiger is the only benchmark where

EMPTI is not advantageous. Overall, on average across all applications, THP

and EMPTI improve performance over 4KiB pages by 6.6% and 11.2% on

average, respectively. When looking only at page walk-intensive applications,

the average improvement over 4KiB pages of THP and EMPTI are 12.2% and

20.1%, respectively.

Third, conflicts have limited impact. With a 5% conflict rate, on av-

erage, EMPTI still outperform 4KiB pages and THP by 18% and 6% in page

walk-intensive applications.

Note that our results show much lower page-walk overhead with THP

than prior research [46, 9]. This is because all our runs are without virtualiza-

tion and because the Haswell processors we use have a much-improved TLB

design compared to the older processors used in prior studies. The Haswell
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microarchitecture has a second level TLB that is both twice as large as earlier

generations and which is shared between 4KiB and 2MiB pages.

Performance with Row-Buffer Embedding. With row-buffer embed-

ding, EMPTI provides similar performance compared to the aggressive ECC

embedding. This is because the additional overhead of accessing the EPTE is

at most 13%, and in most cases far lower, depending on how heavily memory

bandwidth is stressed—more latency-constrained applications are impacted

less because the latency increase of back-to-back reads from the same DRAM

row is small. If spatial locality is high, the overheads of row-buffer embedding

are even lower.

Overall, EMPTI with row-buffer embedding still outperforms THP and

4KiB pages by 3.4% and 10% on average, respectively. For page walk-intensive

applications, EMPTI reduces run time by 5.6% and 17.8% on average com-

pared to THP and 4KiB pages, and even with a 5% conflict rate, it still reduces

average run time by 3.4% and 15.6% respectively.

5.3.1 Energy Impact

We expect EMPTI to improve energy mostly because it reduces run

time. EMPTI also reduces the number of memory accesses and row activations,

but the impact through direct performance improvement is greater. When

using ECC embedding, EMPTI trades off reliability for performance. If the

same reliability tradeoff is made, but instead of embedding EPTEs, one of
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the redundant ECC devices in each rank is simply powered off, an equivalent-

reliability baseline would have 5.6% lower DRAM energy. However, EMPTI

saves more by reducing the total run time.

5.4 Future Work

As mentioned in Section 5.1, other coarse-grained virtual memory mech-

anisms, such as direct segments [9] and RMM [46], can be used for address

mapping in EMPTI. In fact, EMPTI improves the flexibility of coarse-grained

memory mappings. Because the fine-grained metadata is always maintained,

exceptions within a region are allowed at the cost of falling back to the stan-

dard page-walk flow. Evaluation of these combined schemes is interesting,

however, we leave them as future work.
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Chapter 6

Efficient Metadata Caching

We discussed the inefficiency of current metadata caching schemes in

Chapter 3 and in this Chapter we present the detailed design of Delta Caching—

a novel metadata caching mechanism. By exploiting the redundancy of meta-

data, delta caching achieves up to 4× storage density compared to that in

current state-of-the-art processors, without compromising the flexibility of ad-

dress mapping and fine-grained metadata.

6.1 Motivation

As mentioned in Chapter 3, we observe that PTEs take substantial

amount of capacity in the cache hierarchy and they are highly redundant. In

this section, we analyse the detailed results. First, we evaluate the usage of

data cache capacity for PTEs with a wide range of applications. Then, we

evaluated the contiguity of memory mapping by comparing the number of

deltas and pages needed to cover a certain percentage of memory accesses.
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6.1.1 PTEs in the Data Cache

The processor cache hierarchy currently treats accesses to PTEs as

data accesses—PTEs are cached.1 PTEs and regular data compete for cache

capacity, yet we are not aware of any details regarding any policies for this

sharing. To characterize the cache use by PTEs, we conduct an experiment

and estimate the effective LLC occupied by PTEs. We use the modified kernel

from BadgerTrap [26] to intercept page walks, calling a custom fault handler

for each walk. Within this handler we simulate an 8-way set associative cache

with 64B cache lines for the accessed PTEs. We measure the hit rate of

this cache for a range of cache capacities and compare these hit rates with a

hardware performance counter that reports the rate of page walk accesses that

miss the page hierarchy (in misses per million instructions, or MPMI). We use

the simulated cache capacity that is closest to the hardware-measured MPMI

to estimate the effective capacity of the LLC used for PTE caching. All results

are measured/simulated on an Intel Core i5-4590 processor with 32GiB main

memory.

We gather result from a set of memory intensive applications chosen

from a wide variety of benchmark suites. Similar applications are also used

in Chapter 5 We run only one single-threaded instance of each application

from CPU 2006 and Bio Bench and set the thread count to 4 (one thread per

core) for other multi-threaded applications. The detailed parameters of each

1In current Intel, AMD, and ARM processors, for example.
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application are listed in Table 6.1.

Workload Benchmark Input Effective cache capacity Instruction count (Billions)

NAS parallel benchmark

IS
B 256KiB 11
C 2048KiB 92

CG
B 256KiB 228
C 256KiB 614

UA
B 64KiB 959
C 256KiB 3804

SPEC CPU 2006
xalan

reference
512KiB 1149

mcf 512KiB 325
astar 256KiB 411

PARSEC
canneal

native
1024KiB 139

streamcluster 128KiB 1060

Bio Bench
mummer

default
512KiB 12

tiger 1024KiB 638

HPC challenge GUPS
8GiB 4096KiB 330
16GiB 4096KiB 654

Graph500 Graph500 scale 24 4096KiB 2992

Table 6.1: Benchmark parameters
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Figure 6.1: MPMI (misses per million instructions) of page walks with various
cache capacities and hardware counters.

There are two important takeaways from the the result (Figure 6.1).

First, the effective cache capacity for PTEs is highly application dependent.

For example, CG uses only 64KiB of cache for PTE caching, however GUPS

and graph500 likely use 4MiB (complete results are in Table 6.1). Second, in-

creasing the effective cache capacity further reduces MPMI by a large amount
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in many applications, e.g., tiger achieves 1000x MPMI reduction by just dou-

bling the effective cache capacity (from 1MiB to 2MiB).

6.1.2 Contiguity of Address Mapping

Previous work [89, 70] suggests that address mapping contiguity nat-

urally exists beyond page boundaries, even with simple default behavior of

current software. We study such (cross-page) contiguity using the applications

in Table 6.1 running on a system with unmodified Linux (Kernel 3.12.13+).

We use a Pintool [71] to measure the number of different pages touched and

the number of different deltas (between the virtual and the physical addresses)

required to cover different fractions of all memory accesses. For each appli-

cation, we skip up to 100B instructions to bypass the initiation stage and

collect the virtual and the physical addresses for every memory accesses for

10B instructions (or until the application completes) with the Linux pagemap

interface [54].
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77



The results show two distinct types of behaviors (Figure 6.2). Some

applications, e.g., mcf and GUPS, exhibit many fewer deltas than pages, indi-

cating very strong cross-page contiguity. However, applications such as mum-

mer and CG require a similar number of deltas and pages, indicating a highly

randomized mapping.

Note that this contiguity is naturally occurring with an unmodified OS

with all its default settings. No technique to enhance contiguity, such as a

contiguous memory allocator in the Linux kernel or an eager allocator [47],

are used. Furthermore, no single size is enforced, like it is with coarse-grained

pages.

6.2 Delta Caching

We implement Delta Caching as part of the LLC, which is augmented

with: (1) a cache-indexing function with which we can store delta-pointer

PTEs within data cache lines and that is used to access such PTEs; (2) a

mechanism to differentiate access to data or to a PTE and cache lines that

store data or delta-pointer PTEs; (3) a cache partition that is used to store

the delta and permission information and which is accessed by cache location

rather than through a tagged cache lookup; and (4) a controller for managing

the delta array.

Before discussing these new features in full detail, we first describe one

example access that uses Delta Caching: a TLB miss that queries the LLC for

the corresponding PTE. A TLB miss is handled by the a hardware page walker,
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which marks the access as a PTE access. The PTE access uses a modified cache

function to check whether a delta pointer exists for this PTE (Figure 6.3c).

This function is designed for storing 32 delta pointers (representing up to

32 PTEs) within each 64B cache line. If the pointer tag matches (including

verifying that the line indeed stores pointers using the PTE bit in the tag), the

pointer is read from the cache line. A zero pointer indicates an invalid entry

and the page walker proceeds to access main memory for the PTE. Otherwise,

the pointer identifies a specific location within the delta array within the LLC

(Figure 6.3b), which is used to construct the PTE and install it in the TLB.

This access, along with the delta array management is depicted in Figure 6.4.
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Figure 6.3: Delta Caching overview.

6.2.1 The Delta Array

While delta pointers are stored within the LLC and accessed with the

modified cache function, we store deltas (really, (delta, metadata) pairs) in
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a separate storage array from the pointers. While this delta array can use a

dedicated SRAM structure, we evaluate a design that embeds the delta array

within the LLC, reducing the LLC capacity slightly. We store deltas in a set-

associative array, which is indexed by the least significant bits (LSBs) of the

delta. Each line contain one delta entry. We limit the total number of deltas to

216, such that each delta can be addressed with a 16-bit pointer. This strikes

a balance between increasing PTE storage capacity in the LLC (allowing 32

delta-pointers per cache line) with a large number of possible delta entries

to satisfy some applications (as suggested by the analysis of Section 6.1.2).

The delta entry format is similar to a PTE, with the physical page number

replaced by the delta in page number (Figure 6.5). The size of each delta entry

remains 8B. In general, the needed capacity in the delta array may vary over

time. However, for simplicity we only explore fixed-sized delta arrays, which

we describe in Section 6.4.
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Regular data 
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Figure 6.4: Flow of cache accessing
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Figure 6.5: A delta array entry.

Delta Matching and PTE Fill. When a PTE access misses in its delta-

pointer location, the PTEs read from main memory should be filled into the

cache. Each PTE must match a delta entry in the delta array, or, attempt

to install a new delta entry in the delta array. To do this a PTE’s delta is

computed and is compared with those already in the delta array. We use

the least-significant bits of the delta value to index into the delta array and

compare all delta values within that set of the delta array to the PTE delta.

On a comparison match, the PTE is replaced with a pointer to the matched

delta. Otherwise, if possible, one delta from the set is evicted and the pointer

then updated. We discuss delta replacement below.

Delta Replacement. A stored delta cannot simply be evicted because there

may be PTE pointers that still refer to it. One possible solution is to store

back-pointers from deltas to PTE entries in the data cache, as done in [77].

However, the number of possible pointers in the large LLC, makes this ap-

proach prohibitively expensive. Instead, we propose to add a reference counter

to the unused space in each delta entries metadata field (Figure 6.5). This

counter is incremented every time a delta pointer that points to the delta en-

try is added to the LLC and is decremented when such a pointer is evicted

from the LLC (as lines storing delta-pointer PTEs are evicted). We then use
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an LRU replacement policy on delta array, but only replace an entry with zero

reference.

If no entry is found with zero references, the delta entry is not allocated

and the PTE pointer that triggered the attempted delta replacement is set to

zero to indicate a PTE cache access miss. In other words, it is possible for the

cache line accessed for pointer-cached PTEs to miss.

6.2.2 Delta Caching Hierarchy

In our design, the delta array and pointer-based PTEs as stored in the

LLC. However, it is possible the PTEs may also been cached closer to the

cores. Thus, when the page walker accesses the cache hierarchy for a PTE, it

starts at the L1 and L2 caches treating the PTE as data. Only at the LLC,

the special cache function is used. This also implies that pointer-based PTEs

are not propagated to other cache levels and are only used for TLB fills.

6.2.3 Delta Caching and Page Table Updates

Delta Caching stores PTEs in the cache using a different cache function

than data. PTE accesses that are generated by the page walkers are easily

identified and follow the flow discussed above. However, when the OS manip-

ulates the page table, it uses regular store instructions to modify PTEs. Such

PTE-stores also must use the Delta Caching cache index function to correctly

update deltas, or at a minimum, invalidate delta-pointer PTEs in the cache

(setting their delta pointer to zero). We propose to do this by introducing a
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new access mode (or new store instruction) that the OS will use for the purpose

of modifying PTEs. This instruction is the only architectural modification re-

quired for Delta Caching and only the page-table manipulation routines of the

OS need be aware of it.

When the processor executes such an instruction, the newly-written

PTEs may be cached in the L1 or L2 data caches. However, the lines used to

store PTEs are marked with a special PTE bit. This bit is used to correctly use

pointer-based PTE storage when a cache line with PTEs is written back from

the L2 to the LLC. On a writeback, the LLC controller checks this PTE bit.

If it is set, the PTEs are used to fill pointer-based PTEs as already discussed.

If the processor does not allow PTE caching in L1 and L2, the PTE-store

invalidates the pointer of the PTE it modifies and directly stores the updated

PTE to main memory. In this way, the next page walk will read the updated

PTE from memory.

Note that the delta-pointer based PTEs do not include the accessed

and modified bits of the actual PTE. The page walker directly updates those

bits in main memory. This is acceptable because their update is rare and those

bits are “sticky” and can be updated at any time by any core.

6.3 Dual PTE/Delta Caching

One issue with the basic Delta Caching introduced in previous section

is that PTEs must either be cached as delta pointers or not cached in the LLC

at all. As shown in Figure 6.2, some applications have a very large number
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of deltas and do not cache well as delta pointers. Such applications suffer

when PTEs cannot be cached as data. To mitigate this problem, a simple

idea is to allow PTEs to be stored in both delta caching mode and the regular

direct data caching mode. To do this, a PTE access attempts two different

LLC accesses at the two locations in which the PTE may be cached (as data

or as a pointer). A simplistic implementation, however, will suffer from two

deficiencies:

Extra Accesses — because of different address mappings, the two accesses

mentioned above are very likely mapped to two different cache sets. Even for

LLCs where tag array and data are accessed sequentially, only tag array is

accessed twice. However, these two accesses require either longer latency (if

issued sequentially), or more port contention on tag array (if issued simulta-

neously).

Capacity Inefficiency — if both forms of a PTE are cached frequently,

the effective capacity will decrease. Checking for overlaps and flushing dupli-

cated cache lines introduces complex and expensive mechanisms. For example,

before adding a cache line of pointers, 4 corresponding cache lines (32 PTEs)

need to be checked to detect and potentially flush all duplicated cache lines.

We propose a small, yet very effective change in cache address mapping

to resolve both issues.
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6.3.1 Address Mapping for Dual Caching

Instead of using the same cache address mapping as the regular data

for PTEs, we shift the cache index by 2 bits such that PTEs and pointers use

the same address bits for the cache index (Figure 6.6). This new mapping

resolves the two issues above. First, PTEs and pointers for the same pages

are always mapped to the same cache set, thus only one set in the tag array

needs to be checked. Second, because the overlapped cache lines are placed

in the same set, the cache replacement policy will automatically promote hit

lines and demote lines that are not useful. When we hit both pointers and

PTEs, we only promote the line with pointers. And when we miss both, a

mode selection mechanism is used to make a decision.

With this mapping scheme, it is possible that one cache line with PTEs

and another cache line with regular data have the same index and tag but form

a different address. To resolve this conflict, we add one extra bit to the cache

tag to indicate a cache line with PTEs/pointers. The PTE-store variant must

also be modified to both invalidate a pointer and update a regular PTE, if

both exist in the cache.

6.3.2 Mode Selection

The next question is how to dynamically decide whether to store PTEs

as pointers or not. Ideally, delta caching start to be beneficial when the number

of pointers in a cache line is greater than 8 (since there are 8 PTEs when storing

directly). Instead of accurately calculating the number of valid pointers, which
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Figure 6.6: Address mapping for dual caching

requires validating all 32 pointers, we use a heuristic based on just the 8

PTEs fetched at one time from memory: if more than half of these PTEs

can be assigned a delta entry, we allocate the line as for delta-pointer PTEs.

Otherwise, we fall back to directly caching PTEs. While this scheme seems to

be not accurate and only samples 8 out of 32 pointers, our evaluation shows

that it is quite effective.

6.4 Evaluation Methodology

Our evaluation includes two parts. First, we check the effectiveness of

the proposed delta caching mechanism by comparing the relative number of

page walks miss LLC and require DRAM access with baseline (directly caching

PTEs). Then, we use a performance model to evaluate the performance impact

of delta caching.
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Capacity
Baseline Delta 50% Delta 25%

Pointer Delta Pointer Delta
64KiB 128*8 128*4 512*8 128*6 256*8
128KiB 256*8 256*4 1024*8 256*6 512*8
256KiB 512*8 512*4 2048*8 512*6 1024*8
512KiB 1024*8 1024*4 4096*8 1024*6 2048*8
1024KiB 2048*8 2048*4 8192*8 2048*6 4096*8
2048KiB 4096*8 4096*6 8192*8 4096*6 8192*8
4096KiB 8192*8 8192*7 8192*8 8192*7 8192*8

Table 6.2: Cache configurations, # of sets * # of ways

6.4.1 Page-Walk Memory Access Costs

To conduct a fair comparison, we use an equal share of LLC capacity

for both schemes. The effective cache capacities used for PTEs have been

profiled in Table 6.1. We use the same capacities for delta caching. For delta

caching, this capacity needs to be partitioned to pointers and deltas. We

include two sets of configurations for this partition. One attempts to split the

total capacity 50 − 50, and another attempts to assign 75% for pointers and

25% for deltas. This partitioning is done by removing a certain number of ways

from the pointer array and allocating them to the delta array. To minimize

the cost of delta array look-ups, we fix the associativity of the delta array to

8, such that only one 64B cache line is accessed for checking all deltas in a set.

We also chose a maximum delta array of 216 entries (512KiB), so that each

pointer is limited to 16 bits and 32 pointers are stored in one 64B LLC line.

After the size of delta array increased to maximum, we assign the remaining

capacity to pointers. The detailed parameters for each size/configuration are

shown in Table 6.2.

To collect the number of page-walk memory accesses for delta caching,
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we use the modified Linux kernel form BadgerTrap [26] to intercept page walks,

and model both the baseline and delta caching scheme within the handler.

The goal of this evaluation is to verify that delta caching is able to re-

duce the number of page-walk memory accesses with the same capacity com-

pared to baseline. However, it is also quite limited. First, it is difficult to

dynamically adjust the size of the delta array with different applications. Sec-

ond, a large fraction of page-walk memory accesses reduction does not mean

substantial performance improvement. It is more interesting to check the im-

pact on the run time. To address these concerns, we conduct the second part

of the evaluation.

6.4.2 Comparing System Performance

As mentioned before, we use a fixed capacity for the delta array instead

of adjusting the size for each application. This is a practical way to integrate

delta caching into a processor. The delta array can either be added to the

processor as extra storage or partitioned from the LLC. We evaluate three

capacities of the delta array: 128KiB, 256KiB, and 512KiB.

We first use the same approach to evaluate the page-walk memory

accesses. Now with the separately allocated delta array, we are expecting

even more reduction, because the pointers can use the full capacity instead

of the LLC sharing with deltas. Then we use an analytic model based on

hardware performance counters measured on real hardware. The model is

similar to the model used in Chapter 5. Note that delta caching does not
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just remove memory accesses for page walks, but rather, converts them into

LLC accesses. We improve the model with separate page-walk overheads for

cache and memory accesses. We first proportionally remove the time spent on

page-walk memory accesses with the reduced page-walk LLC misses by delta

caching. We then add a corresponding overhead in LLC accesses back to the

total run time. The details of this model and parameters are summarized in

Table 6.3.

Collected Statistics
T4K/THP Total execution cycles with (4K / THP)

PW4K/THP Cycles spent in page-walks (4K / THP)

PL1/PL2/PL3/PLM
Page walks served by L1/L2/L3 cache

and main memory (4K)

Parameters
C1/C2/C3 L1/L2/L3 cache latency (4/11/30 cycles)

R Relative page walk memory accesses to baseline

Model
Ideal execution cycles E4K/THP = T4K/THP − PW4K/THP

Page walk cache cycles
PWCache = C1 ∗ PL1 + C2 ∗ PL2

+C3 ∗ PL3

Page walk memory cycles PWMEM = PW4K − PWCache

Page walk cycles
PWDelta cache = PWCache + (1−R) ∗ PLM ∗ C3

PWDelta mem = R ∗ PWMEM

Total cycles TDelta = E4K + PWDelta cache + PWDelta mem

Table 6.3: Performance model and measured parameters. The 4K/THP no-
tation indicates that two parameters are measured – once when running with
4KiB pages and a second time with THP.

6.5 Evaluation Results

We first show the normalized page-walk memory accesses for delta

caching (Figure 6.7), and dual caching (Figure 6.8). Delta caching effectively

reduces memory accesses from page walks on some applications with good

cross-page contiguity. For instance, in IS, GUPS-8G, both configurations ef-
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fectively reduce memory accesses generated by page walks to less than 50%.

For canneal, the reduction to almost zero. However, as expected, applications

with sub-optimal contiguity, e.g., CG and mummer, Delta Caching cannot

help, and due to limitation of delta array size, DC actually increases page-walk

LLC misses. On average (g-mean), delta caching reduces page-walk memory

accesses to 69% with 50% of capacity as delta array, compared to baseline.

The 25%-delta configuration, however, increase average page-walk memory

accesses to 143%. We also show the average occupancy of pointer cache lines.

Occupancy is defined as the number of valid pointers (with a valid delta en-

try) in a pointer cache line. We scan the whole cache every 10 million page

walks to calculate the occupancy and report the average (arithmetic) result

over the whole run. As we can see, IS and canneal achieves close to 32 average

occupancy while CG suffers from low occupancy. For delta caching, most ap-

plications benefit from a larger delta array, and show a penalty when running

out of delta entries (e.g., astar and stramcluster).

Dual caching achieves better, or at least similar, results than baseline

(except for mummer). For applications that work well with delta caching, e.g.,

IS and canneal, the result is very close to delta caching. For applications that

not work well with delta caching, e.g., CG and UA, dual caching significantly

reduces the overhead introduced by delta caching. In addition, dual caching

also achieves improvements with applications that run out of delta entries

(astar and streamcluster in Figure 6.7). This is because the mode selection

scheme detects the lack of delta entries and adapts to directly cache PTEs.
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Figure 6.7: Normalized page walk-memory accesses with delta caching.

As mentioned in Section 6.4, we also evaluate the impact of dual caching

with fixed capacities for the delta array. We compare the number of page-walk

memory accesses of dual caching with the baseline. Differently from Figure 6.8,

we now use a fixed capacity for the delta array. The result is similar to Fig-

ure 6.8, and because now we allocate delta arrays separately, and do not reduce

the capacity for pointers, the overall result is better. With the smallest delta

capacity, 128KiB, most applications outperform the baseline and achieve 89%

page-walk memory access reduction on average (g-mean). For 256KiB and

512KiB delta arrays, the average reductions are even better (96% and 98%).

For GUPS-8G, the reduction is almost to zero. This indicates that we achieve

the maximum efficiency (one 2B pointer per 4KiB page, 4MiB of pointers for

the 8GiB memory footprint of GUPS). The hit distribution shown in Fig-

ure 6.11 also explains this result. When 256KiB or 512KiB delta arrays are

used, delta mode dominates the hits.
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Figure 6.8: Normalized page walk-memory accesses with dual caching.

In Figure 6.12, we show the total run time distributed into execution

time and page-walk servicing time. We compare the 4KiB pages baseline,

THP (transparent huge page), and dual caching with 128KiB, 256KiB, and

512KiB delta arrays. Dual caching effectively reduces page-walk overhead in

applications with good cross-page contiguity, e.g., IS, xalan, astar, GUPS-8G.

On average, dual caching reduces page-walk overhead from 19.2% to (15.5%,

11.6% and 9.5% with 128KiB, 256KiB, 512KiB delta arrays). With the 512KiB

configuration, dual caching reduces the overall run time by 10%, as good as

THP. In some applications, dual caching yields sub-optimal improvement. For

example in mcf, it only reduces page-walk overhead from 24% to 15% even

with the largest 512KiB delta array. This is because dual caching only convert

memory accesses in page walks into LLC accesses and some applications still

spend substantial time on page-walk cache accesses. This can be improved by

combining delta caching with other TLB coalescing techniques, e.g., CoLT [70].
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Figure 6.9: Distribution of hits with dual caching

We discuss this below.

6.6 Further Discussion

6.6.1 CoLT (Coalesced Large-Reach TLBs)

Delta caching utilizes mapping contiguity to reduce the number of

memory accesses required by page-walks. Other techniques such as CoLT

(Coalesced Large-Reach TLBs) [70] and Hybrid TLB Coalescing [64] focus on

increasing the reach of TLBs to reduce the number of page walks.

In this section we compare delta caching with CoLT and also evaluate

how CoLT and delta caching work together. We implement the set associative

CoLT [70] as a second level TLB with 1K entries (128-set, 8-way each). Up to

8 PTEs can be coalesced and stored within each entry.

We model the performance impact of CoLT by comparing the number

of page walks required after CoLT with the number of page walks without
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Figure 6.10: Normalized page walk memory accesses with fixed sized delta
array

CoLT, and proportionally reduce the page walk overhead within cache. We

observe that CoLT does not change the number of page walks miss the LLC.

This is expected because the effective capacity of the cache used for PTEs is

much larger than CoLT, although CoLT can be up to 8X more efficient than

the regular TLBs. Finally, we evaluate how dual caching works together with

CoLT. We apply dual caching to the LLC. Note that page-walks handled by

dual caching are filtered by CoLT.

The results in Figure 6.13 show that when used alone, CoLT effectively

improves TLB efficiency in some applications, e.g., mcf and astar, reducing the

cycles spent on page-walk cache accesses from 8.2% and 6% to 3.2% and 1.2%.

However, in applications in which memory accesses dominate the page-walk

overhead, the improvement is very limited.

When combining CoLT and delta caching, page-walk overhead in both

cache and memory is improved. The combined scheme achieves very small
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Figure 6.11: The distribution of hits (left to right: 128KiB, 256KiB, 512KiB)
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Figure 6.12: The distribution of run time (left to right: 4KiB Baseline, THP,
Dual caching with 128KiB, 256KiB, 512KiB delta array)

page-walk overhead in IS.B and astar (only 1.3% and 2.3%) even with the

smallest 128KiB delta array. And overall, the 512KiB configuration now re-

duces 59.7% of page walk overhead (19.2% to 7.9%), outperforming THP in

total run time by 1.9% (88.5% v.s. 90.4%).

Because CoLT already exploits cross-page contiguity, the fraction of

regular hits in dual caching increases. We show the distribution of hits in Fig-

ure 6.14. For example, compared to the hits distribution of using dual caching
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Figure 6.13: The distribution of run time (left to right: 4KiB Baseline, CoLT
only, CoLT + Dual caching with 128KiB, 256KiB, 512KiB delta array

alone (Figure 6.11), the fraction of direct PTEs caching in xalan and tiger

(128KiB) increases from almost zero to more than 10%. The mode selection

scheme successfully detects the loss of contiguity and adapts to use direct

PTEs caching.
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Figure 6.14: The distribution of hits (left to right: 128KiB, 256KiB, 512KiB)
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6.6.2 Impact of LLC Capacity Reduction

We evaluate the impact of reserving part of the LLC capacity for the

delta array on an Intel E5-2608L processor equipped with Cache Allocation

Technology [38]. We allocate various number of ways in the LLC to control

cache capacity from 8.25MiB to 6MiB. With Intel Performance Counter Moni-

tors [39], we measure the IPC of each application with various LLC capacities.

In addition to single/multi-threaded applications, we also evaluate the sys-

tem with multi-programmed workloads, that place greater pressure on LLC

resources.

Figure 6.15 shows normalized IPC over LLC capacities. Most workloads

shows less than 3% IPC drop when LLC capacity is reduced from 8.25MiB to

7.5MiB. When LLC capacity is reduced to 6MiB, the performance impact

becomes bigger, for example, mcf suffers a 9.7% IPC drop. However, since

our delta array capacity is limited by 512KiB, the performance impact from

reserving LLC capacity for the delta array is minimal.

6.6.3 Sensitivity Study to Memory Fragmentation

We use the memory fragmentation generator from ingens [52] to frag-

ment 25% and 50% (a severe condition of operation) of memory, and compare

the impact of delta caching with no artificial fragmentation (normal). We use

dual caching with a 256KiB delta array to evaluate all three configurations.

Roughly half of applications show some impact from 25% fragmentation

(Figure 6.16). On average, normalized page-walk memory accesses increase
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Figure 6.15: Impact of LLC capacity reduction

from 4% to 21%, but still much lower than the baseline. When fragmenta-

tion increases to 50%, most applications are impacted, with average memory

accesses increasing to 53%.

6.7 Related Work

We discuss prior work relating to utilizing cross-page contiguity, include

TLB coalescing to improve TLB efficiency [70, 64], and mechanisms that create

or force the contiguity to coarsen virtual to physical mapping granularity [9,

47].

TLB Coalescing. TLB coalescing [70] improves the efficiency of the TLB

and increases TLB coverage per entry. It detects instances of consecutive

virtual to physical mappings and stores the mapping information with a single
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Figure 6.16: Normalized page walk-memory accesses with different fragmen-
tation levels

TLB entry. The scope of coalescing is usually limited to 4-8 pages per entry to

allow efficient lookups of coalesced TLB entries. While this restriction can be

addressed with a fully-associative TLB, the number of fully-associative entries

in TLB design is usually limited to 16-24 [40].

To enable a more-flexible coalescing granularity and better scalability,

Park et al. [64] propose a HW-SW hybrid scheme where the OS can instruct

HW with the optimal coalescing granularity (anchor size). The efficiency of

this scheme relies on the anchor size selection algorithm. Any change of anchor

size leads to invalidation of the entire TLB.

While TLB coalescing techniques effectively increase the coverage of

the TLB, it is still limited by the number of TLB entries. Our results show

that even for many applications with strong cross-page contiguity, more than

2000 regions/deltas/TLB entries are required to achieve 95% coverage, e.g.,
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2380 for astar, 23329 for IS, and 7759 for tiger, which is far beyond the size of

TLBs (Figure 6.2).

Coarse-Grained Mapping. Superpages [82, 81, 63] and hugepages [14, 53,

5] enlarge the standard translation granularity to improve the efficiency of

TLB and reduce the translation overhead. By enlarging the granularity of

address mapping and management, the coverage of the TLB can be increased.

However, applying a coarse-grained mapping is not free. Invoking hugepages

explicitly usually requires porting and code modification and not transparent

to applications. Relying on OS-managed transparent huge pages (THP) [5, 63]

to form coarser pages adds overhead that can be significant[52]. This is appar-

ent with the THP mechanism of Linux for which we measure and report sig-

nificant management costs with some benchmarks. Larger page sizes increase

the working set size [83, 52], rely on large contiguous memory regions, and fail

to provide fine granularity protection. Holes between small non-continuous

regions can lead to wasted memory. A single 4KiB dirty page can cause the

write back of the whole mostly clean large page in current hardware imple-

mentations [5, 14]. Even for applications with suitable memory behavior, it is

challenging to use coarse-grained pages because the optimal page size depends

on the application, system, and dynamic characteristics of the inputs. Note

that academic research on superpages addresses some of these limitations, but

not all [82, 81]. For NUMA systems, large pages may lead to performance

loss due to load imbalance and poor locality, which might entirely offset the
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benefits from fewer page walks [27].

Orthogonal to utilizing existing contiguity, schemes to create or force

contiguity and to coarsen the granularity of mapping are also proposed [9, 47].

Direct segmentation [9] utilizes legacy segment mechanism to manage a one

to one mapped region which is reserved in OS at boot time. To allocate into

this special linear mapped region, the OS need to be argumented to guarantee

and maintain that there is no holes in the entire reserved region.

Redundant Memory Mappings [47] increase the number of supported

regions by adding range TLBs in parallel to the regular TLBs. A range-TLB

entry can support an arbitrarily-sized region in which all pages are contigu-

ously mapped. This contiguity is forced at allocation time by employing eager

allocation.

The effectiveness of these contiguity-generating techniques relies on

huge chunk allocations and hurt the flexibility of mapping, which is one of the

most important benefits of virtual memory. Additionally, these region-based,

TLB-like structures are usually limited by available resources. For example,

Redundant Memory Mappings employ a 32-entry fully-associative range TLB.

The precious entries need to be used carefully to maximize the benefits.

Memory Compression. Since PTEs are also data, general data compres-

sion techniques can be applied to PTEs as well. Previous work includes mem-

ory compression schemes for data in main memory [66, 2, 25, 50, 78], and

caches [86, 65, 75, 3]. However, these compression and decompression algo-
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Application OS Size Reach Loss of
transparency transparency per entry flexibility

Delta Caching 3 mostly Caches 32 pages per line No
HW TLB coalescing [70] 3 3 TLBs Up to 8 pages No

Hybrid TLB coalescing [64] 3 7 TLBs Up to 64K pages Optional
Transparent Huge Pages [5, 63] 3 7 TLBs 2MiB No

Redundant Memory Mappings [47] 3 7 TLBs Unlimited Yes
Direct segments [9] 7 7 1 Unlimited Severe

Table 6.4: Comparison of delta caching with prior schemes for reducing trans-
lation overhead

rithms are substantially more complex than delta caching. Furthermore, the

compression opportunities are usually exploited only within a certain scope

(e.g., in the same cache line, PTE or in nearby blocks). However, delta caching

utilizes the knowledge of PTEs format and address mapping contiguity. It is

simple, yet especially efficient for PTEs.

We select Base-Delta-Immediate [65, 50] (BDI) as a representative com-

pression scheme. The basic idea of BDI is representing data blocks with a low

dynamic range as a base value and an array of differences. The combined size

is much smaller than the original blocks. To store PTEs with the same delta,

we can use one PTE as the base value and use 1 bit for each page to indi-

cate if this page is valid (present and represented with the base value/PTE).

This BDI-like scheme can be extended to multiple deltas/PTEs in the cache

line with extra bits to indicate a specific delta. For example, 2 bits per page

for 4 deltas. We implement a collection of BDI-like compression schemes to

evaluate the efficiency of compression of PTEs and compare the normalized

page-walk memory access count with delta caching and dual caching. We use

X-Y to represent a compression scheme where in each 64B cache line, we store
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X deltas and Y pages. Each page is represented with one of the deltas, or

otherwise invalid.

Note that differently from previous evaluation, we use log scale to com-

pare results because the dynamic range of the results from different schemes is

very large. In Figure 6.17, we show normalized page-walk memory accesses for
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Figure 6.17: Normalized page walk memory accesses

delta caching, dual caching (all with 50% capacity for delta), and dual caching

with 256KiB delta array, and compare these with three different compression-

based schemes. Compression schemes are less effective than delta caching

even though their maximum density (64 to 256 pages per line) is much larger

than that of delta caching (32 pages per line). This is because compression

schemes rely on contiguity within a relatively-larger range than delta caching.

Pages can only be represented with one of the deltas within the same cache

line. While pointers in delta caching can be mapped to any delta entry in

the delta array. In addition, compression schemes may duplicate the same

delta into multi cache lines, result in loss of efficiency. Compression performs

well and outperform other schemes only with applications with extremely high
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contiguity, such as GUPS.

We summarize closely related schemes to reducing paging overheads

and compare them with delta caching in Table 6.4. Delta caching is a mostly-

transparent mechanism, makes no compromises on any existing benefits of fine-

grained virtual memory, and only require minimal OS support (only changing

the variant of a few existing store instructions).
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Chapter 7

Conclusion

In this dissertation, I observe limitations in current fine-grained virtual

memory: the long-latency of translation, the impact of page-grained address

mapping, and the inefficient use of on-chip memory when caching metadata. I

propose various mechanisms to avoid the unnecessary cost of fine-grained vir-

tual memory. The proposed mechanisms approach the performance of coarse-

grained virtual memory while maintaining seamless compatibility with fine-

grained virtual memory and its benefits.

SIPT cache architecture enlarges the design space that constrained by fine-

grained address mapping. It employ hardware mechanisms to guarantee cor-

rectness while leave opportunities for optional software optimizations. With

proposed prediction mechanism, high speculation accuracy can be achieved

with minimal cost.

EMPTI resolves the latency bottleneck of address translation. It breaks the

limitation in pervious work that translation and metadata must be maintained

in the same granularity. EMPTI decouples the translation and metadata,

introduce novel schemes to embed metadata to near data places, effectively
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reduces the overhead of metadata accessing. With EMPTI, we achieves the

advantage of both the coarse-grained translation and fine-grained metadata at

the same time.

Delta Caching identifies the opportunities of more efficient metadata caching.

It utilize the nature of contiguity in address mapping and the redundancy of

metadata. With proposed novel caching scheme, delta caching achieves up to

4× density for storing PTEs while make zero compromise on the flexibility

of address mapping. We also propose adaptive approach to avoid penalty on

applications with sub-optimal contiguity. The adaptive version, dual caching

achieve significant saving on page walk memory accesses and out performs

THP when combined with TLB coalescing.

7.1 Future Work

Future virtual memory may need more variants of metadata with an

even finer granularity to support emerging usages efficiently [59, 84]. The rest

of this chapter outlines opportunities and challenges for future work.

Variants of Metadata. Current virtual memory supports per-page meta-

data within PTEs. This scheme is simple, yet both expensive and insufficient:

1. Existing metadata mechanisms maintain accurate states or counts.

In many cases, the absolute accurate metadata is not required. For example,

the per-page access count is used to identify and migrate hot pages in hetero-
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geneous memory systems [59]. However, maintaining such an accurate counter

in page granularity is expensive and unnecessary. A proper approximation for

access count may be sufficient for performance optimization.

2. Many techniques, e.g., dynamic tainting [84] require even finer granu-

larity than the 4KiB pages. Architectural support to store, manage and access

these fine-grained metadata is an interesting research topic.

To conclude this dissertation. Current fine-grained paged virtual mem-

ory provides appealing features, but at significant cost. I propose and evaluate

SIPT, EMPTI, and Delta Caching to address the overhead and constraints in-

troduced by fine-grained virtual memory. These schemes identify the real

implications of fine granularity, remove the unnecessary cost of fine-grained

virtual memory, and achieve overhead comparable to coarse-grained virtual

memory while maintaining all features of fine-grained virtual memory.
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