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Interest in spatially weighted regression analysis has increased due to

corresponding increases in access to publicly available spatial data. Spatial au-

tocorrelation occurs when the ordering of observations across space produces

a relationship between pairs of individual observations. Instances of spatial

autocorrelation necessitate the use of alternative approaches to parameter es-

timation other than ordinary least squares. With a focus on autocorrelation

resulting from spatial dependence in the dependent variable or the error term,

this report summarizes basic methodology for detecting spatial autocorrela-

tion and spatial autoregressive model selection. The approaches outlined in

this report are then applied to an analysis of county-level turnout in Texas.
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Chapter 1

Spatial Autocorrelation in Regression Analysis

With dramatic increases in the amount of publicly available geographic

information system (GIS) data and software, it has become more important

for researchers to understand the complexities of analyzing spatial data. Since

the advent of the internet, the average individual has access to an ever in-

creasing supply of high quality spatial data. More recently, through the use of

smartphone technology, GIS data has become an integral part of everyday life.

Spatial data is not, however, new in statistical research. Data sources such as

the U.S. Census and election results have been produced since the founding of

the United States.1

The term spatial refers to how areal units are arranged on a planar

map (Griffith 1987, p. 10). Autocorrelation occurs when the ordering of

observations produces a relationship between pairs of individual observations.

Formally, autocorrelation means

hi = f(hj), i 6= j (1.1)

1What we know today as the “Census” was originally mandated by the U.S. Constitution.
Article I, Section 2 of the United States Constitution, states: “The actual enumeration shall
be made within three years after the first meeting of the Congress of the United States, and
within every subsequent term of 10 years, in such manner as they shall by Law direct.”
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where an individual observation hi is a function of other observations.

In political science research, especially research involving elections,

there is important geographic variation. With more attention being paid to

election administration since the 2000 election, there is an increasing need for

political scientists to be aware of how to account for geographic dependencies

in the regression analysis. Controlling for spatial autocorrelation is also com-

mon practice in quantitative geographic, medical, and demographic research.2

This report will proceed first by defining and modeling spatial auto-

correlation in regression analysis. The focus of this report will be centered

on spatial autoregressive processes. In particular, autocorrelation resulting

from spatial dependence in the dependent variable and the disturbances. Sec-

ond, this report will outline basic methods for detecting spatial autocorrela-

tion. Third, this report will describe how the Lagrange Multiplier test can be

used for autoregressive model selection. Last, this report will implement these

methods in a case study of turnout in the state of Texas.

1.1 Spatial Dependence in the Regression Model

When estimating regression coefficients, in order for the OLS estimator

to be considered the best linear unbiased estimator (BLUE), certain conditions

2Concerns over spatial autocorrelation is particularly evident in research on communica-
ble diseases in medical statistics.
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must be met. Consider the linear regression model:

yi = α + βxi + εi (1.2)

such that the dependent variable, yi is a linear function of xi with some error,

εi. The Guass-Markov Theorem states that, under the following conditions,

1. Zero mean: E(εi) = 0

2. Nonstochastic X: values of Xi are fixed in repeated sampling

3. Homoskedasticity: E(ε2i ) = σ2

4. Non-autocorrelation: Cov(εi, εj) = 0, (i 6= j)

the OLS estimator of β is BLUE.3

When working with data that can be spatially mapped, it is important

to test for violations of the fourth assumption (non-autocorrelation). If the

fourth assumption is violated, i.e. if Cov(εi, εj) 6= 0, where i 6= j, then autocor-

relation is present. If i and j are observations in time, then the autocorrelation

is temporal. If i and j are observations in space, then the autocorrelation is

spatial. As cautioned by Berry (1993), spatial autocorrelation “should be sus-

pected whenever the positions of observations under analysis are structured

relative to one another in the same manner”. When observations are autocor-

related, the coefficient estimates remain unbiased, but are no longer efficient.

3The classical linear regression assumptions as articulated by Kmenta (1971) includes
the additional assumption of Normality: εi ∼ N(0, σ2).
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1.2 Spatial Dependence

There are two types of spatial autocorrelation that researchers should

investigate when using spatial data. The first type of spatial autocorrelation

is in the dependent variable. The second type is in the regression error term.

Substantively, the difference between these two types of spatial autocorrelation

relates to the functional form of the spatial processes (Griffith 1987).

When spatial autocorrelation is observed in the dependent variable, it

is because the data is organized in such a way that observations’ placement

and proximity to one another are non-random. Equation 1.3 presents the

functional form of autocorrelation in the dependent variable,

yi = f(y1, y2, ..yn), i 6∈ N

N = {1, 2, .., n}
(1.3)

where yi is a function of the values of other observations of the random vari-

able Y at other locations, y1, y2, ..yn. When this is the case, there is clustering

of similar (positive spatial autocorrelation) or dissimilar (negative spatial au-

tocorrelation) observations.

Odland (1988, p. 53) defines spatial autocorrelation in the error term

as instances where “the error at each location depends on the errors at other

locations”. This generally occurs when the spatial process generating autocor-

relation is caused by some unobserved variable. Consider the linear regression

model in Equation 1.2 where εi is correlated with εj and i 6= j. When the

errors in one point in space, i, are dependent on another location, j, the errors

of the regression model are no longer independent. The model in Equation

4



1.2 would then be in violation of the fourth Guass-Markov Theorem condition

(non-autocorrelation), indicating that OLS a suboptimal estimator relative to

the models outlined in the next section of this report.

1.3 Regression Models with Autoregressive Components

Once the functional form of the spatial autocorrelation is identified, it

is necessary to account for the appropriate type of autocorrelation exhibited

in the data. Cliff and Ord (1981) caution analysts to determine whether the

spatial process at play in the data is cause by “reaction or interaction” when

choosing the appropriate spatial regression model. It is important to identify

whether the spatial units are interacting with one another or they are reacting

to some other variable not included in the model. The determination of what is

driving spatial processes is often driven by both testing statistical hypotheses

and the judgment of the researcher.

1.3.1 The Spatial Autoregressive Regression Model (SAR)

The spatial autoregressive regression (SAR) model is analogous to the

Autoregressive Model (AR) in time series statistics.4 In terms of spatial statis-

tics, the spatial lag term, ρWY, is a weighted average of neighboring values

(Anselin and Rey 2014). The SAR model in matrix notation is,

Y = ρWY + Xβ + ε (1.4)

4The SAR model is sometimes referred to as the spatial autoregressive lag model.
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with

−1 < ρ < 1 (1.5)

where W is the n×n row-normalized spatial weights matrix, ρ is the

scalar autoregressive lag parameter, X being the n×k matrix of explanatory

variables, β is a k×1 vector of regression coefficient parameters, and ε is a

n×1 vector of independently and identically distributed residuals.

The spatial weights matrix, W , is essentially a weighted contiguity

matrix which relates observations of a variable at one point in space to other

observations of that same variable at other points in space.5 Matrix items, Wij,

will be zero whenever spatial units are not deemed neighbors.6 In general, W

will be large and populated with many zeros. Traditionally, the spatial weights

matrix is row-standardized by dividing each row by its row sum.

When the scalar ρ=0, Equation 1.4 reduces to the standard linear re-

gression equation. It is possible to estimate the the autocorrelation parameter,

ρ with maximum likelihood estimation using the likelihood function (Griffith

1987). 7

5In a contiguity matrix, neighboring spatial units are assigned a value of one (Geary
1954; Moran 1948).

6The definition of neighboring units depends on the type of contiguity used. Queen-
based contiguity includes spatial units sharing both borders and vertices, while Rook-based
contiguity only includes spatial units sharing borders.

7Griffith (1987, p. 30) notes that even when minimizing the log-likelihood function
(Equation A.4), it is not possible to derive closed form parameter estimates for ρ and
the asymptotic standard error of ρ. When estimating ρ, the partial derivative of the log-
likelihood function does not reduce to a linear form, so it necessary to use non-linear opti-
mization techniques on the log-likelihood function.
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1.3.2 Spatial Autoregressive Error Regression Model (SAER)

When the regression error in one location is dependent on the error in

another location, it is necessary to use the spatial autoregressive error regres-

sion (SAER) model. In the SAER model, the autocorrelated error term, µ is

a function of the autocorrelation parameter, λ, a matrix of spatial weights for

paired observations, W, the autocorrelated error term of another observation,

and an identically and independently distributed error term, ε (Odland 1988).

Y = Xβ + µ

µ = λWµ+ ε
(1.6)

with
ε ∼ N(0, σ2

ε I
2)

−1 < λ < 1
(1.7)

To find a consistent estimate for β it is necessary to use spatially weighted

least squares (sometimes referred to as spatial Cochrane-Orcutt) to estimate

λ (Anselin and Rey 2014).

1.3.3 The General Spatial Process Regression Model

Both the SAR and the SAER models are special cases of the general

spatial process regression model. The general spatial process regression model

is essentially a spatial autoregressive model with a spatial autoregressive error

7



term. Anselin (1988) specifies the general spatial process regression model as,

Y = ρW1Y + Xβ + µ

µ = λW2µ+ ε (1.8)

with
ε ∼ N(0, σ2

ε I
2)

−1 < ρ, λ < 1
(1.9)

where W1 and W2 are n×n row-normalized spatial weights matrices, ρ is

the scalar autoregressive lag parameter, λ is the scalar autoregressive error

parameter, µ is the autoregressive error term, X being the n×k matrix of

explanatory variables, β is a k×1 vector of regression coefficient parameters,

ε is a n×1 vector of independently and identically distributed residuals.

For many applications, including both the spatial lag parameter and

spatial error parameter is not necessary. Depending on the results of the

Lagrange Multiplier (LM) test (described in section 1.4.3), it may be more

appropriate to use the Spatial Autoregressive Regression Model (SAR) or the

Spatial Autoregressive Error Model (SAER).

1.3.4 Maximum Likelihood Estimation of Spatial Autoregressive
Regression Models

Due to the non-spherical variance-covariance matrix, OLS becomes in-

efficient. Fortunately, it is fairly straightforward to proceed using maximum

likelihood estimation. Maximum likelihood estimates are asymptotically effi-

8



cient, achieving the Cramér-Rao lower variance bound. Table 1 presents the

log-likelihood functions we aim to maximize to derive parameter estimates.8

[Table 1 about here.]

There are several operational issues in the implementation of maximum

likelihood estimation of spatially weighted least squares. In particular, the

maximum likelihood estimate of β is conditional on the value of the scalar ρ

or λ. As outlined by Anselin (1988), the procedure for estimating parameter

values is slightly different for the SAR model relative to the SAER model.

1.3.4.1 Maximum Likelihood Estimation of the SAR model

For the SAR model, the operational issue stems from the first order

maximum likelihood estimate of β being a function of ρ.

β = (X ′X)−1X ′y − ρ(X ′X)−1X ′Wy (1.10)

Anselin (1988) summarizes the estimation procedure in five parts:

1. Carry out OLS of X on y to generate an estimate of βo

2. Carry out OLS of X on Wy to generate an estimate of βL

3. Use βo and βL to generate estimates of the residuals ε0 and εL

8Maximizing a log-likelihood function is equivalent to maximizing the likelihood function.
Typically, the log-likelihood function is easier than the likelihood function to manipulate
algebraically.
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4. Maximize the likelihood function with respect to ρ

L = α− (N/2)ln[(1/N)(ε0 − ρεL)′(ε0 − ρεL)] + ln|I − ρW | (1.11)

5. Given the estimate of ρ̂, compute:

β = β0 − ρ̂βL

and

σ2 = (1/N)(ε0 − ρ̂εL)′(ε0 − ρ̂εL)

(1.12)

1.3.4.2 Maximum Likelihood Estimation of the SAER model

For the SAER model, the operational issue stems from the first order

maximum likelihood estimate of β being a function of λ. After estimating λ,

it is possible to estimate β using feasible generalized least squares (FGLS).

Anselin (1988) outlines a seven step the procedure for generating β̂FGLS

1. Estimate β̂OLS via OLS regression

2. Estimate ε̂OLS = y −Xβ̂OLS

3. Maximize the likelihood function with respect to λ

L = α−(N/2)ln[(1/N)(ε′OLS(I−λW )′(I−λW )εOLS]+ln|I−λW | (1.13)

4. Given λ̂ , carry out feasible generalized least squares to obtain β̂FGLS

where

β̂FGLS = [X ′(I − λ̂W )′(I − λ̂W )]−1X ′(I − λ̂W )′(I − λ̂W )y (1.14)

10



5. Compute εFGLS = y −Xβ̂FGLS

6. Check for convergence

7. Given εFGLS and λ̂ compute σ2 = (1/N)ε′FGLS(I − λ̂W )′(I − λ̂W )′εFGLS

1.4 Statistics for Quantifying Spatial Dependencies

A statistically significant result would imply that we can reject the null

of randomness and independence of observations. It would then be appro-

priate to consider the dependent variable as being systematically organized

across space. In other words, the pattern in the dependent variable observed

is unlikely to have occurred if it was truly randomly distributed across space.

Global spatial statistics estimate the degree to which the dataset is spatially

organized in clusters of like-values. The most common statistic for testing

spatial autocorrelation in continuous data is Morans I .9

1.4.1 Moran’s I

Moran’s I is a correlation coefficient between observations which are

nearest neighbors (Moran 1950).

I =
n

n∑
i=1

n∑
j=1

wij

n∑
i=1

n∑
j=1

wij(xi − x̄)(xj − x̄)

n∑
i=1

(xi − x̄)2
(1.15)

9It should be noted that Morans I is one of many statistics measuring spatial dependency.
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Morans I is asymptotically normal with an expected value of − 1
(n−1) under

the null hypothesis of independently distributed observations (Griffith 1988;

Cliff and Ord 1981; Moran 1950; Moran 1948). The theoretical sampling

distribution can then be used to generate a confidence interval and a Z-statistic

to test whether it is appropriate to reject the null hypothesis of independence

of observations. Statistical significance of Morans I can also be determined

through non-parametric means. Exact p-values of Morans I can be obtained

from a random permutation test with a permutation distribution composed of

n! Morans I statistics.10

1.4.2 Local Moran’s I (LISA)

In contrast to the global Moran’s I outlined in section 1.4.1, there is a

local indicator of spatial association (LISA) also known as the Local Moran’s

I.

Ii = yi
∑
j

Wijyj (1.16)

This diagnostic measures the contribution of each spatial unit to the global

Morans I (Equation 1.15). The sum of LISAs for all spatial units is propor-

tional to the global Moran’s I (Anselin 1995). Substantively, LISA helps the

researcher identify clustering patterns in spatial data. Statistically significant

values indicate clusters of high-high, low-low, and high-low pairs of spatial

units.

10Due to large number of permutations necessary for most geographic analyses, it is
prudent to use a Monte Carlo approach to approximating the permutation distribution
(Anselin 2009).

12



The non-parametric test for statistical significance developed by Anselin

(1995) tests the null hypothesis of no spatial autocorrelation between neigh-

boring pairs.11

1.4.3 Lagrange Multiplier Test for Spatial Dependence

When determining the appropriate model to use for analysis, Anselin

et al. (1996) suggest using the Lagrange multiplier (LM) test for spatial de-

pendence. The LM test is used for testing hypotheses about parameters in

the likelihood framework. More precisely, the LM test tests the hypothesis

of a simpler model by maximizing the log likelihood subject to restrictions.

When the LM statistic is large, the null hypothesis of a simpler model should

be rejected. Compared to the Wald test and the Likelihood-ratio test, the LM

test is the least stringent and most appropriate for testing model specifications

(Engle 1980).

Anselin et al. (1996) note that the is no theoretical basis for the assump-

tion of W1 6= W2 in applied research. Since there is no substantial reason for

this assumption in terms of this analysis, the LM statistic used for hypothesis

testing will be simplified such that W1 = W2 = W . 12

Model selection in this paper will rely on two LM tests presented in

11The test for statistical significant developed by Anselin (1995) takes a conditional ran-
domization approach using randomized permutations.

12The only caveat to making this simplification is that the null of simultaneously testing
for ρ and λ (the general spatial process regression model) cannot be tested using the LM
test due to identification issues (Anselin et al. 1996).
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Anselin et al. (1996). Equation 1.17 tests the hypothesis of a spatial lag

(Ho : ρ = 0) in the presence of spatial disturbances. Equation 1.18 tests the

hypothesis of spatial disturbances (Ho : λ = 0) in the presence of a spatial lag.

Both tests allow for the parameter not of interest to be unrestricted.

LMρ =
[ µ̃

′Wy

σ̃2
− µ̃′Wµ̃

σ̃2
]2

NJ̃ρ·β − T
(1.17)

LMλ =
[ µ̃

′Wµ̃

σ̃2
− T (NJ̃ρ·β)−1 µ̃

′Wµ̃

σ̃2
]2

T [1− T (NJ̃ρ·β)]−1
(1.18)

A more detailed explanation of the LM statistic used in this analysis is available

in the Appendix.

In practice, there is a two-step procedure for implementing LM tests

for spatial dependence. Depending on the results of the typical LM for spatial

autocorrelation in the dependent variable or the error term, it may be necessary

to use a more robust LM test.

First, it is necessary to test the null hypothesis of a linear regression

model which does not account for autocorrelation relative to the SAR model

and the SAER model with the LM test in Equations 1.17 and 1.18. If we fail

to reject the null hypotheses in both tests, it is appropriate to use OLS. If we

fail to reject the null hypothesis in one of the tests, but reject the null in the

other test, then we should proceed in our analysis with the model that rejected

the null.

14



If the null was rejected in both tests, it is appropriate to use a more

robust form of the LM test for identifying the spatial process.13 The results

of the robust LM test should identify whether the spatial process generating

autocorrelation is in the dependent variable or the error term. If there are two

distinct spatial weight matrices specified for the autogressive lag term (ρW1y)

and the autoregressive error term (λW2µ), then it is possible to test the fit

of the general spatial process regression model using the LM test for spatial

dependence.

13The robust LM test for spatial dependence can be implemented in R using the package
“spdep”.
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Chapter 2

Case Study: Turnout in Texas

Despite the obvious relevance of the election experience for subsequent

democratic participation, the voting and elections literature has overwhelm-

ingly focused on voting behavior rather than the actual act of voting itself.

Since the controversial 2000 presidential election, there has been an increasing

demand for information about improving the conduct of American elections.

With only a decade-and-a-half of sustained attention by political scientists, our

understanding of election administration has grown greatly. Most notably, re-

search has focused on politically salient issues like turnout, residual vote rates,

voter identification, and voter suppression. Although these issues are impor-

tant and contemporaneous, persistent less visible problems plague the system

and attract scant scholarly attention. It takes major election mishaps to garner

attention to issues that have been of utmost concern to local election officials

all along, such as creating foolproof ballots and machinery accessible to voters

with disabilities.

16



2.1 Election Administration in the 21st Century

The decade of 2000-2010 saw unprecedented election reform (Montjoy

2010). One of the most substantial was the Help America Vote Act of 2002

(HAVA; P.L. 107-252). In a nutshell, “HAVA created the Election Assistance

Commission (EAC), established a set of election administration requirements,

and provided federal funding, but did not supplant state and local control

over election administration (The Help America Vote Act and Election Admin-

istration 2015). As a result, the election administrative system has become

increasingly complex, leaving the burden on local election administrators to

navigate and implement changes (Montjoy, 2008).

In a survey of local election officials, Kimball et al. (2013, p.567) report

that election officials interpret their policy environment as administratively

burdensome due to “an ongoing set of unfamiliar requirements that have made

their life more difficult. Currently, election administrators feel increased pres-

sure to find quick-fixes and act as problem-solvers. Many administrators find it

difficult to keep up with financial and labor costs associated with the require-

ments set by HAVA. Recent research shows that there are many non-trivial

additional costs (new ballot forms, additional hours worked, rental space, etc.)

associated with upgrading voting equipment. Furthermore, these additional

costs vary year to year based on market prices. These rising costs and de-

creasing budgets are of utmost concern in an era where administrators have

to oversee elections where partisan suspicions are high. As a result, the ad-

ministrators have become handicapped in their ability to provide high quality

17



elections. Like a straw that breaks the camel’s back, these less visible but

persistent problems can become catastrophic.

Underlying the concerns of local election officials about the state of

their voting equipment is the notion that voting technology has a substantial

impact on the quality of American elections. Voting equipment can quite lit-

erally be considered the machinery of democracy. Therefore it is important to

understand the relationship between quantity and quality of voting equipment

on voting behavior.

This paper will examine the impact of differences in resource allocation

on turnout. I will use the term “resource allocation loosely to describe finan-

cial resources spent and labor mobilized to maintain or improve a jurisdictions

voting equipment. Now that HAVA funding is no longer provided to local-

ities at the intended capacity, there is substantial variability in the amount

of resources available to localities to spend on voting equipment. In other

words, some localities are resorting to austerity while others are free to make

necessary purchases on a regular basis.

18



2.2 Data and Variables

I intend to examine the impact of the cost of voting equipment as well

as the impact of purchasing vendor services on turnout and the Election Day

experience. When localities purchase vendor services, it is for the most part

optional. These services are purchased with the intent to improve efficiency

and accuracy in conducting elections. There is, however, no academic research

on whether these services are actually producing better experiences.

A unique dataset was created to measure the cost of voting equipment

using data from local-level contracts for the acquisition of voting equipment.

An open records request, also known colloquially as a Freedom of Information

Act (FOIA) request, is the process by which a citizen may ask to obtain a

copy or inspect documents that are considered to be public information, but

are not made publicly available.1 Municipal contracts are considered public

information (the bidding process, however, is not). County and municipal level

contracts for the acquisition of voting equipment will provide data on:

1. Cost per voting equipment unit

2. Geographic variability in cost

3. Number of units currently in use

1Although both terms are identical in terms of the type of request, the Freedom of
Information Act is a federal law. Governmental transparency laws are referred to by different
names depending on the state. For example, in Texas the Texas Public Information Act
governs open records requests made to the state and local governments.
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4. Services subcontracted to vendors

Variables that can be derived from these contracts include age of voting equip-

ment, number of units per polling place, number of units per registered voter,

dollars spent per registered voter, and dollars spent per capita on voting equip-

ment.

Data collected from the contracts, was then merged with turnout data

from the Secretary of State of Texas and demographic data from the United

States Census Bureau. This is possible through the inclusion of geodesic place

codes like Federal Information Processing Standards (FIPS) code.

2.2.1 Turnout in Texas

Due to the nature of federalism, where regional subunits of govern-

ment jointly share authority with the national government, location in the

United States determines a great deal about the manner in which citizens are

represented. This is consistent with the Madisonian conception of American

popular sovereignty in that power is distributed throughout the system. More-

over, Ewald (2009, p.97) argues, “uniformity is actually not a central value of

American elections. Even during the Founding, the notion of a decentralized

election system was not a controversial topic. Given this, it would be naive

to consider measures gauging electoral participation, such as turnout, as tak-

ing on uniform values across the country. Figure 1 depicts the distribution of

turnout across Texas counties. From the pattern observed, it is fair to consider

turnout as a geographic phenomenon.
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[Figure 1 about here.]

The traditional way of calculating turnout is by dividing the total num-

ber of voters by the voting age population (Burden and Neiheisel 2013). For

the purposes of this study, turnout is calculated by dividing the total number

of voters registered on Election Day. Since this study is primarily focused on

measuring the impact of election administration variables on facilitating voters

in casting their ballots, it is not necessary to include those who are not eligible

to vote or do not wish to participate.2 Turnout and registration data at the

county level were downloaded from the Texas Secretary of State’s Elections

Division.

We should expect to find “neighborhood effects” in county-level turnout

for two reasons in particular:

1. Not all electoral districts are nested within county boundaries.

2. County boundaries were not constructed (nor redefined) to accommodate

socio-political communities.

Figure 2 is a map of the City of Austin, TX. Highly competitive races

for Austin city government will drive turnout not only in Travis County (which

contains the majority of the city), but also in Bastrop, Hayes, and Williamson

counties (which also contain a some of the city). As a result, this scenario

2Since voters must be registered well in advance of Election Day, the exact number of
registered voters known on Election Day.
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would lead to a clustering pattern in turnout across the spatial units, yTravis

and yWilliamson.

[Figure 2 about here.]

2.2.2 Independent Variables

Investment in voting equipment per registered voter. Voting equipment

is considered any piece of hardware used to facilitate the counting and casting

of ballots.3 The total investment in voting equipment is the dollar amount

spent on the hardware of most current system of voting equipment in use in

2016 purchased by counties from voting equipment vendors.

Vendor. A dummy variable for voting equipment vendor (analogous to

manufacturer) is included in the model to control of vendor specific effects. To

date, there are no published studies in any political science journal regarding

the impact of vendors on any aspect of the electoral process. Election equip-

ment in the United States is almost exclusively purchased from private-sector

vendors. When a jurisdiction purchases voting equipment, they are actually

purchasing the hardware and software along with a variety of services for the

initial implementation and long-term service and support of the system. In

3Software was not included in the calculation of investment in voting equipment due
to the disparities in licensing agreements across vendors. For instance, some vendors offer
perpetual licenses, while others may only provide annual licenses. In addition, in the FOIA
request made to counties for voting equipment contracts did not make an explicit request to
obtain copies of contracts for software licenses. For many counties, this additional request
would have complicated the data gathering task substantially.
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other words, not only is voting equipment purchased, but so are services pro-

vided by the vendors to maintain the equipment. Unlike other industries,

customers cannot “substitute away from voting equipment when vendors in-

crease their prices. Because voting equipment uses proprietary software, local

election officials also cannot mix and match products from different companies.

Therefore, firms with large product catalogues are desirable.

In the state of Texas, there are three main vendors:

1. Hart Intercivic, Inc.(“Hart”)

2. Election Systems & Software, LLC.(ES&S)

3. Dominion Voting Systems, Inc. (“Dominion”) 4

The coding scheme for vendors does not, however, include Dominion due to is-

sues with multicollinearity. As only a small minority of counties use Dominion

hardware, it is unlikely that the model will be able to identify the influence of

Dominion without more data. Instead, the variable “Hart” is a dummy vari-

able coded “1” for counties using Hart voting systems, while counties using

both ES&S and Dominion voting systems are coded as “0”. The choice to

code for Hart voting systems rather than ES&S is purely discretionary.

Vendor Services. Depending on the vendor, counties may elect to pur-

chase additional election services to facilitate the planning and conduct of

4Dominion Voting Systems purchased Premier Election Solutions, formerly Diebold Elec-
tion Systems, Inc. and Sequoia Voting Systems, Inc. in 2010
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elections. Across most vendors, services for training, Election Day support,

ballot production, and project management, are available for purchase. To

date, there is no academic research examining the impact of vendor services

on turnout.

Mode of counting and casting of ballots. There are four possible man-

ners in which ballots may be cast and counted in Texas:

1. Direct-recording electronic voting machine (DRE)

2. Paper-based system using Optical Scanners

3. Both DRE and paper-based systems made available to voters (Mixed)

4. Hand-counted paper ballots

The model includes a sole dummy variable labeled “Mixed” to indicate counties

using both DRE and paper-based systems. The choice to include only one

indicator in the model is due to identification issues with vendor offerings in

voting equipment.5

Age of voting system. The age of a voting system is determined from

the date on the first county contract for the acquisition of voting equipment

of the model currently in use in 2016. The start of a voting system’s lifespan

would commence following the first June (the start of the annual election

5The vendor Hart does not offer a paper-based system with ADA compliant ballot mark-
ing devices.
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cycle) the county was in possession of the equipment. For instance, if a county

purchased equipment in September of 2006, then the equipment was coded as

nine years old in 2016. It should be noted that many counties made subsequent

minor purchases to supplement and replace devices to meet state and federal

guidelines.

Precincts per registered voter. The building block of all electoral dis-

tricts is the precinct. In every precinct, all voters receive the same ballot.

Alternatively, all voters in a precinct vote for all the same offices. The num-

ber of precincts is divided by the number of registered voters as a manner of

standardization across counties.

Average number of machines per precinct. The total number of voting

machines is the sum of either all DRE machines or Ballot Marking Devices

depending on the county’s chosen mode of ADA compliance.6 The total num-

ber of voting machines was provided by the Annual Voting Systems Report

published by the Secretary of State of Texas. The total number of machines

is then divided by the total number of precincts in each county.

Demographic variables. In addition to variables measuring elections,

demographic controls are included in the model. County level demographic

values was obtained from the 2016 American Community Survey 5-year esti-

mates data compiled by the United States Census Bureau.

6HAVA requires all counties to have ADA compliant voting equipment available to voters
with disabilities.
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Chapter 3

Results

3.1 Ordinary Least Squares Regression

The aim of this study is to evaluate the impact of resource allocation by

election administrators on county turnout. The results of an OLS regression

on turnout is presented in Table 2. Both the standardized and unstandard-

ized coefficient estimates are reported. Although preliminary, there is statis-

tically significant evidence in support of a positive association of investment

in voting equipment per registered voter and county-level turnout. In terms

of demographic control variables commonly associated with turnout, there is

a statistically significant and positive relationship between the percentage of

whites and per capita income and turnout.

[Table 2 about here.]

3.2 Moran’s I Statistics

Table 3 presents the results of a two-sided Moran’s I test. The weights

matrix uses queen contiguity which is when the weighting scheme includes

all neighbors sharing at least one border and all neighbors sharing at least
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one vertex.1 The results indicate that there is indeed spatial autocorrelation

present in the data. The results are nearly identical across approaches. The

positive statistics across Moran’s I specifications and deviation from the ex-

pected value indicate that there are instances of clustering of high-high and

low-low values among neighboring units. Given this, the results of Table 2 are

likely to be inefficient. It is therefore prudent to proceed with an alternative

approach to parameter estimation other than OLS. The LM test presented

in Section 3.4 will determine the appropriate spatial autoregressive regression

model to use on the data.

[Table 3 about here.]

3.3 Local Moran’s I

Figure 3 depicts the LISAs for turnout in counties in Texas. Statisti-

cally significant LISAs are depicted by a solid fill. “Cold spots” are indicated

by solid blue fill and “hot spots” are indicated by solid red fill. The pattern

presented suggests that there are three “cold spots” (low-low) and four “hot

spots” (high-high). In general, there appears to be higher turnout in the north-

ern and central regions of Texas, while the western and southern regions of

Texas appear to have lower turnout.

[Figure 3 about here.]

1This is in contrast to Rook contiguity where only neighbors sharing borders are included
in the weighting scheme.
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3.4 Lagrange Multiplier Test

Table 4 presents the results of the LM test for spatial dependence for

both model specifications including spatial lag and spatial error parameters.

The LM statistics under the null hypothesis follow a χ2
1 distribution. Under the

LM test specified in Equations 1.17 and 1.18, the null hypothesis was rejected

for both tests. It is therefore prudent to proceed with the robust LM test for

spatial dependence. The results of the LM test for autoregressive error rejects

the null hypothesis of the OLS regression model (no autoregressive error term)

in favor of the SAER model. Given that the robust LM test for the SAR model

failed to reject the null hypothesis, this analysis will proceed in Section 3.5

with the SAER model.

[Table 4 about here.]

3.5 Spatial Autoregressive Error Regression

Table 5 presents the results of the SAER model on 2016 turnout in

Texas. Compared to the AIC for the OLS regression model in Table 2, the

AIC for the SAER model in Table 5 is lower, indicating that accounting for

spatial autocorrelation in the error term improves the fit of the model. The

spatial dependence coefficient, λ is positive and statistically significant. This

result is consistent with the value of the Moran’ I statistic reported in Table

3.

[Table 5 about here.]
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After accounting for spatial autocorrelation, the variable “Total pop-

ulation” reaches statistical significance, thus producing different results from

those based on the OLS specification in Table 2.

These results further support the hypothesis that increasing resources in

election administration can have a positive impact on turnout. The coefficient

estimates of “Investment in Equip. / Reg. Voters” is positive and statistically

significant. A one standard deviation in investment in election equipment per

registered voter translates into a 1.95% in county-level turnout.

29



Chapter 4

Conclusions

Using county-level turnout data from Texas, the results presented in

Table 5 suggest a positive relationship between spending on voting equipment

and turnout. Substantively, these results are non-trivial. Counties that invest

more resources into elections appear to have higher levels of turnout than those

who invest less, all else being equal. It should be noted that these results

suggest a causal relationship. Unfortunately, this results cannot confirm this

conclusion. Analogous to the age old question of the chicken or the egg, this

analysis cannot detect whether increasing resources invested in elections is the

definitive causal mechanism explaining increases turnout.

Methodologically, the results of this study suggest that modeling spatial

data appropriately does have substantive implications on regression analysis.

By including specifications for spatial autocorrelation in the error term the fit

of the model was improved.

Considering the recent deluge of publicly accessible big data produced

by governmental entities, it is imperative for researchers to understand how

to recognize and model spatial data. Political scientists studying local gov-

ernment, in particular, should be cognizant of the difficulties in dealing with
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spatial data. As there are roughly 3,000 counties in the United States, there

exists the possibility of a complex scheme of spatial dependencies that must

be taken into account in any county-level analysis.
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Tables and Figures
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Figure 1: Turnout in Texas in 2016
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Figure 2: Boundary Map of Austin, TX
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Figure 3: Local Moran’s I for Turnout in Texas

Note: Counties with statistically significant Local Moran’s I values are indi-
cated by a solid color fill.
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Table 1: Log-Likelihood Functions for Spatial Autoregressive Regression Mod-
els

Model Log-Likelihood Function

General −n
2
ln(2π)− 1

2
ln(σ2) + ln(I − ρW1) + ln(I − λW2)− 1

2σ2 [(I −
ρW1)y −Xβ]′(I − λW2)

′(I − λW2)[(I − ρW1)y −Xβ]

SAR −n
2
ln(2π)− 1

2
ln(σ2) + ln(I − ρW1)− 1

2σ2 [(I − ρW1)y −
Xβ]′[(I − ρW1)y −Xβ]

SEM −n
2
ln(2π)− 1

2
ln(σ2) + ln(I − λW2)− 1

2σ2 [y −Xβ]′(I −
λW2)

′(I − λW2)
′(y −Xβ)
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Table 2: Ordinary Least Squares Regression of Turnout in Texas in the 2016
General Election

Unstandardized Standardized

B Std. Error B P-value

Intercept -4.433 15.15 61.12 0.770
Election Administration:
Machines/ Registered Voters -35.95 28.82 -0.390 0.214
Registered Voters / Precincts 0.000 0.000 29.569 0.284
Hart -0.123 0.788 -0.061 0.876
Mixed System (DRE + paper) -0.507 0.772 -0.197 0.512
Investment in Equip. / Reg. Voters 0.105 0.019 1.816 0.000***
Age of System 0.734 0.384 0.582 0.057
Vendor Services :
Training 0.864 1.078 0.864 0.424
Election Day Support -0.594 0.772 -0.594 0.443
Voter Outreach -0.920 0.865 -0.920 0.289
Project Management 0.035 0.806 0.035 0.965
Demographics :
Total population 0.000 0.000 2.622 0.148
Median Age 0.102 0.064 0.608 0.113
% College 0.000 0.000 -1.308 0.468
% White 0.433 0.155 9.138 0.006**
% Black 0.311 0.165 2.076 0.060
% Hispanic 0.265 0.152 6.122 0.083
Per Capita Income 0.001 0.000 2.964 0.000***

R-squared: 0.6623
AIC: 1428.495
N=245 (9 deleted due to missing data)
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Table 3: Moran’s I statistics

Moran’s I
Statistic

E(I) Deviation
from E(I)

P-value

Parametric approach:

Dependent variable 0.326 -0.004 0.330 0.001**

Error term 0.159 -0.017 0.176 0.000***

Monte Carlo approach:

Dependent variable 0.326 - - 0.001***

Error term 0.159 - - 0.001***
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Table 4: Lagrange Multiplier Test for Spatial Dependence

Model Lagrange Multiplier Test

Autoregressive Lag 10.643***

Autoregressive Error 16.25***

Robust LM test :

Autoregressive Lag 0.657

Autoregressive Error 6.264*
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Table 5: Spatial Simultaneous Autoregressive Error Regression of Turnout in
Texas in the 2016 General Election

Unstandardized Standardized

B Std. Error B P-value

Intercept 3.749 14.436 61.210 0.795
Election Administration:
Machines/ Registered Voters -27.278 25.554 -0.296 0.286
Registered Voters / Precincts 0.000 0.000 33.675 0.175
Hart 0.136 0.715 0.067 0.849
Mixed System (DRE + paper) -0.624 0.718 -0.243 0.385
Investment in Equip. / Reg. Voters 0.113 0.019 1.950 0.000***
Age of System 0.611 0.350 0.484 0.081
Vendor Services :
Training 0.964 1.005 0.964 0.338
Election Day Support -0.295 0.700 -0.295 0.673
Voter Outreach -1.322 0.791 -1.322 0.095
Project Management -0.033 0.756 -0.033 0.965
Demographics :
Total population 0.000 0.000 3.277 0.048*
Median Age 0.079 0.065 0.470 0.224
% College 0.000 0.000 -2.161 0.188
% White 0.364 0.146 7.682 0.013*
% Black 0.256 0.158 1.710 0.106
% Hispanic 0.197 0.197 4.551 0.171
Per Capita Income 0.001 0.000 2.988 0.000***
Lambda 0.377 0.087 0.377 0.000***

Nagelkerke pseudo-R-squared: 0.70534
AIC: 1414.473
N=245 (9 deleted due to missing data)
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Appendix A

Maximum Likelihood Estimation

A.1 Probability density function of Multivariate Nor-
mal

fx(x1, ..., xk) =
exp(−1

2
(xk − µ)Σ−1(xk − µ)√

(2π)k|Σ|
(A.1)

Where

|Σ| = det(Σ) (A.2)

A.2 Likelihood function for Multivariate Normal (0, Σ)

L(0,Σ|X) =
n∏
k=1

f(xk|0,Σ)

= (2π)−
nk
2 |Σ|−

n
2 exp[−1

2

n∑
k=1

xkΣ
−1xk]

(A.3)
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A.3 Log-likelihood function for Multivariate Normal (0,
Σ)

Maximizing the likelihood function is equivalent to minimizing the log-

likelihood function.

lnL(0,Σ|X) = n[−k
2
ln(2π)− ln(|Σ|)− 1

2

n∑
k=1

xkΣ
−1xk]

∝ −k
2
ln(2π)− ln(|Σ|)− 1

2

n∑
k=1

xkΣ
−1xk

(A.4)
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Appendix B

Lagrange Multiplier Test

The general approach to the Lagrange Multiplier test (Anselin et al.

1996).

Null hypotheses:
Ho :θo = (β′, 0, 0)

θLag = (β′, 0, ρ)

θError = (β′, λ, 0)

(B.1)

Where the matrix θ is the parameter vector, β is the vector of regression

coefficients, the scalar λ is the spatial disturbance coefficient, and the scalar ρ

is the the spatial lag coefficient. The derivative of the likelihood function for

θ:

δ(θ) =
δL(θ)

δθ
=


δL(θ)
δβ

δL(θ)
δλ

δL(θ)
δρ

 (B.2)

The Jacobian matrix for θ:

J(θ) = −E[
1

N

δ2L(θ)

δθδθ
] =

 Jβ Jβλ Jβρ
Jλβ Jλ Jλρ
Jρβ Jρλ Jρ

 (B.3)

44



Bibliography

Anselin, L., and Sergio Joseph Rey. 2014. Modern Spatial Econometrics in
Practice: A Guide to GeoDa, GeoDaSpace and PySAL. Chicago, IL:
GeoDa Press LLC.

Anselin, Luc. 1988a. “Lagrange Multiplier Test Diagnostics for Spatial De-
pendence and Spatial Heterogeneity”. Geographical Analysis 20 (1): 1–
16.

— . 1995. “Local Indicators of Spatial Association - LISA”. Geographical
Analysis 27 (2): 93–115.

— . 1988b. Spatial econometrics: methods and models. Boston, MA: Kluwer
Academic Publishers.

— . 2009. “Spatial Regression”. In Fotheringham and Rogerson 2009, 255–
275.

Anselin, Luc, et al. 1996. “Simple diagnostic tests for spatial dependence”.
Regional Science and Urban Economics 26 (1996): 77–104.

Berry, William D. 1993. Understanding Regression Assumptions. Vol. 07-092.
Newbury Park: Sage Publications.

Bivand, Roger, Jan Hauke, and Tomasz Kossowski. 2013. “Computing the Ja-
cobian in Gaussian spatial autoregressive models: An illustrated com-
parison of available methods”. Geographical Analysis 45 (2): 150–179.
http://www.jstatsoft.org/v63/i18/.

Bivand, Roger, and Gianfranco Piras. 2015. “Comparing Implementations of
Estimation Methods for Spatial Econometrics”. Journal of Statistical
Software 63 (18): 1–36. https://www.jstatsoft.org/v63/i18/.

Burden, Barry C., and Jacob R. Neiheisel. 2013. “Election Administration and
the Pure Effect of Voter Registration on Turnout”. Political Research
Quarterly 66 (1): 77–90.

Cliff, Andrew David, and J. K. Ord. 1981. Spatial processes: models & appli-
cations. London: Pion.

Engle, Robert F. 1980. “Hypothesis Testing in Spectral Regression; the La-
grange Multiplier Test as a Regression Diagnostic”. In Kmenta and
Ramsey 1980, 309–321.

45



Ewald, Alec C. 2009. The Way We Vote: The Local Dimension of American
Suffrage. Nashville, TN: Vanderbilt University Press.

Fotheringham, A. Stewart, and Peter Rogerson. 2009. The SAGE Handbook of
Spatial Analysis. London: SAGE Publications, Ltd.

Geary, R. C. 1954. “The Contiguity Ratio and Statistical Mapping”. The In-
corporated Statistician 5 (3): 115–146.

Griffith, Daniel A. 1988. Advanced spatial statistics: special topics in the explo-
ration of quantitative spatial data series. Boston, MA: Kluwer Academic
Publishers.

— . 1987. Spatial autocorrelation: a primer. Washington, D.C: Association
of American Geographers.

Hijmans, Robert J. 2017. raster: Geographic Data Analysis and Modeling. R
package version 2.6-7. https://CRAN.R- project.org/package=

raster.
Kimball, David C., et al. 2013. “Policy Views of Partisan Election Officials”.

The UC Irvine Law Review 3 (3): 551–574.
Kmenta, Jan. 1971. Elements of Econometrics. New York, NY: Macmillan

Publishing Co.,Inc.
Kmenta, Jan, and James B. Ramsey. 1980. Evaluation of Econometric Models.

Academic Press.
Montjoy, Robert S. 2010. “The Changing Nature and Costs of Election Ad-

ministration”. Public Administration Review 70 (6): 867–875.
— . 2008. “The Public Administration of Elections”. Public Administra-

tion Review 68 (5): 788–799.
Moran, Patrick A.P. 1950. “Notes on Continuous Stochastic Phenomena”.

Biometrika 37 (1/2): 17–23.
— . 1948. “The Interpretation of Statistical Maps”. Journal of the Royal

Statistical Society. Series B (Methodological) 10 (2): 243–251.
Odland, John. 1988. Spatial autocorrelation. Newbury Park, CA: Sage Publi-

cations.
The Help America Vote Act and Election Administration. 2015. Congressional

Research Service.

46


