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We develop a renormalization-group �RG� procedure that includes important system-specific features. The
key ingredient is to systematize the coarse-graining procedure that generates the RG flow. The coarse-graining
technology comes from the control and operator theoretic model reduction. The resulting “generalized” RG is
a consistent generalization of the Wilsonian RG. We apply the procedure to a deterministic nonlinear wave
equation �NLWE� with probabilistic initial conditions. We derive the form of the projection operator from the
dynamics of the NLWE and then use it to generate the RG flow for the distribution of initial conditions. The
probability density of the initial conditions is chosen to be a Boltzmann weight that is quartic in the field
variables. In our calculation, we find that in contrast to conventional implementations of the RG, naïve power
counting breaks down. We also show that the resulting RG equations are different from those derived from the
conventional RG.
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I. INTRODUCTION

A recurring theme in the study of complex and biological
systems is that the systems of interest are open. The nature of
the disturbances rendering the system open may be stochas-
tic, structured, or both. Additionally, the stochastic nature of
chemical networks, especially those with molecular types in
low abundance, ensures that any intrinsic description must
account for the structure and type of uncertainty. Intuition
from closed systems, with the possible exception of glassy
systems �1�, suggests that detailed questions are often too
difficult to answer and that asymptotic questions are more
amenable to theoretical treatments. While for many open
systems the knowledge of the temporal asymptotics is both
interesting and important, for others such knowledge may
not carry any content or even exist. However, just because
temporal asymptotics may not exist for open systems, this
does not imply that there are not robustly discernible features
of open systems. It simply means that the appropriate coarse-
grained description�s� must be informed by the structure of
the external and internal disturbances and uncertainties.

A large class of open systems may be represented by
equations of the form

���x,t�
�t

= f����� + u�x,t� , �1�

where � and u are vectors or functions in possibly infinite-
dimensional spaces. Without u, Eq. �1� represents a closed
system or a model that describes a system with perfect cer-
tainty. With u, the system is inherently open subject to addi-
tive uncertainty. u represents generic driving as well as a
possible noise source to which the system is exposed. If u is
generated by a continuous stochastic process, this imposes a
specific structure on the noise. Similarly, constraining u to
belong to a particular function space but remaining otherwise
arbitrary also imposes a specific structure on the noise. The
system, as described, may be mapped to a field theory via
generalized Martin-Siggia-Rose �MSR� or closed-time-path

�CTP� methods �2–5�. In particular, the path-integral repre-
sentation for the probability for the system to be in state � at
time t given that the initial state was �0 at time t0 is given by
�6�

P��,t��0,t0� =� D� exp	−
1

2�x
�

t0

t

d���f

���u − ��� + f��� + �0��� − t0�� . �2�

When the initial state is only known probabilistically, then
the probability for the system to be in state � at time t is
given by

P��,t� =� D�0P��0,t0�P��,t��0,t0� . �3�

We introduce this representation because later we will ex-
plicitly utilize it in the context of applying the renormaliza-
tion group �RG� to the initial conditions. It is important to
note that upon combining Eqs. �2� and �3�, integrating out �
does nothing to dress the distribution P��0 , t0�. This simply
reflects the fact that the initial conditions are imposed as a
constraint. On the other hand, integrating out �0 would then
add stochastic contributions to Eq. �1�.

Suppose u is an arbitrary input to the system that is square
integrable in time. We consider the states or regions in phase
space that are most accessible via driving to be responsible
for describing the essential characteristics of the system. This
is analogous to the energy landscape picture in statistical
mechanics where fluctuations govern which states contribute
the most to the statistics of the system. We use this inherently
open systems perspective of the importance of states to
specify how to coarse grain and, consequently, to generate
RG equations. The key step in generalizing the RG lies in
ascertaining how to coarse grain.

Although it is already known that the RG is not a black
box routine, the purpose of this work is to make it more
algorithmic. It is easy to be misled into thinking that the RG
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already is algorithmic because its key ingredients are coarse
graining and rescaling the system variables �7–10�. However,
fully algorithmic implementations of the RG fail for large
classes of problems because it is not possible to ignore the
physics of a system and expect to obtain meaningful results.
Capturing the essential physics requires isolating the appro-
priate models and the structure of perturbations and uncer-
tainties. Consequently, this process is system specific. Addi-
tionally, the scale on which the physics is observed must be
specified. For instance, for bosonic theories the long-
wavelength physics is investigated, while for fermionic sys-
tem it is the physics near the Fermi surface. These consider-
ations suggest that the primary obstacles to automation are
the model identification and coarse-graining processes. In
this paper, we present a RG procedure that accounts for these
system-specific obstacles and apply it to renormalize the ini-
tial conditions of a nonlinear wave equation �NLWE�. We
specifically focus on a nonlinear wave equation as opposed
to a reaction diffusion equation because the extra time de-
rivative increases the number of the Green’s functions that
can contribute to the dynamics of the system. As we will see,
this can have a significant impact on coarse graining. We do
not renormalize the dynamical equations because the struc-
ture of the dynamical action renders the perturbative loop
corrections uninteresting. The general form of how projec-
tion operators, generating the RG, act on the dynamical fields
is discussed in �11�.

The obstacles mentioned above arise from the �mis�iden-
tification of observables. We use techniques taken from op-
erator theoretic interpolation theory and control theory to
systematically identify observables that respect the system
dynamics. The conventional implementation of the renormal-
ization group relies upon discerning equilibrium observables
at predetermined scales. Coarse-graining nonequilibrium
systems must respect the nature of the dynamics and the
structure of the uncertainty. Emerging fields like systems bi-
ology are producing many new problems that are begging for
such a treatment �12,13�. This work provides a step toward
the development of a framework that will be applicable to
such systems.

While Eq. �1� addresses the effects of perturbations to the
system, it does not account for the consideration that it may
not be desirable to describe every observable. For instance,
the complete characterization of a system over all scales may
carry significant computational overhead. Furthermore, due
to experimental constraints, it may not be possible to mea-
sure all observables either. Consequently, it is beneficial to
explicitly include the possibility of multiscale or constrained
observation. One of the simplest cases is when the observ-
ables are linearly dependent on the � observables. The de-
scription of such open systems takes the form

�̇ = f��� + Bu ,

� = C� , �4�

where � reflects that only some subspace or, more generally,
subset of phase space is directly measurable. The operators B
and C, respectively, specify the structure of how noise may
enter the system and which states are considered as observ-

ables. More generally, the observables may be nonlinear
functions or functionals of �; however without mapping the
problem to a yet higher dimensional description, that com-
plication is beyond the scope of the analysis presented
herein. Considering coarser observables � influences the
relative importance of the internal states � because many of
them simply either do not or only marginally contribute to
the physical observables �. Hence, the choice of observables
can strongly influence how models describing a system
ought to be coarse grained. For instance, in the original
analysis of Feynman and Vernon �14� or Caldeira and Leg-
gett �15�, characterizing a particle in a heat bath �albeit in a
quantum-mechanical context�, the microscopic degrees of
freedom contributing to the heat bath were systematically
projected away, thereby leaving their effective influence on
the particle. Implicitly, in their analysis a choice of C was
made and consequently led to the derivation of effective sto-
chastic equations describing the physics of the chosen ob-
servables.

The outline of the paper is as follows. In Sec. II we intro-
duce the coarse-graining procedure. We use the procedure in
Sec. III to identify the projection operator for diffusion and
wave equations. In Sec. IV the projection operators are used
to generate RG flows. We derive the associated RG equations
and contrast the RG flows. Our conclusions are given in Sec.
V. Appendixes A and B provide detailed calculations related
to the derivation of the projection operators and the RG
equations.

II. COARSE GRAINING VIA BALANCING

We coarse grain by retaining the states contributing most
to the dynamical response of the system. While technically
different, this work is in the same spirit as that by Chen et al.
�16� and more recently by Degenhard and Rodríguez-Laguna
�11,17�. As a starting point, we coarse grain Eq. �4� from its
linearization about a particular solution with u=0. The rea-
soning for this approach follows many of the same argu-
ments why linear-response theory has been used with such
frequency. Specifically, some of those reasons are that �1� the
approach is amenable to calculation, �2� it is often known
that the system operates about a particular equilibrium, and
�3� for large-amplitude noise, the linear-response dominates
since the system then does not get trapped in local equilibria.
As a simplification, we only consider linearizations about
dynamical steady states. In systems biology, similar approxi-
mations are ubiquitously used when describing biochemical
networks �12�. The linearizations are generically described
by

�̇̃ = A�̃ + Bu ,

�̃ = C�̃ , �5�

where B and C are the same operators as those in Eq. �4�,
�=�eq+ �̃ where �eq is an equilibrium solution, and A
=��f ��eq

. Associated with Eq. �5� are invariants known as
Hankel singular values �HSVs� �18,19�. These invariants
have many nice properties, but their most significant being
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that they give explicit information about the Green’s func-
tions �i.e., dynamical evolution operator� for the system.
These invariants are most easily calculated by solving for
positive operators X and Y that are determined by the equa-
tions

dX

dtf
= AX + XA† + BB†; X�0� = 0, �6�

dY

dtf
= A†Y + YA + C†C; Y�0� = 0. �7�

If we define another operator W by

W2 = XY , �8�

then the HSV are nonnegative real numbers 	max
	�


	min that comprise the spectrum of the operator W. HSVs
provide a precise measure of the error incurred by approxi-

mating the effect u has on �̃ with reduced order models. The
HSVs may be interpreted as supplying a measure of the im-
portance of the internal states �̃. If W is invertible, it is
always possible to find a coordinate system called balanced
coordinates, such that X=Y =diag�	max, . . . ,	min�. When Eq.
�5� is transformed to balanced coordinates, the best reduc-
tions are those that project out the states corresponding to
small HSV. In other words, the ordering of the HSV, at least
locally around an equilibrium configuration in phase space,
specifies how to coarse grain a system. An in depth treatment
of this material may be found in �20�. It is also sometimes
possible to “balance” the full nonlinear system �21�.

The RG can easily be adapted for HSV-based coarse
graining. Operator theoretic approaches to the RG
�7,17,22–24� demonstrate that coarse graining in the Wilso-
nian RG is equivalent to multiplying operators or states by
projection operators. The essence of this work is to use
HSVs to identify the projection operator. As before, suppose
that � is a vector index that orders the HSVs 	� for Eq. �5�
from largest to smallest. A generalized Wilsonian RG proce-
dure is obtained by �1� transforming both the initial condi-
tions and the dynamical variables to balanced coordinates,

�̂��,t� =� R��,x���x,t�dx , �9�

so that the distribution P�� , t� takes the form,

P��,t� =� D�0D�D�̄

�exp�− Sdyn�g,���,��̄�,��0�� − S�g,��0���

=� D�̂0D�̂D�̂̄J exp�− Sdyn�g̃,��̂�,��̂̄�,��̂0��

− S�g̃,��̂0��� , �10�

where Sdyn is the action representing the dynamics, S is the
action of the initial conditions, g is the original set of cou-
pling constants/functions, �̄ is the dual field that arises from
representing the functional � in Eq. �2� as an exponential, J
is the Jacobian from Eq. �9�, and g̃ is the resulting trans-

formed set of coupling constants; �2� integrating out � shells
about 	min analogously to wave-vector shells; and �3� rescal-
ing � and �̂ appropriately. An interesting but technically
challenging variant of this procedure is to integrate out 	�

shells instead of � shells about 	min. Integrating out a single
	� shell may entail integrating out an entire subspace in x
space because 	� does not necessarily respect the spatial
dimension. The technical challenge lies in rescaling 	�. It is
not clear that rescaling 	� will recover the full � space,
thereby generating a meaningful RG.

A standard interpretations of the large wave-vector cutoff
in the RG is that the inverse cutoff is proportional to the
smallest length scale of the system �7,8�. The idea of project-
ing out the large wave-vector physics down to the small
wave-vector physics has the interpretation of homogenizing
the system to its continuum large-scale limit. However, in-
terfaces that are smooth on short spatial scales may actually
appear sharp when viewed on large scales. Representing
such effective sharp interfaces in terms of Fourier �wave-
vector� modes then requires a huge number of modes �the
largest mode being the cutoff�. Other representations, such as
wavelet representations, are much better equipped to de-
scribe the singular nature of such interfaces. Mathematically,
this means that the cutoff is specifically chosen because it
provides us with a starting point for coarse graining and an
ordering relation that determines in which direction to coarse
grain. The cutoff can be thought of entirely in
approximation/interpolation theoretic terms. The initiation of
coarse graining starts with modes contributing the least to the
phenomena of interest. The ordering relation results from the
ordering of modes by their contribution to the approxima-
tion. 	min is a generalization of the standard wave-vector
cutoff and the ordering relation determined by the ordering
of the HSVs �	�� is the generalization of the standard scale
ordering �small scale to large scale�. The RG has been stud-
ied in the context of approximation/interpolation theory be-
fore. RG methods have been related to theory of Padé ap-
proximants by Baker and Graves-Morris �25�, to wavelet
theory by Battle �26,27�, and to subspace/Lanzcos methods
by White �28,29�.

III. IDENTIFICATION OF THE PROJECTION OPERATOR

Here we apply the aforementioned coarse-graining proce-
dure to identify the projection operator for linear diffusion
and linear and nonlinear wave equations. Since the procedure
requires us to expand about a dynamical steady state, if we
expand about the trivial solution, then the nonlinearity does
not change anything. In this section, we find that by consid-
ering slow observables for the diffusion equation and wave
equation, projecting out large wave-vector shells is appropri-
ate. When we additionally consider the fast kinetic observ-
ables for the wave equation, we arrive at quite a different
result. This results from the extra time derivative of the wave
equation and is the very reason why we consider the NLWE
in this paper.

A. Linear diffusion equation

We first consider the �driven� diffusion equation
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�t� = D�2� + �u . �11�

In this example, B=�, C=1, A=D�2, and we take tf →. By
considering a stable system over an infinite time horizon, we
only need to solve the Lyapunov equations,

AX + XA† + BB† = 0, �12�

A†Y + YA + C†C = 0, �13�

instead of Eqs. �6� and �7�. By taking the Fourier transform,
Eqs. �12� and �13� become

2D�k�2Xk + ���2 = 0, �14�

2D�k�2Yk + 1 = 0. �15�

From Eq. �8�, aside from some subtle technical issues arising
when �k�=0 �30�, it follows that in balanced coordinates W is
given by

Wk =
���

2D�k�2
. �16�

Here the index � for the HSVs is just �k�. Thus, for the
diffusion equation, the most important states are those that
correspond to small wave vector. Thus, local coarse graining
is appropriate because the smallest observable “fluctuations”
are due to the short-wavelength physics. The smallest error is
incurred by projecting out large wave vectors. We have thus
identified the projection operator for the diffusion equation
and it exactly coincides with what we would expect. Diffu-
sive dynamics spatially homogenizes disturbances, thus, in-
tuitively we already know that local coarse graining is desir-
able.

B. Linear wave equation

As a second example, we consider the �driven� linear
wave equation

�t
2� = v2�2� + �u ,

y = � . �17�

By the units of u, it represents a true force acting on �. This,
in addition to the fact that � is the “measurable” quantity,
implies that we have isolated our attention on �-based ob-
servables. This choice is strongly influenced by equilibrium
statistical mechanics and thermodynamics. We have com-
pletely neglected � �the field conjugate to �� that represents
the kinetic contributions to the system. When posed as a set
of first-order equations, Eq. �17� becomes

��t�

�t�

y
� = � 0 1 0

v2�2 0 �

1 0 0
���

�

u
� . �18�

By smoothing out the time cutoff at tf with a damped expo-
nential in the integral representation of the solution of Eqs.
�6� and �7�, the problem simplifies to solving Lyapunov
equations. This smoothing process is also known as expo-

nential discounting. With the given form of B and C in this
problem, we find that the matrix of HSVs �W� is approxi-
mately given by

Wk
bal 

���
4av�k�

� I2�2, �19�

where I2�2 is the 2�2 matrix identity, a�1 / tf, and � is the
tensor �dyadic� product. The calculation that produces this
result is a special case of the calculation in Appendix A. As
with the diffusion equation, short-wavelength physics does
not significantly contribute to the response, so locally coarse
graining is appropriate. In the examples considered here, the
dynamical equations that specify the projection operator are
linear. Thus, no approximation has been made and we expect
that the corresponding projection operators are globally valid
in phase space.

C. Nonlinear wave equation with nonequilibrium observables

We now consider a NLWE with a nonequilibrium set of
observables. As will be seen, a surprising result is that the
choice of observables forces us to nonlocally coarse grain.
The nonlocality of the coarse graining has very interesting
implications with regard to the resulting induced RG flow.
The �driven� equations of motion that we are considering are

�t� = � + �1u1,

�t� = �2� +
�

3!
�3 + �2u2,

y = ��1�

�2�
� , �20�

where � and � are real-valued fields. The driving now in-
cludes generalized forces in addition to “true” forces. By
expanding around equilibrium solutions of �2�=0, we find
that for each real-space position x,

B = ��1 0

0 �2
� , �21�

C = ��1 0

0 �2
� . �22�

This driving allows for more states in �� ,��-phase space to
be accessible compared to the driving in Eq. �18�. This, in
combination with the form of y, ensures that both �- and
�-dependent observables are being considered. By using ex-
ponential discounting, we find that the diagonal operator of
HSVs is given by �see Appendix A�

Wk 
1

4a
���2

2�k�−1 + �1
2�k����1

2�k�−1 + �2
2�k���1/2

� I2�2.

�23�

Wk does not have the HSVs ordered from largest to smallest,
so it is not truly in balanced coordinates. It is immediately
apparent that the HSVs are large for both large and small
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magnitude wave vectors. A heuristic explanation for this
strange result is that for large wave vector, � is a pathologi-
cally “fast” variable. However, by driving � with u1 over all
wave vector, this permits the fast resonances to be excited at
large wave vector. The pathological nature of � as an observ-

able is analogous to the pathological nature of considering �̇
an observable where � satisfies a Langevin equation �31�. In
this sense, � is a nonequilibrium observable of sorts. Fur-
thermore, because both the small and large wavelength phys-
ics contribute strongly to the response of the system, local
coarse graining cannot be correct. The appropriate coarse
graining is nonlocal.

IV. RG ANALYSIS

Now that we have specified how to coarse grain, we must
specify the distribution of initial conditions that we wish to
coarse grain. Should we choose a Gaussian distribution of
initial conditions then it turns out that provided that the ac-
tion S�g , ��0�� does not have a nonlocal spatial dependence,
then the integration regions decouple in Fourier space and
the RG is trivial. We thus consider a distribution of initial
conditions that is local and quartic. Specifically, we consider
the action for the initial conditions to be

S�g,��0�� =� dx�1

2
� �0 � �0 +

�

4!
�0

4� .

It is important to remark here that we consider the gradient
term to be local �or marginally local�. Equivalently, in Fou-
rier space, the action is given by

S�g,��̂0�� =
1

2�2��D� dk�k�2��̂0�k��2

+
�

4!
� �

n=1

4
dkn

�2��D���
j=1

4

k j�
��̂0�k1��̂0�k2��̂0�k3��̂0�k4� , �24�

where D is the spatial dimension of the system. Rather than
being wholly unmotivated, with the addition of kinetic terms,
the CTP method �4,5� may be used to derive a dynamical
action from the above S that is approximately the same as
Sdyn in Eq. �10�. Also, in the remainder, to avoid unnecessary
subscripts, we denote �̂0 by �̂ with the understanding that
we are performing the RG on the distribution of initial con-
ditions.

A. RG equations from local coarse graining

Here we introduce a large wave-vector cutoff �. We de-
fine �̂= �̂�+ �̂�, where �̂� is only nonzero for �k��� /b
�b�1� and �̂� is only nonzero for � /b� �k���. Integrat-
ing out wave-vector shells between � /b and � entails inte-
grating out the �̂� fields. We then rescale by defining

�̂��k� = Z�1�bk� �25�

and p=bk. Although we do not start with a “mass” term in
the action �i.e., m2�2�, such a term is generated by the RG

flow. Upon following the Wilson RG variant of what is de-
scribed in Appendix B or the analysis done by Shankar in
�10�, we obtain the RG equations

�l�̄ = �4 − D��̄ −
3

2

SD

�2��D �̄2 + O��̄3� , �26�

�lm̄
2 = 2m̄2 +

SD

2�2��D �̄�1 − m̄2� + O��̄2� . �27�

�̄ and m̄2 are dimensionless and result from appropriately
rescaling � and m2 by �. The RG flow and fixed points for
these equations are well studied. Two fixed points are the

Gaussian fixed point m̄2=0 and �̄=0 and the Wilson-Fisher

fixed point m̄2−�4−D� /6 and �̄2�4−D��2��D / �3SD�.
Following standard convention, we approximate the Wilson-
Fisher fixed point in powers of 4−D �the � expansion�. We
provide the form of these RG equations because, as will soon
be evident, they differ greatly from those that we derive in
the next section.

B. RG equations from nonlocal coarse graining

In the case where � and � are treated on equal footing as
observables, which in general may not be the case, �1=�2
=� and �1=�2=�. In the remainder, we treat this particular
case. Furthermore, without loss of generality, we set �=�
=1. In this case, Eq. �23� indicates that the �k�=1 states are
the least important. Thus, for the purposes of the RG, the
�k�=1 hypersurface serves as our analog of the wave-vector
cutoff. Implementing the second step of the procedure for the
generalized RG involves integrating out k shells away from
the �k�=1 surface. Rather than transform the system into the
balanced � coordinates, out of convenience, we coarse grain
the system in k space.

In order to coarse grain, we let �̂= �̂�+ �̂m+ �̂� where
�̂� is only nonzero for �k���, �̂m is only nonzero for �

� �k���−1, and �̂� is only nonzero for �k�
�−1, where �
�1. Using this decomposition, the path-integral measure
factors as D�̂=D�̂�D�̂mD�̂�. The RG equations are then
induced by integrating out �̂m and then rescaling the wave
vectors and fields. For this problem, the rescaling procedure
requires that

�̂��k� = Z��1��−1k� , �28�

�̂��k� = Z��2��k� , �29�

and p=�−1k for �k��� and p=�k for �k�
�−1. Naïve
power counting breaks down as a direct result of rescaling in
the two disjoint wave-vector regimes.

Although we start with a theory where g= �1,� ,0 , . . .�, we
can expect that the RG transformations may generate new
nonlinear terms and that the coupling constants may become
coupling functions. In fact, g flows toward having an infinite
number of nontrivial components. In particular, in a com-
plete treatment, the coupling constant � becomes a coupling
function ��p1 ,p2 ,p3 ,p4�. However, if we focus purely on the
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constant contributions of ��p1 ,p2 ,p3 ,p4� in the different
wave-vector scaling regimes, we see that it may be decom-
posed into the couplings ���i,4−i��i=1

4 . Here ��i,j� represents the
coupling constant in the scaling regime with i wave vectors
having �pn��1 and j wave vectors having �pn��1. We de-
note the mass terms for �q��1 and �q��1, respectively, by
m�

2 and m�
2 . If we let �=e−dl then to the first loop order the

RG equations for ���i,4−i��i=1
4 are

�l��4,0� = �4 − D���4,0� −
3

2

SD

�2��D ���4,0�
2 �m�

2 + 1�−2

+ 2��3,1�
2 �m�

2 + 1�−1�m�
2 + 1�−1 + ��2,2�

2 �m�
2 + 1�−2� ,

�30�

�l��0,4� = �D − 4���0,4� −
3

2

SD

�2��D ���2,2�
2 �m�

2 + 1�−2

+ 2��1,3�
2 �m�

2 + 1�−1�m�
2 + 1�−1 + ��0,4�

2 �m�
2 + 1�−2� ,

�31�

�l��1,3� = − 2��1,3� − 6
SD

�2��D ���2,2���3,1��m�
2 + 1�−2

+ 2��1,3���2,2��m�
2 + 1�−1�m�

2 + 1�−1

+ ��0,4���1,3��m�
2 + 1�−2� , �32�

�l��3,1� = − 2�D − 1���3,1� − 6
SD

�2��D ���4,0���3,1��m�
2 + 1�−2

+ 2��3,1���2,2��m�
2 + 1�−1�m�

2 + 1�−1

+ ��2,2���1,3��m�
2 + 1�−2� , �33�

�l��2,2� = − D��2,2� − 3
SD

�2��D ����2,2���4,0� + 2��3,1�
2 ��m�

2 + 1�−2

+ 2���1,3���3,1� + 2��2,2�
2 ��m�

2 + 1�−1�m�
2 + 1�−1

+ ���0,4���2,2� + 2��1,3�
2 ��m�

2 + 1�−2� . �34�

The RG equations for the mass terms are

�lm�
2 = 2m�

2 +
SD

2�2��D� ��4,0�

m�
2 + 1

+
��2,2�

m�
2 + 1

� + O��2� ,

�35�

�lm�
2 = − 2m�

2 +
SD

2�2��D� ��2,2�

m�
2 + 1

+
��0,4�

m�
2 + 1

� + O��2� .

�36�

The first thing to notice in Eqs. �30�–�34� is that the contri-
butions from tree level �the linear terms� indicate that the
couplings involving a mixing of wave vectors �i.e., i , j�0�
are irrelevant. The terms that are relevant appear similar to
Eqs. �26� and �27�. In fact, if we expand about m�

2 =0, make

the identifications ��4,0�= �̄ and m�
2 = m̄2, and set the rest of

the coupling constants to zero, then Eqs. �30� and �35� are
exactly the same as Eqs. �26� and �27�. Thus, if it were
possible to ignore all other relevant perturbations, then the
new set of RG equations would retain the standard fixed
points �Gaussian and Wilson Fisher�. With local coarse
graining, higher-order derivatives and nonlinearities are ren-
dered irrelevant by coarse graining. This then justifies why

we only need to renormalize the m̄2 and �̄ couplings. How-
ever, upon nonlocally coarse graining the system, it is no
longer possible to ignore the wave-vector dependence that �
acquires. Such perturbations are relevant for �pi��1. Specifi-
cally, higher derivative perturbations pn�̂2 ,n�2 and
pn�̂m ,n�0,m
4 in addition to higher-order nonlinearities
�̂n ,n�4 become relevant when �pi��1. While the couplings
at small wave vector �pi��1 almost obey the standard RG
equations obtained by local coarse graining, if the system is
perturbed to its large wave-vector regime, then the couplings
will flow away from the Gaussian or Wilson-Fisher fixed
points �10�. This reflects that the dynamically faster short-
wavelength perturbations are able to excite the conjugate
field �, thereby driving the system away from its standard
statistical equilibrium. Were the conjugate field not acces-
sible to the “noise” �1=0 or not an observable �2=0, this
would not have occurred. We summarize the relevancy of
perturbations in Table I in the case when D=4. A key obser-
vation to make from our analysis is that the nonlocal coarse-
graining produces RG equations that are very different from
the canonical ones �Eqs. �26� and �27��. In fact, a complete
analysis would require us to determine the RG flow of infi-
nitely many coupling constants.

While the existence of an infinity of relevant perturbations
renders Eqs. �30�–�36� meaningless, for completeness,
we present their fixed-point structure anyhow. One fixed
point of the equations exists where m�

2 −�4−D� /6,
��4,0�2�4−D��2��D / �3SD�, m�

2 �4−D� /6, ��0,4�−2�4
−D��2��D / �3SD�, and the rest of the couplings zero. A prob-
lem with it is that it does not guarantee positivity of the

TABLE I. Relevance of perturbations when D=4.

�p��1 �p��1

Coarse
graining

pn�̂2,
n�2

pn�̂m ,n�0,
m
4

�̂n,
n�4

pn�̂2,
n�2

pn�̂m ,n�0,
m
4

�̂n,
n�4

Local no no no no no no

Nonlocal no no no yes yes yes

DAVID E. REYNOLDS PHYSICAL REVIEW E 79, 061107 �2009�

061107-6



action. This already suggests the need to include higher-order
relevant terms. For instance, to fix the positivity issue, we
would need to add at least a �̂6 term to the action. Similarly,
for D�4, the irrelevancy of the rest of the ��i,j� terms en-
sures that we would lose positivity, thereby requiring the
addition of higher-order terms. However, for D�4, there is
an alternative fixed point that guarantees positivity of the
action. At this fixed point, the couplings are m�

2 �4−D� /6,
��0,4�−2�4−D��2��D / �3SD�, and the rest zero. While this
fixed point seems strikingly similar to the Wilson-Fisher
fixed point, it is important to recognize that the coupling
constant multiplies products of fields in a different wave-
vector regime.

Although we have already compared our results to those
obtained by canonically coarse graining the same distribution
of initial conditions in Sec. IV A, we have yet to relate them
to other work in the NLWE literature. The RG has been
applied to NLWEs by many authors in a variety of different
contexts, two examples of which are �32,33�. In �32�, Mat-
suba and Nozaki applied a perturbative RG method to a
weakly nonlinear wave equation in order to derive an effec-
tive amplitude equation. The effective amplitude equation
that they derive is the nonlinear Schrödinger equation. In
quite a different context, Bricmont et al. �33� applied the RG
to a NLWE in order to prove the persistence of quasiperiodic
low-dimensional elliptic tori. In contrast, we derive the pro-
jection operator from the dynamics of the NLWE but do not
apply the RG to the dynamical equations. Instead, we apply
the RG to the distribution of initial conditions.

Complementary research that applies projection-operator
methods to wave equations includes the work of Boesch et
al. �34�, Brun and Hartle �35�, and Maïzi �36�. Boesch et al.
used projection-operator techniques to derive equations of
motion for collective coordinates describing solitonlike solu-
tions to nonlinear Klein-Gordon equations. They found that
projection-operator techniques greatly facilitate the deriva-
tion of the aforementioned equations of motion. While there
are many differences, a key distinction between our work
and that of Boesch et al. is that we do not a priori select our
observables. In �35�, Brun and Hartle investigated the coher-
ence of coarse-grained trajectories of the homogeneous
quantum harmonic chain. The coherence of the trajectories
reflects the classical behavior of the dynamics. After assum-
ing a particular form of the initial conditions and investigat-
ing a class of possible coarse grainings, they concluded that
the decoherence time for coarse-grained trajectories in-
creases with the locality of the coarse graining. As should be
expected, when applied to the quantum harmonic chain, it is
a simple exercise to show that HSV coarse graining allows
one to derive the result of Brun and Hartle. Lastly, in �36�,
Maïzi applied HSV analysis to a one-dimensional wave
equation subject to boundary forcing. Maïzi found that 	k
�1 /a�k�, that is, similar to what we find in Eq. �19� in the
case of bulk forcing.

V. CONCLUSION

In this paper, we have presented a RG procedure and have
applied it to a nonlinear wave equation with probabilistic

initial conditions. We have shown that when both equilib-
rium and nonequilibrium observables are chosen, this RG
procedure predicts that naïve power counting breaks down
and that terms that are ordinarily irrelevant become relevant
at large wave vector. We have shown that the RG equations
that we have derived using nonlocal coarse graining differ
significantly from the RG-equations-derived local coarse
graining. While our RG equations superficially retain the
Gaussian and Wilson-Fisher fixed points as solutions, the
infinity of relevant perturbations ensures that such fixed
points either do not exist or that they pick up an infinity of
unstable directions in the RG flow. Additionally, the equa-
tions superficially admit many other fixed points. The gener-
alized Wilsonian RG developed herein is applicable to any
system where it is desirable to coarse grain based on the
intrinsic system dynamics. Although the RG is still formally
an uncontrolled approximation, the coarse graining is chosen
such that the effective coarsened system is close to the origi-
nal one. Despite the versatility in this method, it is often
difficult to analytically determine the balancing transforma-
tions. However, since there are very efficient numerical al-
gorithms for finding balanced coordinates, this generalized
RG remains a numerically useful and practical algorithm.
Lastly, in the context of studying complex uncertain bio-
chemical networks, we have found that the projection opera-
tors we derive are exceptionally useful but are more easily
used in one-step coarse graining than in iterative coarse
graining �RG�.
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APPENDIX A: BALANCING X AND Y

In this appendix, we intend to calculate the balanced form
of the operators X and Y �from Eqs. �6� and �7�� called
gramians for linear wave equations �or their discretizations�.
This entails calculating the damped �exponentially dis-
counted� gramians,

X�a� = �
0



e−2ateAtBB†eA†tdt ,

Y�a� = �
0



e−2ateA†tC†CeAtdt . �A1�

As in the body of the paper,

B = ��1I 0

0 �2I
� ,

C = ��1I 0

0 �2I
� .
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Let us first introduce the following notations and conven-
tions. Recall that any matrix S may be expressed in terms of
the canonical matrix units eij. In other words,

S = �
i,j

Sijeij ,

where each Sij is just a complex number. For instance, in the
case of 2�2 matrices,

e12 = �0 1

0 0
� .

Additionally, for this section, Q= � 0 −1
1 0 �. Lastly, we fre-

quently use the algebraic tensor �dyadic� product � . For in-
stance, suppose

A = �A11 A12

A21 A22
�

then

A � B = �A11B A12B

A21B A22B
� .

First note that if we define

R = e11 � �−1/2 + e22 � �1/2 �A2�

then easily it follows that

A = e12 � I − e21 � �2 = � 0 I

− �2 0
�→

R

R−1AR

= Q � � = � 0 �

− � 0
� . �A3�

From this, one then finds that

X�a� = R�
0



e−2ateQ��tR−1BB†R−1e−Q��tdtR

= R�
0



e−2ateQ��t��1
2� 0

0 �2
2�−1�e−Q��tdtR .

�A4�

However, using that eQ��t=I � cos �t+Q � sin �, we fi-
nally arrive at

X�a� = R�
0



e−2at��1
2� cos2 �t + �2

2�−1 sin2 �t 1
2�−1��2

2�−1 − �1
2�� d

dtsin2 �t
1
2�−1��2

2�−1 − �1
2�� d

dtsin2 �t �2
2�−1 cos2 �t + �1

2� sin2 �t
�dtR

=
1

4a
R��1

2� + �2
2�−1 0

0 �1
2� + �2

2�−1�R

+
1

4a
R�− a2�−1��2

2I − �1
2�2��a2I + �2�−1 a��2

2I − �1
2�2��a2I + �2�−1

a��2
2I − �1

2�2��a2I + �2�−1 a2�−1��2
2I − �1

2�2��a2I + �2�−1�R . �A5�

Similarly for the other gramian, we obtain

Y�a� =
1

4a
R−1��2

2� + �1
2�−1 0

0 �2
2� + �1

2�−1�R−1

+
1

4a
R−1�a2�−1��1

2I − �2
2�2��a2I + �2�−1 a��1

2I − �2
2�2��a2I + �2�−1

a��1
2I − �2

2�2��a2I + �2�−1 − a2�−1��1
2I − �2

2�2��a2I + �2�−1�R−1. �A6�

From Eqs. �A5� and �A6� it follows after using Ud to diagonalize � and taking the small a limit that the balanced gramian,
without ordered eigenvalues, is given by

Wbal 
1

4a
��1

2�� + �2
2��

−1 0

0 �1
2�� + �2

2��
−1�1/2��2

2�� + �1
2��

−1 0

0 �2
2�� + �1

2��
−1�1/2

.

APPENDIX B: RG EQUATIONS TO ONE LOOP

In this appendix, we briefly derive the RG equations for
the two-point �Eqs. �35� and �36�� and the four-point cou-
pling functions �Eq. �30��. In Appendix B, Sec. B 1, we
sketch out the standard perturbative procedure �7–10� used to
derive the RG equations. Then we proceed to use the pertur-
bative procedure to derive the RG equations for the two-

point and four-point couplings in Appendix B, Secs. B 2 and
B 3, respectively.

1. Sketch of perturbation theory

Recall that we will be integrating out the field variables
�̂m and keeping �̂� and �̂�. Ideally, we would like to ex-
actly evaluate the partial trace
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� D�̂m exp�− S��̂�,�̂�,�̂m�� = exp�− S̄��̂�,�̂�,�� .

�B1�

In general, computing such a functional integral is very dif-
ficult. Consequently, we will perturbatively evaluate Eq. �B1�
about the quadratic part of the action. Now let us denote the
quadratic part of the action by S2 and the remainder by Sr
�i.e., S=S2+Sr�. By the simple form of the quadratic part of
the action in Eq. �24�, we have that

S2��̂�,�̂�,�̂m� = S2��̂�,�̂�� + S2��̂m� . �B2�

Now given that P0��̂m�=Z0,m
−1 exp�−S2��̂m�� is the probabil-

ity distribution generated by S2��̂m�, let � . . . �0 denote aver-
ages taken with respect to this distribution. Using this nota-
tion, Eq. �B1� becomes

� D�̂m exp�− S��̂�,�̂�,�̂m��

= exp�− S2��̂�,�̂����exp�− Sr��0. �B3�

Note that we have absorbed any contribution from Z0,m into
the path-integral measure.

Equation �B3� may be �approximately� calculated by ex-
pansion techniques. Two techniques that are frequently used
are the cumulant expansion �9,10� and Feynman diagram ex-
pansions �7�. Although Feynman diagram expansion methods
permit infinite resummations more easily than the cumulant
expansion, we make use of the cumulant expansion. How-
ever, we will still illustrate the nonvanishing Feynman dia-

grams that contribute to the cumulant expansion. Upon ap-
plying the cumulant expansion to Eq. �B3�, we find that

�exp�− Sr��0 = exp	− �Sr�0 +
1

2
��Sr

2�0 − �Sr�0
2� − . . .
 .

�B4�

The first term in the exponent on the right-hand side of Eq.
�B4� is the first cumulant while the second term �in square
brackets� is the second cumulant. If we take S� to be the
exponent on the right-hand side of Eq. �B4� then the Feyn-
man diagram representation of S� is given by

S� =

+ 6 · 6
�

+ 6

�

+

�

�

+

�

+ ... ,

�B5�

where the solid propagators represent the �̂� and �̂� propa-
gators, while the dashed propagator represents the �̂m propa-
gator. We will use the first and second cumulants �and dia-
grammatics� to derive the RG equations in the following
sections.

2. Two-point couplings

If we consider having a mass term �i.e., �2→�2−m2�,
then after integrating out �̂m and rescaling �̂� and �̂� ac-
cording Eq. �28�, the bare two-point propagator �the Green’s
function� becomes

= 1
2 ��

q

q2��̂�q��2 + �−2�
�q��1

m�
2 ��̂�q��2 + �2�

�q��1
m�

2 ��̂�q��2� .
�

�

+�̂�=
�

�̂ ��̂�
�̂ �

�B6�

To simplify the notation, we denote the free propagator by G0�p�. Similarly, for �p��1 we denote the propagator by G0
��p� and

we do similarly for �p��1. At one loop, we obtain

2 � �
� �� � G + � G � 2� � � � � ˆ �+ p� ��� ���2,2 p 0,4 q� 0 � � 0

−1
��� ��1 1�� ��� � ��1p p q

=
�

�

+
�

1 � −2� � � �� � � � ˆ 2G + � Gp� � ��� � � ��= �4,0� 0 �2,2� p �0 q
4! −1�� �p��1 1� �p��� � ��1q

�̂� �̂ ��̂� �̂ �

�B7�

=
�SD

4 ! �2��D �1 − ���� ��4,0�

m�
2 + 1

+
��2,2�

m�
2 + 1

��
�q��1

��̂�q��2 + � ��2,2�

m�
2 + 1

+
��0,4�

m�
2 + 1

��
�q��1

��̂�q��2� , �B8�

where G0�p� is the free propagator and SD is the area of the D-dimensional unit sphere.
By combining Eqs. �B4�–�B7� and using �=e−dl, we arrive at the RG equations �Eqs. �35� and �36��

�lm�
2 = 2m�

2 +
SD

2�2��D� ��4,0�

m�
2 + 1

+
��2,2�

m�
2 + 1

� + O��2� , �B9�
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�lm�
2 = − 2m�

2 +
SD

2�2��D� ��2,2�

m�
2 + 1

+
��0,4�

m�
2 + 1

� + O��2� . �B10�

3. Four-point couplings

The decoupling of the wave-vector regimes, while explicit in the calculation of the two-point couplings, is more subtle in
the calculation of the four-point couplings. However, it is still manifestly evident at tree level. Consequently, as in the previous
section, we will first calculate the rescalings for the bare four-point vertex.

=�D−4
��4,0�

4 ! �2��4D�
�pi��1

�
i

dDpi

�2��D �2��D�D��
j=1

4

pj���p1���p2���p3���p4� ,
�

�̂�

�̂�

�̂�

�̂� �B11�

=�2�D−1�
��3,1�

4 ! �2��4D�
�pi��1

�
i=1

3
dDpi

�2��D�
�p4��1

dDp4

�2��D �2��D�D��
j=1

4

pj���p1���p2���p3���p4� ,
�̂�

�̂ �

�̂�

�̂�

�B12�

=�D
��2,2�

4 ! �2��4D�
�pi��1

�
i=1

2
dDpi

�2��D�
�pk��1

�
k=3

4
dDpk

�2��D �2��D�D��
j=1

4

pj���p1���p2���p3���p4� ,

�̂�

�̂�
�̂ �

�̂ �

�B13�

=�2
��1,3�

4 ! �2��4D�
�pi��1

�
i=2

4
dDpi

�2��D�
�p1��1

dDp1

�2��D �2��D�D��
j=1

4

pj���p1���p2���p3���p4� ,
�̂ �

�̂ �

�̂ �

�̂�

�B14�

=�4−D
��0,4�

4 ! �2��4D�
�pi��1

�
i

dDpi

�2��D �2��D�D��
j=1

4

pj���p1���p2���p3���p4� .

�̂ ��̂ �

�̂ � �̂ � �B15�

At one loop, a sample calculation with only �̂� on the external legs of the four-point diagram produces

= � 1

4!
�2

�2��−4D�
�qi���

�
���Qi���−1

��q1,q2,Q1,Q2��2��D�D�q1 + q2 + Q1 + Q2�

���q3,q4,Q3,Q4��2��D�D�q3 + q4 + Q3 + Q4��2��D�D�Q1 + Q3�G0�Q1�

��2��D�D�Q2 + Q4�G0�Q2���q1���q2���q3���q4� ,

��̂�

�̂� �̂�

�̂�

�B16�

 � 1

4 ! �2��D/2�2�
�qi��1

��
���Q1�,�Q2��1

��4,0�
2 G0

��Q1�G0
��Q2�

+ 2�
���Q1��1

�
1��Q2���−1

��3,1�
2 G0

��Q1�G0
��Q2� + �

1��Q1�,�Q2��1
��2,2�

2 G0
��Q1�G0

��Q2��
��D�q1 + q2 + Q1 + Q2��2��D�D�q3 + q4 − Q1 − Q2���q1���q2���q3���q4� . �B17�

From Eq. �B17�, there is an acquired wave-vector dependence. For the sake of comparison with equations, we only wish to
derive the �naive� flow equations for the constant part of ��q1 ,q2 ,q3 ,q4�. Thus, we obtain
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�SD�1 − ��� 1

4 ! �2��D/2�2

���4,0�
2 �1 + m�

2 �−2 + 2��3,1�
2 �1 + m�

2 �−1�1 + m�
2 �−1

+ ��2,2�
2 �1 + m�

2 �−2��
	qi	�1

�2��D�D�

j=1

4

qj���q1���q2���q3���q4� .

�̂��̂�

�̂��̂�

�B18�

Combining Eqs. �B4�, �B5�, �B11�–�B15�, and �B18� and using �=e−dl yields the RG equations given in Eq. �30�.
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