

A Simple proof of a Known Result in Random Walk Theory
Author(s): Austin J. Lemoine
Source: The Annals of Probability, Vol. 2, No. 2 (Apr., 1974), pp. 347-348
Published by: Institute of Mathematical Statistics
Stable URL: http://www.jstor.org/stable/2959234
Accessed: 18-06-2015 18:29 UTC

Your use of the JSTOR archive indicates your acceptance of the Terms \& Conditions of Use, available at http://www.jstor.org/page/ info/about/policies/terms.jsp

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact support @jstor.org.

A SIMPLE PROOF OF A KNOWN RESULT IN RANDOM WALK THEORY ${ }^{1}$

By Austin J. Lemoine
The University of Texas at Austin

Let $\left\{X_{n}, n \geqq 1\right\}$ be a stationary independent sequence of real random variables, $S_{n}=X_{1}+\cdots+X_{n}$, and α_{A} the hitting time of the set A by the process $\left\{S_{n}, n \geqq 1\right\}$, where A is one of the half-lines $(0, \infty),[0, \infty),(-\infty, 0]$ or $(-\infty, 0)$. This note provides a simple proof of a known result in random walk theory on necessary and sufficient conditions for $E\left\{\alpha_{A}\right\}$ to be finite. The method requires neither generating functions nor moment conditions on X_{1}.

Let $\left\{X_{n}, n \geqq 1\right\}$ be a stationary independent process of real random variables defined on some probability space $(\Omega, \mathscr{F}, P), S_{0} \equiv 0$, and $S_{n}=X_{1}+\cdots+X_{n}$ for $n \geqq 1$. Set $\alpha_{A}=n$ if $n=\inf \left\{k: k \geqq 1\right.$ and $\left.S_{k} \in A\right\}$ and $\alpha_{A}=+\infty$ if no such n exists, where A is one of $(0, \infty),[0, \infty),(-\infty, 0]$, or $(-\infty, 0)$; that is, α_{A} is the hitting time of the set A by the process $\left\{S_{n}, n \geqq 1\right\}$. This note provides a simple proof of a known result in random walk theory on the finiteness of $E\left\{\alpha_{A}\right\}$.

Assume that $P\left\{X_{1}=0\right\}<1$. It follows, without recourse to moment conditions on the distribution of X_{1} (see Theorem 8.2.5 in Chung (1968)), that there are three mutually exclusive possibilities for the random walk $\left\{S_{n}, n \geqq 1\right\}$, each occurring with probability one:
(i) $\lim _{n \rightarrow \infty} S_{n}=-\infty$,
(ii) $\lim _{n \rightarrow \infty} S_{n}=+\infty$, or
(iii) $\lim \inf _{n \rightarrow \infty} S_{n}=-\infty$ and $\lim \sup _{n \rightarrow \infty} S_{n}=+\infty$.

With these conditions there is the following known result from random walk theory; see Section 8.4 of [1] or the second section of Chapter 12 in Feller (1971).

Theorem. If A is $(-\infty, 0]$ or $(-\infty, 0)$ then $E\left\{\alpha_{A}\right\}<+\infty$ if and only if (i) holds. If A is $[0, \infty)$ or $(0, \infty)$ then $E\left\{\alpha_{A}\right\}<+\infty$ if and only if (ii) holds. If (iii) holds then $E\left\{\alpha_{A}\right\}=+\infty$ for each A.

Here is our proof of this standard result.
The second statement of the theorem follows from the first (consider the random walk generated by $\left\{-X_{n}, n \geqq 1\right\}$), and the third from the first and the second. It suffices, therefore, to prove the first statement.

[^0]Suppose condition (i) holds. For $j \geqq 0$ let $M_{j}=\max \left(S_{0}, \ldots, S_{j}\right), m_{j}=$ $P\left\{M_{j}=0\right\}, M=\sup _{j \geq 0} M_{j}, m=P\{M=0\}, f_{j}=P\left\{\alpha_{(-\infty, 0]}>j\right\}, W_{0} \equiv 0, W_{j+1}=$ $\max \left(W_{j}+X_{j+1}, 0\right)$ and $L(j)=\max \left\{i: i \leqq j\right.$ and $\left.W_{i}=0\right\}$. The random variables M_{j} and W_{j} are identically distributed for each j, whence

$$
\begin{align*}
P\left\{M_{n+1}>0\right\} & =\sum_{j=0}^{n} P\left\{W_{n+1}>0, L(n)=j\right\} \\
& =\sum_{j=0}^{n} P\left\{W_{j}=0, X_{j+1}>0, \cdots, X_{j+1}+\cdots+X_{n+1}>0\right\} \tag{*}\\
& =\sum_{j=0}^{n} m_{j} f_{n+1-j}
\end{align*}
$$

for each $n \geqq 0$. Now $m=P\left\{\alpha_{(0, \infty)}=+\infty\right\}$ and since (i) holds it follows that $m>0$; see Theorem 8.2.4 in [1]. The above equation gives $1 \geqq m_{0} f_{n+1}+\cdots+$ $m_{n} f_{1}$, which in turn yields $f_{1}+\cdots+f_{n+1} \leqq m^{-1}$ because $m_{j} \geqq m$ for all j. We conclude that $E\left\{\alpha_{(-\infty, 0]}\right\}$ is finite, and it then follows from (*) that $\alpha_{(-\infty, 0]}$ has mean m^{-1}. For $\alpha_{(-\infty, 0)}$, let $\beta_{0} \equiv 0, \beta_{k}=\inf \left\{n>\beta_{k-1}: S_{n} \leqq S_{\beta_{k-1}}\right\}$ and $Y_{k}=$ $S_{\beta_{k}}-S_{\beta_{k-1}}$ when $k \geqq 1$. We have $\beta_{1}=\alpha_{(-\infty, 0]}$, and by virtue of (i) each of $\left\{\beta_{k}-\beta_{k-1}, k \geqq 1\right\}$ and $\left\{Y_{k} \geqq 1\right\}$ is a stationary independent sequence. Moreover, $P\left\{Y_{1}<0\right\} \geqq P\left\{X_{1}<0\right\}>0$. Denoting by t the first index k for which $Y_{k}<0$, we observe that $\alpha_{(-\infty, 0)}=\beta_{t}$ and that t is geometrically distributed with parameter $P\left\{Y_{1}<0\right\}$. Wald's Lemma then gives $E\left\{\alpha_{(-\infty, 0)}\right\}=E\left\{\alpha_{(-\infty, 0]}\right\} \cdot E\{t\}<+\infty$.

To show the condition is necessary suppose that (i) does not hold. Then (ii) or (iii) holds, and either dictates that $m_{n+1} \rightarrow 0$, whence $(*)$ yields $m_{0} f_{n+1}+\cdots+$ $m_{n} f_{1} \rightarrow 1$. Under these circumstances $\sum_{j \geq 1} f_{j}$ must diverge, that is, $E\left\{\alpha_{(-\infty, 0]}\right\}=$ $+\infty$. Moreover, $\alpha_{(-\infty, 0]} \leqq \alpha_{(-\infty, 0)}$. This completes the proof.

REFERENCES

[1] Chung, K. L. (1968). A Course in Probability Theory. Harcourt, Brace and World, New York.
[2] Feller, W. (1971). An Introduction to Probability Theory and Its Applications, 2, 2nd ed. Wiley, New York.

[^0]: Received May 29, 1973; revised July 30, 1973.
 ${ }^{1}$ This research was partly supported by a grant from the Farah Foundation and by ONR Contracts N00014-67-A-0126-0008 and N00014-67-A-0126-0009 with the Center for Cybernetic Studies, The University of Texas at Austin, and by a grant from the University Research Institute of The University of Texas at Austin.

 AMS 1970 subject classifications. Primary 60J15; Secondary 60K25.
 Key words and phrases. Random walks, hitting times.

