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Abstract 

 

Estimation with Stable Disturbances 

 

Novin Ghaffari, M.S. Stat. 

The University of Texas at Austin, 2014 

 

Supervisor:  Carlos Carvalho 

 

The family of stable distributions represents an important generalization of the 

Gaussian family; stable random variables obey a generalized central limit theorem where 

the assumption of finite variance is replaced with one of power law decay in the tails. 

Possessing heavy tails, asymmetry, and infinite variance, non-Gaussian stable 

distributions can be suitable for inference in settings featuring impulsive, possibly 

skewed noise. A general lack of analytical form for the densities and distributions of 

stable laws has prompted research into computational methods of estimation. This report 

introduces stable distributions through a discussion of their basic properties and 

definitions in chapter 1. Chapter 2 surveys applications, and chapter 3 discusses a number 

of procedures for inference, with particular attention to time series models in the ARMA 

setting. Further details and an application can be found in the appendices.      
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Chapter 1 Stable Distributions 

INTRODUCTION 

During the last half century, stable distributions have been increasingly exploited 

to characterize the dynamics of certain stochastic models. The appeal of using stable 

distributions stems from a number of convenient theoretical properties. The stable family 

of distributions may be thought of as a generalization of Gaussian distributions, retaining 

the Gaussian family as special subset. As might be expected, stable distributions observe 

a number of the key features familiar to the Gaussian case. Like the Gaussian, stable 

distributions are limiting distributions for sums of iid random variables, characterizing a 

generalized central limit theorem. Additionally, stable random variables are closed, with 

respect to their underlying distribution, under the summation of iid copies. However, 

stable distributions (except for the Gaussian), are leptokurtic and heavy-tailed. The stable 

family can also accommodate asymmetry. Inference with these distributions can capture 

impulsive and skewed patterns of variation better than traditional Gaussian methods. 

Inference with stable distributions is hampered by a few major inconveniences. 

All non-Gaussian stable distributions have infinite second moments and hence infinite 

variances; some even exhibit infinite first moments. This effectively rules out variance-

based estimation techniques customary to the Gaussian setting. In fact, barring a few 

exceptions, stable distributions do not have known closed-form densities; the 

foundational probability theory behind stable laws was largely accomplished in the 

frequency domain using characteristic functions. Given these difficulties, early work in 

statistical inference was hindered. However, advances in computer hardware and 

statistical computing have enabled new methods for inference with stable laws. The 
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development of novel techniques has been coupled with an increasing breadth of 

application. 

The rest of this report ensues as follows. The next section of Chapter 1 will 

formally introduce stable measures and random variables through a brief discussion of 

their basic properties. The last section of Chapter 1 will extend the univariate case to 

stable vectors and processes, with particular attention to stable ARMA processes. Chapter 

2 will motivate the use of stable laws in inference with a survey of applications, with 

particular attention to finance and economics. Chapter 3 will provide an overview of 

methods for inference. Of the various procedures, this report highlights two methods: a 

Bayesian/MCMC approach for inference with symmetric stable noise and a fast Fourier 

transform (FFT) method for calculating the likelihood and conducting MLE. Detailed 

information and application of these methods is to be found in Appendices B, C, and D. 

  

DEFINING PROPERTIES 

There are a number of equivalent definitions for stable distributions. 

Samorodnitsky and Taqqu provide four equivalent definitions; these may be placed into 

three categories: sum stability, domains of attraction, and characteristic function (1994). 

These definitions will be reproduced and discussed here. Sum stability and domains of 

attraction highlight mathematically significant features of stable distributions that are 

defining properties. Characteristic functions are important for representing stable 

distributions parametrically and conducting statistical analysis with stable laws. Thus 

these defining properties also embody important characteristics for inference and 

application. 
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Sum Stability 

Broadly speaking, stability is a property of closure on a class of distributions with 

respect to a binary operation on its random variables. Formally, let    denote a random 

variable,    its distribution function,   a class of distributions and  (   ) a binary 

operation. Then class   is said to be stable with respect to operation  ( ) if              

such that      , we have   (     )     where       and     . 

There are a number of categories of stability that have been studied, including 

geometric and min/max stability. But by far the most studied form of stability is sum 

stability, where  (   ) corresponds to the summation of random variables. Random 

variables that are sum stable under iid summation and their corresponding distributions 

are referred to as just “stable.” This is done for simplicity‟s sake without implying they 

constitute the only type of stability. In some literature this family is referred to as  -

stable or Lévy stable. This report keeps to the term stable for convenience and brevity. 

Sum stability is a defining characteristic of stable distributions. Two equivalent 

definitions of stable distributions via sum stability can be formulated. Below, the   above 

the equality sign denotes equality in distribution. 

 

Definition 1: A random variable   is stable if, given independent copies   ,    
   
 
  , and 

any positive constants       ,   constants      and     such that, 

 

        
 
 
                    (1.1)        

 

Definition 2: A random variable   is stable if for iid replications   ,  , ,   
   
 
   with 

   ,   constants     
  and      such that, 
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                       (1.2) 

 

Definitions 1 and 2 define stable random variables. If          in (1.1) the 

random variable is said to be strictly stable1. Likewise if         in (1.2) 

(Samorodnitsky & Taqqu, 1994). The value of the constant   in (1.1) satisfies the 

equation:          for some   (   -. For a proof see Section VI.1 (Feller, 1971). 

Similarly in (1.2),    satisfies the relation:     
  ⁄ , again with   (   - (Feller, 

1971). Note under definition 2, the requirement that (1.2) hold for     is not sufficient 

to determine stability. A random variable is necessarily stable only if (1.2) holds for 

    and     (Feller, 1971) (Zolotarev, 1986). 

 

Domains of Attraction and Characteristic Functions 

A random variable   has a domain of attraction if   a sequence of iid random 

variables         and a sequences of constants *  +   
  and *  +    such that 

 
∑   
 
   

  
   

  
→                (1.3) 

 

Where 
  
→ denotes convergence in distribution. From definition 2, it is clear that every 

stable distribution admits a domain of attraction. In fact, any non-degenerate distribution 

will necessarily be in the domain of attraction of a stable law (Gnedenko & Kolmogorov, 

1954). Accordingly, this sets an alternative definition of stable distributions: 

 

                                                 
1 Beware, Lévy (1954) and Feller (1966) use „stable‟ and „quasi-stable‟ for „strictly stable‟ and „stable‟. 

Feller (1971) uses the terminology „stable in the narrow/strict sense‟ and „stable in the broad sense.‟ 
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Definition 3: A random variable   has a stable distribution 
        
⇔  it has a domain of 

attraction. 

 

Feller, Khinchin, and Lévy showed in 1935 that a random variable   with 

distribution function   is in the normal domain of attraction if and only if, 

  
∫   ( )| |  

∫     ( )| |  

→   as  →  .  Gnedenko and Kolmogorov define a generalized central 

limit theorem, the counterpart to the classical central limit theorem without the condition 

of finite variance (1954). Stable laws, like the Gaussian distribution, arise as the sum of 

many individual noise components, an important consideration for statistical modeling. 

Gnedenko and Kolmogorov prove the generalized theorem using the 

characteristic function to represent stable laws. Lacking a general closed form density or 

distribution, most early work with stable distributions was carried out using the 

characteristic function. The characteristic function can be expressed through several 

readily interpretable parameterizations of stable laws. These parameterizations are vital to 

estimation. 

The characteristic function of univariate stable distributions is typically 

parameterized by four parameters. The shape parameter and the skew parameter are 

denoted   and   respectively. The parameter   is also referred to as the index of stability 

or the characteristic exponent; it determines the thickness of the tails. In regard to sum 

stability, the   parameter is the most important. The sum of independent stable random 

variables with equivalent   values, regardless of other parameter values, will yield a 

stable random variable with the same  . In general, the sum of stable random variables 

with differing   values will not yield a stable distribution. The skew parameter   is an 

indicator of asymmetry. Note, this parameter does not correspond to the classical notion 
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of skewness. In fact classical skewness is zero in the Gaussian case and undefined for all 

other cases where higher order moments are infinite. The location and scale parameters 

will be denoted   and   in this report. This is in contrast to the typical choice of   and  , 

reflecting that for all non-Gaussian stable random variables the scale   is not equivalent 

to the standard deviation (which does not exist when variance is infinite), and for some 

non-Gaussian stable variables, even the mean   does not exist. There are several 

alternative parameterizations under which some of the above parameters take on slightly 

different interpretations. However,  ‟s value and interpretation remain the same in each 

parameterization presented here. This report presents the three most commonly 

encountered parameterizations. Abusing the conditional notation,   (     | ) signifies a 

stable distribution with parameters (       ) given parameterization  . For our 

parameterizations we will use Nolan‟s custom of labeling them as         (1998). 

General stable distributions, when referenced without regard to the specific 

parameterization or parameter values, will be denoted   (     ). 

The most widely used parameterization is what Nolan terms the  -

parameterization (Nolan, 1998). The characteristic function has one of the simplest forms 

making it the parameterization of choice for algebraic manipulation. A random variable   

is said to be a stable random variable if its characteristic function can be expressed in the 

form, 

 

 ,   (   )-  {
   .       | | 0       .

  

 
/    ( )1/         

   .      | | 0    
 

 
  (| |)    ( )1/            

        (1.4) 

 

Where    ( ) is the sign function returning the sign of  , with the specification that 

   ( )   . 
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While the  -parameterization is convenient in theoretical settings, it presents a 

few drawbacks for numerical procedures and statistical estimation. The exceptional case 

for     makes it discontinuous as  →   for    . Nolan‟s  -parameterization, based 

on Zolotarev‟s polar ( )-parameterization, corrects for this, taking the form, 

 

 ,   (   )-  {
   .       | | 0       .

  

 
/ (|  |     )    ( )1/      

   (      | | [    
 

 
  ( | |)    ( )])                                    

 

    (1.5) 

 

The limit     →    .
  

 
/ (|  |     )  

 

 
  ( | |) ensures the continuity of this form 

(Nolan, 1998). This makes the  -parameterization preferable for numerical applications.  

Other features of this parameterization support its use in statistical application. If 

      (     | ) then for       (     | ) we have       , i.e. the parameters 

(   ) represent the traditional scale and shift of a location-scale family. This is not the 

case with the  -parameterization, where           
  

 
   when     and 

       
 

 
     when    . Hence the  -parameterization is favored for likelihood 

estimation (Nolan, 1998). From these location-scale representations we can determine the 

relation between    and   , 

 

           
  

 
                    

        
 

 
                                    (1.6) 

 

The other parameters are the same between these two parameterizations. The  -
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parameterization admits a simpler interpretation of the mode, making it also the favored 

form for maximum a posteriori estimation (Nolan, 1998). 

The  -parameterization, constitutes yet another form for the characteristic 

function, 

 

 [    ]  {
   .      | |    0  

 

 
    (     )    ( )1/                      

   .     | | 0       (     )
 

 
  ( | |)    ( )1/                 

       (1.7) 

 

This parameterization is generally undesirable. It has the numerical issues as the  -

parameterization, does not lend itself to easy manipulation, and the beta parameter 

exhibits the peculiarity that a negative value corresponds to negative skew for   (   ) 

and positive skew for   (   ). Nonetheless this form is mentioned in Samorodnitsky 

and Taqqu (1994), used in DuMouchel‟s paper on maximum likelihood estimation 

(1973b), and features in Buckle‟s MCMC scheme (Buckle, 1995), so it is presented here 

for convenience.  

 

BASIC PROPERTIES 

Despite the fact that no general closed-form expression exists for the density or 

distribution function of a stable random variable, many properties of these random 

variables and their associated density and distribution have been revealed through the 

characteristic function. For instance, it is known that the density function,  , of stable 

random variables, is unimodal and smooth, i.e.      (Yamazato, 1978). Here this 

report will cite five characteristics of stable laws that facilitate a general understanding of 

this family of distributions and are important for inference. 
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Property 1 (Gaussian): When    ,      (     ). As    ,          →   and the   

parameter effectively drops out of the characteristic function leaving   ( )  

   (         )     .   
 

 
    / for        .  

 

Property 2 (Symmetry):       (     ) is symmetric 
        
⇔      and    . It is 

symmetric about   
        
⇔      (Samorodnitsky & Taqqu, 1994). As a corollary, 

     (     ) 
        
⇔        (      ), known as the reflection property (Samorodnitsky 

& Taqqu, 1994). 

 

Property 3 (Totally Skewed Stable Laws): a random variable       (     ) with     

and | |    is a so-called totally skewed stable distribution with support only over the 

half real line. Under the  -parameterization, the support is restricted to set ,   ) and 

(    - when     and      respectively.   

 

Property 4 (Product Property): Owing to Feller (1971), we have a product property 

stating that any symmetric stable random variable,   , may be represented as the product 

of a symmetric and a positively skewed random variable. Let         (     | ) for 

       and let        . Then define the skewed positive stable random variable  

 

         ⁄ (    .   .
   

   
//
    ⁄

)                (1.8) 

 

and assume  ,   are independent. Then, 
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      ⁄        (     )               (1.9) 

 

The proof may be carried out using the Laplace transform, for more information see 

Samorodnitsky and Taqqu (1994) or Feller (1971). 

 

Property 5 (Power Law Decay): The tails of stable distributions are “heavy” and follow a 

power law decay when    . That is for a non-Gaussian stable  ,  (| |   )     . 

Specifically, 

 

    →  (   )    (   ) 
      

    →  ( |       )     (   ) 
   (   )  

    →  (    )    (   ) 
      

    →  (  |       )     (   ) 
   (   )          (1.10) 

 

When in the  -parameterization    (   )  (   )    (    )⁄  for     and     

for     (Samorodnitsky & Taqqu, 1994). For the  -parameterization    

   (   ⁄ )  ( )  ⁄  (Nolan, 1998).  

 

Property 1 demonstrates under what conditions the stable parameterization 

recovers the Gaussian distribution. It highlights three important considerations for 

estimation and inference: 1) the scale parameter in the given parameterizations do not 

match the standard deviation of the classical Gaussian parameterization, accordingly 

caution must be exercised, 2) the beta parameter vanishes when    , becoming less 

meaningful as    , and will be insignificant for   in a neighborhood of  , 3) for   close 

to   the practitioner may want to consider swapping a stable setting for the Gaussian 
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assumption to take advantage of the established repertoire of estimation procedures.  

Properties 2 and 3 define symmetric and totally skewed stable distributions. These are 

important cases of stable distributions that will feature in inference methods presented in 

this report. Property 4 relates symmetric and positively skewed stable laws through the 

product property. This property features in application and inference; it permits any 

symmetric stable law ( ) to be defined as the product of a Gaussian ( ) and a positively 

skewed stable distribution ( ). This may be interpreted as a scale mixture of normals 

representation (SMiN) of  , making this distribution Gaussian conditional on the 

positively skewed stable law  . Finally, property 5 expresses the power law decay in the 

tails of stable distributions. This is a distinguishing feature of stable laws that can play an 

important part in identifying relevant applications. For plots of stable laws, see Appendix 

A. 

 

EXTENSIONS 

As the theory and application of univariate stable laws were developed, increasing 

attention was given to multivariate extensions of univariate stable distributions. These 

include objects like stable random vectors, stable integrals, self-similar processes, stable 

ARMA processes and stable FARIMA processes. This report presents a brief summary of 

stable ARMA processes to facilitate later discussions on time series inferences. More 

information on stable ARMA processes in particular, and stable random vectors and 

processes in general, can be found in Samorodnitsky and Taqqu, chapters 2, 3, and 6-13 

(1994). 

A sequence *               + is a stable ARMA( , ) process, for       

if it satisfies the following, 
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   ∑       
 
       ∑       

 
              ∑       

 
    ∑       

 
     

  (1.11) 

 

With the disturbances distributed,    
   
 
   (     ). Defining the backshift operator  , 

such that  (  )      ,  
 (  )      ,… and the polynomials  ( ) and  ( ) as, 

 

 ( )             
   

 ( )             
            (1.12) 

 

We may express the ARMA model as  ( )    ( )   (Samorodnitsky & Taqqu, 

1994). 

As in the Gaussian case, it is customary to assume  ( ) and  ( ) share no 

common roots, else the model may be rewritten as a lower order ARMA process. Here 

we present two theorems that are also germaine to the strictly Gaussian case. For proofs 

of these see Samorodnitsky and Taqqu, section 7.12 (1994). 

 

Theorem 1 (causality): The ARMA model (1.8) is causal with a unique solution 
        
⇔   ( ) 

has no roots in the closed unit disk *  | |   + 

 

Theorem 2 (invertibility): If  ( ) has no roots in the closed unit disk *  | |   +, then 

    (   ) is invertible. 
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Chapter 2 Applications 

Here we survey some of the applied literature to illustrate the applicability of 

stable laws to different disciplines and to motivate a discussion of inference methods in 

chapter 3. Due to the lack of analytic form for the density or distribution function, stable 

distributions were rarely pursued in applied disciplines. After their full introduction by 

Lévy and Khinchin in the 1920‟s and 1930‟s, stable laws were mainly studied within 

probability theory. Some of the earliest applications include hitting times of random 

processes, in describing certain branching processes, and in the theory of random 

determinants. Examples of all three may be found in chapter 1 of Zolotarev (1986).  

Starting in the 1960‟s, with increased accessibility to computing power, researchers 

began studying statistical inference with stable distributions and their application to 

practical disciplines.   

In signal processing stable distributions are useful for modeling impulsive noise. 

Stable laws have successfully been employed to model degraded audio samples with 

significant jumps in the noise signature (Godsill & Lombardi, 2004), impulsive random 

fields in image processing, and a generalization of the Rayleigh distribution for radar 

tracking (Kuruoglu & Zerubia, 2004). In physics, stable laws arise when describing light 

reflecting off of a rotating convex mirror, certain dynamics in quantum mechanics and 

statistical physics, and certain stochastic differential equations. One of the earliest 

physics applications, discovered before the full explication of stable laws by Lévy, is the 

Holtsmark distribution; it characterizes the chaotic electromagnetic fields of plasma and 

the gravitational fields of stars (Zolotarev, 1986). In biology the so-called Lévy flight 

foraging hypothesis has been used to describe animal movement patterns (Zolotarev, 

1986). The Zipf-Pareto law, a generalized power law distribution, appears in a number of 
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practical settings, for example: the sizes of cities in a nation, the frequencies of words in a 

language, the prevalence of animals by species in a habitat. Sums of such random 

variables will converge to stable limiting random variables. In fact, because of this 

relation, totally skewed stable distributions can be utilized in place of Zipf-Pareto 

distributions in a number of applications (Zolotarev, 1986). Zipf-Pareto laws also occur 

in the distribution of incomes, as well as in the description other economic and financial 

variables. Indeed some of the earliest applications of stable laws were in these fields. 

Today a large body of literature exists on the application of stable distributions to 

economics and finance. The next section of this chapter will explore these applications in 

more detail to provide some idea of the scope of applicability. 

 

ECONOMICS AND FINANCE 

Mandelbrot was the earliest pioneer in applying stable laws to financial and 

economic data. In the early 1960‟s Mandelbrot examined stable laws in connection with 

the distribution of income (Mandelbrot, 1961). However, it was his seminal paper The 

Variation of Certain Speculative Prices that gained the most attention (Mandelbrot, 

1963). Mandelbrot initiates the discussion by showing wool price to be too peaked and 

leptokurtic for the traditional Gaussian hypothesis. He also remarks that the second 

moment varies erratically when calculated for nested samples, despite the large sample 

size, suggesting this as a possible indicator of infinite variance. Later, Mandelbrot 

demonstrates that non-Gaussian stable distributions appear to characterize cotton prices 

better than Gaussian distributions; he produces log plots of the empirical distribution 

functions and compares them to log plots of theoretical distribution functions. Inspired by 

Mandelbrot, Fama analyzed the log differences of stock prices. Here he finds evidence 
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for non-Gaussianity in the tendency of the stock market to exhibit extreme deviations. 

Under an assumption of strict Gaussianity, an observation four standard deviations or 

more from the mean would occur about once every fifty year period. By contrast, 

“observations this extreme are observed about four times in every five-year period” 

(Fama, 1965, p. 50).  Fama notes while typically such observations would be discarded as 

outliers to enforce normality, these extreme observations may in fact be representative of 

the underlying stock price dynamic. Indeed Fama observes the practical implications of 

such data trimming, “Unlike the statistician, however, the investor cannot ignore the 

possibility of large price changes before committing his funds, and once he has made his 

decision to invest, he must consider their effects on his wealth” (1965, p. 42). 

Additionally he notes that financial data seem to be best fit by stable distributions with 

  ,       - (Fama, 1965). After the initial interest of Mandelbrot and Fama in 

describing financial asset prices with stable distributions, a number of reports began 

examining this idea in more detail, developing models and inference techniques. 

Mandelbrot and Howard observe that stock price differences are Gaussian-

distributed, when considered over a fixed number of transactions, but follow a stable 

distribution when examined over a fixed time period. On this basis they formulate a 

model of stock price differences; stock price differences are driven by an underlying 

Gaussian process,  ( ), on the number of transactions,  , itself a positively skewed 

stable process with respect to time,    ( ). Then the distribution of stock price 

differences over time,  ( ) can be formulated  ( ( )). Here  ( ) is a so-called directing 

process, subordinated to  ( ) (Mandelbrot & Taylor, 1967). This may be seen as an 

extension of the product property of univariate stable laws to stable processes.    

Fama and Roll apply symmetric stable distributions to stock market data (1968) 

(1971). Overall they encounter better results than when restricted to Gaussian 
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distributions, and they develop some of the first widely used estimators for stable 

distributions. However, Fielitz and Smith, in subsequent studies, find that asymmetric 

stable laws may better characterize stock data (Fielitz & Smith, 1972) (Fielitz, 1976). 

Examining 199 stocks, Fielitz finds that all pass Fama and Roll‟s hypothesis test for 

asymmetry at a significance level of     and 198 pass at a level of     . He also 

mentions that Roll found a similar result when analyzing Treasury bill interest rates 

(Fielitz, 1976).  

Bartels justifies the use of stable laws in financial and economic applications by 

combining theoretical and empirical reasoning (1977). He cites two theorems. The first, 

owing to Feller, states that a distribution exists in the domain of attraction of a non-

Gaussian stable law 
        
⇔  the distribution observes a power law decay in the tails, with 

power law rate   (   ). Pareto distributions with     fit this description, and there is 

considerable empirical evidence for the presence of Pareto distributions in economic 

settings. The second theorem, owing to Tucker, considers the iid sum of random 

variables, where each variable is itself the sum of several random variables in the domain 

of attraction of stable random variables with different   values. In this case the composite 

random variables will be in the domain of attraction of a stable law with characteristic 

exponent equal to the minimum   of the constituent summands. Hence, even if an 

economic variable is the sum of random variables, themselves the sum of several Pareto 

distributions, they will converge to a stable distribution, though convergence can be slow 

in some instances (Bartels, 1977).  

Of course, the assumption of stability has its detractions. One complaint is that 

while stocks and other financial asset prices may observe large deviations 

uncharacteristic of Gaussian distributions, in all likelihood they are not true infinite 

variance phenomena. There is likely some value, say  , such that the absolute value of an 
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asset‟s price changes will never realistically exceed  . And any bounded distribution 

must have a finite variance (Granger & Orr, 1972).  Nevertheless if the bounds are 

“large” and the distribution is heavy-tailed, stable distributions may still be useful and 

may still provide insight into the underlying distribution. In fact, Fama and Roll note that, 

owing to the bounded computational resources at hand, any simulated stable variates 

essentially come from a truncated distribution. Nevertheless, stable distributions still 

provide a good fit for such pseudorandom data and, with sufficiently large bounds, sums 

of such data do not tend to a Gaussian distribution over any plausible quantity of 

summations (Fama & Roll, 1971). It should also be noted that stable distributions not 

only characterize income distributions and asset prices, but also many other economic 

variables. Recent study published in the PNAS found that several credit ratios used in 

financial accounting, including the Altman Z-score appear to follow an asymmetric stable 

distribution (Horvatić, Podobnik, Stanley, & Valentinčič, 2011). 

Non-Gaussian stable distributions have been demonstrated to characterize 

financial data more effectively than Gaussian distributions. Still, they rarely provide a 

perfect description of the data. Officer finds that stock returns tend to be heavy-tailed 

compared to Gaussian distributions. However, his analysis found that the standard 

deviation is a “well-behaved” measure of scale (Officer, 1972). This may indicate that 

stable distributions are a bit too heavy-tailed relative to stock returns. These drawbacks 

considered stable distributions can still be valuable tools in financial and econometric 

modeling. Contemporary research in this field is focused on expounding more complex 

models, such as multivariate stable models, fractional Lévy motion, harmonizable 

processes, stable GARCH models, and stable vector autoregression. 
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Chapter 3: Inference 

Here we outline four major approaches to inference: quantile estimators, 

empirical characteristic function (ECF) methods, ML estimation, and Bayesian MCMC 

procedures. Without claiming to exhaustively cover every category, we survey some of 

the major methods in each case. In Appendix B and C, two methods, the SMiN Gibbs 

sampler and FFT method for ML estimation, are examined in more detail and an example 

using both methods is presented in Appendix D. Finally it should be noted that there are 

several approaches other than those mentioned here. As an example, see Calzolari and 

Lombardi for an indirect estimation approach that uses skewed-t distributions as an 

auxiliary model (2008). 

Since simulation of stable laws is required of some inference procedures and 

handy for testing any estimation method, the most common method for generating stable 

pseudorandom variates is presented before beginning a discussion on estimators. The 

algorithm for generating stable variates was proposed by Chambers, Mallows, and Stuck 

while working at Bell Laboratories. Using integral representations proposed by Zolotarev 

and earlier work by Kanter, Chambers, Mallows, and Stuck developed the algorithm 

which requires as a (pseudo)-random input, an exponential and a uniform variate, 

      ( ) and      . 
 

 
 
 

 
/ respectively. These should be independent of one 

another (Chambers, Mallows, & Stuck, 1976). Then, with the parameters (   ), standard 

stable variates may be generated, 
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Where,         .    
  

 
/  ⁄ . This produces variates from the  -parameterization. 

Variates from the  -parameterizations may be obtained by shifting and scaling 

appropriately. Interestingly, when    , it can be shown that the algorithm recovers the 

familiar Box-Mueller algorithm; the CMS algorithm may be thought of as a 

generalization of the Box-Mueller algorithm. For a discussion on implementation and 

numerical issues (Chambers, Mallows, & Stuck, 1976) (Weron, 1996). 

 

QUANTILE ESTIMATORS 

Quantile estimators were among the earliest estimation procedures. The first 

quantile estimators were proposed by Fama and Roll for symmetric distributions (1968). 

Their method relies on a series expansion for the densities of symmetric stable 

distributions, derived a decade and half earlier by Bergström (1952).  Integrating the 

density expansions, they obtain series expansions for the distribution functions. 

Evaluating the distributions for different parameter values, Fama and Roll, use the results 

to identify quantile-based estimators of parameter values, given a set of observations. The 

method is best-suited to   (   -, which cover the range of   values typically seen in 

financial data. The authors suggest methods for checking the assumption of symmetry, 

and they note that truncated mean estimators of the location parameter tend toward lower 

dispersion than full mean estimators, except in the Gaussian case (Fama & Roll, 1968).  

Fama and Roll update their early quantile estimators in another paper, exhibiting new 

estimators, demonstrating goodness-of-fit tests for the non-Gaussianity assumption, and 

proposing a resampling method for assessing stability against alternative non-Gaussian 

hypotheses (e.g. a mixture of normals) (1971). 
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Quantile estimators have largely given way to more accurate, albeit more 

intensive estimation procedures. Still, quantile estimators can be utilized in situations 

requiring high efficiency or when very precise results are not necessary. Quantile 

estimators also serve as convenient first guesses for estimation procedures that require 

reasonable initial approximations. By far the most popular and widely used quantile 

estimator is that of McCulloch (1986).  This method is effective for   ,    - and does 

not present any discontinuities as  →   (regardless of skew). Unlike the Fama and Roll 

estimator it accommodates asymmetry, supporting estimation of   in its full parameter 

range. Furthermore the slight asymptotic bias of the Fama and Roll estimators for   and 

the scale   are corrected in the McCulloch estimator. However, the method does lose 

some efficiency relative to the Fama and Roll estimator in calculating the location 

parameter  . McCulloch derives asymptotic variances and covariances and demonstrates 

asymptotic normality. It should be noted that the estimates for some parameters do 

exhibit correlations (McCulloch, 1986). Nevertheless the relative accuracy, ability to 

accommodate skew, joint continuity of parameters, and the efficiency of the McCulloch 

estimator make it a viable, efficient approximation method. 

 

EMPIRICAL CHARACTERISTIC FUNCTION METHODS 

While stable densities and distributions do not generally exhibit tractable forms, 

their characteristic functions do. This has prompted some to examine empirical 

characteristic function (ECF) methods of estimation. The ECF for a set of iid 

observations (           ) is expressed, 

 

  ( )  
 

 
∑    (    )
 
                  (3.2) 
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Press seems to have been the first to examine ECF methods (1972). Press‟ proposed 

estimator is contingent on the choice of   values used to evaluate the ECF. The selection 

of   is important for convergence to the population parameter values. Lacking a 

principled manner for choosing  , this method can return poor results. Nonetheless, Press 

did introduce concepts that would play an important role in the development of other 

ECF methods. He defines the following metric, the minimum weighted  -th mean, for 

assessing the fit of different parameter values given the ECF (Press, 1972), 

 

 (       )  ∫ | ( )    ( )|
  ( )  

 

  
                   (3.3) 

 

Where  ( ) is the characteristic function for the input values (       ). So  (       ) is a 

measure of the closeness of the estimated characteristic function,  ( ) and the ECF, 

  ( ). Paulson, Holcomb, and Leitch consider the case where     and  ( )     
 
. 

They estimate (       ) by minimizing  ( ) through iterative renormalization 

(Koutrouvelis, 1980). Wiener proposes an iterative regression-based method for 

calculating the parameter estimates in the symmetric case (Koutrouvelis, 1980). 

Koutrovelis extends this approach to accommodate asymmetry. The basic idea of 

Koutrouvelis‟ approach is to use mathematical manipulations of the ECF to write the four 

parameters in terms of two regression equations. Koutrouvelis uses these regression 

equations in an iterative scheme to identify parameter estimates. He shows that his 

parameter estimates are consistent and approximately unbiased, even for moderately 

large sample sizes (Koutrouvelis, 1980). Kogon and Williams present another extension 

of the regression-based ECF method. They substitute the  -parameterization for the  -

parameterization used by Koutrouvelis. This eliminates the discontinuity as  →   when 
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   . The result is a tradeoff with significantly improved performance for   in a 

neighborhood of  , and slightly worse performance at other values of  . Kogon and 

Williams‟ procedure is significantly faster than Koutrouvelis‟ method though still 

significantly slower than the McCulloch‟s estimator. In fact, Kogon and Williams employ 

McCulloch‟s estimator as an initial estimate (Weron, 1996).  

 Comparing effective ECF methods to the most effective quantile methods, there is 

a typical tradeoff between the increased accuracy of the ECF methods and the greater 

efficiency of the quantile methods. An additional advantage of ECF methods over 

quantile methods is that they may be generalized for inference on time series whereas 

quantile estimators are only suited to location-scale models. Knight and Yu explore ECF 

methods for inference in stable ARMA models (Knight & Yu, 2002). Their approach is to 

group a set of   time series observations {  }   
 

 into bins of size  . These bins are 

defined    {         } for          . The result is     overlapping bins of 

size  . These are used to calculate the ECF over the bins,   ( ⃗  ⃗ )   [   (  ⃗
  ⃗ )]  

 

 
∑    (  ⃗  ⃗ )
 
     where  ⃗  (         ).  From here the method is a multivariate 

extension of the Press’ minimum weighted  -th mean, for     (Knight & Yu, 2002),  

 

  ( )  ∫ ∫| ( ⃗| )    ( ⃗)|
  ( ⃗)                   (3.4) 

 

Where  ( ) is a weight function. Depending on the choice of weighting, such an 

integral may have a closed-form solution or, in most cases, will require numerical 

integration. Knight and Yu include a discussion on suitable weighting functions and 

optimal bin size before applying the method to stable ARMA models. They also prove 

the strong consistency and asymptotic normality of the ECF estimators, given appropriate 

regularity conditions (Knight & Yu, 2002).   
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MAXIMUM LIKELIHOOD ESTIMATION 

Compared with ECF methods and quantile estimators, maximum likelihood 

estimators (MLE) have the greatest accuracy. They are also the most computationally 

intensive, requiring numerical integration. There are two general approaches, direct 

numerical integration (DNI) and a fast Fourier transform (FFT) method. This report will 

briefly introduce DNI, before delving into greater depth with the FFT method. However, 

before discussing either, relevant theory on ML estimation with stable distributions will 

be presented. 

 Most of the theory of ML estimation for stable distributions was established by 

DuMouchel. Here we present relevant facts and theorems. For greater discussion and 

proofs see (DuMouchel, 1973b). 

 

Theorem (non-existence of maximum): For any observations           , if   and   are 

to be estimated, then  (   ) has no maximum for   (   -,   (    ), rather 

 (   ) →   as (   ) → (    ), for        . 

 

While this may seem troubling, the centroid of   is not affected by this 

phenomenon, and the undesirable behavior of   vanishes when restricting   to be greater 

than some    . Then we may present the following theorem, 

 

Theorem (consistency and asymptotic normality): Let  ̂  denote the MLE for   

(       ),  ̂  the MLE for  , and    the true parameter value. If  ̂  is restricted to be 

greater than some    , then the MLE  ̂  is consistent and asymptotically normal, with 
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variance-covariance matrix    (  ) where   is Fisher information matrix,  so long as    

exists in the interior of the parameter space. Thus the cases    ,    , and      

are excluded. Additionally, if the  -parameterization is not used, the case of    , 

    is also excluded. 

 

Note that for true parameter values on the boundary of the parameter space, the 

limiting distribution tends to a degenerate and ML estimation is superefficient. 

DuMouchel provides a discussion of the necessary conditions for the last theorem to 

hold, and he provides proofs that they are met (1973b).   

 Nolan introduces DNI as a procedure for numerically approximating the density 

of a stable random variable (1999). Based on similar integral representations by 

Zolotarev, Nolan derives an integral representation for the  -parameterization; other 

parameterizations encounter numerical issues in a neighborhood of  . Integrating these 

representations for each point yields the desired density value. Nolan‟s paper discusses 

adaptively selecting integration bounds and numerical issues. For accurate tail density 

estimation quadrature may be too computationally expensive. For this situation, the series 

expansions of Bergström can offer more accurate and less computationally cumbersome 

density estimates (Nolan, 1999). Based on this approach, Nolan created the program 

„STABLE,‟ elements of which are the basis for the R code package „stabledist.‟ DNI may 

be used to obtain density estimates for data points thought to come from a stable 

distribution. This enables numerical calculation of the likelihood or log likelihood of the 

parameters given the data. ML estimation is carried out through numerical maximization.    

Chenyao, Doganoglu, and Mittnik introduce an FFT algorithm for calculating 

estimates of stable densities through inversion of the characteristic function. They 

compare their method to DNI (Chenyao, Doganoglu, & Mittnik, 1999). Chenyao, 
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Doganoglu, Mittnik, and Rachev introduce ML estimation through the FFT method 

(Chenyao, Doganoglu, Mittnik, & Rachev, 1999).2 The FFT method works best for 

  ,   -. This covers the range of values typically encountered in financial and 

econometric applications (Chenyao, Doganoglu, & Mittnik, 1999). 

The characteristic function may be inverted through an application of the Fourier 

transform to the characteristic function,  ( |       )  
 

  
∫       ( |       )  
 

  
. 

The density is approximated by inverting the characteristic function over a grid of points 

on a bounded interval of values for  , centered at 0. In turn, the Fourier transform integral 

is approximated by limiting the bounds of integration to a bounded interval centered at  , 

i.e. from (    ) to (    ) for    . Then the integral may be approximated by a 

quadrature rule over a grid of points on these new bounds of integration. Thus the final 

approximation to the density is discretized into the form of a discrete Fourier transform 

(DFT). Rearranging this DFT one obtains a representation of the density function that can 

be computed as an FFT of the characteristic function multiplied by a normalizing 

constant. The exact expression of the DFT and the layout of the grid points will depend 

on the quadrature rule used. Chenyao, Doganoglu, and Mittnik introduce a left point rule 

(1999). However, Menn and Rachev note that the midpoint rule yields better accuracy; in 

fact they find surprisingly large gains in accuracy for similar computational burden 

(Menn & Rachev, 2006). We exhibit the derivation of the DFT for the midpoint rule in 

Appendix B and summarize Menn and Rachev‟s discussion on the numerical error. The 

density for a sample point  , in the  -parameterization, may be expressed as a function of 

the density of the standardized sample point   
   

 
 as  ( |       )  

 

 
 ( |       ). 

                                                 
2 Ironically both appear in the same issue as Nolan‟s introduction of DNI. 
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Due to numerical considerations, it is better to calculate the density values for a standard 

variable and rescale accordingly (Chenyao, Doganoglu, & Mittnik, 1999). 

The FFT method allows for the numerical definition of the density function, 

enabling ML estimation. For a set of observations (       ) the density is approximated 

by the FFT algorithm and the likelihood at each    is either matched or interpolated given 

the grid of points obtained. Linear interpolation is typically accurate enough for 

application (Chenyao, Doganoglu, & Mittnik, 1999).  However, if greater accuracy is 

needed, a spline may be used near the mode, and the Bergström series expansion may be 

employed at the tails (Menn & Rachev, 2006). With obtained density approximations for 

the data points, the likelihood or log likelihood given the dataset can be constructed. 

Finally the MLE is estimated by numerical maximization of the likelihood function. A 

grid search method may be used on a constrained parameter space, with the unbounded 

location and scale parameter restricted to a “reasonable” range. Alternatively a gradient-

based search might be employed. Chenyao, Doganoglu, Mittnik and Rachev opt for an 

unconstrained maximization method, where the parameters are transformed so their 

ranges are unbounded on  . For further details see (Chenyao, Doganoglu, Mittnik, & 

Rachev, 1999).  

An advantage of the ML methods is that they can be used to fit a broad set of 

models. Chenyao, Doganoglu, Mittnik, and Rachev extend their FFT ML estimation 

procedure to regression, ARMA, ARMAX, and GARCH models. The setup for ARMA 

models is presented here for reference to the application example in Appendix D. For an 

    (   ) model, 

 

     ∑       
 
    ∑       

 
                (3.5) 
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Where    
   
 
   (     ). The conditional likelihood may then be stated, 

 

   (       | )  ∑   (  |       )
 
             (3.6) 

 

Where          ∑       
 
    ∑       

 
   ,   (      ),   (       ), and 

  (     ).  we condition on the first   realizations         and set the corresponding 

disturbances             to  . Restrictions on the possible values of   and   will insure 

stationarity and invertibility (Chenyao, Doganoglu, Mittnik, & Rachev, 1999).  

 

BAYESIAN MCMC METHODS 

Markov Chain Monte Carlo (MCMC) methods for inference in Bayesian models 

have enjoyed increasing popularity in the last couple decades. Accordingly, some 

researchers have focused their efforts on fitting stable distributions to such Bayesian 

MCMC methods.    

The first effort in this area was by Buckle (1995). He notes that the lack of a 

general closed-form density had hindered Bayesian application of stable distributions and 

recognizes the potential for MCMC computation to accommodate stable distributions in a 

Bayesian framework. His method relies on another of Zolotarev‟s integral 

representations. Rearranging the formula, Zolotarev shows that a closed form expression 

for the stable density may be obtained, conditional on a set of auxiliary variables. By 

sampling these auxiliary variables, one for each observation, the joint density can be 

expressed analytically. Buckle then uses a Gibbs sampler to obtain draws from the four 

parameters. The parameters (     ) have posterior conditional densities that are 

undulating and multimodal. Buckle corrects for this through transformations of the 
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auxiliary variables that produce unimodal conditional densities. This process necessitates 

an application of the Newton-Raphson method for each auxiliary variable on each 

parameter draw. For sampling these parameters, Buckle proposes embedding a 

Metropolis-Hastings step, as direct sampling for the Gibbs step is not possible. However, 

Buckle also entertains the possibility of using adaptive rejection sampling schemes to 

sample the parameters. The scale parameter can be transformed as   (   )⁄   ; then an 

inverse gamma prior on   yields an inverse gamma posterior that may be readily sampled 

and transformed to obtain   draws. The entire procedure is very computationally 

intensive. The need to sample an auxiliary variable for each observation on each iteration 

and the need to apply the Newton-Raphson method to each auxiliary variable on each 

iteration when obtaining draws for each of the parameters (     ) rapidly scales the 

computational burden. On top of this, the method requires function evaluations from a 

couple of complicated functions involving sines and cosines for each parameter draw. 

Another drawback is that some parameters show consistent correlation. In particular,   

and   both affect the general spread of the distribution, albeit in different ways, and 

hence tend to exhibit negative correlation (Buckle, 1995).  Finally the parameter 

estimates returned are for the  -parameterization, an undesirable form. Estimates for 

other parameterizations can be found through applying the appropriate relations. Still, the 

 -parameterization leads to discontinuity and numerical instability in a neighborhood of 

   . Nonetheless, the method provides a method for introducing stable distributions 

into a Bayesian framework. Buckle demonstrates that for a set of stock price differences, 

his model provides a better fit than a comparable Gaussian model (1995). Buckle 

introduces his method for location-scale models. Qiou and Ravishanker extend Buckle‟s 

method to ARMA and VARMA models (1998a) (1998b). They obtain reasonable results. 

However, they initialize their method with the maximum likelihood estimate and scale 
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the variance matrix of the normal distribution in the Metropolis-Hastings step with the 

inverse of the Fisher information matrix (Qiou & Ravishanker, 1998a). It is not clear how 

the method would perform in the absence of this information, especially since obtaining it 

can be a numerically intensive procedure itself. 

A few researchers have examined an alternative MCMC approach for inference 

on time series in the presence of symmetric stable innovations (Godsill S. J., 1999) 

(Godsill S. J., 2000) (Godsill & Kuruoglu, 1999) (Tsionas, 1999). The approach takes 

advantage of the product property to rewrite the symmetric stable disturbances   , with 

characteristic exponent  , as Gaussian random variables, conditioned on positively 

skewed stable random variables    with characteristic exponent    . Such an approach 

can be viewed as a scale mixture of normal (SMiN) that allows for inference in the 

familiar Gaussian setting. Godsill and Kuruoglu consider MCMC inference for an   ( ) 

model, though they note the applicability of the method is far broader, including the non-

linear case (1999). The main difference between a model with Gaussian errors and the 

proposed model with stable innovations, is that on top of the usual Gibbs steps another 

step is added to sample the positively skewed   . This sampling may be carried out with 

rejection sampling or a Metropolis-Hastings step. Using power law expansions for the tail 

of appositively skewed distribution, it can be shown that an inverted gamma distribution 

may be used to generate more accurate tail approximations for extreme values (Godsill S. 

J., 1999) (Godsill & Kuruoglu, 1999).  Later, Godsill introduces a slice sampler as yet 

another method for sampling the    (Godsill S. J., 2000). Since the positively skewed 

stable variates are sampled in this procedure, there is no need to directly evaluate the 

density of any stable laws; this the chief advantage of this method. Tsionas presents a 

similar sampling scheme for econometrics, albeit in a more formal setting. He includes a 

discussion on extensions to GARCH models and proposes a method for estimating the   
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parameter via an application of the FFT on each iteration (Tsionas, 1999). All other 

papers cited here omit a discussion of estimating  , assuming its value is already known. 

In practice, its value may be estimated with a reasonable and simple estimator such as the 

McCulloch estimator. For more details of SMiN method and the details of the   ( ) 

model case, see Appendix C. For an example application, see Appendix D. 

Godsill and Lombardi extend the SMiN method to a TVAR Markovian state 

space model with Gaussian process noise and symmetric stable observation noise 

(Godsill & Lombardi, 2004). They use particle filtering and smoothing for inference. Of 

particular note, their method accommodates inference on  , a static parameter that is not 

easily amenable to particle filtering analysis. They test their method on old audio data 

from gramophone disk recordings that have been degraded by non-Gaussian clicks. The 

results are found to be effective as the assumption of stable observation noise accounts 

for the non-Gaussianity induced by the degraded recording (Godsill & Lombardi, 2004). 

 

CONCLUDING REMARKS 

Stable distributions are an important class in the theory of probability. They are 

sum stable, and they are the limiting distributions in a generalized central limit theorem. 

Stable distributions constitute a generalization of the Gaussian family that can 

accommodate heavy-tails and skew. Theoretical and empirical justifications exist for 

their use in a series of practical settings. Despite the difficulties presented by the lack of 

closed-form densities, the recent development of estimation methods has made stable 

distributions viable and valuable tools in statistical modeling. 
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Appendix A: Stable Plots 

Here we present standardized stable density plots for different values of   and  .  

 

Figure 1: a plot of symmetric stable densities over arrange of   parameter values. Note 

the increased peakedness and heavier tails as  →  . This plot is the same 

for the   and the  -parameterization. 

 

Figure 2: a plot of skewed stable densities over non-negative   values, with   fixed at 

   . The plots represent the  -parameterization. 



 32 

 

Figure 3: a plot of skewed stable densities over non-negative   values, with   fixed at 

   . The plots represent the  -parameterization. 

 

 

Figure 4: Plots of positively skewed stable distributions over several   values. The plots 

are in the  -parameterization.  
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Appendix B: Midpoint Rule FFT and Errors 

Menn and Rachev give a formulation of the FFT applied to the mid-point rule, 

noting that usually yields higher accuracy than the left or right point rules (Menn & 

Rachev, 2006). Let        and      with   
  

 
. We define an equidistant grid 

over the interval ,    - via         ,          . The midpoints are given 

  
    (       ),            . 

 

We then define vectors  ⃗⃗     and  ⃗    , as  
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The quantity    ( )  may be tabulated by applying an FFT algorithm. 

Multiplying by the normalizing constant    yields the density. The values of   and  , 

where       are chosen by the programmer. The values       and      deliver a 

sufficiently accurate result for many numerical applications. For a discussion on   and  , 

and for a comparison with DNI, see (Chenyao, Doganoglu, & Mittnik, 1999). 

 

Menn and Rachev identify three sources of error (2006), 

 

1. The first source of error, denoted   (   ), is the reduction of the integral bounds to the 

compact set (    )  . .
 

 
/   .

 

 
/  /. 

 

2. The second error source, denoted   (   ), occurs from applying an approximation 

rule (left point, mid-point, etc).  

 

3. The third source of error is interpolation error, denoted   (   ) 
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For an arbitrary point  , with   . 
 

 
 
 

 
/, we have the following error equation, 

 

 ( )   ̂( )    (   )    (   )    (   )  

 

The sum of the imaginary parts will vanish in the limit. For most applications it is 

sufficient to evaluate only the real parts of the errors. For    ,      
  . So for   

sufficiently large, this need not be of concern for most application (Menn & Rachev, 

2006). 

 

In assessing the quadrature error, Menn and Rachev note that in the absence of a 

general closed form density for stable distributions, an analytical derivation is seemingly 

impossible. Instead they resort to carrying out the algorithm for a range of parameter 

values with a suitable choice of grid points. All points were evaluated at the grid points to 

remove any interpolation error. They summarize their conclusions as follows (Menn & 

Rachev, 2006), 

 

1. The relative error is only acceptable in a narrow region about the origin. For large | | 

the relative error is unacceptable, judging by the graphs this acceptable region seems 

range from (    ) to (      ), depending on specific parameters. 

 

2. Given they require the same computational effort, it is surprising that the midpoint rule 

relative errors are consistently about twice as good as the left point rule relative errors. 

The two errors always have opposite signs 
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3. As   decreases, the relative error increases 

 

4. In the case of skewed stable distributions, the error for the lighter tail is greater. This 

effect increases as skewness increases. 

 

For assessing points in the tails of the distributions (i.e. | | large), Menn and 

Rachev, explore using Bergstrom’s series expansion for greater accuracy. Interpolation 

error, by contrast, decreases in the tails, but play a significant role close to the mode. The 

interpolation error may on the order of two magnitudes of the sum of    and   .If high 

accuracy is desired, Menn and Rachev suggest using a cubic spline to interpolate in-

between grid points, particularly close to the mode.  For further discussion, results, and 

sources, see (Chenyao, Doganoglu, & Mittnik, 1999), (Chenyao, Doganoglu, & Mittnik, 

1999), (Menn & Rachev, 2006). 

 

  



 37 

Appendix C: SMiN Gibbs Sampler 

Applying the product property to a noise process with iid symmetric stable 

disturbances,        (     ) with   (   ) coerces the    to be conditionally Gaussian 

given the appropriate positively skewed stable scale variables,  

 

      (    
   )                        ⁄ (     )      .   

  

 
/
  ⁄

 

 

This can be interpreted as a SMiN representation of the original noise process, 

 

  ( )  ∫  ( |      )  ( )  
 

 

 

 

Here,  ( | )   ( |      ) and  ( | )    ( ) ( |    
  ). Godsill and Kuruoglu, 

while stressing the applicability of the present method to nonlinear cases, develop a 

general linear model. Let  ⃗ be vector of observations,   a fixed-basis matrix tying the 

observations  ⃗ to the parameters,  and  ⃗ a random vector such that each component 

       (     ). Then the model, 

 

 ⃗    ⃗   ⃗ 

 

May be expressed in a conditionally Gaussian framework, where   is diagonal matrix 

with diagonal values (  
   ⁄    

   ⁄      
   ⁄ ), 

 

 ( ⃗| ⃗    )     ( 
 

   
‖ ( ⃗    ⃗)‖

 

 
) 
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In appendix D the preceding model is implemented for an   ( ) process. Here 

we exhibit the details for the parameterization of this specific linear model. Let    

   . Then we may denote the   ( ) model 

 

              

 

With the following priors on each parameter,  

 

     (     )             (     )         
      (   ) 

 

And finding the following posterior densities for these parameters 
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All that remains is to sample the auxiliary variables   . Here we present Godsill‟s 

methods, a rejection sampler, a Metropolis-Hastings algorithm, and a slice sampler 

(Godsill S. J., 1999). 

 

Rejection Sampler 

The likelihood  (  |     
 )  

 

√    
 
   . 

 

 
/. Starting with    , 

1. Sample         ⁄ (     ) 
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2. Sample      (  
 

√    
 
   . 

 

 
/) 

3. If    (  |     
 ) go to 1. Otherwise increment   by  . If      , stop, else go 

back to 1 

 

Metropolis-Hastings 

Using    ⁄ (     ) as the proposal distribution for the target  (  |    
 ), the acceptance 

probability is,  

 

 (  
 |  )     (  

 (  |    
   )

 (  |      )
) 

 

Slice Sampler 

The slice sampler procedure for this SMiN is introduced in Bayesian format. For a 

greater discussion of the slice sampler see (Godsill S. J., 2000).  

 

The basic idea is to introduce auxiliary uniform variables   . The joint density for the 

auxiliary variables    and the auxiliary uniforms    is, 

 

 (     |    
 )   (  |     

 )     ⁄ (     )   (  |   (  |     
 )) 

 

Sampling from the joint density can be carried out in two steps, 

 

1.  (  |       )  {
   ⁄ (     )         (  |     

 )

                                                  
 

2.  (  |       )   (   (  |     
 )) 
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For more information and discussion on the SMiN MCMC method, see (Godsill S. J., 

1999) (Godsill & Kuruoglu, 1999) (Godsill S. J., 2000) (Tsionas, 1999). 
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Appendix D: SMiN and FFT MLE Example 

Here we apply the SMiN Gibbs sampling method, detailed in Appendix C. Using 

the output from the Gibbs sampler, we then apply the midpoint rule FFT, in Appendix B, 

for ML estimation. Taking 331 days of S&P 500 index prices, we fit an   ( ) model 

with stable innovations as an illustration, without intending to suggest the model is the 

most suitable for the given data. We begin by obtaining a first estimate for   using the 

Fama and Roll estimators. Using the least squares method  (Knight & Yu, 2002) crude 

estimates of the AR parameters are obtained, from which residuals are calculated. The 

Fama and Roll estimator then returns an estimate of      . This value of   initializes 

the SMiN Gibbs sampler. The procedure is set to run 4000 iterations.  Since starting 

values were arbitrary, we throw away the first 2000 samples, largely based on a 

conservative ad-hoc analysis of convergence from plots. The parameter values returned 

by the SMiN Gibbs sampler are       (pre-determined),     (fixed),         , 

        ,        . 

Next the FFT midpoint rule algorithm is used for ML estimation. Of particular 

interest is the fact that this procedure, unlike the SMiN Gibbs sampler, can accommodate 

asymmetry. We define a function to calculate the negative log likelihood (NLL), given 

the parameter values and the dataset. To maximize the likelihood, we minimize the 

aforementioned function using a gradient-based, constrained optimizer, restricting the 

parameter ranges accordingly:   (   ),   (    ),   (    ),   (    ), and 

  (   ) To initiate, we use the estimates from the SMiN sampler, which returns a 

negative log likelihood 1284.04 . After 40 iterations, the optimizer reaches a (possibly 

local)3 minimum for parameter values       ,       ,        ,    ,   

                                                 
3 To insure a global maximum is attained, we might want to use a grid-based optimizer instead, but we 

avoid delving into details here. 
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     , with a modestly improved NLL of 1269.381. Indeed examining the estimated 

disturbance histogram plots, fitted with the estimated density, the FFT method appears to 

correct for some of the skew seen in the SMiN plot. To some degree, this better fits can 

be explained by a couple factors: 1) The FFT method directly estimates  , whereas for 

the SMiN method we used unsophisticated estimation procedures to initialize the 

procedure with an appropriate, approximate, static   value 2) The FFT method allows   

and   to vary; with more parameters free to vary, a better fit is expected. Nonetheless, the 

results are in agreement with studies that find empirical evidence for asymmetry in 

financial data, based on hypothesis testing (Fielitz & Smith, 1972) (Fielitz, 1976).  

 

 

 

 

 

Figure 5: The estimated disturbance term and fitted stable densities for the residuals of 

the   ( ) process under the SMiN and FFT approaches. 
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