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Atmospheric dust aerosols have implications for Earth’s radiation budget, 

biogeochemical cycles, hydrological cycles, human health, and visibility. Currently, there 

is a considerable mismatch between climate model simulations and observations in 

representing the dust cycle in terms of emission, transport, and deposition. This mismatch 

is related partly to our inadequate understanding of the complex dust emission processes 

and partly to the way these processes are represented in climate models. In this work, we 

examine these problems from various perspectives with an interdisciplinary approach by 

integrating wind-tunnel experiments, geomorphological mapping, satellite observations, 

land surface modeling, atmospheric reanalysis, and fully coupled earth system modeling.  

The primary science contributions of this work are summarized here. First, we 

developed a detailed regional land cover map of the dust belt, the Middle East and North 

Africa. The developed map can be integrated in any regional dust models for better 

representing the spatial variation in dust source erodibility. We also developed a new 

observation-based soil erodibility map in global scale based on the correlation between 

reanalysis surface winds and satellite-observed aerosol optical depth data (AOD). Second, 
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we integrated the developed observation-based erodibility map into the Community Earth 

System Model (CESM) and evaluated CESM’s performance in simulating mineral dust 

emission over the dust belt. Results show that the new erodibility map improves dust 

simulations in terms of AOD/dust optical depth (DOD) and the CESM captures large scale 

dust storms reasonably well when the winds are nudged towards ERA-Interim reanalysis 

data. Third, we conducted wind tunnel experiments and explored some of the lesser 

understood physical mechanisms of dust emission in sandblasting and direct aerodynamic 

entrainment. Results indicate that surface roughness can control dust emission in direct 

aerodynamic entrainment and that dust emission by direct aerodynamic entrainment can be 

significant under certain conditions compared to sandblasting. Lastly, we develop a 

principal component analysis based technique to extract locally mobilized dust component 

from the AOD data, which otherwise represent a mixture of several aerosol types and 

advected dust/aerosols.  
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Chapter 1: Introduction 

1.1 BACKGROUND 

Aerosols in the atmosphere including mineral dust have implications for Earth’s 

radiation budget [Sokolik and Toon, 1996; Miller and Tegen, 1998; Mahowald et al., 2006], 

biogeochemical cycles [Kellog and Griffin, 2006; Yu et al., 2015], hydrological cycles 

[Creamean et al., 2013; Jin et al., 2014], human health [WHO, 2006], and visibility [Wang 

et al., 2008]. Mineral dust is one of the major contributors to the global aerosol budget 

[IPCC, 2013]. The direct/indirect effects of aerosols remain the largest source of 

uncertainty in estimating radiative forcing and the emissions of natural aerosols remains 

poorly characterized in climate models [IPCC, 2013]. Currently, there is a considerable 

mismatch between climate model simulations and observations in representing the dust 

cycle (Figure 1.1) in terms of emission, transport, and deposition [Cakmur et al., 2006; 

Huneeus et al., 2011; Evan et al., 2014]. This mismatch is related partly to our inadequate 

understanding of the complex dust emission processes [Shao et al., 2008] and partly to the 

way these processes are represented in climate models [Ridley et al., 2013].  

Dust emission study has received increased attention in the recent decades but dust 

emission modeling remains challenging because of the complexity of the processes that 

govern dust emission. Current dust models arise from simplified parameterizations based 

on wind tunnel or field experiments [e.g., Zender et al., 2003], or more complex and 

physically based approaches [e.g., Shao and Dong, 2006]. Wind tunnel and field based 

parameterizations are simple to use in global dust models, but they may not be able to 

represent the range of variability in dust source strength on a global scale. In addition, the 

effect of larger atmospheric processes such as convection is difficult to study using a wind 

tunnel. In the more complex physically based models, input data required may not be 

http://onlinelibrary.wiley.com.ezproxy.lib.utexas.edu/doi/10.1002/2014JF003095/full#jgrf20313-bib-0044
http://onlinelibrary.wiley.com.ezproxy.lib.utexas.edu/doi/10.1002/2014JF003095/full#jgrf20313-bib-0044
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available at a desired accuracy, if these are available at all on global/regional scale [Shao 

et al., 2008]. Despite these challenges, new opportunities are also emerging especially due 

to the increasing availability of observations. With the improvement in quantity and quality 

of satellite and ground-based observations, their application in dust emission modeling is 

also increasing. These exhaustive observational datasets are helpful in validating the 

physically based dust models and they can also provide new opportunities to improve the 

models further. In particular, aerosol optical depth (AOD) data from satellite such as 

Moderate Resolution Imaging Spectroradiometer (MODIS) [Hsu et al., 2006] and ground-

based observation networks such as Aerosol Robotic Network (AERONET) [Holben et al., 

1998] have been very useful in this regard. It has been realized that dust emission modeling 

could greatly benefit from an integrated dust modeling framework that includes a wind-

erosion scheme, an atmospheric model, and a geographic information database [Shao et 

al., 2008]. Bullard et al. [2010] also noted that there is a gap between the field-based 

community and modeling community in dust research. In this context, this work attempts 

to address some of these existing problems in dust research with an interdisciplinary 

approach by integrating wind-tunnel experiments, geomorphological mapping, satellite 

observations, land surface modeling, atmospheric reanalysis, and fully coupled climate 

system modeling.  



 3 

 

Figure 1.1. Schematic diagram of the dust cycle.  

1.2 OUTLINE OF DISSERTATION 

This dissertation is divided into several chapters. In chapter one, a new land cover 

map of the Middle East and Africa (MENA) region, where most of the global dust hotspots 

are located, is presented. A new observation-based erodibility on global scale is also 

presented in chapter one that can be integrated into any global dust models. In this chapter, 

satellite and reanalysis data on daily scale are used to quantify the surface erodibility for 

the first time. Geomorphological mapping of dust source areas have been done in some 

previous studies [e.g., Lee et al., 2012; Bullard et al., 2011] but only in local or watershed 

scale so they cannot be applied in global/regional dust models. This study provides a 

regional land cover map of the MENA region informed by dust source geomorphology 

which can be used in global/regional dust modeling  

In chapter two, the observed-based erodibility map presented in chapter one is 

applied into the Community Earth System Model (CESM) and the improvements in model 
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performance is evaluated using multiple observations and reanalysis datasets. Some 

previous studies [e.g., Mahowald et al., 2006; Albani et al., 2014; Kok et al., 2014] have 

evaluated the performance of CESM in terms of the climatology of the dust cycle but in 

this work evaluations are based on daily or monthly scale at which large-scale dust storms 

typically occur. In addition, this work identifies the dust source areas where large biases 

exist in terms of dust optical depth (DOD) or AOD and proposes some ways to reduce 

these biases.  

In chapter three, results from wind tunnel experiments are presented to provide 

insights on some of the lesser understood physical processes of dust emission in 

sandblasting and direct aerodynamic entrainment. Although the role of non-erodible 

surface roughness on dust emission has been examined previously, the role of erodible 

surface roughness on dust emission has been examined in detail for the first time in this 

study. In addition, this work also identifies the relative importance of the two main 

mechanisms of dust emission: sandblasting and direct aerodynamic entrainment, in terms 

of emitted dust concentration and particle size distribution (PSD).  

In chapter four, a novel technique based on principal component analysis is used to 

separate locally mobilized dust component from satellite AOD data which enables us to 

understand the dust emission process in synoptic scale using satellite and reanalysis data. 

Previous studies [Eck et al., 1999; Ginoux et al., 2012] have proposed some spectral, 

threshold-based techniques to separate coarse-mode desert dust from AOD data but these 

techniques have some limitations, for example, they also remove fine-mode dust 

component. Our method attempts to address these limitations by associating AOD with 

surface wind speed thus enabling the separation of mineral dust signal from the AOD data. 

Finally, in chapter five, a synthesized summary of the research is presented and the 

limitations and future works required are discussed.  
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Chapter 2: Mapping erodibility in dust-source regions based on 

geomorphology, meteorology, and remote sensing1 

2.1 ABSTRACT 

Mineral dust in the atmosphere has implications for Earth’s radiation budget, 

biogeochemical cycles, hydrological cycles, human health, and visibility. Currently, the 

simulated vertical mass flux of dust differs greatly among the existing dust models. While 

most of the models utilize an erodibility factor to characterize dust sources, this factor is 

assumed to be static, without sufficient characterization of the highly heterogeneous and 

dynamic nature of dust-source regions. We present a high-resolution land cover map of the 

Middle East and North Africa (MENA) in which the terrain is classified by visually 

examining satellite images obtained from Google Earth Professional and ESRI Basemap. 

We show that the correlation between surface wind speed and MODIS deep blue aerosol 

optical depth (AOD) can be used as a proxy for erodibility, which satisfactorily represents 

the spatiotemporal distribution of soil-derived dust sources. This method also identifies 

agricultural dust sources, and eliminates the satellite-observed dust component that arises 

from long-range transport, pollution, and biomass burning. The erodible land cover of the 

MENA region is grouped into 9 categories as: (1) bedrock: with sediment, (2) sand deposit, 

(3) sand deposit: on bedrock, (4) sand deposit: stabilized, (5) agricultural and urban area, 

(6) fluvial system, (7) stony surface, (8) playa/sabkha, and (9) savanna/grassland. Our 

results indicate that erodibility is linked to the land cover type and has regional variation. 

An improved land cover map, which explicitly accounts for sediment supply, availability, 

and transport capacity, may be necessary to represent the highly dynamic nature of dust 

sources in climate models. 

1This chapter was previously published in Parajuli, S. P., Z‐L Yang, and G. Kocurek (2014), Mapping 

erodibility in dust source regions based on geomorphology, meteorology, and remote sensing, J. Geophys. 

Res. Earth Surf., 119(9), 1,977-1,994, doi: 10.1002/2014JF003095; S. P. P. designed and performed 

research with assistance from G. K. and Z.-L. Y.; G. K. and Z.-L. Y. contributed discussion and revisions; 

and S.P.P. wrote the manuscript.  
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2.2. INTRODUCTION 

Mineral dust in the atmosphere has a wide range of implications for climate, 

environment, and public health. Dust directly influences the Earth’s radiation budget by 

scattering and absorbing shortwave and longwave radiation [Sokolik and Toon, 1996; 

Miller and Tegen, 1998; Mahowald et al., 2006]. The Inter-governmental Panel on Climate 

Change (IPCC) has identified dust as a radiative forcing agent in its climate-change reports 

and considered it as a climate-change variable [Solomon et al., 2007]. Dust also has an 

indirect effect on climate by modifying cloud microphysical properties by forming cloud 

condensation nuclei and ice nuclei. Recent studies have linked dust originating from the 

Sahara to precipitation in the western United States [Creamean et al., 2013] and to cloud 

formation over western Europe [Bangert et al., 2012]. Dust is linked to the transmission of 

human and crop diseases and can transport plant nutrients such as iron- and phosphorous-

rich minerals through large dust storms [Kellogg and Griffin, 2006].  

Existing dust models weakly represent the spatiotemporal variability of dust 

sources.  Accurate identification of dust sources, however, can be very complex and 

involves understanding the properties of surface features including land cover, geological 

setting, and chemical/physical composition of the underlying soil. The interaction of these 

surface features with environmental or meteorological variables further complicates the 

identification of dust sources. Accuracy of dust emission modeling also depends upon the 

accuracy of the input data and forcing data (mainly wind), and the way these input data are 

treated in the models. For example, soil data used for most climate models come from a 

coarse-resolution (1° × 1°) soil map of the Food and Agricultural Organization (FAO). 

This map was originally derived by Zobler [1999] who compiled information from about 

15,000 records at a 1:5,000,000 scale. Dust-emission results from models using this soil 

map show that dust sources are generally well represented in clay-rich areas but not in areas 
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with a low clay content [Crouvi et al., 2012]. An additional constraint in modeling is the 

‘lumped’ treatment of the bare-soil fraction in these models. For example, in the 

community land model (CLM), the grid cell for the bare-soil fraction available for dust 

emission is calculated by masking the fraction of vegetation, snow, wetland, and lake based 

upon albedo and NDVI (normalized difference vegetation index) threshold [Lawrence and 

Chase, 2007] derived from Moderate Resolution Imaging Spectroradiometer (MODIS) 1-

km data. However, it is obvious that the bare-soil fraction, in reality, consists of a number 

of land cover types that must be resolved at sub-grid scales to accurately represent the 

variability of dust sources. The accuracy in determining soil moisture also constrains the 

performance of the models because soil moisture determines the threshold friction velocity 

for a surface. In CLM, soil moisture is calculated by the model as volumetric soil moisture 

in the top soil layer, but these values have shown lower variability than soil moisture 

measured in the field [Oleson et al., 2008].  

Satellite datasets such as Aerosol Index (AI) derived from Total Ozone Mapping 

Spectrometer (TOMS), and Aerosol Optical Depth (AOD) derived from MODIS have 

greatly contributed to our understanding of dust sources. To account for the common 

mismatch between observed dust sources in satellite images and modeled dust sources, a 

factor of erodibility has been introduced into dust models as a constraint. Erodibility is 

commonly defined as the soil-erosion efficiency of a surface under given meteorological 

forcing [Zender et al., 2003]. Surface erodibility has been characterized as uniform, 

topographic, geomorphic, and hydrologic based upon contrasting assumptions. Uniform 

erodibility assumes that all bare surfaces are equally erodible. Topographic erodibility  

assumes that topographic depressions are the largest sources of dust [Ginoux et al., 2001]. 

Geomorphic and hydrologic erodibility  express erodibility as a function of upstream 

catchment area and upstream flow, respectively [Zender et al., 2003]. Zender et al. [2003] 
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demonstrated that all of these erodibility assumptions generally identify the global dust 

sources with some regional differences, but the geomorphic and topographic erodibility 

produce the closest overall agreement with observations. The geomorphic and hydrologic 

erodibility tend to be biased in ocean-draining basins because of the difficulty in resolving 

the smaller scale drainage channels at a coarse resolution mapping [Zender et al., 2003]. It 

should also be noted that these characterizations of erodibility do not directly represent 

agricultural areas as anthropogenic dust sources.  

Because the existing erodibility concepts reflect the probability of sediment 

accumulation in a basin, these actually represent the potential ‘sediment supply’ of the land 

surface rather than ‘erodibility’. Our erodibility mapping technique is based upon the 

observed relationship between wind and dust, so the resulting map gives a more literal 

sense to ‘erodibility’. We quantify erodibility using the maximum observed correlation 

between wind and dust, which is generally observed in the driest season of the year. Any 

correlation coefficient lower than this maximum value would represent the local 

environmental effect due to variation in soil moisture, vegetation presence, and crusting. 

Aerosol optical properties obtained from satellite instruments such as TOMS and 

MODIS have been used to calibrate surface erodibility and evaluate the performance of 

dust models. For example, topographic erodibility was tuned to match the dust distribution 

observed by TOMS satellite [Ginoux et al., 2001]. Satellite observations, however, have 

some limitations that result in false identification of dust sources in some areas. One such 

area is where persistent dust transport/deposition takes place, and another is where 

pollution/biomass burning contributes significantly to the total dust load [e.g., Schepanski 

et al., 2012;  Parajuli et al., 2013]. Some efforts have been made recently to improve dust 

source characterization by eliminating these false dust-source areas.  For example, Ginoux 

et al. [2012] mapped dust sources using high-resolution MODIS level 2 AOD data in 
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conjunction with the land-use map. They applied a filter criterion based upon a threshold 

Angstrom exponent and single-scattering albedo to distinguish the fine-mode dust. 

Although this threshold-based approach identifies dust sources in most of the areas, it has 

some limitations, especially in the areas of long-range transport and biomass burning. This 

approach can also underestimate actual dust sources by removing some soil-derived fine 

dust. One example of persistent, long-range dust transport and deposition is seen over the 

Atlantic in summer and winter, where the dust is carried from Western Sahara [McTainsh 

1980;  Koren et al., 2006]. Similar seasonal dust transport takes place over the Arabian 

Peninsula by Shamal winds originating from the Tigris-Euphrates basin [Reid et al., 2008].  

In this work, we present a high-resolution land cover map for the region of the 

Middle East and North Africa and attempt to quantify erodibility of mapped land cover 

types. Our approach follows that of Bullard et al. [2011] and Lee et al. [2011] in which the 

potential for dust emission from a surface is directly linked to the surface geomorphology, 

grain size, and land use for a given meteorological condition. As developed by Bullard et 

al. [2011], the conceptual framework for this approach considers: (1) the supply of a 

suitable grain size for dust emission (sediment supply), (2) the availability of that supply 

owing to factors such as vegetation and moisture level (sediment availability), and (3) the 

transport capacity of the wind as measured by wind energy (transport capacity). This 

conceptual framework parallels that developed for aeolian dune fields [Kocurek and 

Lancaster, 1999]. Based on this framework, we first classify the study area into several key 

land cover categories by visually examining high spatial resolution images. We then 

quantify their erodibility using the maximum observed correlation between reanalysis wind 

speed and satellite retrieved AOD. This approach improves dust source characterization by 

eliminating false dust sources associated with transported dust and by including 

agricultural dust sources compared to existing erodibility maps. Quantification of 
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erodibility of different land cover types enables representation of the spatiotemporal 

dynamics of dust sources in climate models.  

2.3 THE STUDY AREA  

The Middle East and North Africa (MENA) region contains many dust sources or 

‘hot spots’, contributing more than 50% of total global dust emission. MENA dust sources 

share characteristics with dust sources globally. Most are located in arid and semi-arid 

regions and are characterized by geographic depressions or playas (dry lakes) and 

proximity to highlands [Prospero et al., 2002]. Prospero et al. [2002] identified dust 

sources globally by developing an aerosol index (AI) using the backscattered ultraviolet 

radiance at 0.340 and 0.380 μm wavelengths of TOMS onboard NIMBUS 7. The major 

sources of dust in the MENA region are located within the Tigris-Euphrates alluvial plain 

in Iraq/Kuwait, the low-lying flat lands along the Persian Gulf, the Ad Dahna and Rub’ al 

Khali deserts, the Bodélé depression in Chad, the Sistan basin bordering Pakistan and 

Afghanistan, and basins of Zuphar and Al Hazhar mountains in Oman/Yemen [Prospero 

et al., 2002; Reid et al., 2008].  

The generation of atmospheric dust in the MENA region has been associated with 

two monsoon winds. The first is the Shamal (low-level hot, dry, northwesterly wind) 

prevalent in the Middle East, and the second is the Harmattan (low-level hot, dry, 

northeasterly wind) prevalent in North Africa. The Shamal winds are most active during 

summer and cause large dust storms known as ‘Haboob’, which show a recurring seasonal 

pattern and origin. The Shamal winds originate from the northwest of the Middle East 

region and are channelized into the Persian Gulf by the mountains of Turkey/Iraq to the 

northeast and the high plains of Saudi Arabia to the southwest [Rao et al., 2003]. These 

winds usually extend over a wide region and affect several countries including Iraq, 

Kuwait, Bahrain, Saudi Arabia, UAE, and Oman. In North Africa, the Harmattan winds 
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are active during the winter and early spring, and carry dust originating from Western 

Sahara across the Atlantic [McTainsh 1980;  Koren et al. 2006]. Harmattan dust storms 

reduce visibility, destroy crops, and affect daily life in many countries including Nigeria, 

Burkina Faso, Ghana, Niger, Mali, and Guinea. Many dust events in the MENA region are 

also associated with regional atmospheric circulation [Engelstaedter and Washington, 

2007], while others are linked to cyclones, fronts, or thunderstorms [Prospero et al., 2002].  

 

Figure 2.1. Ten-year (2003–2012) mean deep blue aerosol optical depth (AOD) over the 

study domain. The well-known dust source (Bodélé) is marked by the black 

circle.  

Figure 2.1 shows the ten-year (2003–2012) mean AOD at 550 nm over the study 

area obtained from level 3.0 daily MODIS Aqua deep blue AOD (MYD08_D3) product at 

1° × 1° resolution. Deep blue MODIS AOD  is derived for cloud free days over bright 

reflecting surfaces using the advantage that surface reflectance is low in blue channels [Hsu 
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et al., 2004]. Although this map shows the general distribution of observed dust in the 

atmosphere, it does not necessarily indicate the dust-source distribution. Bodélé (~16.5°N, 

16.5°E) is a year-round active dust source [Prospero et al., 2002; Koren et al., 2006], which 

is evident in Figure 2.1. Bodélé is an ideal location for dust emission because of its unique 

geographic location, sustained high winds, high sediment supply/availability, and 

proximity to sand dunes.  

2.4. METHODS 

2.4.1 Land cover mapping 

We used high-resolution RGB images obtained from ArcGIS/Basemaps and 

Google Earth Professional, in which resolution ranges from one meter to several meters 

depending upon the location. We mapped the land cover types by visually examining these 

images at a scale of 1:250,000, in which land cover features such as sand dunes, 

settlements, and agricultural areas were clearly distinguishable. Figure 2.3 shows a zoom-

in image (a) and the mapped polygons (b) of a typical location in Egypt (marked by a star 

in Figure 2.2) at 1:250,000 scale, where multiple land cover types are present in a small 

area. Our mapping technique is subjective to the extent that the land cover is classified by 

the viewer, but, in our experience, most geomorphic features are clearly distinguishable in 

these images except in a few areas described later.  
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Figure 2.2. Land cover map of the study area developed by visually examining the high-

resolution images from Google Earth Professional and ESRI Basemap. A 

zoom-in of the area marked by the star is presented in Figure 2.3.  
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Figure 2.3. (a) A zoom-in image over a location in Egypt (marked by a star in Figure 2.2) 

where typical land cover types can be seen. (b) Zoom-in of the developed 

land cover map of the same area at 1:250,000 scale. Legends in (b) are the 

same as in Figure 2.2.  

(b) 
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We also attempted to classify the study area using automatic image-classification 

methods such as the maximum likelihood method available in ArcGIS. Similar automatic 

image classification techniques have been used in the past for land-cover/land-surface 

mapping [Hansen et al., 2000; Loveland et al., 2000; Ballantine et al., 2005].  In these 

methods, satellite images or aerial photos are classified and grouped into a number of 

identical features based upon the reflectance or brightness temperature at different bands. 

Although the automatic image classification technique is faster, it proved unsatisfactory 

for two reasons. First, some land surfaces may be falsely classified because different land 

surfaces may appear similar in visible or infrared bands. For example, savannas and 

croplands or playas and dunes may have similar reflectance in some areas, but their dust-

emission potential differs greatly. Second, these imageries are stitched together from 

various sources/satellites with different resolution and represent varying seasons, which 

may degrade the quality of the classified output.  

Identification of a land cover type in the high spatial resolution images involved 

frequent zoom-in of the area at full resolution. Identification of land cover type was 

difficult in some areas, especially where the image was unclear (e.g., areas having 

persistent cloud-cover and high albedo) or when full-resolution image was not available. 

Additionally, some land cover types were complex mixtures of different land cover types. 

In these situations, we used a number of secondary sources to classify the land cover, 

especially published regional descriptions [e.g., Lobeck, 1946; Goudie, 2013]. The 

erodibility map by Ginoux et al. [2012] and dust source map by Prospero et al. [2002] 

provided the general distribution of hot spots of dust sources, which was the basis for 

focusing our study in the MENA region. Although our land cover classification was 

inspired by all of these previous studies, the final land cover types are closest to those 

erected by Bullard et al. [2011].  
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About 1500 polygons were created in the study area by identifying and classifying 

the landforms in ArcGIS. In order to avoid creating too many types, transition zones were 

classified according to their closest type. The polygons were then grouped into twelve land 

cover types, of which three are non-erodible: bedrock, forest, and water body/wetland. 

Overall, the determination of the number of types is a balance between the identification 

of land covers in a diverse terrain and the distillation of these into a workable number of 

types for regional model input. 

2.4.2 Determination of erodibility 

We calculated the correlation coefficient between surface wind speed and satellite-

retrieved AOD using historical data (2003–2012) because we hypothesize that the strength 

of the correlation between wind speed and atmospheric dust concentration can be used as 

a proxy for surface erodibility.  

MODIS deep blue data [Hsu et al., 2004] were chosen because these datasets have 

been widely validated against field and Aerosol Robotic Network (AERONET) 

measurements [Hsu et al., 2004; Ginoux et al., 2012]. MODIS deep blue data are especially 

useful for studying dust sources because the data are available even over bright deserts 

where many other satellite-based algorithms fail to retrieve dust. One of the limitations of 

MODIS AOD, however, is that it only represents the noon-time dust, which can 

underestimate some dust sources [Schepanski et al., 2012]. Level 3 deep blue MODIS 

AOD data are available daily at 1° × 1° spatial resolution from 2002 to the present. We 

used level 3 data to better match the resolution of reanalysis wind data, although higher-

resolution level 2 deep blue data (0.1° × 0.1°)  are available. Reanalysis data such as 

NCEP/NCAR Reanalysis 1 and ERA-Interim Reanalysis are often regarded as 

observations because a large number of ground-based and satellite observations are 

assimilated in generating these reanalysis outputs. NCEP/NCAR reanalysis data have 
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2.5° × 2.5° resolution and ERA-Interim have 1.5° × 1.5° resolution, and so both were re-

gridded to 1° × 1° to match the resolution of MODIS grid. We extracted the winds from 

reanalysis data at 12 noon (GMT), which is the closest time to MODIS AOD retrieval 

(01:30 PM, local time).  

Accuracy of the surface wind speed used is critical to our approach. In order to 

identify the best available data and to understand the grid-scale wind-dust relationship, we 

examined how well the NCEP [Kalnay et al., 1996] and ERA-Interim [Dee et al., 2011] 

surface winds correlate with MODIS AOD at Bodélé, Chad. We plotted the scatter diagram 

between 1000 hPa wind speed and MODIS AOD taking the closest pixel to Bodélé. Both 

ERA-Interim and NCEP datasets had 3,332 observations after eliminating missing data 

corresponding to cloudy days in MODIS data. Preliminary results (see section 2.5.2) 

showed that the ERA-Interim data were much better correlated with MODIS deep blue 

AOD at Bodélé, so we only used ERA-Interim data for further analysis. 

For mapping the erodibility of the entire study area, we segregated the 10 years of 

surface wind and AOD data into monthly data and calculated the monthly correlation at 

each grid cell. Daily data for all 10 years were combined to calculate the monthly 

correlation. The number of observations at each grid cell available was constrained by the 

availability of MODIS AOD data for cloud-free days. As the wind-dust relationship is non-

linear, as observed in wind tunnel experiments [e.g., Shao, 2008], we calculated 

Spearman’s rank correlation coefficient 𝜌 between MODIS deep blue AOD at 550 nm and 

ERA-Interim wind speed at 10 m at all grid points. The significance of the obtained 

correlation is evaluated by calculating corresponding p-values at each grid cell, where p is 

the probability of having a correlation as large as the observed value by random chance. 

A low correlation between wind speed and AOD should characterize areas with 

pollution or biomass burning, as well as areas of persistent dust transport/deposition. Our 
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method, however, should emphasize anthropogenic dust sources from agricultural areas 

because these are characteristic of the underlying land-surface. As noted by Bullard et al. 

[2011], agricultural areas are not currently factored into the existing erodibility maps, 

although these areas have been identified as major dust-emission sites by many studies 

[e.g., Lee et al., 2011; Ginoux et al., 2012; Van Pelt et al., 2013]. Another advantage of our 

approach is that the association of AOD with surface wind speed makes the correlation less 

sensitive to the height of dust layer and better identifies soil-derived local dust.  

To put our correlation map within the context of the current literature, we referred 

to Ginoux et al. [2012], who examined the dust sources in detail by classifying the dust 

sources into anthropogenic and natural sources using high-resolution level 2 MODIS AOD 

data. We also referred to Engelstaedter and Washington [2007], who studied the relation 

between the annual cycle of wind and TOMS AI over North Africa. We use mean monthly 

wind vectors, precipitation data, and Angstrom exponent data to facilitate discussion of the 

erodibility map.  

2.4.3 Erodibility of land cover types 

After preparing the monthly correlation maps (section 2.4.2), the maximum of the 

monthly observed correlation between ERA-Interim 10-m wind speed and deep blue 

MODIS AOD at each grid cell was used to quantify the erodibility. Bullard et al. [2011] 

discussed a qualitative approach to represent the dust emission potential of different land 

cover types. They identified land covers having low, high, and medium dust-emission 

potential, which was based upon their knowledge of dust sources and the frequency of dust 

plumes observed in MODIS images. However, quantification of erodibility is necessary 

for input to dust/climate models.  

In order to ensure the reliability of the erodibility map, we systematically applied 

some filter criteria and processed the data as described below. First, the grid cells having a 
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statistically insignificant correlation coefficient at 95% confidence level were removed 

from the maximum of mean monthly correlation map. We then masked the grid cells where 

mean monthly precipitation was more than 0.5 mm/day, which is considered a typical 

precipitation rate in the arid regions. We used Global Precipitation Climatology Project 

(GPCP) version 2.2 SG combined monthly precipitation dataset (2.5° × 2.5°) between 

2003 and 2012 for this mask. Further, we eliminated the areas dominated by fine-mode 

aerosols by removing the pixels which have a mean monthly Angstrom exponent greater 

than zero, because the coarse-mode local dust typically shows Angstrom exponent close to 

zero [Eck et al., 1999]. We used MODIS Aqua level 3 mean monthly Angstrom exponent 

data at 470/660 nm between 2003 and 2012 for this purpose. We also removed the 

remaining few grid cells which showed negative correlation as they are not characteristic 

of the underlying land-cover. Finally, we masked the non-erodible areas (forest, bedrock, 

and water body/wetlands).  We determined the mean correlation coefficient of each land 

cover type over the entire study area and its statistics using the resulting erodibility map in 

section 2.4.2. The vector-based, land cover map prepared in ArcGIS was converted into a 

gridded map at 0.1° × 0.1° degree using the maximum area method, which yielded  401 ×

876 grid cells over the study area. In order to match the resolution with this gridded map, 

the erodibility map prepared at 1° × 1°  resolution was re-gridded to 0.1° × 0.1° resolution 

by assigning a constant value corresponding to a 1° × 1°  grid cell to all new finer grids 

within that grid cell. The mean correlation coefficient for each land cover type was 

determined by averaging the correlation coefficients over the entire 0.1° × 0.1° grid cells 

corresponding to that particular land cover type. The mean correlation is reported along 

with its standard deviation, maximum, minimum, and the number of grid cells used.    

We referred to Zender et al. [2003] for comparison, in which a rigorous comparison 

of uniform, topographic, geomorphic, and hydrologic erodibility is presented. The 
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topographic erodibility [Ginoux et al., 2001] is most suitable for identifying the 

improvements in our erodibility map because it was tuned against satellite data.  

2.5. RESULTS 

2.5.1 Land cover types 

Bedrock, with sediment is the largest class in terms of area, covering about 20% 

of the study area (Figure 2, Table 1). This class includes any land cover features that have 

some sediment deposits lying on the surface of bedrock. Included within this type are high 

relief bedrock uplands with incised river channels that contain fine sediment, intermountain 

areas with sediment deposits (e.g., the Afghanistan/Pakistan border), and structural grabens 

containing fine sediment (e.g., grabens of North-East Ethiopia [Lobeck, 1946]). Finally, 

this type includes bedrock areas with a discontinuous cover of sediment, such as in 

northeastern Africa and Western Saudi Arabia where sediments have been deposited from 

wadis [Lobeck, 1946]. All of these surfaces are similar and classed together because 

potential dust sources occur as sediment cover over bedrock terrain. 
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Table 2.1. No. of polygons, total area, and key locations of the 12 land cover types in the 

study area. 

Land cover 

types 
Area, 𝒌𝒎𝟐 

(%) 

No. of 

Polygon 

Key locations 

Bedrock 2,562,316 

(7.65) 

182 Atlas mountains, west Saudi Arabia, 

north-east of Turkey, north of 

Afghanistan 

Bedrock, with 

sediment 

6,815,687 

(20.35) 

197 Mountains of Iran and Afghanistan, Atlas 

mountains, Mountains of Tunisia and 

Libya, Central Algeria, Nubian mountains 

of Ethiopia, Sudan, Djibouti, Eritrea and 

Somalia 

Sand deposit 4,135,658 

(12.35) 

41 Mauritania and north Algeria, south-

western Libya, Rub Al Khali desert of 

Saudi Arabia 

Sand deposit, on 

bedrock 

3,048,532 

(9.10) 

20 Southern Algeria, eastern Libya, northern 

Afghanistan 

Sand deposit, 

stabilized 

598,705 

(1.78) 

19 Registan desert and northern Afghanistan, 

east coast of Kuwait and Saudi Arabia 

Agricultural 

and urban area 

5,094,436 

(15.21) 

513 Sahel region, base of Atlas mountains, 

Tigris-Euphrates basin, Nile basin, Indus 

River basin in Pakistan, northern Turkey 

Fluvial system 4,267,695 

 (12.74) 

225 Sahel region, south west of Atlas 

Mountains, Somalia, Tigris-Euphrates 

basin, east of lower Nile, northern Iran 

Stony surface 1,016,783 

(3.04) 

36 West coast of Mauritania,  Kuwait, 

western desert of Egypt, central Libya 

Forest 1,332,598 

(3.98) 

10 Rainforest of equatorial Africa 

Playa/Sabkha 719,153 

(2.14) 

110 Bodélé depression in Chad, dried lakes of 

Afghanistan/Pakistan, east coast of 

Somalia, north east of Algeria, coastline 

of the UAE, east coast of Oman 

Savanna/Grassl

and 

3,730,400 

(11.14) 

31 West African region between Sahel and 

tropical rainforest of Africa  

Water 

body/Wetland 

159,571 

(0.48) 

153 Scattered  

Total 33,481,535 1,515  
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Agricultural and urban area is the type that includes agricultural areas, developed 

lands, and settlements (Figure 2, Table 1). We combined the agricultural areas and urban 

areas for two reasons. First, the urban areas constitute a small fraction of the agricultural 

areas and they are collocated with the agricultural areas in most places. Second, both of 

these areas represent ‘anthropogenic dust sources’. Most agricultural areas are located 

within fluvial systems or in the vicinity of these systems, occurring on mountain slopes or 

within valleys. A further subdivision of agricultural areas is possible based upon an 

arbitrary threshold of relief. High relief agricultural areas are those where cultivation is on 

the slope of mountains, which is common in the north of Turkey and Syria. Low relief 

agricultural areas are mostly located in broad river valleys with gentler slopes. Examples 

include the Tigris-Euphrates basin, the lower Nile River basin, and the Indus River basin 

where the relief is generally less than 300 m.  Low relief agricultural areas are thought to 

be stronger dust sources than upland agricultural areas because the former house more fine 

fluvial sediment [Bullard et al., 2011]. Dust emission from agricultural land shows a strong 

seasonality associated with tilling and irrigation. Although settlements and developed areas 

cover a small area, these can be strong dust sources because of anthropogenic soil 

disturbance. In some areas, settlements are on coastal sabkhas where the dust-emission 

potential is high (e.g., coastal area of the UAE). This land cover type has the smallest 

individual polygon in the entire study area with an area of ~ 49 𝑚2.  

Sand deposit represents large areas of aeolian sand dunes and sand sheets within 

the MENA region, including the sand seas of North Africa and the Arabian Peninsula 

(Figure 2, Table 1). This broad class of land surface has been broken into three types: (1) 

sand deposit where dunes appear active and the surface is largely covered by sand at image 

resolution, (2) sand deposit, stabilized where dunes appear inactive, vegetated or 

otherwise largely stabilized, and (3) sand deposit, on bedrock where the bedrock is visible 
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between dunes (Table 1, Figure 2). The general location of major sand deposits in the North 

Africa is consistent with that of Ballantine et al. [2005]. In general, active sand dunes are 

considered poor sources of dust, but recent work suggested that dust-sized particles are 

produced by aeolian abrasion of sand particles [Crouvi et al., 2012].  Stabilized dunes 

commonly house dust, which may be emitted with dune reactivation [Bullard et al., 2011]. 

Sand saltation is thought to be a prime driver for dust emission, thus any fine-grained areas 

(i.e., fluvial, playa deposits) within areas of sand deposits may be readily deflated 

[Prospero et al., 2002].  

Fluvial system is any hydrologic basin characterized by a network of small streams 

draining toward a lower elevation. This class forms the third largest type of land cover, 

accounting for 13% of the study area (Figure 2, Table 1). In mapping this type, the entire 

catchment area was included, regardless of whether the systems are currently active or are 

relict geomorphic features. We also include within this type coastal deposits formed from 

fluvial sediments (i.e., deltas, beaches), which constitutes a tiny fraction of the total area 

mapped. Some fluvial systems are also commonly mixed with agricultural land and 

sabkhas. The availability of fine sediment within the fluvial system depends upon factors 

such as source-area material, degree of weathering, and current energy. Bullard et al. 

[2011] subdivided fluvial systems into (1) high-relief systems in mountainous regions, 

which are typically coarser-grained, and (2) low-relief systems with common broad 

floodplains, which typically house significant fine sediment.  The Sahel, forming the 

transition zones between the Sahara Desert to the north and savanna to the south, is mainly 

characterized by fluvial systems, but includes stabilized sand dunes, savannas, agricultural 

areas, and settlements. The Sahel fluvial systems are also identified in the land form map 

developed by Ballantine et al. [2005]. Dust emission from the Sahel is strongly affected by 

soil-moisture variation. Figure 7 clearly shows that this region receives relatively higher 
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precipitation in the summer associated with the West African monsoon. Other key fluvial 

systems are located in the southwest of the Atlas Mountains, the Tigris-Euphrates River 

basin, and Somalia. The availability of fine sediment in this type largely depends upon the 

nature of the fluvial sediment load and any periodic drying.  

Stony surface or reg in the MENA region largely occurs as wind deflated terrains 

characterized by gravel, yardangs and small dunes (Figure 2, Table 1). Generally, fine 

sediment has been deflated from these surfaces. This land cover type is mainly found in 

Western Sahara and the western desert of Egypt. This type is also found in the Negev 

Desert in Israel, which is a part of an ancient alluvial system [Matmon et al., 2009].   

Playa/Sabkha include ephemeral lakes, playas, chotts, pans, and coastal sabkhas. 

In the MENA region, these features only cover about 2 % of the area (Figure 2, Table 1). 

Most of these features appear bright white in satellite images. Most sabkhas are flats 

containing salts such as halite (NaCl) and gypsum (CaSO4∙2H2O) [Goudie, 2013]. Some 

sabkhas within the MENA region are also cultivated. Major sabkhas are near coastal 

regions, the most prominent being that in the UAE, which is heavily affected by 

anthropogenic activities. Playas and sabkhas are commonly regarded as major sources of 

dust. 

Savanna/grassland is the typical land cover between the Sahel and the African 

rainforest (Figure 2, Table 1). These areas appear as an east-west strip between 5-13 °N, 

which is consistent with the global land cover map developed by Loveland et al. [2000]. 

Although vegetation generally protects the surface from erosion, disturbances such as 

grazing, burning, and other human activities can make these areas susceptible to erosion. 

These areas are specially characterized by high biomass burning [Bond et al., 2013], 

yielding a complex mixture of aerosols over the region. High Angstrom exponent values 
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seen over this region (Figure 7) also confirm this because biomass burning aerosols are 

generally characterized as fine-mode aerosols. 

Bedrock, forest, and water body/wetland form land cover types of no practical 

dust emission (Figure 2, Table 1). We define bedrock as any hard surfaces lacking fine 

sediment irrespective of the relief, although most of the areas in this type have high relief. 

Some of the largest mountains in the MENA region such as the Atlas Mountains, west 

Arabian Mountains, and mountains in Iran/Afghanistan lie in this category. Volcanic 

formations are also included in this category, such as the Tibesti Mountains in Chad and 

the Jebel Marra Mountains in Sudan. We include yardangs in this category. Some of the 

largest yardangs are located in the Lut Desert of Iran, central Sahara, and the Mut Desert, 

Egypt [Goudie, 2013]. Some rocky plateaus such as the Tassili n’Ajjer Mountains in 

Algeria are also included in this category. Forest is the typical feature of equatorial Africa, 

commonly known as rainforest, and is clearly seen in the global land cover map developed 

by Loveland et al. [2000]. Water body/wetland features constitute a very small area of 

the MENA region.    

2.5.2 Erodibility 

Figure 2.4 shows the scatter plot between MODIS deep blue AOD at 550 nm and 

reanalysis surface winds at 1000 hPa for Bodélé (16.5°N, 16.5°E). The scatter plot shows 

that ERA-Interim wind speed is better correlated with AOD compared to NCEP wind 

speed. The scatter diagram also shows that the wind-dust relationship is non-linear as 

expected. The power relationship observed between wind speed and AOD at a coarse grid 

scale is consistent with wind-tunnel observations. In wind-tunnel observations, vertical 

dust flux is found to be proportional to some power of friction speed, where the power 

varies from 2 to 5 [Shao, 2008]. 
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Figure 2.4. Scatter plot between MODIS deep blue AOD at 550 nm and (a) ERA-Interim 

reanalysis wind speed (𝑚 𝑠−1) at 1000 hPa, (b) NCEP reanalysis 1 wind 

speed (𝑚 𝑠−1)  at 1000 hPa. The data points represent about 3,332 daily 

observations between 2003 and 2012 at Bodélé, Chad. The wind speed data 

are retrieved at 12:00 GMT from 6 hourly data to match the MODIS data 

retrieval time (01:30 PM local time).  

Although the quadratic best fit line in Figure 2.4 explains a large fraction of 

variance in determining the AOD, there is a considerable scatter in the data, which we 

ascribe to several factors.  First, there is some time mismatch between MODIS data and 

reanalysis wind data as noted in Section 2.4.2. Second, dust at Bodélé may also be 

contaminated by dust and pollution transported from surrounding areas. Third, the 

reanalysis wind consists of six-hourly means, which may not adequately represent the wind 

gusts responsible for dust emission. Fourth, it should be noted that there is uncertainty 

involved in MODIS and reanalysis wind data retrieval itself. Lastly, small scale dust 

plumes and wind gusts may not be represented very well at 1° × 1° resolution. 

Nevertheless, the trend evident in Figure 2.4 and the moderate correlation between two 

completely independent datasets suggests that ERA-Interim wind and AOD data can be 

used for quantifying land cover erodibility.   
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Figure 2.5. Monthly correlation map between ERA-Interim wind at 10 m and MODIS 

deep blue AOD at 550 nm using historical data of ten years (2003–2012). P-

values corresponding to this correlation map are presented in Figure 6.  
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Figure 2.5 shows the resulting map of Spearman’s correlation between ERA-

Interim wind at 10 m and MODIS AOD at 550 nm prepared at 1° × 1°  resolution. 

Pearson’s correlation showed identical dust source distribution (not shown). The map well 

represents the annual cycle of dust source mobilization in the study area. P-values 

corresponding to the correlation at each grid cell are presented in Figure 2.6. It can be seen 

that most of the erodible areas of our interest have significant correlation at the 95% 

confidence level. Most of the areas showing insignificant correlation are either non-

erodible areas or the areas that are affected by long-range transport and biomass burning. 

The correlation map shows that the dust-emission has seasonal dynamics. Wind erosion is 

strongest in the winter (DJF) as indicated by the bright pink color. The Bodélé depression 

(~ 16.5°N, 16.5°E) is active throughout the year but less active in summer (JJAS), which 

is explained by the precipitation associated with the African monsoon (Figure 2.7). The 

dust source in the horn of Africa (Somalia)  (~ 8°N, 45°E) is active in most months except 

March, April, November, and December. The dust source in the Tigris-Euphrates basin 

(~ 30°N, 47°E) shows high seasonal variability. This area is active during all other months 

except in August, September, November, and December. Similarly, dust sources in the 

Afghanistan/Pakistan border (~ 30°N, 62°E) are active throughout the year, but the area of 

dust emission reduces in summer.  
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Figure 2.6. Map of p-values corresponding to the correlation map in Figure 6, where p is 

the probability of getting the correlation as large as the observed correlation 

by random chance.   
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Engelstaedter and Washington [2007] studied the relation between wind and dust 

by plotting Spearman’s rank correlation between the annual cycle of wind and TOMS AI. 

They did not observe a strong positive correlation at Bodélé but at a location north-east of 

Bodélé. However, we clearly see a strong correlation between wind speed and AOD at 

Bodélé in all seasons although it is weak in summer. This discrepancy may be explained 

by two reasons. First, deep blue AOD is a more quantitative indicator of dust whereas 

TOMS AI used in their study is more qualitative [Ginoux et al., 2012]. Second, the TOMS 

AI is more sensitive to the height and type of aerosols [Torres et al., 1998]. There are many 

areas where there is a strong negative correlation between wind speed and dust in our 

correlation map (Figure 2.5), which also varies seasonally. A strong negative correlation is 

seen over Ethiopia south of lake Abbe, Sudan near Khartoum, and Kenya in most of the 

seasons. Close examination of these areas revealed that these areas are characterized by 

savannas over elevated topography. Clearly, these areas are not the sources of dust. High 

Angstrom exponent values seen over this area (Figure 2.7) also suggest dominance of fine-

mode aerosols. Wind vectors in these areas (Figure 2.7) show that the wind speed is very 

low, which support our idea that the negatively correlated areas do not represent the local 

dust mobilization. A similar negative correlation is observed over Algeria and Libya in the 

summer (JJA), which is also characterized by reduced wind speed. Engelstaedter and 

Washington [2007] related the negatively correlated areas to the zones of strong 

convergence, which favors dust transport at high altitude.    
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Figure 2.7. ERA-Interim 10-m wind vectors (arrows), GPCP mean precipitation 

(contours), and Angstrom exponent at 470/660 nm (shaded). ERA-Interim 

wind vector represents mean monthly wind speed and direction at 12 GMT 

for 2003-2012. Precipitation data are monthly mean derived from GPCP 

version 2.2 SG dataset for 2003-2012. Angstrom exponent data are monthly 

mean derived from MODIS Aqua level 3 product for 2003-2012. 



 32 

Ginoux et al. [2012] showed that dust sources represented by coarse-mode dust 

(represented by dust optical depth separated from fine-mode dust) distribution dominates 

in spring and summer, especially over the Sahel area. Our results, however, show that the 

dust source mobilization is strongest in January, February, and March. High dust optical 

depth seen by Ginoux et al. [2012] in spring and summer may reflect the contamination of 

dust by transported dust and biomass burning aerosols as shown by high Angstrom 

exponent values over this area (Figure 2.7). High dust mobilization is seen over Saudi 

Arabia and Tigris-Euphrates river valleys in Spring (MAM) in both of the maps. However, 

mobilization in these areas is very strong in winter (DJF) as well in our correlation map, 

which is not seen in their map.    

 

Figure 2.8 (a) Our erodibility map based upon the correlation between ERA-Interim 10-m 

wind and MODIS AOD at 550 nm (b) Topographic erodibility map 

developed by Ginoux et al. [2001]. 

The resulting erodibility map based on the maximum mean monthly correlation at 

each grid cell is presented in Figure 2.8a. The topographic erodibility map proposed by 

Ginoux et al. [2001] is presented in Figure 2.8b for direct comparison. Our map appears to 

reduce the overall dust-source strength compared to the topographic erodibility map. In the 
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areas where dust transport is dominant, our map improves the dust-source characterization 

as expected. For example, the topographic erodibility map and the mean AOD map (Figure 

2.1) show the Arabian Peninsula, especially in the UAE, to be highly erodible.  However, 

the high erodibility seen in the topographic erodibility map over the Arabian Peninsula 

actually reflects the dust transported by the Shamal wind  from a dust source within the 

Tigris-Euphrates basin [Reid et al., 2008]. The land cover map (Figure 2.2) shows that this 

area is a mixture of sabkhas, sand deposits, stony surfaces and fluvial systems. Our map 

modulates the source strength in these areas because the surface wind shows a weaker 

correlation with the Shamal wind transported dust, which is advected mostly in the 

mid/upper troposphere. In this area, the geomorphic and hydrologic erodibility maps better 

match with our erodibility map. The agricultural area in the Sahel region and Tigris-

Euphrates River basin is seen as highly erodible in our map, which is also identified in all 

topographic, hydrologic, and geomorphic erodibility maps. The land cover map (Figure 

2.2) shows extensive agricultural practice in these areas indicating enormous 

anthropogenic dust potential. Our map correctly emphasizes the dust source in the 

Afghanistan/Pakistan border region where playas and fluvial deposits are abundant, as 

discussed in section 2.5.1. Hydrologic and geomorphic erodibility maps better match with 

our erodibility map in this region. In our map, strong erodibility is seen in the Horn of 

Africa in Somalia, where fluvial deposits and playas are found. Topographic and 

hydrologic erodibility maps show similar strength but different distribution in this region. 

At the Bodélé depression, we see a more confined hotspot compared to all other erodibility 

maps. A dust source in Algeria seen in the topographic erodibility map is not present in our 

map. The land cover map (Figure 2.2) in this area shows the presence of sand dunes and 

sand deposits over bedrock, so the apparent dust source could reflect the persistent dust 

transported by Harmattan winds. The empty areas seen in our erodibility map in the Sahara 
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represent mountains (e.g., the Tibesti Mountains in Chad and the Jebel Marra Mountains 

in Sudan). Similarly, the mountain ranges in the western Arabian Peninsula, the 

Hadragmaut Mountains in southern Arabian Peninsula, and the Anti-Atlas Mountains in 

northern Africa are correctly represented as non-emitting surfaces in our map. This is 

generally similar to all topographic, hydrologic and geomorphic erodibility maps although 

the spatial distribution is different. Overall, our erodibility map correctly identifies the 

major dust sources in the MENA region.  

2.5.3 Erodibility of land cover types 

Table 2.2. Mean correlation coefficientsa and their statistics for different land cover types.  

Land cover  

types 

Mean  

correlation  

coefficient 

S.D. Min. Max. Total no. of 

grid cells 

used 

Bedrock, with 

sediment 

0.28 0.06 0.12 0.60 48363 

Sand deposit 0.30 0.06 0.12 0.63 30705 

Sand deposit, on 

bedrock 

0.28 0.06 0.12 0.51 22763 

Sand deposit, 

stabilized  

0.31 0.06 0.15 0.41 3864 

Agricultural and 

urban area 

0.31 0.07 0.12 0.67 35591 

Fluvial system 0.29 0.06 0.12 0.47 32478 

Stony surface 0.26 0.07 0.12 0.44 7165 

Playa/Sabkha 0.44 0.15 0.15 0.70 5317 

Savanna/Grassland 0.36 0.14 0.15 0.65 29675 

aMean Spearman’s rank correlation coefficient (𝜌) between ERA-Interim wind at 10 m 

and MODIS deep blue aerosol optical depth (AOD) at 550 nm, averaged over the entire 

study area. 

Table 2 lists the mean correlation coefficient and the corresponding standard 

deviation for each land cover type over the entire study area calculated as discussed in 

section 2.4.3. Maximum and minimum correlation coefficients are also reported, which 

indicates the range of regional variation of erodibility for a given land cover type.  
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Playa/sabkha has the highest mean correlation coefficient, indicating that it is most 

erodible among the land cover types. This is consistent with previous findings that playas 

have the highest dust-emission intensity [Cahill et al., 1996; Lee et al., 2011]. The second 

highest erodible land cover type is savanna/grassland with a mean correlation coefficient 

of 0.36. Savannas are typically found between south of Sahel and North of the equatorial 

rain forests. This result indicates that the area may have been highly disturbed, becoming 

a stronger source of dust. Savannas in this region are characterized by extensive cattle 

grazing and biomass burning. Both playa/sabkha and savanna/grassland have relatively 

large standard deviations compared to the rest of the land cover types, indicating that the 

regional variation of these land cover types as dust source is high. Sand deposit, stabilized 

and agricultural and urban area have equal mean correlation coefficients equal to 0.31. 

We included a mixture of sand dunes and playas in the category sand deposit, stabilized, 

which explains the observed higher mean correlation coefficient. Lee et al. [2011] located 

the origin of dust plumes using MODIS visible images and found that cultivated sand 

sheets are the largest sources of dust in West Texas. Sand deposit has a mean correlation 

coefficient of 0.30, indicating that the sand dunes are also a significant contributor of dust 

in the study area. Crouvi et al. [2012] found that active sand dunes are the most frequent 

dust sources in Sahara based on the correlation between the frequency of dust storms and 

the distribution of geomorphic units using high resolution satellite data. They proposed that 

aeolian abrasion in sand dunes produces clay/silt-sized particles by removing the clay 

coating and breaking the sharp corners. Fluvial system has a mean correlation coefficient 

of 0.29 indicating that this land cover type has a significant amount of fine sediment 

suitable for dust emission. Sweeney et al. [2011] in a field-based study found that alluvial 

deposits can have high dust emission potential, comparable to that of playa surfaces. Given 

higher erodibility of land use than fluvial systems, it may be inferred that the 
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anthropogenic activities aggravate dust emission. In fact, the Agricultural and urban area 

in the MENA region consists of heavily cultivated areas, which are in most cases located 

in the base of the fluvial system such as valleys. Sand deposit, on bedrock has a mean 

correlation coefficient of 0.28, so the dust emission from these areas should not be 

underestimated. This land cover type mainly includes aeolian deposits on bedrock, which 

may be remobilized. In North Africa, fine sediment originating from the Libyan and 

Egyptian deserts are transported and deposited by the northeasterly Harmattan wind in 

winter. Stony surface has the minimum mean correlation coefficient equal to 0.26, 

indicating that they are least erodible compared to other land cover types.    

2.6. DISCUSSION AND MODELING PERSPECTIVE 

Representation of the spatiotemporal dynamics of dust sources in the models can 

improve dust-mass flux estimates, which are essential for accurately quantifying the 

various impacts of dust (e.g., on the Earth’s radiation budget). Use of the proposed dust-

source framework may improve dust-source characterization in the climate models because 

our approach for erodibility mapping is more physically-based. The association of 

sediment supply with different land cover types is shown by many previous studies [e.g., 

Bullard et al., 2011; Lee et al., 2011]. Yue et al. [2009] also used constant emission 

potential coefficients of 0.1, 0.3 and 1.0, respectively, for grassland, meadow and desert, 

an approach that is not realistic because of the limited number of surfaces and arbitrarily 

assigned coefficients. We note that the erodibility of a land cover type is regionally 

variable. For example, playas commonly contain a supply of fine sediment suitable for dust 

emission, but this quantity of fine sediment may differ from one location to another. We 

attribute this regional variability of erodibility within the same land cover type to complex 

localized land-atmosphere interactions, topography, crusting, and vegetation. 
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The availability-limited condition is generally represented in the models by 

expressing the threshold friction speed in terms of soil moisture. Given the general 

unavailability of accurate soil moisture data, the use of a region-specific and temporally 

adjusted dynamic land cover erodibility map may be necessary for accurate dust-source 

characterization in climate models. Such region-specific, temporally varying erodibility 

can be specified by combining the land cover map and the monthly dynamic erodibility 

map presented in this study. This conclusion is also supported by some recent studies [e.g., 

Kim et al.,  2013], that observed improvements in dust emission using a MODIS NDVI 

(normalized difference vegetation index) based, dynamic dust source function.  

We developed the land cover map in high-resolution but we derived the erodibility 

of the land cover types from a coarser resolution (1° × 1°) correlation map between 

surface wind and AOD, which is the main limitation of this study. With our mapping 

technique, the grouping of transition zones was subjective, another limitation of this study. 

Dust emission that takes place at smaller scale, such as from savannas, alluvial fans etc., 

might not be captured by coarser mapping techniques. So in the areas where multiple land 

cover types exist within a 1° × 1° grid cell, the developed erodibility map may not be very 

accurate. The large range of variation in erodibility indicated by the minimum and 

maximum correlation (Table 2) suggest such possibility of error. As high-resolution 

surface wind speed and aerosol optical depth observations become available in the future, 

smaller scale dust emission can be captured using the same method adopted in this study. 

We acknowledge that the erodibility is not solely characterized by land cover type, but 

rather changes continuously in response to the complex feedback between the land cover 

and atmospheric phenomena. We also note that the erodibility is also linked to the 

topography, as shown by Ginoux et al. [2001]. Creating sub-types within a land cover type 

based on topographic information could indeed improve our erodibility map. Global land-
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use pattern has changed greatly because of anthropogenic activities and it will continue to 

change. Further, the seasonality of erodibility observed in the ten years of recent data may 

not reflect the longer term dust signals associated with paleoclimatic cycles. If the proposed 

map is to be used for understanding past and future dust climatology, these issues should 

be addressed by tuning with paleodust proxies as done by Albani et al. [2012].   

Working at a finer scale than 1:250,000 would produce a more detailed land cover 

map but the process would be tedious and the results less relevant in the current global 

modeling context. We produced the land cover map at 0.1° × 0.1° by converting the vector 

map in ArcGIS into a gridded map with the maximum area method. Because the portion 

of smaller features within a grid cell is discarded in this conversion process, some error 

during re-gridding is unavoidable, but this error reduces with increasing spatial resolution 

of the map. We believe that the integration of the land cover map into the existing 

dust/climate models can be done in several other ways. For example, the land cover map 

could be integrated by specifying threshold friction velocity, clay content, roughness 

length, and threshold friction speed for each land cover type. Being a digital map of vector 

polygons, our map has the flexibility to be re-grouped and integrated in a desired fashion 

as necessary.    

2.7. CONCLUSION 

In this paper, we describe a high-resolution land cover map of the Middle East and 

North Africa (MENA) region that can be used in climate models to characterize the sub-

grid variability of dust sources. We developed the land cover map by classifying the land 

cover into twelve categories by visually examining high-resolution satellite images 

obtained from Google Earth Professional and ESRI Basemap. Based on dust-emission 

potential, the erodible land cover types in the MENA region are grouped into 9 categories: 

(1) bedrock: with sediment, (2) sand deposit, (3) sand deposit: on bedrock, (4) sand deposit: 
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stabilized, (5) agricultural and urban area, (6) fluvial system, (7) stony surface, (8) 

playa/sabkha, and (9) savanna/grassland. Given the general unavailability of high-

resolution datasets of soil and land cover types in the MENA region, this map serves as a 

baseline for understanding the role of geomorphology in dust emission. We used the 

correlation between ERA-Interim wind speed at 10 m and MODIS deep blue AOD at 550 

nm to quantify the erodibility of the different land cover types. This method of quantifying 

land cover erodibility improves dust-source characterization, especially in the areas of 

persistent dust transport, biomass burning, and agricultural areas, as compared to existing 

erodibility maps. Our results also indicate that the erodibility is linked to the land cover 

type and has regional variation. Association with the land cover types gives the term 

erodibility a physical basis accounting the sediment supply and the availability of that 

sediment under a given wind forcing. The combined use of the land cover map and the 

erodibility map presented in this study can improve dust source characterization in climate 

models.  
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Chapter 3: Diagnostic evaluation of the Community Earth System 

Model in simulating mineral dust emission with insight into large-scale 

dust storm mobilization in the Middle East and North Africa (MENA)1 

 

3.1 ABSTRACT 

Large amounts of mineral dust are injected into the atmosphere during dust storms, 

which are common in the Middle East and North Africa (MENA) where most of the global 

dust hotspots are located. In this work, we present simulations of dust emission using the 

Community Earth System Model (CESM) and evaluate its performance in the MENA 

region with a focus on large-scale dust storm mobilization. We explicitly focus our analysis 

on the model’s two major input parameters that affect the vertical mass flux of dust— 

surface winds and the soil erodibility factor. We analyze dust emissions in simulations with 

both prognostic CESM winds and with CESM winds that are nudged towards ERA-Interim 

reanalysis values. Simulations with three existing erodibility maps and a new observation-

based erodibility map are also conducted. We compare the simulated results with MODIS 

satellite data, MACC reanalysis data, AERONET station data, and CALIPSO 3-d aerosol 

profile data. The dust emission simulated by CESM, when driven by nudged reanalysis 

winds, compares reasonably well with observations on daily to monthly time scales but 

considerable bias exists around known high dust source locations in northwest/northeast 

Africa and over the Arabian Peninsula where recurring large-scale dust storms are 

common. The new observation-based erodibility map shows improved performance in 

terms of the simulated dust/aerosol optical depth (DOD/AOD) compared to existing 

erodibility maps although the performance of different erodibility maps varies by region.   
1This chapter was previously published in Parajuli, S. P., Z.-L. Yang, and D. Lawrence (2016a), Diagnostic 

evaluation of the Community Earth System Model in simulating mineral dust emission with insight into 

large-scale dust storm mobilization in the Middle East and North Africa (MENA), Aeolian Res., 21, 21-35, 

doi:10.1016/j.aeolia.2016.02.002. S. P. P. designed and performed research with assistance from Z.-L. Y. 

and D. L; Z.-L. Y. and D. L. contributed in discussion and revisions; and S.P.P. wrote the manuscript.  
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3.2. INTRODUCTION 

Atmospheric mineral dust has a wide range of implications for Earth’s radiation 

budget [Sokolik and Toon, 1996; Miller and Tegen, 1998; Mahowald et al., 2006], 

biogeochemical cycles [Kellog and Griffin, 2006; Yu et al., 2015], precipitation [Creamean 

et al., 2013; Jin et al., 2014], human health [WHO, 2006], and visibility [Wang et al., 2008]. 

Mineral dust is one of the major contributors to the global aerosol budget [IPCC, 2013], 

modeling of which remains challenging because dust emission has high spatial and 

temporal variability. The direct/indirect effects of aerosols remain the largest source of 

uncertainty in estimating radiative forcing and the emissions of natural aerosols including 

mineral dust remains poorly characterized in climate models [IPCC, 2013]. A recent 

evaluation of the global climate models used in CMIP5 (including the Community Earth 

System Model used in this study) by Evan et al. [2014] showed that there is a considerable 

mismatch between model simulations and observations in terms of the climatology of dust 

emission and transport. Similar conclusions were made earlier by Cakmur et al. [2006] and 

Huneeus et al. [2011].  

Although numerous dust models exist, dust emission is parameterized generally in 

terms of surface wind velocity usually at 10 m height [e.g., Ginoux et al., 2001] or friction 

velocity [e.g., Zender et al., 2003a] which is mainly a function of particle size, soil 

moisture, and clay content. Currently, the simulated global vertical mass flux of dust differs 

greatly across models and ranges from 1,000-5,000 Tg yr-1 [Shao et al., 2011] although 

this discrepancy can be reduced to some extent with observation-based constraints 

[Cakmur et al., 2006; Mahowald et al., 2006]. Deficiencies of dust models can be attributed 

to multiple reasons including the use of bulk parameterizations to calculate dust flux [e.g., 

Zender et al. 2003a; Ginoux et al., 2012], accuracy of input data (mainly winds, soil texture, 

and soil moisture), and poor characterization of spatial variability of dust sources. While 

http://onlinelibrary.wiley.com.ezproxy.lib.utexas.edu/doi/10.1002/2014JF003095/full#jgrf20313-bib-0044
http://onlinelibrary.wiley.com.ezproxy.lib.utexas.edu/doi/10.1002/2014JF003095/full#jgrf20313-bib-0044
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most of these models utilize the source erodibility factor to characterize dust sources, 

existing erodibility factors do not directly represent many of the dust sources, for example, 

anthropogenic dust sources. In this work, we focus on the two major input parameters of 

dust models that affect the vertical mass flux of dust, namely the winds and the source 

erodibility factor, and characterize errors in model simulated dust optical depth (DOD) and 

aerosol optical depth (AOD) by comparing with observations and reanalysis data.  

Winds affect the dust model in two ways. First, they affect the vertical dust mass 

flux and second, they affect the transport of emitted dust. Consequently, it is important to 

accurately characterize the atmospheric boundary layer and near-surface winds for credible 

simulations of the dust cycle. Several previous studies have shown that the climatological 

pattern of dust source, transport, and deposition match reasonably well with observations 

when the model is forced by reanalysis meteorology [e.g., Zender, et al.,  2003a; Luo et 

al., 2003]. However, these offline studies do not capture any potential interactions between 

dust emissions and weather or climate, which can feedback onto dust emissions through 

changes in winds or soil moisture.   

Several methods have been proposed to determine the source erodibility factor. 

Topographic erodibility methods assume that topographic depressions are the strongest 

sources of dust [Ginoux et al., 2001]. Similarly, geomorphic erodibility method assumes 

that erodibility is directly proportional to the upstream catchment area and the uniform 

erodibility method assumes that all bare surfaces are equally erodible [Zender et al., 

2003b]. Zender et al. [2003b] demonstrated that geomorphic and topographic erodibility 

produce the closest overall agreement with observations in terms of climatology of the dust 

cycle. Tegen et al. [2002] used the extent of dry lake beds as preferential source areas for 

dust emission. Ginoux et al. [2012] mapped dust sources in details using high-resolution 

MODIS level 2 AOD data in conjunction with the land-use map. Recently, Kok et al. [2014] 
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showed that the need for a dust source function may be eliminated mainly through use of 

an improved threshold friction velocity term that is more sensitive to soil moisture. A new 

observation-based erodibility map was proposed recently by Parajuli et al. [2014], which 

was developed based on observed correlation between surface winds and aerosol optical 

depth in a ten-year historic dataset. This new erodibility map is not only consistent with 

the dust source geomorphology but also identifies disturbed anthropogenic dust sources 

such as agricultural areas and urban settings [Parajuli et al., 2014] which are often the 

major sources of dust [Lee et al., 2012].  

Although Community Earth System Model (CESM) is a General Circulation Model 

(GCM) mainly designed to study the mean state of the climate, its ability in reproducing 

the mean state of the global dust cycle depends upon the accurate representation of the 

large-scale dust storms. Evaluation of dust models is challenging mainly because of a lack 

of sufficient high quality and long-term measurements of dust [Evan et al., 2014], but more 

satellite and ground-based observations are becoming available. The ability of CESM to 

simulate climatological dust emission, transport, and deposition has been evaluated in 

previous studies [e.g., Mahowald et al., 2006; Albani et al., 2014; Kok et al., 2014]. 

However, these evaluations have primarily focused on climatological dust emissions and 

not on the daily and monthly scales even though dust emission exhibits high daily and 

monthly variation. In fact, large-scale dust storms generally last for a few hours or days 

and are responsible for significant fractions of total annual and regional emissions of dust 

into the atmosphere [Rashki et al., 2012; Prakash et al., 2014]. Atmospheric convection is 

the dominant process of mobilization for many of these large dust storms, which contribute 

about 35% of the global dust budget [Koch and Renno, 2005] although the contribution 

can be low in certain areas [Allen et al., 2013]. In this context, our objectives are to evaluate 
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CESM’s ability in simulating daily to monthly timescale dust emissions along with 

regional variations in dust source mobilization.  

In order to realize our objectives, we conducted dust simulations under the 

framework of CESM using prognostic winds and also using wind fields that are nudged to 

ERA-Interim reanalysis winds [Dee et al., 2011]. We evaluated the model performance 

over the Middle East and North Africa (MENA), commonly known as the dust belt, where 

most of the global dust hotspots are located. We conducted dust simulations using the new 

observation-based erodibility map [Parajuli et al., 2014], in addition to three other existing 

erodibility maps, namely uniform, geomorphic, and topographic. We used satellite 

datasets, reanalysis products, and ground-based datasets for a comprehensive evaluation of 

the model performance. Finally, we review some key deficiencies of the dust model and 

identify potential areas for improvement.  

3.3. METHODS 

3.3.1. Modeling with CESM 

We used the latest version of CESM (CESM1.2.2 [Hurrell et al., 2012]) to simulate 

dust emission. CESM is a highly customizable, fully coupled earth system model with 

atmosphere, land, ocean, and sea-ice components. The land component of CESM, the 

Community Land model (CLM4) [Lawrence et al., 2011], has the dust entrainment and 

deposition model (DEAD) [Zender et al., 2003b], the details of which are described in the 

CLM4 technical description [Oleson et al., 2010]. Briefly, the dust model calculates 

vertical dust mass flux (𝐹𝑗) as a function of friction velocity, threshold friction velocity, 

clay content, and soil moisture. The emitted dust is then passed to the atmospheric 

component. Dust emission is only allowed from the bare soil and sparsely vegetated areas 
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while masking the areas of snow, wetland, and lake. Emission is further constrained by a 

source erodibility factor 𝑆. The vertical mass flux of dust is thus given by 

                                               𝐹𝑗 = 𝑇𝑆𝑓𝑚𝛼𝑄𝑠 ∑ 𝑀𝑖,𝑗
𝐼
𝑖=1                                     (1)                   

where 𝑇 is a tuning factor, 𝑄𝑠 is the total horizontally saltating mass flux which is 

expressed in terms of friction velocity and threshold friction velocity, 𝛼 is the sandblasting 

mass efficiency factor, 𝑓𝑚 is the grid-cell fraction of bare soil, and 𝑀𝑖,𝑗 is the mass fraction 

for different combinations of source modes and transport bins. 

The atmosphere component of CESM, the Community Atmosphere Model 

(CAM5) [Neale et al., 2013] has a computationally efficient, 3-mode prognostic Modal 

Aerosol Model (MAM3) scheme with Aitken, accumulation, and coarse transport modes 

in which dust is partitioned in accumulation and coarse modes [Liu et al., 2012]. For optical 

and radiative calculations, coarse dust and sea salt are combined into a single coarse mode 

while fine dust and sea salt are combined within the accumulation mode, based on the 

assumption that dust and sea salt are geographically separated [Ghan et al., 2012]. MAM3 

accounts for many important processes that influence aerosols including nucleation, dry 

deposition, and in-cloud and below cloud scavenging [Ghan et al., 2012]. 

3.3.2. Experiments 

We conducted one year long simulations for 2012 with one additional preceding 

month in December 2011, which was discarded as spin up. The model simulations were 

performed at 0.9° × 1.25° resolution. A total of six experiments were carried out as 

outlined in Table 3.1. In all of the experiments, we forced the land and atmosphere 

components of CESM with observed sea surface temperatures (SSTs) and sea ice. Note 

that the treatment of SSTs can influence atmospheric circulations and thus affect dust 

mobilization [Miller et al., 2004].  
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Table 3.1. List of the six experiments conducted in this study. 

Experiment Winds Erodibility 

CESM_prog_winds Prognostic Geomorphic 

CESM_nudged_winds ERA-nudged Geomorphic 

CESM_uniform ERA-nudged Uniform 

CESM_geo ERA-nudged Geomorphic 

CESM_topo ERA-nudged Topographic 

CESM_new ERA-nudged New 

The first two experiments were designed to examine the dust model’s dependence 

on winds. These two experiments differed with each other only in terms of the winds used. 

In the first experiment, we conducted simulations using prognostic winds from free-

running CESM. In the second experiment, we nudged the modeled zonal wind (U), 

meriodional wind (V), and surface temperature (T) towards ERA-Interim Reanalysis at all 

model levels and grids for the entire simulation period every 6 hours. Nudging was applied 

with full strength using the nudging fractional coefficient of 1 in a spatially uniform 

manner. The default CLM4 geomorphic erodibility map was applied in these two 

experiments.  

The latter four experiments were conducted using four alternative erodibility maps 

which basically represent the source erodibility factor (𝑆) in equation (1). The erodibility 

factor scales the calculated dust flux based on the relative importance of dust sources in 

each grid cell. Three existing (uniform, topographic, and geomorphic) and a new 
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observation-based erodibility map [Parajuli et al., 2014] were used. Atmospheric nudging 

was applied in these experiments.   

Although the simulations were global, we primarily analyze outputs from the dust 

belt (-20°N to 70°E, 0°N to 40°N), where most of the global dust hotspots are located and 

large-scale dust storms are common.  For comparing with observations, daily and monthly 

means of the simulation outputs were used.  

Dust models typically need to be constrained to achieve a reasonable dust 

climatology [Mahowald et al., 2006]. In this study, the model is constrained to achieve a 

globally averaged mean annual dust optical depth of 0.025 at 550 nm, which is close to the 

annual median dust optical depth of 0.032 from 20 major global aerosol models [Kinne et 

al., 2005]. Because the global dust emission is sensitive to the type of erodibility map used 

[Cakmur et al., 2006] and resolution [Milton et al., 2008], each erodibility map was tuned 

separately.  

3.3.3. Observation and reanalysis datasets 

We used multiple satellite datasets, reanalysis products, and ground-based datasets 

(Table 3.2) for a comprehensive evaluation of the modeled dust emission. For comparison, 

we used either model simulated AOD or DOD depending upon what is available in the 

observation/reanalysis data. All observational and reanalysis datasets were aggregated to 

daily and monthly time scales for 2012.  
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Table 3.2. Description of the observational datasets used in this study. 

Datasets Resolution  Variable used Basis of 

comparison 

MODIS Aqua level 3 aerosol 

product (MYD08_D3) 
1° × 1° 
Daily 

 Deep blue AOD at 

550 nm 

Daily 

MODIS Aqua level 3 aerosol 

product (MYD08_D3) 
1° × 1° 
Daily 

 Dark target AOD 

at 550 nm 

Daily 

MACC Reanalysis DOD 1° × 1° 
6-hourly 

 DOD at 550 nm 6-hourly 

AERONET level 2 aerosol data Station data 

~ 15 min 

 Coarse-mode 

AOD 

Daily 

CALIOP level 3 day-time  

aerosol data 

2° × 5° 
monthly 

 Dust extinction 

coefficient at 532 

nm 

Monthly 

We used two level 3 daily (1° × 1°) aerosol optical depth data at 550 nm from 

Moderate-Resolution Imaging Spectroradiometer (MODIS) Aqua satellite: standard 

MODIS AOD and deep blue AOD available under collection 5. The standard MODIS AOD 

is based on dark target approach the data of which are available only over dark targets such 

as the ocean and vegetated areas [Remer et al., 2005]. Deep blue data is based on the 

advantage that surface reflectance is low in blue channels [Hsu et al., 2004], and hence the 

data are available even over bright reflecting areas such as deserts.  

We also used Monitoring Atmospheric Composition and Climate (MACC) 550 nm 

DOD gridded dataset (1°×1°), which is a 6-hourly dust reanalysis dataset from the 

European Centre for Medium-Range Weather Forecasts (ECMWF). This dataset 

assimilates several aerosol observations and is the only publicly available reanalysis dust 

dataset to our knowledge. However, we note that this dataset also suffers from general 

model uncertainties like other dust models do because it is also derived from a model.  

 The Aerosol Robotic Network (AERONET), maintained by NASA, is a global 

network of about 400 ground-based stations that cover the entire globe [Holben et al., 

1998]. We used AERONET level 2 quality-assured aerosol data for validation; it includes 
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aerosol properties such as AOD and Ångström exponent measured between a wide window 

of 0.340-1.640 μm wavelength. We specifically used level-2 coarse mode AOD 

(hereinafter called AERONET DOD) data retrieved using the spectral deconvolution 

algorithm (SDA) [O'Neill et al., 2003] because coarse mode aerosol is generally dominated 

by dust [Eck et al., 1999]. We sub-selected AERONET stations within the MENA region 

that have at least three months of data available in 2012; nine stations passed this criteria.  

CALIOP (Cloud-Aerosol Lidar with Orthogonal Polarization) instrument, flown on 

the CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations 

satellite) has been generating three-dimensional quantitative characterization of aerosols 

and cloud globally with unprecedented vertical detail [Winker et al., 2010; Winker et al., 

2013]. In this study, we used CALIOP level-3 day-time aerosol profile product (dust 

extinction coefficient at 532 nm), which is a monthly aerosol dataset generated by 

aggregating version 3 level-2 monthly statistics at 2°(𝑙𝑎𝑡) × 5°(𝑙𝑜𝑛) resolution extending 

up to 12 km height [Winker et al., 2013]. Because the AOD does not provide height of 

aerosols, we used CALIOP data to provide additional insights into dust mobilization over 

the study domain. However, because the dust properties of this dataset strongly depend 

upon the assumed LIDAR ratio (extinction-to-backscatter ratio), which is considered low 

for dust [Omar et al., 2010; Schuster et al., 2012], we used CALIOP data mainly for 

qualitative evaluation of the seasonal evolution of dust mobilization.  

For quantitative evaluation of model performance, we calculated Pearson’s 

correlation r over time between simulated and observed AOD (DOD). We also calculated 

root mean squared error (RMSE) and mean bias error (MBE). In order to investigate the 

model’s ability to represent large-scale dust storms, we presented a case study of a severe, 

well-documented, dust storm [e.g., Prakash et al., 2014] that occurred over the Middle East 

on March 19, 2012.  
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To facilitate discussion of the results, we also presented meteorological controls on 

dust emission over the study area, mainly, 10-m winds, divergence, and precipitation. Wind 

vectors and divergence were derived from ERA-Interim reanalysis data. The precipitation 

data was obtained from Global Precipitation Climatology Project (GPCP) [Pendergrass et 

al., 2015] which is a gridded 1° × 1° daily dataset.   

3.4. RESULTS  

3.4.1. Use of prognostic and nudged winds 

Figure 3.1 shows the Pearson’s correlation r between the simulated daily mean 

AOD (DOD) with three sets of observations/reanalysis. As expected, the maps show a clear 

improvement in correlation between the simulated and observed AOD (DOD) when 

nudging is applied.  

The RMSE of the simulated AOD (DOD) compared to observations and reanalysis 

products is presented in Figure 3.2. RMSE is reduced in nudging case in certain areas, but 

surprisingly the improvement is not as clear as in the correlation analysis (Figure 3.1). The 

similarity of RMSE patterns of the prognostic winds and nudged winds simulations 

especially in known dust source locations suggests that the model has additional 

deficiencies that are not related to winds, which is explored further in section 3.4.2.  
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  Figure 3.1. Correlation between the daily means of simulated AOD (DOD) and 

observed AOD (DOD) for 2012. Prognostic winds case (left column) and 

nudging case (right column). Both simulations use geomorphic erodibility. 

Grey areas means no data are available over the region.  
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Figure 3.2. Root mean squared error (RMSE) between the simulated AOD (DOD) and 

observed/reanalysis AOD (DOD) calculated using daily data for 2012. 

Prognostic winds case (left column) and nudged winds case (right column).  

In order to evaluate the model’s ability to capture individual, large-scale dust 

storms, time series of simulated DOD for three of the nine AERONET stations: Ilorin, 

Karachi, and Mezaira that show at least 10 large dust storms (daily mean AERONET DOD 

> 0.75) in 2012 is presented (Figure 3.3). Ilorin, Karachi, and Mezaira had 49, 14, and 11 

days, respectively, of such large dust storms in 2012. Green dotted lines represent the dust 

storms on March 19, 2012 showing daily mean AERONET DOD exceeding 2 over Ilorin, 

Nigeria and 1.5 over Mezaira, UAE, details of which are investigated in a case study 
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presented in Section 3.4.3. Ilorin station is located in an urban area of Nigeria and captures 

dust storms originating from various north-African dust sources including Playas, fluvial 

deposits, Savannas, and agricultural/urban areas.  Dust in this region is mainly caused by 

low-level northeasterly trade winds, commonly called Harmattan winds [McTainsh, 1980; 

Engelstaedter and Washington, 2007]. The Karachi station captures dust storms originating 

mainly from playas over Afghanistan/Pakistan border and nearby agricultural areas. The 

Mezaira station located close to the sabkhas (typical dust sources in the MENA region 

characterized by salts and fine sediments) of United Arab Emirates captures dust storms 

originating mainly from the Tigris–Euphrates river basin, various local sources over the 

Arabian Peninsula, and the Afghanistan/Pakistan region, caused by northerly/northeasterly 

winds [Reid et al., 2008]. As Figure 3.3 shows, both the online case and nudging case seem 

to be unable to capture the amplitude of the dust signal during many large-scale dust storms 

although the nudging case performs better.  

 

Figure 3.3. Time series of simulated and observed DOD for three stations. 
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3.4.2. Impact of erodibility maps 

The different erodibility maps being compared are presented in Figure 3.4 all of 

which have global coverage. Compared to existing erodibility maps, the new erodibility 

map shows more realistic distribution of major dust sources across the study domain 

[Parajuli et al., 2012]. For example, in the new erodibility map, major dust sources 

coincide with Playa, Sabkhas, cultivated or agricultural areas, and fluvial depsoits that 

typically have large sediment supply as shown in the land cover map of Parajuli et al. 

[2012] reproduced in Figure 3.6a.  

The simulated vertical mass flux rate of dust emission (𝜇𝑔 𝑚−2 𝑠−1) for the latter 

four experiments outlined in Table 3.1 is presented in Figure 3.5 (right column). Total 

global dust emissions simulated for 2012 using the uniform, geomorphic, topographic, and 

new erodibility were 4,850, 3,126, 4,012, and 3,553 Tg/year, respectively. These estimates 

are higher than the climatological estimates given by Zender et al. [2003] but are close to 

those given by Mahowald et al. [2006]. Note that  that these estimates are highly sensitive 

to the model resolution and constraint applied and can be different if a different globally-

averaged DOD is used to constrain the model. These estimates are also sensitive to the 

treatment of wet and dry deposition in the model [Mahowald et al., 2006]. The dust fluxes 

obtained using the uniform erodibility represents emission from the entire land fraction of 

the grid box, while the dust fluxes using other three forms of erodibility represent the 

constrained emissions as they account for the spatial variability of dust source strength. 

The emission patterns are very different. Although the new erodibility map identifies the 

savannas (south of Sahel) as dust sources, no emission is seen in this area because 

vegetation prevents dust mobilization in the model.  
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Figure 3.4. Normalized erodibility maps used  (left column), and corresponding simulated 

dust emission rate in 𝜇𝑔 𝑚−2 𝑠−1 using the nudged winds (right column).  

The Bodélé depression ~ (14-17N, 16-19E) is seen as one of the strongest dust 

sources in both the topographic and new erodibility maps (Figure 3.4, left column), as well 

as the mean deep blue AOD map for 2012 (Figure 3.5, right). Interestingly, none of the 
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four simulations (Figure 3.4, right column) show the Bodélé depression as having the 

largest dust emission rate. While some of the Bodélé depression discrepancies may be 

explained by contributions from transported dust and other aerosols (e.g., biomass burning) 

from the surrounding areas and low sampling frequency (once daily) in the mean deep blue 

AOD, it remains likely that the simulated dust emission rate is not realistic in this area 

probably due to the poor representation of saltators and surface erodibility [Chappell et al., 

2008].   

  

Figure 3.5. Land cover map of the MENA region (left) and mean deep blue aerosol 

optical depth for 2012 (right). Left figure reproduced from Parajuli et al. 

[2012].   
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Figure 3.6. MBE of the simulated AOD (DOD) as compared to the three 

observation/reanalysis data for the latter four experiments mentioned in 

Table 3.1 representing four different erodibility maps. Top four maps are for 

deep blue AOD, middle four are for MACC DOD, and bottom four are for 

MODIS AOD. Grey shading represents missing data.  
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MBE of the simulated AOD (DOD) as compared to the three observation/reanalysis 

data using the four different erodibility maps is presented in Figure 3.6. The MBE patterns 

are generally similar to the patterns of RMSE in Figure 3.2 but they show the sign of the 

bias as well. The model generally overestimates AOD (DOD) in major dust source regions. 

The main areas of overestimation are northeast Africa (Libya/Egypt), northwest Africa 

(Mauritania and Algeria), and the north-eastern Arabian peninsula which are the known 

dust source regions and are typically sand-rich. The model underestimates AOD (DOD) in 

the Sahel/south of Sahel, horn of Africa, and Iraq/Syria. The areas of underestimation are 

generally areas where the model has no or low dust emission. For example, in the 

Sahel/south of Sahel the model simulates no dust emission because the densely vegetated 

areas are masked in the model. Overall, the new erodibility map shows reduced MBE in 

key dust source locations compared to other erodibility maps but the performance varies 

by regions. The reduction of MBE in the dust source regions by the use of the new 

erodibility highlights the importance of accurate dust source characterization in models.  

The statistics of comparison, time correlation, standard deviation (SD), and RMSE 

between simulated DOD and AERONET DOD at the nine AERONET stations in the study 

domain is presented in the Taylor diagrams in Figure 3.7. The comparison is presented for 

the latter four experiments representing different erodibility maps listed in Table 3.1. In 

general, as previously noted, simulated DOD using the new erodibility shows better 

agreement with AERONET DOD in some stations compared to using other erodibility 

maps but the performance of different erodibility maps vary by the comparison metrics 

used: correlation, RMSE or SD.  
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Figure 3.7. Comparison of simulated DOD against AERONET DOD at various stations 

over the study domain. The red dot represents AERONET DOD against 

which comparisons are made.  
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3.4.3. Case study 

A series of severe dust storms (or sandstorms) occurred on 18–19 March, 2012 over 

the Middle East as represented by the green dotted lines in Figure 3.3. On March 18, 

northwesterly Shamal wind generated a sandstorm originating from the Tigris–Euphrates 

river valley that extended over the whole Arabian Peninsula. It was associated with a strong 

pressure gradient corresponding to the presence of a low pressure zone in southern Saudi 

Arabia, the Gulf of Oman, and Afghanistan/Pakistan, and a high pressure zone in the 

eastern Mediterranean Sea [Prakash et al., 2012]. On March 19, 2012, another major dust 

storm driven by northeasterly winds associated with north—south pressure gradient (see 

winds and pressure in Figure 3.8) originated from playas and agricultural areas around the 

border of Iran and Afghanistan/Pakistan, and further contributed to the dust loading over 

the Arabian Peninsula. Dust storms were also observed over West Africa and the Sahel 

region caused by northeasterly harmattan winds associated with northeast–southwest 

pressure gradient. The daily mean wind velocity exceeded 12 m s−1 over these affected 

regions on this day (Figure 3.8).   
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Figure 3.8. Simulated daily mean DOD on March 19, 2012 when large dust storms swept 

over the Middle East and North Africa. Daily mean Sea level pressure (hPa) 

and 10-m winds obtained from ERA-Interim reanalysis are also presented.  

The simulated and observed daily mean DOD over the study domain for March 19, 

2012 is presented in Figure 3.8. Although all the erodibility maps identify the case-study 
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dust storm and show general agreement with the observations, there are subtle regional 

differences in the spatial patterns, which highlight the need of accurate dust source 

characterization. The simulated surface winds (not shown) look very similar to the 

reanalysis winds presented in Figure 3.8, as expected because of the strong nudging. As 

compared to the AERONET DOD at two AERONET stations affected by the dust storms: 

Ilorin and Mezaira (Figure 3.3), the dust storms are represented reasonably well in the 

simulation using nudged winds but not using prognostic winds.  

3.4.4. Seasonality of emission and comparison with CALIOP data  

The simulated monthly mean DOD for four months representing four different 

seasons: February, May, August, and November with the new erodibility map is presented 

in Figure 3.9. The simulated fraction of DOD to AOD is also presented in Figure 3.9, which 

shows that dust is the dominant aerosol type over the region. This suggests that the large 

RMSE and MBE in simulated AOD as noted in section 3.4.1 and 3.4.2 is mainly from the 

contribution of mineral dust rather than from other aerosols.  

Isosurfaces of the mean monthly dust extinction coefficient at 532 nm from 

CALIOP data for the above months are presented in Figure 3.10 for a qualitative 

comparison. A strong seasonal variation in dust mobilization can be seen in both the model 

simulations and the CALIOP dust extinction data. The spatial patterns of model simulations 

are generally similar to that of CALIOP data in February and November but there is 

considerable mismatch in May and August especially in the westernmost parts of Africa 

where the model simulations show strongest dust mobilization. This mismatch was noted 

when compared to other observations/reanalysis data as well (not shown). Note that the 

areas where the model results and CALIOP data mismatch generally coincide with the 

areas where higher RMSE is located (Figure 3.4.2). We looked at the major input 
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parameters of the dust model to identify the reason for this high dust loading, but none of 

the input parameters distinctly showed a pattern matching the spatial pattern of the RMSE.  

 

Figure 3.9. Mean monthly simulated DOD (shaded) and fraction of simulated DOD over 

total AOD (contour) using the new erodibility map. 

Although the model reproduced the dust loading pattern for the case-study dust 

storm, the model was unable to reproduce many of the large-scale dust storms as noted 

previously even with the nudged winds (Figure 3.3). Such discrepancies are also observed 

when compared to CALIOP data. For example, over the Arabian Peninsula, strong dust 

signals are seen in winter (February) as well as in summer (May and August) in CALIOP 

data but the model fails to reproduce them, especially in February. Both winter and summer 

seasons are well known for Shamal winds in this region which generate large-scale dust 
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storms, typically originating from the Tigris–Euphrates basin and local Sabkhas [Reid et 

al., 2008]. Similarly, over Iran, Afghanistan, and Pakistan, dust emission is most active in 

February, May, and August as seen in CALIOP dust extinction data. These areas are known 

dust sources having numerous playas and agricultural areas (Figure 3.5, left), from where 

a number of well-documented episodic large dust storms have originated mainly by 

northerly/northeasterly winds [e.g., Rashki et al., 2012; Prakash et al., 2014]. The height 

and intensity of dust varies significantly over the months over the whole Middle East. So 

one of the reasons for the large bias over the Middle East as noted in sections 3.4.1 and 

3.4.2 could be due to model’s inability to capture these large episodic dust storms. 

 

     

Figure 3.10. Isosurfaces of mean dust extinction coefficient at 532 nm from CALIOP 

level 3 data showing dust loading in 3D over the MENA region.    
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3.4.5. Meteorological controls of dust emission over the study domain 

Figure 3.11 shows the major meterological surface parameters that govern dust 

mobilization over the study domain. Wind vectors and divergence (shaded) were derived 

from 10-m winds obtained from ERA-Interim reanalysis data used to drive the dust model. 

Contours represent the precipitation obtained from GPCP daily data. Major dust hotspots  

over the study domain receive no significant precipitation in most of the months as seen in 

Figure 3.11. Colocation of sand dunes that supply saltating particles, and agricultural areas, 

fluvial depsoits, and sabkhas, which have significant fine sediment, creates an ideal 

condition for dust emission in these areas [Prospero et al., 2002].  

In CALIOP dust extinction profile (Figure 3.10), stronger mobilization is observed 

in February, May, and August, and weaker mobilization is observed in November over the 

Middle East. Dust mobilization appears to be related to surface convergence because 

surface convergence is also stronger in February, May, and August, and weaker in 

November (Figure 3.11) over this region. Over the Iraq/Afghanistan/Pakistan region and 

the Arabian Peninsula, dust is uplifted much higher in August compared to other months, 

which is consistent with the stronger convergence observed. However, there is no 

substantial difference in the surface (10-m) wind velocity during these months. This 

suggests that some of the mismatch between model simulations and observations could be 

due to the poor representation of the seasonality of surface winds in the ERA-Interim data 

used to drive the model. 
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Figure 3.11. Horizontal divergence (shaded) in 105 s−1 and wind vectors derived from 

10-m winds of ERA-Interim reanalysis. GPCP precipitation (contours) is the 

monthly mean data in mm day−1. 

3.5. DISCUSSION 

Our results show that the correlation between simulated AOD (DOD) by CESM 

and observed/reanalysis AOD (DOD) improves when using nudged winds compared to 

prognostic winds, as one would expect, but significant biases still exist over known dust 

hotspots. Although CESM reproduces the general pattern of some large-scale dust storms 

over the MENA region when nudging is applied, many dust storms are not captured well 

(Figures 3 and 10). Significant discrepancy also exists on monthly scales in many known 

dust hotspots, especially over northwest/northeast Africa and the Middle East.  
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There can be several reasons for the bias between simulated and 

observed/reanalysis AOD (DOD). Some of the bias may be a sampling bias because all 

observations/reanalysis used have different spatial/temporal resolution and sampling 

frequency. For example, MODIS Aqua aerosol data having daily retrieval time around 

01:30 PM local time can miss many dust events, especially night time dust events. Further, 

satellite observations such as MODIS AOD also suffer from biases and uncertainties 

associated with the retrieval process and observational conditions [Shi et al., 2011]. The 

accuracy of the simulated DOD is also dependent on the assumed optical properties of dust 

and the treatment of its particle size distribution (PSD), which is simplified in CESM partly 

because the optical properties are not fully understood and partly because of computational 

constraints. Dust mobilization also depends strongly upon the representation of sub-grid 

variability of wind velocity [Cakmur et al., 2004], which can alter the estimated dust flux 

by a factor of 3 [Menut, 2008; Largeron et al., 2015]. Another large source of bias, as 

suggested by this study, is that the dust uplift due to convection, such as during global dust 

devils and haboobs is not represented well by the model which is a typical problem in most 

other global/regional dust models as well [e.g., Zender et al., 2003a; Marticorena and 

Bergametti, 1995]. These convective dust storms mainly occur by direct aerodynamic 

entrainment, which cannot be captured by the traditional saltation-based dust models 

[Klose and Shao, 2012]. Further, deep convection is not represented well in the ERA-

Interim data [Largeron et al., 2015], which our results also support because the model fails 

to reproduce the dust signals at higher altitudes observed in CALIOP dust extinction data. 

In the areas where convection is strong, surface wind velocity (and friction velocity) is 

generally reduced (Figure 3.11) but the vertical velocity is increased [Engelstaedter and 

Washington, 2007]. As the dust emission is parameterized in terms of friction velocity in 

the model, dust emission from these areas may be underestimated when the model 
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calculated friction velocity is not realistic. This problem is getting increased attention 

recently and attempts have been made to quantify the dust uplift due to convection [e.g., 

Cakmur et al., 2004; Koch and Renno, 2005; Marsham et al., 2011; Klose and Shao, 2012; 

Jemmett-Smith et al., 2015; Parajuli et al., 2015].  

We constrained the dust model to achieve a global average DOD of 0.025 and the 

simulation results are dependent upon this chosen constraint. The true value of global 

average DOD is not accurately known, partly because of the complexity of separating dust 

from other aerosols, and partly because of sampling bias and insufficiency in observations. 

As an example, the MACC reanalysis yields a global annual average DOD of 0.051 for 

2012, and the global annual average DOD in major global dust models vary by up to a 

factor of 4.5 [Kinne et al., 2005]. These discrepancies in observed dust burdens clearly 

highlights the challenges in dust emission modeling. Improvements are required both in 

model physics and in observations of dust properties [Evan et al., 2014].   

The use of proposed new observation-based erodibility map in CESM reproduces 

dust emission over the MENA reasonably well and improves the model performance over 

some dust source areas compared to other existing erodibility maps. It is, however, difficult 

to establish which map performs the best for several reasons including the varying 

performance of different erodibility maps by region [Zender et al., 2003b] and the 

sensitivity of the simulations to the underlying model [Luo et al., 2003; Cakmur et al., 

2006] as well as to the grid resolution [Ridley et al., 2013].  

Our observation-based erodibility map was derived based on 10 years of data 

(2003–2012) and such an observation-based map may not accurately capture changes in 

soil erodibility in long-term climate change scenarios [Kok et al., 2014]. However, 

representation of long-term change in soil erodibility is a complex issue that exists in other 

erodibility maps as well because soil erodibility is also governed by changes in sediment 
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supply associated with changes in sediment transport, and changes in sediment availability 

associated with soil surface properties such as soil moisture, crusting, and vegetation, both 

of which are affected by the dynamic interaction between the land and the atmosphere 

[Kocurek et al., 1999; Yoshioka et al., 2007; Parajuli et al., 2014]. A better representation 

of vegetation and soil moisture can potentially improve the simulation of these dynamics, 

but it has a limit because of the use of empirical parameterization for calculating the vertical 

dust mass flux and associated PSD. In this context, use of an observation-based erodibility 

factor in models can help to account for the complex physical processes controlling dust 

mobilization that are not yet fully understood. The developed erodibility map is dependent 

on the accuracy of the wind and AOD data used to derive the map but the map can be easily 

updated as the quality of the wind and AOD data improves.  

3.6. CONCLUSION 

In this work, we presented dust emission simulations using CESM under different 

wind forcings and using different erodibility maps. We used two types  of winds to drive 

the model: first was free-running CESM prognostic winds and the second was nudged 

winds using ERA-Interim reanalysis. We used three existing erodibility maps namely 

uniform, geomorphic, and topographic and a new observation-based erodibility map. We 

evaluated the model performance in simulating dust emission using multiple observations 

including AERONET, MODIS, and CALIOP data focusing on daily and monthly scales at 

which large-scale dust storms typically vary.  

Our results indicate that the dust emission simulated by CESM as driven by nudged 

reanalysis meteorology compares reasonably well with observations on daily to monthly 

scales despite CESM being a GCM. However, there are certain regions where the dust 

model cannot predict dust emission well and improvements are needed especially in 
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northwest/northeast Africa and the Middle East. The model performs weakly in the areas 

where recurring large-scale dust storms take place, for example, over the Arabian Peninsula 

and West Africa. The proposed observation-based new erodibility map, which identifies 

anthropogenic dust sources that are not directly represented by existing erodibility maps, 

shows improved simulations of dust optical depth or aerosol optical depth compared to 

existing erodibility maps in these dust source areas although the performance of different 

erodibility maps varies by region. Our results indicate that the mismatch between model 

simulations and observations may be partly due to the poor representation of winds in 

addition to deficiencies of the dust model in representing dust source mobilization in major 

dust hotspots.  
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Chapter 4: New insights into the wind-dust relationship in sandblasting 

and direct aerodynamic entrainment from wind tunnel experiments1 

4.1 ABSTRACT 

Numerous parameterizations have been developed for predicting wind erosion, yet 

the physical mechanism of dust emission is not fully understood. Sandblasting is thought 

to be the primary mechanism, but recent studies suggest that dust emission by direct 

aerodynamic entrainment can be significant under certain conditions. In this work, using 

wind tunnel experiments, we investigated some of the lesser understood aspects of dust 

emission in sandblasting and aerodynamic entrainment for three soil types, namely clay, 

silty clay loam, and clay loam. First, we explored the role of erodible surface roughness on 

dust emitted by aerodynamic entrainment. Second, we compared the emitted dust 

concentration in sandblasting and aerodynamic entrainment under a range of wind friction 

velocities. Finally, we explored the sensitivity of emitted dust particle size distribution 

(PSD) to soil type and wind friction velocity in these two processes. The dust concentration 

in aerodynamic entrainment showed strong positive correlation, no significant correlation, 

and weak negative correlation, for the clay, silty clay loam, and clay loam, respectively, 

with the erodible soil surface roughness. The dust in aerodynamic entrainment was 

significant constituting up to 28.3, 41.4, and 146.4% compared to sandblasting for the clay, 

silty clay loam, and clay loam, respectively. PSD of emitted dust was sensitive to soil type 

in both sandblasting and aerodynamic entrainment. PSD was sensitive to the friction 

velocity in aerodynamic entrainment but not in sandblasting. Our results highlight the need 

to consider the details of sandblasting and direct aerodynamic entrainment processes in 

parameterizing dust emission in global/regional climate models. 
1This chapter was previously published in Parajuli, S. P., T. M. Zobeck, G. Kocurek, Z.-L. Yang, and G. L. 

Stenchikov (2016b), New insights into the wind-dust relationship in sandblasting and direct aerodynamic 

entrainment from wind tunnel experiments, J. Geophys. Res. Atmos., 121, doi:10.1002/2015JD024424. S. 

P. P. designed the experiments with assistance from T. M. Z. and G. K.; T. M. Z., G. K., Z.-L. Y., and G. L. 

S. contributed in discussion and revisions; and S.P.P. wrote the manuscript.  
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4.2. INTRODUCTION 

The main mechanism for dust emission is believed to be 'sandblasting', in which 

saltating sand-sized particles bombard a soil surface and transfer a fraction of kinetic 

energy to the soil bed causing dust entrainment [ Bagnold, 1941; Shao et al., 1993]. 

Numerous parameterizations have been developed for predicting wind erosion based on 

field and wind tunnel experiments in which streamwise saltating mass flux and associated 

vertical dust flux are expressed in terms of wind shear stress [e.g., Bagnold, 1941; Gillette 

et al., 1974; Marticorena and Bergametti, 1995; Zender et al., 2003]. It is generally 

believed that mobilization of dust by 'direct aerodynamic entrainment' is not significant in 

comparison with sandblasting [Shao et al., 1993]. Dust emission by direct aerodynamic 

entrainment is not considered in saltation-based global/regional dust models [e.g., Zender 

et al., 2003], although some models [e.g., Gillette and Passi, 1988; Ginoux et al., 2001] 

account for the dust emitted by both mechanisms in terms of surface wind velocity. Several 

studies, however, have shown that under certain conditions, for example, in fine soils 

without crust [Loosmore and Hunt, 2000], silty agricultural soil [Kjelgaard et al., 2004], 

supply-limited desert surfaces [Macpherson et al., 2008], loess deposits [Sweeney and 

Mason, 2013], and under convective turbulence [Klose et al., 2014], the primary 

mechanism for dust emission is aerodynamic entrainment rather than sandblasting. In this 

work, we compare emitted dust concentrations and particle size distributions (PSD) in 

sandblasting to those in direct aerodynamic entrainment for a range of friction velocities in 

an attempt to understand the dynamics of dust emission in these two processes.   

Most of the previous studies [e.g., Chepil, 1950; Marshall, 1971; Marticorena and 

Bergametti, 1995; Lopez et al., 1998; Chappell et al., 2010] recognize the suppressing 

effect of non-erodible roughness elements on dust emission by momentum absorption. 

However, little is known about how dust emission responds when the surface roughness 
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consists of erodible roughness elements. A few previous studies [e.g., Gillette et al., 1980; 

Baddock et al., 2011; Sankey et al., 2011] have found that disturbing soil enhances dust 

emission, but these have not explored the underlying reasons. In this work, we explicitly 

focused on investigating the effect of erodible surface roughness in dust emitted by direct 

aerodynamic entrainment. Surface roughness here refers to the mm-scale micro-relief or 

variable-scale physical roughness of the erodible soil surface.  

The sensitivity of the emitted dust PSD to soil type has been investigated recently 

[e.g., Floyd and Gill, 2011; Shao et al., 2011a], but without considering the emission 

mechanism. With the exception of Alfaro et al. [1997], previous field and wind tunnel 

experiments [e.g., Gillette et al., 1974; Sow et al., 2009; Shao et al., 2011a] including a 

recent comparative study of past field and wind tunnel data [Kok, 2011] show that emitted 

dust PSD does not depend on wind friction velocity (hereinafter called friction velocity). 

In this work, we also investigated the sensitivity of the emitted dust PSD to soil type and 

friction velocity.  

In summary, this work investigates dust emission in sandblasting and direct 

aerodynamic entrainment in a wind tunnel for three soil types: clay, silty clay loam, and 

clay loam, and explores the following specific research questions: 

1. What is the role of soil surface roughness in dust emission by direct aerodynamic 

entrainment?   

2. How does the concentration of dust emitted in direct aerodynamic entrainment 

compare to that in sandblasting for a range of friction velocities? 

3. Is the PSD of the emitted dust in direct aerodynamic entrainment and sandblasting 

sensitive to soil type and friction velocity?  
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4.3. BACKGROUND 

4.3.1. Dust emission by sandblasting 

Saltation is initiated when the wind friction velocity 𝑢∗ exceeds a critical threshold 

known as the threshold friction velocity 𝑢∗𝑡  [Bagnold, 1941], which is often expressed as 

a function of soil particle size and moisture [Iversen and White, 1982; Gillette and Passi, 

1988; Ginoux et al., 2001]. The resulting saltating mass flux and subsequent dust emission 

by sandblasting depend upon several factors including the erodibility of the underlying bed 

[Ho et al. 2011], height of the saltation layer [Bagnold, 1941; Owen, 1964], the distance at 

which equilibrium is reached in the saltation layer [Anderson and Haff, 1991; Shao and 

Raupach, 1992], soil clay content [Marticorena and Bergametti, 1995], soil crusting 

[Gillette, 1978; Rice et al., 1996; Rajot et al., 2003; O’Brien and McKenna Neuman, 2012], 

and compaction of the soil bed [Lu and Shao, 1999; Gordon and McKenna Neuman, 2009].  

4.3.2. Dust emission by direct aerodynamic entrainment 

Dust emission by aerodynamic entrainment is governed by several factors such as 

surface roughness [Sankey et al., 2011], soil disturbances [Gillette et al., 1980], particle 

size [Bagnold, 1941; Shao and Lu, 2000; Zobeck et al., 2013], crusting [Gillette, 1978], 

cohesion [Shao and Lu, 2000], fetch effect [Roney and White, 2006], carbonate content 

[Zobeck and Amante-Orozco, 2001; Mockford, 2013], and soil dry stability [Zobeck et al., 

2013]. Surface roughness appears to be one of the main controlling factors of dust emission 

in direct aerodynamic entrainment. Roughness configuration can affect horizontal 

sediment flux and dust emission by modifying the threshold friction velocity [Greeley et 

al., 1991], wind momentum transferred to the soil surface [Marshall, 1971; Dong et al., 

2002], proportion of a land surface over which 𝑢∗ exceeds 𝑢∗𝑡 [Webb et al., 2014], and 

through sheltering effects by non-erodible roughness elements [Marshall, 1971; Zobeck, 

1991; Raupach et al., 1993; Marticorena and Bergametti, 1995; Brown et al., 2008; 
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Chappell et al., 2010]. Aerodynamic roughness length 𝑧0, which is the height in the wind 

profile at which the wind velocity theoretically becomes zero, is generally derived by 

measuring the wind profile in the turbulent boundary layer and usually treated as a constant. 

However, 𝑧0 is extremely sensitive to the surface roughness [Dong et al., 2002], so it is 

important to characterize its value under the natural conditions at which saltation and dust 

emission take place. Surface roughness has been quantified with geometric indices such as 

roughness height distribution, ridge to height ratio, roughness density and micro-relief 

index [Allmaras et al., 1966; Currence and Lovely, 1970; Potter et al., 1990; Zobeck et al., 

2003], and brightness of the surface which is directly related to the measured  𝑧0 [Dong et 

al., 2002; Chappell et al., 2010; Shao et al., 2011b].  

4.3.3. Particle size distribution (PSD) of emitted dust 

Measurement of particulate matter such as PM10 and PM2.5 (particulate matter 

with an aerodynamic diameter of less than 10 and 2.5 µm, respectively) and their PSD 

during dust events are essential because of implications for Earth’s radiative forcing [Tegen 

and Lacis, 1996] and human health [Kellogg and Griffin, 2006]. Many global/regional 

climate models, including the Community Earth System Model (CESM) and the Weather 

Research and Forecasting Model coupled with Chemistry (WRF-Chem), use the 

parameterizations proposed by Ginoux et al. [2001] and Zender et al. [2003]. In these 

models, the calculated vertical dust mass flux is generally distributed log-normally in a 

certain range of particle size bins usually between 0.1 and 10 𝜇m, which is based on 

observations during field campaigns [e.g., D’Almeida, 1987].  

Although the PSD of emitted dust is mostly governed by the parent soil PSD, it can 

change drastically during the process of dust emission because of disaggregation [Gillette 

et al., 1974; Arriaga et al., 2006; Shao et al., 2011a]. In sandblasting, soil particles may be 

disaggregated because of the impact of saltating sand particles [Alfaro et al., 1997] and due 
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to inter-particle collision [Crouvi et al., 2012], which, in turn, can affect the particle size 

distribution of the dust emitted. In direct aerodynamic entrainment, smaller loose particles 

may be mobilized earlier although cohesion usually restricts their emission [Shao and Lu, 

2000; Gordon and McKenna Neuman, 2009].   

The PSD of emitted dust generally follows a lognormal distribution, which has been 

demonstrated by many wind tunnel studies [e.g., Gillette, 1978; Alfaro et al., 1997] and 

field studies [e.g., Patterson and Gillette, 1977; D’Almeida, 1987; Sow et al., 2009]. In the 

global dust-modeling context, simplified distributions such as lognormal distributions are 

preferred because of ease in computation, although more sophisticated methods such as 

log-hyperbolic and Weibull distributions have been proposed to describe real world PSDs 

[e.g., Christiansen et al., 1984; Zobeck et al., 1999]. The frequency function for a 

lognormal PSD can be written as 

                           
𝑑𝑁

𝑑 log 𝐷
=  

𝑁

√2𝜋 𝐷 log 𝜎𝑔
exp [

(log 𝐷− log 𝐷𝑔)2

2 𝑙𝑜𝑔2𝜎𝑔
]                                 (4.1) 

where 𝐷 is particle diameter, 𝑁 is the total aerosol number concentration, 𝐷𝑔 is the mean 

modal diameter or geometric mean diameter, and 𝜎𝑔 is the geometric standard deviation 

[Hinds, 1982].  
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4.4. MATERIALS AND METHODS 

4.4.1. Soils/sand used 

 

Figure 4.1. Three soil types used in this study. Clay (left), silty clay loam (middle), and 

clay loam (right). 

Three types of soil were used in this study (Figure 4.1). The first was a commercial, 

kaolinitic soil (H. C. Spinks Company, Inc., Paris, Tennessee) containing 77.1% clay, 

22.2% silt, and 0.6% sand as determined by the hydrometer method. This soil was 

classified as clay and was extremely loose and powdery to the touch. The second and third 

soils were natural, loose, surface soils collected from rangeland near Las Cruces (Jornada), 

New Mexico. The second soil contained 30.1% clay, 52.9% silt, and 17% sand and was 

classified as ‘silty clay loam’. The third soil, classified as ‘clay loam’, contained 28.4% 

clay, 37.1% silt, and 34.4% sand. The sand used as abrading material was a prewashed, 

well-sorted fine sand named Oklahoma #1 sand, which was virtually dust free (0.03% < 10 

µm) [Van Pelt et al., 2010; Zobeck et al., 2013]. The soil types and size distribution of 

abrading sand used in this study were similar to those used in some past studies [e.g., Shao 

et al., 1993; Alfaro et al., 1997]. The dry PSDs of the soils and abrading sand are presented 
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in Figure 4.2. They were obtained by using the dry system of a commercially available 

laser diffraction particle-sizer (Beckman Coulter Multisizer LS 13 320).  

 

Figure 4.2. Dry particle size distribution of the clay, silty clay loam, clay loam soils, and 

abrading sand.  

4.4.2. Wind tunnel set-up 

Three sets of experiments outlined in section 4.4.7 were conducted in a wind tunnel 

facility of the United States Department of Agriculture-Agriculture Research Service 

(USDA-ARS)/Wind Erosion and Water Conservation Research Unit located in Lubbock, 

Texas. The wind tunnel is a suction-type, non-recirculating tunnel about 10 m in length 

with a cross-section of 0.5×1.0 m. Convergence and flow straightening takes place in the 

initial section of the tunnel after which a deep boundary layer is developed in the tunnel. 

More details on the wind tunnel are described elsewhere by Ravi et al. [2006] and Amante-

Orozco [2000]. The wind tunnel has a non-erodible, rough bed made by gluing coarse sand 

on the floor. The maximum free stream wind velocity attainable is about 15 m s−1. The 

soil was contained in a tray of dimensions 0.5 (length) × 0.1 (width) ×
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0.004 (depth) m, which was oriented with its length parallel to the wind direction as 

shown in the schematic diagram of the wind tunnel (Figure 4.3).  

 

Figure 4.3. Schematic diagram of the longitudinal cross section of the wind tunnel. 

Reynolds number (𝑅𝑒) and Froude number (𝐹) were used to characterize the flow 

in the wind tunnel, which are given by 𝑢𝐻/𝜈 and 𝑢2/𝑔𝐻, respectively, where 𝑢, 𝐻,  and 𝜈 

are free-stream wind velocity, height of wind tunnel, and kinematic viscosity of air, 

respectively. A threshold Reynolds number of 1400 [Bagnold, 1941, pp 46] and a Froude 

number upper limit of 20 [Pietersma et al., 1996] are suggested for a turbulent boundary 

layer to be developed. 

4.4.3. Determination of friction velocity 

The wind profile was determined by collecting wind velocity measurements with a 

hot-wire anemometer from eight different heights of 0.05, 0.055, 0.104, 0.203, 0.303, 

0.402, 0.502, and 0.602 m at a wind-tunnel section immediately upstream of the soil bed. 

The wind profiles were measured at different target free-stream wind velocities of 3, 6, 9, 

12, and 15 m s−1 by setting the fan speed to various levels. The average aerodynamic 

roughness length was then determined from these wind profiles by using the well-known 

semi-logarithmic equation: 



 80 

𝑢 (𝑧) =  
𝑢∗

𝑘
 ln

𝑧

𝑧0
                                              (4.2) 

where 𝑢 (𝑧) is wind velocity at height 𝑧, 𝑢∗ is friction velocity, 𝑘 is Von Kármán’s 

constant (equal to 0.4), and 𝑧0 is aerodynamic roughness length.  

The average aerodynamic roughness length derived using the wind profiles was 

then used to calculate the friction velocity corresponding to actual wind velocity measured 

at a central height of 0.50 m above the wind-tunnel floor during the experiment.  

4.4.4. Roughness determination 

Roughness of the soil surface was measured with an HDI Advance 3-d scanner 

from LMI Technologies, which can produce a digital elevation model of the surface being 

scanned at an accuracy of up to 45 𝜇m. The 3-d scanner scans the intended surface for a 

few seconds using a pair of cameras, generating a few million points per scan. The scanning 

was done from outside the tunnel through the Plexiglas surface after the soil tray was 

positioned flush with the wind tunnel floor. Because of the physical limitations and 

positional constraints of the scanner, the field of view covered only about the central 56% 

of the total sample tray length, but covered the whole width (0.1 m).  

We used a standard deviation index (SDI) [Arvidsson and Bölenius 2006;  García 

Moreno et al., 2008], the standard deviation of the soil surface elevations, to characterize 

surface roughness. This index represents the effect of both random and oriented roughness 

[García Moreno et al., 2008]. It is given by 

𝑆𝐷𝐼 =  √
1

𝑁−1
∑ (𝑍𝑖 − �̅�)2𝑁

𝑖=1             (4.3) 

where 𝑍𝑖 is the elevation of 𝑖𝑡ℎ point, �̅� is the mean elevation, and 𝑁 is the number of 

points.  
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4.4.5. Emitted dust measurement 

A portable optical laser spectrometer (GRIMM 1.109) designed to measure the dust 

particle number or concentration in 31 channels sized between 0.25 and 32 𝜇m was used 

to measure the PSD of emitted dust. Dust concentration measured by the GRIMM is 

presented in terms of mass concentration 𝑑𝑚/𝑑𝑙𝑜𝑔𝑑𝑝 averaged over one minute for the 

sandblasting and the direct aerodynamic entrainment cases, where 𝑑𝑚 represents the 

fraction of dust mass concentration in a channel and 𝑑𝑝 is the particle diameter. The air 

was sampled isokinetically from the entire vertical profile of the tunnel immediately 

downwind of the soil bed using a vertical slot sampler with a width of 3 mm. Because the 

sampling was done from the whole vertical section of the tunnel, the concentration 

measured by the GRIMM represents the average particle concentration of the vertical 

concentration profile [Stout and Zobeck, 1996]. More details about the GRIMM instrument 

are given by Amante-Orozco [2000] and Van Pelt et al. [2010].  

4.4.6 Saltation measurement 

The sand supplied from the hopper was introduced into the tunnel floor 

approximately 6.5 m upwind from the center of the soil tray through three drop tubes. The 

saltating flux was monitored using a SENSIT sensor, which counts particles hitting the 

sensor per unit time. The sensor of the SENSIT was located 22 cm downwind of the soil 

tray at a height of 2.5 cm above the tunnel floor off-center of the longitudinal axis of the 

soil tray. It is noted that the SENSIT counted the sand particles that did not strike the soil 

bed at all, particles rebounded after hitting the soil bed, as well as soil particles ejected 

from the soil bed. Although the SENSIT does not directly provide the total streamwise 

saltating sand flux, it provides a good measure of relative change in the saltating sand flux 

at different friction velocities.  
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4.4.7 Experiments 

Three sets of experiments were conducted in this study. The first set was the 

‘roughness case’, which was designed to address the first research question given in section 

4.1. Similarly, the second and third sets were the ‘direct aerodynamic entrainment case’ 

and ‘sandblasting case’ designed to address the second and third research questions, 

respectively.  

  

Figure 4.4. Dressing tool used for roughening the soil surface (left) and a sample picture 

of the rough surface created for the clay soil (right). 

The purpose of the ‘roughness case’ was to investigate the effect of surface 

roughness on dust emission by direct aerodynamic entrainment. The experiment was 

conducted at two constant target free-stream wind velocities of  9 and 12 m s−1 for all three 

soils without a supply of abrading sand. The soil within the section of the soil bed being 

scanned was roughened by a hand-held dressing tool (Figure 4.4) consisting of three wheels 

each with 10 points. Each wheel was 4 cm in diameter and 0.5 cm from the adjacent wheel. 

The initial geometric roughness of the soil bed (see Figure 4 for a sample picture) was 

measured with the scanner after which the soil bed was exposed to the target wind velocity 

in the wind tunnel. Twenty six measurement were collected at each target wind velocity 

and for each soil by running the dressing tool across the soil bed a variable number of 
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times, thus creating variable surface roughness. The dressing tool was run only in 

transverse direction for consistency, which created oriented roughness perpendicular to the 

soil bed length. The wind tunnel was turned on and the emitted dust concentration was 

measured over a one minute period by the GRIMM. Total dust concentration was then used 

for analysis calculated by summing the dust concentrations in all bin sizes. A one minute 

averaging time was chosen to be consistent in all experiments, and because dust emission 

from the soil surface largely stopped after about a minute.  

In the direct aerodynamic entrainment case, the emitted dust concentration and PSD 

were measured at five different target wind velocities (3, 6, 9, 12, and 15 m s−1) without a 

supply of abrading sand for all three soils. The experiment at each target wind velocity was 

repeated three times to check for reproducibility. The soil surface was roughened by 

running the dressing tool over it in order to enhance the dust signal. The dressing tool was 

run carefully a fixed number of times at each repetition to ensure consistency. The wind 

tunnel was then turned on, and the emitted dust concentration and PSD were measured 

immediately over the subsequent one minute period.  

In the sandblasting case, the emitted dust concentration and PSD were measured 

for the three soils at only three target free-stream wind velocities of 9, 12, and 15 m s−1 

because sand was deposited on the tunnel floor at wind velocities below 9 m s−1. The 

experiment at each target wind velocity was repeated three times to check for 

reproducibility. Abrading sand was introduced through the hopper at a constant rate of 

459.6±6.3 g min−1. The minimum friction velocity of ~ 0.45 m s−1  (corresponding to 9 

m s−1 free-stream wind velocity) was larger than the threshold friction velocity of 0.3 

m s−1 calculated using an empirical equation from Shao and Lu [2000] for the mean 

diameter of the abrading sand. Visual examination confirmed that saltation took place 

without any deposition of the sand particles on the wind tunnel floor at all target wind 
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velocities. The soil tray was filled with soil and leveled smooth after which it was installed 

in the wind tunnel flush with the tunnel floor. The wind tunnel was turned on and the 

background concentration was measured for an initial 30 seconds before the abrading sand 

was introduced from the hopper. The background dust measured was very low (see results 

section) compared to the dust emitted after the abrading sand was introduced.  Therefore, 

it was reasonable to assume that dust emission was mainly due to sandblasting. An 

averaging time of one minute was chosen because the soil bed eroded to the full depth of 

soil by sandblasting after about one minute when exposed to the highest target wind 

velocity.   

Each set of experiments were conducted on the same day to limit daily variations 

in temperature and humidity. For all sets, a fresh test soil bed was used for each run. The 

wind velocity was brought up to the target wind velocity as quickly as possible in a 

consistent manner.  

4.5. RESULTS 

4.5.1. Boundary layer measurements 

The mean aerodynamic roughness length calculated from all five wind profiles at 

different target wind velocities was 0.15 mm. The friction velocities corresponding to 

target wind velocities of 3, 6, 9, 12, and 15 m s−1 were 0.15, 0.30, 0.45, 0.61, and 0.73 

m s−1, respectively. The Reynolds number ranged from 1.91 × 105 to 9.57 × 105 and the 

Froude number ranged from 0.9 to 22.9 between 3 and 15 m s−1 target wind velocities, 

respectively, indicating the development of a fully turbulent boundary layer even at the 

lowest target wind velocity.  
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Figure 4.5. Typical digital elevation models of the roughened soil surfaces in the 

roughness case for the (a) clay (b) silty clay loam, and (c) clay loam.   

(a) Clay 

(b) Silty clay loam 

(c) Clay loam 
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Figure 4.6. Relationship between standard deviation index (SDI) of elevations and one-

minute averaged emitted dust concentration for the three soils at two 

different target wind velocities. Measured dust represents dust emitted by 

direct aerodynamic entrainment in the roughness case.  
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4.5.2. Roughness case 

Typical digital elevation models of the rough surfaces for the three soils are 

presented in Figure 4.5. The vertical stripes in Figure 4.5 are the oriented surface roughness 

features created by the dressing tool. It is noted that the SDI represents the standard 

deviation in elevation of the whole soil surface and not only that of the roughened surface.  

The observed relationships between mean dust concentration and the SDI for the 

three soils at 9 and 12 m s−1 are presented in Figure 4.6. The emitted dust concentration 

for the clay soil showed strong dependence on surface roughness with significant (P<0.05) 

correlation coefficients of 0.72 and 0.79 at 9 and 12 m s−1, respectively. The emitted dust 

concentration did not seem to depend upon the surface roughness for the silty clay loam at 

either wind velocities as the correlation was insignificant (P>0.05). Similarly, the dust 

concentration was inversely related to the SDI for the clay loam with significant (P<0.05) 

correlation coefficients of 0.47 and 0.49 at 9 and 12 m s−1, respectively.  

4.5.3. Direct aerodynamic entrainment case 

The concentrations of the emitted dust at different target wind velocities for the 

three soils in the direct aerodynamic entrainment case are presented in Figure 4.7. The low 

standard error in emitted dust PSD measurements represented by the shading shows that 

the rough surfaces created on the soil were consistent across the three repetitions. In 

general, dust concentration increased with increasing friction velocity for all the soils. One 

minute averaged dust concentrations summed over all bins for the clay soil at 9, 12, and 15 

target wind velocities were 84, 211, and 219 𝜇g m−3, respectively. Similarly, the dust 

concentrations were 69, 166, and 239 𝜇g m−3 for the silty clay loam and 130, 395, and 848 

𝜇g m−3 for the clay loam at 9, 12, and 15 target wind velocities, respectively. All the soils 

had two unique peaks in the PSD, which may be related to the initial soil PSD (Figure 4.2).  
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Figure 4.7. Emitted dust concentration by particle diameter at different friction velocities 

in the direct aerodynamic entrainment case for the three soils. Shading 

represents the standard error of the three repetitions. Note the difference in 

y-axis scales. 
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Figure 4.8. Temporal profile of mean emitted dust concentration in the direct 

aerodynamic entrainment case for the three soils. Note the difference in y-

axis scales. 
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The mean temporal profiles of dust concentration at different friction velocities for 

the three soils are presented in Figure 4.8. The dust concentration rose quickly after the 

wind tunnel was turned on and started decreasing after reaching the peak. The temporal 

profiles also confirmed the trend of increasing dust concentration with friction velocity for 

all the soils.  

Table 4.1. Differences in mean modal diameter (𝜇𝑚) by soil type within target wind 

velocity for the direct aerodynamic entrainment case. 

  

Target Wind 

Velocity (m s-1) 

Soil Type 

Clay Silty 

Clay 

Loam 

Clay 

Loam 

3 3.19b* 3.18b 3.39a 

6 3.54a 3.15b 3.37ab 

9 3.73a 3.36b 3.29b 

12 3.84a 3.37b 3.38b 

15 3.83a 3.53b 3.74ab 

*Means with the same letter within a target wind velocity are not significantly different 

(P>0.05) as determined by two-sample t-tests among comparisons by soil type. 

The results of two-sample t-tests for testing the sensitivity of the mean modal 

diameter of the emitted dust to the soil type are presented in Table 4.1 showing significant 

differences in the mean modal diameters (P<0.05) from different soils in certain cases. This 

suggested that the PSD was sensitive to soil type in the direct aerodynamic entrainment 

case. Similarly, t-tests results (Table 4.2) revealed significant differences in the mean 

modal diameters (P<0.05) at certain friction velocities. This indicated that the mean modal 

diameters were sensitive to the friction velocity as well. 
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Table 4.2. Differences in mean modal diameter (𝜇𝑚) by target wind velocity within soil 

type for the direct aerodynamic entrainment case. 

  

Soil Type 

Target Wind Velocity (m s-1) 

3 6 9 12 15 

Clay 3.19b* 3.54c 3.73ac 3.84ac 3.83a 

Silty Clay Loam 3.18b 3.15b 3.36b 3.37b 3.53a 

Clay Loam 3.39ac 3.37ac 3.29bc 3.38ac 3.74a 

* Means with the same letter within a soil type are not significantly different (P>0.05) as 

determined by two-sample t-tests among comparisons by target wind velocity. 

4.5.4. Sandblasting case 

SENSIT count data (Figure 4.9) showed that saltation intensity generally increased 

with increasing friction velocity for all soils. There appears to be a consistent bias in the 

SENSIT count data of the three soils at each friction velocity. This could be due to 

differences in soil bed properties that can affect particle rebound. The bias could also be 

related to soil PSD, which can affect the number of counts registered by the SENSIT sensor 

as the smaller particles tend to follow the streamlines around the sensor and may not be 

registered.  

 

Figure 4.9. SENSIT counts data (sec−1) averaged over one minute plotted against friction 

velocities for the sandblasting case. Error bars represent the standard 

deviation of the three repetitions. 
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Figure 4.10. Emitted dust concentration by particle diameter at different friction 

velocities in the sandblasting case for the three soils. Note the difference in 

y-axis scales. Shading represents the standard error of the three repetitions.  

Figure 4.10 shows the mean dust concentration by particle size at three different 

target wind velocities in the sandblasting case. The dust concentration generally decreased 

with increasing friction velocity. One minute averaged dust concentrations summed over 

all bins for the clay soil at 9, 12, and 15 target wind velocities were, 10,747, 8,985, and 772 

𝜇g m−3, respectively. Similarly, the dust concentrations were 1,509, 1,421, and 578 

𝜇g m−3 for the silty clay loam and 1,899, 1,876, and 579 𝜇g m−3 for the clay loam at 9, 12, 

and 15 target wind velocities, respectively. Note that the dust concentration for clay soil 

was about one order of magnitude higher than for the silty clay loam and clay loam, unlike 

in the direct aerodynamic entrainment case where the clay loam had about three times the 

concentration as that of the clay and silty clay loam. The sharp reduction of dust 

concentration at 15 m s−1 is noted and was consistent for all the soils, although the 

reduction was higher for the clay.  
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Figure 4.11. Temporal profile of mean emitted dust concentration in the sandblasting case 

for the three soils. Note the difference in y-axis scales. 
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Figure 4.11 shows the mean temporal profiles of the emitted dust concentration in 

the sandblasting case. The sharp increase in dust concentration after about 30 seconds 

marks the impact of saltating particles on the soil bed. The dust concentration fluctuated 

more for the silty clay loam and clay loam than for the clay, possibly due to the soil texture 

differences; the former two contained more soil peds. The emitted dust concentration 

quickly reached the maximum after which the dust emission rate did not change much.  

Table 4.3. Differences in mean modal diameter (𝜇𝑚) by soil type within target wind 

velocity for the sandblasting case. 

  

Target Wind 

Velocity (m s-1) 

Soil Type 

Clay Silty 

Clay 

Loam 

Clay 

Loam 

9 3.70a* 3.42b 3.59ab 

12 3.71a 3.36b 3.41b 

15 3.56a 3.28b 3.41a 

*Means with the same letter within a target wind velocity are not significantly different 

(P>0.05) as determined by two-sample t-tests among comparisons by soil type. 

The results of the two-sample t-tests (Table 4.3) showed that the mean modal 

diameters of the dust emitted from the three soils were significantly different from each 

other (P<0.05) at all friction velocities indicating that the PSD was sensitive to the soil type 

in the sandblasting case as well. However, the t-tests results showed that the mean modal 

diameters at different friction velocities were not significantly different (P>0.05) from each 

other for all the soils (not presented). The mean modal diameter of the emitted dust, 

therefore, did not depend upon friction velocity in sandblasting.  
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4.6. DISCUSSION 

4.6.1. Roughness case 

One of the most commonly accepted theoretical explanations on the effect of non-

erodible surface roughness in dust emission is given by the drag partitioning approach 

[Marshall, 1971]. The momentum extracted by non-erodible roughness elements is 

primarily controlled by roughness density, which is usually expressed in terms of lateral 

cover or frontal area index [Marshall, 1971; Marticorena and Bergametti, 1995; Chappell 

et al., 2010] as 𝜆 =  𝑛𝑏ℎ/𝑆, where 𝑛 is the number of roughness elements within an area  

𝑆, and 𝑏 and ℎ are the width and height of roughness elements, respectively. The 

consequence of such drag partitioning is that dust emission decreases with increasing 

roughness density of the non-erodible elements due to the increase in apparent threshold 

friction velocity [Marticorena and Bergametti, 1995].  

Although there were no non-erodible roughness elements in our soil bed, the ridges 

on the roughened soil surface may have absorbed some momentum, and may also have 

caused a sheltering effect, both of which would suppress dust mobilization. But these 

effects cannot explain the differences in the nature of the relationship between dust 

concentration and SDI observed (Figure 4.6) for the three soils as the method employed 

for soil surface roughening was similar for all the soils. It appears that the differences were, 

to some extent, due to differences in sand content in the three soils. Sand content was lowest 

in the clay soil (0.6%), thus most of the momentum was transferred to the silt/clay particles 

that were essentially the sources of dust. Thus the emitted dust concentration showed 

strong, proportional dependence upon surface roughness for the clay soil. The dry sand 

content was higher in the silty clay loam (17%) and less momentum was transferred to the 

silt/clay particles as compared to the sand particles when the SDI was higher. The 

increasing effect of dust mobilization in the silt/clay fraction was balanced by the 
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suppression caused by more momentum transfer to the sand particles at higher SDI. 

Therefore the emitted dust concentration showed no dependence on SDI. Similarly, for the 

clay loam, sand content was even higher (34.4%) and even more momentum was 

transferred to the sand particles resulting in an inverse relationship between the dust 

concentration and the SDI.  

4.6.2. Direct aerodynamic entrainment case 

The dust concentration for all soils in aerodynamic entrainment generally increased 

with increasing friction velocity and the main mode of dust PSD was ~ 1-10 𝜇m. The 

decrease in dust concentration after reaching the peak (Figure 4.8) may be due to the 

decrease in the degree of erodible surface roughness, which determine the availability of 

loose soils. The changing surface roughness caused changes in the threshold friction 

velocity [Greeley et al., 1991] and the momentum transferred to the particles [Marshall, 

1971] which control particle mobilization. The temporal profile of dust emission was very 

similar to the results of a wind tunnel experiment for pure dust configuration reported in 

Shao et al. [1993].  

The percentage of dust in aerodynamic entrainment as compared to sandblasting 

increased with the wind speed. The dust concentration in aerodynamic entrainment at 15 

m s−1 for the clay and silty clay loam were 28.3 and 41.4% of sandblasting, respectively. 

For the clay loam, dust concentration in aerodynamic entrainment at 15 m s−1 was even 

higher (146.4%) than in sandblasting. These results indicate that dust emitted by direct 

aerodynamic entrainment is significant and cannot be neglected in modeling dust emission. 

As the results of the roughness case (section 4.5.2) indicate, the aerodynamically entrained 

dust seemed to be affected by the erodible surface roughness suggesting that this effect 

should be further explored and accounted for in modeling dust emission. Results of the 

sensitivity tests (Tables 4.1 and 4.2) showed that emitted dust PSD was sensitive to both 
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soil type and friction velocity in the direct aerodynamic entrainment case. In the dust 

modeling context, these results indicate that the soil type and friction velocity are important 

factors to be considered when prescribing the emitted dust PSD, although their detailed 

inclusion is often limited by computational constraint [Liu et al., 2012]. 

4.6.3. Sandblasting case 

Unlike in the aerodynamic entrainment case, the emitted dust concentration from 

the clay was significantly higher than that from the other two soils in the sandblasting case. 

We believe that the higher emission from the clay soil was due to a higher sandblasting 

efficiency, because the clay soil was looser and had a greater proportion of silt and clay 

compared to the other two soils. In a test of 37 soils in a dust generator, Mockford [2013] 

also found an increase in airborne dust with increasing clay and silt content.  

The main mode of emitted dust PSD observed in the sandblasting case was ~1-

10 𝜇m for all the soils, which was strikingly similar to that in the direct aerodynamic 

entrainment case despite the existence of different particle modes in the initial soil PSDs 

(Figure 4.2).  

Results of the sensitivity test showed that emitted dust PSD was sensitive to soil 

type in sandblasting as well. The dust PSD did not show sensitivity to the friction velocity 

in sandblasting, which was consistent with many previous studies [e.g., Gillette et al., 1974; 

Shao et al., 2011a; Sow et al., 2009; Kok, 2011]. However, the previous studies did not 

distinguish between sandblasting and aerodynamic entrainment.  

The observed evolution of dust emission with time (Figure 4.11) was similar to that 

observed by Shao et al. [1993] in a wind tunnel experiment. However, our observations 

contrasted with theirs in the sense that we observed a decrease in dust concentration with 

increase in friction velocity. Our results cannot be compared directly to Shao et al. [1993] 

for a number of reasons. First, in their experiment, sand was supplied from a thick sand 
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bed placed immediately upwind of the soil bed, which in our case, was supplied from a 

hopper at a constant rate. Because of the difference in the way the sand was supplied, 

supply limitation at higher wind velocity is less likely in their case as compared to ours. In 

contrast, because the tunnel length available for saltation development was shorter in their 

case, development of steady state saltation is less likely compared to ours, which can affect 

the saltating mass flux. Finally, the length of our soil bed was smaller compared to theirs, 

which can affect particle impact density and subsequent dust emission.  

There are two potential mechanisms for the decrease in emitted dust concentration 

at higher wind velocities. First, a constant flux of sand supplied might have resulted in 

under-saturation at higher wind velocity [O’Brien and McKenna Neuman, 2012; Li and 

McKenna Neuman, 2012]. Although the saltation intensity generally increased with 

increasing friction velocity (Figure 4.9), the possible effect of supply limitation cannot be 

ruled out because the particles from the soil surface may have also contributed to the 

SENSIT counts. The second possibility is that the mean jump length (𝑙) might have 

increased with increasing friction velocity [Sørensen, 1985; Alfaro et al., 1997; Ho et al., 

2011], causing a decrease in dust emission due to reduced impact frequency. Such a 

reduction in particle impact frequency at higher friction velocity has not been well 

documented in aeolian research but it has been theoretically modeled and experimentally 

validated in many fluvial bedload-transport studies [e.g., Sklar and Dietrich, 1998; Sklar 

and Dietrich, 2004]. Although the mean volume of sediment eroded per impact increases 

linearly with the increase in impact velocity as the flow velocity and bed shear stress 

increase, the maximum rate of bed erosion occurs at intermediate levels of excess shear 

stress due to the reduction in impact frequency [Sklar and Dietrich, 1998; Whipple and 

Tucker, 2002; Sklar and Dietrich, 2004]. We conducted two supplementary experiments, 
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namely ‘supply limitation test’ and ‘impact frequency test’, in order to ascertain which of 

these two mechanisms affected our results.  

 

Figure 4.12. (a) SENSIT counts data averaged over one minute in the supply limitation 

test and impact frequency test, (b) Mass of dried, trapped sand collected 

over one minute in the impact frequency test. Error bars represent the 

standard deviation of the three repetitions.  

We recorded the SENSIT counts without the soil bed in the supply limitation test. 

A flat wooden board with a similar surface to that of the wind tunnel floor was used in 

place of the soil bed, and the saltating sand rate over one minute period was measured at 

the three target wind velocities. These SENSIT counts are presented in Figure 4.12a and 

showed an increasing trend, indicating that the saltation flux increased with the increase in 

friction velocity. This result ruled out the possibility of a decrease in dust emission at higher 

wind velocity due to supply limitation.  

In the second test, we measured sand impact frequency by using a Petri dish filled 

with water in place of the soil bed. The saltating sand particles striking the surface of the 

water in the Petri dish were not able to rebound and were effectively trapped. Trapped sand 
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over one minute at the three target wind velocities was dried overnight and weighed. Figure 

4.12b plots trapped sand mass against friction velocity, and clearly showed that impact 

frequency was reduced at higher wind velocity. These results support the interpretation that 

the reduction in dust concentration at higher wind velocity was due to the reduction in 

impact frequency. The SENSIT counts data in the impact frequency test are also presented 

in Figure 4.12a, showing an increasing trend as expected. It is noted here that the SENSIT 

measures the impact counts of the sands per second at a fixed point. While the SENSIT 

counts can be used as a proxy for saltating flux, it cannot be used as a proxy for impact 

frequency, which is the impact counts per unit horizontal surface area.  

To illustrate the effect of the increased jump length on impact frequency, consider 

saltation of a single sand particle. Let the length of soil bed be 𝐿, and the mean jump length 

of the saltating particle be 𝑙. Assuming a perfectly elastic collision, when 𝑙 = 𝐿/4, the sand 

particle is likely to hit the bed four times, when 𝑙 = 𝐿/2 the particle is likely to hit the bed 

twice, and so on. Therefore the net flux of particles impacting the bed or impact frequency 

should be proportional to 𝐿/𝑙, which is what is accounted for in the bed erosion model of 

Sklar and Dietrich [1998].  

In reality, the process of dust ejection after sand particle impact, known as splash 

entrainment, is much more complex. The above assumption that the emitted dust is 

proportional to the impact frequency may not be strictly true because some momentum is 

lost by the particle into the bed depending upon properties of soil bed such as crusting, 

particle size, plasticity, and soil moisture [e.g., Rice et al., 1996; Ginoux et al., 2001; 

O’Brien and McKenna Neuman, 2012]. The saltation length and height after impacting the 

soil bed also depends upon the lift-off velocity and turbulence [Shao and Li, 1999], and the 

coefficient of restitution of the bed [Anderson and Haff, 1988].  
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4.7. CONCLUSION 

In this paper, we investigated three important aspects of dust emission in 

sandblasting and direct aerodynamic entrainment for three different soil types, namely clay, 

silty clay loam, and clay loam using wind tunnel experiments. First, we investigated the 

role of erodible roughness in dust emitted by direct aerodynamic entrainment. Second, we 

compared the concentration of emitted dust in sandblasting and direct aerodynamic 

entrainment under a range of friction velocities. Finally, we investigated the sensitivity of 

dust PSD emitted by sandblasting and direct aerodynamic entrainment to the wind friction 

velocity and soil type.  

The dust emitted by aerodynamic entrainment showed strong positive correlation, 

no significant correlation, and weak negative correlation for the clay, silty clay loam, and 

clay loam, respectively, with the erodible soil surface roughness at millimeter spatial scale. 

The soil surface roughness was quantified in terms of standard deviation in elevations of 

the soil bed as measured by a 3-d scanner. Because the surface roughness measurement 

method employed in this study is scale dependent and the results were sensitive to soil 

types, validity of this result should be tested at other scales of surface roughness and for 

other soil types.   

Our results showed that dust emission by direct aerodynamic entrainment is 

significant and can be even higher compared to that by sandblasting under certain 

conditions. The dust emitted by aerodynamic entrainment at 15 m s−1 as compared to 

sandblasting was up to 28.3, 41.4, and 146.4% for the clay, silty clay loam, and clay loam, 

respectively. We note that, in nature, because sandblasting and direct aerodynamic 

entrainment tend to occur simultaneously, the reduction in dust concentration at higher 

wind velocities during sandblasting as observed in this study may not be apparent. 
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As friction velocity increased, the concentration of dust emitted by direct 

aerodynamic entrainment generally increased while that by sandblasting decreased, with 

the increase in friction velocity. We found that the PSD of emitted dust was sensitive to 

soil type in both sandblasting and direct aerodynamic entrainment cases. Mean modal 

diameters of emitted dust were dependent on friction velocity in the direct aerodynamic 

entrainment case but not in the sandblasting case under the range of friction velocities 

tested. Further study should be done to fully establish the sensitivity of emitted dust PSD 

on other soil types and at other wind velocities, especially in the higher velocity range in 

which large-scale dust storms occur in nature.   

Our results have implications for dust emission modeling suggesting that 

consideration of the details of sandblasting and direct aerodynamic entrainment processes 

while parameterizing dust emission can improve dust characterization in global/regional 

climate models. Although our tests were done for only three soil types: clay, silty clay 

loam, and clay loam, these soils are representative of major disturbed dust sources like 

agricultural fields, urban settings, construction sites, and cattle grazing areas.  
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Chapter 5: Understanding dust emission mechanism by extracting 

locally mobilized dust aerosols from satellite aerosol optical depth data 

using principal component analysis  

5.1 ABSTRACT 

Despite the increasing availability of satellite and ground-based aerosol optical 

depth (AOD) data, their application in dust modeling is limited because these data do not 

differentiate locally mobilized dust from remotely advected dust and other aerosols. In this 

work, we extract the locally mobilized dust optical depth (DOD) from historical AOD data 

through a principal component analysis of wind and AOD time series (2003–2012). 

Principal component analysis effectively identifies the correlated signature between wind 

and AOD making it possible to separate the dust component from AOD data. Using the 

reconstructed DOD, we then study the effect of key environmental variables, namely wind, 

soil moisture, soil temperature, vegetation, and boundary layer height on dust emission 

using a multiple regression model. Principal component analysis effectively identifies the 

correlated signature between wind and AOD making it possible to separate the dust 

component from AOD data. All the model terms representing the environmental variables 

and their interactions in the regression model are significant indicating their possible 

association with the dust emission mechanism. The developed regression model has an 

overall R-squared (RMSE) of 0.72 (0.23). Dust emission is simulated using the developed 

regression model over the MENA region and qualitatively compared with the results from 

a global dust model and satellite observations.   

5.2. INTRODUCTION 

Mineral dust is the dominant aerosol type in the total atmospheric aerosol budget 

[Seinfeld and Pandis, 2006; Zhang et al., 2012] but quantification of its surface flux and 

particle size distribution remains challenging [Shao et al., 2011]. Several previous studies 
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[e.g., Cakmur et al., 2006; Huneeus et al., 2011; Evan et al., 2014] have shown that there 

is a considerable mismatch between simulations from the state-of-the-art global climate 

models and observations in terms of dust emission and transport.   

Satellite data [Shao and Dong, 2006] and reanalysis data [e.g., Parajuli et al., 2014; 

Kim et al., 2014] are increasingly used in dust emission studies because of their higher 

spatial/temporal resolution and accuracy. Aerosol optical depth (AOD) data from the 

Moderate-Resolution Imaging Spectroradiometer (MODIS) satellite, such as Deep Blue 

AOD [e.g., Hsu et al., 2004] have particularly improved our understanding of dust source 

dynamics [e.g., Ginoux et al., 2012; Parajuli et al., 2014]. Unfortunately, AOD data have 

some limitations and cannot be directly utilized for dust emission studies without some 

preprocessing to extract the useful signal, which is the soil-derived local mineral dust in 

our case. AOD represents a mixture of several aerosol types such as those from biomass 

burning, organic aerosols, sea-salt aerosols, and advected dust from surrounding regions, 

although it is dominated by mineral dust in dust source regions. Further limitations of the 

AOD data include biases and uncertainties associated with the retrieval process and 

observational conditions [Shi et al., 2011], the inability to infer the height of the dust layer, 

cloud contamination, and the limitation to one-time daily retrieval (01:30 PM local time), 

all of which can cause misrepresentation of some dust events.   

This work consists of two steps. First we extract the dust component associated 

with surface dust emission, herein called dust optical depth (DOD), from AOD data (a 

process herein called DOD reconstruction). Our hypothesis is as follows. The locally 

mobilized mineral dust component of AOD, being mobilized by surface wind, should have 

a stronger covariance with surface wind compared to advected dust and other aerosol types, 

and thus should lie in the first few, if not first, principal components. We then investigate 

the relationship between the reconstructed DOD and wind speed, soil moisture, soil 
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temperature, vegetation, and boundary layer height (herein collectively called independent 

variables) , and use these variables to develop an empirical multiple regression model for 

predicting DOD. The resulting model is simple yet powerful and includes the potential 

effects of several environmental variables and their interactions on dust emission, which 

are not directly accounted for in current global and regional dust models.  

5.3. METHODS 

5.3.1. Datasets and study area 

Because dust mobilization is largely a surface process, we focus on the use of data 

that best represents the land surface. We selected several key surface variables that are 

potentially related to DOD. The selected variables were 10-m wind, soil moisture, soil 

temperature, vegetation, and boundary layer height. We also considered precipitation and 

divergence in our preliminary analysis, but these did not contribute to the predictive ability 

of the regression model and were excluded in further analysis. 

We used Level-3 Deep Blue AOD [Hsu et al., 2004] daily data from the MODIS 

Aqua satellite (1°× 1°), which is available even over bright reflecting surfaces such as 

deserts. We also used the corresponding Deep Blue Angstrom Exponent (AE) data for 

separating the coarse-mode mineral dust from the AOD based on the commonly used AE 

criteria [Eck et al., 1999] in order to compare its effectiveness to our method of DOD 

reconstruction. We used the latest version of the MODIS dataset (collection 6) [Hsu et al., 

2013] because of its extended coverage and improved Deep Blue aerosol retrieval 

compared to the earlier version (collection 5).  

We used 10-m wind speed and boundary layer height data from ERA-Interim 

reanalysis [Dee el al., 2011] because this reanalysis is relatively more accurate over North 

Africa than other reanalyses [Parajuli et al., 2014; Largeron et al., 2015]. Surface-layer 
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soil moisture and temperature data were obtained from the Global Land Data Assimilation 

System (GLDAS)/NOAH dataset available at 1°× 1° every three hours [Rodell et al., 2004]. 

GLDAS reanalysis data are generated by assimilating several satellite and ground-based 

datasets and have been applied successfully in dust emission studies recently [e.g., Kim et 

al., 2015; Khalesifard et al., 2015]. We used normalized difference vegetation index 

(NDVI) data [Huete et al., 1999] from MODIS Terra satellite as the indicator of vegetation, 

which is a 1°× 1° monthly dataset resampled from the gridded 0.05°× 0.05° degree dataset.  

 

Figure 5.1. Study domain showing the 10-year mean MODIS Deep Blue AOD (2003-

2012). Bodélé area used to develop the model is marked by the black 

rectangle.  

This study uses long-term (2003-2012) daily/monthly data of the above-mentioned 

satellite AOD data and reanalysis data collected over a small area (14-16°N, 16-19°E) 

around Bodélé (Figure 1). As one of the most active dust source areas in the Middle East 

and North Africa (MENA), Bodélé has AOD values reaching above 0.75 (Figure 5.1). This 

area was represented by twelve 1°× 1° grid cells, which was selected to provide sufficient 

variations in soil moisture and NDVI over this region. As one of the objectives of this study 
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was to investigate the effect of soil moisture and vegetation on dust emission, we extended 

the study area southeast where the variation in soil moisture and vegetation was higher. 

The process of dust emission is extremely complex and many of the processes 

involved are scale dependent. The datasets used are available at different resolutions and it 

is very difficult to maintain the uniformity of spatial and temporal resolution. Although 

MODIS level 2 data are available at a higher resolution (~ 0.1°× 0.1°), not all other data 

are available at this resolution. The focus of this study is on understanding the synoptic-

scale dust emission process for which the 1°× 1° data are appropriate. In fact, large-scale 

dust storms that affect daily lives over the study region are synoptic in nature; for example, 

most of them are associated with the Shamal and Harmattan winds [Koren et al., 2006; 

Parajuli et al., 2014]. So the data resolution used in this study reflect a balance of data 

availability and our purpose of understanding large-scale dust emission.  

All data were collected for 2003-2012 and the independent variable data were 

aggregated to the resolution of MODIS AOD data, i.e., 1°× 1°, daily. European Reanalysis 

(ERA)-Interim and GLDAS data were extracted at 12:00 GMT, which is 01:00 PM over 

Bodélé, and is the closest available reanalysis time to MODIS Aqua overpass time (01:30 

PM). Although the total number of samples collected were 120×12 for NDVI (monthly 

data) and 3653×12 for all other variables (daily data), the effective number of samples was 

reduced to 31042 because of the presence of missing data in the AOD dataset (~ 25%).  

5.3.2. DOD reconstruction 

Our method of DOD reconstruction is an extension of the approach of Parajuli et 

al. [2014] who used the strength of correlation between AOD and surface wind speed as a 

proxy for surface erodibility. We conducted principal component analysis (PCA) on the 

10-m wind and AOD data to identify the correlated signature between wind and dust. PCA 

has been widely applied for similar purposes in meteorology [e.g., Kutzbach, 1967; Wilson 
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and Adamec, 2001; Jin et al., 2014]. We used PCA on the time-series data of 10-m wind 

and AOD for DOD reconstruction. In the literature, this technique has been given different 

nomenclature including multivariate empirical orthogonal function (MV-EOF), extended 

EOF, or composite EOF with some variation in the formulation of covariance matrix [Chen 

and Harr, 1993]. We performed PCA on the time-series data of 10-m wind and AOD using 

the correlation matrix (i.e., by centering and standardizing the data). The correlation matrix 

consisted of 24 columns, 12 for AOD and 12 for wind corresponding to the 12 grid cells 

over the study domain. We then used the principal components that showed the expected 

physical relationship between wind and AOD to reconstruct DOD. For comparison, we 

also extracted the coarse-mode component from the AOD dataset using a frequently 

applied method based on AE criteria [e.g., Eck et al., 1999; Ginoux et al., 2012; Parajuli 

et al., 2014] by removing AOD values having AE greater than a specified threshold (e.g., 

zero). Dust is known to be dominated by coarse-mode particles and shows Angstrom 

Exponent close to or less than zero [Eck et al., 1999].  

5.3.3. Multiple regression model 

After DOD reconstruction, we used the reconstructed DOD as the dependent 

variable and original data on wind, soil moisture, soil temperature, NDVI, and boundary 

layer height as independent variables to develop a multiple regression model. Because 

DOD is reconstructed using wind data, one might think that wind may not be considered 

as an independent variable. However, note that by conducting PCA, we only extract dust 

component within the AOD data that is correlated with the wind, which is made further 

clear later in section 5.4.1. Correlation between DOD and wind is something that already 

exists and this existence is a physical manifestation of the dust emission process.  

The histograms of the dependent variable and the independent variables (Figure 

5.2) show that the data represent a wide range of variability in the dependent and 
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independent variables. As mentioned before, we wanted to ensure that the sample data 

represents a possible range of values in nature relevant to dust emission. For example, the 

soil moisture values range from about 150 to 250 𝑘𝑔 𝑚−2 which is wide enough for 

understanding the effect of soil moisture on dust emission. At above 250 𝑘𝑔 𝑚−2, dust 

emission would not usually occur which is also shown later in section 5.4.2.   

Figure 5.2 also shows that the data distributions are not perfectly normal except for 

wind data. It is a usual practice to transform either dependent or independent variables such 

as using logarithm to make the data distribution normal before conducting regression 

analysis. However, because normality of variables is not a requirement in regression 

analysis [Williams et al., 2013a] and transformation can make the interpretation of the 

regression model terms more complex, we use the raw original data of independent 

variables for developing the regression model. Rather, we focus on achieving the normality 

of residuals which is an essential test of a good regression model [Gunst and Mason, 1980, 

pp. 239]. Although we used some of the best available datasets, they are not free from 

errors especially those related to resolution and data production algorithm. So the 

robustness of the regression model is limited by the accuracy of the datasets used to develop 

the model. Further, although we use a large sample size in this study, due to the nature of 

the problem, it is not possible to create a perfectly random sample because the choice of 

study area and data time range itself are subjective. In this context, our purpose here is to 

build an empirical regression model that can provide some insights into plausible physical 

connections between the independent variables and the dependent variable. 
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Figure 5.2. Histograms of the reconstructed DOD and independent variables.  

We first randomized the dataset and divided it into two segments. We used two-

thirds of the data for developing the model (training dataset) and kept one-third for testing 

(validation dataset). Preliminary identification of potentially significant model terms was 

done by conducting stepwise regression in which all possible combinations of independent 

variables up to degree two were tested. But because stepwise regression can overlook the 

existence of alternative good subsets of predictors [Hawkins, 1973], selection of final 

model terms was done after several iterations informed by the prevailing knowledge of the 

dust emission process with a goal of maximizing R-squared and minimizing RMSE and p-

value of the tested terms. We used squared wind term because it is known that emitted dust 

flux follows power law with wind speed [Ishizuka et al., 2014; Shao, 2008]. 

Using the developed regression model, we also simulated DOD over the whole 

MENA region, also called the dust belt, for the whole year of 2012 using daily mean data 

in order to highlight the dust source areas. Although there are no datasets of locally 
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mobilized DOD to which our simulated results can directly be compared, we compared our 

simulations to some datasets that closely represent the locally mobilized dust. We 

compared the simulated DOD with three independent datasets, namely the DOD simulated 

by the coupled Community Earth System Model (CESM) nudged by ERA-Interim 

reanalysis [Parajuli et al., 2016], the Cloud-Aerosol Lidar with Orthogonal Polarization 

(CALIOP) DOD [Winker et al., 2013], and the coarse-mode AOD (AE≤0) used in this 

study.   

5.4. RESULTS AND DISCUSSION 

5.4.1. DOD reconstruction 

As shown in the scree plot (Figure 5.3), only the first principal component 

(accounting for 60.3% variance) represented the expected physical wind-dust relationship 

and thus DOD was reconstructed using the first principal component alone.  

 

Figure 5.3. Scree plot of the variance explained by each principal component. 

Components needed to explain 95% variance only are shown.   
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The reconstructed DOD plotted against the original wind data is presented in Figure 

5.4. Note that although the PCA was done on the time-series of AOD and wind, we 

reconstructed the AOD (called reconstructed DOD) only and not the wind. This is because 

our purpose was to extract the dust component contained in the AOD data that co-varies 

with the wind. Original 10-m wind values were used in Figure 5.4 and in further analysis. 

Although PCA seeks linear relationships among the variables by definition, we can see in 

Figure 5.4 that the relationship between the wind and reconstructed DOD is not perfectly 

linear which is because we did not reconstruct the wind. The DODs reconstructed using 

the second and third principal components which explained 19.2 and 4.7% variance, 

respectively, are also presented in Figure 5.4. The remaining principal components 

including the second and third did not show the characteristics of locally mobilized dust. 

For example, AOD decreased with increasing wind speed in the second principal 

component (Figure 5.4, green color), indicating that these remaining components do not 

represent locally mobilized dust. In other words, all the first principal component 

coefficients were positive while it was not the case for the remaining principal components. 

Time series or principal component scores of the first three principal components are 

presented in Figure 5.5. The first principal component scores are high around the 

winter/early spring season (Dec-Feb) and low around the summer season (July-Sep). This 

pattern is understandable because dust emission caused by Harmattan winds is strongest in 

winter/early spring around the Bodélé depression [Koren et al., 2006; Parajuli et al., 2014]. 

The time series of the second and third principal components have opposite patterns in 

general and have lower variability compared to the first component.  
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Figure 5.4. Reconstructed DOD using the first three principal components vs. original 10-

m winds.  

 

Figure 5.5. Time series of the first three principal components or principal component 

scores. Data have been smoothed with a 30 day period for clarity.  

In PCA, it is important to ascertain that the principal components are representing 

some physical phenomena because PCA or MV-EOF is a purely statistical technique and 
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Adamec, 2001]. In our case, we wanted to ascertain that the relationship between wind and 

reconstructed DOD observed in the first principal component to represent the physical 

wind-dust relationship that would not be sensitive to the seasonality or location. Because 

the time series of the first principal component shown in Figure 5.5 shows seasonality, it 

is possible that the wind-dust relationship seen is simply due to association and may not be 

indicative of physical connection in which case the relationship would not be valid at other 

locations where the seasonality of dust emission is different compared to the study area. 

So to ascertain the validity of wind-dust relationship observed above, we conducted PCA 

using data of all 10 years with a particular month December, the starting month of the 

winter season when the dust emission is usually high. Figures 5.6 and 5.7 shows the results 

of PCA using the December data similar to Figures 5.4 and 5.5. These figures again show 

similar results confirming that the first principal component represents the physical 

connection between wind and dust. While it is difficult to know exactly what the remaining 

principal components represent, it is reasonable to eliminate these since they do not 

represent locally mobilized dust. But most probably, as hypothesized, these components 

represent either transported dust at higher altitude, cloud contamination, or other aerosols 

such as biomass burning aerosols. It is also possible that these components represent the 

underlying errors in the wind and AOD data.  
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Figure 5.6. Same as Figure 4 but using only December data. The first, second, and third 

principal components explain 69.4%, 16%, and 3.5% of the variance, 

respectively.  

 

Figure 5.7. Same as Figure 5 but using only December data. The first, second, and third 

principal components explain 69.4%, 16%, and 3.5% of the variance, 

respectively.  

5.4.2. Relationship between DOD and independent variables  

Figure 5.8 shows the scatter plot of the original AOD against 10-m wind (a) and 

the reconstructed DOD against each independent variable (b-f). Figure 5.8 reveals 

important information on the relationship between DOD and soil moisture, soil 

temperature, vegetation, and boundary layer height that was not apparent using the original 
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AOD data. Time-series plots of the data corresponding to Figure 5.8 for a particular grid 

cell are also presented in Figure 5.9 to provide further insight on the relationships. The grid 

cell was chosen so as to show a wide range of variation in all the variables.  

Figure 5.8a shows the scatter plot between the original AOD and the wind data in 

which the limitation of the original AOD data is apparent. For example, there are several 

data points in which wind speeds are low but the AOD values are very high, which do not 

represent locally mobilized dust. The AOD upper limit of 3.5, a radiative model constraint 

of the Deep Blue AOD retrieval algorithm [N. C. Hsu, personal communication, 2015], is 

also evident.  

Figure 5.8b shows the scatter plot between the reconstructed DOD and the wind 

data, which by comparison with Figure 5.8a, clearly shows that the non-local dust/aerosol 

signal was effectively eliminated. This reconstructed relationship is similar to the results 

of field and wind-tunnel experiments, which show that the vertical mass flux of dust is 

characterized by a power law relationship with wind speed [Ishizuka et al., 2014; Shao, 

2008].  

In Figure 5.8c, the increase in soil moisture is associated with lower DOD, which 

is a physical response of soil moisture on dust emission. Soil moisture is known to inversely 

[Pierre et al., 2012; Kim et al., 2014] affect dust emission by increasing the threshold 

friction velocity during both saltation [Selah and Fryrear, 1995; Ishizuka et al., 2005] and 

direct aerodynamic entrainment [Chepil, 1956; Funk et al., 2008]. 
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Figure 5.8. Scatter plots between AOD/reconstructed DOD and the independent 

variables: wind, soil moisture, soil temperature, NDVI, and boundary layer 

height. The data points represent all the daily/monthly data of 12 grid cells 

for the entire study period (2003-2012).  
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Figure 5.9. Time-series of the original AOD, reconstructed DOD, and the independent 

variables for a particular grid cell. SM: soil moisture, ST: soil temperature, NDVI: 

normalized difference vegetation index, and BLH: boundary layer height.  
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The direct effect of soil temperature on dust emission is not very well known and 

the causality of soil temperature-DOD relationship is more difficult to infer from the scatter 

plot (Figure 5.8d) alone because of the feedback effect. It is known that when the surface 

temperature is higher, convection is generally stronger, which can lead to enhanced dust 

emission due to stronger vertical wind fluctuations [Koch and Reno, 2005]. However, 

Figure 5.8d does not show such a relationship although there is a considerable scatter in 

the data. It can also be argued that the higher DOD values associated with lower surface 

temperature represent a net cooling effect as dust both scatters and absorbs radiation during 

strong dust events [Hansell et al., 2012]. However, examination of the time series plots 

(Figures 5.9b and 5.9e) suggests that the higher DOD values associated with lower surface 

temperature reflect the simple fact that dust emission is usually stronger in the 

winter/spring season.  

The inverse effect of vegetation on dust emission is apparent in Figure 5.8e. The 

figure also shows that the dust mobilization is fully suppressed when the NDVI approaches 

about 0.18. The suppressing effect of vegetation on dust emission is consistent with the 

findings of Urban et al. [2009], Bhattachan et al. [2013], Pierre et al. [2014] and Fan et 

al. [2014], and support the idea that the vegetation absorbs wind momentum by drag 

partition, momentum that would otherwise be available for dust emission [Raupach, 1992].  

Table 5.1. Correlation* matrix of the independent variables. 

 Wind Soil 

moisture 

Soil 

temperature 

NDVI Boundary 

layer 

height 

Wind 1.00 0.00 -0.39 -0.16 -0.43 

Soil moisture  1.00 0.04 0.37 -0.07 

Soil temperature   1.00 0.03 0.57 

NDVI    1.00 -0.07 

Boundary layer height     1.00 

 *All non-zero correlations are significant (P<0.001).  
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Figure 5.8f indicates that the DOD is strongly related to the boundary layer height 

as well. The relationship is very similar to the DOD-soil temperature relationship. 

Boundary layer height is in fact governed by the fluctuation in surface temperature, which 

is evident from the strong correlation observed between these variables as shown in Table 

5.1 (r = 0.57). As the time-series data (Figures 5.9b and 5.9g) show, the higher DOD values 

associated with the lower boundary layer height again reflect the fact that the dust 

mobilization is stronger in the winter/spring.  

The correlation matrix (Table 5.1) indicate that multicollinearity is not serious 

among the independent variables (all r < 0.6). When the multicollinearity is strong and 

interaction terms are used in a regression model, information provided by the individual 

independent variables may be repeated and the coefficient estimates may be distorted 

[Gunst and Mason, 1980].  

Table 5.2. Comparison of improvement in correlation by DOD reconstruction and using 

the coarse-mode AOD as compared to original AOD. 

Independent variables Correlation* with 

Original 

AOD 

Coarse-mode 

AOD (AE≤0) 

Reconstructed 

DOD 

10-m wind 0.42 0.50 0.74 

Soil moisture -0.17 -0.10 -0.18 

Soil temperature -0.11 -0.18 -0.32 

NDVI -0.26 -0.17 -0.40 

Boundary layer height -0.12 -0.22 -0.32 

*All correlations are significant (p < 0.001). 

Table 5.2 shows that the correlations between the independent variables and the 

reconstructed DOD (third column) are remarkably improved compared to original AOD 

(first column) for all the independent variables while the signs of correlations are 

preserved. These results provide further evidence that the first principal component 
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represents locally mobilized dust because the correlations are improved for other variables 

as well, not only with the wind. Looking at the correlation of soil temperature, NDVI, and 

boundary layer height with the wind (Table 5.1), one might think that these improvements 

in correlations could be because the reconstructed DOD by definition is correlated with the 

wind. However, this is not the case, as illustrated by the following two examples. First, if 

the improvements were because of the correlation between the independent variables and 

the wind, the resulting correlation between reconstructed DOD and the independent 

variable would not be better than the correlation between the independent variables and the 

wind, which is clearly not the case, for example for NDVI (r with wind is -0.16). Second, 

there is not a significant correlation between wind and soil moisture (Table 5.1) but the 

reconstructed DOD has significant correlation (r = -0.18) with soil moisture.  

Using the coarse-mode AOD (AE<0) also improved the correlations for some 

independent variables, but the improvement with DOD reconstruction was much more 

pronounced. Applying the constraint AE<0 removed 61.3% of the total available AOD data 

points. We also applied a different threshold of AE<0.75 which removed only 9.83% of 

the available AOD data points, but the correlations did not improve. These results point to 

the possibility that the use of Angstrom Exponent criteria may have removed fine-mode 

dust as well in addition to other fine-mode aerosol types. Note that the correlation with the 

soil moisture does not improve much, which is probably due to the lower accuracy of the 

GLDAS soil moisture data as it is a reanalysis obtained by assimilating limited soil 

moisture observations. For example, soil moisture time series (Figure 9d) shows a weaker 

annual cycle especially before 2005, while the NDVI time-series (Figure 9g), which is 

expected to respond to the soil moisture, shows a distinct annual cycle. 
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5.4.3. Multiple regression model 

The model terms, their coefficients, and standard errors of the developed regression 

model are presented in Table 5.3. Each coefficient of the model is significant (p < 0.001) 

for the null hypothesis that the coefficient is equal to zero (i.e., no effect of including the 

term in the model). The t-stat (ratio of the coefficient and standard error) of each term is 

sufficiently greater than 2 in absolute value, indicating that multicollinearity is not a 

problem.  

Table 5.3. Regression model terms, their estimated coefficients, and standard errors.  

 

 

 

 

  

 

  

Model 

Term 

Estimated  

coefficient 

Standard  

error 

Intercept 2.50E+01 7.00E-01 

(Wind)2 7.58E-03 2.58E-04 

Soil moisture -1.23E-02 2.95E-04 

Soil temperature -7.61E-02 2.28E-03 

NDVI -2.11E+02 6.24E+00 

Boundary layer height 5.26E-05 3.37E-06 

Wind × Soil temperature 9.11E-04 1.67E-05 

Wind × NDVI -1.52E+00 2.11E-02 

Wind × Boundary layer height -1.47E-05 6.37E-07 

Soil moisture × NDVI 7.35E-02 2.03E-03 

Soil temperature × NDVI 6.65E-01 2.03E-02 
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Figure 5.10. Effect of interactions (first five frames) and the main effects (last frame) of 

the independent variables on predicted DOD. The circles represent the 

effects and the horizontal lines represent the confidence intervals. Variables: 

𝑥1 ~ wind, 𝑥2 ~ soil moisture, 𝑥3 ~ soil temperature, 𝑥4 ~ NDVI, and 

𝑥5 ~ boundary layer height. 
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The first frame of Figure 5.10 shows the main effects of the independent variables 

which show that wind, NDVI, and soil moisture in order are the three variables having the 

largest effect on predicted DOD. Note that the main effects plot represents the effect of 

each independent variable on DOD provided all others held constant. The last five frames 

in Figure 5.10 are the interaction plots which show the effect of change in one independent 

variable on predicted DOD when the other variable is kept constant. The main effects (first 

frame) are plotted again in these interaction plots (last five frames) for the ease of 

interpretation.  

The sign of the individual coefficients of soil moisture and NDVI is consistent with 

their expected physical connection with DOD. The individual coefficient of soil 

temperature is negative which may be indicative of the stronger dust activity during the 

winter. Similarly, the individual coefficient of the boundary layer height is positive (note 

that the correlation between reconstructed DOD and boundary layer height was negative 

instead) which may account for the dust emission by convective turbulence [Koch and 

Renno, 2005] because higher boundary layer height indicates stronger convection.  

The interaction terms in the model indicate that the DOD depends on the degree of 

interaction among some independent variables as well. For example, wind affects DOD by 

interacting with three of the independent variables: soil temperature, NDVI, and boundary 

layer height. While interaction terms are difficult to interpret, they represent possible 

physical connections in our regression model. For example, relationship between DOD and 

wind can be affected by soil temperature and boundary layer height (both of which are 

measures of convection) because surface winds move towards the low-pressure convective 

areas. Similarly, relation between wind and DOD can also be modified by vegetation 

because vegetation absorbs part of wind momentum [Raupach, 1992] and can also cause 

sheltering effect [e.g., Marticorena and Bergametti, 1995; Chappell et al., 2010]. The soil 
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moisture and NDVI interaction term could represent the coupling between vegetation and 

soil moisture while the soil temperature and NDVI term could account for the temperature 

control on vegetation [e.g., Williams et al., 2013b].  

Figures 5.11a and 5.11b present the model predicted DOD vs. reconstructed DOD 

data for training and validation datasets, respectively. The R-squared (RMSE) of the model 

is 0.77 (0.22) and 0.72 (0.23) for the training and validation dataset, respectively, indicating 

that the model is robust. The best-fit line for testing dataset does not pass through origin 

suggesting the existence of some bias in the model. Although we randomized the data in 

time, the 12 pixels data are biased in space because not all 12 grid cells have equal data 

variability. For example, in Figure 9d, the maximum reconstructed DOD does not exceed 

a value of 2 for the particular grid cell shown which may not be the case in other grid cells. 

So the model tends to overestimate DOD for some grid cells and underestimate for other 

grid cells, which is reflected by the difference in data lying in the upper and lower part of 

the best fit line in Figures 5.11a and 5.11b. The histograms of the residuals for training and 

validation data presented in Figures 5.11c and 5.11d respectively show the expected near 

normal distribution. Residuals plotted for the training and validation datasets are also 

presented in Figures 5.11e and 5.11f, which do not show any systematic trend against the 

predicted DOD confirming the validity of the model.  
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Figure 5.11. Plot of model predicted DOD vs. reconstructed DOD for (a) training data (b) 

validation data, distribution of residuals for (c) training data and (d) 

validation data, and residuals vs. predicted DOD for (e) training data and (f) 

validation data.  

(f) 

(a) (b) 
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Figure 5.12. Comparison of annual mean of model predicted DOD with that of CESM-

simulated DOD, CALIOP DOD and MODIS coarse-mode AOD for 2012. 

All maps are normalized for direct comparison.  

The normalized map of the averaged simulated DOD over the whole MENA region 

for the year 2012 is presented in Figure 5.12 along with the equivalent maps of the three 

datasets being compared. The spatial pattern of model predicted DOD is most similar to 

that of CESM-simulated DOD but the simulated map highlights many new dust sources 

that are not seen in any of the three maps. Although the four maps in Figure 5.12 appear 

different from each other, discrepancies among dust observational datasets occur due to the 

differences in location, time, and frequency of sampling. CALIOP DOD and MODIS AOD 

have very low frequency (one-time daily for MODIS and every 16 days for CALIOP DOD) 

and can miss many dust events that are captured by the CESM simulation especially at 

night. On the other hand, even the most sophisticated dust models including CESM have 

issues in reproducing dust events accurately because of inadequate parameterizations used 

and meteorological conditions simulated [Cakmur et al., 2006; Huneeus et al., 2011; Evan 
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et al., 2014; Parajuli et al., 2016]. Note that the DOD predicted by our model represents 

only locally mobilized dust, while other available dust datasets may contain the signal of 

advected dust. Despite these discrepancies, new dust source areas identified in the 

simulated map are in qualitative agreement with some recent dust source maps such as 

Schepanski et al. [2012] and Tegen et al. [2013] who identified new dust source areas over 

North Africa using high frequency MSG SEVIRI satellite data. The new dust source 

locations are also consistent with the map of dust source geomorphology in Parajuli et al. 

[2014] which show large areas of potential dust sources such as sand dunes, agricultural 

areas, fluvial systems, and bed rock with sediments over the region.  

Our results demonstrate that soil moisture, soil temperature, vegetation, and 

boundary layer height play an important role in controlling the wind-dust relationship. Note 

that many dust models still use simplified dust emission parameterizations, often expressed 

in terms of some power of surface wind speed or friction velocity alone although a few 

models include the effect of soil moisture on modifying the threshold friction velocity [e.g., 

Zender et al., 2003; Kok et al., 2014] and the effect of vegetation on reducing dust emission 

from vegetated areas [e.g., Oleson et al., 2010]. In this context, allowing additional 

variables in parameterizing dust emission could minimize the existing mismatch between 

models and observations [Evan et al., 2014] and thus reduce the existing uncertainty 

regarding the aerosol radiative forcing [IPCC, 2013].   

We recognize that dust emission may also depend upon several other factors not 

included in our model. For example, dust emission is also dependent upon the sand and 

clay content or soil type [Gillette, 1979; Marticorena and Bergametti, 1995] and surface 

properties such as surface roughness [Chappell et al., 2010], soil crusting [Rice et al., 1996; 

O’Brien and McKenna Neuman, 2012], and soil compaction [Lu and Shao, 1999]. 

However, accurate data on these variables are not available, which make it difficult to 
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determine their contribution. While our regression model can be used to predict locally 

mobilized dust optical depth, as with other empirical models, care must be exercised when 

the model is used in a drastically different environment.  

5.5. CONCLUSION 

In this study we developed and quantified synoptic-scale empirical relationships 

between atmospheric dust loadings and environmental variables representing meteorology, 

soil hydrology, and vegetation conditions. This study consisted of two steps. We first 

reconstructed DOD values by extracting the locally mobilized dust component from 

historical AOD data (2003–2012) through a principal component analysis of wind and 

AOD time series. We then developed a multiple regression model using reconstructed 

DOD as the dependent variable and the satellite/reanalysis data of surface wind, soil 

moisture, soil temperature, vegetation, and boundary layer height as the independent 

variables. Results indicate that principal component analysis can effectively be used to 

separate the locally mobilized dust component from AOD data. As compared to the 

reconstructed DOD, the developed multiple regression model for predicting DOD is robust 

having an overall R-squared of 0.72 and root mean squared error of 0.23.  

Our study represents a novel contribution to the dust emission literature, which has 

seen extensive investigations through wind tunnel measurements, field experiments, and 

computational modeling. The empirical relationships observed in this study suggest 

potential effect of environmental variables and their interactions on dust emission which 

are generally not accounted for in existing dust models. Being locally mobilized dust data, 

our model predicted DOD data could be an important addition to the limited number of 

available dust datasets and could potentially be used to evaluate the performance of more 

physically-based dust models.  
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Chapter 6: Summary and future work 

6.1 SUMMARY 

Despite the tremendous implications of atmospheric dust on Earth’s radiation 

budget, biogeochemical cycles, hydrological cycles, human health, and visibility, dust 

emission modeling remains challenging. Currently, two main challenges exist in modeling 

the dust cycle effectively. First, despite the increased research effort in the last few decades, 

the physical mechanism of dust emission is not fully understood yet. Second, there is a 

difficulty to represent even the well-understood physical processes in climate models 

because these models are typically run in coarse, grid scale despite that fact that many of 

the emission processes can occur in very fine sub-grid scale. In this work, we examined 

these two problems from various perspectives with an interdisciplinary approach by 

integrating wind-tunnel experiments, geomorphological mapping, satellite observations, 

land surface modeling, atmospheric reanalysis, and fully coupled earth system modeling.  

In chapter one, we presented and described a new land cover map of the Middle 

East and Africa (MENA) region where most of the global dust hotspots are located. Given 

the general unavailability of high-resolution datasets of soil and land cover types in the 

MENA region, this map is helpful in understanding the role of geomorphology in dust 

emission. We used the correlation between ERA-Interim wind speed at 10 m and MODIS 

deep blue aerosol optical depth (AOD) at 550 nm to develop a new observation-based 

erodibility map on global scale and also quantified the erodibility of the different land cover 

types using this map. This method of quantifying land cover erodibility improves dust-

source characterization, especially in the areas of persistent dust transport, biomass 

burning, and agricultural areas, as compared to existing erodibility maps.  

In chapter two, we integrated the observed-based erodibility map developed in 

chapter one into the Community Earth System Model (CESM), conducted simulations, and 
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evaluated the model performance using multiple observations and reanalysis datasets. Dust 

emission simulated by CESM when driven by nudged reanalysis meteorology compared 

reasonably well with observations on daily to monthly scales despite CESM being a general 

circulation model. However, we noticed that there are certain regions where the 

aerosol/dust optical depth (AOD/DOD) biases are very high and improvements are needed 

especially in northwest/northeast Africa and the Middle East. The new erodibility map 

showed improved simulations of AOD/DOD compared to existing erodibility maps in 

certain dust source locations but the performance of different erodibility maps varied by 

region. 

In the third chapter, we provided insights on some of the lesser understood physical 

processes of dust emission using wind tunnel experiments and identified the areas of 

improvements needed in representing dust emission in climate models. We explored how 

surface roughness is related to dust emission for different soil types in dust emission by 

direct aerodynamic entrainment. Our results indicated that dust emission by direct 

aerodynamic entrainment can be significant and can be even higher compared to that by 

sandblasting under certain conditions. We also examined the sensitivity of the emitted dust 

particle size distribution on soil type and wind friction velocity and showed that the 

sensitivity depends upon the emission mechanism.  

In chapter four, we introduced a novel technique to separate locally mobilized dust 

component from AOD data which enables us to understand the dust emission process in 

synoptic scale using satellite and reanalysis data. We used principal component analysis 

on the time-series data of daily surface winds and aerosol optical depth data between 2003 

and 2012. Results showed that the locally mobilized dust component lies in the first 

principal component in which the surface winds and AOD are highly correlated. After 
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extracting dust signal from AOD data, we examined how the wind, soil moisture, soil 

temperature, vegetation, and boundary layer height are linked to the dust emission process.  

Collectively, in this dissertation, we addressed some of the existing problems in 

dust emission modeling by integrating geomorphological mapping, wind tunnel 

experiments, numerical modeling, and various satellite/ground-based observation. 

Inclusion of the proposed changes in Earth System Models should improve the simulated 

vertical dust mass flux, which will ultimately help reduce the current uncertainty in the 

radiative forcing by dust aerosols. This work will also inform the broader 

atmospheric/climate modeling community and provide stronger basis for developing air 

quality monitoring and dust storm forecasting tools. This work is essentially an 

interdisciplinary work among the climate modeling, remote sensing, field-based, and lab-

based communities.  

6.2 CAVEATS AND FUTURE WORK 

Some of the limitations of this work and future work required are discussed in each 

chapters which are elaborated further here. The land cover map developed in chapter one 

is a regional map which limits its application for global scale dust modeling. Although we 

classified different land cover types manually to ensure the accuracy, our mapping process 

is subjective to some extent and tedious as well. In this context, automated image 

classification techniques may be applied more efficiently to develop a high-resolution 

global land cover map in the future. Such an automated classification could benefit from 

the land cover types identified in our study for training and validation purposes. The 

observation-based erodibility map (global) proposed in this study was developed in a 

coarse scale (1° × 1°) and may not capture many important small-scale processes of dust 

emission. However, the idea presented in the study can be used to develop a higher-
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resolution erodibility map when higher resolution winds and aerosol optical depth are 

available.  

We examined dust emission process in sandblasting and direct aerodynamic 

entrainment in chapter three using a wind tunnel and provided insights on several aspects 

of dust emission. However, this study is not complete in the sense that our experiments 

were conducted below 15 𝑚𝑠−1 wind velocities but many of the large scale dust events in 

nature such as “haboob” are associated with much higher wind velocity. Further, given the 

high variability of soil types on global scale, results of this study need to be tested for 

additional soil types and or in field conditions.  

Although we used satellite and reanalysis data which are regarded as observations 

in our analysis in chapter four, these data have many underlying uncertainties and our 

results need to be tested and validated using other datasets as well. Our results may also be 

sensitive to the scale and location as our study focused over Bodele area using coarse scale 

data. Use of field observations from this area would help validate this study further. 
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