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Abstract

Classical �Zeno� And �Anti-Zeno� E�ect ?

Yingyue Li Boretz

The University of Texas at Austin,2011

Supervisor: E.C.G. Sudarshan

If one continuously measures a decaying system, the system will appear to never

decay that was called quantum Zeno e�ect. The continuous measurement is de�ned by

a sequence of measurements whose time interval t between measurements approaches

zero. Later many works chose the time interval t as �nite (and greater than the Zeno

time) which corresponds to making equal spaced measurements over a discrete time

interval. With the discrete variable formulism one can derive the so-called Anti-Zeno

e�ect. Our study is trying to contrast the results between continuous time interval

measurement versus discrete time interval measurement. We demonstrate that we can

obtain so-called �Zeno� and �Anti-Zeno� in a classical system if we apply the de�nition

of non-ideal measurement.
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1 Introduction

Unstable system have been intensively studied in quantum theory. A gen-

eral formulism gave unstable system as pure exponential decay[1][2].However,

Kal�n had shown that if the Hamiltonian was bounded from below, the de-

cay at small and large time domain there should be deviations from strictly

exponential decay law. In the very large t domain, the survival probability

has a power- law decay[3].

1977, Misra and Sudarshan gave a seminal work [4]. A unstable quantum

system at time T = 0 was denoted ρ(0) as the initial matrix density states

(undecayed states); and the time evolution of the states ρ(0) follows the

Schrodinger time develops as usual. If one takes a measurement at time

T = t , the initial state will change to a new state ρ′(t). At the limit

t→ 0 , the probability of decayed state is negligible. Hence, one may say,

ρ(0) ' ρ′(0); the measurement set the system back to the initial state.

Under this consideration, if one repeatedly measures the system with each

time interval t → 0 then the system appears never decay that was called

Quantum Zeno Paradox [4].

Later two speci�c cases of Zeno's paradox were investigated by Chiu,

Sudarshan and Misra, Ghirardi et.al [5]. The quantum Zeno was a con-

sequence of the �rst principle of quantum theory: dP (T )
dT = 0 at T = 0.

That is, survival probability at small time t,the survival probability can be
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written as

P (t) = 1− (
εT

n~
)2 (1)

For all ideal successive measurements, the survival probability at end of

nth observation

P (nt) = [P (t)]n = [1− (
εT

n~
)2]n

= 1− T 2

n
(
ε

~
)2 + .... (2)

The time interval t → 0 was regarded as n → ∞ here; and for n → 0

the P (nt)→ 1. This is, say, at T = nt the survival probability is still one.

The system appears never decay that was called Quantum Zeno E�ect.

Prashant Valanju has showed the evidence of Quantum Zeno E�ect in

hadron-nucleus collisions in which several interactions occur in rapid suc-

cession.[6 ].The Quantum Zeno E�ect was veri�ed by Itano et al in a three

level oscillation system. [7 ]

Quantum Zeno paradox has sparked a great of deal interest in the �eld

today. Some of them claimed that new decay laws were found in unstable

quantum system ; and suggested that the new property of the unstable

quantum system might give the Zeno or/Anti-Zeno e�ect (or Inverse Zeno

e�ect) [8][9].

In 2001 Physical Review Letters, M.C.Fischer et.la have claimed Zeno

E�ect and Anti Zeno E�ect were observed in their experiment[10]; and

various papers also claimed the existence of Zeno e�ect and Anti-Zeno

2



e�ect by all kind of means[ 11][ 12] [13 ][14 ].

Those works suggested one can obtain Zeno e�ect and Anti-Zeno e�ect

with more realistic measurement protocols. Namely, the time interval t

is small (still greater then Zeno time) but not approaching to zero. In

this thesis, we select and summarize some of these papers. we analysis

the fundamental di�erence between the original theory and the extension

of the Zeno and Anti-Zeno e�ect. More importantly,we show how the

deviations lead to some contradictory results�we can obtain �Zeno� and

�Anti-Zeno� e�ect in a classical radioactive decay system ! We also point

out if the measurement is non-ideal for a quantum system, the probability

of repeated measurement yields an inconsistence. Furthermore, we want to

say the survival probability decreasing as number measurement increasing

was results of selective measurement (due to non-ideal measurement) which

essentially is the same as the Stern-Gerlach experiment.

2 The Extension of Zeno and Anti-Zeno E�ect

2.1 Experimental model

In 2001,M.Raizen Group published a article on the Physical Review Letter

[10]. In the Letter they claimed quantum Zeno and Anti-Zeno were ob-

served in an unstable system. We are here giving a simple description of

their experiment.

A group of ultracold sodium atoms were placed in periodic-optical trap

formed by two optical beams. The time dependence of the optical potential
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traps were given as

V0cos[2kLx− kLat2] (3)

where the V0is the amplitude of the potential, kLis the wave number of

the light forming the potential, x is the position in the laboratory frame,

a is the acceleration, and t is time. The atoms in the trap were divided

into three energy bands. The top band of atoms were completely free. The

middle band of atoms were partially trapped, and the lowest band of atoms

were considered as the ground state which were completely trapped. When

the frequencies of the two beams are the same, the system was considered

as a stable system, no tunneling occurs. However, one of the frequency was

increasing while the other frequency was �xed. The atoms were accelerated

along the trap. When the acceleration reach atran, the second band atoms

were emptied out but the lowest energy band atoms remained inside the

trap. When the frequency was continuously increasing up to the tunneling

acceleration, atun, the atoms inside the trap start tunneling out. They

argued that the atoms have di�erent velocities, so trapped and tunneled

atoms can be separated spatially when the trap was turned o�. The ratio

of the number of atoms tunneling out to the atoms remaining inside the

trap was treated as the survival probability.

2.2 Measurement in the experiment

To obtain the Zeno and the �anti-Zeno� e�ects, the tunneling process was

4



interrupted by decreasing the acceleration atun back to the initial acceler-

ation atrans and the interruption was then interpreted as a measurement.

namely, the process of �state wave function collapse into the state vec-

tor�.The number of remaining atoms inside trap along the initial condition

acceleration atrans were considered as an initial state. They assumed that

the interruption periods were long enough (40µs ,50µs) to separate out

the atoms that tunnel out before and after each interruption into resolv-

able groups. When the trap was accelerated up to atun then atoms begin

tunneling again.

They claimed that depends on the length of time interval, they observed

the Zeno and the Anti-Zeno. When the tunneling time was 1µs the Zeno

e�ect was observed. When the tunneling time was 5µs the so-called anti-

Zeno e�ect was observed. The survival probability was obtained by the

ratio of atoms that had tunneled out and those still remaining in the trap.

The survival probability of the nth tunneling segment approximately equals

n times the survival probability of the �rst tunneling segment. They com-

pared the slope of survival probability curve with interrupted, Let's call it

P (nt). The slope of the �free� tunneling curve Pf(T ). If the curve of P (nt)

is about Pf(T ) , it is Zeno e�ect. If the Pf(T ) is below the P (nt), it is

Anti-Zeno E�ect.

2.3 Theoretical model

This experimental result was constructed as a theoretical model to verify
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the experimental results by Modi and Shaji. They claimed the experimental

results were reproduced. We do see the discrepancies between the two

models. However, we main focus is on a comment theme among those

works which is the time interval t between a serise of measurement.

They consider an interacting �eld theory of four �elds labeledA,B,C,and

Θ which is continuous �eld . The processes in this model are

A
 B , , B 
 CΘ (4)

The Hamiltonian for the model with these allowed process can be written

as

H = H0 + V (5)

where,

H0 = EAa
+a+ Ebb

+b+

ˆ ∞
0

dω ω θ+(ω)θ(ω) (6)

and

V = Ωa+a+ Ω∗b+b+

ˆ ∞
0

dω [f(ω) b+cθ(ω) + f(ω)∗c+θ(ω) b] (7)

The EAand EB are denoted as the two discrete energy levels for the two

bound bare states |A〉, |B〉. To see the dynamics of this system. They were
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trying to �nd the engeisolutions by introducing the e�ective Hamilton.

H =


EA Ω∗ 0

Ω EB f ∗(ω)

0 f(ω) ωδ(ω − ω′)

 (8)

the Schrodinger equation as usual

Hψλ = λψλ (9)

They set the generic state as

ψλ =


µAλ

µBλ

φλ(ω)

 (10)

By solved the above equation, they came to this expression

µAλ (Z − EB −
Ω2

Z − EA
−
ˆ ∞

0

|f(ω′)|2

Z − ω′
dω′) = 0 (11)

And they denoted the expression as below

β(λ) ≡ Z − EB −
Ω2

Z − EA
−
ˆ ∞

0

|f(ω′)|2

Z − ω′
dω′ (12)

They choose µAλ 6= 0, for a non-trivial solution. Then β(λ) = 0. and by

solving this expression, they would obtain a engeisolutions for 0 ≤ ω ≤ ∞.

They focus on the solutions of the continuum states for β(λ) has no real

zero for proper value of the parameters.The solution of the bound states is
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now on the second sheet and has complex energy.

By solving the Schrodinger equation, they obtain the solutions and

choose the delta function as �in� state with positive iε.

ψλ =


µAλ

µBλ

φλ(ω)

 =


f(λ)
β+(λ)

Ω∗

λ−EA
f(λ)
β+(λ)

f(λ)
β+(λ)

f(ω)
λ−ω+iε

 (13)

Once they obtain the solutions, survival probabilities of the two states

were calculated. the survival probability of the state |A〉 was de�ned as

below

PA(t) = |
ˆ ∞

0

dλ〈A|e−iHt|ψλ〉|2 = |
ˆ ∞

0

dλe−iλt|〈A|ψλ〉|2|2 (14)

Similar for |B〉

PB(t) = |
ˆ ∞

0

dλe−iλt|〈B|ψλ〉|2|2 (15)

The numerical solutions of PA(t) and PB(t) were obtained by choosing

a practical form factor with �xed parameters

f(ω) =
σµ2
√
ω

(ω − ω0)2 + µ2
(16)

The
√
ω a phase -space factor. The width of f(ω) is controlled by µ and σ

is its strength. Unfortunately, the most crucial steps in the calculations are

not stated. Nor were the numerical solutions for PA(t) an PB(t). However,
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the two �free decay� curve PA(t) (Fig.4 in the reference [13]) and PB(t) were

given, which �ts the experimental results perfectly (Fig.4 in the reference

[10]).

2.4 Measurement and the de�nition of Zeno and Anti-Zeno E�ect.

They gave the explanation how the the graph (Fig.4 in the reference, the

solid line) was generated as stated statement.

�We start with a bare state with unit amplitude and compute its survival

probability till time t. At this point the measurement is assumed to reset

the system. The initial bare state wave function had only one non-zero

component when expressed in the basis of bare states. Time evolution of

this state under the full Hamiltonian makes all three components non-zero

in general. Resetting the system corresponds to setting the two new com-

ponents that appeared as a result of the evolution back to zero. This new

(un-normalized) state is the starting point for further evolution until the

next interruption. This process is repeated several times to obtain the graph

of the survival probability of the initial unstable state when it is subject to

frequent interruptions�.

For more instructive, we summary the above statement. They denoted

the states vector as |A〉 =


1

0

0

 at time T = 0 and it follows the

Schrodinger time evolution. After the system free evolved for period t

. All the three components of the vector state were non-zero. However,
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they argued that the measurement has set the system back to the initial

state.Thus,they set the second and third components as zero. It said, after

a measurement at T = t, the state becomes

|A(t)〉 =


P (1)(t)

0

0

 = P (1)(t)


1

0

0

 (17)

where the

P (1)(t) = |
ˆ ∞

0

dλ〈A|e−iHt|ψλ〉|2|2 = |
ˆ ∞

0

dλeiλt|〈A|ψλ〉|2|2 (18)

Clearly, then they treated the state |A(t)〉 as the new state vector and

then took another � measurement� again. To set the second and third

components back to zeros was taken as � measurement cause the wave

function collapse back to the initial state�

By repeating this process, the survival probability with n repeated mea-

surement at time T = nt was given as the below

P (nt) = [P (t)]n (19)

Apparently, the graphical results indicated that if

d[Log(Pf(T ))]

dT
>
d[Log(P (nt))]

d(nt)
(20)

they called it QZE. if
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d[Log(Pf(T ))]

dT
<
d[log(P (nt))

d(nt)
(21)

is Anti-Zeno.

We also notice that Facchi and Pascazio also gave very similar de�nitions

of Zeno and Anti-Zeno E�ect[12]. Based on the de�nitions and the �nite

time interval, we show that we can obtain �Zeno e�ect� and �Anti-Zeno

e�ect� in classical radioactive decay system in later section.

3 The Deviation of The Zeno and Anti-Zeno E�ect

3.1 Misra-Sudarshan's theorem

Consider an unstable quantum system, whose undecayed and decayed states

from the Hilbert space H and whose evolution is described by the uni-

tary operator U(T ) = exp(−iHT )., where H is a time-independent semi-

bounded Hamiltonian. Let HE be the subspace spanned by the unde-

cayed states of the system and E be a projection operator onto HE , so

EHE = HE . In general ,we assume that E does not commute with the

Hamiltonian, [E,H] 6= 0. Our Hilbert space decomposes H = HE ⊕ HE⊥

and E⊥= I− E is the projection operator onto HE⊥. let ρ be a density

state matrix of unstable quantum system onH we can write it with respect

to this decomposition as

ρ =

 Eρnn′E ?

? E⊥φnn′E
⊥

 (22)
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where the o�-diagonal terms (denoted by ?) are �interference� terms that

are assumed to be negligible here and the index n and n′ stands for multi-

decayed and undecayed states. Let ρ(0) be the initial states (undecayed

states) at T = 0

ρ(0) =

 Eρnn′E 0

0 0

 (23)

the ρnn′are eigenstates of E. i.e. ρnn′ = Eρnn′E. Also, Tr[ρ(0)] =

Tr[ρnn′] = 1. For more instructive, we assume there is only one undecayed

state,ρ0 and one decayed state φ. The time development of ρ(0) follows

the Schrodinger time evolution. Under the unitary transformation, all of

elements of the density matrixρ(T ) are non-Zeno now.

If one take a measurement on the system at time T = t, the density

matrix ρ(t) now changes into a new density matrix ρ′(t). The new density

matrix ρ′(t).(un-re-normalized) is diagonalized the density matrix ρ(t) and

was formed by the undecayed state

ρ0(t) = EU(t)ρ0U
+(t)E (24)

and the decayed state

φ(t) = E⊥φE⊥ (25)

A measurement yields that the system is still in a particular state at

time t (undecayed state in our case ) with probability P (t)

12



P (t) = Tr[U(t)ρ(0)U+(t)E] (26)

where the probability P (t) was called survival probability and Pd(t) is the

probability for the system is in decayed state at time t

Pd(t) = 1− P (t) (27)

In general, P (t) is less then one.However, at very small time t , the

unstable system decay probability has quadratic time depend as t → 0.

Thus, the decayed probability is negligible. The new density matrix ρ′(t→

0) approximately

ρ′(t→ 0) =

 Eρ0E 0

0 0

 (28)

And Tr[ρ′(t→ 0)] ' Tr[ρ0] = 1.

Hence, the new density matrix is nearly same as the initial density ma-

trix. One one may say � the measurement set the system back to the initial

state�

ρ′(t→ 0) ' ρ(0) (29)

Under the consideration, the process of measurement was regarded as

ρ0 → ρ′ = Eρ0E (30)

this is ideal measurement that allow one to take successive measurements,
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and allow the system to collapse at each measurement. However, the system

undergoes the Schrodinger time evolution at intervening time interval . The

state of ρ0after nth measurement was given

ρ(n)(t) = V (t)nρ0V (t)+
n (31)

Vn(t) ≡ [EU(t/n)E]n (32)

and the probability for nth measurement of the state ρ(n)(t) was given as

P (nt) = Tr[Vn(t)ρ(0)V ∗n (t)] (33)

Also, limn→∞V (t) = E, the probability, Tr(ρE) = 1 as t →0. The

system appears never decay that was called Quantum Zeno E�ect.

Subsequently the Quantum Zeno's paradox was studied in two speci�c

models by Chui, Sudarshan, Misra[3]. The limit t → 0 was regarded as

n→∞. The �rst survival probability at the �rst observation is equal to

P (t) = 1− (
εT

n~
)2 (34)

For all ideal successive measurements, the survival probability at end of

nth observation

P (nt) = [P (t)]n = [1− (
εT

n~
)2]n (35)

14



= 1− T 2

n ( ε~)2 + .....

Where nt = T .For n → ∞ ,P (T ) → 1. The system appears never

decay! This is original de�nition of quantum Zeno E�ect.

3.2 Non-ideal measurement

According to the Misra-Sudarshan theorem, the decay probability has quadratic

time depends at small t region. At t → 0, the decay probability is neg-

ligible, therefore the survival probability is near one. the state after a

measurement is same as the initial state under the approximation.

ρ0 → ρ′ = Eρ0E (36)

An operator of the repeated measurement was given in Misra-Sudarshan

as

Vn(t) ≡ [EU(t/n)E]n (37)

as n → 0 . Here we need to keep that in mind that the operator is valid

only if the measurement is ideal.

If the time interval t between sequences measurements are small (greater

than Zeno time) but �nite we called the measuremet are non-ideal, then

the undecayed states ρ0changes into ρ
′
0(t) as we stated before

ρ′0(t) = EU(t)ρ0U
+(t)E (38)

15



with the probability

P (t) = Tr[U(t)ρ0U
+(t)E] (39)

and this probability is less then one. The new density state matrix ρ′(t)

that are made up by the undecayed state and decayed state. It is not

same as the initial density state matrixρ(0) after the measurement. The

statement �the measurement set the system back to the initial state� is no

longer true for non-ideal measurement.

Furthermore, as Misra and Sudershan pointed out that these formulas

do not yield the correct probability connection. The operator Vn(T ) is no

longer valid if the measurements are non-ideal . The survival probability

with repeated measurement was given

P (nt) = [P (t)]n = [1− (
εT

n~
)2]n (40)

If the n is large but �nite, then P (nt) = [P (t)]n = [1−( εTn~)2]n∼ exp[−λ(nt)],

where ( ε~)2t. This is a seemingly inconsistent result. However, one needs to

realize the two variables are involved. The t is a continuous variable while

the T is a discrete variable which is de�ned at the each points evenly space

by time interval t.

However, in a classical system, e.g. a radioactive decay, the operation

of repeated measurement is valid regardless the length of the time interval.

And without involveing the projection postulate, we can obtain Zeno e�ect

and Anti-Zeno e�ect from a classical system based on the new de�nitions.
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4 Classical Zeno and Anti-Zeno

4.1 Classical radioactive decay;

We consider a classical multi-generation radioactive decay system. The

mother particles N1decay into daughter particlesN2, and the N2 contin-

uously decay into N3. As is well known the decay process of N1 → N2

is purely exponential. However, with multiple generations, the process

N1 → N3 is not properly described by a pure exponential decay process.

We let the N1decay with rate γ1, N2 with decay rate γ2. and N3 with

decay rate γ3. We let N4 be the �nal decay product, which we directly

measure. The survival rate of the system is the combination of the all three

survival rates. The survival probability is denoted as P (N1 +N2 +N3, t).

The system of equations describing classical radioactive decay for our three-

level system is given by

dN1

dt
= −γ1N1 (41)

For the remaining two generations,

dN2

dt
= −γ2N2 + γ1N1 (42)

dN3

dt
= −γ3N3 + γ2N2 (43)

With the initial conditions N1(0) = m, N2(0) = g. N3(0) = 0. Our

solutions are
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N1(t) = g exp(−γ1t) (44)

N2(t) =

(
e−tγ1−tγ2 (−etγ1gγ1 + etγ2gγ1 − etγ1mγ1 + etγ1mγ2)

γ2 − γ1

)
(45)

N3(t) =
(
e−tγ1−tγ2−tγ3

(
etγ1+tγ2gγ21γ2 − etγ1+tγ3gγ21γ2 + etγ1+tγ2mγ21γ2−

etγ1+tγ3mγ21γ2 − etγ1+tγ2gγ1γ22 + etγ2+tγ3gγ1γ
2
2 − etγ1+tγ2mγ1γ22 +

etγ1+tγ3mγ1γ
2
2 + etγ1+tγ3gγ1γ2γ3 − etγ2+tγ3gγ1γ2γ3 −

etγ1+tγ2mγ1γ2γ3 + etγ1+tγ3mγ1γ2γ3 + etγ1+tγ2mγ22γ3 −

etγ1+tγ3mγ22γ3
))
/ ((−γ1 + γ2) (γ2 − γ3) (−γ1 + γ3)) ∗

(
1

m+ g

)
(46)

Clearly, we can see the �rst generation decays exponentially, but N2

and N3 decay non-exponentially. To give a probabilistic interpretation,

we rescaled(N1 + N2 + N3) by dividing the factor 1
(m+g) in order to nor-

malized survival probability P (N1 + N2 + N3, T ) to unity at T = 0. Al-

though P (N1 + N2 + N3, T ) is not purely exponential, we can de�ne a

time-dependent decay rateγ(T ) as

P (N1 +N2 +N3, T ) = e−γ(T )T (47)

From now on let us denote P (N1 + N2 + N3, t) as P (T ). Its derivative

is

dP

dT
= (

dN1

dT
+
dN2

dT
+
dN3

dT
)

1

(m+ g)
= − 1

(m+ g)
γ3N3(T ). (48)
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From the above relation and the initial conditions we know dP
dT = 0

at T = 0. That is the main feature of the Quantum Zeno E�ect (QZE)

in Misra-Sudarshan's theorem but it is not crucial condition for the new

de�nitions of �Zeno E�ect�. We are giving the conditions for �Zeno� and

�Anti-Zeno� by the following paragraph.

4.2 Conditions of �Zeno� and �Anti-Zeno� e�ect

For more instructive, we summarize the geometric de�nition Eq.(20) and

Eq.(21) into more systematic form. We noticed the similar method of

de�ning Zeno and Anti-Zeno as given by Facchi and Pascazio[ 12]. We

introduce the averaged survival probability Pa(T ) with decay rate γa over

the life time of the whole system T .

Pa(T ) = exp(−γaT ) (49)

where γa = −Log[P (T )]
T . Obviously, this is parallel to the d[log(P (T ))

dT in the

Eq.(20).

We now compare the two survival probabilities, P (T ) and Pa(T ) to

determine whether the �Zeno� and/or �Anti-Zeno� e�ect can occur. There

are two possibilities. The �rst case is that if the curve of P (t) is above the

Pa(t), and there is no intersection until t = T. In other words, γ(t) < γa in

the entire time domain [0, T ]. Then we say the system has �Zeno E�ect�.

We can further to show that if we take n repeating measurements of the

survival probability over the small time regiont1 for 0 < t1 < T then we
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Figure 1: �Zeno e�ect� .N1(0) = 1000; N2(0) = 0. γ1 = 0.05; γ2 = 1; γ3 = 0.5.

obtain the �Zeno e�ect�.

The second case is that if there is an intersection point at time t. One

may want to call the time t is the transition time where the curve P (t)

cross from �Zeno region� to �Anti-Zeno region�. Now we ask whether such

a time t exists. We can explicitly write down the analytic expression for

the solution of t

γat = Log[P (t)] for t < T (50)

We want the t to be smaller than the T so we can have su�cient number

of measurements n to show �Zeno e�ect� and �Anti-Zeno e�ect�. In general,

solutions of the above relation may or may not exist. It depends on the

value of P (T ) which is determined by the initial conditions and the ratio

of the γ1, γ2 and γ3. However, �nding a general conditions of �Zeno e�ect�

and/or �Anti-Zeno e�ect� is not our interest. Our goal here is to show how

the details of the system together with non-ideal measurement can lead

some particular feature; such as �Zeno e�ect� and�Anti-Zeno e�ect� .
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Figure 2: �Anti-Zeno� for N1(0) = 1000; N2(0) = 200. γ1 = 0.01; γ2 = 1; γ3 = 0.5. The small graph is
enlarged region at very time to show there is a intersection at small time t.

For example, we choose N1(0) = 5N2(0) for the initial condition. We

also let N1have the longest life time and γ2 = 100γ1while γ3is greater than

γ2. The time T is chosen to be (γ1)
−1. This particular condition gives

us the feature we are looking for: there is an intersection at time t which

means we can obtain �Zeno e�ect� and �Anti-Zeno e�ect�. The time interval

0 < t1 < t is �Zeno e�ect� region; the time interval t < t2 < T is �Anti-Zeno

e�ect� region. In this case both Zeno and Anti-Zeno can be obtained.

However, if we change the the ratios between the γ1, γ2and γ3while the

initial condition hold�for example; we set γ3 ≤ γ1and γ2 w 0.1γ1, then

we don't see an intersection time. There is no �Anti-Zeno e�ect� for this

condition.

There is another general case for the system has no �Anti-Zeno� feature.

That is when the N2(0) = 0,N1(0) = g and N3(0)=0 while taking any

arbitrary values for γ1, γ2and γ3. We do have a intersection untill t = T.
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However, we are still able to obtain the �Zeno� e�ect.

There is a special case, if we allow only one generation decay, e.g N1 →

N2. We know this is pure exponential decay. There is neither �Zeno� nor

�Anti-Zeno�.

These examples have shown the �Zeno e�ect� and �Anti-Zeno e�ect� de-

pends on the details of the system. In fact, we can know how the system

exhibit �Zeno e�ect� or �Anti-Zeno e�ect�. We know the system is a com-

bination of three generations decay, the �rst generation is pure exponential

decay, the second and third generation has to grow at very short time. At

the short time, the system is likely dominated by the second generation

decay. Then at the short time, if the γ2 > γ1 the system decays faster

than the average decay rate of whole systemγa that is likely we can obtain

�Anti-Zeno e�ect�. If γ2 is smaller then γ1, then the system decays slower

than the average decay rate of the whole system that will give �Zeno e�ect�.

5 Selective measurement and �Anti-Zeno�

As Misra and Sudarshan pointed out that the measurement in the quantum

Zeno e�ect is non-selective measurement. However, in the new de�nition

of Zeno and Anti-Zeno, all measurements were selective measurements due

to the interval time t being greater than quantum Zeno time; that means

when one preforms a measurement on a particular component, e.g. the

decayed state. The survival probability is less than one. Therefore, for

each measurement the probability is reduced due to the multiplication of
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probability that is essential and comment frame work to obtain �Anti-Zeno

e�ect� in those papers we referred. We show another example how selective

measurement can leading to �Anti-Zeno e�ect�.

Stern-Gerlach experiment is well known., An atomic beam goes through

an SG apparatus when a measurement is taken on a component, let say

the spin up component. The probability of an atom being spin up is 1
2 .

Lets denote this as

P (1) =
1

2
. (51)

Now consider the sequence of selective measurement. We put a SG appa-

ratus, let called it 1, and measured the spin up component of the atomic

beam. We assume here, after the measurement, the atomic beam become

unpolarized again. And we put a SG apparatus 2th and measurement the

component spin up, and so on. We want to know the probability of ob-

taining spin up on the nth SG apparatus when the beam coming out of

the �rst SG apparatus is normalized to unity [12 ]. The probability of the

nth measurement for spin up is given by probabilities multiplication;

P (1....n) = P (1) ∗ .....P (n) = (
1

2
)n (52)

After nth such measurements the probability was given

P (n) = [P (1)]n (53)

As n→∞, the probability of atoms spin up through all the SG apparatus is
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approaching to zero. If we compare the probability P (n) to the probability

P (1), or even probability of the previous step, we know

P (n) < P (n− 1) (54)

This is to say, the probability with less measurement is greater then the

probability with more measurement. Therefore, according the de�nition of

Anti-Zeno E�ect, we can say we obtained the Anti-Zeno E�ect in Stern-

Gerlach experiment.

6 Concluding Remarks

We compare one formalism with continuous variable t with another with

discrete time interval. We show non-ideal measurements where the time

interval t is �nite (greater than the Zeno time) yield some contradictory

results. We are able to produce the �Zeno� and �Anti-Zeno� e�ects in a

classical radioactive decay system based on the de�nitions. However, the

�Zeno� and �Anti-Zeno� e�ects are artifacts of the details of the system.

We also point out that the survival probability decreases as the number of

measurements increases was a result of selective measurement in the cases

we studied here. This phenomenon can be seen in familiar experiments,

such as the Stern-Gerlach experiment.

The quantum Zeno E�ect was well de�nited and experimentally veri�ed

theorem. Any deviation from the theorem would lead to inconsisitance

results. WE also �nd there is no a clear evident show the machinsime of
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Qanutum Anti-Zeno. We will further investigate on the topic.

25



Appendix A

We used two di�erence notations in this thesis. One is the density matrix for Misra-

Sudarshan theorem. To be consistent with the original work, we followed the notation

was used in Modi and Shaji's work. The two notations essentially are the same. For

example, The equation (15) is same as the equation (26):

Proof: ρ0 ≡ |A〉〈A| and E ≡ |A〉〈A|, ρ(t) = U(t)ρ(0)U+(t) ,
´
dλ|ψλ〉〈ψλ| = 1

P (t) = Tr[U(t)ρ(0)U+(t)E]

= Tr[|exp(−iHt)|A〉〈A| exp(iHt)|A〉]

= Tr[

ˆ
dλ|ψλ〉〈ψλ|exp(−iHt)|A〉〈A| exp(iHt)|ψλ〉〈ψλ|]

= Tr[

ˆ
dλ|ψλ〉〈ψλ||〈A|exp(−iHt)|ψλ〉|2]

= |〈A|exp(−iHt)|ψλ〉|2

This is same as the equation (15)
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