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ABSTRACT

We examine the effects of turbulent intermittency on the deflagration to detonation transition (DDT) in Type Ia
supernovae. The Zel’dovich mechanism for DDT requires the formation of a nearly isothermal region of mixed ash
and fuel that is larger than a critical size. We primarily consider the hypothesis by Khokhlov et al. and Niemeyer and
Woosley that the nearly isothermal, mixed region is produced when the flame makes the transition to the distributed
regime. We use two models for the distribution of the turbulent velocity fluctuations to estimate the probability as a
function of the density in the exploding white dwarf that a given region of critical size is in the distributed regime due
to strong local turbulent stretching of the flame structure.We also estimate lower limits on the number of such regions
as a function of density. We find that the distributed regime, and hence perhaps DDT, occurs in a local region of
critical size at a density at least a factor of 2Y3 larger than predicted for mean conditions that neglect intermittency.
This factor makes the transition density much larger than the empirical value from observations inmost situations.We
also consider the intermittency effect on the more stringent conditions for DDT by Lisewski et al. and Woosley. We
find that a turbulent velocity of 108 cm s�1 in a region of size 106 cm, as required by Lisewski et al., is rare. We expect
that intermittency has a weaker effect on the Woosley model with a stronger DDT criterion. The predicted transition
density from this criterion remains below 107 g cm�3 after accounting for intermittency using our intermittency
models.

Subject headinggs: stars: interiors — supernovae: general — turbulence

1. INTRODUCTION

A successful model for Type Ia supernova (SN Ia) explosions
is required to produce a deflagration to detonation transition
(DDT) by observational constraints. A pure deflagration model
results in a lower exploding kinetic than observed (Khokhlov
1991; Gamezo et al. 2003; Röpke & Hillebrandt 2005), and pure
detonation leads to the overproduction of iron group elements
and the underproduction of intermediate elements (Branch et al.
1982, 1983). The density �tr at which the transition occurs deter-
mines the amount of the nickel produced (Höflich 1995; Höflich
& Khokhlov 1996; Dominguez et al. 2001). Therefore a predic-
tion of �tr, consistent with the observed nickel production, is es-
sential to a DDT theory for SNe Ia.

The mechanism by which the DDToccurs still remains a mys-
tery. The most studied candidate is the Zel’dovich mechanism,
which requires the existence of an almost isothermal region of
mixed ash and fuel that is larger than a critical size lc to drive a
supersonic shock that is sufficiently strong to sweep over the
entire star (Khokhlov et al. 1997, hereafter KOW97; Niemeyer
&Woosley 1997, hereafterNW97). One hypothesis is that a nearly
isothermal region is produced by turbulent preconditioning.
KOW97 argued that to produce an almost isothermal mixture of
ash and fuel, the laminar flame must be quenched by turbulent
stretching, at least locally. This might allow the cold fuel to mix
with the ash both thermally by electron conduction and chemi-
cally by diffusivity without being burned. They assumed that the
criterion for quenching a flame is that the turbulent velocity at the
laminar flame thickness must be larger than the laminar flame
speed. NW97 gave a similar argument based on the distributed
flame burning regime in turbulent combustion. The criterion for
a distributed flame is expressed in terms of the Gibson scale at
which the turbulence velocity equals the laminar flame speed. If
the Gibson scale is smaller than the laminar flame thickness,

turbulent stretching can generate structures within the flame and
the flame is in the distributed regime. NW97 speculated that in
this regime flames can be temporally quenched in some regions,
which can host the detonation after being homogenized in tem-
perature and composition by turbulent mixing. The criterion for
the distributed regime is equivalent to that for flame quenching
used by KOW97. Both criteria give the same condition on the
turbulence intensity for given laminar flame properties (see x 2).
As the density in the star drops due to the overall expansion, it is
easier for turbulence to affect the laminar flame because of the
decrease in the flame speed and the increase in flame thickness.
With presumed turbulence parameters, the criterion for the tur-
bulence intensity, determined by the robustness of laminar flames
disturbed by turbulent motions, translates to a transition density
�tr for the DDT.
Several uncertainties exist in the simple model given by these

two early studies. First, it is not clear whether the criterion used by
KOW97, equivalent to that for a distributed regime (NW97), is
sufficient for flame breaking. How, or even if, flames are quenched
is still an open question. Second, it is uncertain whether ( local)
flame quenching is indeed necessary to produce a nearly isother-
mal region. Finally, later studies by Lisewski et al. (2000a; see
also Lisewski et al. 2000b) andWoosley (2007) find that entering
the distributed regime, while probably a necessary condition, is
not sufficient to cause the DDT to occur. Based on a requirement
for turbulent transport to be efficient at producing a shallow tem-
perature and composition gradient around the laminar flame,
Lisewski et al. (2000a) find that the turbulent velocity at the scale
106 cmneeded for a detonation is very large,�108 cm s�1.Woosley
(2007) claims that the DDToccurs only when the turbulent flame
thickness exceeds a critical length scale. We show in x 2 that the
two criteria, although arising from different physical consider-
ations, are basically equivalent. The corresponding condition is
more stringent than that assumed by KOW97 and NW97.
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In this paper we examine the effect of turbulent intermittency
on the onset of distributed burning that may relate to the DDT.
Despite the uncertainties listed above, we will mainly consider
the model by KOW97 and NW97 and use it to illustrate the
potential importance of intermittency in SN Ia explosions. Our
calculations can be applied to the criteria by Lisewski et al.
(2000a) and Woosley (2007) in a straightforward way. A quan-
titative analysis using their criteria requires data for laminar flame
properties and critical length scales at densities below 107 g cm�3

that are not immediately available (see x 2).We give a qualitative
discussion of the intermittency effect on their DDT models.

Intermittency is an important concept in turbulence theory. It
is characterized by intense local events, e.g., strong stretching at
small scales, which occur at a frequency much larger than pre-
dicted from a Gaussian distribution (see, e.g., Frisch 1995). The
physical origin of intermittency in turbulent flows is the spatial
inhomogeneity in the energy dissipation rate: most kinetic en-
ergy is viscously dissipated in the finest structures, e.g., vortex
tubes, which occupy only a small volume fraction. These rare but
intense dissipative structures give rise to a spatially inhomoge-
neous and intermittent distribution for the turbulent intensity and
the stretching rate. Intermittency is shown as broad exponential
tails in the probability distribution for the stretching rate or the
dissipation rate at small scales (see x 3). The tails get broader at
smaller scales, meaning that the probability of finding an extreme
turbulent stretching rate or intensity increases with decreasing
scales.

According to one-dimensional simulation results by KOW97
and NW97, the critical size, lc, of the isothermal region required
for a DDT via the Zel’dovich mechanism is much smaller, espe-
cially at large densities, than the expected integral length scale for
the bouyancy-driven turbulence in SN Ia explosions. This suggests
that only a small flame region with a sufficiently strong local turbu-
lence intensity may be needed to trigger a detonation. Turbulent in-
termittency, which indicates the existence of regions of small sizes
where the turbulent stretching is much larger than the average
value over the flow, is therefore expected to have important con-
sequences for DDT. The transition could happen earlier at a
higher transition density �tr than predicted by models using the
average turbulent intensity. At higher densities, much larger tur-
bulent intensity is required for the DDT, but the rapid decrease of
lc with increasing density makes an earlier DDT possible for two
reasons. First, the probability is larger to find regions of smaller
sizes lc with extreme turbulent stretching rate or intensity. Sec-
ond, there aremore regions of smaller size available as candidates
to host the detonation. Clearly, the intermittency effect accounts
for the intuitive dependence of �tr on lc; the smaller the critical
size, the easier it may be for the transition to happen. To what
degree the intermittency effect increases �tr is the main question
we investigate in this paper.

In x 2, we review the criteria for the DDT in models by
KOW97, NW97, Lisewski et al. (2000a), and Woosley (2007)
and formulate a new criterion taking into account the effect of in-
termittency.We describe two intermittencymodels byOboukhov
(1962) and Kolmogorov (1962) and by She& Leveque (1994) in
x 3. Using the intermittency models, we evaluate the transition
density from the new criteria in x 4. Our results are summarized
and discussed in x 5.

2. CRITERIA FOR THE DDT

The criterion used in NW97 to judge whether a flame is in
the distributed regime, which was also assumed to be the con-
dition for the DDT, is to compare the Gibson scale lG with the
laminar flame thickness lf . The Gibson scale is defined such that

�u(lG) ¼ Sl where �u(l ) is the amplitude of the velocity fluctu-
ations at the scale l [or equivalently the velocity difference over a
scale l, i.e., �u(l ) ¼ u(l þ x)� u(x)] and Sl is the laminar flame
speed.1 If lGk lf , the turbulence cannot internally disturb the
flame and the turbulence in effect wrinkles the flame. This is
called the flamelet regime. Only when lGP lf can turbulence
stretch the flame efficiently to generate structures within the flame
and the turbulent combustion enter the distributed regime. The
condition lGP lf is equivalent to �u(lf )k �u(lG) ¼ Sl since �u(l )
is an increasing function of the scale l.2 The latter, which means
that the turbulent velocity fluctuation �u(lf ) at the scale of the
flame thickness lf is larger than the laminar flame speed, is the
criterion used in KOW97 for flame quenching and the DDT.

Following KOW97, we introduce a factor of K � 1 in the cri-
terion to account for the uncertainty in the flame breaking mech-
anism, i.e., �u(lf ) � KSl. We will consider two values for K, i.e.,
K ¼ 1 and K ¼ 8 (KOW97; For K ¼ 8, to quench a flame, the
Gibson scale has to be K 3 ¼ 512 times smaller than the flame
width). This criterion can also be written in terms of timescales.
Noting that the turbulent stretching timescale, �t, at the flame
thickness is �t(lf ) ¼ lf /�u(lf ) and that the nuclear reaction time-
scale, �n, is related to the flame speed �n ¼ lf /Sl, the criterion is
equivalent to �t(lf ) < �n/K, i.e., to break the flame the stretching
timescale at the flame thickness must be smaller than the nuclear
burning timescale (see Niemeyer & Kerstein 1997).

To apply this criterion, the Kolmogorov (1941) scaling �u(l ) ¼
�̄1/3l1/3 is usually used to calculate �u(lf ) from the turbulent ve-
locity fluctuations at large scales where �̄ is the average dissi-
pation rate in the flow. From this scaling, the criterion can be
written as (KOW97, NW97)

�̄1=3l
1=3
f > KSl; ð1Þ

or

�̄ > K3S3l =lf ¼ K3�f ; ð2Þ

where �f is defined as S3l /lf . Although we use the convenient
criterion (2) in terms of the dissipation rate in our calculations,
the turbulent stretching is more fundamental and we will use the
concept of the flame stretching in our discussions.

The laminar flame speed and thickness depend on the chem-
ical composition and the density (Timmes & Woosley 1992,
KOW97). In Table 1, we list the flame speed and the flame
thickness as a function of density for a white dwarf with half
carbon and half oxygen, mainly taken from Timmes & Woosley
(1992). The laminar speed decreases and the thickness increases
quickly with decreasing density �; therefore �f decreases rapidly
with decreasing � as shown in Table 1. The average dissipation
rate is estimated to be �̄ ¼ U 3/L where U and L are the charac-
teristic velocity and length scales of the turbulence, normally set

1 Note that NW97, accounting for the cellular stabilization effect against
instabilities, e.g., the Landau-Darrieus instability, defined lG as the scale where
the turbulent velocity exceeds the effective cellular flame speed. This does not
introduce a significant difference in the estimate of lG since the effective cellular
speed is close to the laminar speed and has a very weak dependence on scale; see
their Fig. 1.

2 This is also equivalent to the diffusivity criterion by Niemeyer & Kerstein
(1997) for the onset of distributed regime and flame extinction at a Prandtl
number larger than unity, which is the case for white dwarfs. Their criterion was
motivated by the observation that, at a Prandtl number different from unity,
two previous criteria proposed for the flamelet breakdown and for the flame
quenching, using the ratio of the flow viscous length scale to the flame thickness
and the ratio of the viscous timescale to the reaction timescale, respectively, are
not equivalent.
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by motions on the large, driving scale. At large scales, the tur-
bulence is driven by the Rayleigh-Taylor instability. The length
scale L might be expected to be about the size, Rf , of the flame
region, L ’ Rf � 108 cm and the velocity scale to be about
the Rayleigh-Taylor velocity at this scale U � 0:5 geALð Þ1/2’
108 cm s�1, where the effective gravity is taken to be �geA ¼
5 ; 108 cm s�2 (KOW97, NW97). Khokhlov (1995), however,
showed that motions at scales larger than 106 cm freeze out due
to the overall expansion of the star. In that case, L � 106Y107 cm
and U � 107 cm s�1. We will take U and L as parameters. Note
that the criterion of equation (2) depends onU and L through the
dissipation rate. Given the dissipation rate �̄, the critical den-
sity below which the inequality (eq. [2]) is satisfied can be ob-
tained using �f as a function of � in Table 1. For example, if
U � 100 km s�1 and L � 100 km, �̄ � 1014 cm2 s�3 and we find
that, from interpolation in Table 1, �̄ is larger than �f at a density
less than �4 ; 107 g cm�3. Therefore criterion (2) predicts a
transition density �tr ’ 4 ; 107 g cm�3 for K ¼ 1 (see KOW97
and NW97). If K ¼ 8, the predicted transition density is smaller,
�tr � 1:5 ; 107 g cm�3. In the second line of Table 2, we give the
predicted �tr for different values of the parameters, which de-
creases with decreasing dissipation rate �̄. The numbers in pa-
rentheses correspond to K ¼ 8.

When using the criterion of equation (2), we need to keep in
mind that the spatial fluctuations of � (see x 3) are completely
neglected and the criterion only applies to the overall situation in
the combustion flow. We will refer to this criterion as the mean
criterion. When the mean criterion is met, the only implication is
that the combustion is in the distributed regime in general. Con-
sidering the intermittency of turbulence, i.e., the spatially in-
homogeneous distribution of the stretching strength, there can be
places where the stretching rate is much weaker than the average.
These places could still be in the flamelet stage while most other
places are in the distributed regime. Or conversely, even if the
mean criterion (2) is not satisfied, one cannot exclude the pos-
sibility of a region existing that experiences strong stretching
and gets into the distributed regime when most of the structure is
still in the flamelet regime. This latter fact is important for the
deflagration to detonation transition. The fact that the DDT does
not require the entire star to be in the distributed regime but in-
stead only needs a region that is much smaller than the white
dwarf radius (see below, KOW97), coupled with the intrinsic in-
termittency, suggests that DDTcould occur earlier than predicted
by equation (2) and hence at a larger transition density. The

detonation can be triggered locally when a region appears that is
larger than the critical size and enters the distributed regime due
to a strong local stretching. It is important to study the degree to
which this intermittency effect increases the transition density,
which is constrained by observations. Clearly the answer depends
on the critical size, which we consider next.
The question of how large the isothermal region with well-

mixed ash and fuel has to be for a detonation was studied by
KOW97 (see alsoNW97). In their model, the DDToccurs via the
Zel’dovichmechanism (Zel’dovich et al. 1970), where themixed
region begins spontaneous ignition at the place with the mini-
mum induction time, and the flame propagates with a phase
speed equal to the inverse of the spatial gradient of the induction
time, which is large for nearly isothermal andwell-mixed regions
and is not limited by the speed of light. As the phase speed
decreases below the Chapman-Jouget speed, a shock forms just
ahead of the flame front. Whether this shock can explode the
whole star depends on the strength of the shock when entering
the pure fuel, which is determined by the size of the isothermal
region. If the isothermal region is small and the shock is weak,
the flame front and shock separate with the flame front lagging
behind the shock, and the shock cannot make the whole star ex-
plode. The critical strength of the shock corresponds to a criti-
cal size of the isothermal region, over which the shock can be
strengthened. Using one-dimensional simulations, KOW97 and
NW97 obtained the critical size, lc, which depends on the density
and the chemical composition. It is interesting to note that at
early time when the density is large, the required size is much
smaller than that at later times. We will show this has important
consequences. The critical size is much smaller than what cur-
rent numerical simulations can resolve; therefore the problem of
the intermittent stretching at scale lc cannot be addressed by
simulations.
We need a local criterion to check whether a region of a given

size l, in particular lc, is in the distributed regime or not. For that
purpose, we use a local average dissipation rate �l (see eq. [8] in
x 3 for a definition) in a region of size l to replace �̄. Following
the same argument that leads to equation (2), the criterion for a
region of size l being in the distributed regime is

�l > K3�f ; ð3Þ

TABLE 1

The Laminar Flame Speed, the Flame Thickness, and the Critical Length

for a White Dwarf with Half Carbon and Half Oxygen

�
(109 g cm�3)

Sl
(105 cm s�1)

lf
(cm)

�f
(1015 cm2 s�3)

lc
(cm)

2.............................. 75.8 9.35(�5) 4.66(9) 7(1)

0.5........................... 18.1 9.46(�4) 6.27(6) . . .

0.1........................... 2.33 2.75(�2) 4.60(2) 2(2)

0.05......................... 0.599 5.19(�1) 0.414 1.3(3)a

0.03......................... 0.26b 1.78b 0.98(�2) 5(3)

0.01......................... 4.72(�2) 4.22 2.59(�5) 2(5)

Notes.—The values of Sl and lf are mainly taken from Table 3 of Timmes &
Woosley 1992. The value of lc is mainly taken from NW97. We also include
numbers (marked) from KOW97 because their results are very similar to NW97
despite the different details in the two models. Numbers in parentheses are
powers of 10.

a Read from Fig. 6 in KOW97.
b Read from Fig. 7 in KOW97.

TABLE 2

Predicted Transition Densities �
tr

for Various Models

Models Aa Ba Ca Da Ea

Mean criterion.......... 6.9(3.3) 5.5(2.3) 4.1(1.5) 3.0(1.0) 2.0(—)

Lognormalb .............. 27(10) 11(4.9) 10(4.4) 9.4(4.0) 4.3(—)

Lognormalc............... 23(7.6) 9.7(4.9) 8.4(3.9) 7.1(3.0) 4.3(—)

Log-Poisson ............. 24(8.6) 9.5(4.3) 8.7(3.8) 7.9(3.3) 3.8(—)

Notes.—Units are 107 g cm�3. The numbers in parentheses are the results
predicted if the Gibson scale has to be 512 times smaller than the flame thickness
for the transition to the distributed regime. In case E, (—) indicates that the
transition density is smaller than 107 g cm�3, which cannot be well estimated
since we only have data to 107 g cm�3 in Table 1.

a A: U ¼ 108 cm s�1, L ¼ 108 cm, �̄ ¼ 1016 cm2 s�3; B: U ¼ 107 cm s�1,
L ¼ 106 cm, �̄ ¼ 1015 cm2 s�3; C:U ¼ 107 cms�1,L ¼ 107 cm, �̄ ¼ 1014 cm2 s�3;
D: U ¼ 107 cm s�1, L ¼ 108 cm, �̄ ¼ 1013 cm2 s�3; E: U ¼ 106 cm s�1,
L ¼ 106 cm, �̄ ¼ 1012 cm2 s�3.

b The predicted transition density assuming a perfect fit of the distribution
P(�lc ) by lognormal. This is the upper limit for �tr since the lognormal approxi-
mation may break down and overestimate the distribution at the far tail.

c The lower limit for the transition density assuming the lognormal approx-
imation applies only up to 5 �.
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where we have used the refined similarity hypothesis by
Kolmogorov (1962) (see eq. [9] in x 3). Due to the random na-
ture of turbulent flows, �l is stochastic, and a statistical approach
is necessary. We therefore ask the question: what is the proba-
bility that any region of size l is in the distributed regime? This is
given by the cumulative probability P(�l > K3�f ). To answer this
question, we need the probability distribution P(�l) of �l. For-
tunately, this distribution has been extensively studied in the
intermittency models for turbulence, which we describe in x 3.
Although these models were originally proposed for homoge-
neous and isotropic turbulence, we will assume they apply to
SNe Ia where the turbulence is stratified and may not arrive at
isotropy even at very small scales. Once the distribution is speci-
fied, one can calculate the probability of finding that a region of
given size lc is in the distributed regime,

P �lc > K3�f
� �

¼
Z 1

K3�f

P �lcð Þd�lc ; ð4Þ

which depends on the density through lc and �f . An immediate
examination of equation (4) shows that, at larger density, the
lower limit of the integralK3�f is larger because of the fast flame
speed and the small flame thickness. This tends to decrease the
probability. However, at larger density, lc is smaller and the in-
termittency of turbulence tells us that the tail of the distribution
P(�l) is broader for smaller l. This tends to counteract the de-
crease of the cumulative probability due to the larger lower in-
tegral limit at higher densities.

Furthermore, for smaller lc, there are more regions of size lc
available in the star. This could make the transition occur sig-
nificantly earlier, with a transition density considerably larger than
that predicted by equation (2).We need tomultiply the probability
that a given region of size lc is in the distributed regime by the
number,Nlc , of regions of size lc available in order to calculate the
number of regions that are both larger than lc and in the distributed
regime at any given density. We assume that the deflagration to
detonation transition happens when

NlcP �lc > K3�f
� �

¼ 1: ð5Þ

Since we are concerned with the flame being stretched into the
distributed regime, only locations around the flame front are of
interest when calculating Nlc . Therefore, we only count regions
in the vicinity of the flame front. Nlc depends on the size, Rf , of
the flame region and the flame geometry. A typical value for Rf

is 108 cm (Khokhlov 1995), which could be smaller at an earlier
time. We will set Rf ’ L in our calculations in order to decrease
the number of parameters. Note that Rf > L when the freezeout
effect is considered and therefore the number Nlc we use is a
lower limit. If the flame region is a two-dimensional spherical
front, Nlc � 4�R2

f /l
2
c . If the flame structure is highly convoluted,

it may have a fractal dimension larger than 2. In that case, Nlc is
larger. The upper limit for Nlc is’4�R3

f /3l
3
c , which applies if the

flame geometry is close to three-dimensional. Again, we take the
lower limit Nlc ¼ 4�R2

f /l
2
c ; thus the transition density we will get

is a lower limit.
As discussed in x 1, Lisewski et al. (2000a) and Woosley

(2007) find that entering the distributed regime is not sufficient
for the DDT to occur and give criteria stronger than that used in
KOW97 and NW97. Lisewski et al. (2000a) considered how tur-
bulent transport affects the temperature and composition profile
around a laminar flame. They assumed that, at any point, tur-
bulence translates the temperature and composition by a distance
lt, over which turbulence can transport during a local induction

time �i. The distance lt is a function of position since �i depends
on local temperature and composition. It is estimated by the
length scale of a turbulent eddy with turnover time equal to �i,
i.e., lt/�u(lt) ¼ �i. Using the Kolmogorov (1941) scaling, we get
lt ¼ �̄1/2�3/2

i
. For given turbulence intensity, temperature and com-

position profiles around a laminar flame front can be calculated
from the translation. Clearly, more efficient turbulent transport
gives a shallower temperature and composition profile, which is
needed for detonation. By checking whether the resulting pro-
files, as initial conditions to solve the one-dimensional hydro-
dynamic equations, can lead to a detonation, Lisewski et al.
(2000a), obtained a condition for the DDT on the turbulent in-
tensity. They found that, for a successful detonation, the tur-
bulent velocity has to be �108 cm s�1 at the scale 106 cm. This
condition is stronger than just entering the distributed regime.3

Since the expected turbulent velocity at scale 106 cm is 106Y
107 cm s�1, Lisewski et al. (2000a) concluded that a DDT via
the Zel’dovich mechanism in SNe Ia is unlikely. However, con-
sidering the spatial inhomogeneity of turbulent intensity, i.e., in-
termittency, it is possible for regions of size 106 cm with large
enough turbulent velocity to arise.

The result of Lisewski et al. (2000a) motivated Röpke (2007)
to study the probability of finding a region of size 106 cm with a
turbulent rms velocity of �108 cm s�1. Using data from three-
dimensional numerical simulationswith a turbulent subgrid-scale
method, Röpke (2007) analyzed the velocity fluctuations at the
grid size (106 cm) and obtained a fat exponential tail for large
velocity fluctuations that extends up to 108 cm s�1. The large ve-
locity fluctuations seem likely to be located at the trailing edge
of a bubble-like feature (Röpke 2007). This confirms the inter-
mittency in the turbulent combustion flow in SNe Ia; there exist
grid cells where the turbulent intensity is much stronger than the
average. From the probability of finding a grid cell with required
turbulent intensity, Röpke concluded that the DDT triggered by
a local cell with large velocity fluctuations is possible but prob-
ably rare. In our notations, the probability is given by P(�106cm >
1018 cm2 s�3), where 1018 cm2 s�3 corresponds to the dissipation
rate in a region of size 106 cm with a rms velocity of 108 cm s�1.
We will calculate this probability and consider the availability of
such regions using two intermittency models given in x 3 and
compare with the results of Röpke (2007) in x 4.

Woosley (2007) proposed a new criterion for the DDT based
on a calculation of the distributed flame width using an eddy dif-
fusivity approximation.Making an analogy to the estimate of the
laminar flame thickness,Woosley (2007) obtained the distributed
flame width k from the equation k ’ D(k)�n½ �1/2 where D(k) ¼
�u(k)k is the eddy diffusivity at scale k and �n is the nuclear
reaction timescale. Using the Kolmogorov (1941) scaling for
�u(k), the distributed flame width is given by k ¼ �̄1/2�3/2n (note
that this formula for k is similar to lt in Lisewski et al. 2000a).
Woosley (2007) assumed that the condition for detonation is that
the minimum burning timescale in the distributed flame is smaller
than the sound crossing time over the distributed flame width k,
or equivalently, kk rminsonic, where r

min
sonic is the sound crossing length

over the minimum burning timescale in the distributed flame.
The minimum sound crossing length is thus the critical size of

3 This condition can be converted into a form that can be directly compared
with eq. (2). Roughly speaking, the physical condition for a detonation in this
model is that lt at the laminar flame front is larger than lc, i.e., a shallow tem-
perature gradient can be produced over a critical size around the flame front.
Requiring lt > lc, we get the criterion �̄ > (lc/lf )

2(�n/�i)
3�f . Considering that �i

defined by Lisewski et al. (2000a) is smaller than the nuclear timescale �n and that
lc 3 lf , this condition is much stronger than the condition of eq. (2). Note that
this condition is similar to the criterion of Woosley (2007) given below.
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the distributed flamewidth for detonation. The criterion kk rmin
sonic

is equivalent to �̄k (rmin
sonic )

2/�
3
n. Noting that �n ¼ lf /Sl, the con-

dition can be written as �̄k (rmin
sonic/lf )

2�f . Since rmin
sonic given in

Table 4 of Woosley (2007) is close to lc listed in Table 1 in this
paper, we will use lc instead of rmin

sonic for simplicity, i.e.,

�̄k lc=lf
� �2

�f ; ð6Þ

which is much stronger than equation (2), because lc is much
larger than the laminar flame thickness lf . This condition can be
used to determine the transition density �tr by the same calcu-
lation process as in the case of the criterion equation (2). Note
that, except a factor of (�n/�i)

3, this criterion is basically equiv-
alent to that given in footnote 3 for the requirement by Lisewski
et al. (2000a). We find that, for the reasonable turbulence pa-
rameters listed in Table 2, the criterion results in a transition
density below 107 g cm�3 andwe cannot specify it due to the lack
of data for lc, Sl, and lf at densities below 107 g cm�3.

In his estimate for �tr, Woosley (2007) used U ¼ 108 cm s�1

at scale L ¼ 106 cm throughout the calculations, based on the
result by Röpke (2007) on the possibility of the existence of
regions of size 106 cm with a rms velocity of 108 cm s�1. With
these turbulence parameters he derived �tr ¼ 107 g cm�3. Clearly,
in Woosley’s calculation, the intermittency effect implicitly con-
tributes to the transition density obtained because, as discussed
earlier, a turbulent rms velocity of 108 cm s�1 at 106 cm can only
arise from intermittency.

The intermittency effect for the criterion of Woosley (2007)
can be included more consistently in our formulation. Instead of
considering a single special scale 106 cm, our model specifies in-
termittency over a continuous range of scales corresponding to
critical sizes at different densities. Following the same steps that
lead to equation (5), we incorporate the intermittency effect in the
DDT model of Woosley (2007) and obtain a criterion,

NlcP �lc > lc=lf
� �2

�f

h i
¼ 1; ð7Þ

which only differs from equation (5) by the lower limit in the
cumulative probability. We will discuss about this criterion in
x 4.

We point out that the eddy diffusivitymethod used byWoosley
(2007) to approximate the combined action of the turbulent ad-
vection and the microscopic diffusivity is an oversimplification.
This procedure implicitly assumes a smooth structure in the dis-
tributed flame and neglects the fluctuations of temperature and
concentration, which may be important in determining the ef-
fective width of distributed flames.

3. INTERMITTENCY

Kolmogorov’s 1941 theory assumes that the energy transfer in
the inertial range is equal to the average dissipation rate �̄ in the
flow and is the same throughout the inertial scales down to the
viscous scale where the kinetic energy is removed. This assump-
tion, together with the similarity hypothesis, predicts that the
statistics of the velocity difference (or the velocity fluctuations)
at any inertial scale are completely determined by the average
dissipation rate �̄. However, fluctuations in the dissipation rate
clearly exist, as can be seen from the formula for the local vis-
cous dissipation rate, �(x; t) ¼ (�/2)

P
i; j(@iuj þ @jui)2, which is

a function of the fluctuating velocity field. The spatial fluctua-
tions in � are well illustrated by the intense dissipation struc-
tures at small scales, such as vortex tubes. This effect needs to be
taken into account for a more accurate prediction of the scaling

behavior of the velocity difference (Landau & Lifshitz 1944).
The statistics of the velocity difference over a separation l de-
pends on the distribution of the dissipation rate over regions of
size l, which is defined as (e.g., Kolmogorov 1962)

�l(x; t) ¼
3

4�l3

Z
x 0j j<l

� xþ x0; tð Þdx0: ð8Þ

Clearly, the mean of �l is equal to �̄ and thus is independent of
l. This means that the average energy flux over all the inertial
scales is constant. The �l distribution is essential to the inter-
mittency models for turbulence. Note that this distribution is
exactly what we need in our calculations for the transition of the
turbulent combustion to the distributed regime by turbulent
stretching and quenching described in x 2, equations (4) and (5).
Intermittency in turbulence is usually expressed in terms of

the scaling behavior of the structure functions h�u(l ) pi � l�p ,
where �u(l ) ¼ u(xþ l )� u(x) is the ( longitudinal) velocity dif-
ference and �p is the scaling exponent for the p th-order structure
function. Kolmogorov’s 1941 theory predicts that the exponent
�p goes with p as �p ¼ p/3. However, experimental data (e.g.,
Anselmet et al. 1984) have shown departures from this linear
relation and �p increases significantly slower than p/3 at large
values of p. This ‘‘anomalous’’ scaling is referred to as inter-
mittency. The data indicate broader and broader tails for the dis-
tribution of �u(l) at smaller and smaller scales, e.g., the kurtosis
of the distribution, h�u(l )4i/h�u(l )2i2 / l�4�2�2 , increases with
decreasing l because �4 < 2�2. The distribution of �u(l ) is fatter
for smaller separations l. The anomalous scaling is fundamentally
caused by the fluctuations in the dissipation rate �l. Applying the
refined similarity argument for homogeneous and isotropic tur-
bulence (Kolmogorov 1962), the velocity difference over a sepa-
ration l can be related to the dissipation rate �l,

�u(l ) � �
1=3
l l1=3 ð9Þ

(note that the Kolmogorov [1941] theory uses �̄ ). The structure
functions are then given by

�u lð Þph i / �
p=3
l

D E
l p=3: ð10Þ

Clearly, the departure from the linear scaling for the velocity
difference comes from the statistics of the dissipation rate. As-
suming h�pl i / l�p (e.g., She & Leveque 1994), we have

�p ¼ p=3þ �p=3: ð11Þ

Developing a physical model for �p that satisfies the experi-
mental result for �( p) has been the main task of intermittency
theories. Althoughwe aremainly concernedwith the distribution
of �l, discussions of the structure functions are necessary be-
cause they are directly measurable in experiments and give im-
portant information and constraints on the �l distribution.We will
use two intermittency models in our calculations: the lognormal
model (Oboukhov [1962] and Kolmogorov [1962]) and the log-
Poisson model by She & Leveque (1994).

3.1. The Lognormal Model

Oboukhov (1962) and Kolmogorov (1962) developed the first
intermittency model. In this model, the distribution of �l is as-
sumed to be lognormal (Kolmogorov 1962). A justification for
this ‘‘natural’’ distribution for �l was given by Yaglom (1966).
Imagine the cascade progress as successive eddy fragmentations

PAN, WHEELER, & SCALO474 Vol. 681



from the integral scale L to the dissipation scale 	. The statistics
of the energy flux at an inertial scale l (or equivalently the dis-
sipation rate �l) depends on the fragmentations before the scale is
reached. The total number N of steps that lead to the scale l is
proportional to N � ln(L/l ). Defining 
i ¼ �i/�i�1 as the ratio of
the energy transfer rates at two successive fragmentation steps,
the energy flux at the scale l can be expressed in the ratios (see
e.g., Monin & Yaglom 1975),

�l ¼ �L
1
2 : : : 
N ; ð12Þ

where �L is the dissipation rate at the integral scale (or the transfer
flux at the largest scale), �L ’ �̄. Due to the randomness in the
fragmentation process the ratios, 
i, are stochastic variables. As-
suming a self-similar fragmentation process, the distributions of
the ratios are similar and ln(�l/�L) ¼

PN
i¼1 ln(
i) is expected to

be Gaussian from the central limit theorem,

p(�l)d�l ¼
1ffiffiffiffiffiffiffiffiffiffiffi
2��2

l

q exp �
ln �l=�̄ð Þ þ �2

l =2
� �2

2�2
l

( )
d ln (�l=�̄ );

ð13Þ

where the variance �2
l is proportional to the number of steps

�2
l ¼ � ln(L/l ) with � being a parameter to be determined by

experimental data and the �2
l
/2 term in the numerator in the ex-

ponential is to guarantee the mean h�li is equal to the overall
average dissipation rate �̄. This distribution will be used later to
calculate the probability (eq. [4]) for a region of a given size
being in the distributed regime.

The scaling behavior of �l can be derived by integrating equa-
tion (13),

�pl
� �

/ l�(1=2)�p( p�1); ð14Þ

which gives �p ¼ �1
2
�p( p� 1). From equation (11), we have

�p ¼ p=3� 1

18
�p p� 3ð Þ: ð15Þ

Therefore � ¼ 2� �6, which can be obtained from the results
of experiments and simulations. It has been found that � ’ 0:2
(Frisch 1995; Biskamp 2003). The relation (15) agrees with
experiments quite well at small p but starts to exhibit deviation
at pk10 and gives an unrealistic maximum and turnover at
p > 16, violating the requirement that the �( p)-p curve must be
monotonic and concave (Frisch 1995). Simulations by Wang
et al. (1996) suggest that this disagreement corresponds to the
departure of the distribution for ln (�l/�̄ ) from normal at scales
close to the dissipation scale. They find that, at these scales, the
distribution of ln (�l/�̄ ) shows a negative skewness, meaning that
the lognormal distribution overestimates the probability in the
very high �l tail. However, the distribution of �l agrees with log-
normal very well in the inertial range away from the dissipation
scale, and the agreement is better and better for larger and larger
scales (Wang et al. 1996). Fortunately the critical scale we are
concerned with is well within the inertial range (see x 4), and
according to Figure 6 in Wang et al. (1996) the lognormal fit is
very good at least up to the 4 � tail. They also show that the fit
gets better as the Reynolds number increases. More recent
simulations by Yeung et al. (2006) with resolutions up to 20483

obtained similar results. The lognormal distribution gives a very

good fit to 4 � and only deviates by a factor of 2 at the 5 � tail.
They also find that the negative skewness gets closer to zero with
increasing Reynolds number. The Reynolds number in SNe Ia
is Re � 1014 for typical velocity scale 107 cm s�1, length scale
107 cm, and viscosity 1 cm2 s�1. This is much larger than in any
of the current simulations. Therefore one may expect that the
lognormal distribution probably applies even further out on the
tail for the inertial scales of the turbulence in SNe Ia. However,
the departure of the predicted �( p)� p curve from the experi-
ments (with high Re) at pk10 suggests that, even at huge
Reynolds number, the lognormal fit eventually breaks down at
some large �l in the tail. Therefore we need to be careful when
using the lognormal model. We will discuss this point further in
the calculations given in x 4.

Another issue is that the distribution of �l has a physical cutoff
in a realistic system due to the finite viscosity. Since the inter-
mittency is stronger at smaller scales, the cutoff in the distribu-
tion of �l is probably larger for smaller l and obtains a maximum
at the dissipation scale, 	. For Kolmogorov scaling, the cutoff
in the distribution of �	 is given by �̄Re1/2. Since Re � 1014 in
SNe Ia, this maximum dissipation rate is far beyond that required
to break flames at density P108 g cm�3. Therefore ignoring this
maximum cutoff does not affect our result. However, the largest
available dissipation rate at an inertial scale l is probably smaller
than the cutoff in the distribution of �	 and thus may affect the
calculation for the cumulative probability defined in equation (4)
if the cutoff in the distribution P(�lc ) is close to or even smaller
thanK3�f . Since the lognormal model does not address the cutoff
in the distribution of �l, wewill neglect this potential effect in this
model.

On the other hand, the log-Poisson model we consider in the
next section gives a maximum dissipation rate at each inertial
scale, corresponding to the strongest dissipative structures at that
scale. In that model, a nonzero cumulative probability in equa-
tion (5) requires the lower limitK3�f in equation (4) to be smaller
than the maximum.

3.2. The Log-Poisson Model

A major success in the intermittency theory is the model by
She & Leveque (1994). In this model, She and Leveque studied
the hierarchy of dissipation intensity in structures of size l and,
by invoking an unknown ‘‘hidden symmetry,’’ they related the
characteristic dissipation rates in structures of different intensity
levels to the strongest dissipative structures. This relation gives a
prediction of �p as a function of p, which only depends on the
proprieties of the most intermittent structures. Assuming that
the dissipation rate in regions of size l containing the most in-
tense structures exhibits a scaling /l�2/3 (see explanation in the
Appendix) and the most intermittent structures are filamentary,
corresponding to a codimension of 2, She and Leveque obtained
a �( p)-p relation, which is in excellent agreement with experi-
mental data. The hidden symmetry’’ has been immediately in-
terpreted as a log-Poisson process (Dubrulle 1994; She&Waymire
1995) in a multiplicative cascade model. In this section, we adopt
the log-Poisson version of the She-Leveque model. The original
presentation by She & Leveque (1994) is given in the Appendix.

In a multiplicative model, the dissipative rates at two scales l2
and l1 (l1 > l2) are related by a multiplicative factor Wl1l2,

�l2 ¼ Wl2l1�l1 : ð16Þ

The average hWl1l2i is equal to unity since h�l1i ¼ h�l2i ¼ �̄. She
& Waymire (1995) speculated that Wl2l1 consists of two events.
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First is the amplification of the dissipation rate in the cascade,
which tends to produce singular structures with �l2 / (l1/l2)

� ap-
proaching infinity as l2 goes to 0. The meaning of � is discussed
below. To ensure hWl1l2i ¼ 1, a second event is required to reduce
Wl1l2 . She & Waymire (1995) called this event the modulation
defects since it modulates the singular structures. The defects
were assumed to be a discrete Poisson process. Each of the de-
fects decreases Wl1l2 by a factor of 
, thus

Wl2l1 ¼ (l1=l2)
�
n ð17Þ

if there are n defect events in the cascade. The number n of the
events that occur in the cascade from the scale l1 to l2 obeys a
Poisson distribution,

P(n) ¼ exp �kl1l2ð Þ
knl1l2
n!

; ð18Þ

where kl1l2 is the mean number of the defect events in the cas-
cade, which is expected to be proportional to the total number of
the cascade steps, i.e., kl1l2 / ln (l1/l2). In fact, kl1l2 can obtained
by taking the average of equation (17) and requiring hWl1l2i ¼
1. Using the identity

P1
n¼0 �n/n!ð Þ ¼ exp (� ), we get 
nh i ¼

exp 
 � 1ð Þkl1l2½ � for the Poisson distribution of equation (18);
therefore,

kl1l2 ¼
� ln l1=l2ð Þ
1� 


: ð19Þ

In this model, there is a largest dissipation rate at each scale.
Clearly the largest dissipation rate is achieved if there is no de-
fect, i.e., n ¼ 0, in a cascade from the integral scale L to the scale
l of interest; thus the largest dissipation rate is equal to �L(L/l )

� ,
which corresponds to �(1)

l
in the Appendix. Similarly n ¼ 1

gives the second strongest dissipative rate at a given scale, and so
on.

From equations (16) and (17), we have

ln �l2=�̄ð Þ ¼ ln �l1=�̄ð Þ þ � ln l1=l2ð Þ þ n ln (
 ); ð20Þ

thus, using the Poisson distribution for n, the distribution for the
dissipation rate at l2 can be derived from that at any scale l1 larger
than l2. In particular, we consider deriving the distribution of �l at
any scale l from the integral scale L. The distribution function of
�L at the integral scale depends on how the energy is injected in
the flow; thus it is not universal and may vary from flow to flow.
Therefore the function form cannot be specified. However, there
is a strong constraint for its width. Since �L ’ �̄, the distribution
of ln (�L/�̄ ) is expected to be very narrow around ln (�L/�̄ ) ’ 0
and hence to be approximately a delta function. We denote the
distribution of ln (�L/�̄) as PL ln (�L/�̄ )½ �. It then follows from
equations (18) and (20) that

P(�l)d�l ¼
X1

n¼0
exp(�k) k

n

n!
PL

; ln �l=�̄ð Þ� � ln L=lð Þ� n ln(
)½ �d ln (�l=�̄ ); ð21Þ

where k ¼ kLl ¼ � ln (L/l )/(1� 
). Each term in equation (21)
represents the contribution from dissipation structures of dif-

ferent levels, e.g., the n ¼ 0 term corresponds to the most in-
tensive structures of size l.
To compare the model with experiments and obtain the pa-

rameters, we calculate the moments h� pl i from the distribution
equation (21),

�pl
� �

/
X1

n¼0

Z
exp(�k) k

n

n!
exp( px)PL x�� ln(L=l )�n ln(
)½ �dx

¼ l=Lð Þ��p
exp(�k)

X1

n¼0


 pkð Þn

n!

Z
exp x0ð ÞPL x0ð Þdx0

¼ Bp exp �k 1� 
 pð Þ½ � l=Lð Þ��p

¼ Bp l=Lð Þ��pþ� 1�
 pð Þ= 1�
ð Þ; ð22Þ

where we used a variable change x0 ¼ x� � ln (L/l )� n ln (
 ) in
the second step and the identity

P1
n¼0 (�

n/n!) ¼ exp (� ) in the
third step. The coefficients Bp ¼

R
exp( px0 )PL(x

0 )dx0 and B0 ¼
B1 ¼ 1 from the normalization of PL and the requirement that
h�Li ¼ �̄, respectively.
The result equation (22) gives �p ¼ ��pþ �(1� 
 p)/(1� 
 ),

which is the same as (A8) in the Appendix, meaning that the
‘‘hidden symmetry’’ described in the Appendix is equivalent to a
log-Poisson process. The parameters � and 
 introduced here are
identical to those described in the Appendix, and thus have the
physical meanings explained there, i.e., � can be interpreted as
the exponent of the dissipation rate scaling in regions containing
the most intermittent structures and 
 is related to the codi-
mensionC of the strongest dissipation structures, �/(1� 
 ) ¼ C
(see the Appendix for details). As discussed in the Appendix,
She and Leveque argued that � ¼ 2/3 and
 ¼ 2/3 forC ¼ 2 cor-
responding to filamentary dissipation structures in incompress-
ible turbulence. This results in �p as a function of p that agrees
with the experiments with an accuracy of 1%, implying equa-
tion (21) provides a good distribution for �l. The She-Leveque for-
mulation has been extended to supersonic turbulence (Boldyrev
et al. 2002) and MHD turbulence (Muller & Biskamp 2000)
where the dissipation structures are dissipation sheets and the
current sheets, respectively. For these two-dimensional dissipa-
tion structures, the codimension C ¼ 1 and 
 ¼ 1/3. In next
section we use the log-Poisson distribution (eq. [21]) in our cal-
culations for the cumulative probability in equation (4). We will
take � ¼ 2/3 and consider both filaments (
 ¼ 2/3) and sheets
(
 ¼ 1/3) as the most intermittent dissipation structures.

4. RESULTS

4.1. The Lognormal Model

We are ready to calculate the probability P(�lc > K3�f ) using
the distributions P(�l) given in x 3. The calculation is straight-
forward for the lognormal distribution equation (13),

P �lc > K 3�f
� �

¼
Z 1

ln K 3�f =�̄ð Þ
1ffiffiffiffiffiffiffiffiffiffiffi
2��2

lc

q exp �
�
xþ �2

lc
=2

�2
2�2

lc

" #
dx

¼
Z 1

ln K 3�f =�̄ð Þþ� 2
lc
=2½ �=�lc

1ffiffiffiffiffiffi
2�

p exp �x2=2
� �

dx

¼ 1

2
erfc

ln K3�f =�̄
� �
ffiffiffi
2

p
�lc

þ �lc

2
ffiffiffi
2

p
" #

; ð23Þ
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where �̄ ’ U 3/L, �2
lc
¼ � ln (L/lc) ’ 0:2 ln (L/lc) and erfc(x) is

the complementary error function. Using the �f and lc values
given in Table 1, we calculated the probability as a function of
the density assuming different values for the characteristic ve-
locity (U ) and length (L) scales. For example, ifU ¼ 100 km s�1

and L ¼ 100 km, the probabilities are 0:5 ; 10�10, 0.042, 0.9,
and 1 at � ¼ 108, 5 ; 107, 3 ; 107, and 107 g cm�3, respectively
ifK ¼ 1. It is interesting to note that, at a density 3 ; 107 g cm�3,
10% of the local regions of the critical size are still in the flamelet
regime, although generally the flame has reached the distributed
regime according to the mean criterion equation (2). With Rf ’
L ¼ 100 km, at the four densities above from high to low, the
corresponding numbers Nlc ¼ 4�R2

f /l
2
c of regions of the critical

size that cover the flame front are 3 ; 1010, 7 ; 108, 5 ; 107, and
3 ; 104. Multiplying P(�lc > K3�f ) with Nlc (eq. [5]), we see that
there is already one region of size lc in the distributed regime at a
density 108 g cm�3. Recalling that, according to the criterion
equation (2), the DDT does not occur until the density decreases
to 4 ; 107 g cm�3, we find that in this case the intermittency
effect may increase the transition density by more than a factor
of 2.

We point out that the cumulative probability calculated from
equation (23) at density 108 g cm�3 in the example above comes
from a little beyond the 6 � tail of the distribution for ln (�l/�̄ ) and
we need to check whether the lognormal distribution there is a
good approximation. As discussed in x 3.1, numerical simula-
tions have shown that for a scale l in the inertial range, the dis-
tribution of �l is well approximated by lognormal up to the 5 �
tail (Yeung et al. 2006). Assuming the Kolmogorov scaling, the
dissipation scale in Type Ia SNe is 	 ¼ LRe�3/4 ’ 10�3 cm for
L � 107 cm and the Reynolds number Re ’ 1014. The critical
scale of interest here, lc � 102Y104 cm, is well between the in-
tegral scale and the dissipation scale; thus we expect that the
distribution for �lc is close to lognormal at least up to the �5 �
tail. The question is then whether the good fit extends further.
Wang et al. (1996) and Yeung et al. (2006) found that the log-
normal fit is better for larger Reynolds numbers; thus it is ex-
pected that the lognormal approximation probably applies to
higher on the tail than 5 �. As argued in x 3.1, the lognormal
approximation eventually fails somewhere in the extreme tail
even at high Reynolds numbers. To know exactly how far the
lognormal fit extends, numerical simulations with much higher
resolution are needed. We have to be careful about the validity
of the lognormal approximation in the far tail because it over-
estimates the probability distribution for �l once it breaks down,
and in that case equation (23) overestimates P(�lc > K3�f ).

Due to the complication of the validity of the lognormal dis-
tribution at the far tail, we consider two extreme cases and give the
upper and lower limits for the transition density. First, we ignore
the departure from lognormal and evaluate the density at which
NlcP(�lc > K3�f ) ¼ 1, using equation (23) for P(�lc > K3�f ) and
Table 1 for �f and lc with different parameters U and L. We will
denote this density as �LN with the subscript LN standing for
lognormal. Interpolation was used to obtain �f and lc values not
tabulated in Table 1. If the distribution of �l is exactly lognormal,
as given by equation (13), then �LN is the predicted transition
density for the DDT with the intermittency taken into account.
On the other hand, if the lognormal distribution overestimates the
probability at the high tail, equation (23) overestimates the cu-
mulative probability and �LN is the upper limit for � tr. We give
�LN for different parametersU and L in the second line of Table 2.

On the other extreme, we assume that the lognormal distri-
bution fails to fit the distribution of �l beyond the 5 � tail. This

gives a lower limit for the transition density since numerical
simulations have shown that the lognormal fit applies at least to
5 �. In this case, we keep track of the integral limit in the second
line of equation (23) at �LN, which tells us which part of the tail
of the distribution gives the main contribution to P(�lc > K 3�f )
at that density. If the integral limit is smaller than five, the con-
tribution to the cumulative probability is from within 5 � and
vice versa. We calculate the density at which the integral limit is
equal to five and denote this density �5�. Since the integral limit
is a decreasing function of the density, if �LN < �5�, the con-
tribution to P(�lc > K3�f ) at density �LN is from within 5� �. In
this case, the cumulative probability calculated from equation (23)
is valid and �LN is a good estimate for the transition density. Other-
wise, if �LN > �5�, the contribution to the probability is from
beyond the 5 � tail, equation (23) overestimates it, and thus �LN

overestimates the transition density �tr. In this case, �5� gives
a lower limit for the transition density because at �5�, we have
NlcP(�lc > K3�f )31 using equation (23), which applies for
� � �5�. Therefore if the lognormal fit fails just beyond 5 �, we
have a lower limit for the transition density, min(�LN; �5�). We
give this lower limit in the third line of Table 2.

Similar calculations can be done for the K ¼ 8 case. The re-
sults of the upper and lower limits for the transition density in the
K ¼ 8 case are given in parentheses in Table 2. Comparing these
results with predictions from the mean criterion (2) (the first line
in Table 2), the lognormal model predicts that the intermittency
effect increases the transition density by a factor of 2Y3 for all the
cases we list in Table 2.

We evaluate the probability of the existence of a region of size
106 cm with a rms velocity 108 cm s�1, required for the DDT by
Lisewski et al. (2000a), and compare this to the numerical results
of Röpke (2007). Using the lognormal distribution for �l, we find
that the requirementP(�106cm > 1018 cm2 s�3) requires conditions
from the extreme tail of the distribution.The likelihood is completely
negligible (�10�40) if the velocity U at the integral length scale
is less than�107 cm s�1. Only if U is larger than 5 ; 107 cm s�1

is the probability appreciably larger so that the required region
might be available. For example, if U ¼ 5 ; 107 cm s�1 at L ¼
107 cm, the probability is �10�11. This is still too small to guar-
antee the existence of a region as required by Lisewski et al.
(2000a). The number of available candidate regions around the
flame front that are 106 cm is probably smaller than 105Y107,
assuming the flame front radius is �108Y109 cm. This result
agrees with the conclusion of Röpke (2007) that the existence of
a region as required by Lisewski et al. (2000a) is rare. To ensure
such a region, the velocity at the integral scale has to be larger
than 108 cm s�1, which is probably impossible as discussed in
x 2.

We also carry out a calculation for �tr based on the criterion of
Woosley (2007) taking into account the effect of intermittency.
Using the lognormal distribution to calculate the cumulative
probability in equation (7), we find that no regions of critical size
that meetWoosley’s criterion appear at density above 107 g cm�3.
We cannot give an exact predicted transition density for this
model because we do not have data at densities below 107 g cm�3

for relevant quantities listed in Table 1. Note that Woosley
(2007) obtained a transition density around 107 g cm�3 under
the assumption that a region that is 106 cm with a rms velocity
of 108 cm s�1 is available. From our estimate above and the re-
sult in Röpke (2007), the probability that such a region exists
is small; therefore it is appropriate to take the transition den-
sity predicted in Woosley (2007) as an upper limit for his DDT
criterion.
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4.2. The Log-Poisson Model

We next consider the log-Poisson model. Using the distribu-
tion equation (21), we have

P �lc > K3�f
� �

¼ exp �kcð Þ
X1

n¼0

knc
n!

Z 1

ln(K 3�f =�̄ )

; PL x� � ln L=lcð Þ � n ln (
 )½ �dx

¼ exp (�kc)
X1

n¼0

knc
n!

;

Z 1

ln(K 3�f =�̄ )�� ln (L=lc)�n ln(
 )

PL(x)dx

¼ exp(�kc)
X1

n¼0

knc
n!

Fn; ð24Þ

where kc ¼ � ln (L/lc)/(1� 
 ) and the integrals in the second
line are denoted as Fn for convenience. Note that the integral
lower limit ln(K 3�f /�̄ )� � ln (L/lc)� n ln (
) increases with n
because 
 < 1; therefore Fn is a decreasing function of n. An
exact calculation for the cumulative probability is impossible
because of the unspecified function PL. We will neglect all the
n � 1 terms and only keep the n ¼ 0 term in our calculation, i.e.,
we only include the contribution of the most intensive structures
at scale lc. Obviously, this approximation gives a lower limit for
the probability and the transition density we obtain will also be a
lower limit. We will show that the criterion for DDT obtained
from this approximation is exact if PL is a delta function.

The contribution from n ¼ 0 is exp(�kc) ¼ (lc /L)
�/(1�
 )F0.

For � ¼ 2/3 and 
 ¼ 2/3, it is equal to (lc/L)
2F0 and NlcP(�lc >

K3�f ) � 4�(Rf /lc)
2(lc/L)

2F0 ¼ 4�(Rf /L)
2F0. Since the size of

the flame region Rf � L, it means that the number of regions
which are larger than the critical size and in the distributed re-
gime is’4�F0. Since the distribution PL(x) is probably strongly
concentrated at x ¼ 0, the sufficient and almost necessary condi-
tion forF0 ’ 1 is that the integral limit ln(K 3�f / �̄ )� � ln (L/lc) �
0, or equivalently,

�̄ > lc=Lð Þ2=3K3�f ; ð25Þ

which is a convenient criterion for the DDT in the log-Poisson
model. Note that this criterion is much weaker than the mean
criterion equation (2). Once the condition is satisfied, at least one
region of critical size that covers the flame enters the distributed
regime due to the most intense stretching strength available at
scale lc.

As mentioned in x 3.2, if the dissipation structures are two-
dimensional, 
 ¼ 1/3. In that case, the contribution from the n ¼
0 term is (lc/L)F0 and NlcP(�lc > K3�f ) � 4�(Rf /lc)(Rf /L)F0,
which is much larger than one if F0k 1. Therefore, the criterion
equation (25) is a sufficient condition for the case with sheetlike
dissipation structures, such as in MHD turbulence or highly
compressible turbulence.

We have neglected the n > 1 terms in equation (24), the con-
tribution of which depends on how rapidly PL(x) decreases with
x > 0. We consider the extreme example where PL is a delta
function. In this case, before the condition equation (25) is met,
Fn ¼ 0 for any n; thus the cumulative probability is zero. When
the condition is just satisfied as the density decreases, only the
n ¼ 0 term contributes and all the n > 1 terms are still zero, i.e.,
the most intensive (n ¼ 0) structures at lc can stretch a local
flame into the distributed regime while all the less intensive
structures (n � 1) still cannot. From the calculation above, we

see that in this case once the n ¼ 0 term contributes, at least one
region around the flame front experiences the largest stretching
rate and enters the distributed regime. Therefore, if PL is a delta
function, equation (25) is both the necessary and the sufficient
condition. This is true for both 
 ¼ 2/3 and 
 ¼ 1/3. If PL is not
a delta function, the tail of PL gives rise to the possibility that the
distributed regime can emerge in a local region of critical size
before the condition equation (25) is met. This could lead to an
even weaker condition than equation (25). Since we expect that
�L can only vary within a factor of a few, the condition can be
weaker only by a factor of a few. Because the right-hand side of
condition (25), especially �f , depends on the density very sen-
sitively, this would not increase the predicted �tr considerably.
Equation (25) can be easily applied to calculate the transition

density using the �f and lc values in Table 1. For example, we get
�tr ¼ 8:7 ; 107 g cm�3 for U ¼ 100 km s�1 and L ¼ 100 km if
K ¼ 1. This result is consistent with that from the lognormal
model and is also about a factor of 2 larger than the prediction by
the mean criterion (2).
The transition density predicted by the log-Poisson model

with different parameters for turbulence is given in the fourth
line of Table 2. Again the numbers in parentheses are for K ¼ 8.
The results are consistent with those from the lognormal model
and are at least 2Y3 times larger than from criterion (2).
Again we consider the possibility that there exists a region

of size 106 cm with a rms turbulent velocity of 108 cm s�1 re-
quired for DDT by Lisewski et al. (2000a). The probability
P(�106cm > 1018 cm2 s�3) depends on PL, the probability dis-
tribution of the dissipation rate at the integral scale L. Since PL

is probably not universal and is flow dependent, the log-Poisson
model cannot give an exact estimate for the probability. Here we
assume that PL is a delta function and see under what condition it
is possible to find a required region. We find that the necessary
and sufficient condition to have such a region is that U >
1022/3(L/cm)1/9 cm s�1. For L ’ 107 cm, U has to be larger than
108 cm s�1. This can be understood from the fact that, in the log-
Poissonmodel, the available kinetic energy in themost intermittent
structures for dissipation is assumed to be the kinetic energy at
the integral scale (see the Appendix). Since U > 108 cm s�1 is
probably not achievable, it is rare that a region like that required
by Lisewski et al. (2000a) exists, again in agreement with Röpke
(2007).
Using the same calculation that leads to equation (25), we

obtain a criterion for the DDT model by Woosley (2007) ac-
counting for the intermittency effect,

�̄ > lc=Lð Þ2=3 lc=lf
� �2

�f : ð26Þ

This is weaker than the corresponding mean criterion (6) by a
factor of (lc/L)

2/3, meaning that intermittency increases the tran-
sition density. In comparison with equation (25), the condition is
stronger and thus gives a smaller transition density than that for
the KOW97 and NW97 model with intermittency included. At
smaller density, the critical length lc is larger and the factor
(lc/L)

2/3, representing the intermittency effect, is closer to unity.
This implies that intermittency has a weaker effect on the tran-
sition density for the Woosley (2007) criterion than for KOW97
and NW97. Using Table 1, we again find that the condition (26)
is not satisfied at densities above 107 g cm�3 for the five cases
listed in Table 2, i.e., the predicted transition density is still below
107 g cm�3 after including intermittency (see discussion in x 4.1).

In summary, intermittency can considerably enhance the onset
of the distributed flame regime and hence increase the transition
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density in the DDT model of KOW97 and NW97. Both the in-
termittency models we consider here predict a transition density
2Y3 times larger than from the criterion using the mean dissi-
pation rate. This factor of 2Y3 brings the transition density to be
in disagreement with the observational constraints for turbulent
velocity larger than U ¼ 106 cm s�1 in the case K ¼ 1. We dis-
cuss the implications of this result in the next section. We also
find that the existence of regions of size 106 cm with a velocity
of 108 cm s�1 is rare, which agrees with the numerical result
of Röpke (2007). The strong DDT criterion given by Woosley
(2007) gives a transition density below � tr ¼ 107 g cm�3 even
when intermittency is included. We expect that the intermittency
effect is weaker for stronger DDT criteria.

5. CONCLUSION AND DISCUSSION

We have studied the effect of intermittency on the transition
from the flamelet regime to the distributed regime in Type Ia
SNe, and hence on the transition density for the DDT model by
KOW97 andNW97. In their model, the detonation occurs via the
Zel’dovich mechanism that requires a nearly isothermal region
larger than a critical size to drive a sufficiently strong supersonic
shock. KOW97 and NW97 assumed that the almost isothermal
mixture of fuel and ash can be produced once turbulence is
strong enough to get the flame into the distributed regime. The
DDTis assumed byKOW97 andNW97 to occurwhen theaverage
flow gets into the distributed regime. We argue that the sufficient
condition for theDDT is that there is one region that is larger than
the critical size and in the distributed regime.

The intermittency in turbulence, as a result of the spatial in-
homogeneity of the dissipation rate, gives rise to regions with
strong local turbulent strength that can force the flame into the
distributed regime earlier than elsewhere. Therefore the transi-
tion from the flamelet regime to the distributed regime is not
spatially smooth, but intermittent. At early time when the density
in the white dwarf is large, the flame has a large speed and a small
width and thus resists being efficiently stretched and broken by
the turbulence. At the same time, the critical size is very small.
This has two effects that tend to make an early DDT likely. First,
the intermittency of turbulence tells us that the probability of
finding extremely strong stretching within a smaller critical size
is larger. Second, there are more regions of smaller sizes avail-
able. Therefore it is possible that the DDT is triggered at a small
‘‘spot’’ when the density is larger than needed for the average
flow to enter the distributed regime. As we pointed out in x 1,
the critical size as a function of the density plays an important
role in determining the transition density for the DDT in our
calculations.

We used two analytical intermittency models to statistically
investigate when the first region appears that is both larger than
the critical size and in the distributed region. This is assumed
to be the time when the DDToccurs by KOW97 and NW97. We
found that, for various parameters for the intensity and length
scales, DDToccurs at a transition density at least 2Y3 times larger
than the density at which the average flow enters the distributed
regime. The transition density has been determined empirically
by invoking it as a free parameter in spherically symmetricmodels
and then computing models that best match the observed mul-
ticolor light curve shapes and magnitudes (Höflich & Khokhlov
1996). Recognizing that the spherical models are oversimplified,
they do give some guidance to the empirical constraints on the
density at whichDDToccurs. Höflich (1995) used this procedure
to fit observations of the Branch core normal SN 1994D and
preferred a value of the transition density of 2 ; 107 gm cm�3.

Höflich et al. (1995) explored a range of transition densities in
the context of pulsating delayed detonation models and favored
densities in the range 0:8Y2:2ð Þ ; 107 gm cm�3. Dominguez et al.
(2001) adopted 2:3 ; 107 gm cm�3. Allowing for an uncertainty
of a factor of 2, the predicted transition densities by the mean
criterion are consistent with 2 ; 107 gm cm�3 as favored by the
observations in all the cases except that with �̄ ¼ 1016 cm2 s�3

and K ¼ 1 (Table 2). With the intermittency effects we have ex-
amined here, the transition densitywould be a factor of 2Y3 higher.
If K ¼ 1, all the predicted � tr are larger than 2 ; 107 gm cm�3 by
at least a factor of 2, except for the case with U ¼ 106 cm s�1.
The predicted transition density with K ¼ 8 is 2Y3 times smaller
than from K ¼ 1. From Table 2, the predicted � tr for the inter-
mittency models with K ¼ 8 agree with the observations within
a factor of 2, except the case with a large velocity scale U ¼
108 cm s�1 at the integral length scale. To avoid discrepancy with
the observations, our result indicates several possibilities.

1. The large-scale motions caused by Rayleigh-Taylor insta-
bility freeze out due to the overall expansion of the star (Khokhlov
1995). The freezeout effect has to be efficient enough for the
developed part of the flow to have a velocity scale of P106 cm s�1

(see Table 2).
2. The flame is very robust. To break the flame, the local

Gibson scale has to be at least K3 ¼ 512 times smaller than the
flame thickness. In this case, the predicted transition density is
2Y3 times smaller than that from K ¼ 1.
3. There is not enough time for the buoyancy-driven turbu-

lence to fully develop down to the critical size before the predicted
density for the DDT by our intermittency models is attained; thus
motions at scales below the critical size are either absent or
nonintermittent.
4. The DDT does not occur immediately after a region of the

critical size enters the distributed regime. It may take some time
for turbulence to help mix the region and make it nearly iso-
thermal. However, the timescale for turbulence to mix a region
of the critical size in the distributed regime is very small,P10�2 s
at densities larger than 3 ; 107 g cm�3. It is unlikely that the den-
sity drops much in such a short timescale.
5. Having a large enough region entering the distributed re-

gime is not a sufficient condition for detonation. As mentioned in
x 1, there are several uncertainties in the simplemodel byKOW97
and NW97 that assumes that flame quenching, entering the dis-
tributed regime, and the DDT all occur simultaneously.

Our results allude to the possibility that the criterion byKOW97
and NW97 is too weak for the DDT, supporting the claim of
Lisewski et al. (2000a) andWoosley (2007) that just entering the
distributed regime is not sufficient for the DDT. We have shown
that their criteria for the DDT are much stronger than just enter-
ing the distributed regime. We also studied the intermittency ef-
fect on their conditions for the DDT.We find that the existence of
a region of size 106 cmwith a rms turbulent velocity of 108 cm s�1,
as required by Lisewski et al. (2000a) for a DDT, is rare, which is
consistent with the numerical results of Röpke (2007). We have
also examined the intermittency effect on the transition density
for the DDT criterion by Woosley (2007). We find that the effect
is weaker for the stronger criterion and does not increase � tr to
above 107 g cm�3.Woosley (2007) obtained � tr around 10

7 g cm�3

because of the assumption of a strong turbulence velocity of
108 cm s�1 in a region that is 106 cm. Since the existence of such
a region is rare, Woosley (2007) may considerably overestimate
the transition density. This may imply that the condition for DDT
by Lisewski et al. (2000a) and Woosley (2007) is too strong and
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predicts a transition density smaller than that empirically deter-
mined from observations.

We have only studied the DDT in white dwarfs with an initial
chemical composition of half carbon and half oxygen. In a white
dwarf with more carbon, the nuclear timescale is smaller; thus,
a stronger turbulent intensity is needed to break the flame. This
results in a smaller transition density using the mean criterion
(NW97). On the other hand, the critical size for detonation in
such a white dwarf is smaller; therefore the intermittency effect
could be more efficient in increasing the transition density. We
were not able to perform a calculation for a chemical composi-
tion with a carbon abundance larger than 0.5 due to the lack of
sufficient data for the critical length scale in this case.

We point out that the intermittency models we used were
originally proposed for homogeneous and isotropic turbulence.
Turbulence in SNe Ia is stratified and may not achieve homo-
geneity and isotropy at very small scales even if the turbulence is
developed at these scales. The effect of the departure from ho-
mogeneity and isotropy on the predicted transition density is out
of the scope of this paper.

We thank Elaine Oran for useful discussions. This research
was supported in part byNSF grant AST-0707769 (L. P., J. C.W.)
and by NASA Astrophysics Theory Program grant NAG5-
13280 (J. S.).

APPENDIX

THE SHE-LEVEQUE MODEL

In their original paper, She & Leveque (1994) start with the moments of the distribution P(�l) and use the ratios of two suc-
cessive moments, �( p)

l
¼ h� pþ1

l i/h�pl i / l�pþ1��p , to characterize a hierarchy of dissipative structures. This ratio can be written as
�( p)l ¼

R
�lQp(�l)d�l, where Qp(�l) ¼ �pl P(�l)/

R
� pl P(�l)d�l. For a typical distribution P(�l) that decreases monotonically and faster

than any power law at large �l, Qp(�l) strongly peaks around �( p)
l

for large values of p. Clearly �( p)l increases with p, and �(1)
l ¼

limn!1h� pþ1
l i/h�pl i corresponds to the most intense dissipative structures at scale l. These strongest dissipative structures are the

origin of the anomalous scaling and the scaling of �(1)
l with l,

�(1)
l � l��; ðA1Þ

is of fundamental importance. To determine the parameter �, we can dimensionally write �(1)
l as an energy scale divided by a timescale

tl. She and Leveque argued that for the most intermittent structures this energy scale is the largest available kinetic energy (which is
�v2rms, independent of l ) and assumed that tl exhibits a regular Kolmogorov scaling tl � l2/3; therefore � ¼ 2/3. From equation (A1),
we have �pþ1 ¼ �p � � for p ! 1, or

�p ¼ ��pþ C; p ! 1; ðA2Þ

where the constantC has a physical interpretation as the codimension of the most intermittent structures. Equation (A1) means that the
dissipation rate in a region of size l that encloses the most intensive structures scales with l as �l / l�� . When calculating h� pl i at
p ! 1, we need to consider the possibility of a point finding itself within a distance l to the most intermittent structures, which is
proportional to l(D�d), where D is the dimension of the system and d is the dimension of the most intensive structures (Frisch 1995).
As p ! 1, the contribution to h�pl i is dominated by the most intermittent structures, therefore h�pl i / l��pþD�d . Comparing with
equation (A2), we find that C corresponds to the codimension of the most intermittent structures, C ¼ D� d.

In order to determine the entire hierarchy of the dissipative structures, She and Leveque argued that the intensity �( pþ1)
l of the

dissipative structures at level pþ 1 depends only on their immediate precursor, the structures of level p, from which the level pþ 1
structures directly develop, and on the most intensive structures, where the structures of all orders tend to end up. Based on this
argument, they made an assumption about the hierarchy of the dissipation rates,

�( pþ1)
l ¼ Ap �( p)l

� 	

�(1)
l

� 	1�

; ðA3Þ

where the coefficients Ap are independent of l but may be flow dependent and nonuniversal. The parameter 
 will be completely fixed
by � and the codimensionC. According to She and Leveque, this relation corresponds to a mysterious symmetry of the Navier-Stokes
equation, termed ‘‘the hidden symmetry.’’

To derive �p from equation (A3), it is convenient to define a new variable,

�l ¼ �l=�
(1)
l ; ðA4Þ

which was introduced by Dubrulle (1994). Clearly �( p)l /�(1)
l ¼ h� pþ1

l i/h� p
l i from the definition of �( p)l . Then the ‘‘hidden symmetry’’

assumed by She and Leveque becomes

�pþ2
l

D E
�pþ1
l

D E ¼ Ap

�pþ1
l

D E
�p
l

� �
0
@

1
A




: ðA5Þ
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This recursion relation is solved by

�pþ1
l

D E
�p
l

� � ¼ Cp �lh i

p

; ðA6Þ

where C0 ¼ 1 and Cp ¼
Q p

n¼0A

n
n for p > 0. Equation (A6) gives

�p
l

� �
¼ Bp �lh i(1�
 p)=1�
; ðA7Þ

where B0 ¼ B1 ¼ 1 and Bp ¼
Q p�1

n¼1Cn for p > 1. Noting that h�li ¼ �̄/�(1)
l / (�(1)

l )�1 and h�p
l i ¼ h�pl i(�

(1)
l )�p, equation (A7) gives

h�pl i / (�(1)
l )p�(1�
 p)/(1�
 ). Using equation (A1), we have

�p ¼ ��pþ �
1� 
 pð Þ
1� 


: ðA8Þ

The parameter 
 is determined by the asymptotic behavior of �p at the p ! 1, equation (A2). Letting p ! 1 in equation (A8) and
comparing with equation (A2), we find that �/(1� 
) ¼ C ¼ D� d. Since the most intermittent structures in three-dimensional
incompressible turbulence are filamentary, we have d ¼ 1 and C ¼ 2; thus 
 ¼ 1� �/2 ¼ 2=3 for � ¼ 2/3. Finally we arrive at the
celebrated She-Leveque formulae,

�p ¼ �2p=3þ 2 1� 2=3ð Þp½ � ðA9Þ

and

�p ¼ p=9þ 2 1� 2=3ð Þp=3
h i

; ðA10Þ

which agrees with the experimental result with an accuracy of 1%. Note that this result is consistent with Kolmogorov’s exact result
for the third order structure function, i.e., �3 ¼ 1. If the most intense structures are two-dimensional, e.g., the dissipation sheets in
compressible flows (Boldyrev et al. 2002) or the current sheets in MHD (Muller & Biskamp 2000), 
 ¼ 1/3.
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