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Abstract 

 

Explicitly linking field- and satellite- derived measurements for 

improved vegetation quantification and disturbance detection  

 

Thomas Brandt Christiansen, MA 

The University of Texas at Austin, 2014 

 

Supervisor:  Kelley A. Crews 

 

 

Arid and semi-arid ecosystems have been recognized as critical in supporting over 

one-third of the world's populations, notably those more dependent on the natural 

resource base for their livelihoods. These systems, and especially savannas within them, 

are highly vulnerable to predicted fluctuations in climatic change, disturbances, and 

management regimes. This research posits these areas in a social-ecological system (SES) 

framework that encompasses human, governance, and recourse units. A challenge in both 

SES and CHANS (coupled human and natural systems) research is how to explicitly and 

empirically link the social and the ecological, and further how to extrapolate from sets of 

case studies to the greater region, supra-system, or SES / CHANS theory and practice. 

This work leverages Landsat and IKONOS imagery as well as field-based vegetation 

sampling (structure and species) through the use of IDL (interactive data language) 

visualizations, both pixel- and object-based classifications, and CART (classification and 

regression tree) analysis. The longer term goal of this work is to produce a protocol and 
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classification scheme modified from the 1976 Anderson scheme to include both structure 

and disturbance explicitly in processing, mapping, monitoring, and management. In 

creating SVCs (Structural Vegetation Categories) built from field data there is strong 

potential for extracting 3-D data from 2-D imagery once the protocol produces robust 

results with high enough accuracies. As hypothesized, the object-based classifications 

produced higher overall accuracy (70.83%), though the pixel-based classification 

performed better in the detection of woodlands (90.91%). Given the spatial scales of the 

imagery as compared to the size of the field plots and transect spacing, it is important to 

remember that when extrapolating to other areas a critical part of spatial scale is extent 

(not just grain). That is, the inherent clumping of trees versus shrubs may be driving the 

better performance of pixel-based for woodlands but not so for shrublands. Sensitivity to 

placement of plots and especially plot sizes across future sites will help explore this 

question and move SES research into a realm whereby remote sensing and vegetation 

sampling can provide improved empirical linkages among the subsystems and their 

feedbacks. 
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Chapter 1: Introduction 

Arid and semi-arid ecosystems cover approximately 40% of the Earth’s land 

surface and are home to more than one third of the world’s human population (MEA 

2005). They are important food-production regions worldwide and are highly vulnerable 

to climatic fluctuations such as drought, climate change and changes in land-use patterns 

(Archer, Schimel and Holland 1995). Research suggests that under current climatic 

developments, arid and semi-arid regions will experience an increase in aridity due to 

higher temperatures and wider variability in precipitation patterns (Tucker and Nicholson 

1999, IPCC 2013). Such changes will directly affect the availability of natural resources, 

influencing the complex interactions between social and ecological systems. Apart from 

the United States and Australia, these regions are situated in developing countries where 

a significant part of the population depends directly or indirectly on the use of naturally 

available resources to sustain their livelihoods (Ellis 2000, Kgathi et al. 2004). 

The natural resources required by a population vary by geographic location due to 

cultural adaptations (including migration) over time based upon shifting available 

resources. It is important to note that these needs may also vary between two villages 

even in the same general area, whether due to microsite environmental or climatic 

heterogeneity or differences between villages in terms of differential structural and/or 

negotiated access rules (Shinn et al. 2014). The interactions between and among humans 

and environments can be placed within frameworks called social-ecological systems 

(SESs). As articulated in Ostrom (2007), each social-ecological system has a particular 

geographic extent in which subsystems exist, including resource systems (e.g. 

vegetation), resource units (e.g. berries, timber, and building materials), users (human 
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extractors), and governance systems (organization, culture, and rules shaping patterns of 

resource extraction) (Ostrom 2007). These subsystems exist for an array of resources 

within each social-ecological system and their linkages are often complex. Understanding 

these interwoven and dynamic interactions is vital for management purposes as well as 

ensuring the sustainability of individual systems for both ecological functioning and local 

livelihoods. 

 Typically, "wall-to-wall" (complete spatial) coverage of land-cover changes in 

the landscapes are monitored by remote sensing systems (e.g., satellite or airborne 

systems) given their synoptic coverage, multi-temporal or repeat capabilities, and ability 

to detect spectral and spatial information beyond that visible by humans (Jensen 2009). 

Land-uses are associated with particular land-covers or land-cover combinations in a 

given area, culture (Liverman et al. 1998) or here, SES and may be tracked over time to 

assess, in particular, their sustainability. The majority of current land-cover 

classifications for arid and semi-arid ecosystems, however, are based on broad land-cover 

classes limited by the characteristics of passive optical remote sensing technologies. 

While passive remote sensing systems can be used to distinguish between trees and 

shrubs, they are not designed to penetrate land surface features (e.g., vegetation canopies) 

and are therefore not appropriate for measuring vegetation structure directly. Active 

systems, including RADAR and LIDAR, can detect vegetation structure but do so at the 

loss of spectral information (Jensen 2009). In addition, these systems are extremely 

expensive and lack the historical archives traditionally needed for land-cover change 

analysis. 

 



3 

 

Vegetation structure is important for local livelihoods and the sustainability of 

individual social-ecological systems. The first objective of this research is therefore to 

assess the structural heterogeneity within pixel- and object-based land-cover 

classifications using field data and three-dimensional vegetation visualizations. I 

hypothesize that the structural heterogeneity within land-cover classes will be high for 

pixel-based classifications and lower for object-based classifications. The second 

objective of this research is to generate structural vegetation categories (SVCs) by 

leveraging field data, IDL (Interactive Data Language) visualizations (three-dimensional 

representations of vegetation structure), and CART (classification and regression tree) 

results. Structural vegetation categories, defined as vegetation units with similar structure 

and therefore likely subject to similar disturbances such as fire or human disturbance, will 

inform beyond traditional land-cover classes by explicitly quantifying vegetation 

structure. SVCs however will be based on structural measurements of vegetation from 

field plots. The last objective of this research is to extrapolate SVCs, through both pixel- 

and object-based land-cover classifications, to broader areas. This information can 

facilitate the assessment of the extent and sustainability of land-uses necessary to sustain 

local livelihoods. In addition, by classifying past satellite imagery and comparing it to 

present imagery this work can potentially help explain not only how land-cover and 

structural vegetation disturbance classes have changed over time but also how land 

available for individual land-uses has changed both spatially and temporally. Such work 

could ultimately aid in making predictions regarding how future increase in climate 

variability or changes in land-cover could influence local livelihoods by facilitating 

changes in land practices and, reciprocally, resource availability. 
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This research frames such questions for the region encompassing a series of 

villages, Etsha-1 to Etsha-13, along the western edge of the Okavango Delta (see Section 

2.3). Data were collected through vegetation field sampling as well as household 

interviews regarding livelihood practices, land management, and resource use in order to 

understand the complexity of this particular social-ecological system. The high 

environmental variability of this system, particularly flooding levels, makes this system 

additionally interesting. Environmental uncertainly was hypothesized to differ in 

perception by local users and to directly influence livelihood strategies, such as creating 

new fields, planting crops, or focusing on alternative strategies (Shinn et al. 2014). These 

actions affect the environment, potentially further adding to the environmental 

uncertainty of the region. Finally, this work asks whether current land-cover 

classification schemes are adequate within the framework of social-ecological systems 

with high environmental variability and uncertainty.  

 

1.2 SAVANNA ECOLOGY 

Savannas are defined as tropical and sub-tropical ecosystems characterized by a 

continuous herbaceous layer (absent disturbance such as recent fire or over-grazing) and 

a discontinuous layer of trees and shrubs. The herbaceous layer consists mainly of 

heliophilous C4 grasses but also includes scattered forbs. Savannas are the most common 

type of ecosystem throughout the tropics and subtropics and cover an eighth of the global 

terrestrial surface while containing one fifth of the world’s human population (Solbrig 

1996, Beerling and Osborne 2006). These regions exhibit well defined wet and dry 

seasons with a mean annual rainfall that ranges from 300 mm to 1600 mm (Frost, Medina 

and Menaut 1986).  
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Figure 1: World-wide distribution of savannas and grasslands (Mishra and Young 2014). 

 

The spatial configuration and ratio of woody plants to grasses within savanna 

ecosystems are a function of poorly understood complex factors (Archer et al. 1995, 

Scholes and Archer 1997, Tedder et al. 2014). An understanding of which factors 

determine tree-grass ratios is important, as woody cover affects savanna function by 

influencing rates of transpiration and production, nutrient cycling, soil erosion, 

hydrological cycles, and as a result, local and regional biogeochemical cycles (Joffre and 

Rambal 1993, Schlesinger et al. 1996, Reid et al. 1999, Rietkerk and Van de Koppel 

1997). Interactions between plant available moisture (PAM), plant available nutrients 

(PAN), fire, and herbivory influence savanna structure and function (Cole 1986, Skarpe 

1992, Scholes and Walker 1993, Higgins, Bond and Trollope 2000). 
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At regional and continental scales, woody plant dominance increases as plant 

available moisture produced through annual precipitation increases. Sankaran et al. 

(2005) analyzed determinants (mean annual precipitation or MAP, temperature, soil 

characteristics, and fire occurrence) of woody and herbaceous cover for sub-Saharan 

Africa and found that MAP was the driving factor for woody cover in arid and semi-arid 

savannas. In these areas, maximum tree cover occurs at MAP levels of 650 ± 134 mm, 

while 101 mm is required for woody cover occurrence. At finer scales, however, the 

spatial and temporal distribution of rainfall varies greatly within each wet season through 

intense localized thunderstorms (Thomas and Shaw 1991). Soil nutrient levels also 

influence savanna structure and function over local scales through the quality of soil 

parent material and the timing of rainfall as it controls mineralization events and thus 

nutrient release (Sankaran et al. 2005). Fire plays an important additional role in 

determining vegetation structure and composition by hindering woody plant dominance 

in savanna ecosystems (Bond and van Wilgen 1996). Fire disturbances control woody 

cover distribution in areas below the MAP-determined boundary (Sankaran et al. 2005). 

Several recent studies on the effects of different fire regimes (season, frequency, and 

intensity) have shown that decreased fire frequencies can result in woody plant 

encroachment while high fire frequencies can lead to the transition of savannas to 

grasslands (Trollope et al. 1998, D'Odorico et al. 2007, D'Odorico and Porporato 2006). 

Fires within savannas are primarily surface fires which spread quickly during the dry, 

hot, and windy condition during the latter stages of the dry season. Fires commonly occur 

in savannas every one to three years but such frequencies are dependent on climatic 

conditions, fuel load, and land-uses (Van Wilgen et al. 2004). Fires are mainly caused by 

anthropogenic ignition sources, both deliberate and accidental, although lightning does 
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ignite fires in less populated areas (Roy et al. 2011). Fires predominately burn grasses 

and forbs which are able to regrow quickly post-fire, while mortality is generally low for 

established trees. Herbivory, through both grazing and browsing by wild and 

domesticated mammals, affects savanna structure by the trampling of soils (and 

subsequent root damage) and damaging shrubs and trees (Hopcraft, Olff and Sinclair 

2010, Pringle et al. 2007). Large herbivores can damage trees which increases mortality 

(through debarking for example) while many herbivores eat the foliage of seedlings and 

increase recruitment (Sinclair 1995). Areas of high herbivory often experience woody 

plant encroachment as a result in savanna ecosystems (Trodd and Dougill 1998, Lambin 

et al. 2001, Augustine, McNaughton and Frank 2003). Human disturbances also have 

significant impacts on savanna structure and function. The overuse of natural resources in 

arid and semi-arid ecosystems often leads to land degradation. The clearing of land for 

agricultural purposes resets the successional stage of the habitat as fields are often later 

abandoned. Intentional burning (for purposes such as for clearing fields, improving soil 

nutrients and improving grasses for grazing) also changes ecosystem dynamics. Resource 

extraction, e.g., for building materials and firewood, directly changes savanna structure 

and species composition. 

 

1.3 MODELS OF TREE-GRASS COEXISTENCE 

Several different models have been proposed to explain the mechanisms that 

permit trees and grasses to coexist without one displacing the other. This tree-grass 

coexistence is posed as fundamental for savanna ecology. Conceptual models for tree-

grass coexistence fall within two main categories: those that focus on competitive 

interactions between trees and grasses (competition-based models), and those that 
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emphasize climatic variability and disturbances as bottlenecks to hinder tree dispersal and 

establishment (demographic-bottle neck models). 

Early models of savanna dynamics focused on the competitive dynamics between 

trees and grasses. These models explain tree-grass coexistence based on niche 

differences, both spatial and temporal, in the way trees and grasses acquire resources. The 

root niche separation model, proposed by Walter (1971), assumes that water is the 

limiting factor, since trees and grasses have different assess to water through their unique 

rooting profiles. Grass roots typically dominate the topsoil layer while tree roots 

dominate sub-soils (Walter and Mueller-Dombois 1971). Water availability was therefore 

seen as the limiting factor of tree-grass coexistence through root niche separation in water 

uptake (Walker and Noy-Meir 1982). The vertical distribution of water in the soil profile 

thus dictates the ratio of trees to grasses with all other environmental conditions held 

constant (Walker et al. 1981, Walker and Noy-Meir 1982, Van Langevelde et al. 2003). 

The phenological niche separation model explains tree-grass coexistence through 

differences in seasonal growth potential between trees and grasses. The growth period is 

limited in savanna ecosystems due to the nature of distinct wet and dry seasons. Savanna 

trees are capable of storing nutrients and water through the dry season and are therefore 

able to achieve full leaf expansion quickly as the wet season begins (Scholes and Archer 

1997). Peak leaf area of savanna grasses, however, is achieved later in the wet season. 

Trees therefore potentially have exclusive access to resources in the early and late stages 

of the growing season while grasses are believed to outcompete trees in periods of growth 

overlap (Sala, Lauenroth and Golluscio 1997). The balanced competition model stresses 

trees as superior competitors for both light and soil resources. Tree density, however, is 

limited by competition between trees for water above a precipitation threshold. Grasses 
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dominate the system below this threshold (Scholes and Archer 1997, House et al. 2003). 

Within the context of this model, savannas represent non-equilibrium states, with wooded 

savannas as the exception, which are maintained by grazing pressure and fire (Scholes 

and Archer 1997). The hydrologically driven competition-colonization model 

incorporates the balance between the competitive ability and colonization potential of 

trees and grasses in a disequilibrium framework. The superior competitor changes over 

time due to inter-annual rainfall variability that determines soil water stress (Fernandez-

Illescas and Rodriguez-Iturbe 2003).  

As opposed to competition-based models, demographic-bottleneck models focus 

on the role of disturbances (e.g. fire and grazing pressure) and climatic variability in 

limiting tree seedling germination, establishment, and demographic transition towards 

mature size classes (Hochberg, Menaut and Gignoux 1994, Higgins et al. 2000, van Wijk 

and Rodriguez-Iturbe 2002). Within this model, two main frameworks exist with respect 

to the degree of control of savanna structure and functioning. The disequilibrium 

framework views disturbances (e.g. fire and herbivory) as forms which maintain, not only 

modify, savanna structure by restricting the system to transition into pure woodland or 

grassland (Jeltsch et al. 1996, Jeltsch, Weber and Grimm 2000). The alternate framework 

interprets savanna structure based on non-equilibrium dynamics in xeric areas while 

disequilibrium dynamics, driving by fire intensity, dominate in mesic areas. Tree 

recruitment in xeric areas, such as arid to semi-arid systems, thrives through localized 

thunderstorms. Trees are able to dominate the canopy cover in mesic savannas, while 

frequent high intensity fires (due to high fuel loads) and browsing hinder complete tree 

dominance over grasses (Jeltsch et al. 1996). 
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1.4 SOCIAL-ECOLOGICAL SYSTEMS 

Humans have interacted with and altered the environment since the beginning of 

human history. Such impacts include the use of fire to change / clear flora in addition for 

hunting strategies, the cutting / clearing of forests for building materials and firewood, 

and the creating of irrigation systems in arid regions (Pearce and Turner 1990). These 

impacts were restricted to local and regional scales until the past 300 years. The human 

population has increased exponentially, in addition to becoming a fossil fuel based 

society; these shifts have increased the impact on the environment. Global impacts of 

human activity are now apparent through changes in biogeochemical cycles and severe 

alterations in climate and its variability (IPCC 2013). Understanding of such changes 

with respect to local, regional, and global resources for an expanding global population is 

becoming increasingly important. While many disciplines focus upon either 

anthropogenic or natural components, the complex interactions among society and nature 

have been studied in fields such as sustainability science and coupled human and natural 

systems (CHANS) (Kates et al. 2001, Cash and Moser 2000, Gibson, Ostrom and Ahn 

2000). These fields employ interdisciplinary approaches by the integration of both 

ecological and social sciences in order to understand the “interaction of global processes 

with the ecological and social characteristics of particular places and sectors” (Kates et al. 

2001). Research framed within CHANS focuses on three individual aspects of socio-

ecological interaction: the patterns and processes that link human and natural systems; the 

reciprocal interactions and feedbacks within these systems; and the human-environment 

interactions within and across scales of analysis (Liu et al. 2007).  
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The social-ecological (SES) framework presented by Ostrom (2007, 2008, 2009) 

offers a functional approach to study CHANS by addressing the interconnection between 

the social and natural spheres while stressing feedbacks between subsystems and their 

anthropogenic and ecological significance. Each SES under study has a specified 

geographic extent in which subsystems exist, including a resource system (e.g., 

vegetation), resource units (e.g., berries, timber, and building materials), users (e.g., 

human extractors), and governance systems (e.g., organization, culture, and rules shaping 

patterns of resource extraction) (Figure 2) (Ostrom 2009).  

 

 

Figure 2: The first-level core subsystems in a framework for analyzing social-ecological 

systems (Ostrom 2009). 

 

These first-level core subsystems exist for an array of resources within each 

social-ecological system and links among them are often complex and stretch across 
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multiple scales. Each core system consists of multiple second-level variables (e.g., the 

productivity of a resource system, the social or economic value of resource units, the 

operational rules, and the number of users in the system), which each are then composed 

of deeper-level variables (Ostrom 2009).  

The environment guides human activities such as settlement, resource use and 

extraction, and livelihoods. Environmental uncertainty, such as that surrounding 

precipitation or flooding levels, can have a large effect in SESs and influences local 

livelihoods and resources. Locals make livelihood decisions based on their perception of 

the environmental variability (or lack thereof). This facet is particularly important in 

systems with high inter-annual environmental uncertainty. Livelihood decision making, 

such as the creating of new fields or abandoning fields in favor of other livelihood 

activities, directly influences the environment and particularly vegetation communities. 

Such activities compound environmental variability, further adding to the system's 

overall environmental uncertainty. The sustainability of each SES and the resource 

systems within it thus depend directly upon users and governance systems, each of which 

may vary widely even within a single SES (Shinn et al 2014). 
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Chapter 2: Site & Situation 

2.1 THE KALAHARI ENVIRONMENT 

The Kalahari Desert and its sand deposits cover approximately 2.5 million square 

kilometers of the interior of southern and central Africa (Scholes et al. 2002). The 

Kalahari Beds extend from the Orange River in the south to as far north as the equator. 

These sands have been deposited and worked by aeolian processes during the Eocene to 

Pliocene period (two to seven million years ago) and accumulated within the Kalahari 

Basin (Thomas and Shaw 1991).  

 

 

Figure 3: Spatial extent of the Kalahari sand deposits (Meyer 2014).  

Despite its name, the Kalahari Desert is in fact not a desert but a semi-desert 

based upon the definition of deserts as hot regions with annual rainfall not exceeding 250 
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mm. The Kalahari Desert is located within the southern hemisphere subtropical high 

pressure belt that along with the Southern Atlantic Oscillation (SAO) controls the climate 

of the region. The seasonal fluctuations of this belt and the Inter-tropical Convergence 

Zone (ITCZ) result in a strong delineation between the wet and dry seasons of the 

Kalahari region. The wet season lasts from November to March while the dry season 

dominates the remainder of the year. The annual rainfall within the Kalahari Desert varies 

from 250 mm in the extreme south to more than 1000 mm in the north (Shugart et al. 

2004). The Kalahari Desert is therefore a semi-arid region in its central and southern 

parts while it is a dry sub-humid region to the north. The majority of rainfall comes from 

convective thunderstorm systems that contribute to high year-to-year rainfall variations 

for a given location and high variability among sites of close proximity.  

The soils of the Kalahari are often described as homogenous and low in organic 

materials and nutrients (D'Odorico et al. 2007). Although this description is accurate, 

especially with respect to particle size, variability does exist across finer scales (Meyer 

2014). This variability results in relatively high spatial heterogeneity in vegetation 

composition. Most of the vegetation within the Kalahari is described as savanna, defined 

as tropical and near-tropical ecosystems characterized by a continuous herbaceous layer 

and a discontinuous layer of trees and shrubs. Vegetation cover, diversity, and biomass 

are heavily correlated to the climatic north-south gradient, resulting in closed tropical 

forests in the north to typical savannas to open grasslands in the south. Disturbances, soil 

types, and geomorphological effects, however, create inter-regional exceptions to this 

general trend. 
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2.2 THE OKAVANGO DELTA 

The Cubango and Cuito Rivers come together in Southern Angola to form the 

Okavango River. The Okavango River runs through Namibia, where it is referred to as 

the Kavango River, until it enters the Okavango Delta in northwestern Botswana. The 

Okavango Delta is a large, inland alluvial fan (22,000 km
2
, though the actual area 

covered changes with flooding fluctuations) that is formed by the Okavango River. That 

river, constrained on either side by faults, travels southeast from the panhandle in the 

Namibian Caprivi Strip and northwestern Botswana until it reaches a major fault line (the 

Gumare fault) where the water disperses into the fan and distal regions. The distal regions 

are bounded by two fault lines, the Kunyere and Thamalakane faults, with waters then 

lost primarily to evapotranspiration, though in extremely wet periods, such as recently, 

the water does spill over into the Boteti River. 

 

 

Figure 4: The Okavango Delta and its headwaters in the Angolan highlands (Mendelsohn 

et al. 2010). 
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The Delta extends a total of 250 km and covers an area over 22,000 km
2
 (Smith et 

al. 1997). The Okavango system falls within the semi-arid climate of the surrounding 

Kalahari region with annual rainfall ranging from 450mm in the distal south to 650mm in 

the north / panhandle. The rainy season occurs between November and March while 

minor precipitation may occur sporadically in the dry season the remainder of the year. 

Precipitation, however, only provides roughly half of water inflow to the system (though 

this proportion varies from year to year). The other portion comes from upstream rains in 

the catchment area (over 325,000km
2
) of the Angolan highlands that eventually feed the 

Okavango system (McCarthy et al. 2003). The peak flooding in the Delta thus occurs in 

the dry season as a result of it taking several months for the Angolan sourcewaters to 

move downstream. Water stages are highest in March to April at the panhandle of the 

Delta while highest in August at the Delta's most distal reaches. Flooding patterns in the 

Delta often change both spatially and temporally given the high spatio-temporal 

variability of both precipitation and channel movement. Flooding levels are also cyclical 

and have gone through high flooding years to low flooding years on a quasi-decadal scale 

from the 1950s to the 1990s. Since 2000, however, peak flooding levels have been 

increasing steadily. The majority of surface water is lost to evapotranspiration (~2172 

mm/year), while the remainder runs out of the Delta to the southeast into the Boteti River 

(McCarthy et al. 2003). 

The entire active catchment area of the Okavango Delta spans three countries 

(Angola, Namibia, and Botswana) and was designated by international treaty in 1997 to 

be a Ramsar wetland of importance. The majority of the Delta is further protected as part 

of the Moremi Game Reserve or Wildlife Management Areas, although village 

communal lands do exist where grazing and wetland floodplain farming ("molapo" in 
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Setswana) occurs. The Delta and its dynamic channels, swamps, seasonal floodplains, 

riparian woodlands, and dry woodlands contain a much higher level of biodiversity, both 

flora and fauna, than the surrounding Kalahari savanna ecosystem (Ramberg et al. 2006), 

though the combination of its multi-national nature and high number of migratory species 

do produce relatively low rates of endemism. Wildlife populations, however, have been 

declining since the 1960s, primarily due to a series of veterinary fences that were erected 

to control the spread of livestock diseases (Perkins and Ringrose 1996, Mbaiwa and 

Mbaiwa 2006). 

The resources associated with the Delta have enabled a larger human population 

to reside around its periphery than farther into the Kalahari. The complex nature of the 

Delta as a system, however, also increases the variability and uncertainty of the quantity 

and quality of available resources from year to year largely due to [primarily] cyclical 

climate fluctuations. Roughly 125,000 people live in or around the Okavango Delta and 

almost all (over 95%) directly or indirectly depend on natural resources from the area to 

sustain their livelihoods (NWDC 2003). Veld products locally collected and sometimes 

sold include palm leaves (Hyphaene petersiana) for basket weaving, thatching grass (e.g., 

Eragrostis pallens, Aristida stipitata, and Cymbopogon excavatus) and river reeds for 

building materials, medicinal plants, fruits, and mopane worms, as well as other fencing, 

building, canoe ("mokoro" in Setswana), and fuel wood materials (Colophospermum 

mopane, Dichrostachys cinerea, Diospyros mespiliformis and others). However, many of 

these materials are decreasing in availability due to an increase in their demand (ADRC 

2001). 

Both dryland and flood recession (molapo) agriculture is practiced in the 

Okavango region. 48,900 hectares have been cleared for crops in Okavango Delta region, 
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of which 75% were dryland fields and 25% were molapo fields. This number is 

deceivingly high as only about 10,000 hectares are used in a given year (Mendelsohn et 

al. 2010). Dryland farming is practiced on the sandy soils of the uplands away from the 

floodplain. Fields are cleared through manual labor by removing all woody vegetation, 

although some trees may be left to provide shade. Several different crops are grown 

including maize, sorghum, millet, and watermelons. Fields are fenced in wire covered 

with thorn-bushes to keep cattle and wildlife out. Crop yields are generally low due to the 

poor fertility of the soil and low rainfall. Molapo farming takes advantage of seasonal 

swamps on the fringes of the Delta that are much more fertile than the sandy soils in the 

backcountry as well as having close proximity to crops needing greater water. Crops are 

thus planted in the floodplains, taking advantage of the moisture in the soil. These areas 

flood during the high flood season (that is, the dry season) and water then slowly 

infiltrates or evaporates. These areas are ideal for seasonal farming as they are able to 

take advantage of greater soil moisture as the floods recede. The main crops planted in 

molapo areas are maize, while beans and other vegetables are also planted. Being able to 

predict flooding levels, therefore, is vital for crop planning as the success of molapo 

farming is primarily determined by flooding, both from the previous season and of that 

coming season. Crops can be ruined in years of too little or too much flooding. The recent 

trend of increasing flood levels has therefore been troublesome for many households' 

local livelihoods (Shinn et al. 2014), though some have benefitted from the situation. In 

addition, precipitation in the Delta can cause early floods that can damage standing crops. 

Livestock, mainly cattle and goats, is also widely kept by families to sustain their 

livelihoods in years of low crop yields. Livestock is either based at cattle posts or roam 

the village where they graze outwards from communal or tribal lands. Livestock may be 
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kept for commercial purposes (more common in areas away from the Delta, though this 

trend is changing) but is usually kept for subsistence use, security assets, and occasional 

ceremonies such as wedding gifts. The relative contribution of individual livelihood 

strategies may differ from year to year and even within the year based on the perception 

of environmental conditions (Shinn et al. 2014). 

 

2.3 THE ETSHA SETTLEMENTS 

The Etsha region
1
 is comprised of thirteen settlements situated along the western 

boundary of the Okavango Delta. These villages were created when 3,300 members of 

the Hambukushu tribe in southern Angola fled into Botswana during Angola’s war of 

independence in 1967. The Hambukushu were adopted as part of the Batswana tribe and 

were allocated the land that is now the Etsha settlements or villages1. The Delta and its 

banks were already inhabited by the Bayei, resulting in the Etsha communities being a 

mix of Hambukushu and Bayei. The Hambukushu are resourceful people whose 

livelihoods depend on dryland farming, cattle, and basket-making of palm leaves. The 

Bayei are more people of the water and utilize flood cycles through molapo farming and 

fishing. Livelihood strategies do, however, overlap between the two groups and no 

strategy is exclusive to one group (Meyer et al. 2011). 

 

                                                 
1 For the purpose of clarity, the following naming convention is used to refer to the components and 

reaches of the Etsha area: ExS refers to all Etsha settlements (Estha 1 - Etsha 13) in the settled zone (see 

Figure 6), with E13S for instance representing the Etsha 13 settlement only. Similarly, ExR represents the 

entire Etshas region with, for example, E13R referring only to the Etsha 13 village and usage / backcountry 

area. This naming convention recognizes 1) the different "zones" in the Etshas area of dense settlement 

versus sparse settlement and veld collection / dryland farming and 2) the heterogeneity among the 13 Etsha 

settlements. 
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Figure 5: The Etsha region (imagery from National Geography / ESRI). 

Four main land-use zones exist: the Delta, the floodplain, the village and fields 

area (here, called settlements), and the backcountry, collectively referred to in this work 

as the Etshas region. The Delta is a wetland ecosystem and is used for fishing and 

collected natural materials. The high seasonal and inter-annual flooding variability 

influences land-uses in the floodplain used for molapo farming and grazing areas on rich 

soils. The village and backcountry areas are typically savanna ecosystems with low 

annual precipitation (~450 mm). The sandy soils are used for dryland farming despite low 

yields due to low nutrient levels. Mainly maize, sorghum and millet are grown although 

many fields are abandoned.  
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Figure 6: Land-use zones in the Etsha region. 

 

 

 

 

 

 

 

 



22 

 

Chapter 3: Research Objectives and Methodology 

3.1 RESEARCH OBJECTIVES 

In order to assess whether current land-cover classification schemes are adequate 

within the context of social-ecological systems, this research addresses three main 

objectives: 

Objective 1: Assess the structural heterogeneity within pixel- and object-

based land-cover classifications using three-dimensional vegetation visualizations.  

Objective 2: Generate quantifiable structural vegetation categories by 

leveraging field data, IDL visualizations (three-dimensional representations of 

vegetation structure), and CART (classification and regression tree) results.  

Objective 3: Assess the ability of detecting SVCs through land-cover 

classifications, both pixel- and object-based, for broader areas. 

 

For the first objective, Landsat TM imagery was used for both pixel- and object 

based land-cover classifications. The structural heterogeneity was then assessed within 

each land-cover classification, for both methods, through the use of three-dimensional 

vegetation visualizations created using plot structural measurements and Interactive Data 

Language (IDL). I hypothesized that the structural heterogeneity would be high within 

pixel-based land-cover classes, while it would be lower within object-based land-cover 

classes. 

For the second objective, structural variables (e.g., number of trees, height and 

clustering classes, diversity, etc.) were calculated for all sampled plots and then used to 

create quantifiable structural vegetation categories (SVCs) by using a classification and 

regression tree (CART). CART analysis is a statistical tree-building technique which 
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ranks and splits data by determining which variables explain trends in the data. Accuracy 

assessment was performed using IDL visualizations to inspect the spatial heterogeneity 

within each structural vegetation category. I hypothesized that the structural 

heterogeneity within SVCs would be much lower than within land-cover classes from the 

first objective. In addition, I hypothesized the distribution of SVCs would be spatially 

related to the proximity of major roads, the Delta, and central village areas, with 

backcountry dominant SVCs being different than village SVCs due to pressures from 

land-use and closer proximity to denser populations in the latter. 

For the third objective, the ability of detecting SVCs through land-cover pixel- 

and object-based classifications for broader (i.e., non field-sampled) areas was tested. 

Ideally, each SVC would fall within exclusive land-cover classes. I hypothesized that 

each SVC would fall within several land-cover classes and would not be mutually 

exclusive. 

 

3.2 REMOTE SENSING OF SAVANNA LANDSCAPES 

Earth observation satellites have greatly increased our ability to monitor 

landscapes by providing access to both visible and non-visible portions of the 

electromagnetic spectrum at multiple spatial, temporal, and spectral resolutions (Jensen 

1996). The United States Landsat program launched Landsat 1 in 1972 and the 

availability of satellite imagery, along with derived products, has grown since. Additional 

satellites have further increased the spatial resolution (e.g., Quickbird and IKONOS), 

spatial extent ideal for monitoring landscapes at broader scales (e.g., MODIS and 

AVHRR), and spectral resolution (e.g., Landsat TM and Landsat 8) of available imagery. 

In combination with in-situ data, remotely sensed imagery enables the environmental 
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assessment of landscapes through the observation of changes in land-cover. Anderson 

(1976) introduced a multi-level classification framework for national [US] land use and 

land cover (LULC) classifications with both exhaustive and mutually exclusive classes 

(e.g., deciduous forest land, evergreen forest land, and mixed forest land within the 

“forest land” level-one class). While effective at continental scales, such a classification 

scheme is less ideal for regional and local scales as they (1) describe multiple land 

surface types within the same class, and (2) include fuzzy class definitions. 

Land-cover classifications are difficult in spatiotemporally dynamic landscapes 

(such as savannas) due to the heterogeneity of vegetation composition and structure 

(Thompson 1996, Jung et al. 2006). Land-cover classes for vegetation within savannas, 

and arid to semi-arid ecosystems, are identified based upon characteristics such as 

structure (height and/or cover), species composition, or other observable habitat 

properties. Structural and hierarchical classification schemes have been developed based 

upon principles of the Anderson framework but with more detail in terms of vegetation 

life form, height, cover, and composition. Such approaches, as presented by Edwards 

(1983) and Grunblatt et al. (1989), utilize lifeforms (such as woodland or shrubland) with 

modifiers to describe structure and composition. These classification schemes 

characterize land-cover in detail although class verbiage often overlap, making both 

classification and interpretation subjective (e.g. shrubbed woodland versus treed 

shrubland). Within the framework of SES, it is essential to apply land-cover classes to the 

landscape that are relatable not only to land use activities but also to how such activities 

disturb vegetation in terms of structure and spatial arrangement. In addition, there is a 

need for quantifiable structural land cover classes as opposed to current classification 

schemes based on descriptive variables such as lifeform and broad modifiers. Pixel-based 
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land-cover classification is widely used although the patch-dynamic nature of savannas 

often makes the variability within classes higher than between classes. Object-based 

classifications can therefore be advantageous within savanna systems as they segment 

homogeneous pixels together into objects based on shape, compactness, and texture. 

These two methods are compared in this work in terms of creating accurate land-cover 

classifications in a savanna system.  

 

3.3 FIELD METHODOLOGY 

Vegetation data were collected along a series of villages (Etsha-1 to Etsha-13) and 

their usage back-country areas (together, ExR) by the western edge of the Okavango 

Delta. Vegetation measurements were taken within 10 x 25 meters plots (58 in total) that 

were spaced every 500 meters along 9 transects laid perpendicular to the Delta, in each 

case starting at the edge of the current extent of the Delta's waters and moving due west. 

Within each plot, all woody species above 25 centimeters in height were measured with 

regards to the Cartesian location, stem and canopy dimensions, number of stems, 

diameter at breast height, cover estimates, and species identification of individual trees. 

Vegetation data were not recorded if the plot fell within agricultural fields or a house, 

compound, or village center. In such instances, however, a broad description of the 

vegetation was noted. Semi-structured interviews were also conducted with members of 

the Etsha settlements to gain insights into livelihood practices, land management, 

resource use and extraction, and perceptions of environmental uncertainties. 
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Figure 7: Transect layout & plot locations (imagery from GeoEye / ESRI). 

 

3.4 THREE-DIMENSIONAL VISUALIZATIONS OF VEGETATION STRUCTURE 

Field measurements were used to create three-dimensional visualizations of the 

vegetation structure of each plot with Interactive Data Language (IDL). IDL is a 

programming language that can be used for customized data analysis and graphical 

visualizations. Each tree was modeled with a stem and canopy component. The stem 

component uses x and y locational measurements, dbh (diameter at breast height), and 

height of the stem to create three-dimensional rectangular boxes to represent the stem for 

each tree. For multi-stemmed trees, the stems have been combined into one shape due to 

several factors including; (1) the extensive time required to note the Cartesian location of 

each individual stems for shrubs with up to 100+ stems, and (2) in order to avoid creating 
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systematic error by introducing patterns in which to place stems in the model. The 

canopy component uses x and y measurements of canopy extent and the start and total 

height of the canopy to create an octahedron to represent the canopy. This shape was 

chosen to represent the canopy since no geometric shape could accurately represent 

complex tree canopy structures and it is purely based on field measurements (while an 

ellipsoid for example would imply a canopy structure which may not have been observed 

in the field). In combination, the stem and canopy components represent an individual 

tree. Each tree was modeled in this fashion and placed within a three-dimensional 

coordinate system. 

 

   

Illustration 1: Angled, side, and top view of a plot’s vegetation structure. 

 

3.5 CLASSIFICATION AND REGRESSION TREE (CART) 

Classification and regression tree (CART) analysis in the R statistics package was 

used to assess vegetation structure among plots in order to create structural categories. 

Structural variables were calculated for each plot and used in the CART analysis. 

Variables included: number of individuals, number of species, percentages of all tree 

genera found in the area, biomass, Simpson’s diversity index, densiometer readings of 

canopy closure (taken in field), total canopy cover, height categories (percent below 0.5 
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m, between 0.5 and 2 m, and above 2 m), stem area, and stem categories (percent single 

stem, 2 to 5 stems, 6 to 20 stems, and more than 20 stems per tree).  

Several CART trees were produced and assessed in terms of similarity within and 

differences among structural categories and were compared to the IDL visualizations. 

The CART tree chosen (based on ecological and structural differences between 

categories) contained ten categories based on six variables: number of individuals, height 

category 1 (below 0.5 m), height category 2 (0.5 m to 2 m), height category 3 (above 2 

m), stem category 3 (6 to 20 stems), and stem category 4 (20+ stems). The ANOVA 

method was used, which maximizes the sum of squares between groups through a 

regression tree. Other settings included the minimum split at 10, which requires that the 

minimum number of observations in a node to be 10 before attempting a split and a cost 

complexity factor at 0.001, which means a split must decrease the overall lack of fit by a 

factor of 0.001. 
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Chapter 4: Analysis & Results 

4.1.1 SUPERVISED PIXEL-BASED LAND-COVER CLASSIFICATION 

A supervised land-cover classification was created with Landsat TM 5 imagery 

from the 27
th

 of April 2009. A total of 31 classes were left after evaluating the 

separability of all 255 classes following the protocol described in Messina et al. (2000). 

These 31 classes were then attributed to a land-cover type based on lifeform and tree 

cover density using high resolution IKONOS imagery (from the 17
th

 of October 2011) for 

accuracy assessment. The classification scheme presented by Grunblatt et al. (1989) was 

used, although modifiers such as height and species dominance were not used as they 

could not be assessed from a [remote] nadir perspective. In addition, the definition of 

trees was slightly altered to fit the ecosystem characteristics, as many trees are multi-

stemmed (usually between two and five stems, but some species up to 100 or more stems) 

in the Botswana Kalahari. For example, a land-cover with 60% shrub cover and 20% tree 

cover is classified as “dense treed shrubland”. 

 

Table 1: Land-cover classification scheme presented by Grunblatt et al. (1989). 

 

Level Criteria Terms Description 

1 Lifeform Woodland Land dominated by trees (woody, single stemmed plants) 

  Shrubland Land dominated by shrubs (woody, multi-stemmed plants) 

  Grassland Land dominated by herbaceous (non-woody) cover 

  Bareland Land with less than 2% of total vegetation cover 

2 Cover Closed 80-100% canopy cover 

  Dense 50-79% canopy cover 

  Open 20-49% canopy cover 

  Sparse 2-19% canopy cover 
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The classification resulted in eight land-cover classes: dense woodland, dense 

shrubbed woodland, open shrubbed woodland, dense treed shrubland, open treed 

shrubland, open shrubland, sparse treed shrubland, and sparse shrubland (Figure 8). The 

variability within classes, however, was higher than among classes. This results in the 

inability of the classification to detect fields accurately as there was high overlap among 

vegetation land-cover classes and fields.  

 

 

Figure 8: Land-cover classification with Landsat TM 5 (04/27/2009). 
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 The EsR (settlement region) was then classified on its own in order to detect fields 

more accurately (Figure 9). While the village classification performed better in 

identifying fields there was still high variability within classes, which resulted in a 

simplified land-cover depiction of the area. The original land-cover classification was 

thus used for SVCs since it covers the entire area of interest and classifying the EBR 

(backcountry region) based on the EsR would introduce error and bias. 

 
 

 

Figure 9: Side by side comparison of the areas land-cover classification (left) and the 

village area classification (right). 
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4.1.2 STRUCTURAL HETEROGENEITY WITHIN THE SUPERVISED PIXEL-BASED LAND-

COVER CLASSIFICATION 

Plots within each land-cover type (derived from the Landsat object-based land-

cover classification) were compared in terms of vegetation structure using IDL 

visualizations. The structural variability within each structural category was high as 

shown in the illustration below (illustration 2). No plots fell within the open shrubland or 

sparse treed shrubland. Note the high structural heterogeneity within each pixel-based 

land-cover class. 

 

Pixel-based 

land-cover class Plots within each pixel-based land-cover class (side and top view) 

Dense woodland 

 
 

Dense shrubbed 

woodland 

 

 

Illustration 2: Structural heterogeneity within pixel-based land-cover classes.  
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Dense shrubbed 

woodland  

 

(continued) 

 

 

 

 

 
 

Illustration 2: Structural heterogeneity within pixel-based land-cover classes (continued). 
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Open shrubbed 

woodland 

 

 

 
 

Dense treed 

shrubland 

 

 

 

 

Illustration 2: Structural heterogeneity within pixel-based land-cover classes (continued). 
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Dense treed 

shrubland 

 

(continued) 

 

 

 

 

 
 

Illustration 2: Structural heterogeneity within pixel-based land-cover classes (continued). 
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Dense treed 

shrubland 

(continued) 

 

 

 

 

 
 

Illustration 2: Structural heterogeneity within pixel-based land-cover classes (continued). 
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Dense treed 

shrubland 

(continued) 

 

 

 

 
 

Open treed 

shrubland 

 

 

 

Illustration 2: Structural heterogeneity within pixel-based land-cover classes (continued). 
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Open treed 

shrubland 

 

(continued) 

 

 

 

 

 

 

 

Illustration 2: Structural heterogeneity within pixel-based land-cover classes (continued). 
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Open treed 

shrubland 

(continued) 

 

 

 

 

 

 

 

Illustration 2: Structural heterogeneity within pixel-based land-cover classes (continued). 
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Open treed 

shrubland 

(continued) 

 

 

 

 

 
 

Illustration 2: Structural heterogeneity within pixel-based land-cover classes (continued). 
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Open treed 

shrubland 

(continued) 

 

 
 

Sparse shrubland 

 

 
 

Illustration 2: Structural heterogeneity within pixel-based land-cover classes (continued). 
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4.2.1 OBJECT-BASED LAND-COVER CLASSIFICATION 

The classification scheme was slightly modified due to the nature of object-based 

classification and its ability to segment vegetation communities. Within each segment, at 

a segmentation level of 20, the dominant lifeform was first identified and then described 

in terms of its canopy cover. The second lifeform was then identified and described in 

terms of its cover. For example, if a community has 65% tree cover and 25% shrub cover 

it would be classified as Open Shrubbed Dense Woodland. If a community has 65% 

shrub cover and 25% tree cover it would be classified as Open Treed Dense Shrubland. 

This distinction from the original classification scheme does a better job of describing the 

vegetation structure and the balance between trees and shrubs.  

 

 

Table 2: Land-cover classification scheme for modified object-based framework. 

TREE COVER SHRUB COVER CLASSIFICATION

80 - 100 % < 5 % Closed woodland

5 - 19 % Sparsely shrubbed closed woodland

20 - 49 % Openly shrubbed closed woodland

50+ % Densely shrubbed closed woodland

50 - 79 % < 5 % Dense woodland

5 - 19 % Sparsely shrubbed dense woodland

20 - 49 % Openly shrubbed dense woodland

50+ % Densely shrubbed dense woodland

20 - 49 % < 5 % Open woodland

5 - 19 % Sparsely shrubbed open woodland

20 - 49 % Openly shrubbed open woodland

5 - 19 % < 5 % Sparsely treed grassland

5 - 19 % Sparsely shrubbed sparse woodland

SHRUB COVER TREE COVER CLASSIFICATION

80 - 100 % < 5 % Closed shrubland

5 - 19 % Sparsely treed closed shrubland

20 - 49 % Openly treed closed shrubland

50+ % Densely treed closed shrubland

50 - 79 % < 5 % Dense shrubland

5 - 19 % Sparsely treed dense shrubland

20 - 49 % Openly treed dense shrubland

50+ % Densely treed dense shrubland

20 - 49 % < 5 % Open shrubland

5 - 19 % Sparsely treed open shrubland

20 - 49 % Openly treed open shrubland

5 - 19 % < 5 % Sparsely shrubbed grassland

5 - 19 % Sparsely treed sparse shrubland

TREE COVER SHRUB COVER CLASSIFICATION

< 5 % < 5 % Grassland

5 - 19 % < 5 % Sparsely treed grassland

< 5 % 5 - 19 % Sparsely shrubbed grassland

TREE COVER SHRUB COVER CLASSIFICATION

< 2 % < 2 % Bareland

TREE DOMINATED

SHRUB DOMINATED

GRASS DOMINATED

BARELAND



43 

 

The software eCognition was used to run an object-based classification on the 

Landsat image (April 2009), although the image was cropped to the extent of available 

high resolution IKONOS imagery as opposed to the larger extent used for the pixel-based 

classification.  This was done as the high resolution image was used to identify land 

cover types within the modified classification scheme. The object-based classification 

was not done with the high resolution imagery in order to maintain the ability to compare 

results with the pixel-based classification afterwards. All bands were given equal weight 

at a segmentation level of 10 with 0.5 weight for shape and 0.2 weight for compactness. 

This resulted in a total of 2658 segments classified into 13 land-cover types (openly 

shrubbed dense woodland, sparsely treed open shrubland, etc.) and 3 land-use types 

(village areas, fields, and roads). For Figure 10, segments have been dissolved into like 

cover types, thus not showing individual segments in most areas. It is important to note 

that the modified classification scheme is more detailed, which could lower the structural 

accuracy score when compared to the less detailed land-cover classification used for the 

pixel-based classification. Note the ability to classify village settlement areas and fields 

(which was problematic for the pixel-based classification). 
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Figure 10: Object-based land-cover classification (base imagery from GeoEye / ESRI). 
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4.2.2 STRUCTURAL HETEROGENEITY WITHIN THE OBJECT-BASED LAND-COVER 

CLASSIFICATION 

Plots within each land-cover type (derived from the Landsat object-based land-

cover classification) were visually compared in terms of vegetation structure using IDL 

visualizations (illustration 3). Note that although structural heterogeneity still exists 

within each object-based land-cover class, it is significantly less than within the pixel-

based land-cover classes (reference illustration 2). 

 
Object-based 

land-cover class Plots within each object-based land-cover class (top and side view) 
 

Openly shrubbed 

closed woodland 

 

 
 

Openly shrubbed 

dense woodland 

 

Illustration 3: Structural heterogeneity within object-based land-cover classes.  
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Openly shrubbed 

dense woodland 

 

(continued) 

 

 

 

 

 

Illustration 3: Structural heterogeneity within object-based land-cover classes (continued). 
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Openly shrubbed 

dense woodland 

 

(continued) 

 

 

 

 

 

Illustration 3: Structural heterogeneity within object-based land-cover classes (continued). 
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Openly shrubbed 

open woodland 

 
 

Sparsely 

shrubbed dense 

woodland 

 
 

Sparsely 

shrubbed open 

woodland 

 

 
 

Openly treed 

dense shrubland 

 

Illustration 3: Structural heterogeneity within object-based land-cover classes (continued). 
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Openly treed 

dense shrubland 

 

(continued) 

 

 

 

 

 

Illustration 3: Structural heterogeneity within object-based land-cover classes (continued). 
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Openly treed 

dense shrubland 

 

(continued) 

 

 

 

 

 

Illustration 3: Structural heterogeneity within object-based land-cover classes (continued). 
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Openly treed 

open shrubland 

 

 

 

 

 

Illustration 3: Structural heterogeneity within object-based land-cover classes (continued). 
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Openly treed 

open shrubland 

 

(continued) 

 
 

Sparsely treed 

dense shrubland 

 

 

 

 

Illustration 3: Structural heterogeneity within object-based land-cover classes (continued). 
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Sparsely treed 

dense shrubland 

 

(continued) 

 

 

 

 
 

Sparsely treed 

open shrubland 

 

Illustration 3: Structural heterogeneity within object-based land-cover classes (continued). 
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Sparsely treed 

open shrubland 

 

(continued) 

 

 

 

 

Illustration 3: Structural heterogeneity within object-based land-cover classes (continued). 

 

 

4.3.1 STRUCTURAL VEGETATION CATEGORIES (SVCS) 

Structural variables from plot data were used in a classification and regression 

tree (CART) to determine statistical splits in the data and create structural vegetation 

categories (SVCs) as a result. The CART analysis resulted in 10 structural categories 

with multiple structural variables; number of individuals, height category 1 (below 0.5 
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m), height category 2 (0.5 m to 2 m), height category 3 (above 2 m), stem category 3 (6 

to 20 stems), and stem category 4 (20+ stems).  

 

 

Figure 11: Classification and Regression Tree 

The categories are summarized in the table 3 below. Each CART category (SVC) 

contains plots with unique structural characteristics. In addition, each SVC identified a 

relatively unique species composition thus confirming the strength of the CART method. 

Species do overlap between SVCs, but when inspected further through the IDL 

visualizations the morphological characteristics (e.g. height) of each species is 

significantly different in each SVC. This difference in structure of species between plots 

points to the ability of the CART method of detecting different successional stages (or 

various growth forms caused by disturbances) of individual species (such as 
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Colophospermum mopane in multi-stemmed shrub form in abandoned fields versus tall 

single stemmed structure in open woodland). 

 

Table 3: Characteristics and composition of CART SVCs. 

 

 Structural Characteristics Plots within each 

SVC 

 

Genus composition (over 10% listed) 

 

CART Category 1 

> 42 individuals 

63 - 72% medium trees 

< 22% 20+ stems 

> 15 % 6-20 stems 

 

t1p4, t1p6, t1p7, t2p3, 

t2p8 

 

Colophospermum, Baphia 

 

CART Category 2 

> 42 individuals 

< 63% medium trees 

< 22% 20+ stems 

> 15 % 6-20 stems 

> 34% tall trees 

 

t1p3, t1p9 

 

Colophospermum, Dichrostachys 

 

CART Category 3 

> 42 individuals 

< 63% medium trees 

< 22% 20+ stems 

> 15 % 6-20 stems 

< 34 % tall trees 

 

t3p2, t3p3, t3p6, t3p7, 

t4p2, t5p8, t7p3 

 

Baphia, Combretum, Terminalia 

 

CART Category 4 

> 42 individuals 

< 72% medium trees 

< 22% 20+ stems 

< 15 % 6-20 stems 

 

t5p2, t5p5, t6p7 

 

Terminalia, Acacia, Grewia 

 

CART Category 5 

> 42 individuals 

< 72% medium trees 

> 22% 20+ stems 

 

t3p9, t8p3, t8p4 

 

Colophospermum, Baphia, Bauhinia 

 

CART Category 6 

> 42 individuals 

> 72% medium trees 

t2p2, t5p6, t6p10, 

t6p11, t7p6, t8p8, t9p3 

Mundulea, Grewia,  Dichrostachys, 

Baphia, Lonchocarpus 

 

CART Category 7 

< 42 individuals 

< 7 % small trees 

t1p5, t2p5, t3p8, t6p5, 

t7p9 

Baphia, Grewia,  Colophospermum 

 

CART Category 8 

< 42 individuals 

> 7 % small trees 

< 14 % trees with 6-20 stems 

t2p4, t4p6, t5p12, t6p3, 

t6p6, t9p2 

Terminalia, Mundulea, Combretum, 

Acacia 

 

CART Category 9 

< 26. 5 individuals 

> 7 % small trees 

> 14 % trees with 6-20 stems 

 

t6p4, t8p2 

Grewia, Gymnosporia, Acacia 

 

CART Category 10 

27 - 42 individuals 

> 7 % small trees 

> 14 % trees with 6-20 stems 

t6p9, t8p5, t8p6, t9p4, 

t9p5, t9p6, t9p7, t9p8 

Grewia, Acacia, Baphia, Combretum 
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Figure 12: Spatial locations of structural vegetation categories. 

Note that several SVCs are found throughout the study area (such as SVC 6 and 

SVC 7), while others are exclusively found towards the North (such as SVC 1 and SVC 

2) and others towards the South (such as SVC 10). 
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4.3.2 STRUCTURAL HETEROGENEITY WITHIN  SVCS 

Plots within each SVC were compared in terms of vegetation structure using IDL 

visualizations in the illustration below (illustration 4). Note that the plots are now 

grouped based on statistical similarities in regards to structural variables and are not 

necessarily close to each other spatially. The structural heterogeneity is therefore 

minimized when compared to illustrations 2 and 3. 

 
Structural 

Vegetation Category 
Plots within each SVC (side and top view) 

SVC 1 

 

 

 

 

Illustration 4: Structural heterogeneity within structural vegetation categories (SVCs). 
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SVC 1 

(continued) 

 

SVC 2 

 

 

SVC 3 

 

 

Illustration 4: Structural heterogeneity within structural vegetation categories (SVCs) (continued). 
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SVC 3 

(continued) 

 

 

 

 

SVC 4 

 

Illustration 4: Structural heterogeneity within structural vegetation categories (SVCs) (continued). 
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SVC 4 

(continued) 

 

 

SVC 5 

 

 

 

Illustration 4: Structural heterogeneity within structural vegetation categories (SVCs) (continued). 
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SVC 6 

 

 

 

 

 

Illustration 4: Structural heterogeneity within structural vegetation categories (SVCs) (continued). 
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SVC 6 

(continued) 

 

 

SVC 7 

 

 

 

Illustration 4: Structural heterogeneity within structural vegetation categories (SVCs) (continued). 
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SVC 7 

(continued) 

 

 

SVC 8 

 

 

 

Illustration 4: Structural heterogeneity within structural vegetation categories (SVCs) (continued). 
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SVC 8 

(continued) 

 

 

 

SVC 9 

 

 

 

Illustration 4: Structural heterogeneity within structural vegetation categories (SVCs) (continued). 
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SVC 10 

 

Illustration 4: Structural heterogeneity within structural vegetation categories (SVCs) (continued). 

 

 

4.4 ACCURACY ASSESSMENT OF CLASSIFICATION METHODS 

Accuracy assessment was conducted for each plot based on its IDL visualization, 

pixel-based land-cover class, and object-based land-cover class. The pixel- and object-

based land-cover class was given an accuracy ranking per plot based on their ability to 

describe the vegetation structure in the IDL visualization for that plot, using the thematic 

linguistic system ranking system in Table 4, modified from Gopal and Woodcock (1994) 

and Woodcock and Gopal (2000) in order to better account for uncertainty in both the 

classification and accuracy assessment processes (Woodcock 2002). 

 

Rank Description 

2 The land-cover class best describes the observed vegetation structure 

1 The land-cover class could be understood as describing the observed vegetation structure 

-1 The land-cover class does not describe the observed vegetation structure 

-2 The land-cover class absolutely does not describe the observed vegetation structure 

Table 4: Accuracy assessment ranking system (modified from Gopal and Woodcock 

1994 and Woodcock and Gopal 2000) 
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The sum of the classification scores of each plot for each method then served as a 

proxy for classification accuracy. The pixel-based classification method had a total 

classification score of 24 while the object-based classification method had a total 

classification score of 32 (see appendix 1).  

The relative and absolute accuracy for each classification was assessed in order to 

gain insight into when each land-cover classification performed well. The relative 

agreement of the ranking between the pixel- and object-based land-cover classifications 

tested whether the two land-cover classifications agreed when describing the vegetation 

structure (irrelevant if a classification is accurate when compared to the ground truth). 

The agreement assessment was split into five categories: (1) when the pixel-based 

classification describes the vegetation as woodland, (2) when the object-based 

classification describes the vegetation as woodland, (3) when the pixel-based 

classification describes the vegetation as shrubland, (4) when the object-based 

classification describes the vegetation as shrubland, and (5) assessment for all classes 

over both methods. The correlation factors were then calculated between the 

classification ranking scores of plots within each category (see table 5 below).  

When described as woodland, both the pixel- and object-based classification 

ranking scores were slightly negatively correlated (-0.18 and -0.13 respectively), which 

means that the two classification types tended to disagree in woodland environments. 

This disagreement is likely due to classifying trees as shrubs or vice versa, which for 

example can lead to classifying a dense woodland as a dense shrubland. When described 

as shrubland, both the pixel- and object-based classification ranking scores were strongly 

positively correlated (0.54 and 0.64 respectively), which means that the two classification 

types tend to agree in shrubland environments. 
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Comparison 

Classified  

WPB WOB SPB SOB 

WPB 1.00 -0.18 --- --- 

WOB -0.13 1.00 --- --- 

SPB --- --- 1.00 0.54 

SOB --- --- 0.64 1.00 

  C*, Overall (all classes, both methods) 0.40 

Table 5: Relative agreement between the pixel- and object-based classifications.  

(PB = pixel-based, OB = object-based, W = woodland, S = shrubland, WPB = Woodland, pixel-based, WOB = 

Woodland, object-based, SPB = Shrubland, pixel-based, SOB = Shrubland, object-based, C* = All classes, both methods). 

 

Second, the absolute agreement of the ranking between the pixel- and object-

based land-cover classifications was assessed. This ranking tests how accurately each 

type of land-cover classification classified vegetation structure (using IDL visualizations 

as ground truth). It also identifies how correlated the ranking scores of the object-based 

classification was when the pixel-based classification was correct, and vice versa. The 

object-based classification outperformed the pixel-based classification (70.83% versus 

64.58% accuracy respectively) when tested across all plots. The object-based 

classification tended to agree with the pixel-based when the pixel-based classification 

was correct. The pixel-based tended to disagree with the object-based when the object-

based classification was correct. For woodland areas, the pixel-based classification 

outperformed the object-based classification (90.91% versus 76.47% accuracy 

respectively). However, the object-based classification had a larger percentage of ranking 

scores of 2 (versus ranking scores of 1) than the pixel-based classification, which 

indicates that the object-based described the vegetation structure better when the 

classification is correct. 
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The pixel-based and object-based classifications were both expected to perform 

well in woodland environments. The pixel-based classification should perform well as 

woodlands are both spatially and spectrally clustered. The object-based classification 

should perform well as it should be able to identify woodland areas easily as object due to 

their spectra and texture characteristics. However, the object-based classification 

classified 13 out of 17 plots correctly as woodland. The four misclassified plots exhibited 

two primary mistakes. First, shrubs were misidentified as trees and the plot was therefore 

classified as woodland. Second, plots having relatively low number of trees but with 

extremely large canopies led to their classification as woodland. Another parameter to 

further explore is the level of segmentation, which for this work was relatively high. I 

hypothesize that the object-based classification would perform better at finer 

segmentation scales as it would allow the classification to detect more detailed changes in 

canopy cover.  

The object-based classification outperformed the pixel-based classification 

(67.74% versus 56.76% accuracy respectively) in shrubland areas. This matches the 

expected result, although both of these numbers were lower than anticipated. The spatial 

heterogeneity of shrublands, in combination with the relative coarse nature of the land-

cover classifications (30 x 30 meter), were likely problematic for both land-cover 

classifications. Again, increasing the segmentation level for the object-based 

classification is likely to increase its accuracy. Spatial heterogeneity may particularly 

cause problems for pixel-based classification as variation can be larger within classes 

than among classes. When incorrect, the object-based classification exhibited three main 

mistakes. First, trees were misidentified as shrubs and the plot was therefore classified as 

shrubland. Second, sparse plots were classified as dense and vice versa- third, dense plots 



70 

 

were classified as sparse. These last two mistakes could be due to spatial and structural 

heterogeneity caused by the placement of plots in openings within otherwise denser 

vegetation (or vice versa). 

 

Method Accuracy 

WPB 90.91 

WOB 76.47 

SPB 56.76 

SOB 67.74 

CC,PB 64.58 

CC,OB 70.83 

Table 6: Accuracy percentage of each method.  

(PB = pixel-based, OB = object-based, W = woodland, S = shrubland, WPB = Woodland, pixel-based, WOB = 

Woodland, object-based, SPB = Shrubland, pixel-based, SOB = Shrubland, object-based, CC,PB = All classes correct, 

pixel-based, CC,OB = All classes correct, object-based, C* = All classes, both methods). 

 

The absolute agreement assessment further identifies how correlated the ranking 

scores of the object-based classification were with the pixel-based classification ranking 

scores when the pixel-based classification was correct (and vice versa). When the pixel-

based classification correctly classified plots as woodland, the object-based classification 

tended to disagree slightly (correlation factor of -0.14). When the object-based 

classification correctly classified plots as woodland, the pixel-based classification tended 

to strongly disagree (correlation factor of -0.5). When the pixel-based classification 

correctly classified plots as shrubland, the object-based classification tended to agree 

relatively strongly (correlation factor of 0.37). When the object-based classification 

correctly classified plots as shrubland, the pixel-based classification tended to agree 

(correlation factor of 0.13). When the pixel-based classification correctly classified plots 
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in either environment, the object-based classification tends to agree (correlation factor of 

0.14). However, when the object-based classification correctly classified plots in either 

environment, the pixel-based classification tends to moderately disagree (correlation 

factor of -0.22). This is reflected in the higher overall accuracy of the object-based 

classification, as it classified correctly when (and therefore disagreed with) the pixel-

based classification misclassified. 

 

Comparison 

Correct  

WPB WOB SPB SOB CC,PB CC,OB 

WPB 1.00 -0.14 --- --- --- --- 

WOB -0.50 1.00 --- --- --- --- 

SPB --- --- 1.00 0.37 --- --- 

SOB --- --- 0.13 1.00 --- --- 

CC,PB --- --- --- --- 1.00 0.14 

CC,OB --- --- --- --- -0.22 1.00 

    C*, Overall (all classes, both methods) 0.40 

Table 7: Absolute agreement between the pixel- and object-based classifications.  

(PB = pixel-based, OB = object-based, W = woodland, S = shrubland, WPB = Woodland, pixel-based, WOB = 

Woodland, object-based, SPB = Shrubland, pixel-based, SOB = Shrubland, object-based, CC,PB = All classes correct, 

pixel-based, CC,OB = All classes correct, object-based, C* = All classes, both methods). 

 

4.5.1 LINKING LAND-COVER WITH STRUCTURAL VEGETATION CATEGORIES 

 The land-cover classifications were related spatially with the SVCs in order to 

attribute the broader area in terms of quantifiable vegetation structure. Ideally, plots with 

the same SVC would all fall within the same land-cover class. The locations of SVCs 

were compared to both the pixel-based and object-based land cover classifications. As 

shown in table 8 below, multiple SVCs fall within each pixel-based land-cover class 
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(e.g., seven SVCs fall within the open treed shrubland land-cover class). No plots fall 

within the sparse treed shrubland and open shrubland land-cover classes. 

 
Pixel-based land-cover 

classification 
Plot 

Structural vegetation 

category  
Pixel-based land-cover 

classification 
Plot 

Structural vegetation 

category 

Dense shrubbed 
woodland 

T1P6 1 

 

Dense woodland T9P3 6 

T2P8 1 

 

Open shrubbed woodland T1P4 1 

 
T1P3 2 

 
 

T9P7 10 

 
T3P7 3 

 
 

T9P8 10 

 

T2P2 6 

 

Open treed shrubland T1P9 2 

T3P8 7 

 

T5P2 4 

T8P5 10 

 

T5P5 4 

Dense treed shrubland T1P7 1 

 

T6P7 4 

T2P3 1 

 

T7P6 6 

T3P2 3 

 

T8P8 6 

T3P3 3 

 

T1P5 7 

T3P6 3 

 

T6P5 7 

T4P2 3 

 

T7P9 7 

T5P8 3 

 

T2P4 8 

T7P3 3 

 

T4P6 8 

T8P4 5 

 

T5P12 8 

T5P6 6 

 

T6P3 8 

T6P10 6 

 

T6P6 8 

T6P11 6 

 

T9P2 8 

T2P5 7 

 

T6P4 9 

T6P9 10 

 

T8P2 9 

T8P6 10 

 

T9P4 10 

T9P5 10 

 

Sparse shrubland T3P9 5 

T9P6 10 

 

T8P3 5 

Table 8: Ability of linking pixel-based land-cover classes with SVCs. 

A majority type attribution could be used to assign a single SVC to each land 

cover (see table 9). This process, however, ignores the structural heterogeneity found 

within each land-cover class and thus simplifies the vegetation structure for the broader 
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area. Such simplification misrepresents niche differences, abiotic factors (which 

determine structure), and available resources. 

 
Pixel-based land-cover classification Dominant structural vegetation category 

Dense shrubbed woodland SVC 1 

Dense shrubbed shrubland SVC 3 

Dense woodland SVC 6 

Open shrubbed woodland SVC 10 

Open treed shrubland SVC 8 

Sparse shrubland SVC 5 

Table 9: Majority-rule SVC to land-cover attribution. 

As shown in table 10 below, multiple SVCs fall within each object-based land-

cover class (e.g., five SVCs fall within the openly shrubbed dense woodland land-cover 

class). As before, land-cover classes and SVCs are not mutually exclusive. The overlap, 

however, is smaller than when using a pixel-based classification.   
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Object-based land-cover 

classification 
Plot 

Structural 

vegetation category 

 

Object-based land-cover 

classification 
Plot 

Structural 

vegetation category 

Openly shrubbed closed 
woodland 

T5P8 3 

 

Open treed open shrubland 
T1P4 1 

  T2P2 6 

 

  T1P3 2 

Openly shrubbed dense 

woodland 
T1P9 2 

 

  
T7P3 3 

  T8P3 5 

 

  T2P4 8 

  T6P11 6 

 

  T6P3 8 

  T8P8 6 

 

  T8P6 10 

  
T9P3 6 

 

Sparsely shrubbed dense 

woodland 
T1P5 7 

  
T2P5 7 

 

Sparsely shrubbed dense 
woodland 

T6P5 7 

  T3P8 7 

 

  T6P6 8 

  
T7P9 7 

 

Sparsely treed dense 

shrubland 
T1P6 1 

  T8P5 10 

 

  T1P7 1 

  T9P7 10 

 

  T3P6 3 

  T9P8 10 

 

  T3P7 3 

Openly shrubbed open 

woodland 
T5P2 4 

 

  
T5P6 6 

Openly treed dense 

shrubland 
T2P3 1 

 

  
T4P6 8 

  T2P8 1 

 

  T9P5 10 

  T3P2 3 

 

  T9P6 10 

  
T3P3 3 

 

Sparsely treed open 

shrubland 
T5P5 4 

  T4P2 3 

 

  T3P9 5 

  T6P7 4 

 

  T8P4 5 

  T6P10 6 

 

  T7P6 6 

  T9P2 8 

 

  T5P12 8 

  T6P4 9 

      T8P2 9 

      T6P9 10 

      T9P4 10 

    

Table 10: Ability of linking object-based land-cover classes with SVCs. 
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Chapter 5: Conclusion and Future Directions 

This thesis proposed a protocol to 1) assess the structural heterogeneity within 

pixel- and object-based land-cover classifications using three-dimensional IDL vegetation 

visualizations, 2) leveraging field data, IDL visualizations, and CART results 3) to 

generate structural vegetation categories, and 4) to discern the ability of detecting 

structural vegetation categories through land-cover classifications, both pixel- and object-

based, for non-sampled areas. 

A pixel-based land-cover classification was performed on a Landsat TM 5 image 

based on the classification scheme presented by Grunblatt et al. (1989) resulting in 9 

land-cover types over the Etsha region (approximately 1125 km2). The classification 

identified dense woodlands across longitudinal dunes in the backcountry (EbR) and 

agricultural fields were primarily classified as sparse shrublands. An object-based land-

cover classification was performed on a subset of the same image (as high-resolution 

IKONOS imagery was not available for the entire ExR area, which was used as a 

reference in the classification) using a modified classification scheme to describe both 

trees and shrubs in terms of percent cover resulting in 16 land-cover classes. The 

classification was able to detect highly accurate representations of agricultural fields and 

village settlement areas, a necessity within the context of social-ecological systems. It 

must be noted that the Landsat TM 5 (April 27th, 2009) and IKONOS (October 17th, 

2011) imagery were neither from the same season nor year. This difference could 

negatively affect the object-based classification results since the IKONOS image was 

used in the classification of the Landsat TM 5 image. The field work campaigns were 

conducted in June and July 2011 and 2012 further adding to the inconsistency. Future 

work will include acquiring additional imagery for the field work campaign dates and 
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running the classification on those images. Accuracy assessment of methods must also be 

performed for non-sampled areas. 

The generated three-dimensional visualizations of the vegetation structure of each 

field plot allow the verification of field measurements (due to notation error in the field 

or through data entry) and enables structural comparisons within and between plots. 

Locations of field plots were used as accuracy assessment for the two land-cover 

classifications by comparing the land-cover class to the three-dimensional visualizations 

of plot vegetation structure. For the pixel-based classification, woodland areas had a 

classification accuracy of 90.91%, shrubland areas had a classification accuracy of 

56.76%, and the overall classification accuracy was 64.58% across all plots. For the 

object-based classification, woodland areas had a classification accuracy of 76.47%, 

shrubland areas had a classification accuracy of 67.58%, and the overall classification 

accuracy was 70.83% across all plots.  

Structural vegetation categories (total of 10 categories) were created based on 

morphological characteristics of field plots using CART analysis. While this method was 

successful in classifying field plots based on vegetation structure, the aim of using this 

method for disturbance detection is currently unclear. Future work will involve the 

creation of a consistent (since the CART analysis is dependent on the input variables) 

manual classification tree in order to track both pixels and objects (or patches) through 

time (after Crews-Meyer 2001, 2002 ) and thus enable the detection of changes from one 

SVC to another through time, better facilitating causal assessment such as different types, 

magnitudes, or frequencies of disturbances. 

The structural heterogeneity across plots within the same land-cover (for both 

pixel- and object-based classifications) class was assessed visually using the three-
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dimensional visualizations of the vegetation structure. The object-based classification 

showed significantly lower structural heterogeneity than the pixel-based classification, as 

was hypothesized. However, some plots within the same object-based land-cover class 

(particularly for shrubland areas) were misclassified, resulting in the accuracy 

percentages mentioned above. The SVCs were successful in categorizing vegetation 

structure as they showed the lowest structural heterogeneity (compared to the land-cover 

classification) when assessed in the same fashion. However, the SVCs were not mutually 

exclusive to land-cover classes, which means additional efforts are required to link SVCs 

with land-cover classes in order to be able to derive quantifiable structural information 

from land-cover classifications.  

In order to place this work fully within the context of social-ecological systems it 

needs to be related to human land-use explicitly. During the field campaigns, semi-

structured interviews were also conducted across the Etsha settlements. These interviews 

currently under analysis (see Shinn et al. 2014) will hopefully reveal insights into how 

people in this region use their environment to sustain their livelihoods, seasonality of 

livelihoods, and livelihood strategies to cope with environmental uncertainty (e.g. years 

of low rainfall or high flood level). These data must be compared to land-cover 

classification and (CART and manually based) structural vegetation categories, 

particularly with regards to reports of which and what percentage livelihoods are based 

on veld products and which veld products are most commonly collected and from where. 

In addition, considerations must be made for developing a new land-use land-cover 

classification scheme designed specifically for use within the context of social-ecological 

system studies. Results will then be able to inform future sampling designs and method 

protocols in spatio-temporally heterogeneous landscapes. 
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Appendices 

APPENDIX 1: CLASSIFICATION SCORES FOR THE PIXEL- AND OBJECT-BASED 

CLASSIFICATIONS 

 

 

  

Plot Pixel-based land-cover Classification score Object-based land-cover Classification score

t1p3 Dense Shrubbed Woodland 2 Openly treed open shrubland -2

t1p4 Open Shrubbed Woodland -1 Openly treed open shrubland 1

t1p5 Open Treed Shrubland -1 Sparsely shrubbed dense woodland -2

t1p6 Dense Shrubbed Woodland 1 Sparsely treed dense shrubland 2

t1p7 Dense Treed Shrubland 2 Sparsely treed dense shrubland 2

t1p9 Open Treed Shrubland -2 Openly shrubbed dense woodland 2

t2p2 Dense Shrubbed Woodland 2 Openly shrubbed closed woodland 1

t2p3 Dense Treed Shrubland 1 Openly treed dense shrubland 2

t2p4 Open Treed Shrubland -1 Openly treed open shrubland -2

t2p5 Dense Treed Shrubland 1 Openly shrubbed dense woodland 1

t2p8 Dense Shrubbed Woodland 2 Openly treed dense shrubland 1

t3p2 Dense Treed Shrubland 2 Openly treed dense shrubland 2

t3p3 Dense Treed Shrubland -2 Openly treed dense shrubland -1

t3p6 Dense Treed Shrubland -2 Sparsely treed dense shrubland -2

t3p7 Dense Shrubbed Woodland 2 Sparsely treed dense shrubland -1

t3p8 Dense Shrubbed Woodland 1 Openly shrubbed dense woodland 1

t3p9 Sparse Shrubland -2 Sparsely treed open shrubland -1

t4p2 Dense Treed Shrubland 2 Openly treed dense shrubland 1

t4p6 Open Treed Shrubland 1 Sparsely treed dense shrubland 1

t5p12 Open Treed Shrubland 1 Sparsely treed open shrubland 1

t5p2 Open Treed Shrubland 1 Openly shrubbed open woodland 2

t5p5 Open Treed Shrubland 1 Sparsely treed open shrubland 1

t5p6 Dense Treed Shrubland 2 Sparsely treed dense shrubland 2

t5p8 Dense Treed Shrubland -1 Openly shrubbed closed woodland 2

t6p10 Dense Treed Shrubland 2 Openly treed dense shrubland 1

t6p11 Dense Treed Shrubland 2 Openly shrubbed dense woodland 1

t6p3 Open Treed Shrubland -1 Openly treed open shrubland -1

t6p4 Open Treed Shrubland -2 Openly treed dense shrubland -2

t6p5 Open Treed Shrubland -1 Sparsely shrubbed open woodland 2

t6p6 Open Treed Shrubland 2 Sparsely shrubbed open woodland 2

t6p7 Open Treed Shrubland -2 Openly treed dense shrubland -1

t6p9 Dense Treed Shrubland 2 Openly treed dense shrubland 2

t7p3 Dense Treed Shrubland 2 Openly treed open shrubland 2

t7p6 Open Treed Shrubland -1 Sparsely treed open shrubland 2

t7p9 Open Treed Shrubland 1 Openly shrubbed dense woodland -1

t8p2 Open Treed Shrubland -1 Openly treed dense shrubland 1

t8p3 Sparse Shrubland -2 Openly shrubbed dense woodland 2

t8p4 Dense Treed Shrubland 2 Sparsely treed open shrubland 2

t8p5 Dense Shrubbed Woodland 2 Openly shrubbed dense woodland 2

t8p6 Dense Treed Shrubland 2 Openly treed open shrubland 1

t8p8 Open Treed Shrubland -1 Openly shrubbed dense woodland 2

t9p2 Open Treed Shrubland -2 Openly treed dense shrubland -2

t9p3 Dense Woodland 1 Openly shrubbed dense woodland 2

t9p4 Open Treed Shrubland 1 Openly treed dense shrubland 1

t9p5 Dense Treed Shrubland 2 Sparsely treed dense shrubland 1

t9p6 Dense Treed Shrubland 2 Sparsely treed dense shrubland 1

t9p7 Open Shrubbed Woodland 1 Openly shrubbed dense woodland -1

t9p8 Open Shrubbed Woodland 1 Openly shrubbed dense woodland -1

Total 3224
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APPENDIX 2: OBLIQUE, HIGH OBLIQUE, AND NADIR VISUALIZATIONS OF ALL PLOTS 

 

Plot  Oblique (Angled) View High Oblique (Side) View Nadir (Top) View 

T1P1 

   

T1P3 
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T1P4 

   

T1P5 

   

T1P6 

 
  

 

Appendix 2: Oblique, high oblique, and nadir visualizations of all plots (continued). 
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T1P7 

   

T1P9 

   

T2P1 

   

Appendix 2: Oblique, high oblique, and nadir visualizations of all plots (continued). 
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T2P2 

   

T2P3 

   

T2P4 

   

Appendix 2: Oblique, high oblique, and nadir visualizations of all plots (continued). 
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T2P5 

 
 

 

T2P8 

   

T3P1 

   

Appendix 2: Oblique, high oblique, and nadir visualizations of all plots (continued). 
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T3P2 

   

T3P3 

  
 

 

Appendix 2: Oblique, high oblique, and nadir visualizations of all plots (continued). 
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T3P6 

   

T3P7 

   

T3P8 

   

Appendix 2: Oblique, high oblique, and nadir visualizations of all plots (continued). 
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T3P9 

   

T4P1 

   

T4P2 

   

Appendix 2: Oblique, high oblique, and nadir visualizations of all plots (continued). 



87 

 

T4P6 

   

T5P1 

   

T5P2 

   

Appendix 2: Oblique, high oblique, and nadir visualizations of all plots (continued). 
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T5P5 

   

T5P6 

   

T5P8 

   

Appendix 2: Oblique, high oblique, and nadir visualizations of all plots (continued). 
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T5P12 

   

T6P1 

   

T6P2 

   

Appendix 2: Oblique, high oblique, and nadir visualizations of all plots (continued). 
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T6P3 

   

T6P4 

   

T6P5 

   

Appendix 2: Oblique, high oblique, and nadir visualizations of all plots (continued). 
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T6P6 

 
 

 

T6P7 

   

T6P9 

 
 

 

Appendix 2: Oblique, high oblique, and nadir visualizations of all plots (continued). 
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T6P10 

 
  

T6P11 

   

T7P1 

   

Appendix 2: Oblique, high oblique, and nadir visualizations of all plots (continued). 
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T7P2 

   

T7P3 

   

T7P6 

   

Appendix 2: Oblique, high oblique, and nadir visualizations of all plots (continued). 
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T7P9 

   

T8P2 

   

T8P3 

   

Appendix 2: Oblique, high oblique, and nadir visualizations of all plots (continued). 
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T8P4 

   

T8P5 

   

T8P6 

   

Appendix 2: Oblique, high oblique, and nadir visualizations of all plots (continued). 
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T8P8 

   

T9P1 

 
 

 

T9P2 

 
 

 

Appendix 2: Oblique, high oblique, and nadir visualizations of all plots (continued). 
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T9P3 

 
  

T9P4 

 
  

T9P5 

 
  

Appendix 2: Oblique, high oblique, and nadir visualizations of all plots (continued). 
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T9P6 

 
 

 

T9P7 

   

T9P8 

 
 

 

Appendix 2: Oblique, high oblique, and nadir visualizations of all plots (continued).
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