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Graphene has been actively investigated because its unique structural, electronic, 

and thermal properties are desirable for a number of technological applications ranging 

from electronic to energy devices. The thermal transport properties of graphene can 

influence the device performances. Because of the high surface to volume ratio and 

confinement of phonons and electrons, the thermal transport properties of graphene can 

differ considerably from those in graphite. Developing a better understanding of thermal 

transport in graphene is necessary for rational design of graphene-based functional 

devices and materials.  

It is known that the thermal conductivity of single-layer graphene is considerably 

suppressed when it is in contact with an amorphous material compared to when it is 

suspended. However, the effects of substrate interaction in phonon transport in both 

single and multi-layer graphene still remains elusive. This work presents sensitive in-

plane thermal transport measurements of few-layer and multi-layer graphene samples on 

amorphous silicon dioxide with the use of suspended micro-thermometer devices. It is 
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shown that full recovery to the thermal conductivity of graphite has yet to occur even 

after the thickness of the supported multi-layer graphene sample is increased to 34 layers, 

which is considerably thicker than previously thought. This surprising finding is 

explained by the long intrinsic scattering mean free paths of phonons in graphite along 

both the basal-plane and cross-plane directions, as well as partially diffuse scattering of 

phonons by the graphene-amorphous support interface, which is treated by an interface 

scattering model developed for highly anisotropic materials. In addition, an experimental 

method is introduced to investigate electronic thermal transport in graphene and other 

layered materials through the measurement of longitudinal and transverse thermal and 

electrical conductivities and Seebeck coefficient under applied electric and magnetic 

fields.  

Moreover, this work includes an investigation of quantitative scanning thermal 

microscopy measurements of electrically biased graphene supported on a flexible 

polyimide substrate. Based on a triple scan technique and another zero heat flux 

measurement method, the temperature rise in flexible devices is found to be higher by 

more than one order of magnitude, and shows much more significant lateral heat 

spreading than graphene devices fabricated on silicon. 
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Chapter 1: Introduction 

1.1   BACKGROUND 

Nanostructures have started to emerge in a wide range of scientific research fields 

and technological applications, as a result of recent advances in synthesizing and 

processing materials at nanoscale dimensions. Nanostructures have been extensively used 

or hold promises in integrated circuits, sensors, composites, and medicine, among others. 

In a number of these applications, such as thermal barriers, heat-assisted magnetic 

recording, high efficiency thermoelectrics, phase-change memory, and renewable 

energies, to name a few,
1-4

 thermal transport properties of these nanostructures play an 

important role in the performance and reliability. In particular, another well-known 

example is electronic devices. As the semiconductor devices in integrated circuits 

become smaller and faster because of device miniaturization, power density increases and 

heat removal grows to be a primary issue in further device downscaling.
5-7

  

As the size of structures shrinks toward the nanoscale regime and becomes 

comparable to the mean free path of energy or charge carriers (~10-100 nm), their 

transport properties are affected by scattering of the energy or charge carriers at the 

boundaries. However, the situation is different for two-dimensional graphene and one-

dimensional carbon nanotubes (CNT) where the carriers move in the basal plane with a 

vanishing group velocity component along the cross-plane direction. Since the advent of 

mechanical exfoliation of graphene,
8
 a two-dimensional sheet of sp

2
-bonded carbon 

atoms in hexagonal structure, on a dielectric substrate many researchers have been 

intrigued by its exceptional electronic, mechanical, and thermal properties, based on 
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which a number of applications have been devised.
9,10

 For example, graphene has been 

investigated as a potential candidate to replace the silicon active layers or metal 

interconnects in electronic devices.
11

 The extreme thinness and very high mobility of 

graphene can result in high device speed.
10,11

 Moreover, graphene is one of the strongest 

known materials,
12

 can be stretched elastically by 20%,
13

 and offers intrinsic thermal 

conductivity of ~3000 W m
 -1

 K
 -1

 at room temperature.
14,15

 These exceptional properties 

have motivated researchers to incorporate graphene in a broad range of applications.
9,10,16

 

The basal-plane thermal conductivity of freestanding single-layer graphene (SLG) 

is amongst the highest reported at room temperature.
14,15

 However, the thermal 

conductivity of graphene supported on a SiO2 substrate or in contact with an organic 

matrix is reduced well below the basal-plane value of high quality pyrolytic graphite.
17,18

 

It is suppressed even further when SLG or few-layer graphene (FLG) is encased between 

SiO2 layers.
19

 However, the thermal conductivity of supported SLG is still higher than all 

metals including copper and silver, and the thermal conductivity of encased FLG 

increases with increasing thickness. In suspended graphene, the suppression of thermal 

conductivity with increasing thickness has been explained based on the rapid expansion 

of the phase space for three-phonon scattering.
15

 However, the mechanism for the 

thickness-dependence of the thermal conductivity of supported graphene has remained 

elusive and has been attributed to defects, substrate-induced roughness and stress, phonon 

leakage across the interface, or other phenomena such as modification of phonon 

dispersion.  

In addition, there have been very few investigations on electronic thermal 

transport in graphene. The electronic thermal conductivity is often neglected as compared 
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to the lattice thermal conductivity in graphene. Upon the application of a gate field, 

however, the electronic contribution to thermal transport in graphene can increase 

considerably with increasing charge carrier concentration and can become a significant 

component. Moreover, thermal energy in electronic devices may be transferred by hot 

carriers that are not in equilibrium with the lattice.
20,21

 

Despite the rich physics behind the basal-plane thermal conductivity of graphene, 

this property is not the only factor that influences the operating temperature of graphene 

electronic devices. Besides the interfacial thermal conductance of graphene, the thermal 

conductivity of the supporting dielectric layer or substrate can dominate the temperature 

rise in operating graphene electronic devices. In particular, graphene has received 

increasing interest for use in flexible electronic devices fabricated on a flexible 

substrate.
16,22-24

 Compared to silicon substrates, the very low thermal conductivity of the 

flexible substrate is expected to increase the operating temperature of the graphene device 

and may lead to distinct heat dissipation pathways. Coupled with the relatively low glass 

transition temperature of flexible substrates, the high operating temperature can result in 

thermomechanical failure of the flexible graphene electronic devices.  

Mapping the temperature distribution with high spatial resolution on operating 

nanoelectronic devices can provide useful insights into the device performance and 

reliability. A number of optical and scanning probe microscopy methods have been 

developed for high-resolution mapping of the temperature distribution in electronic 

devices.
3,25

 In recent years, these techniques have been employed to reveal coupled 

electro-thermal phenomena in carbon nanotube and graphene electronic devices 

fabricated on a silicon substrate.
26-30

 However, the temperature distribution on flexible 
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graphene devices have remained elusive, despite more significant thermomechanical 

reliability issues expected in flexible graphene devices than in devices fabricated on 

silicon. The lack of such experimental data is associated with additional challenges 

present in high-resolution thermal mapping of flexible graphene devices with a high 

temperature rise and large heated area.  

1.2   SCOPE OF WORK 

The aim of this work is to establish a better understanding of thermal transport in 

supported graphene. A combination of experimental and theoretical approaches are 

developed to investigate the basal-plane thermal conductivity in supported graphene and 

to probe the temperature distribution on electrically biased graphene devices, especially 

graphene devices fabricated on a flexible substrate. 

Chapter 2 reports on experimental and theoretical investigations of the thickness-

dependence of the basal-plane thermal conductivity of supported graphene. Graphene 

samples are obtained by exfoliation of natural graphite flakes. With the use of suspended 

micro-thermometer devices, the thermal conductivity of the graphene samples are 

measured and compared to the measured thermal conductivity of the graphite sample 

used as the source for the exfoliation. The measurement results show a trend of 

increasing thermal conductivity with thickness as the thickness increases from 1 to 34 

layers. These results are analyzed by examining various potential mechanisms for thermal 

conductivity suppression in supported graphene, and extracting the in-plane and cross-

plane mean free path of phonons in graphite based on the graphite thermal conductivity, 

and calculating the phonon transmission coefficient at the interface between graphene or 
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graphite and SiO2 based on the reported values for interface thermal conductance. 

Furthermore, a theoretical model is developed to investigate phonon-interface scattering 

in highly anisotropic materials. Such a comparison between the measurement results and 

theoretical calculation is used to explain the phonon transport in multi-layer graphene 

supported on an amorphous support. 

Chapter 3 reports the exploration of an experimental approach that can be used to 

probe electronic thermal transport in graphene and other layered materials. Suspended 

micro-thermometer devices are designed and fabricated to measure longitudinal and 

transverse thermal conductivity, longitudinal and transverse electronic conductivity, and 

Seebeck coefficient in a supported graphene sample in presence of a perpendicular 

magnetic field. Thermogalvanomagnetic effects are also investigated by measuring the 

transverse electrostatic potential or temperature gradient caused by longitudinal electric 

current or heat flow and a perpendicular magnetic field. An attempt is made to employ 

these measurements to investigate the electronic thermal conductivity and Seebeck 

coefficient in a bilayer graphene sample. 

Chapter 4 reports an investigation on high-resolution, quantitative scanning 

thermal microscopy (SThM) measurements of flexible graphene devices. Challenges of 

performing quantitative SThM measurements are discussed and the effect of parasitic 

heat transfer through the air conduction is eliminated by a triple scan technique. The 

SThM measurement is calibrated by performing SThM measurements on a heater-

thermometer metal line. The accuracy of the calibrated SThM measurements is 

investigated by a detailed discussion of the measurement parameters and the measured 

thermal resistance of the liquid meniscus at the tip-device contact area as a function of 
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temperature. In addition, a laser-heated SThM method is introduced as a measurement 

technique to obtain quantitative temperature measurements under zero heat transfer 

across the tip-sample contact. The triple-scan SThM and laser-heated SThM methods are 

employed to study the thermal response of flexible graphene devices on polyimide 

substrates. 

The major findings of this work are summarized in Chapter 5. 
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Chapter 2: Experimental and Theoretical Investigation of Thickness-

Dependent Thermal Conductivity of Supported Graphene† 

2.1   INTRODUCTION 

Graphene, a monoatomic layer of carbon atoms arranged in a hexagonal lattice, is 

the building block of graphite and carbon nanotubes (CNTs), which can be envisioned as 

a stack of a large number of graphene layers and rolled up cylinders of graphene sheets, 

respectively. Thermal transport in these graphitic materials has intrigued researchers for 

several decades. The industrial use of graphite in high-temperature or high-heat flux 

applications motivated a number of initial studies on its thermal properties. These studies 

have found highly anisotropic thermal transport properties in graphite, where the basal-

plane thermal conductivity is among the highest found in solids and nearly two orders of 

magnitude larger than the value measured along the 𝑐-axis.
31-33

 The recent rediscoveries 

of CNTs and single-layer graphene (SLG) have expanded the applications of these 

graphitic nanomaterials for electronic devices, sensors, and light-weight composite 

materials, among others.
9,34

 The performance and reliability of CNT and graphene 

devices are often closely related to the thermal properties of these nanoscale building 

blocks, similar to the situation in silicon nanoelectronic devices where localized heating 

                                                 
† Reproduced in part with permission from Sadeghi, M. M., Jo, I. & Shi, L. Phonon-Interface 

Scattering in Multilayer Graphene on an Amorphous Support. Proc Natl Acad Sci USA 110, 16321-16326 

(2013). Copyright 2013 National Academy of Sciences of the United States of America. M.M.S. and L.S. 

designed research and developed theoretical analysis; M.M.S. carried out measurements and performed 

theoretical calculations; I.J. performed density functional theory calculations; M.M.S. and L.S. analyzed 

data and wrote the paper. 
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has become a major challenge.
35

 Hence, there have been a number of studies of thermal 

transport in these carbon nanostructures. Some of the studies have yielded higher thermal 

conductivity values in suspended CNTs and graphene than the largest reported graphite 

value.
36,37

 Because of the ultrahigh thermal conductivity and the large surface to volume 

ratio, there have been a large number of efforts in the development of thermal 

management materials utilizing these carbon nanomaterials.
14,38

 However, in most of 

these applications, graphene and CNTs are either supported on a substrate or embedded 

in a medium, instead of being suspended. Hence, the effect of interface interaction on 

phonon transport in and across graphene and CNTs must be understood.  

Recently, it has been found that the basal-plane thermal conductivity of SLG or 

bilayer graphene (BLG) in contact with an amorphous inorganic or organic layer is a 

factor of three to five lower than those found in high-quality graphite and suspended 

graphene at room temperature.
17,18

 The suppression has been attributed to interface 

scattering or damping of phonons in graphene, especially the flexural modes that may 

make a large contribution to the basal-plane thermal conductivity in suspended 

graphene.
39

 Another measurement of few-layer graphene (FLG) encased in amorphous 

oxide has yielded decreasing basal plane thermal conductivity with decreasing FLG layer 

thickness,
19

 opposite to the finding for suspended FLG.
15,37

 However, the uncertainty in 

the experimental data makes it difficult to determine accurately the layer thickness 

needed for the encased FLG to recover the basal plane thermal conductivity of graphite. 

Better understanding of this layer thickness dependence is needed for sensible design of 

FLG lateral heat spreaders for high-power density nanoelectronic devices and high-

surface area FLG fillers to enhance the thermal conductivity of polymeric composites, 
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among other applications. In addition, there remain questions regarding whether the 

thermal conductivity reduction is mainly caused by transmission or leakage of phonons 

across the interface,
17,40

 phonon scattering by interface roughness,
17,19

 or defects created 

in the FLG in the sample fabrication processes.
14,19

 

Molecular dynamics (MD) simulations have provided insights into the effects of 

interface interactions on phonon transport in graphene. For instance, MD results have 

verified that flexural phonons make an important contribution to the thermal conductivity 

in suspended graphene, and this contribution is considerably suppressed by an amorphous 

support.
41-43

 In addition, a recent MD simulation has shown increasing thermal 

conductivity with increasing layer thickness of FLG supported on amorphous SiO2.
43

 The 

results suggest a rapid increase of the basal-plane thermal conductivity to approach 90% 

of the graphite value when the FLG thickness increases to about 6 layers. However, the 

accuracy in classical MD simulation results has been limited by the lack of effective 

quantum correction methods and high-fidelity interatomic potentials for graphitic 

systems,
44

 where the specific heat is still considerably lower than the classical Dulong 

and Petit limit even at room temperature because of high Debye temperature of graphite. 

In addition, although one reported MD simulation suggests such role is negligible for a 

single-wall CNT supported on an amorphous support,
45

 the role of phonon leakage
17,40

 

across the interface in the thermal conductivity of supported graphene remains to be 

elusive. 
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2.1.1   Present Work 

To clarify these outstanding questions, here we report results from temperature-

dependent thermal conductivity measurements of FLG and multi-layer graphene (MLG) 

supported on SiO2 and the natural graphite (NG) source used to exfoliate the FLG and 

MLG samples. Compared to the measurement values for encased FLG
19

 and MD 

simulation data for supported FLG,
43

 the measurement results suggest a rather gradual 

convergence of the MLG basal-plane thermal conductivity to the graphite value when the 

MLG layer thickness is increased, especially at low temperatures. A shift of the peak 

thermal conductivity towards a higher temperature is observed in the thinner supported 

MLG samples. Accounting for the highly anisotropic phonon dispersion in MLG, 

solutions of phonon Boltzmann Transport Equation (BTE) are developed to analyze the 

measurement results of the basal plane thermal conductivity and interface thermal 

conductance of MLG on an amorphous oxide support and the anisotropic thermal 

conductivities of graphite. Based on the analysis, the observed gradual convergence and 

peak shift can be well explained by long intrinsic phonon scattering mean free paths in 

graphite and partially diffuse phonon-interface scattering in the supported MLG. 

Moreover, such partially diffuse interface scattering process is influenced by a rather 

large transmission component, especially for low-frequency phonons which provide a 

large contribution to the peak thermal conductivity of graphite at low temperatures and 

possess high interface transmission coefficient in supported graphene. 
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2.2   EXPERIMENTAL METHODS 

2.2.1   Thermal Conductance Measurement using Symmetric Micro-Thermometer 

Devices 

Thermal conductivity of graphene samples with thickness of less than few layers 

are measured using suspended resistance thermometer devices following a method 

reported for measuring thermal conductivity of single-layer graphene (SLG).
17

 In this 

method, the resistance thermometer (RT) lines are symmetrically designed and their 

thermal conductance values are assumed to be similar for the analysis of the 

measurement results. Schematics of a symmetric device are shown in Figure ‎2.1(a,b). For 

the measurement, a direct current is passed through RT1, which generates heat at the rate 

of 𝑄1 and induces temperature gradients all over the device. The average temperature of 

RTi changes by ∆𝑇𝑖 which can be measured through the known correlation between 

temperature and resistance of the RT lines. Based on the corresponding thermal circuit 

model shown in Figure ‎2.1(c) and a one-dimensional solution of thermal conduction in 

RT1, the thermal conductance of the RT lines (𝑅𝑏) and thermal conductance of the 

FLG/SiO2 bridge (𝑅𝑠) can be measured according to 
17

 

 𝑅𝑏 = 2(∆𝑇1𝑚 + ∆𝑇2𝑚 + ∆𝑇3𝑚 + ∆𝑇4𝑚)𝑄1
−1

 (‎2-1) 

 𝑅𝑠 = 𝑅𝑏(∆𝑇2𝑚 − ∆𝑇3𝑚)(∆𝑇3𝑚 + ∆𝑇4𝑚)−1 (‎2-2) 

where 

 ∆𝑇1𝑚 =
3

2
∆𝑇1 −

1

2
(∆𝑇2 + ∆𝑇3 + ∆𝑇4) (‎2-3) 

 ∆𝑇𝑖𝑚 = 2∆𝑇𝑖    ;  𝑖 = 2,3,4 (‎2-4) 
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Figure ‎2.1: Symmetric resistance thermometer device. Schematic of the device (a), top 

view of the central bridge (b), and the corresponding thermal circuit model (c) when RT1 

is used as the heater line. 𝑅𝑏 and 𝑅𝑠 are the thermal resistances of the RTi beams and the 

center FLG/SiO2 bridge, respectively. 𝑇𝑖𝑚 and 𝑞𝑖 are the midpoint temperature of the 

metal line and the heat flow through RTi when RT1 is electrically heated at a rate of 𝑄1, 

respectively, where the subscript 𝑖 is 1, 2, 3, or 4. 𝑇0 is the ambient temperature. 𝑅0 is the 

thermal resistance between the midpoints of RT1 and RT2 and that between RT3 and RT4. 

The dimensions are not to scale. 

After the thermal conductance of the FLG/SiO2 bridge is measured over the 

desired temperature range, the FLG sample is etched away in oxygen plasma and the 

measurement is repeated to obtain thermal conductance of the SiO2 bridge. The thermal 

conductance of the FLG sample (𝐺) is obtained as the difference between the thermal 

conductance of the SiO2 bridge and the thermal conductance of the FLG/SiO2 bridge. The 
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thermal conductivity of the supported FLG is obtained as 𝜅 = 𝐺𝐿/𝑊𝑡, where 𝐿, 𝑊, and 𝑡 

are the length between the two straight RT2 and RT3, width, and thickness of the FLG 

sample. 

2.2.2   Thermal Conductance Measurement using Non-Symmetric Micro-

Thermometer Devices 

Although the device fabrication is based on those reported by Seol et al.
17

 for 

thermal measurements of supported SLG samples, several notable changes have been 

made in the device design and measurement procedure in order to further reduce the 

relative error caused by contact thermal resistance, which is expected to increase with the 

MLG layer thickness. As shown in Figure ‎2.2(a,b,c), the area for heat transfer across the 

two ends of the MLG ribbon is increased by extending each end of the MLG ribbon by 

20 μm into the region between the straight RT line and the adjacent U-shape RT line. The 

ends are also clamped between a top Cr/Au metal layer and the underlying SiO2 beam to 

allow for heat conduction into all surfaces of the MLG ribbon at the two ends. In 

addition, the error caused by the contact thermal resistance can be further reduced by 

increasing the thermal resistance of the two straight resistance thermometer (RT) lines 

relative to the contact thermal resistance between these two temperature sensors and the 

MLG sample. These two RTs are used for measuring the temperature drop along the 

central MLG/SiO2 beam. The thermal resistance of these two straight RT lines can be 

increased to be larger than that of the U-shape RTs by more than an order of magnitude 

by decreasing the width and increasing the length of the straight RTs. 
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Figure ‎2.2: Non-symmetric resistance thermometer device. Schematic of the device (a), 

top view (b) and cross section (c) of the central bridge. The corresponding thermal circuit 

model when RT1 (d) or RT4 (e) is used as the heater line. 𝑅𝑏𝑖 and 𝑅𝑠 are the thermal 

resistances of the RTi beam and the center MLG/SiO2 bridge, respectively. 𝑇𝑖𝑚,𝑗 and 𝑞𝑖,𝑗 

are the midpoint temperature of the metal line and the heat flow through RTi when RTj is 

electrically heated at a rate of 𝑄𝑗, respectively, where the subscripts 𝑖 and 𝑗 are 1, 2, 3, or 

4. 𝑇0 is the ambient temperature. 𝑅01 and 𝑅04 are the thermal resistances between the 

midpoints of RT1 and RT2 and that between RT3 and RT4, respectively. The dimensions 

are not to scale. 



15 

 

In addition, a measurement technique has been established in this work to 

measure the thermal conductance values of suspended beams of a non-symmetric 

suspended device without needing to assume device symmetry. In the schematic of a non-

symmetric micro-thermometer device shown in Figure ‎2.2(a,b,c), the four RT lines are 

referred as RT1, RT2, RT3, and RT4 in a left-to-right order. The corresponding thermal 

circuit model is shown in Figure ‎2.2(d,e). In the measurement of Seol et al.,
17

 the 

measurement device was assumed to be symmetric. Here, this assumption is removed, so 

there are seven unknown thermal resistances in the thermal circuit.  

During the thermal measurement, the sample is placed in the evacuated sample 

space of a cryostat. To obtain the seven thermal resistances, one outer U-shape metal line 

(RT1) is electrically heated at different rates (Figure ‎2.2(d)), and the electrical resistances 

of the four RT lines are measured and used to obtain the average temperature rises in the 

metal lines. Subsequently, the measurement is repeated by using the other U-shape metal 

line (RT4) as the heater line (Figure ‎2.2(e)). The two measurements generate eight sets of 

data relating the average temperature rise in each metal line RTi, ∆𝑇𝑖,𝑗, to the heating 

power in one of the two U-shape lines, RTj. When there is no heat generation in a metal 

line, ∆𝑇𝑖𝑚,𝑗 = 2 ∆𝑇𝑖,𝑗 where ∆𝑇𝑖𝑚,𝑗 is the corresponding temperature rise at the midpoint 

of the metal line of RTi. Based on the thermal circuit model and heat conduction analysis 

of the heater line,
46

 all seven thermal resistances shown in Figure ‎2.2(d,e) can be 

determined from the measured data: 

 

 𝑅𝑏1 = 6(2(𝛼1 + 1)∆𝑇1,1 − 𝛼1∆𝑇2𝑚,1)(𝛼1 + 4)−1𝑄1
−1

 (‎2-5) 

 𝑅01 = 𝛼1
−1𝑅𝑏1 (‎2-6) 
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 𝑅𝑏4 = 6(2(𝛼2 + 1)∆𝑇4,4 − 𝛼2∆𝑇3𝑚,4)(𝛼2 + 4)−1𝑄4
−1

 (‎2-7) 

 𝑅04 = 𝛼2
−1𝑅𝑏4 (‎2-8) 

 𝑅𝑠 = 𝑅01 (
∆𝑇3𝑚,4

∆𝑇2𝑚,4
−

∆𝑇3𝑚,1

∆𝑇2𝑚,1
)(

∆𝑇1𝑚,1

∆𝑇2𝑚,1
−

∆𝑇1𝑚,4

∆𝑇2𝑚,4
)

−1

 (‎2-9) 

 𝑅𝑏2
−1 = 𝑅𝑠

−1 (∆𝑇3𝑚,1 − ∆𝑇2𝑚,1)

∆𝑇2𝑚,1
− 𝑅01

−1 (∆𝑇2𝑚,1 − ∆𝑇1𝑚,1)

∆𝑇2𝑚,1
 (‎2-10) 

 𝑅𝑏3
−1 = 𝑅𝑠

−1 (∆𝑇2𝑚,1 − ∆𝑇3𝑚,1)

∆𝑇3𝑚,1
− 𝑅04

−1 (∆𝑇3𝑚,1 − ∆𝑇4𝑚,1)

∆𝑇3𝑚,1
 (‎2-11) 

where 

 𝛼1 =
∆𝑇1𝑚,4

(∆𝑇2𝑚,4 − ∆𝑇1𝑚,4)
 (‎2-12) 

 𝛼2 =
∆𝑇4𝑚,1

∆𝑇3𝑚,1 − ∆𝑇4𝑚,1
 (‎2-13) 

 ∆𝑇1𝑚,1 = 2∆𝑇1,1 −
𝑄1

6𝐺𝑏1
 (‎2-14) 

2.2.3   Exfoliation and Layer-Counting of Graphene Samples 

Graphene samples are obtained by exfoliation of natural graphite flakes (NGS 

Naturgraphit GmbH) onto a Si substrate covered by ~290 nm thermally-grown SiO2 

using the scotch-tape method.
8
 Thin graphitic flakes are located using an optical 

microscope based on the color contrast.
47

 Raman spectroscopy is used to distinguish 

single-layer and bilayer graphene flakes based on the shape and linewidth of the 2D 

peak.
48,49

 For FLG and multi-layer graphene (MLG) samples, the layer number is 
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determined using a combination of Raman spectroscopy and atomic force microscopy 

(AFM). After exfoliated on SiO2, the original flake for the MLG samples often contains a 

SLG or BLG edge based on Raman spectra. AFM is used to measure the step height 

between the edge and the rest of the flake. Based on the interlayer spacing of 3.35 Å of 

graphite, this combined measurement is used to determine the layer thickness of the 

MLG. In addition, the ratio of the G peak intensity of the flake to that of the adjacent 

SLG or BLG is used to re-measure the thicknesses for the flakes thinner than 10 

layers.
50,51

 

2.2.4   Micro-Thermometer Device Fabrication 

As described in section ‎2.2.3, the layer number of graphene samples is determined 

using a combination of Raman spectroscopy and AFM. The fabrication process for an 8-

layer graphene sample (G8) is shown in Figure ‎2.3. The edge of the exfoliated graphene 

is trimmed using oxygen plasma to pattern the graphene into the desired shape. 

Resistance-thermometer metal lines and metal contacts are fabricated through electron-

beam lithography (EBL) process with poly(methyl methacrylate) (PMMA) resist 

followed by e-beam evaporation of Au with Cr adhesion layer and a lift-off process in 

acetone. Using another EBL process, windows are opened in the PMMA resist and the 

graphene flake is further trimmed using oxygen plasma to etch the unwanted connections. 

Subsequently, Zep 520A is spin-coated on the substrate and patterned using EBL. The 

pattern is transferred through the SiO2 layer using a reactive ion etching (RIE) process 

with CF4 gas. The SiO2 beams of the measurement device are designed to be at an angle 

to the (111) etching stop plane of Si, so that the silicon underneath the beams could be  
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Figure ‎2.3 
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Figure 2.3: Fabrication of a symmetric suspended micro-thermometer device for an 8-

layer graphene sample (G8). (a) Optical micrograph of the graphene flake exfoliated on 

Si substrate with 300 nm thermally-grown SiO2 is shown. Also shown are optical 

micrographs of the device after cleaning the substrate and trimming graphene using 

oxygen plasma (b), after deposition of the metal resistance-thermometers (c), after the 

second step of trimming graphene (d), after etching windows in the SiO2 layer to expose 

the Si underneath (e), and after etching the Si to suspend the device (f).  

undercut during the last fabrication step by an anisotropic Si etchant, which is 4% 

tetramethylammonium hydroxide (TMAH) in water at a temperature of about 85 
o
C. The 

TMAH solution also cleans the e-beam resist from the top MLG surface, which is 

subsequently cleaned thoroughly in deionized water, methanol, and acetone. It is worth 

noting that some commercial resist removals contain TMAH. In addition, the TMAH 

solution does not etch graphene, as shown in a transmission electron microscopy (TEM) 

characterization of suspended single layer graphene (SLG),
52

 as well as an earlier Raman 

spectroscopy, scanning electron microscopy (SEM), and mobility measurement results of 

supported SLG.
17

 

2.2.5   Thermal Conductivity of Natural Graphite 

A steady-state comparative method is established in this work to measure the 

thermal conductivity of the natural graphite (NG) source from which the graphene 

samples are exfoliated. The measurement setup is illustrated in Figure ‎2.4. The 

measurement setup consists of a graphite bar of 8 x 1.6 x 0.28 mm
3
 dimension bonded to 

a reference copper bar of 9.3 x 1.8 x 0.6 mm
3
 dimension using silver epoxy. A thin film 
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resistor attached to one end of the copper bar is used to generate temperature gradients in 

the copper bar and the graphite bar, which are measured using two constantan-copper 

differential thermocouples of 0.003 inch diameter. All thermocouples are thoroughly 

connected to make sure they are in thermal equilibrium with the bars at the contact points 

and located far from the contact ends to minimize measurement errors. The setup is 

placed inside a high vacuum cryostat surrounded by a radiation shield. The thermal 

conductivity of the graphite bar is obtained from the ratio of the thermovoltage 

differences (∆𝑉), dimensions of the bars, and literature thermal conductivity of copper 

according to 

 

  

Figure ‎2.4: Measurement setup (a) and schematic of the measurement setup (b) for 

thermal conductivity measurement of graphite using comparative method with reference 

of copper and constantan-copper differential thermocouples. 
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 𝜅𝐺𝑟 = 𝜅𝐶𝑢  
𝐴𝐶𝑢

𝐴𝐺𝑟
 
𝐿𝐺𝑟

𝐿𝐶𝑢
 
∆𝑉𝐶𝑢

∆𝑉𝐺𝑟
 (‎2-15) 

where 𝜅, 𝐴, and 𝐿 are the thermal conductivity, cross section area, and the length of the 

measurement sections, respectively. The uncertainty of this measurement by the heat 

losses via the thermal radiation and heat conduction through the thermocouple wires can 

be estimated by assuming the measurement bar as a one-dimensional fin with uniform 

cross section temperature. For a fin with thermal conductivity 𝜅, uniform cross section 

area 𝐴 and perimeter 𝑃, length 𝐿, and heat transfer coefficient ℎ to ambient at 

temperature 𝑇0, heat conduction rates through the hot end (𝑄ℎ) at temperature 𝑇ℎ and cold 

end (𝑄𝑐) at temperature 𝑇𝑐  can be calculated according to
53

 

 

 𝑄ℎ =
√ℎ𝑃𝜅𝐴(𝑇ℎ − 𝑇0)

sinh𝑚𝐿
(cosh𝑚𝐿 −

(𝑇𝑐 − 𝑇0)

(𝑇ℎ − 𝑇0)
) (‎2-16) 

 𝑄𝑐 =
√ℎ𝑃𝜅𝐴(𝑇ℎ − 𝑇0)

sinh𝑚𝐿
(1 −

(𝑇𝑐 − 𝑇0)

(𝑇ℎ − 𝑇0)
cosh𝑚𝐿) (‎2-17) 

where 𝑚 = √ℎ𝑃 𝜅𝐴⁄ . Each measurement bar is divided to 3 segments using the 

thermocouple contact points. Radiation heat loss is considered using the radiation heat 

transfer coefficient (  ℎ = 𝜀𝜎(𝑇𝑠 + 𝑇0)(𝑇𝑠
2 + 𝑇0

2) ) based on the average temperature of 

each segment (𝑇𝑠) where 𝜀 is the surface emissivity and 𝜎 = 5.67 × 10−8 𝑊𝑚−2𝐾−4.  A 

heat conduction rate comparable to that of the measurement is applied to the hot end of 

the copper bar. Using equations (‎2-16) and (‎2-17) and assuming a value for 𝑇ℎ, the 

temperature and the heat conduction rate at the cold side of the segment, which is the 

contact point of the copper bar with the constantan wire closer to the heater, are 
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calculated. This heat conduction rate subtracted by the calculated heat loss through the 

constantan wire gives the heat conduction rate applied to the hot side of the middle 

segment of the copper bar. This procedure is repeated for all 6 segments in the 

measurement bar. The temperature of the hot end of the copper bar is adjusted and the 

calculations are repeated until the temperature of the copper base next to the graphite bar 

converges to 𝑇0. The obtained temperatures are used to calculate ∆𝑉𝐶𝑢 ∆𝑉𝐺𝑟⁄  in equation 

(‎2-15). The results show that the measurement overestimates the thermal conductivity of 

the graphite bar at room temperature by less than 4% because of the heat losses via 

radiative heat transfer and heat conduction through the thermocouple wires. This 

overestimation becomes more negligible at lower temperatures. 

2.3   THERMAL CONDUCTIVITY MEASUREMENTS FROM 2D GRAPHENE TO 3D 

GRAPHITE 

Five MLG samples have been measured in this work, and are referred hereafter as 

G2, G6, G8, G27, and G34, where the number represents the layer thickness. Table ‎2.1 

lists the dimensions of graphene samples measured in this work. These MLG samples are 

supported on 300 nm thick suspended SiO2 bridges. Scanning electron micrographs 

(SEM) of G8 and G34 devices are shown in Figure ‎2.5. In addition, the basal-plane 

thermal conductivity of the NG source used to exfoliate the MLG samples has also been 

measured using a steady-state comparative method, as described in section ‎2.2.5. 

Figure ‎2.6(a) shows the correlation between the temperature responses of the RT 

lines when RT4 is the heater. The slope of a linear fit to the data is used to obtain 𝛼1 

according to equation (‎2-12). Figure ‎2.6(b) shows the temperature response of the RT 
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lines as a function of the heating rate 𝑄1 in RT1. The slope of a linear fit to the data is 

used to obtain 𝑅𝑏1 according to equation (‎2-5). The other thermal resistances can be 

obtained similarly. These measurements verify that for a device with symmetric design, 

the earlier measurement method reported in ref. 17 is sufficient without the need of 

switching the heater line in the measurement.  

 

Sample Layers Width (μm) Length (μm) 

G2 2 3.0 9.8 

G6 6 3.0 12.0 

G8 8 2.9 12.4 

G27 27 2.8 40.2 

G34 34 5.3 35.8 

Table ‎2.1: Dimensions of the measured MLG samples 

In addition to the thermal conductance of the central MLG/SiO2 beam, the 

thermal conductance of the center SiO2 beam is measured after the graphene samples for 

several devices are etched away by oxygen plasma. The obtained SiO2 thermal 

conductivity agrees well with the literature value in the temperature range of this 

measurement. In addition, the thermal conductance of the SiO2 beam is about an order of 

magnitude smaller than the measurement value of G34. The thermal conductance (𝐺) of 

the MLG alone can be obtained after the thermal conductance of the center SiO2 beam is 

subtracted from the measured thermal conductance of the MLG/SiO2. The thermal 
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conductivity of the supported MLG is obtained as 𝜅 = 𝐺𝐿/𝑊𝑡, where 𝐿, 𝑊, and 𝑡 are the 

length between the two straight RT2 and RT3, width, and thickness of the MLG sample. 

 

 

     

     

Figure ‎2.5: Scanning electron micrographs (SEM) of the micro-thermometer devices. Full 

view of the G8 device (a) and its central graphene region (b) at 45º view angle are shown. 

Also shown are the full view of the G34 device at 45º view angle (c) and its central 

graphene region at 30º view angle (d). The graphene can be seen on the central bridge 

between the straight metal lines. 
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Figure ‎2.6: Analysis of the measurement results of G34 at 300 K to calculate 𝑅𝑏1 based 

on equation (‎2-5). (a) The correlation between the measured temperature responses in 

RT1, RT2, and RT4 when RT4 is the heater. (b) The correlation between a combination of 

the measured temperature responses according to equation (‎2-5) and the electrical heating 

rate 𝑄1 in RT1. 

Three-dimensional finite element models of the measurement devices are used 

here to investigate the accuracy of the measurement method by systematic errors caused 

by neglecting thermal contact resistances and thermal resistance of the substrate, and the 

assumption of uniform temperature across the thickness of the supporting SiO2 beam. 

With the use of the largest thermal interface resistance value reported for different MLG 

and SLG samples
44

 as well as the lowest reported cross-plane thermal conductivity and 

the highest reported in-plane thermal conductivity of graphite at different temperatures,
32

 

the largest relative uncertainty is found in sample G27 at 100 K, where the basal-plane 

thermal conductivity is underestimated by no more than 9%. The details of the 
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simulations are discussed in Appendix A. Moreover, the symmetry of the fabricated 

device is verified by two measurements each with a different U-shape RT line as the 

heater line.  

 

 

 

 

Figure ‎2.7 
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Figure 2.7: Measured thermal conductivity as a function of temperature for single-layer
17

 

(red unfilled circles), bilayer (black unfilled triangles), 6-layer (gray-filled inverted red 

triangles), 8-layer (blue filled circles), 27-layer (green filled diamonds), and 34-layer 

(blue unfilled squares) graphene supported on SiO2. Also shown for comparison are the 

thermal conductivity of the NG source of the MLG samples (red filled squares) and the 

highest reported graphite thermal conductivity values included in Touloukian
32

 (dark blue 

filled triangles). The lines are the calculated low-temperature thermal conductivity of a 

34-layer MLG with dimensions similar to the 34-layer MLG sample with diffuse top and 

bottom surfaces (blue dashed line), specular top surface and diffuse bottom surface (blue 

dot-dashed line), and partially diffuse top and bottom surfaces with the same specularity 

parameter of 0.36 (blue dot-dashed line) or 0.9 (blue long dashed line). The two side 

edges are treated as diffuse and other scattering mechanisms are ignored in the 

calculation. The inset shows that the measured thermal conductivity of the supported 

MLG increases with increasing thickness, with the peak value shifted to a lower 

temperature for a thicker sample. 

As shown in Figure ‎2.7 and Figure ‎2.8, the thermal conductivity of the FLG and 

MLG samples supported on SiO2 increases with the layer thickness in the thickness range 

between 1 and 34 atomic layers, and has not yet reached the basal plane thermal 

conductivity of the NG source used to exfoliate the MLG samples. The convergence to 

the graphite value is considerably more gradual than the prediction of a recent MD 

simulation,
43

 as shown in Figure ‎2.9. Figure ‎2.8 shows that the convergence rate becomes 

even more gradual at lower temperatures. The observed thickness dependence is opposite 

and qualitatively similar to the reported behaviors of suspended FLG
15,37

 and FLG 
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encased in SiO2,
19

 respectively (see Figure ‎2.8). For suspended FLG, results from a 

micro-Raman measurement
37

 and a theoretical calculation
15

 both suggest that inter-layer 

phonon scattering decreases the thermal conductivity to approach the basal plane value of 

graphite when the suspended FLG layer thickness is increased to only about 4 layers. 

 

 

     

Figure ‎2.8: Basal-plane thermal conductivity of single-layer (red unfilled circle)
17

 and 

multi-layer graphene supported on SiO2 (red filled circles) as a function of layer 

thickness at 300 K (a) and 160 K (b). Also shown for comparison are the thermal 

conductivities of suspended single-layer and few-layer graphene samples (blue unfilled 

diamonds) reported by Ghosh et al.,
37

 FLG samples encased in SiO2 (black filled inverted 

triangles) reported by Jang et al.,
19

 the NG source of the MLG samples (dashed line), and 

the highest reported graphite thermal conductivity values (grey shaded area) included in 

Touloukian et al.
32

 



29 

 

Moreover, the thermal conductivity peak is shifted to a lower temperature for a 

thicker supported FLG sample. Such peak shifts have not been resolved in the earlier 

studies of suspended FLG
37

 and encased FLG.
19

 In comparison, the peak thermal 

conductivity occurs at an even lower temperature of ~100 K for high quality pyrolytic 

graphite (PG)
32

 and the NG source used to exfoliate the graphene samples. As the 

temperature increases to above room temperature, the thermal conductivity of G34 

becomes comparable to that of the NG source (see Figure ‎2.7). 

 

 

 

Figure ‎2.9: Measured room-temperature thermal conductivity of SLG (red unfilled 

circle)
17

 and MLG samples supported on SiO2 (red filled circles) normalized by their 

corresponding basal-plane thermal conductivity of the graphite source as a function of 

thickness. Shown for comparison is the MD simulation result (blue filled triangles) from 

ref. 43. 
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2.4   MECHANISMS OF THERMAL CONDUCTIVITY SUPPRESSION IN SUPPORTED 

MULTI-LAYER GRAPHENE 

To identify the causes of the observed thickness and temperature dependences in 

the thermal conductivity of supported MLG, we have examined a number of possible 

mechanisms. We first rule out phonon scattering by the lateral edges of the MLG flakes 

as the main cause for the suppressed thermal conductivity. The smallest lateral dimension 

of the MLG flakes is as large as 3 μm, which would have yielded much higher thermal 

conductivity than the measurement results if diffuse edge scattering was the dominant 

mechanism, as shown in ref. 18 and the calculation discussed below. Similarly, scattering 

by point defects inside the graphene lattice cannot explain the thickness dependence, 

because the D band associated with point defects
54

 cannot be observed in the Raman 

spectra of all the MLG samples, which were exfoliated from the same graphite source 

and underwent the same sample preparation steps. Hence, the experimental result needs 

to be attributed to the interaction between the MLG and the underlying SiO2 support, and 

also possibly polymer residue left on the top surface from the device fabrication 

process.
18,55

 The van der Waals (vdW) interaction between graphene and an amorphous 

layer can result in perturbation of the atomic bonding in the graphene layers near the 

interface. Such vdW interaction is known to be short-range. For example, the interface 

adhesion energy between FLG and SiO2 was found to saturate for FLG samples thicker 

than two layers,
56

 suggesting that the static force interaction at the interface only affects 

the layer adjacent to the substrate. The short-range perturbation can modify the group 

velocities of phonons in the graphene layer next to the interface. For strong interfacial 

bonding between SLG and Ni(111)
57,58

 or Ru,
59

 softening of the optical branches and 
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modification of the flexural phonon (ZA) branch have been observed. However, as the 

interface bonding was weakened by intercalation of another layer of Cu or Ag at the 

interface
58,60

 or for the case of SLG physisorbed on a Pt substrate,
61

 the phonon 

dispersion of supported SLG becomes similar to that of pristine graphite. The adhesion 

energies for SLGSiO2 and FLGSiO2 interfaces were determined to be 0.45 J m
 -2

 and 

0.31 J m
 -2

, respectively,
56

 smaller than the 0.72 J m
 -2

 value reported for SLGCu 

interface.
62

 Hence, we expect that the weak and short-range vdW interaction is 

insufficient to cause appreciable reduction of the group velocities of those phonon modes 

that dominate the thermal conductivity in suspended MLG. Therefore, static perturbation 

of the atomic bonding and modification of the phonon dispersion in the few graphene 

layers near the interface alone cannot explain the observed long range effect, namely the 

reduced thermal conductivity in the 34 layer MLG sample, especially the pronounced 

reduction at low temperatures. 

Nevertheless, the short-range vdW interaction at the interface can still result in 

ripples throughout the supported MLG. Single-layer graphene was found to be rather 

conformal to the surface roughness of a SiO2 support.
63,64

 The roughness of graphene 

supported on SiO2 was found to decrease from 185 pm to 125 pm when the thickness 

increases from single-layer to 15 layers.
56

 Fitting of the thickness-dependent surface 

roughness data yields a surface roughness of 123 pm for graphite of an infinite number of 

graphene layers. In addition, with increasing thickness from SLG to BLG and three-layer 

graphene, the substrate induced surface roughness decreases by 50% and 70%, 

respectively. Such substrate-induced surface roughness for the supported FLG is 

comparable in amplitude and wavelength to the intrinsic ripples
52

 in suspended SLG and 
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FLG, where both the ripple amplitude
65

 and thermal conductivity
37

 decrease with 

increasing layer thickness. Hence, substrate-induced ripples cannot explain the greatly 

suppressed magnitude and opposite thickness dependence in the measured thermal 

conductivity of the supported MLG. Similarly, stress and adhesion energy variations in 

the MLG samples are not expected to play a major role, as discussed below. 

In a previous work on supported SLG sample,
17

 tilted SEM was used to 

characterize the bending of the suspended SiO2 beam of similar measurement devices. 

The central SiO2 beam was found to be rather flat for two of the three samples, whereas 

some bending observed for the other sample may cause a tensile strain of less than 0.8% 

in the supported SLG. A linear perturbation analysis was used to examine the effect of 

the tensile strain on morphology of the supported SLG. Although the tensile strain can 

make the supported graphene less conformal to the substrate roughness, the effect is 

small for 1% tensile strain and the ~30 nm correlation length and ~0.3 nm amplitude of 

the SiO2 surface roughness. Consequently, very similar thermal conductivity values were 

measured on the three supported SLG samples. Based on this finding, it is expected that 

stress in the MLG samples is not an important factor in the observed thermal 

conductivity. 

It has been reported in ref. 56 that the measured work of adhesion is about 0.45 J 

m
 -2

 between SLG and SiO2 and saturates to 0.3 J m
 -2

 when the layer thickness of FLG on 

SiO2 increases to be two or more. Because the work of adhesion shows more significant 

and abrupt layer thickness dependence than the observed gradual change in the thermal 

conductivity of the supported MLG samples, it does not explain the thermal conductivity 

dependence on the layer thickness. The interface phonon transmission coefficient 
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depends on the adhesion energy. For 0.3 J m
 -2

 adhesion energy, Prasher has calculated 

that the transmission coefficient is about 0.7 for Si/Si and Si/Pt interfaces.
66

 The value is 

on the same order of magnitude as the average interface transmission coefficient 

calculated in this work based on the measured interface thermal conductance between 

MLG and SiO2. 

The dynamic nature of the interface interaction is considered next. The average 

mean free path of phonons in graphite along a direction 𝛼 can be calculated from 

 

 〈𝛬𝛼〉−1 =
1

𝜅𝛼
 ∑∑  |𝑣𝛼| 𝑘𝐵 𝑥2

𝑒𝑥

(𝑒𝑥 − 1)2

∆𝑘3

8𝜋3
  

𝑘⃗ 
𝑝

, 𝑥 ≡ ℏ𝜔/𝑘𝐵𝑇 (‎2-18) 

where the summations are over all phonon polarizations (𝑝) and wave vector (𝑘⃗ ) states in 

a discretized Brillouin zone, ∆𝑘3 is the volume of each grid within the discretized 

Brillouin zone, ℏ is the reduced Planck constant, 𝜔 is the angular frequency, 𝑘𝐵 is the 

Boltzmann constant, 𝑇 is the temperature, and 𝜅𝛼 and 𝑣𝛼 are the thermal conductivity and 

phonon group velocity component along direction 𝛼, respectively. We have calculated 

the full phonon dispersion of graphite based on the density functional perturbation theory 

with the use of ab initio calculation package QUANTUM ESPRESSO
67

 and employed a 

numerical approach to carry out the summation of equation (‎2-18) in the discretized 

Brillouin zone of graphite (see Appendix B). Based on the reported cross-plane thermal 

conductivity of graphite,
32

 〈𝛬𝑧〉 was found to increase with decreasing temperature, from 

more than 60 atomic layers at 300 K to over 1000 atomic layers at temperatures lower 

than 70 K, as shown in Figure ‎2.10. The as-calculated 〈𝛬𝑧〉 value at temperature 300 K, 

about 20 nm, is comparable to the 10 nm value estimated from the simplified kinetic 
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theory in a recent work.
68

 In addition, the average basal plane mean free path calculated 

with this approach is even much longer than the cross-plane values and approaches about 

240 nm at room temperature, which is about one third of the 775 nm value suggested for 

suspended graphene
14

 based on the simplified kinetic theory and a graphene thermal 

conductivity value up to a factor of 2.6 higher than the graphite basal plane value used 

here. This calculation, based on equation (‎2-18) does not account for the frequency 

dependence of the phonon mean free path. According to Klemens,
69

 the phonon-phonon 

scattering mean free path in the basal plane of graphene and graphite depends on 𝜔 and 𝑇 

according to 𝛬  𝑇−1𝜔−2. Because low-frequency acoustic phonons possess longer mean 

free paths and make larger contributions to the thermal conductivity than optical 

phonons, the average phonon mean free path weighted by the thermal conductivity 

contribution is expected to be even larger than the values found from equation (‎2-18). 

The large 〈𝛬𝑧〉 values suggest that phonons originating from graphene layers far away 

from the interface can be scattered by the interface before other intrinsic scattering events 

occur. Such scattering at the top and bottom interfaces result in a reduction of the basal 

plane phonon mean free path. If the top and bottom surfaces are diffuse, the basal plane 

phonon mean free path because of scattering at the two surfaces is proportional to the 

MLG layer thickness and the ratio between the 𝑎𝑏-plane component (𝑣𝑎) and 𝑐-axis 

component (𝑣𝑧) of the phonon group velocity.
69

  

Theoretical calculation was conducted to investigate whether the measurement 

results could be attributed to partially diffuse phonon scattering at the top and bottom 

surfaces. Phonon scattering at the MLGSiO2 interface is complicated by the highly 

anisotropic phonon dispersion in MLG and phonon transmission across the interface. 
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Because of the anisotropic structure, the phonon group velocity is not collinear with the 

phase velocity, and it has a much larger 𝑣𝑎 component than the 𝑣𝑧 component for most of 

the phonon modes. For thick MLG, the average phonon transmission coefficient from 

MLG to SiO2 can be evaluated from the thermal interface conductance (𝐺𝑐) according 

to
70,71

 

 〈𝜏𝑀𝐿𝐺→𝑆𝑖𝑂2
〉 = 𝐺𝑐 (∑∑  |𝑣𝑧| 𝑘𝐵 𝑥2

𝑒𝑥

(𝑒𝑥 − 1)2
 

𝑘⃗ ,𝑘𝑧<0
𝑝

∆𝑘3

8𝜋3
)

−1

 (‎2-19) 

 

 

 

Figure ‎2.10: Calculated average phonon mean free path (〈𝛬𝑧〉) in graphite along the basal 

plane (solid line) and cross-plane (dashed line) directions. The mean free path of phonons 

that dominates the thermal conductivity is expected to be longer than the shown average 

mean free path.  
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Based on the reported 𝐺𝑐 value measured for FLG supported on SiO2,
72

 this calculation 

yields a 〈𝜏𝑀𝐿𝐺→𝑆𝑖𝑂2
〉 value of about 0.2 near room temperature. The use of the measured 

𝐺𝑐 value reported by Chen et al.
73

 for encased FLG yields even higher 〈𝜏𝑀𝐿𝐺→𝑆𝑖𝑂2
〉 

values, which increase with decreasing temperature, as shown in Figure ‎2.11. This 

calculation is not applicable for SLG and thin FLG supported on SiO2, where 𝑣𝑧 vanishes 

because of the absence of cross-plane modes. However, the measured 𝐺𝑐 value for 

SLGSiO2 interface is comparable to that for MLGSiO2,
72

 suggesting coupling between 

some in-plane modes in SLG and surface and bulk modes in SiO2.  

 

 

 

Figure ‎2.11: Calculated average interface phonon transmission coefficient from FLG to 

SiO2 (〈𝜏𝑀𝐿𝐺→𝑆𝑖𝑂2
〉) based on the measured FLGSiO2 thermal interface conductance 

values reported by Chen et al.
73

 for a 3 nm thick FLG (filled triangles) and Mak et al.
72

 

(filled circle).   
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Because of phonon scattering across the interface, MLG phonons emerging from 

the interface consist of a reflection component and a transmitted component from the 

adjacent amorphous layer. Because the temperature gradient is parallel to the interface, 

the transmitted component from the amorphous layer into the MLG is balanced by 

phonons scattered from MLG into the amorphous layer, so that the net interface heat flux 

is zero. In addition, phonons transmitted from or into the amorphous layer are expected to 

be highly diffuse because of atomic scale mean free path in the amorphous layer. 

2.5   THERMAL CONDUCTIVITY OF MULTI-LAYER GRAPHENE IN THE BOUNDARY 

SCATTERING REGIME 

We have derived an analytical model for thermal conductivity of supported MLG 

in the boundary scattering regime, which cannot be treated by existing models established 

for an isotropic thin film.
74

 In the following, the temperature gradient is along the 𝑥-axis 

that is parallel to the basal plane, and the 𝑧-axis is along the 𝑐-axis of graphite. In this 

coordinate, 𝜃 and 𝜑 are the polar angle with 𝑥-axis and its corresponding azimuthal angle 

in the 𝑦𝑧-plane, respectively (see Figure ‎2.12).  

When only phonon-boundary scattering is considered, the Boltzmann transport 

equation (BTE) for the phonon distribution function 𝑓 yields 

 

 𝜐𝑔⃗⃗  ⃗. 𝛻𝑓 = 𝜐 cos 𝜃𝑔

𝜕𝑓

𝜕𝑥
+ 𝜐 sin 𝜃𝑔

𝜕𝑓

𝜕𝑠
= −

𝑓 − 𝑓0
𝜏

= 0 (‎2-20) 

where 𝜐𝑔⃗⃗  ⃗ is the group velocity, 𝑠 represents the spatial coordinate in the 𝑦𝑧-plane along 

the projection of the phonon path into the plane, 𝜏 is the relaxation time, and 𝑓0 is the 
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local equilibrium distribution. Based on the assumption that  
𝜕𝑓

𝜕𝑥
=

𝜕𝑓0

𝜕𝑥
 , equation (‎2-20) is 

simplified to 

 

 
𝜕𝑓

𝜕𝑠
= −

cos 𝜃𝑔

sin 𝜃𝑔

𝜕𝑓0
𝜕𝑥

 (‎2-21) 

In addition, for point 𝐵 on the boundary with distance ∆𝑥 from the cross section 

containing point 𝐴, the local equilibrium distribution can be found as 

 

 

 

Figure ‎2.12: Schematic used to derive the phonon-boundary scattering model in a MLG 

ribbon where the group velocity and wave vector are not collinear because of the highly 

anisotropic structure. In this schematic, 𝜃 and 𝜑 are the polar angle with х-axis and the 

corresponding azimuthal angle in the 𝑦𝑧-plane, respectively. The subscript 𝑔 is used to 

denote the group velocity. 
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 𝑓𝐵0 = 𝑓𝐴0 − ∆𝑥 
𝜕𝑓0
𝜕𝑥

= 𝑓𝐴0 − 𝑡𝐵𝐴 cos 𝜃𝑔

𝜕𝑓0
𝜕𝑇

 
𝑑𝑇

𝑑𝑥
 (‎2-22) 

where 𝑓𝛹0 is the local equilibrium distribution at point 𝛹 and 𝑡𝛹𝛺 is the path length 

between any two points 𝛹 and 𝛺, which can be point 𝐵 and 𝐴 in equation (‎2-22). It is 

straightforward to use equation (‎2-21) and equation (‎2-22) to show that 𝑓𝐴(𝑘⃗ ) = 𝑓𝐵(𝑘⃗ ), 

where 𝑘⃗  is the wave vector that yields a group velocity vector parallel to the 𝐵𝐴 

direction. This result is consistent with the intuition that phonon distribution does not 

vary along the path before phonons encounter a boundary when other scattering 

mechanisms are absent.  

Phonons leaving 𝐵 into the MLG consist of a specularly reflected component and 

a diffusely scattered component. Because of the amorphous structure of the SiO2 support 

at the bottom interface and possibly polymer residue on the top surface, phonons 

scattered across the interface from the amorphous layer into the MLG are expected to 

contribute to the diffuse component and are balanced by phonons transmitted from MLG 

into the amorphous layer. In addition, because the temperature gradient is parallel to the 

interface, the net heat flux across the interface is zero. Hence, the interface condition can 

be described with an expression similar to that used in ref. 74 for an adiabatic solid-

vacuum boundary  

 

 𝑓𝐴 = 𝑓𝐴0 + 𝑔𝐴 = (1 − 𝑃𝐵)𝑓𝐵0 + 𝑃𝐵𝑓𝐶 (‎2-23) 

where 𝑔𝐴 is the deviation of 𝑓𝐴 from the local equilibrium distribution 𝑓𝐴0, and the 

specularity parameter 𝑃𝛹 represents the probability that MLG phonons incident on 

interface point 𝛹 undergo mirror reflection. For incident phonons from 𝐶, the fraction 
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(1 − 𝑃𝐵)𝑓𝐶 is either diffusely reflected back into the MLG or transmitted across the 

interface into the amorphous layer. The latter transmitted component from MLG into the 

amorphous layer is cancelled by phonons scattered from the amorphous layer into the 

MLG, so that there is no net loss of phonons across the interface. Because the local 

equilibrium distribution yields the same number of phonons as the incident phonons 

integrated over the incident angles in a hemisphere, equation (‎2-23) satisfies the adiabatic 

condition that the number of MLG phonons incident on the interface is the same as the 

number of phonons leaving the interface into MLG.  

Similar relations can be written for previous reflections such as 𝑓𝐶 =

(1 − 𝑃𝐶)𝑓𝐶0 + 𝑃𝐶𝑓𝐷, where the subscript 𝐷 denotes the reflection point prior to 𝐶. To 

calculate 𝑓 at an arbitrary point 𝐴, phonons are traced back along their group velocity 

direction to find previous reflection points. These equations are combined to find  

 

 

𝑔𝐴 = 𝑓𝐴0((1 − 𝑃𝐵) + 𝑃𝐵(1 − 𝑃𝐶) + 𝑃𝐵𝑃𝐶(1 − 𝑃𝐷) + ⋯− 1)

− cos 𝜃𝑔

𝜕𝑓0
𝜕𝑇

𝑑𝑇

𝑑𝑥
𝑀𝐴 

(‎2-24) 

where 

 

𝑀𝐴 = (1 − 𝑃𝐵)𝑡𝐵𝐴 + 𝑃𝐵(1 − 𝑃𝐶)(𝑡𝐵𝐴 + 𝑡𝐶𝐵)

+ 𝑃𝐵𝑃𝐶(1 − 𝑃𝐷)(𝑡𝐵𝐴 + 𝑡𝐶𝐵 + 𝑡𝐷𝐶) + ⋯ 

(‎2-25) 

In the right hand side of equation (‎2-24), the term that contains 𝑓𝐴0 vanishes because 𝑔𝐴 = 

0 when 
𝑑𝑇

𝑑𝑥
= 0. Hence, 

 𝑔𝐴(𝜃𝑔, 𝜑𝑔) = −cos 𝜃𝑔

𝜕𝑓0
𝜕𝑇

𝑑𝑇

𝑑𝑥
𝑀𝐴 (‎2-26) 
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where 𝑀𝐴 is a function of 𝜃𝑔, 𝜑𝑔, and the specularity parameter. Equation (‎2-26) can be 

used to determine 𝑔𝐴 at every point on the cross section. In the calculation of 𝑀𝐴, the 

reflection points are determined numerically to continue the series until the path reaches a 

fully diffuse surface or the two end surfaces perpendicular to the 𝑥-axis. Based on 

equation (‎2-26), the basal-plane thermal conductivity of supported MLG in the boundary 

scattering regime is calculated through 

 

 𝜅𝐵𝑆 =
1

𝐴𝑐
 ∑∑ |𝑣𝑔| 𝑘𝐵 𝑥2

𝑒𝑥

(𝑒𝑥 − 1)2
 
∆𝑘3

8𝜋3
 (cos 𝜃𝑔)

2
∫ 𝛭 𝑑𝐴𝑐
𝐴𝑐

 

𝑘⃗ 𝑝

 (‎2-27) 

where 𝑣𝑔 is the group velocity and 𝐴𝑐 is the cross section of the MLG.  

Based on a numerical summation over the discretized Brillouin zone, this 

calculation has been carried out for a 34-layer thick, 5.3 μm wide, and 35.8 μm long 

MLG sample with two diffuse side edges. In calculation of the MLG thermal 

conductivity, ∫ 𝑀𝑑𝐴𝑐𝐴𝑐
 depends on 𝜃𝑔 and 𝜑𝑔. By calculation of 𝑀𝐴 for every point in 

the cross section of a MLG ribbon with the dimensions similar to those of G34, we 

calculate ∫ 𝑀𝑑𝐴𝑐𝐴𝑐
 for every wave vector in the discretized Brillouin zone. For the 

calculations, the two side edges are assumed to be diffuse because they were formed 

using oxygen plasma etching that can result in rough edges. The specularity parameters 

for the top and bottom surfaces of the MLG ribbon are varied in the calculation. This 

numerical model reproduces the result of an analytical expression
75

 for the case of diffuse 

scattering on all surfaces.  

As shown in Figure ‎2.7, the calculation result can match the measurement result 

in the low temperature limit when the specularity is set to be either the same value of 0.36 
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for the top and bottom surfaces of the MLG, or 1 for a specular top surface and 0 for a 

diffuse bottom surface. The higher calculated values than the measurement results at 

higher temperatures can be attributed to the ignorance of other scattering mechanisms in 

the calculation. Because the supported MLG samples underwent thorough cleaning 

process compared to suspended graphene and h-BN samples reported in refs. 18 and 55 

(see section ‎2.2.3), the top surface is expected to be relatively cleaner and characterized 

with a higher specularity parameter than the bottom MLGSiO2 interface. Hence, the two 

sets of parameters presented here give the two limiting cases. The specularity parameter 

in the range between 0 and 0.36 found for the MLGSiO2 interface is in agreement with 

the high transmission coefficient shown in Figure ‎2.11 at low temperatures.  

Partially diffuse interface-phonon scattering can also explain the shift of the peak 

thermal conductivity to a lower temperature for a thicker MLG supported on SiO2. The 

very high peak thermal conductivity value in graphite consists of a dominant contribution 

of low-frequency acoustic phonons,
33

 which possess considerably longer Umklapp 

scattering mean free paths than intermediate and high-frequency phonons. Even in the 

frequency-independent boundary scattering treatment presented above, the low-frequency 

phonons with longer umklapp mean free paths are subjected to a larger relative reduction 

in their mean free paths than would occur for higher-frequency phonons. Moreover, it has 

been suggested that the interface phonon transmission coefficient and scattering rate 

increases with decreasing phonon frequency.
66

 This frequency dependence is also 

revealed by the increased 〈𝜏𝑀𝐿𝐺→𝑆𝑖𝑂2
〉 value with decreasing temperature that we have 

calculated based on the 𝐺𝑐 values reported for encased FLG.
73

 Hence, interface scattering 

considerably reduces the thermal conductivity contribution from low-frequency phonons 
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in supported MLG. Consequently, the relative contribution from intermediate and high-

frequency phonons is higher in thinner supported MLG. Because of increased populations 

of intermediate and high-frequency phonons with increasing temperature, their thermal 

conductivity contribution in thin MLG increases with increasing temperature until the 

temperature where the Umklapp scattering becomes equally important as interface 

scattering for these phonons. Corresponding to the peak thermal conductivity, this 

temperature increases with decreasing MLG thickness because of decreased mean free 

path for phonon scattering at the top and bottom interfaces.    

2.6   SUMMARY 

The measurement and analysis show that partially diffuse interface scattering 

results in considerable suppression of the basal-plane thermal conductivity of MLG 

supported on amorphous oxide. Because of the long intrinsic mean free path of phonons, 

the suppression can be observed in supported MLG as thick as 34 atomic layers, and is 

more pronounced in thinner supported MLG. In comparison to MLG, a relatively short 

intrinsic phonon mean free path in hexagonal Boron nitride (h-BN) can also explain a 

recent measurement,
55

 which shows that the room-temperature basal-plane thermal 

conductivity of few-layer h-BN coated with polymer residue approaches the 

corresponding bulk value when the layer thickness is increased to be just 11 layers.  In 

addition, based on the observed shift of the peak thermal conductivity to a higher 

temperature in thinner supported MLG, the interface scattering results in a large 

reduction of the mean free path of low-frequency acoustic phonons in supported MLG. 

Such reduction cannot be simply attributed to interface roughness scattering, which is 
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known to be more effective in scattering higher-frequency, shorter wavelength phonons.
74

 

Instead, the reduction is largely influenced by interface phonon transmission, which is 

found to be non-negligible based on the measured thermal interface conductance values 

and is known to increase with decreasing phonon frequency.
66

 Such interface scattering 

bears a resemblance to that revealed by past studies in phonon transport in thin film 

superlattices,
76

 where the phonon distribution in one layer is influenced by that of the 

adjacent layer when the interface is partially diffuse. Compared to thin film superlattices, 

the distinction lies in the highly anisotropic phonon structure in MLG, which gives rise to 

currently unknown mode coupling mechanisms across the interface, which may be 

influenced by interface roughness. This knowledge gap calls for further studies of phonon 

transport at the interface of highly anisotropic materials, where an adaptation to Snell’s 

law awaits to be discovered. Advances along this direction may allow for sensible 

selection of the support materials to increase the basal-plane thermal conductivity of 

supported graphene. 
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Chapter 3: Investigation of Electronic Thermal Transport in Supported 

Graphene with Magneto-Thermal Measurements 

3.1   INTRODUCTION 

The total thermal conductivity in a conductor consists of an electronic component 

(𝜅𝑒) and a lattice component (𝜅𝑙). Transport of electrons in metals has been described 

with success by the Sommerfeld theory in which the elementary excitations are quasi-

particles that obey the Fermi-Dirac distribution.
77

 A robust feature of the Sommerfeld 

theory is the Wiedemann-Franz Law (W-F law) that relates 𝜅𝑒 and electrical conductivity 

(𝜎) via the dimensionless Lorenz number (𝐿) 

 

 𝐿 ≡
𝜅𝑒

𝜎𝑇
(

𝑒

𝑘𝐵
)
2

 (‎3-1) 

where 𝑇 is the absolute temperature, 𝑒 is the elementary charge, and 𝑘𝐵 is the Boltzmann 

constant. For non-interacting electrons with impurity scattering being the dominant 

mechanism, 𝐿 is reduced to the Sommerfeld value 𝐿0 = 𝜋2/3.
78

 The W-F law fails in 

presence of inelastic scattering processes since, during such processes, the energy flux 

carried by electrons is altered differently as compared to the charge flux,
77

 making the 

mechanism of thermal current degradation significantly different than electric current 

degradation. The inelastic processes for electrons can be neglected at very low 

temperatures because of negligible population of phonons. At higher temperatures, 𝐿 

approaches 𝐿0(𝑙𝑠 𝑙𝑒⁄ ) in a metal, where 𝑙𝑠 and 𝑙𝑒 are the electron mean free paths for 

entropy transport and charge transport, respectively. At temperatures higher than the 
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Debye temperature (𝛩𝐷), where energy loss of electrons in collisions is small compared 

to 𝑘𝐵𝑇, 𝐿 approaches 𝐿0 to a good approximation. Therefore, the W-F law failure occurs 

at intermediate temperatures where electronic energy loss during inelastic collisions in 

comparable to 𝑘𝐵𝑇, and 𝑙𝑠 < 𝑙𝑒. In intrinsic semiconductors, it can be shown that 𝐿 for a 

single electronic band approaches (𝑟 + 5/2), where 𝑟 is a parameter describing the 

dependence of the electron scattering mean free time (𝜏) on the electron energy, i.e. 

𝜏 =  𝜏0𝐸
𝑟 with 𝜏0 being a constant. When 𝜏 is dominated by electron-phonon scattering 

in an intrinsic semiconductor, 𝑟 takes a value of −1/2 so that 𝐿 equals 2. In doped 

semiconductors with charge transport dominated by conduction in a single band, 𝐿 

depends on the carrier concentration and often falls between the metallic limit of 𝜋2/3 

and the intrinsic limit of 2. If two or more bands contribute to charge transport in a 

semiconductor, there is an additional bipolar contribution to the electronic thermal 

conductivity. In this case, the net charge current carried by each of the bands is nonzero 

under a temperature gradient, even when the net current vanishes in the semiconductor 

during the thermal conductivity measurement. The charge current of each band carries a 

Peltier heat with it, increasing the effective 𝐿 considerably.
79-81

     

Violation of the W-F law for nanoscale conductors has been discussed by a 

number of theoretical studies
82-85

 and also suggested based on several measurements of 

carbon nanotubes
86-89

 and nanowires.
90

 The violation is mainly attributed to the increased 

electron-electron interaction in low-dimensional conductors. Also, fluctuations in 

conductance of mesoscopic conductors may lead to deviations from the W-F law even in 

the absence of inelastic scattering.
91

 In graphene, electrons are described as relativistic 

Dirac Fermions with a linear dispersion and vanishing mass near the charge-neutral Dirac 
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point. There is an intriguing question regarding the contribution of the Dirac Fermions to 

thermal and thermoelectric transport.
92

 Recently, a theoretical work has suggested that 

the W-F law can be violated in graphene at finite magnetic field and chemical potential.
93

 

Currently, there exists a significant gap between theoretical and experimental studies of 

the validity of the W-F law in low dimensions, especially in graphene. On one hand, a 

number of theories have suggested the breakdown of the W-F law in nanoscale 

conductors because of increased electron-electron interaction and other intriguing 

phenomena. Theorists have called upon experimentalists to verify their findings.
92,94

 On 

the other hand, there has been very limited experimental investigation of the W-F law in 

low-dimensional structures. Hence, it is scientifically important to conduct experimental 

investigations on electronic thermal transport in graphene to determine whether or not the 

W-F law is applicable. Furthermore, the high thermal conductivity of graphene can be 

useful for many envisioned applications for graphene, such as thermal interface materials 

and thermal management of nanoelectronics.
14,44,95

 The electronic contribution to thermal 

transport can become an important component when the Fermi level is tuned away from 

the Dirac point.
96

 In addition, the electronic thermal conductivity can play an important 

role in the performance of graphene electronic devices where the thermal energy can be 

transferred by the hot carriers that are not in thermal equilibrium with the lattice.
20,21

 

3.1.1   Present Work 

This chapter introduces an experimental method that can be employed to study 

electronic thermal transport in graphene and other layered materials under a temperature 

gradient in the presence of electric and magnetic fields. We designed and fabricated four-
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probe suspended micro-heater thermometer devices with transverse resistance 

thermometers (RTs) that allow us to perform measurements on longitudinal and 

transverse thermal conductivity, longitudinal and transverse electrical conductivity, and 

thermogalvanomagnetic effects. Results from such a measurement can provide 

fundamental understanding on electronic thermal transport. Experimental study of all 

these properties in a single sample provides significant information for understanding 

electronic, thermoelectric, and magnetothermoelectric transport mechanisms by 

eliminating sample-to-sample and measurement-to-measurement variations. 

3.2   MEASUREMENT OF ELECTRONIC THERMAL CONDUCTIVITY IN GRAPHENE 

3.2.1   Electric-Field Effect Measurement of Graphene Lorenz Number 

Electric field effect measurements can be employed to separate the electronic 

thermal conductivity (𝜅𝑒) and lattice thermal conductivity (𝜅𝑙) and consequently 

determine the Lorenz number of graphene. The thermal conductivity of supported 

graphene can be measured as a function of the charge carrier concentration by 

introducing a back-gate to a suspended resistance thermometer device. Compared to 

micro-heater thermometer devices described in Chapter 2 that are used to measure 

thermal conductivity of supported graphene samples, a through hole should be etched in 

the silicon substrate so that a low thermal conductivity metal can be evaporated on the 

backside of the suspended beams and the silicon substrate. A polycrystalline Bi film 

(𝜅 < 3 W m
 -1

 K
 -1

 
97,98

) can serve as a back-gate to tune the Fermi level and carrier 

concentration in the graphene sample. For a 300nm thick SiO2 bridge covered with 
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single-layer graphene, the total thermal conductance of the bridge will increase by ~20 % 

with addition of 40 nm thick Bi film. 

For a single layer of 3 μm x 3 μm graphene on a 300 nm SiO2 film of a Si 

substrate that serves as the back-gate, Zhang et al. has shown that the electrical resistance 

(𝑅) can be tuned from 4 kΩ to about 100 Ω when the Fermi energy (𝐸𝐹) is moved from 

the charge-neutral Dirac point to either the conduction or valence band by applying a gate 

voltage on the order of ±40 volts.
99

 The electronic thermal conductance can be calculated 

as 𝐺𝑒 = (𝑘𝐵 𝑒⁄ )2𝐿𝑇/𝑅. If 𝐿 = 𝐿0, 𝐺𝑒 would increase from about 1.8 nW K 
-1

 to 74 

nW K 
-1

 when 𝑅 is reduced from 4 kΩ to 100 Ω and the equivalent 𝑘𝑒 = 𝐺𝑒𝑙 𝑤𝑡⁄  would 

increase from 5.5 W m
 -1

 K
 -1

 to 220 W m
 -1

 K
 -1

. For the ~10 μm long, 1.2 μm wide 

graphene ribbon reported by Seol et al.,
17

 𝑅 was measured to be about 30 kΩ at zero gate 

voltage, yielding the 2D resistivity 𝜌 = 𝑅𝑤/𝑙 ~ 3.6 kΩ that is close to the value reported 

by Zhang et al. for the case that 𝐸𝐹 is near the Dirac point.
99

 When a ±40 volt gate 

voltage is applied to the Bi film on the back side of the SiO2 beam, it can be expected that 

𝜌 and 𝑅 of this sample would decrease to ~100 Ω and ~830 Ω, respectively. 

Correspondingly, 𝐺𝑒 would increase from about 0.24 nW K 
-1

 to 9 nW K 
-1

. This 𝐺𝑒  

increase (Δ𝐺𝑒) is larger than the sensitivity of the measurement device. The Lorenz 

number can be obtained from the measured Δ𝐺𝑒 and measured change (Δ𝑔) in the 

electrical conductance (𝑔 = 1/𝑅) upon the application of a gate voltage, i.e. 𝐿 =

(𝑒/𝑘𝐵)2Δ𝐺𝑒/Δ𝑔𝑇. 
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3.2.2   Thermogalvanomagnetic Measurement of Graphene Hall Lorenz Number 

Transverse thermogalvanomagnetic effects occur where motion of electrons is 

deflected by an external magnetic field perpendicular to the direction of current (heat) 

flow. Because of these effects, an electric field and a temperature gradient are induced in 

a direction perpendicular to the directions of the magnetic field and the current (heat) 

flow, and Hall coefficient (𝑅𝐻), Nernst coefficient (|𝑁|),  Ettingshausen coefficient (|𝑃|), 

Righi-Leduc coefficient (|𝑆|) are defined as 
81

 

 

 𝑅𝐻 ≡
𝐸𝑦

𝐵𝑧  𝑗𝑥
 (‎3-2) 

 |𝑁| ≡
𝐸𝑦

𝐵𝑧  𝑑𝑇 𝑑𝑥⁄
 (‎3-3) 

 |𝑃| ≡
𝑑𝑇 𝑑𝑦⁄

𝐵𝑧  𝑗𝑥
 (‎3-4) 

 |𝑆| ≡
𝑑𝑇 𝑑𝑦⁄

𝐵𝑧  𝑑𝑇 𝑑𝑥⁄
 (‎3-5) 

where 𝐵, 𝑗, and 𝑇 represent magnetic field, current concentration, and temperature, 

respectively, and the subscripts denote components of a vector along coordinate axes 

according to Figure ‎3.1. Because of the applied magnetic field along the 𝑧-axis (𝐵𝑧), an 

electric field along the 𝑦-axis (𝐸𝑦) and a temperature gradient along the 𝑦-axis (𝑑𝑇/𝑑𝑦) 

are induced. 
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Figure ‎3.1: Transverse thermogalvanomagnetic effects. Presence of the magnetic field 

induces a temperature difference (∆𝑇) and a voltage difference (∆𝑉) in a direction 

perpendicular to the direction of magnetic field and direction of heat or current flow.
81

 

In the absence of a magnetic field, the heat fluxes carried by electrons and 

phonons are parallel to the temperature gradient 𝛻𝑇. With an external magnetic field, 

applied along the 𝑧-axis and perpendicular to the external temperature gradient 𝛻𝑥𝑇 

applied along the 𝑥-axis, the Lorentz force acting on the electrons results in a transverse 

electronic heat flux 𝑞𝑦 = 𝜅𝑥𝑦𝛻𝑥𝑇 that is perpendicular to both 𝐵𝑧 and ∇𝑥𝑇, where 𝜅𝑥𝑦 is 

the transverse electronic thermal conductivity consisting of only the electronic 

contribution, because the phonon flux is unaffected by the external magnetic field. With 

adiabatic boundaries except at the two surfaces perpendicular to the 𝑥-axis, a transverse 

temperature gradient 𝛻𝑦𝑇 is established, resulting in a transverse heat flux of 

−𝜅𝑦𝑦𝛻𝑦𝑇 that cancels 𝑞𝑦, where 𝜅𝑦𝑦 is the longitudinal thermal conductivity consisting 

of both electron and phonon contributions along the 𝑦 direction. Hence, 𝜅𝑥𝑦 =
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𝜅𝑦𝑦𝛻𝑦𝑇/ 𝛻𝑥𝑇. If the longitudinal thermal conductivity is isotropic in the 𝑥𝑦 plane as in 

the basal plane of graphene, 𝜅𝑦𝑦 = 𝜅𝑥𝑥, 𝜅𝑥𝑦 can be obtained by measuring 𝜅𝑥𝑥, 𝛻𝑦𝑇, and 

𝛻𝑥𝑇. Similarly, for the Hall effect, the transverse electrical conductivity can be obtained 

as 𝜎𝑥𝑦 = 𝜎𝑦𝑦𝐸𝑦/ 𝐸𝑥. If the longitudinal electrical conductivity is isotropic, i.e. 𝜎𝑥𝑥 =

𝜎𝑦𝑦, 𝜎𝑥𝑦 = 𝜎𝑥𝑥
2𝑅𝐻𝐵𝑧 can be obtained by measuring 𝜎𝑥𝑥 and 𝑅𝐻. The dimensionless Hall 

Lorenz number is defined as 

 

 𝐿𝑥𝑦 ≡
𝜅𝑥𝑦

𝜎𝑥𝑦𝑇
(

𝑒

𝑘𝐵
)
2

 (‎3-6) 

The Boltzmann Transport Equation can be used to show that 𝐿𝑥𝑦 ≈ 𝐿0(𝑙𝑠 𝑙𝑒⁄ )2 in 

a metal and approaches 𝐿0 for 𝑇 > Θ𝐷 where 𝑙𝑠 = 𝑙𝑒.
100

 Experimentally, 𝐿𝑥𝑦 measured 

using the thermal Hall effect is close to 𝐿0 in copper at room temperature, and falls faster 

than 𝐿 with decreasing temperature since 𝐿 ≈ 𝐿0(𝑙𝑠 𝑙𝑒⁄ ).
100

 Because 𝜅𝑥𝑦 consists of only 

the electronic contribution, the thermal Hall measurement of 𝐿𝑥𝑦 provides an effective 

approach to investigate electronic thermal transport in some conductors where 𝐿 is 

experimentally inaccessible because a large longitudinal 𝜅𝑙 prevents accurate 

measurement of a small longitudinal 𝜅𝑒. 

Measurements of thermogalvanomagnetic coefficients, 𝜅, 𝜅𝑥𝑦, 𝑘𝑒, 𝐿, and 𝐿𝑥𝑦 can 

be conducted using back-gated suspended resistance thermometer devices (see 

Figure ‎3.2) that are designed to impose an electric field (temperature gradient) along a 

graphene sample and measure the transverse temperature difference and electric field 

induced by an external magnetic field perpendicular to the basal plane of graphene (𝐵𝑧).  
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Figure ‎3.2: Schematic of a suspended device for thermal Hall measurement of a trimmed 

graphene flake (a) Full view. (b) Central graphene region. (c) The corresponding thermal 

resistance circuit. Thermal resistances, heat flows, and temperatures of the resistance 

thermometers (RTs) are represented by 𝑅, 𝑞, and 𝑇, respectively,  according to (b). 𝑇0 and 

𝑄 are the ambient temperature and rate of heat generation in the heater (RT1), 

respectively. Subscripts m and t denote midpoint of metal lines and transverse metal 

lines, respectively.  
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Compared to the resistance thermometer device shown in Figure ‎2.1 and 

Figure ‎2.2, a back-gate needs to be added. In addition, two additional resistance 

thermometers are added to measure the transverse temperature gradient 𝛻𝑦𝑇 developed 

upon the application of a longitudinal temperature gradient 𝛻𝑥𝑇 and a magnetic field 𝐵𝑧. 

Since transverse edges should be adiabatic for measurement of 𝜅𝑥𝑦, thermal conductance 

of these transverse resistance thermometers should be minimized. By increasing the 

length and decreasing the width of the transvers RTs, the thermal conductance can be 

reduced significantly compared to the longitudinal and transverse thermal conductance of 

the bridge, which includes graphene, 300 nm of SiO2, and the back-gate metal. This 

approach ensures that there is negligible deviation from the adiabatic assumption. 

With adiabatic boundaries at the transverse edges, the ratio of the transverse 

temperature gradient to the longitudinal temperature gradient can be obtained as 

 

 
𝛻𝑦𝑇

𝛻𝑥𝑇
=

𝜅𝑥𝑦 (1 + 𝜅𝑥𝑦,𝐵𝑖𝑡𝐵𝑖/ (𝜅𝑥𝑦𝑡))

𝜅𝑒 (1 + 𝜅𝑙/𝜅𝑒 + 𝜅𝑆𝑖𝑂2
𝑡𝑆𝑖𝑂2

/(𝜅𝑒𝑡) + 𝜅𝐵𝑖𝑡𝐵𝑖/(𝜅𝑒𝑡))
 (‎3-7) 

where 𝜅𝑥𝑦 is the transverse electronic thermal conductivity of graphene, 𝜅𝑒 and 𝜅𝑙 are the 

longitudinal electronic and lattice thermal conductivity of the graphene, respectively, 

𝜅𝑥𝑦,𝐵𝑖 is the transverse electronic thermal conductivity of the polycrystalline Bi film, 𝜅𝐵𝑖 

(< 3 W m
 -1 

K
 -1

) and 𝜅𝑆𝑖𝑂2
 (~1 W m

 -1 
K

 -1
) are the longitudinal thermal conductivity of 

the Bi film and SiO2 layer, respectively, and 𝑡 = 0.334 nm, 𝑡𝑆𝑖𝑂2
= 300 nm, 𝑡𝐵𝑖 = 40 nm 

are the thickness of the graphene, SiO2, and Bi, respectively. In addition, 
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𝜅𝑥𝑦

𝜅𝑒
=

𝐿𝑥𝑦

𝐿

𝜎𝑥𝑦

𝜎
=

𝐿𝑥𝑦

𝐿
𝜎𝑅𝐻𝐵𝑧 =

𝐿𝑥𝑦

𝐿
𝜇𝐵𝑧 (‎3-8) 

where 𝜎 = 𝜎𝑥𝑥 = 𝜎𝑦𝑦 = 𝑛𝑒𝜇 is the longitudinal electrical conductivity of graphene, 

𝜎𝑥𝑦 = (𝜎𝑥𝑥)
2𝑅𝐻𝐵𝑧 is the transverse electronic thermal conductivity of graphene, 𝜇 is the 

carrier mobility, the Hall coefficient 𝑅𝐻 = 1/𝑛𝑒, and 𝑛 is the carrier concentration. 

Hence, 

 

 
𝛻𝑦𝑇

𝛻𝑥𝑇
=

1 + 𝜅𝑥𝑦,𝐵𝑖𝑡𝐵𝑖/( 𝜅𝑥𝑦𝑡)

1 + 𝜅𝑙/𝜅𝑒 + 𝜅𝑆𝑖𝑂2
𝑡𝑆𝑖𝑂2

/(𝜅𝑒𝑡) + 𝜅𝐵𝑖𝑡𝐵𝑖/(𝜅𝑒𝑡)

𝐿𝑥𝑦

𝐿
𝜇𝐵𝑧 (‎3-9) 

Assuming that 𝜅𝑙 of graphene is close to the in-plane thermal conductivity of 

supported graphene (~600 W m 
-1

 K 
-1

), 𝜅𝑒 is about 200 W m 
-1

 K 
-1

 based on the above 

estimation for the case that 𝐸𝐹 is tuned away from the charge neutral Dirac point, 𝐿𝑥𝑦/𝐿 

is on the order of unity, 𝐵𝑧 in the range of 1-9 Tesla (1 T = 1 V s m 
-2

), the large mobility 

of 20,000 (or 200,000) cm 
2
 V 

-1
 s 

-1
 found in supported (or clean suspended) graphene 

can result in a 𝛻𝑦𝑇/𝛻𝑥𝑇 ratio larger than unity. For a longitudinal temperature difference 

in the range of 1 to 10 K along the graphene ribbon, the transverse temperature difference 

between the top and bottom edges of the graphene ribbon will be two orders of 

magnitude higher than the ~10 mK sensitivity of the two transverse RT lines. 

According to equation (‎3-7), the transverse electronic thermal conductivity of the 

graphene can be obtained from the thermal Hall measurement as 

 

 𝜅𝑥𝑦 =
𝑙

𝑅𝑠𝑡𝑤

𝛻𝑦𝑇

𝛻𝑥𝑇
− 𝜅𝑥𝑦,𝐵𝑖

𝑡𝐵𝑖

𝑡
 (‎3-10) 
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where 2𝑙 and 𝑤 are the length and width of the graphene sample, respectively, and the 

longitudinal thermal resistance 𝑅𝑠 ≡ 𝑙/(𝜅𝑡 + 𝜅𝐵𝑖𝑡𝐵𝑖 + 𝜅𝑆𝑖𝑂2
𝑡𝑆𝑖𝑂2

)𝑤 can be measured. 

After removing the graphene with a short oxygen plasma etch, the transverse electronic 

thermal conductivity of the Bi film can be obtained as 𝜅𝑥𝑦,𝐵𝑖 = (𝑙/𝑅𝐵𝑖+𝑆𝑖𝑂2
𝑡𝐵𝑖𝑤)𝛻𝑦𝑇/

𝛻𝑥𝑇 , where 𝑅𝐵𝑖+𝑆𝑖𝑂2
≡ 𝑙/(𝜅𝐵𝑖𝑡𝐵𝑖 + 𝜅𝑆𝑖𝑂2

𝑡𝑆𝑖𝑂2
)𝑤 will be measured, and the 𝛻𝑦𝑇/𝛻𝑥𝑇 

ratio measured after etching the graphene becomes 

 

 
𝛻𝑦𝑇

𝛻𝑥𝑇
=

1

1 + 𝜅𝑙,𝐵𝑖/𝜅𝑒,𝐵𝑖 + 𝜅𝑆𝑖𝑂2
𝑡𝑆𝑖𝑂2

/(𝜅𝑒,𝐵𝑖𝑡𝐵𝑖)

𝐿𝑥𝑦,𝐵𝑖

𝐿𝐵𝑖
𝜇𝐵𝑖𝐵𝑧 (‎3-11) 

For Bi, the lattice thermal conductivity 𝜅𝑙,𝐵𝑖 is comparable to the electronic thermal 

conductivity 𝜅𝑒,𝐵𝑖,
101

 the ratio between the Hall Lorenz number and Lorenz number 

𝐿𝑥𝑦,𝐵𝑖/𝐿𝐵𝑖 is assumed to be on the order of unity, and the mobility 𝜇𝐵𝑖 is reported to be 

~200 cm 
2
 V 

-1
 s 

-1
 in ~40 nm thick thermally evaporated polycrystalline Bi films.

102
 The 

low 𝜇𝐵𝑖 leads to a low 𝛻𝑦𝑇/𝛻𝑥𝑇 ratio on the order of 0.1-0.01 after the graphene is etched 

away. Hence, the 𝜅𝑥𝑦,𝐵𝑖𝑡𝐵𝑖/ (𝜅𝑥𝑦𝑡) term in equation (‎3-10) is expected to be below 10% 

of 𝜅𝑥𝑦 of the graphene. As discussed in section ‎3.2.5, the longitudinal thermal resistances 

𝑅𝑠 and 𝑅𝐵𝑖+𝑆𝑖𝑂2
 can be measured before and after etching the graphene based on heat 

conduction analysis using the thermal resistance circuit shown in Figure ‎3.2(c). 

With the application of a gate voltage to the Bi film, the longitudinal four-probe 

electrical conductivity σ and electronic thermal conductivity 𝜅𝑒 of the graphene can be 

tuned and measured. The Hall coefficient 𝑅𝐻 and the transverse electrical conductivity 

𝜎𝑥𝑦 can be obtained by using the two transverse RT lines as the probes of the transverse 

open-loop Hall voltage when a longitudinal current is passed through the graphene in the 
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presence of a magnetic field 𝐵𝑧. These measurements can allow for the determination of 

both 𝐿 and 𝐿𝑥𝑦. In addition, the thermogalvanomagnetic coefficients can be measured by 

measuring the temperature difference or voltage difference that develops in a direction 

perpendicular to the directions of current or heat flow because of an external magnetic 

field, as depicted in Figure ‎3.1. 

3.2.3   Micro-Fabricated Heater-Thermometer Devices for Magneto-Thermal 

Measurements 

In this work, measurements are conducted using suspended micro-heater 

thermometer devices, each of which consists of six metal resistance-thermometers (RTs) 

on suspended beams of SiO2 with 300 nm thickness. The fabrication process for these 

devices is similar to that described in section 2.2.4. Two fine metal lines are added to 

measure the transverse temperature gradient and graphene sample is transferred atop the 

device as explained in section ‎3.2.4. Figure ‎3.3 shows a device that is used to conduct 

magneto-thermal measurements on a bilayer graphene sample. 

Another fabrication process is developed in this work in order to deposit a metal 

layer on the backside of the suspended beams that can be used to tune the carrier 

concentration of graphene using the electric field effect. In brief, the fabrication process 

starts with a double-side polished Si wafer with low-stress SiNx (SiO2) on both sides. 

Alignment markers are fabricated using two aligned photolithography steps on the front 

side and backside of the wafer, followed by e-beam evaporation of Cr/Pt and a lift-off 

process in acetone. A window is opened in the backside SiNx using electron beam  
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Figure ‎3.3: Optical micrograph of a micro-fabricated device with SiO2 beams for 

magneto-thermal measurements. Full view (a) and the central region (b) of the device are 

shown. 

lithography (EBL) followed by a reactive-ion etching (RIE) process with CF4 gas. The 

sides of the window are adjusted along (111) planes in order to obtain smooth side walls 

after wet-etching of Si. A through-substrate hole is etched in Si using 4% (vol/vol) 

tetramethylammonium hydroxide (TMAH) in water at a temperature of about 85 °C, 

which produces a suspended membrane as shown in Figure ‎3.4(a). Metal lines and 

contact pads are fabricated using an EBL process followed by e-beam evaporation of 

Cr/Au and a lift-off process in acetone. The result is shown in Figure ‎3.4(b). The heater-

thermometer metal lines are isolated from the membrane using another set of EBL and 

RIE processes. The gate metal is formed on the backside of the device by evaporating a 

metal on the backside of the suspended beams through the through-hole. With the smooth 

side walls of the through-hole, deposition of a thin layer of metal is sufficient to make an  
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Figure ‎3.4 
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Figure 3.4: Fabrication steps for micro-heater thermometer devices with a back-gate. (a) 

and (b) show optical micrographs of a suspended SiNx membrane over a substrate-

through hole in the Si substrate and the patterned metal lines on the suspended 

membrane, respectively. (c) Etching windows around the metal lines makes suspended 

beams that are isolated from the membrane. (e) Optical micrograph of the backside of the 

measurement device showing the 30-40 nm Ti layer deposited at the backside of the 

suspended bridge to be used as a gate to tune the charge carrier concentration in 

graphene. 

electrical connection to the metal deposited on the backside of the suspended beams. 

Figure ‎3.5 shows scanning electron micrographs (SEM) of two fabricated devices with 

back-gate. In the device shown in Figure ‎3.4(c) and Figure ‎3.5 (b), the bases of the 

heater-thermometer metal lines are designed to reach to the edges of the suspended 

membrane so that the base temperature can be assumed to be similar to that of the 

ambient, thus reducing systematic error in the measurement. Compared to the device 

shown in Figure ‎3.3, the relatively high mechanical strength of low-stress SiNx enables 

the fabrication of much longer transverse resistance-thermometers to further minimize the 

heat conduction through them. 
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Figure ‎3.5: (a,b) SEM images of graphene magneto-thermal measurement devices on 

low-stress SiNx membranes with a thin film Ti back-gate. In the device shown in panel 

(b), the base of all the resistance thermometers except for the transverse ones is located 

on SiNx/Si. (c) and (d) show SEM images of the central bridge of (a) and (b), 

respectively.  
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3.2.4   Graphene Exfoliation and Assembly 

Graphene samples are obtained by exfoliation
8
 of natural graphite flakes (NGS 

Naturgraphit GmbH) onto a Si substrate covered by ~290 nm of thermally-grown SiO2. 

Graphene samples are located using optical microscopy and their thickness is determined 

using the features of single-layer and bilayer graphene in their Raman spectra.
48

 An EBL 

process followed by low-power oxygen plasma is used to pattern the graphene flakes to 

the desired shape. Graphene samples are transferred to micro-fabricated heater-

thermometer devices using an aligned transfer technique.
55

 Alignment marks are 

deposited using an EBL process, e-beam evaporation of Au, and a lift-off process in 

acetone. A thick layer of PMMA (~1.5 μm) is then spin-coated on the substrate. The 

substrate is placed in a 1% hydrofluoric acid solution, which etches the SiO2 at the 

interface and detaches the PMMA layer with the graphene sample and Au alignment 

marks from the substrate. The PMMA stack is rinsed in deionized water and transferred 

atop a micro-fabricated device before drying out. While keeping the PMMA layer wet by 

adding deionized water sparingly, the graphene is aligned to the micro-fabricated device 

under an optical microscope by aligning the metal alignment marks attached to the 

PMMA layer to the metal alignment marks of the micro-fabricated device. This step can 

be done by manipulating the PMMA layer manually or using a micromanipulator. After 

evaporation of deionized water, the adhesion between the graphene sample and the 

micro-fabricated device is enhanced by annealing the device in vacuum at 150 ºC. The 

PMMA layer is dissolved in acetone to leave the graphene sample and metal alignment 

marks atop the device. Figure ‎3.6(d) shows a SEM of a graphene sample transferred to 

the central bridge of a suspended micro-fabricated device.  
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Figure ‎3.6: Aligned transfer of graphene to the device shown in Figure ‎3.5(c). (a) The 

exfoliated graphene sample. (b) Trimmed graphene with metal alignment marks. (c) 

Graphene and metal marks while supported by a PMMA layer are transferred and aligned 

to the device. (d) SEM image of the central bridge of the device after transferring 

graphene and removing PMMA. (e) Raman spectrum on the bridge that shows features of 

single-layer graphene. 
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3.2.5   Thermal Conductance Measurement 

During the measurement, RT1 (see Figure ‎3.2) is electrically heated with a power 

of 𝑄, and the electrical resistances of all the RTs are measured and used to obtain average 

temperature rises in the metal lines (∆𝑇𝑖). When there is no heat generation in a metal 

line, ∆𝑇𝑖𝑚 = 2 ∆𝑇𝑖 where ∆𝑇𝑖𝑚 is the corresponding temperature rise at the midpoint of 

the metal line. Since the device design is symmetric we assume that 𝑅𝑏1, 𝑅𝑏2, 𝑅𝑏3, and 

𝑅𝑏4 are similar and equal to 𝑅𝑏. Similarly, we can have 𝑅𝑠1 = 𝑅𝑠2 = 𝑅𝑠. Also, the 

transverse resistance thermometers are symmetric with resistance of 𝑅𝑡 with 𝑅𝑡 = 𝑟𝑅𝑏. 

The proportionality factor 𝑟 can be measured using the measurement method described in 

section ‎2.2.2. Based on the thermal circuit model and heat conduction analysis of the 

heater line, thermal resistances of the resistance thermometers and the center bridge can 

be determined from the measured data as 

 

𝑅𝑏 = 2(∆𝑇1𝑚 + ∆𝑇2𝑚 + ∆𝑇3𝑚 + ∆𝑇4𝑚 +
∆𝑇𝑡1𝑚 + ∆𝑇𝑡2𝑚

𝑟
)𝑄−1

≡ 𝑄−1 ∑Δ𝑇 

(‎3-12) 

 𝑅𝑠 = 𝑅𝑏

∆𝑇𝑐 − ∆𝑇3𝑚

∆𝑇3𝑚 + ∆𝑇4𝑚
 (‎3-13) 

where 

 
∆𝑇1𝑚 = 3∆𝑇1 2⁄ − (∆𝑇2𝑚 + ∆𝑇3𝑚 + ∆𝑇4𝑚) 4⁄

− (∆𝑇𝑡1𝑚 + ∆𝑇𝑡2𝑚) 4𝑟⁄  

(‎3-14) 

 ∆𝑇𝑐 =
𝑄 ∆𝑇3𝑚 2⁄ + (∆𝑇2𝑚 ∆𝑇4𝑚 − ∆𝑇1𝑚 ∆𝑇3𝑚) 𝑅𝑏⁄

𝑄 2⁄ + (∆𝑇3𝑚 + ∆𝑇4𝑚 − ∆𝑇1𝑚 − ∆𝑇2𝑚) 𝑅𝑏⁄
 (‎3-15) 
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3.3   RESULTS AND DISCUSSION  

In this work, we explore magneto-thermal measurements of electronic thermal 

transport in a bilayer graphene sample (20 μm x 6 μm) using the device shown in 

Figure ‎3.3. The magneto-thermal device is fabricated on a Si substrate covered with 300 

nm thermally grown SiO2, and a patterned bilayer graphene sample is transferred atop the 

device with the aligned transfer technique. 

Figure ‎3.7(a) shows the correlation between the measured temperature rises of the 

RTs and the heat generation in RT1. The slope of a linear fit to the data is used to obtain 

𝑅𝑏 according to equation (‎3-12). Similarly, the slope of a linear fit to the data shown in 

Figure ‎3.7(b) is used to obtain 𝑅𝑠 𝑅𝑏⁄ . The correlation between the transverse temperature 

rise and the longitudinal temperature rise is shown in Figure ‎3.7(c). Also, the Seebeck 

coefficient was obtained based on the slope of a linear fit to data shown in Figure ‎3.7(d). 

The results of magneto-thermal measurements for the bilayer graphene sample are 

summarized in Figure ‎3.8. The measured temperature-dependent thermal conductance of 

the bilayer graphene consistently reproduces the reported measurements for bilayer 

graphene in ‎Chapter 2. As shown in Figure ‎3.8(a), the longitudinal thermal conductance 

does not show clear dependence on the perpendicular magnetic field for the bilayer 

graphene sample when no gate electric field is applied. The effect of magnetic field on 

electronic thermal transport has been masked by the large lattice contribution to thermal 

conductance of the graphene/SiO2 bridge.  Similarly, we do not observe the transverse 

temperature gradient that can be used to obtain 𝑘𝑥𝑦 and 𝐿𝑥𝑦 based on equation (‎3-10). As 

shown in Figure ‎3.8(b), the correlation between ∇y𝑇 ∇x𝑇⁄  and 𝐵𝑧 does not exhibit the 

linear trend suggested by equation (‎3-9). In comparison, the longitudinal Seebeck  
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Figure ‎3.7: Analysis of the magneto-thermal measurement results at 150 K for a bilayer 

graphene sample. (a) The correlation between a combination of measured temperature 

responses of the RTs with heat generation in RT1 to obtain 𝑅𝑏 based on equation (‎3-12). 

(b) Correlation between the measured temperature responses of the RTs. The slope of a 

linear fit to the shown data obtains 𝑅𝑠 𝑅𝑏⁄  based on equation (‎3-13). (c) The measured 

correlation between the transverse temperature rise versus longitudinal temperature rise. 

(d) The measured thermovoltage as a function of the measured longitudinal temperature 

rise along the graphene. 
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Figure ‎3.8: Measurement results for a bilayer graphene sample with intrinsic carrier 

concentration without an applied gate voltage. Measured thermal conductance of the 

central SiO2 bridge covered with the graphene sample (1 2𝑅𝑠⁄ ) (a), the ratio of transverse 

temperature difference to longitudinal temperature difference (b), and Seebeck coefficient 

(c) are shown as a function of magnetic field at 32 K (dark blue squares), 43K (dark gray 

diamonds), 52 K (blue inverted triangles), 108 K (green triangles), and 157 K (red 

circles). 

coefficient shows pronounced dependence on the magnetic field, shown in Figure ‎3.8(c), 

which indicates that electronic transport has been affected by the applied magnetic field. 

These results suggests that the electronic thermal conductivity is negligible 

compared to the lattice contribution from the graphene and the SiO2 support when no gate 

field is applied. Although 𝑘𝑥𝑦 and 𝐿𝑥𝑦  cannot be obtained based on the current results, a 

higher limit for 𝜅𝑥𝑦 can be deduced. For example, based on Figure ‎3.8(b), for the 

measurements at 157 K the uncertainty in the measurement of 
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(∆𝑇𝑡1𝑚 − ∆𝑇𝑡2𝑚) (∆𝑇2𝑚 − ∆𝑇3𝑚)⁄  is ~0.01 or smaller, which is equivalent to ∇y𝑇 ∇x𝑇⁄  

of 0.03 or smaller based on the graphene dimensions. Since the ∇y𝑇 ∇x𝑇⁄  signal from 𝜅𝑥𝑦 

is masked by the uncertainty in these measurements, we can assume that ∇y𝑇 ∇x𝑇⁄ <

0.03. Employing this inequality in equation (‎3-10) obtains the higher limit for 𝜅𝑥𝑦 to be 

15 W m 
-1

 K 
-1

 at 157 K by a magnetic field of 9 Tesla. 

The transverse temperature gradient can be detected if  ∇y𝑇 ∇x𝑇⁄ > 0.1. 

Figure ‎3.9 shows the results for calculation of ∇y𝑇 ∇x𝑇⁄  based on equation (‎3-9) for a 

bilayer graphene sample supported by a SiO2 membrane with the thickness of 300 nm 

with 𝐵𝑧 of 9 Tesla at 157 K. Based on these results, in order to have ∇y𝑇 ∇x𝑇⁄ = 0.1, 

carrier concentration needs to be as large as 39.4 x 10
11

 and 9.8 x 10
11

 cm 
-2

 for mobility 

values of 5000  and 10000 cm 
2
 V 

-1
 s 

-1
, respectively. Given the capacitance of 11.5 

nF cm 
-2

 for 300 nm SiO2, this range of carrier concentration can be obtained by applying 

55 and 14 V to the back-gate, respectively. 

As explained in section ‎3.2.3, we developed a fabrication process that allows us to 

apply a back-gate to the suspended micro-heater thermometer devices. Figure ‎3.5 shows 

two fabricated devices with 30-40 nm Ti layer deposited at the backside to regulate 

carrier concentration. Figure ‎3.6 shows the device after a graphene sample is transferred 

atop the central bridge of one of the back-gated devices. Figure ‎3.10 shows modulation of 

electrical resistance using the back-gate voltage. Mobility (𝜇) can be obtained from the 

slope of conductance versus back-gate voltage (𝑉𝑔𝑎𝑡𝑒) using 

 

 𝜇 =
1

𝐶𝑚𝑒𝑚

𝑑𝜎

𝑑𝑉𝑔𝑎𝑡𝑒
 (‎3-16) 
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Figure ‎3.9: Calculated 𝛻𝑦𝑇 𝛻𝑥𝑇⁄  for a bilayer graphene sample at 157 K supported on 300 

nm SiO2 with applied magnetic field of 9 Tesla. 

 

 

Figure ‎3.10: Electrical resistance of the transferred graphene measured as a function of 

back-gate voltage. 
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where 𝐶𝑚𝑒𝑚 is the capacitance of the supporting membrane. With a dielectric constant of 

7.5 for Si3N4 and a thickness of 500 nm, 𝐶𝑚𝑒𝑚 is obtained to be 13 nF cm
 -2

. Electron and 

hole mobility is found to be 1100 and 900 cm 
2
 V

 -1
 s

 -1
, respectively. The low values for 

mobility can be attributed to wrinkles and polymer residue on the graphene from the 

transfer process. To perform a quantitative investigation on electronic thermal transport 

in graphene, charge carrier mobility should be enhanced by employing cleaning and 

annealing processes.
103

 For exfoliated graphene on SiO2, the charge carrier mobility can 

be increased by an order of magnitude compared to the measured values.
104

 

In addition to electronic thermal transport, these devices can be used to 

investigate thermogalvanomagnetic effects (section ‎3.2.2) in graphene and other layered 

materials. The resistance-thermometers at both ends of the central bridge of the device 

can be used to generate a longitudinal current flow or temperature gradient while the 

transverse resistance thermometers can measure the transverse electrostatic potential or 

temperature gradient that is caused by the applied magnetic field. Such measurements can 

be conducted on a single sample through a single measurement, which provides critical 

experimental data to investigate transport of electrons and phonons. 

3.4   SUMMARY 

We developed and implemented an experimental method to investigate electronic 

thermal transport in layered materials such as graphene under a temperature gradient in 

presence of electric and magnetic fields by measuring longitudinal and transverse thermal 

conductivity, longitudinal and transverse electrical conductivity, and 

thermogalvanomagnetic effects. Investigation of all these properties in a single sample 
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through a single measurement would obtain useful information to perform rigorous 

investigations on the transport of electrons and phonons without the effects of sample-to-

sample and measurement-to-measurement variations. We employed this measurement 

technique for a bilayer graphene sample to study electronic thermal transport. The 

electronic contribution to thermal conductivity of graphene was found to be negligible 

compared to the contribution of phonons, and a higher limit for the transverse electronic 

thermal conductivity was obtained. The Seebeck coefficient of the bilayer graphene 

sample as a function of transverse magnetic field was also measured. 

To perform quantitative measurements on electronic thermal transport in 

graphene using the approach presented here, contribution of electrons to thermal transport 

should be increased by increasing charge carrier concentration and mobility. In this work, 

design and fabrication of suspended micro-thermometer devices with back-gate was 

demonstrated. Enhancing charge carrier mobility is achievable by performing further 

annealing and cleaning processes on the graphene. In addition, the sensitivity of the 

micro-thermometer devices can be improved by reducing thermal conductance of the 

suspended beams using a metal with low thermal conductivity for resistance-

thermometers such as Pd instead of Au as well as reducing the thickness and thermal 

conductivity of the suspended beam below the graphene sample. 
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Chapter 4: Quantitative Scanning Thermal Microscopy of Flexible 

Graphene Devices 

4.1   INTRODUCTION 

Understanding the physics of thermal transport at the nanoscale has become 

important for the design and optimization of many advanced technologies that are being 

actively explored, such as thermal barriers, heat-assisted magnetic recording, high 

efficiency thermoelectrics, phase-change memory, and renewable energies.
1-4

 Thermal 

management of nanoelectronics is an obvious example where miniaturization of 

electronics aiming for higher performance and lower cost has led to an unprecedentedly 

high power density, which restricts performance and reliability.
6,7

 Probing the 

temperature distribution in nanostructured devices provides useful insights into nanoscale 

energy transport and conversion. Furthermore, obtaining the temperature distribution 

with high resolution can help to reveal failure mechanisms, predict device reliability, and 

optimize device performance. For example, the temperature distribution in nanoelectronic 

devices is valuable for discovering the mechanisms behind hot spot formation and for 

illustrating the heat dissipation pathways, which is vital information needed for 

minimizing the intensity of hot spots and optimizing device performance and reliability. 

Several optical thermometry techniques such as micro-Raman thermometry, 

optical emission thermometry and infrared thermal microscopy have been used to 

measure the temperature distribution of electrically biased graphene devices. The Stokes 

to anti-Stokes intensity ratio of the G peak of the Raman spectrum of graphene was used 

to measure the temperature of high-energy zone center optical phonons (G mode) with 



73 

 

resolution of ~100 K.
27,29,105,106

 Other reports used the temperature dependent frequency 

of the G peak and 2D peak of the Raman spectrum of graphene
107

 to measure the 

temperature of intermediate frequency phonons to which G phonons and 2D phonons 

anharmonically couple, respectively.
27,29,108

 The electronic temperature of graphene was 

also probed via optical emission thermometry with ~100 K resolution by fitting the 

measured optical emission with Planck’s law.
29

 Improved temperature resolution was 

achieved by measuring infrared (IR) emission and IR thermal images were obtained with 

a spatial resolution of a few micrometers.
27,28

 Berciaud et al. obtained the temperature 

distribution of electrically biased graphene using optical emission thermometry, Stokes to 

anti-Stokes intensity ratio and G peak shift in Raman spectrum of graphene. They found 

that the high-energy G mode phonons are in thermal equilibrium with electrons, but not 

with lower-energy phonons.
29

 Infrared thermometry has been used to show that the hot 

spot location along a graphene channel depends on the gate and source biases, which 

influence the carrier concentration distribution along the channel.
27,28

 These 

measurements have provided significant insights into the underlying physics of thermal 

transport in graphene. However, the spatial resolution of these far-field optical techniques 

is limited by the diffraction limit and comparable to the optical wavelength. This 

limitation results in a spatial resolution of ~1 µm and restricts our understanding of 

thermal phenomena occurring at smaller length scales. With nanoscale feature sizes of 

current-generation electronic devices,
5
 probing the temperature distribution of such 

devices requires other thermometry techniques with superior spatial resolution.  

Scanning probe microscopy (SPM) techniques
109

 such as scanning thermal 

microscopy (SThM) and scanning Joule expansion microscopy (SJEM) have been 
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employed successfully to investigate thermal behavior of devices with higher lateral 

spatial resolution compared to optical thermometry methods. Scanning probe microscopy 

is a measurement method based on scanning tunneling microscopy (STM) and atomic 

force microscopy (AFM). These methods work by probing the surface of a device using a 

very sharp tip. In one of the SThM methods, a miniature thermocouple located at the 

apex of an AFM tip is scanned over the surface of the device. Local heat transfer between 

the tip and the surface of the device changes the temperature of the thermocouple. The 

measured thermovoltage map can be calibrated to produce a temperature map. However, 

since the thermovoltage map depends on the heat transfer between the tip and the sample, 

it can be distorted by a number of parameters that affect tip-sample thermal resistance, 

including the topography and surface chemistry. Moreover, parasitic heat transfer through 

the air gap between the probe and the device may considerably distort the measured 

thermovoltage and makes it challenging to obtain accurate quantitative results.
110

 

Meanwhile, the phonon transmission coefficient across a weakly bonded interface is 

inversely proportional to the square of the phonon frequency,
17,66

 and the local 

temperature measured by the thermocouple tip at low contact force to the sample is 

dominated by contributions from low-frequency phonons, provided parasitic heat transfer 

through the air gap can be eliminated. In previous works, SThM measurements were used 

to obtain the temperature distribution in graphene channels with spatial resolution of 

~100 nm.
30,111

 By comparing thermal maps of graphene channels obtained from SThM 

and micro-Raman thermometry, Jo et al. found that low-frequency phonons are in 

thermal equilibrium with higher frequency phonons that are anharmonically coupled to 

2D phonons.
30
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Alternatively, there can be a miniature heater-temperature sensor at the apex of a 

SThM tip. Heating the heater at constant power and monitoring the temperature while the 

tip is scanned over a surface in contact mode would allow analysis of thermal properties 

of the surface. Pumarol et al. reported the measurement of thermal conductance in 

suspended and supported graphene samples using this method.
112

 Menges et al. reported 

on increased thermal conductance of supported graphene using vacuum-operated SThM 

measurements.
113

 In comparison to SThM, SJEM operates by scanning an AFM tip in 

contact with the surface of a device under periodic heating to obtain the temperature 

distribution from the measured thermomechanical expansion distribution of a polymer 

layer coated on the device.
109

 SJEM measurements were used to study Joule heating and 

thermoelectric phenomena at graphene-metal contacts and resistive heating at graphene 

wrinkles and grain boundaries.
114,115

  

These prior reported efforts on obtaining temperature distributions of graphene 

devices supported on a substrate have been limited to the case where graphene is 

supported on ~90 nm or ~300 nm SiO2, which makes graphene visible and also allows for 

tuning of the charge carrier concentration in graphene using a back-gate voltage. 

Recently, transparency, stretchability, and elasticity of graphene have attracted many 

researchers to employ graphene for flexible electronics,
16,22-24

 a very active area for future 

electronics. Flexible electronic devices are mainly fabricated on polymer substrates with 

thermal conductivity values smaller than that of silicon by three orders of magnitude. In 

addition, the glass transition temperature for polymer substrates can limit the safe 

operating temperature of the device. While thermal management is already a major 

roadblock for further improvement of performance and reliability of Si-based electronic 
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devices,
7
 the low thermal conductivity and limited allowable temperature rise of polymer 

substrates give rise to significant thermal management issues in flexible electronic 

devices. As one of the first steps of addressing such issues, it is necessary to obtain the 

temperature distribution on flexible electronic devices, which remains elusive. 

4.1.1   Present Work 

In this chapter, we present quantitative SThM measurements to obtain high-

resolution temperature distribution in electrically biased graphene devices supported on 

flexible polyimide substrates. It is found that the large heated area in flexible electronic 

devices causes considerable challenges in high-resolution quantitative thermal imaging 

with SThM, including large parasitic heat transfer and high temperature rise. These 

challenges are addressed in this work by a triple scan technique to carefully eliminate the 

parasitic heat loss, and by a detailed study of the tip-sample thermal conductance as a 

function of sample temperature. The applicability and limitation of a calibration method 

based on a heater-thermometer metal line is evaluated. Furthermore, a null method SThM 

technique based on heating of the tip with a laser is developed to measure the local 

temperature of devices without the need for a separate calibration. This laser-heated 

SThM approach was implemented to study the temperature distribution on flexible 

graphene devices and to verify the calibrated triple scan SThM measurement results. The 

obtained measurement results reveal that the temperature rise in the flexible graphene 

devices is more than one order of magnitude higher than that reported for graphene 

devices fabricated on a silicon substrate, and that lateral heat spreading is a more 
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important heat dissipation pathway for devices on the flexible substrate than on the 

silicon substrate.  

4.2   SCANNING THERMAL MICROSCOPY  

In SThM, a miniature thermocouple located at the apex of an AFM tip is scanned 

over the surface of a device. Heat transfer between the tip and the device changes the 

temperature of the thermocouple, and a thermovoltage map with very high lateral 

resolution is generated. The thermovoltage map and its lateral resolution depend on the 

relative contribution and length scale of heat transfer mechanisms between the tip and the 

device surface, which are shown in Figure ‎4.1.
109,110

 Solid-solid conduction is the heat 

conduction through the tip-sample contact area. It is a highly localized heat transfer 

mechanism with length scale on the order of the tip-sample contact area. Under ultrahigh 

vacuum conditions where solid-solid conduction is the dominant heat transfer 

mechanism, SThM can obtain ~10 nm spatial resolution.
116

 Although this length scale is 

highly desirable, solid-solid conduction is not the dominant heat transfer mechanism in 

ambient conditions. Because of condensation of water molecules and other adsorbates on 

the surface of the tip and device, a liquid bridge surrounds the tip-sample contact area. 

The heat conduction through this liquid film was found to be important for ambient 

SThM measurements and sub-100 nm spatial resolution has been reported.
110,117

 Far-field 

and near-field radiative heat transfer mechanisms have been estimated to be negligible 

compared to other heat transfer mechanisms when the tip and sample are close to room 

temperature.
109

 Heat conduction through the air gap between the tip and sample often 

provides a major contribution to ambient SThM measurements. Since it is a non-local 
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signal from the whole heated area on the surface, the ambient SThM signal depends on 

the size of the heated area on the sample.
110

 

For SThM measurements in ambient conditions, the thermovoltage signal is 

dominated by the heat transfer contributions through the liquid film and air. The presence 

of a non-local signal via air conduction distorts the high-resolution thermovoltage signal 

via liquid film conduction. This non-local parasitic signal should be eliminated to obtain 

a local thermovoltage signal that can be employed for quantitative SThM measurements 

of the local temperature of the sample.  

 

 

Figure ‎4.1: Mechanisms of heat transfer between the SThM tip and the device surface. 

Adopted from Shi et al.
110

 

4.2.1   Quantitative Scanning Thermal Microscopy 

For quantitative SThM measurements, it is necessary to eliminate the non-local 

signal via air conduction from the thermovoltage signal. This allows one to obtain high 
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resolution quantitative thermal maps that cannot be obtained with other thermometry 

techniques. This key step can be taken by conducting SThM measurements under 

vacuum conditions.
116,118

 For ambient SThM, the thermovoltage can be interpreted by 

performing calibration measurements with other low-resolution thermometry techniques 

such as micro-Raman thermometry.
111

 In comparison, Kim et al. proposed a SThM 

technique to eliminate the parasitic air conduction signal by scanning the tip in contact 

and at a fixed height above the sample.
119,120

 They showed that the local temperature rise 

(Δ𝑇𝑠) can be obtained by measuring the temperature rise of the thermocouple in contact 

mode (Δ𝑇𝑡,𝑐) and non-thermal contact mode (Δ𝑇𝑡,𝑛𝑐). In the contact mode where the tip is 

in contact with the surface of the device, there is heat transfer at the tip-surface contact 

(𝑄𝑡𝑠 ≠ 0). In comparison, the non-thermal contact mode represents a thought experiment 

where the local heat transfer through solid-solid and liquid film conduction is absent, 

namely 𝑄𝑡𝑠 = 0, even though the cantilever-sample spacing remains the same as that in 

the contact mode.  Therefore, the heat transfer through the air is the same for the two 

cases.  It can be derived that the local surface temperature rise of the device is given by 

the following relationship
120

 

 Δ𝑇𝑠 = Δ𝑇𝑡,𝑐 + 𝜑(Δ𝑇𝑡,𝑐 − Δ𝑇𝑡,𝑛𝑐)    ,    𝜑 ≡ 𝑅𝑡𝑠/𝐶 (‎4-1) 

where 𝑅𝑡𝑠 is the thermal resistance at the contact of the tip and the surface, and 𝐶 is a 

constant with units of K W
 -1

. It can be shown that 𝐶 depends on the probe’s dimensions 

and material properties, and effective local heat transfer coefficient between the probe 

and its surroundings including the sample, but not the temperature distribution of the 

sample. If 𝜑 can be determined from a calibration, Δ𝑇𝑠 can be obtained by measuring 

Δ𝑇𝑡,𝑐  and Δ𝑇𝑡,𝑛𝑐. 
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4.3   SCANNING THERMAL MICROSCOPY OF FLEXIBLE GRAPHENE DEVICES 

A quantitative SThM technique is established in this work to measure the 

temperature distribution on flexible graphene devices fabricated on polyimide substrates 

under operating conditions, as discussed below.  

4.3.1   Measurement Setup  

The measurement setup consists of a MultiMode AFM with the Nanoscope IIIa 

controller (Digital Instruments) equipped with a Signal Access Module. The SThM probe 

is a custom-made AFM probe with SiNx V-shape cantilever and a SiO2 tip, as shown in 

Figure ‎4.2.
121,122

 A sub-micron Pt-Cr thermocouple is fabricated at the apex of the SiO2 

tip. At the apex of the tip, the tip radius is 20 nm and can map a thermovoltage signal 

with a spatial resolution of 50 nm. The thermopower of the Pt-Cr junction was measured 

to be 13.4 µV/K.
110

 Making contact with the surface of the device does not modify the 

thermopower value since the thin native oxide layer of Cr electrically insulates the 

junction from the surface of the device. In these experiments, the electrical insulation is 

further enhanced by atomic layer deposition (ALD) of 20 nm Al2O3 on the probe at 250 

°C using trimethylaluminum (TMA) and water as the precursors. Before SThM 

measurements, the effectiveness of the insulating layer is verified by measuring the 

electrical resistance between the tip and a conducting sample. Furthermore, raising the 

electrostatic potential of the sample without flowing any electrical current through the 

sample does not change the measured thermovoltage of the thermocouple.
121

 The SThM 

probe is mounted on a custom-made AFM tip holder, which provides electrical 

connections to the SThM probe, as shown in Figure ‎4.3(a). The two terminals of the 
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thermocouple are wire-bonded to two metal plates on the tip holder. The thermovoltage 

signal is amplified using a SR 560 voltage preamplifier and connected to the Signal 

Access Module of the AFM. The angle between the probe and the surface of the sample 

is adjusted by an Al wedge on the tip holder, as shown in Figure ‎4.3(b). The angle is 

adjusted to be 11 degrees to reflect the laser to photodetector of the AFM. 

 

                   

Figure ‎4.2: Scanning electron micrograph (SEM) of the SThM probe (a) and its SiO2 tip 

with a Pt-Cr thermocouple (b).  

 

                 

Figure ‎4.3: (a) Optical image of the SThM probe holder with metal plates connected to 

terminals of the thermocouple. (b) Optical micrograph of SThM probe aligned using an 

Al wedge on the tip holder. 
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4.3.2   Flexible Graphene Devices 

The flexible graphene devices measured in this work have been fabricated by 

Saungeun Park in Prof. Deji Akinwande’s group. The flexible graphene devices consist 

of graphene channels contacted by metal electrodes on a flexible polyimide substrate. A 

fabricated device is shown in Figure ‎4.4(a). During the fabrication process, liquid 

polyimide is spun over a polyimide sheet with 125 μm thickness and cured at 300 °C to 

achieve a RMS roughness better than 1 nm.
123

 The process is repeated for the other side 

of the polyimide sheet to prevent bending of the substrate because of thermal stress of the 

curing process. Atomic layer deposition (ALD) is employed to deposit 20 nm of Al2O3 on 

the substrate. Single layer graphene, grown on copper foil by chemical vapor deposition, 

is transferred on the Al2O3/Polyimide substrate via poly(methyl methacrylate) (PMMA) 

assisted wet transfer process.
124

 Electron-beam lithography (EBL) followed by oxygen 

plasma is employed to define active graphene channels. Another EBL step followed by e-

beam evaporated metal deposition (2 nm Ti, 40 nm Au) is used to define source and drain 

metal fingers and metal contacts.  

We cut the devices and load them into a device stage with electrical connections 

as shown in Figure ‎4.4(b). A wire-bonder machine is used to connect the contact pads on 

the graphene device to the bonding pads of a chip carrier. Because the flexible graphene 

device is too soft for wire bonding, 25 μm thick bonding wires are attached to the 

bonding pads of the chip carrier with the use of the wire bonder. Manual micro-soldering 

is used to attach the other end of each bonding wire to a contact pad on the device. 

Conductive paint is used to attach a thin film of solder, with a size comparable to the size 

of the contact pads, to the contact pads. A micro-soldering iron is built by mounting a 160 
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μm thick wire to the tip of a fine soldering iron, and is used to solder the bonding wires to 

the solder films attached to the contact pads. Prior to wire bonding the device to the chip 

carrier, manual soldering is used to connect 160 μm thick wires to the side contact pads 

of the chip carrier.  The electrical wires are connected to external electronics through a 

BNC box to apply and measure voltage biases and electrical currents. 

 

         

Figure ‎4.4: (a) Optical micrograph of a flexible graphene device on polyimide substrate. 

The graphene channels are shown by false blue color. The channel width for the graphene 

channels and metal fingers is 10 μm. (b) A flexible graphene device mounted on a device 

stage. 

4.3.3   Calibration Using a Resistance-Thermometer Metal line 

As equation (‎4-1) indicates, measuring the local temperature rise Δ𝑇𝑠 using SThM 

requires knowledge of Δ𝑇𝑡,𝑐, Δ𝑇𝑡,𝑛𝑐 and the calibration parameter 𝜑. Figure ‎4.5 shows the 

deflection and thermovoltage of the SThM probe when a Joule-heated graphene or Au 

sample approaches or retracts from the probe. The thermovoltage signal can be converted 
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to the thermocouple temperature rise using the thermopower of the Pt-Cr junction. As the 

graphene sample approaches the tip, the thermocouple temperature increases because of 

the parasitic heat transfer through the air. Once the sample is very close to the tip, the tip 

jumps into contact with the surface because of capillary forces. This phenomenon causes 

a jump in the thermocouple temperature from point C to point D. The thermovoltage does 

not change appreciably by increasing the tip-sample contact force, as indicated by the 

measured thermovoltage when the scanner is moved beyond the jump-to-contact point. It 

should also be noted that the tip-sample contact force is minimized during measurements 

to avoid any damage to the sample and the tip. Hence, during the scanning Δ𝑇𝑡,𝑐 is 

measured at a point (D’) near point D with the tip in contact with the sample. 

Measurement of Δ𝑇𝑡,𝑛𝑐 requires additional efforts since the cantilever-sample 

distance should remain the same as that for point D’ yet the local tip-sample heat transfer 

must be absent. Although this condition is nearly met at point C, the tip cannot be held in 

this state while scanning over the sample. Some prior studies have used the tip 

temperature when the probe is lifted at a fixed height above the sample to obtain 

Δ𝑇𝑡,𝑛𝑐.
30,119

 However, Figure ‎4.5(a) shows that this assumption can lead to a considerable 

error when the parasitic heat transfer increases rather rapidly with decreasing tip-sample 

distance, which can occur when the heated area on the sample is large.  Here, the 

thermovoltage difference between point D and point B at 100 nm lift height or point A at 

400 nm lift height is 12.4 µV or 28.5 µV, respectively, and is considerably larger than the 

thermovoltage jump of about 8 µV between point D and point C, because of the presence 

of a large contribution from the parasitic air gap heat transfer in the two larger 

thermovoltage difference signals. The presence of residual parasitic air conduction in the 
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measured (Δ𝑇𝑡,𝑐 − Δ𝑇𝑡,𝑛𝑐) value can lead to underestimation or overestimation of the 

sample temperature depending on the calibration method.  

 

         

Figure ‎4.5: Cantilever deflection and thermovoltage signal of the SThM probe as a 

function of the sample position when the sample approaches (blue curve) or retracts (red 

curve) from the probe. The samples are a graphene channel (a) and an Au line (b). Points 

A and B denote the measured thermovoltage signal if the tip is lifted by 400 nm (h2) and 

100 nm (h1) from point D’, respectively. Points C and D denote the measured 

thermovoltage signals before and after the jump-to-contact phenomenon.  

In this study, we use a triple scan technique
120

 to obtain the thermovoltage jump. 

In this method, we measure the thermovoltage signal at two different lift heights, A and 

B, in addition to the thermovoltage signal measured in the contact mode. Linear 

extrapolation through these lift mode thermovoltage signals would obtain the 
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thermovoltage signal at point C, which only accounts for the thermovoltage signal caused 

by the parasitic heat transfer. This triple scan approach is necessary to eliminate the 

parasitic air conduction signal from the measured thermovoltage and to obtain a 

calibration parameter that does not depend on the temperature distribution and size of the 

heated area of the device. 

 

 

     

Figure ‎4.6: Temperature measurements using the metal line heater and resistance 

thermometer. (a) IV curve (squares) and resistance change (circles) as a function of the 

electrical current. (b) The metal line temperature rise as a function of power. The 

temperature rise is obtained from the change in resistance in (a) and the temperature 

coefficient of resistance (TCR) of the metal line. The inset shows the TCR measurement 

results. 
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To convert the measured thermovoltage jump to temperature, the calibration 

factor for the Au surface (𝜑𝐴𝑢), is determined by performing SThM measurements on a 

550 µm long, 10 µm wide metal line heater and resistance thermometer. As shown in 

Figure ‎4.6, the change in the electrical resistance of the Au line is measured as a function 

of the electrical current. In addition, the temperature coefficient of resistance (TCR) of 

the metal line is measured in a furnace and used to correlate the average temperature rise 

in the metal line from the measured resistance. With known Δ𝑇𝑠 and obtaining Δ𝑇𝑡,𝑐 and 

Δ𝑇𝑡,𝑛𝑐 from SThM measurements, the calibration factor 𝜑𝐴𝑢 is determined using equation 

(‎4-1). 

Figure ‎4.7(a) shows the analysis of the results of (Δ𝑇𝑡,𝑐 − Δ𝑇𝑡,𝑛𝑐) determined 

from double scan, triple scan, and quadruple scan measurements. For quadruple scan 

measurements, the measured thermovoltage at three lift heights are used for a linear 

extrapolation to point C, whereas the thermovoltage of point C is assumed to be the same 

as that measured directly at a single point at a specified lift height for the double scan 

measurement. Based on equation (‎4-1), 𝜑𝐴𝑢 can be determined from the slope of a plot of 

(Δ𝑇𝑠 − Δ𝑇𝑡,𝑐) versus (Δ𝑇𝑡,𝑐 − Δ𝑇𝑡,𝑛𝑐). For double scan measurements, the obtained value 

for 𝜑𝐴𝑢 depends on the lift height, which indicates the contribution of residual parasitic 

heat transfer through the air. In comparison, triple scan and quadruple scan measurements 

find similar values for 𝜑𝐴𝑢 (110 ± 5) within the uncertainty range of the measurements. 

This result verifies the linearity assumption of the triple-scan measurement method and 

the effectiveness of the triple-scan method to obtain the thermovoltage jump. 
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Figure ‎4.7: Analysis of SThM measurements on a long metal line to obtain the calibration 

parameter 𝜑 based on equation (‎4-1). Panel (a) shows the results for double scan 

measurements with lift heights of 400 nm (filled circles), 200 nm (filled triangles), and 

100 nm (filled diamonds), and triple scan measurements with lift heights of 100 nm and 

200 nm (unfilled diamonds), and 100 nm and 400 nm (unfilled triangles), and quadruple 

scan measurements with lift heights 100 nm, 200 nm and 400 nm (unfilled circles). Panel 

(b) shows the tip-sample thermal resistance normalized by its value at room temperature 

as a function of the average temperature rise in the thermocouple and the metal line for 

two Au lines.  

It is important to investigate the variability of 𝜑 under different measurement 

conditions. Parameter 𝜑 is defined as 𝑅𝑡𝑠/𝐶 where 𝐶 can be assumed constant for a 

specific probe. However, 𝑅𝑡𝑠 can be influenced by measurement parameters. Solid-solid 

conduction depends on structural and thermal properties of the surfaces, contact force, 

and temperature. First, the contact area of a sphere and a plane under a normal force 𝐹 is 

expected to increase by 𝐹2 3⁄ .
125

 However, Figure ‎4.5 shows that increasing the tip-
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sample contact force does not appreciably change the temperature of the thermocouple 

within the range of the contact force tested. The temperature of the thermocouple remains 

constant over a large variation of the tip-device contact force, from the point where the 

tip jumps to contact on the approach curve until it snaps out of contact on the retract 

curve. Similar measurements at higher temperatures show similar insensitivity of the 

measured temperature to the contact force. Moreover, in all SThM measurements for 

calibration and thermal mapping purposes, the contact force has been adjusted to obtain a 

minimal and consistent contact force for all the measurements. 

The observed insensitivity on the contact force can be caused by the dominant 

heat transfer pathway through the liquid meniscus around the tip compared to the solid-

solid conduction. Thermal conduction through the liquid film depends on several 

parameters. When the tip is in contact with the sample, the lateral size of the liquid film 

and the capillary force are functions of the tip radius, contact angles of the liquid 

meniscus with the tip and the sample, temperature, and relative humidity.
126

 The liquid 

film conduction can be determined from the meniscus dimensions, thermal conductivity 

of the liquid, and the thermal interface resistance at the liquid-solid interfaces. For 

example, the temperature at the tip-sample junction affects the size of the liquid film,
127

 

which alters the thermal resistance of the film. Surface temperature rises can change the 

liquid film conduction by changing the contact angels
128

 and the local relative humidity. 

We investigated the effect of temperature through calibration measurements at different 

surface temperatures over two heater-thermometer metal lines. Figure ‎4.7(b) shows that 

for Au lines, the measured thermal resistance between the SThM tip and the Au (𝑅𝑡𝑠,𝐴𝑢) 

and the calibration factor 𝜑𝐴𝑢 does not change noticeably until (Δ𝑇𝑠 + Δ𝑇𝑡,𝑐) 2⁄  reaches 
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~60 K, upon which there appears to be a small increase of 𝑅𝑡𝑠,𝐴𝑢 with increasing average 

temperature rise up to  ~85 K. An apparent jump in 𝑅𝑡𝑠,𝐴𝑢 occurs in the interval of 85−95 

K, beyond which 𝑅𝑡𝑠,𝐴𝑢 increases appreciably with increasing temperature. Based on this 

result, 𝜑𝐴𝑢 obtained through Figure ‎4.7(a) remains nearly constant when the temperature 

rise of the meniscus is less than 60 K above ambient, or less than a temperature of 80 ᵒC 

despite the effects of temperature on the size of the liquid meniscus which renders itself 

in temperature-dependent capillary force. 

Furthermore, we have investigated whether the calibration factor can change as 

the tip moves from the Au surface to an adjacent graphene surface. We have performed 

calibration measurements at the edge of the heater-thermometer Au line where the line 

crosses over a graphene sample. The temperature of the graphene at a location several 

hundreds of nanometers away from the edge of the metal line is expected to be close to 

the temperature of the metal line on account of the cylindrical heat dissipation pathway 

through the relatively thick polyimide substrate with low thermal conductivity. If the 

graphene temperature is assumed to be the same as the metal line temperature, the 

obtained calibration factor for graphene (𝜑𝑔𝑟) is found to be similar to 𝜑𝐴𝑢 despite their 

different surface properties. It is worth noting that graphene is supported on a layer of 

ALD-deposited Al2O3 with a thickness of 20 nm, which can affect the contact angle of 

the liquid meniscus with graphene.
129,130

 In addition, it is expected that PMMA residue 

can be present on the graphene surface and the thickness of the PMMA residue layer can 

be about 1-2 nm.
131,132

 PMMA residue is also likely present on the Au surface. Moreover, 

the capillary force values between the SThM probe and graphene and the Au calibration 

line has been measured in this work. As the sample is moving away from the cantilever, 
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the cantilever deflects by the capillary force until a point where the cantilever snaps out 

of the contact. The maximum deflection signal of the cantilever by the capillary force is 

633 mV and 607 mV for Au and graphene at room temperature, respectively. Therefore, 

the contact angle on graphene/ALD Al2O3 and Au can be similar. These factors can 

explain the similar calibration factors found on the Au and graphene sample.  

In this work, the contact force of the probe is consistently controlled to a 

minimum value just enough to make contact with the sample to prevent tip wear. In 

addition, the obtained calibration parameters are compared before and after the thermal 

mapping to ensure that the parameter has not changed because of tip wear.   

4.3.4   Laser-Heated Scanning Thermal Microscopy 

In order to further validate the triple scan calibration and measurement method, a 

different measurement technique has been developed. In this technique, the tip is brought 

into contact with the surface of the operating electronic device to obtain the 

thermovoltage jump from the measured approach curve as shown in Figure ‎4.5(a). After 

the temperature of the tip is changed by changing the AFM laser power incident on the 

AFM cantilever, the thermovoltage jump is measured again, and the process is repeated 

for several temperatures of the tip under different laser heating powers. The incident laser 

power can be adjusted by either tuning the laser output power, or by placing glass slides 

with different metal coating thicknesses between the laser and the AFM cantilever. The 

change in the laser power alters the tip temperature with negligible effect on the 

temperature distribution of the sample. Increasing the temperature of the tip decreases the 

temperature jump, and at a certain laser power no temperature jump occurs. This is the 
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point where the temperature of the tip is equal to the local temperature of the sample. 

This conclusion is supported by equation (‎4-1), where the same values for Δ𝑇𝑡,𝑐 and 

Δ𝑇𝑡,𝑛𝑐 results in the same values for Δ𝑇𝑠 and Δ𝑇𝑡,𝑐 regardless of the value for 𝜑. This 

measurement technique is essentially a null point method,
133,134

 which means that the 

temperature of the tip is measured when the tip-sample heat transfer is zero. As such, the 

measured temperature is not affected by variations in 𝑅𝑡𝑠 and heat spreading of the 

sample. This provides a facile, useful means for interpretation and calibration of SThM 

measurements.  

 

 

Figure ‎4.8: Laser-heated SThM to obtain the temperature rise at the center of a 10 x 10 

µm
 2

 graphene channel with a power dissipation density of 895 W cm
 -2

. The measured 

variations of the thermocouple thermovoltage in the contact mode and the thermovoltage 

jump at different incident laser powers are shown. The red dashed line shows the 

extrapolation line to find the thermovoltage of the thermocouple that corresponds to zero 

thermovoltage jump. At this point, the local temperature of the sample is equal to 

temperature of the thermocouple. 
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We employed the laser-heated SThM technique to measure the temperature at the 

center of the 10 x 10 µm
2
 graphene channel on polyimide shown in Figure ‎4.10(a). The 

measurement results are shown in Figure ‎4.8. Increasing incident laser power decreases 

the thermovoltage jump. Using the extrapolation line shown, we find that the 

thermovoltage jump is zero when the thermovoltage in contact mode is 396 µV, which 

gives 𝛥𝑇𝑠 to be 29.6 ± 3.6 K. Interpreting SThM measurements by employing equation 

(‎4-1) with the calibration factor for the metal line 𝜑𝐴𝑢 obtains 𝛥𝑇𝑠 to be 29 ± 1 K. This 

result verifies that the Au line calibration properly works for the graphene sample. 

4.3.5   Thermovoltage Maps and Thermal Maps 

The SThM results for four flexible graphene devices are discussed in this section. 

The channel width for all of the devices is 10 µm, and the channel lengths are 10 µm, 10 

µm, 25 µm, and 30 µm. Before SThM measurements, the graphene channels and metal 

lines are annealed by passing a DC current. The applied electrical bias is increased and 

decreased repeatedly until there is no change in the obtained IV curves.  

Figure ‎4.9 shows the SThM measurements results for a 25 x 10 µm
 2

 graphene 

channel with a power dissipation density of 1276 W cm
 -2

. The thermovoltage maps in the 

contact and lift modes and their difference are shown. The heated area in the flexible 

device extends laterally more than SiO2/Si devices.
27,28,30

 In particular, large temperature 

rises occur on the exposed polyimide surface surrounding the graphene channel. A 

smaller heated area was found previously in a graphene device made on a SiO2/Si 

substrate because the large thermal conductivity of the Si substrate below the 300 nm top 

SiO2 layer effectively set the SiO2/Si interface temperature to be close to the ambient 
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temperature. Figure ‎4.10 shows the temperature profile along the centerline of two 

graphene channels for a range of power dissipation densities. The temperature rise for 

these flexible devices is much higher than temperature rise in the graphene devices on 

SiO2/Si substrates with a similar lateral dimension and under a similar power density.
27-

30,105
 

 

                   

    

Figure ‎4.9: SThM measurement results for a 25 x 10 µm
 2

 graphene channel with a power 

dissipation density of 1276 W cm
 -2

. Topography (a), thermovoltage map in contact mode 

(b), and thermovoltage map when the tip is lifted 1 µm above the device surface (c) are 

shown. Panel (d) shows the difference between (b) and (c). In (a), graphene is located 

between the dashed lines. The electrical bias is applied to the left metal line, and the right 

metal line is grounded. 
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Figure ‎4.10: Measured temperature profile along the centerline of the 10 x 10 µm
 2

 (a) 

and 30 x 10 µm
 2

 (b) graphene channels. The biased and grounded electrodes are located 

on the left and right ends, respectively, with a width of 2 µm (a) and 2.7 µm (b). The 

measured temperature rise increases with increasing power dissipation density of  0, 305, 

497, 760, 1425, 1787, and 2044 W cm
 -2

 for (a) and 0, 23, 141, 311, 398, and 650 W cm
 -2

 

for (b). 

The higher temperature in the flexible device is caused by the lower thermal 

conductivity of polyimide compared to SiO2 and Si. Because of the high thermal 

conductance of the metal electrodes, the temperature rise measured on top of the metal 

contacts is lower than that measured on the graphene channel. As the power density 

increases, the peak temperature moves from the middle of the channel toward the 

positively biased source contact. This observation reveals that the local carrier density 

and conductivity near the grounded drain electrode become higher than those near the 
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source electrode when the positive bias applied to the source electrode is increased. This 

phenomenon can occur when the Fermi level is above the Dirac point so that the 

graphene channel is n-type. 

4.3.6   Substrate and Channel Size Effects 

The low thermal conductivity of the flexible devices increases the hot spot 

intensity compared to the SiO2/Si devices and modifies the heat dissipation pathway. 

Figure ‎4.11 shows the average resistance (𝑅) for heat dissipation, defined as the ratio of 

average temperature rise to power dissipation density, in the flexible devices and other 

reports for graphene on Si substrates with 300 nm thick SiO2.  

 

 

Figure ‎4.11: The ratio of average temperature rise to power dissipation density as a 

function of channel length for flexible graphene samples (filled squares). Also shown for 

comparison are the results for graphene samples on the Si substrate covered with 300 nm 

SiO2 measured by SThM (unfilled square),
30

 infrared emission thermometry (unfilled 

diamond),
27

 and Raman thermometry (unfilled circles)
27,29,30,105

. 
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In graphene/SiO2/Si devices, 𝑅 is measured with different thermometry methods 

to be ~3 K cm
 2

 kW
 -1

 irrespective of the channel length in the range of 1.5 and 7 

μm,
27,29,30,105

 because the main pathway for heat dissipation is across the SiO2 layer 

toward the high thermal conductivity Si substrate. In comparison, in the current flexible 

devices, 𝑅 is found to be larger by more than one order of magnitude and depends on the 

channel length. 

4.4   SUMMARY 

This chapter has reported an investigation of a SThM measurement technique for 

quantitative thermal imaging with a sub-100 nm spatial resolution. It was shown that the 

temperature jump in the thermocouple by the heat conduction via the liquid meniscus at 

the tip-device interface can be measured via multiple SThM scans at different tip-sample 

distances and calibrated to obtain quantitative temperature distribution of the device. The 

spatial resolution of the thermal imaging technique is expected to be comparable to the 

size of the liquid meniscus at the tip-sample contact. The effect of sample temperature 

variation on interpreting SThM measurements and tip-sample heat transfer was 

investigated. Variations of the heat transfer through the liquid meniscus with temperature 

can significantly distort the measurement results when the average temperature of the 

meniscus is higher than 80 ᵒC. Below this temperature, the calibration factor was 

measured to be nearly constant regardless of the changes in the capillary force. 

We also developed laser-heated SThM, an active SThM technique that enables 

direct measurement of the temperature at a single point on a device. The method does not 

rely on the heat transfer between the tip and the device and can measure local 
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temperature without any calibration, which provides a facile approach to interpret SThM 

measurements. Laser-heated SThM was employed to measure the temperature of a 

graphene device on a polyimide substrate and found consistent results with the calibrated 

SThM approach. 

Through the use of calibrated SThM measurements, high-resolution temperature 

maps in graphene devices supported on flexible polyimide substrates were obtained. The 

peak temperature at low power dissipation rates was found to be at the center of the 

graphene channels, and moved toward the positively biased source contact by increasing 

the bias. Compared to Si devices with 300 nm SiO2 where the temperature rise is found to 

be insensitive to the lateral sample size, the average temperature rise in flexible graphene 

devices was found to be higher by more than one order of magnitude and depends on the 

size of the graphene channel. These findings help to quantify the effects of the low 

thermal conductivity of the polyimide substrate.  
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Chapter 5: Conclusion 

5.1   SUMMARY  

This work aims to further the current understanding of nanoscale thermal 

transport in graphene which plays an important role in the design of future graphene-

based devices. Thermal transport in graphene was investigated by conducting 

experimental and theoretical analyses of the thickness-dependent thermal conductivity in 

supported multi-layer graphene, developing an experimental approach to study electronic 

thermal transport in graphene, and performing quantitative scanning thermal microscopy 

measurements to obtain the temperature distributions in flexible graphene devices with a 

high spatial resolution. 

The thermal conductivity of several multi-layer graphene samples supported on 

SiO2 was measured using suspended micro-thermometer devices to investigate how the 

thermal conductivity evolves by increasing thickness from two-dimensional graphene to 

three-dimensional graphite. A steady state comparative method was employed to measure 

the thermal conductivity of the graphite source used for exfoliating the graphene samples. 

In addition, a measurement technique was introduced for the analysis of micro-

thermometer devices with non-symmetric designs that were optimized to improve 

measurement accuracy. The measurement results show that the room-temperature thermal 

conductivity of multi-layer graphene increases gradually with increasing thickness and 

has not fully recovered to the graphite value even after the thickness increases to 34 

layers.  Based on detailed investigation of mechanisms for the suppression of the thermal 

conductivity in supported graphene, it was shown that the observed thermal conductivity 
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suppression even in relatively thick supported multi-layer graphene is caused by the long 

intrinsic mean free path of both in-plane and cross-plane phonons and partially diffuse 

scattering at the interface with the adjacent amorphous layer. This phenomenon was 

clarified by a theoretical model based on a solution of phonon Boltzmann transport 

equation in the boundary scattering regime. The numerical solution of the theoretical 

model agrees with the low-temperature measurement results of a 34-layer graphene 

sample when the top and bottom surfaces are partially diffuse with a specularity 

parameter of 0.36, or when one surface is diffuse and the other one is specular. It was 

also found that the peak thermal conductivity shifts to higher temperatures for decreased 

thickness of multi-layer graphene samples. This phenomenon was explained based on the 

decreased mean free path of phonons for thinner graphene samples because of partially-

diffuse scattering of phonons at the interface. 

An experimental method was explored to investigate electronic thermal transport 

in graphene and other layered materials under an applied longitudinal temperature 

gradient in the presence of applied electric and magnetic fields. Suspended micro-

thermometer devices were fabricated to measure the longitudinal and transverse 

components of the thermal conductivity, electrical conductivity tensors, thermoelectric 

power tensors, and investigate thermogalvanomagnetic effects. The measurement method 

was tested for a bilayer graphene sample without the use of an applied gate field. The 

measurement results showed no clear dependence of longitudinal thermal conductivity 

and transverse thermal conductivity to the applied magnetic field. The result is indicative 

of negligible contribution of electrons to thermal conductivity of graphene when the 

charge carrier concentration is low without the application of a gate field. In comparison, 
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the Seebeck coefficient was found to be strongly suppressed by the applied magnetic 

field. Based on these results, suspended micro-thermometer devices were fabricated to 

incorporate a back-gate to tune the carrier concentration of graphene with the field effect.  

Furthermore, a quantitative scanning thermal microscopy (SThM) technique was 

developed and employed to map the temperature distribution in flexible graphene devices 

with a sub-100 nm spatial resolution. The challenge of eliminating parasitic signal via the 

air conduction from the SThM measurement results was addressed by employing a triple 

scan technique to obtain the temperature jump in the thermocouple via the heat 

conduction through the liquid meniscus and solid-solid contact at the tip-sample junction. 

The thermovoltage jump was calibrated using calibration measurements on a resistance-

thermometer metal line. The effectiveness of the calibration method was discussed and 

variability of the obtained calibration factor was investigated by measuring temperature-

dependence of the thermal resistance of the liquid meniscus. It was found that, despite the 

expected changes in the shape of the liquid meniscus and measured variations in the 

capillary force, the thermal resistance of the liquid meniscus remains unchanged when 

the average temperature of meniscus is increased from room temperature up to 80 ºC. At 

this point, the thermal resistance starts to gradually increase with increasing temperature 

and after an abrupt jump at 110 ºC, increases appreciably with increasing temperature. 

Such analysis on thermal resistance of the liquid meniscus helps to better understand the 

applicability and accuracy of the SThM measurements that rely on the tip-sample heat 

transfer. 

Laser-heated SThM was developed to enable direct measurement of the local 

temperature. The method is based on variable heating of the SThM probe by the incident 
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laser of the AFM. The local temperature is obtained from the measured tip temperature 

when the tip-sample heat transfer is zero. Such approach that does not rely on the tip-

device heat transfer offers a robust method for calibration of SThM measurements 

especially where variations of surface chemistry and the effect of tip on local temperature 

is a concern. 

Calibrated SThM measurements were employed to study temperature distribution 

in flexible graphene devices on polyimide substrates. It was found that the average 

temperature rise on the flexible graphene devices is more than one order of magnitude 

larger than graphene devices on silicon substrate with 300 nm SiO2 and comparable 

power dissipation density. The peak temperature was found at the center of the graphene 

channels, and moved toward the biased source by increasing the positive voltage bias. 

The measurement results were verified by laser-heated SThM measurements at the center 

of a graphene channel. 

5.2   FUTURE WORKS 

Despite the wealth of progress in the field of nanoscale thermal transport over the 

past two decades including this contribution, there remains a number of outstanding 

questions. The experimental and theoretical approaches presented in this work can be 

used to advance current understanding. Further investigation is needed to study the size 

effects on thermal transport and thermoelectric properties of other layered materials that 

are being actively explored for future nanoelectronic devices and other applications. 

Similarly, the effect of material and surface properties of the substrate on thermal 

transport in supported layered materials remains to be studied. Moreover, further research 
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to perform magneto-thermal measurements on graphene and other layered materials in a 

case where electronic thermal transport can be modulated would enable direct 

measurement of electronic thermal conductivity. Furthermore, more research is needed to 

investigate thermal management in flexible devices with channel lengths comparable to 

the channel length in state-of-the-art transistors. Possible topics to study include 

effectiveness of underlying heat spreading layers, lateral thermal cross talk between 

adjacent transistors, and effects of ballistic transport of electrons and phonons. 
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Appendix A: Finite Element Analysis of Micro-Thermometer Devices 

We used three-dimensional finite element models of the micro-thermometer 

devices to investigate the accuracy of the measurement method via systematic errors 

caused by neglecting thermal contact resistances and thermal resistance of the substrate, 

and the assumption of uniform temperature across the thickness of the supporting SiO2 

beam. Comsol Multiphysics software was used to perform the simulations. Figure A.1 

shows the temperature distribution of the G34 device with uniform heat generation in one 

of the resistance-thermometers. Modeling the micro-thermometer devices with 

nanometer-thick graphene samples leads to simulations with extremely large number of 

nodes beyond the software capability. To avoid this issue in these simulations, the 

graphene samples were modeled as thin film solids with equivalent thermal conductance 

values. The thickness and thermal conductivity values were increased and decreased, 

respectively, by a scaling factor. We used the Wiedemann-Franz law
77

 to determine the 

thermal conductivity of the thin film metals from the measured electrical resistance 

values of the metal lines in the actual devices. Temperature-dependent thermal 

conductivity of SiO2 was taken from the literature,
135

 which was consistent with the 

measured thermal conductivity of the SiO2 bridge after removing graphene in current 

measurements. The thermal interface resistance for graphene/SiO2,
44,72,73

 

Au/Cr/graphene,
44,136

 Au/Cr/SiO2,
136-138

 and Si/SiO2
137

 interfaces were included in the 

simulation. 

To evaluate the accuracy of the measurements, simulations were performed in the 

temperature range of 40-300 K with and without including the thermal resistances at the 
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interfaces. We followed the experimental approach to obtain the thermal conductance of 

the central bridge of the device based on the average temperature rise of the resistance-

thermometers and heat generation of the heater(s). Uniform heat generation in a metal 

line established temperature gradients along the central bridge and the resistance-

thermometers. The average temperature rises of the resistance-thermometers were 

obtained from the simulation results, and as described in sections ‎2.2.1 and ‎2.2.2, were 

used to obtain the temperature rise at the midpoint of the metal line for each resistance-

thermometer, and subsequently the thermal conductance of the bridge. The obtained 

thermal conductance was compared to the thermal conductance of the bridge based on the 

dimensions and thermal conductivity of the materials. With the use of the largest thermal 

interface resistance value reported for different graphene samples, as well as the lowest 

reported cross-plane thermal conductivity and the highest reported in-plane thermal 

conductivity of graphite at different temperatures,
32

 the largest relative uncertainty is 

found in sample G27 at 100 K, where the basal-plane thermal conductivity is 

underestimated by no more than 9%. 
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Figure A.1: Temperature distribution in G34 device at room temperature obtained by 

three-dimensional simulation of heat conduction in the device while there is a uniform 

heat generation in the left U-shape resistance-thermometer. 
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Appendix B: Phonon Dispersion of Graphite 

The phonon dispersion of graphite was calculated with the use of ab initio 

calculation package QUANTUM ESPRESSO,
67

 which performs calculations based on 

density functional perturbation theory. Generalized gradient approximation, ultrasoft 

pseudopotentials, and plane-wave basis set were used in the self-consistent 

calculations.
139

 Lattice constants of 𝑎 = 2.458 Å and 𝑐 =  6.701 Å, and a wavefunction 

cut-off of 60 Ryd results in the convergence of energy calculated over a 8 x 8 x 4 

Monkhorst-Pack grid in the Brillouin zone. Subsequently, the dynamical matrices on a 5 

x 5 x 4 grid of phonon 𝑞-vectors were obtained, and the inter-atomic force constants in 

real space were calculated. The phonon frequencies for any arbitrary phonon vector were 

determined through Fourier interpolation.  

 

 

 

 

Figure B.1: Schematic illustrations of the Brillouin zone of graphite (solid line) and the 

prism ΓΜΚ′ΚΑLΗ′Η (dashed lines) over which phonon dispersion calculations are 

performed. 
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Figure B.2: The calculated phonon dispersion of graphite (solid line). Also shown for 

comparison are the experimental data based on inelastic x-ray scattering (filled circles
140

 

and unfilled circles
141

) and electron energy-loss spectroscopy (triangles
142

 and inverted 

triangles
143

). 

The phonon dispersion calculation was carried out over 1/8
th

 of the Brillouin 

zone, which is the prism ΓΜΚ′ΚΑ𝐿Η′Η shown in Figure B.1. The full phonon dispersion 

over the entire Brillouin zone was obtained based on symmetry. The calculation grid 

consists of 291984 grid points with 116, 101, and 33 grid points along ΓΚ, ΓΜ, and ΓΑ 

directions, respectively. At each grid point, 12 frequencies were obtained from the 

calculation with QUANTUM ESPRESSO. For each specific direction in the Brillouin 

zone parallel to ΓΚ, ΓΜ, and ΓΑ directions, these frequencies were assigned to different 

phonon branches by maximizing the smoothness of the phonon dispersion curves. For all 

phonon modes, components of group velocity parallel to ΓΚ, ΓΜ, and ΓΑ directions were 
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calculated numerically. The calculated phonon dispersion relations are in excellent 

agreement with reported calculations
139

 and experimental results shown in Figure B.2. 

 

 

 

Figure B.3: The calculated specific heat of graphite (blue solid line) in comparison with 

the values recommended in ref. 144 (red unfilled circles). 

Based on the calculated phonon dispersion over the entire Brillouin zone, the 

specific heat of graphite is calculated based on 

 

 𝑐𝑝 = ∑∑𝑘𝐵 𝑥2

𝑘⃗ 𝑝

 
𝑒𝑥

(𝑒𝑥 − 1)2
 
∆𝑘3

8𝜋3
  , 𝑥 ≡ ℏ𝜔/𝑘𝐵𝑇 (B-1) 
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where the summations are over all phonon polarizations (𝑝) wave vector (𝑘⃗ ) states in the 

discretized Brillouin zone, ∆𝑘3 is the volume of the element associated with each grid 

point within the discretized Brillouin zone, ℏ is the reduced Planck constant, 𝜔 is the 

angular frequency, 𝑘𝐵 is the Boltzmann constant, and 𝑇 is the temperature. As shown in 

Figure B.3, the calculated specific heat is in agreement with the reported specific heat of 

graphite over the entire temperature range. 
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