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Solvent injection is a widely used method for enhanced oil recovery.  Phase 

behavior of reservoir-oil/injection-gas mixtures should be effectively used for successful 

implementation of solvent injection.  Complex phase behavior involving three 

hydrocarbon phases has been observed for many solvent injection processes at 

temperatures typically below 120°F.  Well-known examples are CO2 injection for West 

Texas oils and enriched gas injection for Alaskan viscous oils, for which the multiphase 

behavior consisted of the oleic, solvent-rich liquid, and gaseous phases.   

Such multiphase behavior makes it challenging to study details of solvent 

injection.  Firstly, it is computationally difficult to robustly solve for multiphase 

behavior using an equation of state.  Secondly, how the interplay between multiphase 

flow and multiphase behavior affects oil displacement is much more involved than the 

traditional gas injection problem with only two hydrocarbon phases.  This research is 

concerned with two main technical challenges in multiphase behavior modeling for 

solvent injection: robust multiphase flash calculation, and quantification of the miscibility 

development through three-hydrocarbon-phase flow.    

In the initial part of this dissertation, a novel algorithm is presented for multiphase 

isobaric isothermal flash.  The formulation is derived from global minimization of the 
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Gibbs free energy using the tangent plane defined at an equilibrium phase composition at 

a specified temperature and pressure.  The new algorithm solves for two groups of 

stationary points of the tangent-plane-distance (TPD) function: tangent and non-tangent 

stationary points of the TPD function.  Equilibrium phases, at which the Gibbs free 

energy is tangent to the TPD function, are found as a subset of the solution.     

Unlike the traditional flash algorithms, the new algorithm does not require finding 

false solutions for robust multiphase flash.  The advantage of the new algorithm in terms 

of robustness is shown to be more pronounced for more complex phase behavior, for 

which multiple local minima of the TPD function are present.  It can be robustly 

initialized even when no K value correlation is available for the fluid of interest; e.g., 

multiphase behavior involving a solvent-rich liquid phase.   

The final part of this dissertation presents a straightforward application of a mass 

conservation equation to explain and quantify the local oil displacement efficiency in 

three-hydrocarbon-phase flow.  Mass conservation dictates how components must 

partition into phases upon a multiphase transition (e.g., between two and three phases) in 

multiphase convective flow.  Detailed analysis of multiphase compositional flow 

equations leads to the distance parameter that quantifies the level of the miscibility 

developed between a displaced phase and a displacing phase in the presence of other 

immiscible phases.  This distance parameter becomes zero when multicontact miscibility 

is developed, for example, between the oleic and solvent-rich liquid phases in the 

presence of the gaseous phase in low-temperature CO2 flooding.   

However, the application of the distance parameter is complicated when a 

composition path is calculated by using the equation-of-state compositional formulation 

that takes into account volume change on mixing.    In such an application, the mapping 

of the distance parameter from volume space to composition space was performed, which 
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made the calculated distance parameter less accurate near a displacement front where the 

solvent concentration rapidly changes.   

In this research, the distance parameter is applied directly in volume space for a 

given composition path.  This is a more direct and accurate way to validate the utility of 

the distance parameter to quantify the local displacement efficiency in three-phase flow.  

A composition path in three-phase oil displacement is obtained by numerically solving 1-

D convective compositional flow equations with no volume change on mixing in this 

research.  The new flash algorithm mentioned above is implemented in this in-house 

slim-tube simulator.  In case studies based on experimental data, the distance parameter 

is shown to successfully quantify the local oil displacement efficiency in three-phase 

flow.  It properly captures the effects of numerical dispersion and relative permeability 

on the development of multicontact miscibility.  This is because the distance parameter 

is derived by a simple rearrangement of the weak form of a compositional flow equation.   
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CHAPTER 1: Introduction 

This chapter describes the types of problems to be addressed in this dissertation.  

The objectives of this research are then listed.  An outline of the dissertation is given at 

last.   

 

1.1 STATEMENT OF THE PROBLEM 

Solvent injection is a widely used method for enhanced oil recovery (Orr 2007, 

Lake 2014).  It has been successfully applied to a variety of oil reservoirs in Alaska 

(McGuire et al. 2001), Canada (Malik and Islam 2000), and West Texas (Stein et al. 

1992, Tanner et al. 1992).   

The main mechanism for oil recovery by solvent injection is the miscibility 

development caused by multiple contacts between the injected solvent and reservoir oil.  

The interaction of flow and multiphase behavior can be complicated in such a process.  

Multiple phases, such as solvent-rich liquid phase (L2), oleic phase (L1) and gaseous 

phase (V), have been observed and reported in the literature for oil displacements by CO2 

or enriched gas at low reservoir temperatures typically below 120°F.  More complicated 

situations can occur when asphaltene-induced emulsion occurs in the presence of oil-field 

brine.   

One important design parameter in gas injection is minimum miscibility pressure 

(MMP).  Thermodynamic MMP was theoretically defined as the minimum displacement 

pressure at which complete miscibility along a composition path from the injection gas to 

the reservoir oil is developed in absence of dispersion (Okuno 2009).  For the traditional 

oil displacement involving only two hydrocarbon phases (i.e., L1 and V phases), MMP is 

the pressure at which any of the key tie lines becomes zero length for a given 
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composition path and reservoir temperature.  At such an MMP, a homogeneous phase is 

formed through the interplay between flow and phase behavior at a given time and space 

in oil displacement.  Therefore, the MMP so defined is called “thermodynamic MMP”, 

which is independent of fractional flow.   

One proposal was recently made by Li et al. (2015) for estimation of MMP for 

three-hydrocarbon-phase flow.  Their method is an extension of the mixing-cell method 

originally developed for two-phase flow by Ahmadi and Johns (2011).  In their 

methods, tie line lengths were tracked to quantify if a miscibility was achieved at any of 

the key tie lines (Ahmadi and Johns 2011, Li et al. 2015).  However, one of the main 

assumptions used in Li et al. (2015) is that fluid flow is independent of relative 

permeabilities, searching for a thermodynamic MMP.  Three-phase mobilities cannot be 

rigorously modeled in their method.  No report has been published that shows the 

development of a complete miscibility (or a homogeneous phase) through three-phase 

flow.   

Okuno and Xu (2014ab) investigated the efficiency of local oil displacement by 

solvent with three-phase flow.  They derived the mass conservation equation for 

multiphase transitions in 1-D convective flow, which dictates how components must be 

redistributed upon a phase transition.  Then, they developed a parameter that quantifies 

the displacement efficiency of a displaced phase by a displacing phase in the presence of 

other phases.  The parameter was called the distance parameter, which tends to zero as 

multicontact miscibility between the displacing and displaced phases is approached.  

They showed the application of their distance parameter to simulation results for low-

temperature gas floods using UTCOMP, an EOS-based multicomponent multiphase 

compositional reservoir simulator developed at the University of Texas at Austin.  

Because composition paths were obtained by 1D simulations with UTCOMP, they had to 
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convert the original distance parameter, which was based on volume, to the composition-

based distance parameter.  This conversion required finding the intersection between a 

tie line and a tie triangle in composition space.  This mapping from volume to 

composition was considered to cause less accurate calculation of the distance parameter 

at the leading edge of a three-phase region, where the solvent concentration rapidly 

changed.  Details of the derivation and the volume-composition mapping for their 

distance parameters will be presented in chapters 2 and 5 in this dissertation.  In Chapter 

5, a remedy will be presented to make the calculation of distance parameters more direct 

and reliable for quantification of the efficiency of local oil displacement in three-phase 

flow.   

Note that the multicontact miscibility in this research is concerned with the one 

developed between a displaced phase and a displacing phase in 1-D oil displacement by 

solvent.  This is in general different from the multicontact miscibility that has been 

studied in the context of thermodynamic MMP involving no fractional flow in its 

definition.  Their meanings become identical only when one hydrocarbon phase is 

displaced by another hydrocarbon phase with no other phases (e.g., oil being displaced by 

miscible gas).  

Robust solution of multiphase flash problems is important for finding a 

composition path through multiphase regions for solvent injection.  Numerical 

simulation of solvent injection involves a large number of phase-stability/-split 

calculations for every grid block at each time step.  Reliability and efficiency of the 

numerical flow simulation depend significantly on the algorithms used for phase 

equilibrium calculations.  In the traditional flash algorithms, phase stability and phase 

split calculations are performed in sequence, where the phase stability calculation 

indicates whether phase splitting may reduce the total Gibbs free energy.  If so, phase- 
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split calculation solves for intensive and extensive properties of the resulting equilibrium 

phases.  Phase stability test is often difficult for more than two phases, since multiple 

local minima of the tangent-plane-distance (TPD) function exist.  It is difficult to ensure 

location of all stationary points of the TPD function by use of the traditional algorithms.  

Phase split calculation for more than three phases is also problematic with the traditional 

algorithms.  Achievement of the global minimum of the Gibb free energy (GFE) relies 

significantly on the initial estimates used; however, they are not always available from 

the current stability test algorithms.  These are especially true for miscible solvent 

injection simulations, as phase equilibrium calculations are performed in near critical 

regions, at which false solution and/or non-convergence can often occur with the 

traditional algorithms.  A new algorithm will be developed for robust multiphase flash 

in this dissertation.     

1.2 RESEARCH OBJECTIVES 

Understanding oil displacements involving multiple phases in solvent injection 

requires detailed knowledge of complex multiphase behaviors between reservoir oils and 

injection gas.  Quantification of displacement efficiency can be determined thereafter.  

Development and implementation of robust and efficient algorithms for multiphase 

equilibrium calculations, and a straightforward but more fundamental approach to 

quantification of displacement efficiency will significantly improve our fundamental 

knowledge for solvent injection in which complex multiphase behavior is involved.   

In this dissertation, a robust algorithm is presented for isobaric-isothermal (PT) 

phase equilibrium calculations with the unified formulation for phase-stability/-split 

calculations.  It is also applied to the isobaric-isenthalpic (PH) specification, or 

isenthalpic flash.  The new algorithm is implemented in an in-house compositional 
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reservoir simulator to demonstrate improved efficiency and robustness.  Quantification 

of displacement efficiency in three-phase flow is examined by use of the distance 

parameters in volume space with the composition path obtained from the in-house 

compositional reservoir simulator.   

The objectives of this research are as following: 

 Develop a robust and efficient multiphase PT flash algorithm to 

simultaneously perform phase-stability/-split calculations, capable of handling an 

arbitrary number of phases;   

 Implement the new simultaneous PT flash algorithm in a compositional 

simulator and further test the robustness and the efficiency of the flash algorithm;   

 Validate the utility of the volume-based distance parameter to quantify 

displacement efficiency in three-phase oil displacements.  

To achieve the first objective, a unified formulation is developed for simultaneous 

phase-stability/split calculation on the basis of the classical criterion of phase equilibrium 

(Baker et al. 1982).  The main novelty lies in the unified usage of the tangent-plane-

distance (TPD) function (Baker et al. 1982, Michelsen 1982a) for multiphase PT flash for 

an arbitrary number of iterative compositions.  Flexibility of the new PT flash algorithm 

is enhanced in terms of the information regarding the GFE used during the iterative 

solutions by controlling the number of iterative compositions initialized.  The new 

formulation is applied to isenthalpic flash by introducing an additional energy equation.  

The robustness of the developed algorithms will be extensively tested.   

To achieve the second objective, a 1D convective-only flow simulator with no 

volume change of mixing is developed.  The new multiphase PT flash algorithm is 

implemented in this flow simulator.  This implementation is also important for further 

confirmation of the robustness and efficiency of the new PT flash algorithm.   
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To achieve the third objective, volumetric-based distance parameters are used to 

study oil displacement efficiency in three-phase flow with seven field cases.  

Displacement efficiency is quantified by defining two minimum distance conditions for 

three-phase flow.   

1.3 OUTLINE OF THIS DISSERTATION  

This dissertation consists of six chapters. This chapter (Chapter 1) provides a brief 

statement of the problems, an introduction to the objectives of this dissertation, and an 

outline of this dissertation.  

Chapter 2 discusses the required basics for understanding of multiphase reservoir 

flow.  The first section introduces the low reservoir temperature oil displacements by 

CO2.  The second part reviews the existing approaches to quantifying displacement 

efficiency in the literature.  The third part reviews the fundamental mass conservation 

equations for reservoir flow.  The fourth part gives a review on compositional 

simulations of oil displacements by CO2.  The fifth section reviews the prior phase-

stability/-split algorithms relevant to compositional reservoir simulation.   

In chapter 3, a new algorithm is presented for multiphase PT flash for an arbitrary 

number of phases on the basis of the unified formulation developed for simultaneous 

phase-stability/split calculations.  The correct set of equations is solved with successive 

substitution for stationary points of the tangent plane distance defined at a reference 

phase composition.  Case studies are used to show that the new simultaneous PT flash 

algorithm finds more stable solutions with a lower Gibbs free energy for the complex 

cases tested, for which the conventional method only finds local minima.  The algorithm 

developed in this chapter is implemented in an in-house multiphase compositional 
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simulator to study the displacement efficiency in three-phase flow and further 

demonstration of its robustness and efficiency.   

In Chapter 4, the formulation developed in chapter 3 is applied to multiphase 

isenthalpic flash.  A new analysis is presented regarding a well-known computational 

difficulties (narrow-boiling behavior) by coupling energy and phase behavior equations 

through the temperature dependency of K values.  Various cases are shown to 

demonstrate the robustness of the proposed algorithm.   

In Chapter 5, the utility of distance parameters is presented for quantification of 

displacement efficiency for low temperature oil displacements by CO2 where three 

hydrocarbon phases are present.  An in-house 1D compositional simulator with the new 

simultaneous multiphase PT flash algorithm is used.  Simulations are performed for 

seven reservoir oils.    

Chapter 6 summarizes and concludes the major work conducted for this 

dissertation.  Recommendations for future work related to this research are also 

presented.      



 

 8 

CHAPTER 2: Background   

This chapter describes the required basics for understanding multiphase reservoir 

flow. The first section introduces the low reservoir temperature oil displacements by CO2.  

The second part reviews the existing approaches to quantify displacement efficiency.  

The third part reviews the conservation equations for reservoir flow.  The fourth part 

gives a review on compositional simulations of oil displacements by CO2.  The fifth 

section reviews the prior phase-stability/-split algorithms.   

 

2.1 LOW RESERVOIR TEMPERATURE OIL DISPLACEMENT BY CO2 

Mixtures of reservoir oil and injection gas, such as CO2 and enriched gas, can 

exhibit complex phase behavior, when reservoir temperature is typically below 120ºF. 

This section provides a review of prior studies on complex phase behavior of mixtures of 

injection gas and reservoir oil and oil displacement by CO2 involving such complex 

phase behavior.  

Solvent injection has been widely used to improve oil recovery (Orr 2007, Lake et 

al. 2014).  Mixtures of reservoir oil and injection gas have been studied in the literature 

by use of numerical simulations and experimental approaches, including slim-tube 

displacements and multiple-contact measurements (Shelton and Yarborough 1977, 

Metcalfe and Yarborough 1979, Gardner et al. 1981, Orr and Jessen 1984, Shu and 

Hartman 1988, Sharma et al. 1989, Turek et al. 1988, Hornbrook et al. 1991, Okuyiga 

1992, Khan et al. 1992, Creek and Sheffield 1993, DeRuiter et al. 1994, Mohanty et al. 

1995, Okuno 2009, Okuno and Xu 2014ab).  Three-hydrocarbon-phase flow has also 

been observed for various reservoir oils at low reservoir temperature conditions (Varotsis 

et al. 1986, Tanner et al. 1992, McGuire et al. 2001, Malik and Islam 2000).  This three-
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hydrocarbon-phase flow includes the solvent-rich liquid (L2) phase that coexists with the 

gaseous (V) phase and the oleic (L1) phase.  Such phase behavior has also been reported 

for simple binary mixtures (e.g., Rodrigues and Kohn 1967, Hottovy et al. 1981, Enick et 

al. 1985, Peters et al. 1993, Galindo and Blas 2002) and ternary mixtures (e.g., Horn and 

Kobayashi 1967, Llave et al. 1987).   

A conventional way to study the multiphase behavior of reservoir oil and solvent 

is to use a pressure-composition (P-x) diagram.  Three hydrocarbon phases are typically 

present within a small pressure range at high solvent concentrations in a P-x diagram at 

reservoir temperatures below 120ºF.  Two liquid phases often occur at a higher pressure 

above the three-phase region. However, a P-x diagram is not sufficient to represent the 

entire pressure-temperature-composition (P-T-x) space.  This is because a P-x diagram 

for reservoir oil/injection solvent only represents the phase behavior along the mixing 

line between the oil and solvent at a fixed temperature, which is only a small portion of 

the phase behavior that actually spans the entire P-T-x space (Okuno 2009).   

In composition space, a three-phase region is bounded by a lower critical endpoint 

(LCEP) and an upper critical endpoint (UCEP) (Rowlinson and Freeman 1961, 

Davenport et al. 1966, Wagner et al. 1968, Enick et al. 1985, Peters 1994, Galindo and 

Blas 2002, Polishuk et al. 2004).  Uzunov (1993) defined a CEP as a critical state where 

two of the three equilibrium phases merge in the presence of a third phase.  Figure 2.1 

shows a schematic of a three-phase region bounded by CEP tie lines for a quaternary 

system at a fixed temperature and pressure.  Four is the minimum number of 

components required to model three-phase behavior involving CEPs at a given 

temperature and pressure. The LCEP is the CEP where L1 and L2 phases merge in the 

presence of the V phase (L1 = L2 + V), and the UCEP is the CEP where V and L2 phases 

merge in the presence of the L1 phase (V = L2 + L1).   
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Okuno et al. (2011) explained the mechanism for high displacement efficiency as 

the result of the composition path approaching CEPs.  As explained by Okuno et al. 

(2011), high displacement efficiency is possible because the L2 phase serves as a buffer 

between the L1 and V phases.  Okuno and Xu (2014b) examined further the 

development of multi-contact miscibility in compositional simulation by introducing new 

distance parameters based on interphase mass transfer near CEPs.   

Various cubic equation-of-state (EOS) were studied in the literature to see if a 

cubic EOS can be used to quantitatively predict three-phase behavior.  For example, van 

Konynenburg (1968) and Scott and van Konynenburg (1970) studied the three-phase 

curves and critical loci of binary mixtures using the van der Waals EOS with the van der 

Waals mixing rule.  Their results show that most types of fluid phase behavior can be 

qualitatively predicted by use of the van der Waals EOS.  Various binary and ternary 

mixtures have also been studied by applying the Soave-Redlich-Kwong (SRK) EOS 

(Deiters and Schneider 1976, Deiter and Pegg 1989, Gregorowicz and de Loos 1996) and 

Peng-Robinson (PR) EOS (Gauter 1999, Gauter et al. 1999, Mushrif 2004, Yang 2006).  

However, only qualitatively accurate predictions of the three-phase behavior were given 

by use of these methods mentioned.   

Adjustments of fluid properties (e.g., critical temperature TC, critical pressure PC, 

and acentric factor ω) and/or binary interaction parameters (BIPs) were then introduced 

to improve the accuracy of three-phase behavior prediction.  For example, Larson et al. 

(1989), Khan (1992), and Creek and Sheffield (1993) showed that PR EOS is capable of 

modeling three-phase behavior for mixtures of reservoir oil and injection solvent after 

careful characterization of reservoir fluids.  Kumar and Okuno (2016) proposed a 

reservoir fluid characterization method for the purpose of multiphase behavior prediction 
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for 90 reservoir fluids (48 gas condensates, 7 volatile oils, 29 other oils, 4 heavy oils, and 

2 bitumens) with PR EOS.   

2.2 DISPLACEMENT EFFICIENCY    

Minimum miscibility pressure (MMP) is one of the important design parameters 

in gas injection.  In thermodynamics, MMP is defined as the minimum displacement 

pressure at which complete miscibility along a composition path from the injection gas to 

the reservoir oil is developed in absence of dispersion.  There are both experimental and 

computational approaches for MMP estimation.   

2.2.1 Experimental Measurements  

In laboratory, MMP can be estimated through slim-tube experiments, mixing-cell 

experiments, rising bubble/failing drop experiments, and vanishing interfacial tension 

experiments. These experiments are designed to represent the complex interplay between 

reservoir oil and injection gas. 

2.2.1.1 Slim-Tube Experiments  

Slim-tube experiments are widely used to estimate MMP in laboratory.  

Typically, the tube used has a large ratio of its length to its diameter.  The length of the 

slim-tube is between 5 and 120 ft (Orr et al. 1982, Elsharkawy et al. 1992), and the 

diameter varies between 0.12 and 0.63 in, with 0.25 in as a typical diameter (Danesh 

1998, Elsharkawy et al. 1992).  Due to the large ratio of length to diameter of the tube, 

slim-tube experiments are considered as 1D oil displacement.   

Multiple slim-tube experiments are to be performed before estimating MMP.  

One commonly used criterion to determine MMP is to plot oil recovery with respect to 

pressure when recovery is recorded after typically 1.2 pore volume of gas are injected 

(Yellig and Metcalfe 1980, Danesh 1998).  Then, the break-over pressure in such a plot 
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is the estimated MMP.  Other criteria are also used by different researchers.  For 

example, Holm and Josendal (1974) defined MMP when 80% oil recovery is achieved at 

gas breakthrough; Jacobson (1972), Glaso (1990), and Hudgins et al. (1990) considered 

the MMP is achieved when the ultimate oil recovery is approximately 90% to 95%.    

2.2.1.2 Mixing-Cell Experiments  

Mixing-cell experiments, relying on the contacts between oil and injected gas, can 

accurately estimate MMP, if properly conducted.  During each contact, oil and gas are 

mixed at a certain ratio in a pressure-volume-temperature (PVT) cell and brought to 

equilibrium.  A PVT cell is used to conduct repeated contacts between oil and gas in a 

forward or a backward manner. 

In a forward manner, after each contact, the equilibrium gas is retained while the 

equilibrium oil is replaced by fresh reservoir oil.  That is, at each stage, the equilibrium 

gas from the previous stage contacts fresh oil.  In a backward manner, equilibrium oil is 

retained and the gas is replaced with fresh injected gas.  Multiple contacts are repeated 

until there is no further change in the composition of the phases.  A series of 

experiments are performed at several pressures before MMP is visually determined (i.e., 

repeated contacts result in a single phase that can be seen from the window on PVT cell). 

2.2.1.3 Rising Bubble/Falling Drop Experiments  

Rising bubble experiments were firstly introduced by Christiansen and Haines 

(1987) to perform as an alternative to slim-tube experiments.  The experiment set-up 

consists of an eight-inch-long high pressure transparent tube that is filled with oil and is 

kept at the experimental conditions.  Then, gas is injected from the bottom of the tube 

with a needle, resulting in the formation of a bubble rising in the tube.  The shape of the 

rising bubble is used to estimate if MMP is achieved (Christiansen and Haines 1987).   
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Falling drop experiments are modified rising bubble experiments (Zhou and Orr 

1998). The principle of falling drop experiments is the same as the rising bubble 

experiments, except that a bubble of oil is introduced into a chamber filled with gas.   

2.2.1.4 Vanishing Interfacial Tension Experiments  

Vanishing interfacial tension experiments were proposed by Rao (1997).  The 

experiment apparatus consists of a high pressure and high temperature cell filled with 

injection gas.  A globule of oil is then dropped into the cell through a capillary tube.  

The interfacial tension between the oil droplet and the gas is determined through the 

analysis of the shape of the hanging oil droplet and the densities of the oil and gas.   

Same procedure is repeated using different pressures by changing the amount of 

gas injected.  A plot of interfacial tensions versus pressures is used to estimate MMP. 

Specifically, MMP is determined when the extrapolation of the plot reaches zero.  Thus, 

this method works based on the measurements of the interfacial tension between the oil 

and injection gas at various pressures at a fixed temperature.   

2.2.1.5 Summary of Experiments Methods  

Experimental methods for MMP estimate are typically expensive, time-

consuming, or depend significantly on the qualities of the experiments (Ahmadi and 

Johns 2011).  Results of slim-tube experiments can be highly uncertain because of the 

insufficient data points (Walsh and Orr 1990, Johns et al. 2002) and dispersion.  For 

three-phase displacement, the recovery curve can bend abruptly with pressure or gas 

enrichment (Okuno et al. 2011).  Also, each experiment involves extensive procedures 

to restore the slim-tube before next experiment is performed.  Elsharkawy et al. (1992) 

raised the concern that the asphaltene precipitation could block the slim-tube and/or 

increase required displacement pressure.  Sometimes, deposited asphaltene can 
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completely plugs the tube and cause the failure of the test.  In addition, the measured 

MMP by experiments is usually not unique because of the multiple criteria to determine 

MMP by different researchers (Yellig and Metcalfe 1987, Holm and Josendal 1974).   

Mixing-cell methods were designed to measure MMP only if the displacement 

type is purely a vaporizing drive or a condensing drive.  The methods cannot be used to 

estimate MMP for a combined vaporizing/condensing drive (Menzie and Nielsen 1963, 

Bryant and Monger 1988, Turek et al. 1988).  Besides, the formation of a single phase is 

difficult to decide by observing through the PVT cell; different people may obtain 

different results when repeating the same procedure.   

Rising bubble method is not reliable in MMP estimatation for a purely condensing 

drive and a combined vaporizing/condensing drive (Zhou and Orr 1998).  This 

limitation primarily comes from the principle used.  In a rising bubble experiment, gas 

contacts with oil when gas rises from the bottom of the tube.  The resulting gas becomes 

richer as it approaches to the top of the tube, which mimics the forward contact of gas 

and oil in the reservoir.  Therefore, rising bubble experiments is more likely to predict 

MMP for a vaporizing drive, if performed properly.  Similarly, it is uncertain that if 

falling drop experiments can be applied to estimate MMP for a purely vaporizing drive or 

a combined vaporing/condensing drive (Zhou and Orr 1998).   

The limitation of vanishing interfacial tension experiment is that the experiment 

can be only performed along the mixing line between the oil and gas.  Orr and Jessen 

(2008) analyzed the estimated MMP for multi-component mixtures and concluded that 

the measured MMP through vanishing interfacial tension experiments can deviate from 

the analytical MMP significantly, depending on the location of the overall composition.   
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Experimental methods used to predict MMP are expensive in cost and in time.  

However, they provide useful data that can be used to verify the reliability of MMP 

obtained from computational methods as will be discussed below.   

2.2.2 Computational Methods   

There are currently three computational methods for MMP estimate; 1D 

simulation of slim-tube displacements, analytical methods by the method of 

characteristics (MOC), and multiple mixing-cell methods.  Although computational 

methods are faster and more convenient than experimental measurements, the former 

ones significantly rely on the accuracy of fluid characterizations using an equation-of-

state (EOS), especially for near critical region.   

2.2.2.1 1D Simulation of Slim-Tube Displacements  

1D slim-tube simulation mimics the flow in porous media that occurs in slim-tube 

experiments in a compositional simulator (Yellig and Metcalfe 1980).  1D flow 

equations are solved with tuned EOS parameters for the reservoir flow of oil and 

injection gas.  Flow equations can be simplified by assuming incompressible flow, no 

volume change on mixing, and no effect of pressure on phase behavior (Dindoruk 1992).   

As is used in slim tube measurements, oil recoveries at 1.2 pore volume of gas 

injected are recorded with various pressures.  MMP is defined as the pressure at which 

90% recovery is achieved.  To obtain a reliable result, it is crucial that accurate 

representation of complex phase behaviors between reservoir oil and injection gas are 

utilized.     

Stalkup (1987) and Johns et al. (2002) studied the effect of numerical dispersion 

on the accuracy of MMP prediction using fine-grid compositional simulations.  Stalkup 

(1987) plotted oil recovery with respect to the reciprocal of the square root of grid block 
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number and extrapolated the oil recovery to zero dispersion.  Johns et al. (2002) studied 

the effect of dispersion on minimum miscibility enrichment at various dispersion levels 

for different displacement mechanisms.  Use of higher-order methods in 1D slim-tube 

simulations can reduce the effect of dispersion, rather than completely eliminating its 

effect (Mallison et al. 2005).  One way to minimize the effect of dispersion on the 

accuracy of MMP prediction is to run the simulations for varying grid block numbers and 

then extrapolate to the oil recovery when the block size is infinitely large.   

2.2.2.2 Analytical Method by MOC  

Analytical solution of dispersion-free 1D convective flow equations are solved by 

MOC for obtaining the composition path in order to estimate MMP (Helfferich 1981, 

Dindoruk 1992, Johns 1992, Dumore et al. 1984, Orr 2007, Lake et al. 2014).  

Analytical solutions of 1D oil displacement by use of MOC are well studied for 

conventional two-phase (i.e., L1 and V phases) to estimate the MMP (Orr 2007).   

Helfferich (1981) generalized the theory of multiphase multicomponent 

displacements in porous media.  Helfferich (1981) derived coherence condition that 

states all dependent variables at any given point in space and time have the same 

characteristic velocity, i.e., the oil and gas compositional mixture will break into several 

coherent waves that travel at different speeds in porous media.   

Monroe et al. (1990) firstly extended the MOC solution to quaternary 

displacements.  Their results showed that there exists a third key tie line in the 

displacement route, the crossover tie line.  Later, Orr et al. (1993) and Johns et al. 

(1993) confirmed the existence of the crossover tie line for condensing/vaporizing drives.  

They also proposed a method to construct and find the key tie lines (the gas tie line, the 

oil tie line, and the crossover tie line) geometrically, assuming that consecutive key tie 
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lines were connected by a shock along non tie-line paths.  MMP is then defined as the 

pressure at which any of the three key tie lines’ lengths become zero.   

Johns et al. (1993) further demonstrated that it is the crossover tie line that 

controls the development of miscibility in condensing/vaporizing drives.  Johns and Orr 

(1996) extended the theory of Orr et al. (1993) and Johns et al. (1993) to multicomponent 

systems.   

Analytical solutions for three-phase displacements in a water-alternating-gas 

process were proposed by LaForce and Johns (2005ab), and have been demonstrated by 

their coworkers (e.g., LaForce et al. 2008ab, LaForce and Orr 2008, 2009, LaForce 

2012).  LaForce and Johns (2005) developed MOC solution for three-phase partial 

miscible flow in water/alcohol/oil systems.  LaForce et al. (2008ab) extended their 

previous work to four-component systems and confirmed that their MOC solutions match 

with experimental results.   

They studied the analytical composition paths and development of miscibilities 

for three-phase systems with four components consisting of CO2, water, and two 

hydrocarbons.  They showed that MCM can be developed not only at two-phase critical 

point, at which L1 and V phases are critical, but also along the critical tie line, at which L1 

and V phases are critical in the presence of an aqueous (W) phase.  The latter case 

represents the CEP of type L1 = V + W.  Results showed that the reservoir oil in the L1 + 

W region was displaced completely by CO2 in the V + W region through the CEP tie line.  

However, to the best of our knowledge, MOC solution for three-phase displacements 

with more than four components is not available (Li et al. 2015).   
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2.2.2.3 Mixing-Cell Methods  

Mixing-cell method consists of a series of virtual PVT cells, in which phase 

equilibrium calculations are performed.  The basic idea is to mix (numerically) gas and 

oil in recursive contacts, resulting in new equilibrium compositions.   

The multiple mixing-cell method used to estimate MMP for two phases with any 

number of components was developed by Ahmadi and Johns (2011).  The methods track 

tie lines that form in the cell contacts.  MMP is determined when the first tie line in any 

cell becomes a critical tie line.  However, MMP estimated from a mixing cell method is 

reliable only for good fluid characterizations because of the use of a cubic EOS.   

Li et al. (2015) extended the method of Ahmadi and Johns (2011) to three phases.  

Their method relies on repeated contacts of neighboring cells and finds the pressure at 

which one of the tie lines in any cell becomes zero length.  Li et al. (2015) assume that 

fluid movement from cell to cell is independent of phase labeling and three-phase relative 

permeabilities.  Phases are ordered based on compositional distance between their 

compositions and the initial oil and injection gas compositions, and named as fast phase, 

slow phase, and intermediate phase if present.  Zero tie line length is used to determine 

if miscibility is achieved.   

2.2.2.4 Summary of Computational Methods  

Calculation of MMP with an algorithm on the basis of MOC is fast and precise; 

however, it can be very inaccurate because MOC only solves for a selected number of tie 

lines in composition space (Ahmadi et al. 2011).  Yuan and Johns (2005) showed that 

there exist multiple sets of intersecting tie lines.  Orr and Jensen (1984) reported that 

two-phase regions can bifurcate into separate two-phase regions so that multiple critical 

points exist between the intersecting key tie lines.  For such a case, the bifurcation 

causes the MOC method to fail in MMP estimation because the key tie lines no longer 
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control miscibility.  In addition, no analytical solution is available for three- phase 

displacement with more than four components (Li et al. 2015).    

Slim-tube simulation results can be affected by numerical dispersion (Stalkup 

1987, Johns et al. 2002), which results in the loss of miscibility, and also the robustness 

of the phase behavior calculation algorithm used.  Due to dispersion, the composition 

path solved from flow equations can pass the two-phase region.  Use of higher-order 

methods can reduce, but not eliminate, the effect of dispersion (Mallison et al. 2005).   

The main drawback of multiple mixing-cell method of Li et al. (2015) for MMP 

estimate for three phases lies in the assumption that the movement of fluids does not 

depend on three-phase relative peameabilities.  Unlike conventional two phases, a third 

phase exists in the presence of two miscible phases when miscibility occurs for three 

phases.  Hence, the effect of three-phase mobility on fluid flow should not be neglected 

when estimating miscibility conditions for three phases.   

Despite the mixing-cell method of Li et al. (2015) for three-phase flow, Okuno 

and Xu (2014ab) investigated mass transfer on multiphase transition between two and 

three phases for three-hydrocarbon-phase flow on the basis of fundamental mass 

conservation.  Two conditions for the multiphase transitions that yield high local 

displacement efficiency by three hydrocarbon phases were derived by Okuno and Xu 

(2014ab).  In the next section, we will show the working equations and the derivations 

of their method.   

2.3 FLOW EQUATIONS AND DISTANCE PARAMETERS  

In this section, we firstly derive the 1D convective-only flow equations from 

general mass conservations equations given some assumptions.  Then, we will derive 
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the two conditions developed by Okuno and Xu (2014ab) that were used to evaluate high 

local displacement efficiency for three hydrocarbon phases.   

2.3.1 Conservation of Mass  

The transport of a component i through a permeable medium is governed by mass 

conservation, 
∂

∂t
∑ (ϕxijρjSj)

NP
j=1 + ∇ ∙ ∑ xijρju⃗ j

NP
j=1 − ∇ ∙ ∑ (ϕK⃗⃗ ⃗⃗ ij ∙ ∇ρjxij)

NP
j=1 = 0,  (2.1) 

where i is component index, j is phase index, i = 1, 2, …, NC, ϕ is porosity, xij is the mole 

fraction of component i in phase j, ρj is the molar density of phase j, Sj is saturation of 

phase j, u⃗ j is flux of phase j, K⃗⃗ ⃗⃗ ij is the dispersion tensor for component i in phase j, NC 

is number of components, and NP is number of phases.    

In equation 2.1, the first terms gives the rate of change of moles of component i, 

the second terms is the net rate of inflow of component i by convection, and the third 

terms describes the net rate of inflow of component i due to dispersion, in which 

diffusion and hydrodynamic dispersion are both included due to the same mathematical 

representations of the two mechanisms.    

With the following assumptions:  

 1D convective flow with no gravity, 

 constant temperature, negligible pressure change across the displacement 

length, and negligible capillary pressure,   

 porosity is independent of time,  

 no volume change of mixing,  

 local equilibrium,  

 no chemical reaction/absorption on the solid phase,   

equation 2.1 is simplified to 
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∂Ci

∂tD
+

∂Fi

∂xD
= 0 for i = 1, 2, …, (NC – 1),     (2.2) 

where tD is the dimensionless time measured in pore volumes, xD is the dimensionless 

distance from the injector, Ci is the overall volume fraction of component i, and Fi is the 

overall fractional flow of component i.  In equation 2.2, Ci and Fi are given as  

Ci = ∑ Sjcij
NP
j=1  and         (2.3) 

Fi = ∑ fjcij
NP
j=1 ,         (2.4) 

where fj is the fractional flow of phase j, and cij is the volume fraction of component i in 

phase j.  Equation 2.2 is a simplified continuity equation in the form of first-order 

hyperbolic partial differential equation (PDE).   

2.3.2 Distance Parameters  

Okuno and Xu (2014a) presented an analysis of mass conservation for multiphase 

transition in three-hydrocarbon-phase displacement.  Ideal displacement occurs when L1 

phase is completely displaced by non-L1 phase in the presence of another phase.  The 

ideal condition can be applied to CO2 water-alternating-gas (WAG) injection in which L1 

phase is completely displaced by V phase in the presence of W phase (LaForce and Orr 

2008, 2009, LaForce and Jessen 2010, LaForce et al. 2008ab, LaForce 2012).  It can 

also be applied to three-hydrocarbon-phase oil displacements as presented in Okuno and 

Xu (2014ab).  They studied several oil displacements in which L1 phase is completely 

displaced by L2 phase in the presence of V phase.  It is important to note that Okuno and 

Xu (2014ab) did not use MMP to represent the ideal condition in their papers, because 

there exists two phases even at the ideal displacement conditions.   

Mass balance equations in weak form for 1D convection-only compositional flow 

equations (equation 2.2) are discretized for a multiphase transition between NP
U
 and NP

D
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phases, where NP
U
 and NP

D
 represent the number of phases at the upstream side and the 

downstream side, respectively.  The discretized form is   

∑ γj
Ucj

UNP
U

j=1 = ∑ γj
Dcj

DNP
D

j=1 ,        (2.5) 

subject to ∑ γj
UNP

U

j=1 = 1.0 and ∑ γj
DNP

D

j=1 = 1.0.   

In equation 2.5, γj = (vDSj − fj) (vD − 1)⁄       (2.6) 

holds for both upstream and downstream sides, vD = ∆xD ∆tD⁄ = (Fi
U − Fi

D) (Ci
U − Ci

D)⁄  

by use of one-point upstream weighting for the flux term, and cj is a vector consisting of 

cij for i = 1, 2, …, NC and j = 1, 2, …, NP. 

They concluded that a multiphase transition between NP
U
 and NP

D
 phases occurs 

through an intersection between the extension of the two tie simplexes defined by xj
U
 (j = 

1, 2, …, NP
U
) and xj

D
 (j = 1, 2, …, NP

D
), where xj is a vector consisting of the 

compositions of equilibrium phase j.  That is, the redistribution of components on a 

phase transition between NP
U
 and NP

D
 phases must occur through an intersection of the 

NP
U
-phase tie-simplex extension and the NP

D
-phase tie-simplex extension.     

Two conditions were derived by Okuno and Xu (2014a) for the redistribution of 

components on multiphase transition corresponding to the constraints to be satisfied for 

the leading edge and the trailing edge of the three-hydrocarbon-phase region, 

respectively, as follows:  

δL = ‖γN1

U cN1

U − γN1

D cN1

D ‖
2
< ε,      (2.7) 

δT = ‖γL1

U cL1

U − γL1

D cL1

D ‖
2
< ε.       (2.8) 

The two conditions can also be re-written by use of phase compositions as following:  

δL = ‖ΓN1

U xN1

U − ΓN1

D xN1

D ‖
2
< ε,       (2.9) 

δT = ‖ΓL1

U xL1

U − ΓL1

D xL1

D ‖
2
< ε.       (2.10) 
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In equations 2.7 to 2.10, the subscript L1 represents the oleic phase, N1 represents a non-

oleic phase, the parameter Γj (j = 1, 2, …, NP) determines the relative location of the NP-

phase tie simplex and an intersection involved in the phase transition.    

Okuno and Xu (2014a) showed that δL and δT defined in equations 2.9 and 

2.10 can correctly identify the local displacement efficiency by three hydrocarbon phases.  

When the two conditions are satisfied on phase transition between two and three phases, 

two non-oleic phases can collectively achieve high displacement efficiency.  Also, their 

results showed that δL and δT (equations 2.9 and 2.10) can be successfully used to 

explain the non-monotonic trend in oil recovery by three hydrocarbon phases for 

quaternary displacements and the West Sak oil displacements.  

In Okuno and Xu (2014ab), calculations of δL and δT were on the basis of 

equations 2.9 and 2.10.  The mapping of δL  and δT  from volume space to 

composition space was essential in their calculations due to the use of UTCOMP, an EOS 

compositional multiphase reservoir simulator on the basis of implicit-pressure/explicit-

concentration formulation developed at the University of Texas at Austin, to obtain the 

composition path.  Use of UTCOMP resulted in varying vD used in the term γ of 

equations 2.6, because volume change of mixing is considered in UTCOMP formulation.  

However, in Okuno and Xu (2014ab), the transform of δL and δT from volume space 

to composition space was not given.  In the following section, we will firstly derive the 

mapping from volume space to composition space and then explain the advantages of 

using volumetric-based distance parameters. 

Definition of cij, volume fraction of component i in phase j, can be expressed as 

follows:  
volume of component i in phase j

volume of phase j
  

=
mole of phase j

volume of phase j
∙
volume of component i in phase j

mole of component i in phase j
∙
mole of component i in phase j

mole of phase j
.   
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This gives  

cij = ρj ∙
1

ρi
∙ xij,         (2.11) 

where ρj is the molar density of phase j, ρi is the molar density of component i, xij is 

the mole fraction of component i in phase j,   

We then define D̿ = diag(1 ρ1⁄ , 1 ρ2⁄ ,… , 1 ρNC
⁄ ) ∈ ℝNC×NC,  (2.12) 

where D̿ is a diagonal matrix whose diagonal elements are (1 ρ1⁄ , 1 ρ2⁄ ,… , 1 ρNC
⁄ ).  

Combination of equations 2.11 and 2.12, we have   

cj = ρj ∙ D̿ ∙ xj,         (2.13) 

where cj is a vector consisting of cij for i = 1, 2, …, NC and j = 1, 2, …, NP, and xj is a 

vector consisting of xij for i = 1, 2, …, NC and j = 1, 2, …, NP.     

We define an intersection as follows:   

cint = ∑ γjcj
NP
j=1 .        (2.14) 

Combination of equations 2.13 and 2.14 gives 

cint = ρint ∙ D̿ ∙ xint = ∑ γjρj ∙ D̿ ∙ xj
NP
j=1 .      (2.15) 

Re-arrangement of equation 2.15 yields 

D̿ (ρintxint − ∑ γjρjxj
NP
j=1 ) = 0.      (2.16) 

Since D̿ ≠ 0, equations 2.16 is equivalent to  

ρintxint − ∑ γjρjxj
NP
j=1 = 0.       (2.17)  

Similarly, from molar balance, we define   

xint = ∑ Γjxj
NP
j=1 ,        (2.18) 

where Γj for j = 1, 2, …, NP is a parameter to determine the relative location of the tie 

simplex and an intersection involved in the phase transition, and ∑ Γj
NP
j=1 = 1.0 .  

Combination of equations 2.17 and 2.18 yields  

(∑ γjρjxj
NP
j=1 ) ρint⁄ = xint = ∑ Γjxj

NP
j=1 ,     (2.19)   

resulting in Γj = (γjρj) (∑ γjρj
NP
j=1 )⁄ .       (2.20) 



 

 25 

Hence, the volume based distance parameters defined in equations 2.7 and 2.8 can be 

transformed into composition based distance parameters defined in equations 2.9 and 

2.10.   

Direct use of volumetric information from the solutions of equations 2.2 to 

calculate δL and δT defined in equations 2.7 and 2.8 avoids the mapping from volume 

space to composition space as discussed above.  Hence, the construction of an 

intersection between the downstream two-phase tie line and upstream three-phase tie 

triangle is not necessary.  When compositions change drastically at the phase transition, 

the intersection constructed by use of compositional information can be significantly 

affected due to the small angle between the tie line and tie triangle.  This is especially 

true when calculation conditions are near miscibility.  Hence, in this dissertation, we 

only calculate distance parameters by use of equations 2.7 and 2.8 on the basis of 

volumetric information.  This is a more direct validation of the utility of the distance 

parameters to quantify displacement efficiency in three-phase flow, although accuracy of 

the resulting composition path is lost due to the ideal mixing assumption used in the 

formulation.   

2.4 EOS COMPOSITIONAL SIMULATIONS  

Various researchers have performed numerical simulations on the studies of 

sweep efficiency for gas injection (e.g., Mohanty et al. 1995, Guler et al. 2001, Li et al. 

2003, Wang et al. 2003).  Chang (1990) developed a four-phase flow (L1 + V + L2 + W) 

simulator, UTCOMP, with three-hydrocarbon-phase flash.  Chang (1990) used 

UTCOMP to study various reservoir flow patterns in CO2 flooding, including viscous 

fingering, channeling, gravity override, and dispersive flow, with a wide range of 

endpoint mobility ratio, gravity number, effective aspect ratio, Péclet number, and 
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Dykstra-Parsons coefficients.  UTCOMP was later applied to study 1D and two-

dimensional (2D) simulations of CO2 injection for four oil samples from West Texas 

(Khan et al. 1992).   

Tchelepi and Orr (1994) studied the effect of channeling and gravity override on 

the displacement efficiency.  They concluded that gravity segregation is much more 

effective in three dimensional (3D) than in 2D simulations in both homogeneous and 

heterogeneous porous media.  Whether flow is 2D or 3D, the presence of heterogeneity 

lowers the range of viscous/gravity ratio over which the transition from gravity- to 

fingering-dominated flow occurs.   

Guler et al. (2001) studied the presence of multiple liquid phases in multi-

dimensional simulations with Alaskan heavy oil.  Their results showed that gravity and 

dispersion affect the compositional propagation in multi-dimensional multiphase flow, 

causing the less obvious coexistence of multiple liquid phases.    

Nghiem and Li (1986) presented a three-phase (L1 + V + L2) flow simulator to 

study 1D slim tube displacements by CO2 with a 15-component EOS fluid model.  They 

concluded that the high displacement efficiency results from the near miscibility between 

the L1 phase and L2 phase in the two-liquid-phase region, not in the three-phase region.  

It is likely because of the low number of grid blocks used in the simulations.   

Godbole et al. (1995) used an in-house simulator to model three hydrocarbon 

phases for the Kuparuk miscible flood.  Wang et al. (2003) used a compositional table-

look-up approach to model three hydrocarbon phases and applied four-phase-flow 

simulations to a sector model.  Mohanty et al. (1995) confirmed the existence of three-

hydrocarbon phases in a 1D compositional simulator using UTCOMP.   

Okuno et al. (2011) studied the displacement efficiency for low temperature CO2 

flooding using UTCOMP.  They concluded that high displacement efficiency occurs 
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when the composition path traverses near the upper critical endpoint (UCEP, L1 + L2 = 

V), and the lower critical endpoint (LCEP, L1 = L2 + V).  At the leading edge of three-

phase region, L2 phase extracts the reservoir oil due to the near-LCEP behavior.  Then, 

at the trailing edge, L2 phase efficiently merge into V phase due to the near-UCEP 

behavior.   

Okuno and Xu (2014a) investigated the local displacement efficiency of the three-

hydrocarbon-phase oil displacement and concluded that high displacement efficiency 

occurs as the consequence of the balance between the local displacement efficiency and 

the propagation rate of the three hydrocarbon phases.  Local displacement efficiency 

depends significantly on how components are redistributed through multiphase 

transitions between two and three phases.   

In three-hydrocarbon-phase simulations, it is common to use approximate three-

phase relative permeability models that usually do not fit the experimental data well 

(Delshad et al. 1989).  One challenge in three hydrocarbon-phase modelling is to define 

the threshold phase mass density to distinguish the solvent-rich liquid phase and vapor 

phase (Perschke et al. 1989, Xu and Okuno 2015).  It is crucial since the relative 

permeability models depend on the phase identifies.  When phases are mislabeled, 

discontinuities in the simulation results can occur, resulting failures in subsequent 

calculations (Okuno 2009).  Xu and Okuno (2015) studied the effect of relative 

permeability on oil displacements by three hydrocarbon phases.  A new method for 

robust phase identification was developed and implemented in a 1D convective flow 

simulator with no volume change on mixing.  Their new method used tie triangles and 

their normal unit vectors tabulated as part of the simulation input information.  The 

extensions of the limiting tie triangles at the upper and lower critical endpoints (UCEP 

and LCEP) define three different regions in composition space; the super-UCEP, super-
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LCEP, and sub-CEP regions.  Results showed that the new method can properly 

recognize five different two-phase regions surrounding the three-phase region, and the 

new method can quantify the relative location of the current overall composition to the 

three-phase region in composition space. 

2.5 PHASE BEHAVIOR CALCULATIONS  

This section firstly summarizes the conventional formulations and current 

algorithms for PT flash, in which computational difficulties associated with current PT 

flash are explained.  Then, existing formulations and algorithms for PH flash are 

reviewed and computational difficulties with unknown temperature conditions are 

explained.  At last, one of the most common used cubic EOS, the Peng-Robinson EOS 

(Peng and Robinson 1978) is reviewed.  The Peng-Robinson EOS is used throughout 

this dissertation, although any cubic EOS can be used for the purpose of generalization.   

2.5.1 Isobaric-isothermal Flash  

This section firstly presents the conventional formulations of phase-stability/-split 

calculations at constant pressure and temperature for an overall composition of interest.  

Then, a review of various algorithms for multiphase PT phase-stability/-split calculations 

is given.   

2.5.1.1 Phase Stability Tests 

Conventional Formulations  

Phase stability is to determine whether a phase is stable at a fixed temperature, 

pressure, and composition.  If that phase is unstable, a phase-split calculation is then 

performed to obtain the equilibrium compositions.  Baker et al. (1982) demonstrated 

that a stable equilibrium state must be the global minimum of the Gibbs free energy.  

Hence, the tangent plane to the Gibbs free energy surface at a stable equilibrium state at a 
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fixed temperature and pressure must lie below the Gibbs free energy surface at any 

composition.  This is the necessary and sufficient condition for phase stability.   

Michelsen (1982a) developed an algorithm for phase stability analysis on the 

basis of Baker et al. (1982).  A TPD function is defined as the difference between the 

Gibbs free energy and the tangent plane to the Gibbs free energy at a phase composition 

of interest.  A phase is stable when the TPD is non-negative.   

The TPD function is derived using the first-order Taylor expansion of the Gibbs 

free energy at a phase composition of interest.  A tangent plane T(x) to the Gibbs free 

energy surface at a phase composition z is  

T(x) = G(z) + ∑ (xi − zi)
NC
i=1 (∂G(x) ∂xi⁄ )|

x=z
     

= G(z) + ∑ (xi − zi)
NC
i=1 [Gi(z) − GNC

(z) + ∑ xk(∂Gk ∂xk⁄ )
NC
k=1 ]  

= G(z) + ∑ xiGi(z) −
NC
i=1 ∑ ziGi(z)

NC
i=1   

= ∑ xiGi(z)
NC
i=1 .        (2.21) 

In equation 2.21, G is the molar Gibbs free energy of a mixture, i and k are component 

index, NC is the number of components, G is the partial molar Gibbs free energy.   

Then, the TPD function is expresses as  

D(x) = G(x) − T(x) = ∑ xi[Gi(x) − Gi(z)]
NC
i=1 ,    (2.22)  

or in dimensionless form as  

DR(x) = D(x)/RT = ∑ xi[lnxiφi(x) − lnziφi(z)]
NC
i=1 ,     (2.23)  

where φi is the fugacity coefficient of component i.   

One of the widely used methods to test if a phase is stable was proposed by 

Michelsen (1982a).  The idea is to locate stationary points of the TPD function and 

check the sign of TPD to identify phase stability.  At a stationary point, the first-order 

derivatives of D(x) given in equation 2.22 are all zero, i.e.,  

∂D(x) ∂xi⁄ =
∂

∂xi
[∑ xi[Gi(x) − Gi(z)]

NC
i=1 ]  
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= [Gi(x) − Gi(z)] − [GNC
(x) − GNC

(z)] = 0.   (2.24)  

Equation 2.24 can be re-arranged as  

Gi(x) − Gi(z) = GNC
(x) − GNC

(z).       (2.25) 

Substitution of equation 2.25 into equation 2.22 gives   

D(x) = ∑ xi[Gi(x) − Gi(z)]
NC
i=1 = ∑ xi[GNC

(x) − GNC
(z)]

NC
i=1   

= GNC
(x) − GNC

(z) = Gi(x) − Gi(z).     (2.26)   

Re-arrangement of equation 2.26 yields the well-known stationarity equations as  

lnXiφ(x) − lnziφ(z) = 0,       (2.27) 

where R is the universal gas constant and Xi = xi exp (−
D

RT
) = xiexp (−DR) for i = 1, 

2, …, NC.   

Stationary point method tries to find stationary points from equation 2.27 and 

checks whether ∑ Xi
NC
i=1 > 1.0 for i = 1, 2, …, NC.  If a stationary point at which 

∑ Xi
NC
i=1 > 1.0  is identified, the tested phase with a composition of z is unstable.  

Otherwise, it is a stable phase.   

Another method is to minimize the TPD function in composition space subject to 

the following constraint  

∑ xi
NC
i=1 = 1.0 and xi ≥ 0 for i = 1, 2, …, NC.      (2.28) 

Phase stability test searches for a composition at which the TPD function is negative.  If 

such a composition is identified, the current phase is unstable (Michelsen 1982a).   

Although phase stability test is simpler than phase split due to the fact that 

material balance equations that consider the equilibrium phase amounts and their 

compositions are not needed, it is still difficult to locate all stationary points of the TPD 

function.   
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Conventional Algorithms 

The possibility of finding all stationary points of the TPD function increases with 

the use of more initial estimates.  For single-phase stability test, Wilson’s correlation 

(1969), 

Ki = PRiexp[5.373(1 + ωi)(1 − TRi)],     (2.29) 

is used.  In equation 2.29, Ki is the K-value of component i, PRi = P/PCi, TRi = T/TCi, 

PCi and TCi are the critical pressure and temperature for component i, respectively, P 

and T are pressure and temperature of interest, respectively, ωi is the acentric factor of 

component i.   

For two phases, Michelsen (1982a) suggested using a V-like and a L-like guess 

defined as following:  

Xi = ziKi,         (2.30) 

Xi = zi/Ki,         (2.31) 

where zi is the overall composition of component i in a mixture.   

For multiple phases, Michelsen (1982a) suggested four initial guesses.  The first 

and second guesses are to use the lightest component and the heaviest component as near-

pure phases.  The third guess used the arithmetic mean of present phase compositions as 

follows:  

Xi = ∑ xij
NP
j=1 NP⁄ ,        (2.32)  

where NP is the number of present phases and xij is the mole fraction of component i in 

phase j.  The fourth guess assumed an ideal gas mixture as follows:  

Xi = ziφ(z).          (2.33)  

In addition to the four initial guesses, Li and Firoozabadi (2012) also proposed to other 

sets of initial guesses to improve the reliability of phase stability test.   
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Global minimization algorithms (e.g., Trangenstein 1987, McDonald and 

Floudass 1997, Pan and Firoozabadi 1998) were proposed in the literature to find the 

global minimum of the TPD function.  However, the method of Trangenstein (1987) and 

Pan and Firoozabadi (1998) cannot guarantee to converge to the global minimum.  The 

method of McDonald and Floudas (1997) is only applicable to the cases when liquid 

phases are modeled by use of NRTL, UNIQUAC, UNIFAC models.   

Successive substitution (SS) is widely used to find a stationary point due to its 

simplicity and robustness.  SS is linearly convergence.  However, it becomes 

significantly slow in a near critical region, which frequently occurs in gas injection 

simulations.  The independent variables used are Xi.   

Newton’s method can be used to achieve faster convergence rate.  However, 

reliable initial guesses should be provided to Newton’s method by a first-order method, 

e.g., SS.  In the UTCOMP simulator, Perschke (1988) implemented the use of Newton’s 

method after switching from SS when a certain switching criterion is achieved.   

Local minimization of TPD function can also be used.  The algorithm of 

Trangenstein (1987) was implemented by Perschke (1988) in the UTCOMP simulator.  

Michelsen (1982a) proposed the use of BFGS quasi-Newton method to find the local 

minima of the TPD function.  The use of BFGS is slower than Newton’s method, since 

less curvature information is used in the search of descent direction.   

Trivial solutions can occur in the results of phase stability tests (Michelsen 

1982a).  Trivial solution is obtained when the independent variable, Xi, is equal to the 

test phase composition or existing equilibrium phase composition at the convergence 

(Okuno 2009).  When a trivial solution is found by use of an initial guess, subsequent 

initial guesses are tested until phase instability is detected.   
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2.5.1.2 Phase Split  

Conventional Formulations  

A multiphase equilibrium calculation for a fixed P and T requires the global 

minimization of the Gibbs free energy subject to material balance.  The molar Gibbs 

free energy of a multiphase multicomponent system is  

G = ∑ ∑ βjxijGij
NC
i=1

NP
j=1 ,       (2.34) 

where NP is the number of equilibrium phases, xij is the mole fraction of component i in 

phase j, βj is the mole fraction of phase j, and Gij is the molar Gibbs free energy of 

component i in phase j.  Material balance equations are given by  

zi = ∑ βjxij
NP
j=1  for i = 1, 2, …, NC,       (2.35) 

∑ zi
NC
i=1 = 1.0,         (2.36) 

∑ βj
NP
j=1 = 1.0 and βj ≥ 0 for j = 1, 2, …, NP,     (2.37) 

∑ xij
NC
i=1 = 1.0 and xij ≥ 0 for i = 1, 2, …, NC and j = 1, 2, …, NP.  (2.38) 

Substitution of the definition of fugacity coefficient into equation 2.34 yields  

G = RT∑ ∑ βjxijln (xijφij)
NC
i=1

NP
j=1 + GIG ∑ ∑ βjxij

NC
i=1

NP
j=1 ,   (2.39)  

where φij is the fugacity coefficient of component i in phase j, and GIG is the molar 

Gibbs free energy for idea gas.  Since GIG is dependent on temperature and pressure, it 

becomes a constant for flash calculations at a fixed temperature and pressure.  

Combining equations 2.35 and 2.36, minimization of equation 2.39 is equivalent to 

minimizing the following dimensionless molar Gibbs free energy 

GR = (G − GIG)/RT = ∑ ∑ βjxijln (xijφij)
NC
i=1

NP
j=1 .      (2.40)  

Equality of fugacity is another formulation derived from the first-order necessary 

optimality condition for minimizing the Gibbs free energy    

Gij − GiNP
= 0 for i = 1, 2, …, NC and j = 1, 2, …, (NP−1).   (2.41) 

Equation 2.41 is equivalent to the fugacity equations as follows:  
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lnfij − lnfiNP
= 0 for i = 1, 2, …, NC and j = 1, 2, …, (NP−1),  (2.42) 

where fij is the fugacity of component i in phase j.  Equations 2.35 to 2.38 must be 

satisfied in solutions of equation 2.42.  The NP
th

-phase is the reference phase in 

equations 2.41 and 2.42.  Hence, the solution of fugacity equality can be a minimum, a 

maximum, or a saddle point of the Gibbs free energy.   

Conventional Algorithms   

Phase split algorithm gives the amounts of equilibrium phases and their 

compositions at a fixed temperature and pressure for an overall composition of interest.  

Conventional algorithms subsequent to Michelsen (1982ab) are based on the sequential 

use of phase-stability/-split.  That is, phase stability is tested for the overall composition 

or one of the phases from a multiphase solution, at which the tangent plane to the Gibbs 

free energy surface is defined.  If phase instability is detected, a phase-split calculation 

is performed under the assumption that one more equilibrium phase is present.   

In flash calculations based on solving the fugacity equations (equation 2.42), the 

independent variables are K values or the logarithm of K values (Nghiem and Li 1984, 

Abhvani and Beaumont 1987).  K values are defined as the tendency of the components 

to prefer one phase over another and are given by  

Kij = xij/xiNP
 for i = 1, 2, …, NC and j = 1, 2, …, (NP−1),   (2.43) 

where Kij is the K-value of component i in phase j and the NP
th

-phase is the reference 

phase  

SS is one of the conventional methods to solve fugacity equations.  In SS, the 

equality of fugacity equations can be written in terms of K values and fugacity 

coefficients as follows: 

lnKij
(k+1)

= lnφiNP

(k)
− lnφij

(k)
       (2.44) 
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for i = 1, 2, …, NC and j = 1, 2, …, (NP−1), where the superscript in the parentheses is the 

iteration step number.  K values are updated at each iteration by solving the fugacity 

equations subject to material balance constraints.  The material balance equations are 

solved for phase compositions for a given set of K values; i.e., Rachford Rice (RR) 

equations (1952). 

SS is considered a robust algorithm as it is a gradient-based method for Gibbs free 

energy minimization (Okuno 2009).  However, the SS method significantly slow in 

near-critical regions (Michelsen 1982b) due to its linear-convergence rate for 

optimization.  A large number of iterations are required to get convergence using SS 

near critical regions (Mehra et al. 1983, Ammar and Renon 1987).  Several acceleration 

approaches are proposed to improve the convergence rate; e.g., Michelsen (1982b), 

Mehra et al. (1982, 1983), Nghiem and Heidemann (1982).  Perschke (1988) 

implemented the algorithm proposed by Mehra et al. (1983) in UTCOMP for two- and 

three-phase split calculations. 

SS is linearly convergent but accepts a larger range of initial guesses to get  

convergence compared to Newton’s method (Okuno 2009).  On the other hand, 

Newton’s method is a fast and quadratically convergent only if a reasonable initial guess 

is provided (Okuno 2009).  Therefore, SS can also be used to provide reliable initial 

guesses for second-order Newton’s method due to the robustness of SS (Ammar and 

Renon 1987, Michelsen 1982b, Mehra et al. 1982, Nghiem et al. 1983).   

Algorithms based on solving the fugacity equations are root-finding procedures, 

which are not reliable for systems with more than two phases (Michelsen 1982b).  This 

is because the global minimum of the Gibbs free energy is not guaranteed for such a case.  

As the number of components and phases increase, the number of local minima, saddle 

points, and local maxima also increase.  Also, the solution can converge to a 
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composition where the phases have the same density and composition, i.e., a trivial 

solution (Okuno 2009).  Use of a minimization algorithm can avoid the trivial solution, 

since trivial solutions have higher Gibbs free energy than the correct solution 

(Trangenstein 1987).   

Many algorithms were proposed in the literature for the minimization of the Gibbs 

free energy for phase split calculations (Gautam and Seider 1979, Lucia et al. 1985, 

Trangenstein 1985, 1987, Ammar and Renon 1987).  Michelsen (1982b) proposed an 

algorithm for minimization of Gibbs free energy based on Newton’s method.  Perschke 

(1988) used Newton’s algorithm combined with a line-search technique and implemented 

the algorithm in the UTCOMP simulator. 

Newton’s method can fail to converge to the correct solution when the Hessian 

matrix is not positive definite, a nearly singular Hessian matrix, or due to the existence of 

multiple minima.  For the cases where multiple minima exist, the modified Cholesky 

decomposition is used to tune the Hessian matrix to be positive definite (Gill and Murray 

1974, Perschke 1988, Okuno 2009). 

Second-order Newton method for minimization of Gibbs free energy 

quadratically converges to final solution, but requires reliable initial guesses.  

Conventionally, robust first-order method, e.g., SS, is used to generate good starting 

guesses for Newton’s method of minimization.  For cases with near critical condition 

and/or near phase boundary, the convergence radius of second-order Newton’s method 

can be very small, and a large number of SS iterations are required before switching to 

second-order Newton’s method (Okuno 2009).  Although the trust-region methods (e.g., 

Nghiem et al. 1983, Michelsen and Mollerup 2007, Alsaifi and Englezos 2011) were 

proposed to reduce the iterations by combining SS and Newton’s method, the use of 

trust-region methods only yield a good approximation of the minimum Gibbs free energy, 



 

 37 

rather than giving the exact minimum of the Gibbs free energy.  Furthermore, solving 

trust-region sub-problems can further increase the computational cost.   

Conventionally, the independent variables used in second-order Newton’s method 

are wij = xijβj for i = 1, 2, …, NC and j = 1, 2, …, NP.  In the second-order Newton’s 

method, exact Hessian matrices are required to be calculated at each iteration.  The 

requirement restrains the application of the method for complex thermodynamic models 

due to high computational complexity and cost.  Use of quasi-Newton method avoids 

the computation of exact Hessian matrices.  Instead, the Hessian matrix for current 

iteration is approximated by use of the information from the previous iteration step. 

Quasi-Newton method with an approximation of Hessian matrix provides a super-linear 

convergence rate for minimizing Gibbs free energy, which is quite close to the 

performance of second-order Newton’s method.  In quasi-Newton method, only the 

objective function and its gradient vectors are calculated, which saves extra calculations 

in phase-split calculations as required by Newton’s method.  Although novel, the 

performance of quasi-Newton method is very sensitive to scaling of design parameters 

(Dennis and Schnabel 1996).   

In the literature, many researchers have proposed to use quasi-Newton method in 

phase-stability/-split calculations.  Michelsen (1982ab) used quasi-Newton method for 

phase equilibrium calculations.  Nghiem (1983) developed a compositional simulator 

with the use of quasi-Newton SS method for phase behavior modelling.  Lucia and 

Macchietto (1983) and Venkataraman and Lucia (1986, 1987) proposed 

thermodynamically consistent quasi-Newton formula with hybrid method developed by 

Lucia and Macchietto (1983).  The hybrid method is to split the approximated Hessian 

matrix into two parts, one of which is calculated analytically and the other is 

approximated via a quasi-Newton update.   
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The BFGS quasi-Newton method is a widely used method in phase equilibrium 

calculations.  The convergence rate of BFGS quasi-Newton method is super-linear, and 

the Hessian matrix required at each iteration is guaranteed to be positive definite by use 

of a rank two update (Dennis and Schnabel 1996).  Ammar and Renon (1987) developed 

a BFGS quasi-Newton method with line search to update the natural log of equilibrium 

ratios.  This method was further tested by Garcia-Sanchez et al. (1996) in 

multicomponent multiple liquid-phase equilibria systems, modeling of micro-emulsion 

from excess Gibbs energy models, and vapor-liquid equilibria of nitrogen-hydrocarbon 

systems using the PC-SAFT EOS.   

Lucia et al. (2000) proposed a modified BFGS quasi-Newton method for solving 

constrained multiphase flash problems.  Hoteit and Firoozabadi (2006) solved the phase 

stability test problems using BFGS update.  Nichita et al. (2002 and 2009) applied 

BFGS method in the local minimization algorithm in the frame of the Tunneling global 

optimization method.  Haugen and Beckner (2013) proposed an analytical Quasi-

Newton method adaptive to cubic EOS on the basis of the reduction principles.   

For the cases in which Hessian matrix is not positive definite, trust-region method 

can be used instead of line search.  It is superior to Newton’s method with line search 

because Newton’s method requires a positive-definite Hessian matrix to guarantee 

descend searching direction.  Trust-region method can be used to correct the non-

positive definite Hessian matrix by adding a diagonal matrix so that the Hessian matrix 

becomes positive definite.  For each iteration, trust-region method searches for an 

optimal solution within a confined region defined by a trust radius, which is updated on 

an iteration by iteration basis depending on the quality of the quadratic approximation to 

the objective function.  The trust radius is obtained by calculating the ratio of actual 
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reduction of objective function to that of the predicted reduction.  Larger trust radius is 

obtained when the quadratic approximation is accurate; otherwise, restricted step is used.   

Nghiem et al. (1983) firstly used trust-region method in phase equilibrium 

calculations for two phases.  Lucia and Liu (1998) modified the method of Nghiem et al. 

(1983) to accelerate the calculations of phase equilibrium.  Lucia and Liu (1998) used 

the Dogleg method, a linear combination of Cauchy point and Newton search direction 

for optimization.   Cauchy point provides an optimal stepsize that minimizes a 

quadratic model within the trust region along the steepest descent direction.  Dogleg 

method provides an enhanced search direction which is superior to Cauchy point by using 

the curvature information of the Hessian matrix.  However, these methods will exhibit 

convergence problem when the Hessian matrix is not positive definite.   

Lucia and Yang (2003) used trust-region method to calculate the descend 

direction with the terrain global method.  The terrain global method is an algorithm that 

is capable of finding all physically meaningful solutions and singular points. The method 

consists of a series of downhill, equation-solving computations, uphill and predictor-

corrector calculation.  Lucia et al. (2012) tested the terrain global method in the multi-

scale framework for multiphase flash.  Alsaifi and Englezos (2011) applied a trust-

region Gauss-Newton method for simultaneous phase-stability/-split with PC-SAFT 

equation of state.  A comment issue remains in all trust-region method is that use of 

Dogleg method, a linear combination of Cauchy point calculation and Newton method, 

only results in good approximation of the minimum Gibbs free energy, rather than giving 

the exact minimum of the Gibbs free energy.   

Michelsen and Mollerup (2007) also proposed a modification on the issue 

associated with the non-positive definite Hessian matrix.  If the Hessian matrix is not 
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positive definite, a diagonal matrix is added to the Hessian and makes the Hessian 

positive definite.   

Other algorithms were also proposed in the literature for phase split.  For 

example, interval analysis, firstly proposed by Moore in 1966, is used to find all root of 

the given set of nonlinear equations with mathematical certainty.  This method has been 

applied to various problems associated with phase behavior calculations.  For example, 

it has been used to perform phase equilibrium calculations (Xu et al. 2000, Burgos et al. 

2004), phase stability determination (Hua et al. 1996, 1998ab, Tessier et al. 2000; Xu et 

al. 2005), computation of critical points (Stradi et al. 2001), and isothermal flash 

calculations using SAFT equation of state (Xu et al, 2002).   

Several authors have reported that although interval method is very robust, it has 

its own limitations.  Firstly, computational cost increases significantly when a large 

system of equations is to be solved.  This frequently occurs in multi-component 

multiphase system (Hua et al. 1996, 1998ab).  Secondly, it is difficult to implement in 

existing process simulators.  As is reported by Gecegormez and Demirel (2005), the 

phase stability test in context of generation of global phase diagram implemented using 

interval Newton/generalized bisection approach in MATLAB programming platform is 

not advantageous with respect to computational cost, even for binary system.   

In Hua et al. (1996, 1998ab), they performed interval Newton/generalized 

bisection approach to determine the phase stability by locating all stationary points of the 

TPD equations.  The stationary points are then used as initial estimates for flash 

calculation.  Successive quadratic programming algorithm is then used to perform local 

minimization of Gibbs free energy to locate the prospective global minima of the Gibbs 

free energy surface.  The interval Newton/generalized bisection approach is then used to 

determine whether the global minimum is identified.  As is reported by the authors, the 
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efficiency and reliability of their algorithm are significantly enhanced.  However, the 

comparison between their method and the conventional sequential phase-stability/-split 

algorithms is not given.  Also, one of the tested cases shows that their method is able to 

find correct equilibrium phase compositions, where the method of Michelsen incorrectly 

predicts that the mixture is stable.  Furthermore, the cases tested by their method are up 

to four components.  Hence, the capability of their method on real reservoir fluids is 

uncertain.   

Xu et al. (2000, 2002) also applied the interval based method to reliably compute 

phase stability and phase equilibrium using SAFT EOS. However, the computation cost 

required in their method is high even for binary system and can increase further as the 

number of components increases. Also, their method requires special computing 

environment and difficult to implement in existing process simulation packages, as they 

stated.   

Except for the conventional way of performing phase-stability/-split in a 

sequential manner as explained above, Gupta et al. (1990) presented a novel methodology 

to perform phase-stability and -split calculations simultaneously.  In their algorithm, the 

RR and stability equations were solved simultaneously for phase amounts and “stability 

variables” by use of Newton’s method for root finding.  The stability equations of Gupta 

et al. (1990) indicate that either the stability variable or the phase amount of an individual 

phase is zero at the global minimum of the Gibbs free energy.  The stability variables of 

Gupta et al. (1990) were derived from the first-order condition for unconstrained 

minimization of the Gibbs free energy as formulated by them.  K values were then 

updated in the outer loop by successive substitution.  Unlike the conventional successive 

substitution, however, the flash algorithm of Gupta et al. (1990) involves the 
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simultaneous root-finding of the RR and stability equations, which can cause 

convergence issues as discussed below.   

Various issues with Gupta et al.’s algorithm were reported in previous papers, and 

have been also identified in the current research.  Firstly, a few researchers (Abdel-

Ghani 1995, Alsaifi and Englezos 2011) reported numerical issues associated with the 

degeneracy of equations (called “stability equations” in their papers) near phase 

boundaries on the basis of Gupta et al.’s formulation.  Secondly, the initialization 

scheme that they proposed often results in K values that give an unbounded feasible 

region for RR solution.  As proved in Okuno et al. (2010), such a RR problem has no 

solution, which stops the flash calculation from proceeding.  Even if it is successfully 

initialized, the original algorithm of Gupta et al. may not be robust since it does not check 

the feasibility of each RR solution during the iteration.  Thirdly, it is not clear how their 

algorithm selects the reference composition that is required to set the system of equations 

to be solved.  It is likely that negative phase amounts are used as the indicator for 

improper selection of the reference composition, as mentioned in Alsaifi and Englezos 

(2011).   

Alsaifi and Englezos (2011) used the trust-region-Gauss-Newton method with the 

original formulation of Gupta et al.  It was reported that, unlike the algorithm of Gupta 

et al., their algorithm did not encounter convergence issues near phase boundaries.  

However, no comparison was given between the two algorithms.  It is not entirely clear 

how the reported improvement was achieved.  The algorithm developed by us in this 

research does not require the equations [called “stability equations” in Gupta et al. 

(1990)] that caused the convergence issues near phase boundaries.  

Chaikunchuensakun et al. (2002) also proposed a simultaneous solution of phase-

stability and -split calculations on the basis of minimization of the Gibbs free energy.  
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They used a quasi-Newton method with an approximate Hessian matrix, rather than an 

analytical one.  Use of pseudocritical properties of the fluid of interest was proposed for 

identification of the states of the reference and potential equilibrium phases.  If the ratio 

of the system pressure to the pseudocritical pressure of the fluid is greater than a value 

that is heuristically determined (e.g., 1.0 as used in their paper), the fluid is identified as a 

liquid; otherwise, the mixture is a vapor.  However, they stated that their algorithm is 

only for local minimization, and does not attempt to search for a global solution for 

multiphase PT flash (2002).  Also, it is not clear why the phase identification is required 

in their algorithm. 

2.5.2 Isenthalpic Flash  

Steam injection is a widely used method for heavy-oil recovery (Lake et al. 2014).  

Flow of fluid and energy is coupled with multiphase behavior of water-hydrocarbons 

mixtures in steam injection.  Therefore, compositional effects are important in 

understanding and designing steam injection.   

A common selection of independent variables in EOS thermal simulation is the 

component mole numbers, pressure, and enthalpy for each grid block (Brantferger 1991, 

Liu et al. 2009).  Use of enthalpy as an independent variable associated with the energy 

conservation equation is more general than use of temperature since the former can 

naturally accommodate the cases of one degree of freedom (e.g., two-component, three-

phase systems) (Brantferger 1991).  In this simulation formulation, phase behavior at 

each grid block at each time step is calculated at a given P, enthalpy (H), and overall 

composition; i.e., isenthalpic or PH flash.     

This section firstly presents the conventional formulations of phase-stability/-split 

calculations at constant pressure and enthalpy for an overall composition of interest.  
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Then, a review of various algorithms for multiphase PH phase-stability/-split calculations 

is given.   

2.5.2.1 Conventional Formulations  

The most fundamental formulation for PH flash is maximization of entropy 

(equivalently, minimization of negative entropy) subject to the enthalpy constraint with 

the variables of temperature and component mole numbers in equilibrium phases 

(Brantferger 1991, Brantferger et al. 1991).  That is, for a given pressure (P), specific 

molar enthalpy (Hspec) and overall composition (zi for i = 1, 2, …, NC), it is to find 

temperature (T) and xij (i = 1, 2, …, NC, and j =1, 2, …, NP) that maximize  

St = ∑ βjSj
NP
j=1 ,        (2.45) 

where Hspec is the specified molar enthalpy, zi is the overall mole fraction of component i, 

xij is the mole fraction of component i in phase j, S
t
 is the total molar entropy, βj is the 

mole fraction of phase j, Sj is the molar entropy of phase j, NC is the number of 

components, and NP is the number of equilibrium phases.  The following constraints are 

to be satisfied: 

zi = ∑ βjxij
NP
j=1 ,            (2.46) 

∑ βj
NP
j=1 = 1.0 ,         (2.47) 

Ht = ∑ βjHj
NP
j=1 = Hspec,       (2.48) 

for i = 1, 2, …, NC, and j =1, 2, …, NP, where H
t
 is the total molar enthalpy and Hj is the 

molar enthalpy of phase j.  

2.5.2.2 Conventional Algorithms   

Brantferger et al. (1991) developed a second-order algorithm for the constrained 

entropy maximization using Newton’s method.  The Hessian matrix was modified 

through the Cholesky decomposition when it was ill-conditioned.  However, the non-

linearity of the enthalpy constraint made it difficult to ensure robust maximization of the 
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entropy (Brantferger et al. 1991, Michelsen 1987, 1993, 1999, Van Odyck et al. 2009). 

Michelsen (1999) then proposed another objective function, for which the solution 

existed at a saddle point of the function.  However, it was mentioned that the proposed 

method could be problematic when narrow-boiling phases were involved (Michelsen 

1987, 1999).   

Another type of PH-flash formulation uses PT flash that is nested in the outer 

temperature iteration loop (Agarwal et al. 1991).  This method fundamentally fails for 

one degree of freedom, where pressure and temperature are interdependent (Brantferger 

et al. 1991, Chien 1989, Agarwal et al. 1991).    

The term “narrow-boiling” has been used in the literature to refer to the enthalpy 

behavior that is very sensitive to temperature (Michelsen 1987, Agarwal et al. 1991).  

Details of the convergence behavior and computational efficiency were not discussed for 

these function-maximization methods.  These methods are quadratically convergent near 

the solution.  It is likely that their robustness depends significantly on initialization of 

the iteration variables as is the case with minimization of the Gibbs free energy at a given 

T and P; i.e., PT flash (Mehra et al. 1982, Nghiem et al. 1983, Michelsen 1982b, Ammar 

and Renon 1987, Pan and Firoozabadi 2003).   

The limiting narrow-boiling behavior occurs for one degree of freedom, where the 

enthalpy exhibits a discontinuity in temperature space.  In such a case, the 

interdependency of pressure and temperature excludes one of the PH flash algorithms 

proposed in the literature, which has PT flash nested in the outer temperature iteration 

loop (Agarwal et al. 1991, Brantferger et al. 1991, Michelsen 1993, Néron et al. 2012).   

Algorithms using Newton’s method can be initialized by more robust, but linearly 

convergent algorithms.  In PT flash, for instance, the traditional SS algorithm and its 

accelerated variants are commonly used to provide initial estimates for Newton’s method 
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(Chang 1990, Chang et al. 1990, Perschke 1988, Perschke et al. 1989, Michelsen 1998, 

Michelsen and Mollerup 2004).  A PH-flash algorithm developed by Michelsen (1987) 

had some algorithmic features in common with the SS algorithm for PT flash, and was 

referred to as the direct substitution (DS) algorithm.  In the DS algorithm, the fugacity 

equations and enthalpy constraint were solved with K values and temperature as 

independent variables.  For each iteration, one Newton’s iteration step was performed 

using the Rachford-Rice equations (Rachford and Rice 1952) and the enthalpy constraint 

as functions of independent phase mole fractions and temperature.  Then, K values were 

updated based on the temperature change that was just obtained by the Newton’s iteration 

step.  Unlike the PH flash algorithm using nested PT flash mentioned before, the DS 

algorithms do not have the issue associated with one degree of freedom since temperature 

and K values are updated within a single iteration loop (Michelsen 1987, Agarwal et al. 

1991).   

The DS algorithm of Michelsen (1987) was modified later by Agarwal et al. 

(1991).  The main difference between the DS algorithms of Michelsen and Agarwal et 

al. was that the latter performed a quasi-Newton update of K values (Nghiem 1983, 

Nghiem and Li 1984) prior to the Newton’s iteration step for the Rachford-Rice 

equations and the enthalpy constraint.  In general, this preliminary K-value update 

reduces the number of iterations required for convergence.  Siu et al. (1991) used the DS 

algorithm of Agarwal et al. (1991) in their fully implicit thermal wellbore model.   

Michelsen (1987) and Agarwal et al. (1991) reported that their DS algorithms 

could exhibit non-convergence when narrow-boiling phases were involved.  The 

convergence issue was indicated by temperature oscillations in their algorithms, but the 

reason for the oscillations was not detailed.  The suggested remedy was to select the 

phase compressibility factors in such a way that K values did not to converge to unity 
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during the iteration.  Although its details were not entirely clear in their papers, it is 

unlikely that this approach always resolve the convergence issues.  For example, there 

are cases where only a single root exists in solution of a cubic EOS for an oscillating 

single-phase fluid.  More importantly, the direct reason for the convergence issue caused 

by the presence of narrow-boiling behavior is not the root selection in solution of a cubic 

EOS.   

Zhu and Okuno (2014a) demonstrated in their two-phase case studies that the DS 

algorithms of Michelsen (1987) and Agarwal et al. (1991) can exhibit non-convergence 

with Michelsen’s remedy.  They concluded that temperature oscillation is a consequence 

of, not the reason for, narrow-boiling behavior.  Zhu and Okuno (2014a) showed for two 

phases that the system of equations solved in the DS algorithm becomes nearly 

degenerate for narrow-boiling fluids.  Then, they developed a modified two-phase DS 

algorithm that can adaptively switch between a bisection and Newton’s step depending 

on the condition number of the Jacobian matrix.  The bisection algorithm solves for 

temperature based solely on the enthalpy constraint when narrow-boiling behavior is 

detected by a large condition number of the Jacobian matrix.  The modified DS 

algorithm successfully solved the two-phase PH flash calculations for which the prior DS 

algorithms (Michelsen 1987, Agarwal et al. 1991) showed non-convergence.   

To sum up, DS algorithm for PH flash is a root-finding approach, instead of direct 

maximization of the total entropy.  It searches for K values and T that satisfy equations 

2.46 to 2.48 and the fugacity equations (equation 2.42).  As in the traditional SS 

algorithm for PT flash, K values, Kij, are related to βj and xij through the Rachford-Rice 

equations; that is, βj can be obtained from solution of the Rachford-Rice equations.  The 

Rachford-Rice equations are 

gj = ∑ (xiNP
− xij)

NC
i=1 = ∑ (1 − Kij)zi ti⁄NC

i=1 = 0,    (2.49) 
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for j = 1, 2, …, (NP ‒ 1), where ti = 1 + ∑ (Kij − 1)βj
NP−1
j=1  for i = 1, 2, …, NC. Then, the 

corresponding xij can be obtained from xiNP
= zi ti⁄  and Kij = xij xiNP

⁄  for j ≠ NP.   

The DS algorithms developed by Michelsen (1987) and Agarwal et al. (1991) 

involve solution of the system of NP equations consisting of equation 2.49 and the 

enthalpy constraint 

gNP
= Ht − Hspec = 0       (2.50) 

for T and βj (j = 1, 2, …, NP ‒ 1) based on Newton’s method for root-finding.  The 

calculations of enthalpy and associated derivatives, and the Jacobian matrix required is 

presented in Appendix A for a general NC-component NP-phase system.  Appendix B 

presents the step-wise descriptions and flow charts for the DS algorithm of Michelsen 

(1987) and Agarwal et al. (1991).   

The PH-flash algorithms mentioned above assume a certain number of 

equilibrium phases.  With the PH specification, the number of equilibrium phases is 

unknown not only in composition space, but also in temperature space.  It can be 

determined at the solution temperature upon convergence.  As presented in Brantferger 

(1991) phase stability with PH specification can be analyzed only at a given temperature, 

which is not the equilibrium temperature until convergence.   

Although phase stability analysis was not clearly described in most of the prior 

publications on thermal compositional simulation (e.g., Heidari et al. 2014, Siu et al. 

1991, Varavei and Sepehrnoori 2009, Zaydullin et al. 2014), it may be performed 

alternately with flash calculation for a fixed number of phases (Brantferger 1991, 

Brantferger et al. 1991).  As in conventional PT flash, however, sequential use of phase-

stability and flash calculations is a series of local solutions, which requires obtaining false 

solutions and correcting them until the correct solution is obtained.  Such PH flash 

becomes more difficult as the number of equilibrium phases increases because it tends to 
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be attracted to a larger number of false solutions.  It also becomes more difficult for a 

narrow-boiling fluid because false solutions at false temperatures may deviate 

substantially from the correct solution at the solution temperature for such a case.   

Gupta et al. (1990) proposed a novel formulation for PH flash that combines 

phase-stability and flash calculations.  In their algorithm, the enthalpy, Rachford-Rice 

(RR), and stability equations were solved simultaneously for temperature, phase amounts, 

and stability variables.  The stability variables of Gupta et al. (1990) were derived from 

the first-order condition for unconstrained minimization of the Gibbs free energy as 

formulated by them.  K values were updated in the outer loop based on the temperature 

change that was obtained from the internal iteration loop.  It was reported that their 

algorithm could handle fluids with one degree of freedom.  This is conceivable because 

the number of equilibrium phases is part of the solution in their PH flash (Zhu and Okuno 

2014ab, 2015ab, 2016).  To the best of our knowledge, the formulation and algorithm of 

Gupta et al.’s for PH flash have not been used in the literature since their original 

publication (Gupta et al. 1990).  Various issues of their PH flash will be resolved in this 

paper, but briefly introduced here.   

Firstly, non-convergence can occur when it attempts to solve the degenerate 

system of equations for a narrow-boiling fluid without using the method of Zhu and 

Okuno (2014ab, 2015ab, 2016).  When narrow-boiling behavior occurs, it occurs within 

a phase region in which the number of phases is fixed.  This is true even for the limiting 

case of one degree of freedom, for which the entire phase region of one freedom is 

narrow-boiling [e.g., a three-phase region (or point) for a binary system at a given 

pressure].  Thus, the coupling of phase-stability and flash calculations in itself does not 

necessarily improve the degeneracy issue associated with narrow-boiling behavior.  Zhu 



 

 50 

and Okuno (2015ab) presented non-convergence cases with the conventional PH flash 

algorithms even if the correct number of phases was used.   

Secondly, it does not even start the iteration when the initial K values proposed by 

them yield ill-posed RR problems that have no solution.  Their initial K values often 

form an unbounded feasible region for the RR solution.  No solution exists for such a 

case, as proved by Okuno et al. (2010).   

Thirdly, their algorithm is initialized with an assumed maximum number of 

phases.  During the iteration, if some of the phases (or iterative compositions) become 

close to one another, they are added together to decrease the number of iterative 

compositions.  Subsequent computations are performed only for the distinct iterative 

compositions.  That is, the number of iterative compositions only decreases, but does 

not increase, in their PH-flash algorithm.  No scheme was proposed to handle the 

situation in which new phases appear in subsequent iterations as temperature changes in 

PH flash.  This is problematic when the number and identities of phases change within 

the temperature domain of interest, as in steam injection simulation.   

Fourthly, how to select a reference composition that was required to set the 

system of equations is unclear (Gupta et al. 1990, Alsaifi and Englezos 2011).  Alsaifi 

and Englezos (2011) only stated in their paper on PT flash that a negative phase amount 

occurred when a reference composition was improperly selected.   

2.5.3 Peng-Robinson Equation-of-State  

As is explained in section 2.1.1, three-hydrocarbon-phase behavior was 

characterized by use of a cubic EOS (e.g., PR EOS and SRK EOS) for various solvent 

injection cases (e.g., Sharma et al. 1989, Okuyiga 1992, Khan et al. 1992, Creek and 

Sheffield 1993, Mohanty et al. 1995, Godbole et al. 1995, Guler et al. 2001, Kumar and 
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Okuno 2016).  Their results indicate that these EOSs are capable of correlating three-

hydrocarbon-phase behavior quantitatively.  In this dissertation, PR EOS will be used in 

all phase behavior calculations.  The PR EOS is given as following:   

P = RT/(V ‒ b) ‒ a/[V(V + b) + b(V ‒ b)],     (2.51) 

where  a = 0.45724(R
2
TC

2
/PC)α, 

b = 0.07780RTC/PC, 

α
0.5

 = 1 + κ[1 ‒ (T/TC)0.5], 

κ = 0.37464 + 1.54226ω – 0.26992ω
2
  for ω < 0.49, 

κ = 0.379642 + 1.48503ω – 0.164423ω
2
 + 0.016666ω

3
  for ω ≥ 0.49. 

The attraction (a) and covolume (b) parameters in a dimensionless form are A = aP/(RT)
2
 

and B = bP/RT.  

The van der Waals mixing rules are used for the A and B parameters for a 

mixture.  That is, 

Am = ∑ ∑ xi
NC
k=1 xkAik

NC
i=1         (2.52) 

Bm = ∑ xiBi
NC
i=1 ,        (2.53) 

where Aik = (AiAk)
0.5

(1‒kik).  kik is the binary interaction parameter between 

components i and k. 

The fugacity coefficient of component i in phase j is 

lnφij =
Bi

Bmj
(Zj − 1) − ln(Zj − Bmj)  

−
Amj

2√2Bmj
(

2∑ xkAik
NC
k=1

Amj
−

Bi

Bmj
) ln [

Zj+(1+√2)Bmj

Zj+(1−√2)Bmj
].   (2.54) 

The compressibility factor for phase j, Zj, is calculated from the cubic EOS;  

Zj
3
 + (B ‒ 1) Zj

2
 + (A ‒ 3B

2
 ‒ 2B) Zj + (B

3
 + B

2
 ‒ AB) = 0.   (2.55)   

 

 



 

 52 

 

 

Figure 2.1.   Schematic of a three-phase region bounded by CEP tie lines for a 

quaternary system at a fixed temperature and pressure.  Four is the minimum number of 

components required to model three-phase behavior involving CEPs at a given 

temperature and pressure. The LCEP is the CEP where L1 and L2 phases merge in the 

presence of the V phase (L1 = L2 + V), and the UCEP is the CEP where V and L2 phases 

merge in the presence of the L1 phase (V = L2 + L1).   
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CHAPTER 3: A Unified Algorithm for Phase-Stability/Split Calculation 

for Multiphase PT Flash1 

Conventional method for multiphase flash is the sequential usage of phase-

stability and -split calculations.  Multiphase flash requires the conventional method to 

obtain multiple false solutions in phase-split calculations and correct them in phase-

stability analysis.  Improvement of the robustness and efficiency of multiphase flash is 

important for compositional flow simulation with complex phase behavior.   

This chapter presents a new algorithm that solves for stationary points of the 

tangent plane distance (TPD) function defined at an equilibrium-phase composition for 

isothermal-isobaric flash.  A solution from the new algorithm consists of two groups of 

stationary points; tangent and non-tangent stationary points of the TPD function.  Hence, 

equilibrium phases, at which the Gibbs free energy is tangent to the TPD function, are 

found as a subset of the solution.   

Unlike the conventional method, the new algorithm does not require to find false 

solutions for robust multiphase flash.  The advantage of the new algorithm in terms of 

robustness is more pronounced for more complex phase behavior, for which multiple 

local minima of the Gibbs free energy are present.  It is straightforward to implement the 

algorithm because of the simple formulation, which also allows for an arbitrary number 

of iterative compositions.  It can be robustly initialized even when no reliable 

information is available for the fluid of interest.  Although the main focus of this chapter 

is on robust solution of multiphase flash, the new algorithm can be used to initialize a 

2nd-order convergent method in the vicinity of a solution.     

                                                 
1 Parts of this chapter have been published in: Zhu, D. Eghbali, S., Shekhar, C., and Okuno, R. 2017. A 

Unified Algorithm for Phase-Stability/Split Calculation for Multiphase PT Flash. SPE-175060-PA. 

Accepted for publication on SPE Journal on July 13
th

, 2017. This paper was supervised by R. Okuno. 
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3.1 INTRODUCTION 

A multiphase equilibrium calculation for a fixed pressure and temperature 

requires global minimization of the Gibbs free energy subject to material balance.  The 

conventional algorithms after Michelsen (1982ab) are based on the sequential usage of 

phase-stability and -split calculations.  That is, a phase-stability calculation is performed 

for the overall composition specified or one of the phases from a multiphase solution, at 

which the tangent plane to the Gibbs free energy surface is defined.  If it detects phase 

instability, a phase-split calculation is performed under the assumption that one more 

equilibrium phase is present.   

For instance, calculation for three equilibrium phases starts with testing the 

stability for the overall composition specified.  Once phase instability is detected, a two-

phase-split calculation is conducted for the overall composition.  Then, phase stability is 

tested for one of the two phases obtained from the two-phase flash.  After detecting the 

instability of the two-phase solution, a three-phase-split calculation is performed.  

Finally, one of the three phases is used to test the stability of the three-phase solution.   

There are many algorithms presented in the literature for each of phase-split and -

stability calculations for an assumed number of phases.  Successive substitution is the 

classical algorithm used for each of phase-split and -stability calculations.  It is linearly 

convergent for non-ideal mixtures, but known to be reliable (Mehra et al. 1983, Ammar 

and Renon 1987, Kaul 1992, Pan and Firoozabadi 2003, Michelsen and Mollerup 2004).  

Therefore, it is commonly used to provide an initial estimate for higher-order methods to 

achieve the final convergence (Mehra et al. 1982, Michelsen 1982b, Nghiem et al. 1983, 

Ammar and Renon 1987, Pan and Firoozabadi 2003).   

Various algorithms were developed and compared for phase-split calculations for 

an assumed number of phases and phase-stability testing (Gautam and Seider 1979, 
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Ohanomah and Thompson 1984, Lucia et al. 1985, Trangenstein 1985, Trangenstein 

1987, Ammar and Renon 1987, Litvak 1994, and Teh and Rangaiah 2002), such as 

interval methods (e.g., Hua et al. 1996, 1998ab, Xu et al. 2000, 2002, 2005, Tessier et al. 

2000, Burgos et al. 2004), and trust region methods (Nghiem et al. 1983, Lucia and Liu 

1998, Lucia and Yang 2003, and Lucia et al. 2012).  A widely-used algorithm is 

minimization of the Gibbs free energy by use of Newton’s method with a line-search 

technique, in which the modified Cholesky decomposition of Gill and Murray (1974) is 

used to provide a search direction when the Hessian matrix is not positive definite 

(Michelsen 1982ab, Perschke et al. 1989).  A popular quasi-Newton method is the 

BFGS method for an inverse of the Hessian matrix approximation.  Lucia and 

Macchietto (1983) and Venkatraman and Lucia (1986, 1987) developed a 

thermodynamically consistent quasi-Newton method on the basis of Lucia and 

Macchietto (1983). 

The sequential use of phase-split and -stability calculations has been successfully 

applied for various compositional flow problems in the literature (e.g., Mehra et al. 1983, 

Nghiem and Li 1984, Perschke 1988, Han and Rangaiah 1998), and is called the 

conventional approach in this chapter.  However, it is a series of local solutions for 

assumed numbers of phases, which requires obtaining and correcting false solutions for 

multiphase problems.  Correction of false solutions in phase-stability analysis is highly 

sensitive to the initial guess used for the search for potential equilibrium phases.  Also, 

it is not always possible to obtain a reasonable set of initial K values for multiphase 

reservoir fluids.   

For example, three different types of two equilibrium phases (L1 + V, L1 + L2, and 

L2 + V) exist in composition space that contains three equilibrium phases (L1 + L2 + V), 

where L1, L2, and V stand for the oleic, solvent-rich liquid, and gaseous phases, 
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respectively.  When L1 + L2 or L2 + V is of the global minimum in the Gibbs free 

energy at the specified flash conditions, conventional algorithms initiated with Wilson’s 

correlation often fail to converge to the correct solution, or tend to be attracted by local 

minima before reaching to the correct solution through negative flash.  However, no 

method has been established to estimate K values for a hydrocarbon mixture involving 

the L2 phase.   

One way to improve the robustness of multiphase flash is to use multiple initial 

guesses in a series of phase-stability analysis as suggested in Michelsen (1982b), 

Perschke (1988), and Li and Firoozabadi (2012).  However, it still requires obtaining 

and correcting false solutions, which are often near local minima of the Gibbs free energy 

subject to material balance.  As will be shown in this chapter, many stability 

calculations with different initial K values may be required to obtain merely a false 

solution in multiphase flash.   

Gupta et al. (1990) presented a novel methodology to perform simultaneous 

phase-stability and -split calculations.  Various issues with the algorithm of Gupta et al. 

(1990) and it variants (Abdel-Ghani 1995, Chaikunchuensakun et al. 2002, Alsaifi and 

Englezos 2011) are discussed in details in chapter 2.   

This chapter presents the correct set of equations and constraints that can be easily 

solved for simultaneous phase-stability and -split calculation for PT multiphase flash.  

The formulation does not require the stability equations that the algorithm of Gupta et al. 

(1990) and its variants (Abdel-Ghani 1995, Chaikunchuensakun et al. 2002, Alsaifi and 

Englezos 2011) used.  The main novelty lies in the unified usage of TPD function 

(Baker et al. 1982, Michelsen 1982a) for PT multiphase flash for an arbitrary number of 

iterative compositions.  It allows for the flexibility in terms of the amount of 

information regarding the Gibbs free energy used during the iterative solution, by 
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controlling the number of iterative compositions initialized.  A new algorithm is 

developed on the basis of successive substitution augmented with some important steps 

for global convergence for the formulated PT multiphase flash.  Case studies are given 

to demonstrate the robustness and efficiency of the developed algorithm. 

3.2 FORMULATION AND ALGORITHM 

Global minimization of the Gibbs free energy in composition space for PT flash is 

formulated in such a way that all stationary points of the TPD function defined at the 

overall composition specified or one of the equilibrium phases must be non-negative.  

This is a direct representation of the classical criterion for phase equilibrium as explained 

in Baker et al. (1982).  Section 2.5.1.1 gives the derivation of TPD equations.  

Equation 2.27 has been widely used to search for a stationary point of DR in the 

stationary-point method of phase-stability analysis (Michelsen 1982a), as part of the 

conventional sequential phase-stability/-split calculation.  In the stationary-point 

method, z is used to test the stability of the overall composition z.  For testing the 

stability of a multiphase system, z is set to one of the equilibrium phases under 

consideration.  It is important to emphasize that equations 2.24 through 2.27 hold only 

when x corresponds to a stationary point of DR.   

Equation 2.27 reduces to the fugacity equations for NP stationary points that are 

on the tangent plane T (i.e., NP equilibrium phase compositions, at which DR = 0).  At 

all other stationary points, DR should be positive since the T plane cannot lie above the G 

surface at any composition at an equilibrium state (Baker et al. 1982).  Hence,  

DRj = Dj/RT = ∑ xij(lnxijφij − lnxirφir)
NC
i=1 ≥ 0     (3.1) 

for j = 1, 2, …, NS at a specified T and P.  NS is the number of stationary points of the 

dimensionless tangent plane distance function, DR, defined with a reference equilibrium-
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phase composition (xir, where i = 1, 2,…, NC).  The fugacity coefficient of component i 

at sampling composition j is denoted as φij.  Note that NS = NP + NU, where NU is the 

number of stationary points that are not equilibrium phases (i.e., NU stationary points at 

which DR > 0).  Equation 3.1 can be also written as  

DRj = lnxijφij − lnxirφir ≥ 0       (3.2) 

when xj (j = 1,2 …,NS) are all stationary points.   

The unified formulation for phase-stability/-split calculation in the current chapter 

is to find a set of xij (i = 1, 2, …, NC, and j =1, 2, …, NS) such that DRj = 0 subject to 

equations 2.35 to 2.38 for equilibrium phases j = 1, 2, …, NP, and DRj > 0 subject to 

equation 2.38 for the other stationary points that are not equilibrium phases j = (NP + 1), 

(NP + 2)…, NS.  The algorithm presented in this chapter uses the DR function with 

adaptive selection of the reference composition, xr, for an arbitrary number of iterative 

compositions, which converge to stationary points with tangent plane distances DRj.   

The TPD function is used in a unified manner for all stationary points of the TPD 

at an equilibrium state, which consist of tangent stationary points (i.e., equilibrium-phase 

compositions with zero TPD) and the other stationary points (i.e., compositions with 

positive TPD values).  That is, equilibrium phases are considered as a subset of TPD 

stationary points in the new formulation.  Then, multiphase PT flash is to find a tangent 

plane to the Gibbs free energy such that it does not lie above the Gibbs free energy at all 

stationary points identified.  In what follows, we first show working equations and then 

a step-wise description of the algorithm.  The corresponding flow chart is given in 

Appendix C.   

The algorithm developed to solve the formulated problem does not require the 

number of equilibrium phases to be set prior to the iteration.  It aims to find stationary 

points of the TPD function defined at one of equilibrium phases upon convergence.  
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Iterative compositions are distributed in composition space in the initialization step, and 

they search for stationary points along the search directions determined by the traditional 

successive substitution.  That is, the algorithm uses the TPD equations  

fij = ln[xijφij] − ln[xirφir] − θj = 0      (3.3) 

to update all iterative compositions xij (i = 1, 2, …, NC and j = 1, 2, …, NS) through K 

values on the basis of successive substitution.  In equation 3.3, NC is the number of 

components, and NS is the number of iterative “sampling” compositions that capture 

thermodynamic information in composition space during the iteration.   

It is important to note that the equations and variables used in the algorithm given 

in this section correspond to those in the formulation only upon convergence, because the 

formulation is based on an equilibrium state.  For example, θj (equation 3.3) = DRj 

(equation 3.2) at an equilibrium state upon convergence.  The number of iterative 

sampling compositions becomes the number of stationary points upon convergence, but 

both are denoted as NS in this section.  The reference composition xir (i = 1, 2, …, NC) is 

one of the sampling compositions during the iteration, and becomes one of tangent 

stationary points upon convergence.   

As stated early in section, NP equilibrium phases satisfy DRj = 0 along with 

equations 2.35 to 2.38 for j = 1, 2, …, NP.  The other NU stationary points satisfy DRj > 0 

and equation 2.38 for j = (NP + 1), (NP + 2)…, NS, where NS = NP + NU.  During the 

iteration, NS sampling compositions belong to either set P or U.  In set P, θj = 0 and βj > 

0 for j = 1, 2,…, NP.  In set U, θj > 0 and βj = 0 for j = (NP + 1), (NP + 2)…, NS.  Upon 

convergence, the sampling compositions in set P correspond to equilibrium phases, and 

sampling compositions in set U correspond to stationary points of the converged TPD 

function, at which DR values are positive.  In other words, the converged sampling 
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compositions in set P are tangent stationary points, and those in set U are non-tangent 

stationary points. 

Successive substitution is performed to solve equation 3.3 together with equations 

2.35 to 2.38 for K values, which are defined as 

Kij = xij (eθjxir)⁄         (3.4) 

for i = 1, 2, …, NC, and  j = 1, 2, …, NS except for the reference, r.  The reference 

composition xr is selected from set P adaptively, as will be described later.         

For set P, equation 3.4 becomes Kij = xij/xir.  The conventional RR equations give 

the relationship between K values and mole fractions of apparent phases (βj’s) as follows: 

gj = ∑ (xir − xij)
NC
i=1 = ∑ (1 − Kij)zi ti⁄NC

i=1 = 0    (3.5) 

for sampling point j ≠ r within set P, where ti = 1 − ∑ (1 − Kik)βk
Np
k=1,k≠r  for i = 1, 2, 

…, NC.  Compositions are given as xir = zi/ti and xij = Kijxir for sampling point j ≠ r.   

For set U, the summation constraint Σixij = 1.0 gives 

θj = − ln[∑ Kijxir
NC
i=1 ]        (3.6) 

for sampling composition j within set U.  Compositions for set U are given as xij =

eθjKijxir for i = 1, 2, …, NC.    

The fundamental structure of the current algorithm broadly follows the traditional 

successive substitution algorithm, but phase-stability and -split calculations are 

performed in an integrated manner.  That is, each iteration first solves equations 3.5 for 

compositions for set P for a given set of K values and overall composition.  Then, 

equation 3.6 is used to obtain compositions for set U for a given set of K values and 

reference composition.  After that, K values are updated for sets P and U by use of 

equations 3.3 and 3.4; i.e., 

lnKij = lnφir − lnφij.        (3.7) 
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One of the most important factors that affect global convergence of the algorithm 

is how iterative sampling compositions are distributed in composition space (e.g., the 

number of initial sampling compositions and their locations).  Sampling compositions 

can be initialized by use of a correlation suitable for the fluid of interest, such as Wilson’s 

correlation, Li and Firoozabadi (2012), and Zhu and Okuno (2015b, 2016); or use of 

certain information from the previous time-step in flow simulation; or use of tie-simplex 

information in composition space (Iranshahr et al. 2010); or a systematic distribution in 

composition space if no reliable information is available regarding equilibrium phase 

compositions.  Ideally, they are supposed to converge to all stationary points of TPD so 

that the global minimum of the Gibbs free energy is assured upon convergence.  Such a 

possibility is generally expected to increase as more sampling compositions are used, 

unless they are placed close to each other.  As an example for the fourth type of 

initialization, Appendix C describes the initialization method used in the case studies in 

this chapter, which systematically distribute sampling compositions in composition 

space.  Obviously, there are many other distributions that are equally applicable for 

engineering applications.   

In general, flash calculation is more efficient when it is initialized with certain 

reliable information available for expected equilibrium phases.  In case studies in this 

chapter, the fourth type of initialization is used since they are all stand-alone multiphase 

flash.  In one of the case studies, however, the new algorithm is tested with Wilson’s 

correlation, and is shown to efficiently find a lower Gibbs free energy than the 

conventional sequential method.   

Other important steps for enhanced robustness include the feasibility check for 

each RR solution by use of the method of Okuno et al. (2010).  The constraint, ai
T
β ≤ bi, 

where ai = {1 − Kij}, β = {βj}, bi = min{1 – zi, minj{1 – Kijzi}} for i = 1, 2, …, NC, is to 
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be satisfied for compositions in set P if there exists a bounded feasible region for each RR 

solution as described in Okuno et al. (2010).  Also, the constraints regarding βj and θj 

described previously are used for classification of sampling compositions for sets P and 

U during the iteration.   

The PR EOS (Peng and Robinson 1976, 1978) with the van der Waals mixing 

rules is used to calculate thermodynamic properties in this research.  A stepwise 

description of the algorithm used in this chapter is given below.   

 

Step 1. Set NS sampling compositions xj
(k)

 for j = 1, 2,…, NS.  The number in the 

bracket represents the iteration-step number; k = 1 for the initial step.   

Step 2. Calculate DRj for j = 1, 2,…, NS with z as the reference composition by use of 

equation 3.1. Select the sampling composition with the minimum DR value as the 

reference composition, xr
(1)

. Calculate K values, Kj
(1)

, by use of lnKij = lnφir −

lnφij for i = 1, 2, …, NC and j = 1, 2,…, NS except for r.  Recalculate DRj with 

xr
(1)

, and set NU as the number of sampling compositions with positive D values.  

NP = NS – NU.  If NP >1, continue to step 3. 

If NP = 1, select z as xr
(1)

.  This increases NS by one because z becomes part of 

the sampling compositions.  Calculate Kj
(1)

, DRj, NU, and NP as described 

previously.  If NP = 1, go to step 6; otherwise, go to step 3.   

Step 3. Check the feasibility of the RR solution for set P by use of the method of Okuno 

et al. (2010).  If feasible, go to step 5.  Otherwise, continue to step 4. 

Step 4. Exclude from set P as many sampling compositions as required until the 

feasibility is satisfied for the given RR problem.  Update NP.  NU = NS – NP.  If 

NP = 1, go to step 6.  Otherwise, continue to step 5.  
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Step 5. Perform the convex minimization to obtain xj
(k)

 and βj
(k)

for set P that satisfy 

equation 3.5, as presented in Okuno et al. (2010). The convergence criterion is 

that ‖gj‖∞
< εg.  εg = 10

-10
 is used in this research, but it can be a larger number 

for practical applications.   

Step 6. Obtain xj
(k)

 and θj
(k)

for set U by use of equation 3.6.   

Step 7. Check to see if there is any θj
(k)

 that is negative in set U. If so, select the 

sampling composition that has minimum θj value as xr, and update NU. NP = NS – 

NU.  Go to step 10.  Otherwise, continue to step 8. 

Step 8. Check to see if there is any βj
(k)

 that is negative in set P.  If so, select the 

sampling composition with 0 < βj < 1 as xr and update NU.  NP = NS – NU. Go to 

step 10.  Otherwise, continue to step 9. 

Step 9. Check for convergence.  Stop if ‖fij‖∞
< εf (In this chapter, εf = 10

-10
 is used, 

but it can be a larger number for practical applications).  Otherwise, continue to 

step 10. 

Step 10. Check to see if there are any compositions to be merged on the basis of the 

criterion that the max norm for two compositions is less than εx (e.g., εx = 10
-3

).  

If so, perform necessary updates for NS and NU.  NP = NS – NU.     

Step 11. Update K values by use of equations 3.3 and 3.4; i.e., lnKij
(k+1)

= lnφir
(k)

−

lnφij
(k)

 for i = 1, 2, …, NC and j ≠ r.  Increase the iteration-step index by one; k = 

k + 1.  Go to step 6 if NP = 1.  Otherwise, go to step 3. 

 

Steps 1, 5, 9, and 10 require user-specified values.  The procedure presented in 

Appendix C is used for step 1 in this chapter.  However, it can be replaced by other 

procedures, such as correlations for the fluid under consideration, the flash solution from 
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the previous time step in flow simulation, and use of a random number generator.  Steps 

5 and 9 require convergence criteria, and step 10 requires a merging criterion.   

Step 2 sets the reference composition that is required to define equation 3.3 in the 

initialization.  First, TPD is calculated by function DR (equation 3.1) at NS sampling 

compositions with the overall composition z as the reference composition, xr.  Then, the 

initial reference composition is re-defined that gives the minimum DR among the NS 

sampling compositions.  Note that equation 3.2 cannot be used for this initialization step 

as the NS initial sampling compositions are not stationary points of TPD defined at z.  

Steps 7 and 8 describe how to update a reference composition when the constraints 

regarding βj and θj are not satisfied during the iteration.   

In step 4, the exclusion of sampling compositions from set P is performed on the 

basis of their DRj values from equation 3.1.  That is, the sampling composition with the 

largest DRj value among set P is first excluded.  The subsequent exclusions, if necessary, 

are in the order of decreasing DR.  If step 4 is taken in the first iteration (k = 1), the DRj 

values calculated in step 2 are directly used.   

In step 5, it is crucial to precisely implement the multiphase RR algorithm as 

described in Okuno et al. (2010).  In particular, it is recommended to confirm the 

following for each RR solution: 

 The feasible region for βj (j = 1, 2, …, NP) should be based on non-

negativity of components’ mole fractions, 0 ≤ xij ≤ 1 (i = 1, 2, …, NC, and j = 1, 2, …, 

NP).  Note that the function to be minimized in the RR solution is non-monotonic and 

convex within its feasible region (Michelsen 1994, Michelsen and Mollerup 2004, Okuno 

et al. 2010). 

 The initial values for βj (j = 1, 2, …, NP) should be placed inside the 

feasible region. 
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 Under-relaxation should be performed if a Newton step is found to bring 

the iterate to the infeasible domain, in order to keep βj (j = 1, 2, …, NP) feasible.  It is 

straightforward to calculate the maximum step size to be taken to reach a feasibility limit 

along a given search direction (Newton’s direction) because the feasibility limits are all 

linear (Equation 10 in Okuno et al. 2010).   

The new algorithm is to locate stationary points of TPD that gives the global 

minimum of the Gibbs free energy at the specified T and P with the well-known 

convergence behavior of successive substitution (Mehra et al. 1983, Ammar and Renon 

1987, Kaul 1992).  Michelsen (1982a) showed that successive substitution for the 

stationary-point method of phase stability analysis converges to a minimum, instead of a 

maximum or saddle point, of the TPD function.  It has been observed in this research 

that the developed algorithm also converges to minima of the TPD function.   

In the new algorithm, equilibrium phases are found as a subset of the converged 

stationary points; that is, the number of phases is part of the solution.  One of the main 

differences from the conventional flash is that the unified TPD equations (equation 3.3) 

can be solved with an arbitrary number of sampling compositions.  This gives the 

flexibility in terms of robustness and efficiency that the algorithm offers; e.g., use of 

more sampling compositions increases the level of robustness at the expense of the 

increased number of equations, at least for the initial stage of iteration.  As will be 

discussed later, extra sampling compositions naturally merge for a case in which NS is 

greater than the number of stationary points present upon convergence.   

The algorithm presented above is substantially different from that of Gupta et al. 

(1990).  An important difference comes from the difference in formulation; that is, they 

introduced an additional set of equations, βjθj = 0, called “stability equations” in their 

papers.  A similar set of equations, βjθj/(βj + θj) = 0, were then solved simultaneously 
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with the RR equations in their algorithm.  However, our formulation clearly shows that 

the complete formulation does not require Gupta et al.’s stability equations.  The correct 

set of equations in this chapter does not have the degeneracy issues that Gupta et al.’s 

algorithm exhibits near phase boundaries due to their stability equations, as reported by 

Alsaifi and Englezos (2011).   

The robustness of the current algorithm also comes from careful initialization 

(step 1) and adaptive selection of the reference composition (steps 2, 7 and 8).  The 

initialization scheme of Gupta (1990) eliminates the sampling compositions that have 

positive D values from equation 3.1 with z as the reference composition.  However, this 

often leads to a complete failure of the calculation.   

The simplicity of the formulation has led to the straightforward iteration steps, 

which are essentially the widely used successive substitution.  Unlike in other related 

publications after Gupta et al. (1990), such as Abdel-Ghani (1995), Chaikunchuensakun 

et al. (2002), and Alsaifi and Englezos (2011), the robust solution of multiphase RR 

equations (Okuno et al. 2010) further enhances the robustness of the current algorithm.   

3.3 CASE STUDIES 

The new algorithm can make multiphase flash problems straightforward by not 

having to solve for false solutions and correct them.  This section presents case studies 

to demonstrate the robustness and simplicity of the new algorithm with the initialization 

method presented in Appendix C.  The convergence criteria used for the new algorithm 

are stated in the previous section (e.g., εf = εg = 10
-10

 and εx = 10
-3

).   

The new algorithm is compared with the conventional method of sequential 

phase-stability/split calculations and the method of Gupta et al. (1990).  In the 

sequential method used for this section, single-phase stability analysis is performed with 
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two initial guesses, searching for a V-like phase first and a L-like phase next, on the basis 

of Wilson’s K values (Michelsen 1982a).  For stability analysis for multiple phases, 

initial guesses recommended by Firoozabadi (1999) and Li and Firoozabadi (2012) are 

used in addition to the V-like and L-like guesses, in the following order: a V-like phase, a 

L-like phase, compositions near vertices in composition space, the midpoint of phase 

compositions, and φixi for i = 1, 2,…, NC.   

Calculations in this section use only successive substitution for a fair comparison 

in terms of robustness.  However, the new algorithm based on successive substitution 

can be switched to any 2
nd

-order convergent method in the vicinity of a solution, when 

the residual of equation 3.3 becomes less than a certain criterion as will be shown for 

case 4.  Direct application of Newton’s method for the formulated problem requires 

further investigated.  The iteration scheme used for the new algorithm is essentially the 

traditional successive substitution.  As presented in Heidemann and Michelsen (1995), 

successive substitution may not converge if negative binary interaction parameters are 

used for attraction terms in a cubic-EOS fluid model.     

The convergence criterion used for stability analysis in the conventional method 

is that the max norm of stationarity equations is less than 10
-10

.  The convergence 

criterion used for phase-split calculations in the conventional method is that the max 

norm of fugacity equations is less than 10
-10

.  Use of 10
-10

 for these convergence criteria 

are equivalent to the use of εf = 10
-10

 for the new algorithm.  The criterion used for a 

trivial solution in the conventional stability analysis is 10
-3

, which is equivalent to the 

merging criterion εx = 10
-3

 in the new algorithm.    

The number of fugacity-coefficient calculations is reported as a measurement of 

computational cost, in addition to the number of iterations required for convergence, for 

each case.  Both metrics depend on the initial NS and their locations with the new 
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algorithm; i.e., results regarding the computational cost will be different if other 

initialization methods are used.  A calculation for a vector consisting of lnφi for i = 1, 

2,…, NC is counted as one.   

The new PT flash algorithm finds all stationary points of the TPD function 

defined at one of equilibrium phases upon convergence.  We studied the number of 

stationary points of 24 simple mixtures available in the literature.  Results were given in 

Appendix C.   

3.3.1 Case 3.1 

Case 3.1 uses mixtures of H2O, C3, and n-C16 to graphically show a few important 

features of the new algorithm.  The properties used for the components are given in 

Table 3.1.  Appendix C also gives a sample input file for case 3.1.  Figure 3.1 shows 

the two- and three-phase regions in composition space at 430 K and 35 bars for the 

ternary system.  In this figure, L, V, and W represent the oleic, gaseous, and aqueous 

phases, respectively.   

The new algorithm is applied with the initial NS of six along the mixing line 

between (0.0, 0.9, 0.1) and (0.9, 0.0, 0.1).  Out of the six sampling compositions, three 

compositions are placed near the compositional vertices, and the others are the central 

points in the three regions surrounding a given overall composition (Ri for i = 1, 2, and 3 

as given in Appendix C).  The six sampling compositions initially distributed merge into 

three stationary points that correspond to the L, V, and W phases on the Gibbs free 

energy surface.  Figure 3.2 shows the Gibbs free energy surface at 430 K and 35 bars, 

and the tangent planes converged for three overall compositions with the H2O 

concentrations of 0.10, 0.75, and 0.84 along the mixing line.  It has been visually 
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confirmed that the algorithm has successfully converged to the global minimum of the 

Gibbs free energy subject to material balance for each overall composition.   

Figure 3.3 shows the behavior of the converged βj and θj along the mixing line.  

One non-tangent stationary point in set U is observed in the two-phase regions (L + V 

and L + W) along the mixing line.  The DR values at such non-tangent stationary points 

in Figure 3.2 can be confirmed with Figure 3.3b; e.g., θW of 0.2478 for zH2O = 0.1.  They 

qualitatively indicate how close the current equilibrium state is to a phase transition as 

can be seen in Figure 3.3b.  Hence, the new algorithm provides more global information 

about the Gibbs free energy than the conventional sequential method, when it converges 

to non-tangent stationary points with positive DR values.   

Figures 3.1, 3.2, and 3.3 present that different sets of equilibrium phases can be 

easily calculated as thermodynamically stable stationary points by use of the unified 

algorithm that directly converges to the correct solution.  Unlike the current algorithm, 

the negative flash approach (Whitson and Michelsen 1989) may indicate phase instability 

by negative β values, when obtaining a false solution.   

The new algorithm is compared with the method of Gupta et al. (1990) by using 

the overall composition of 75% H2O, 15% C3, and 10% n-C16 at 560 K and 65 bars.  The 

critical endpoint of type L1 = V + W is calculated for this mixture at 569.35 K and 130.07 

bars on the basis of the PR EOS.  The correct solution of L1 + V is given in Table 3.2.  

The method of Gupta et al. (1990) cannot converge to this solution for several reasons.  

Firstly, the initialization scheme proposed by Gupta (1990) yields a RR problem with an 

unbounded feasible domain, resulting in a failure in initialization.  Secondly, even when 

initialized successfully with the method given in Appendix C (e.g., NS = 6), their 

algorithm stops from proceeding at the 10
th

 iteration step due to an open feasible domain 
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encountered for RR solution.  This type of failures occurs for the next cases with the 

algorithm of Gupta et al. (1990), although they are not presented in this section. 

As an example for the new algorithm, Figure 3.4 shows the convergence behavior 

in terms of NP and NU, and the residual of equation 3.3, when it is initialized with NS = 6 

(i.e., three compositions near the compositional vertices and the other three at the centers 

of Ri for i = 1, 2, and 3 by use of NSmax = 6 and n = 1.0). The new algorithm converges to 

the correct solution given in Table 3.2 in 21 iterations.  Merging of sampling 

compositions (in set P and/or set U) occurs at the 4
th

, 5
th

, and 7
th

 iterations, as indicated 

by decreasing NS (= NU + NP) in Figure 3.4a.  Hence, the algorithm takes 7 iteration 

steps to identify the correct number of stationary points in this case, when started with the 

6 sampling compositions.  A stable linear convergence rate is observed until the 

convergence is achieved, as with the normal successive substitution (Figure 3.4b).  The 

reference composition, xr, remains the same after the 8
th

 iteration in this case.  The total 

number of fugacity coefficient computations is 84, in which 25 computations were 

performed for initialization to determine a reference composition; hence, on average, 

each iteration took approximately 3 computations of fugacity coefficient vectors.  

Appendix D shows a series of ternary diagrams to explain the motion of sampling 

compositions for selected iterations.   

It has been confirmed that the new algorithm still converges to the correct 

solution in 22 iteration steps when initialized with only three sampling compositions near 

the composition vertices for this relatively simple case.   The total number of fugacity 

coefficient computations is 66, in which 13 computations were performed in 

initialization; hence, the average number of fugacity coefficient computations is 3 per 

iteration.   
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The conventional method of sequential phase-stability/-split calculation is also 

tested for this case.  In the single-phase stability test, a trivial solution is detected in 53 

iteration steps with a V-like composition for the first trial.  Then, instability is detected 

in 14 iteration steps with a L-like composition for the second trial.  Then, the subsequent 

two-phase-split calculation converges to the solution (Table 3.2) in 24 iterations.  Phase 

instability cannot be detected with all 9 guesses for this two-phase solution.  The total 

number of iterations required in this two-phase stability test is 175.  Hence, the total 

number of iterations required for the conventional sequential method is 266, in 

comparison with 21 for the new algorithm with NS of 6.  The total number of fugacity 

coefficient computations is 301 with the conventional algorithm, in comparison with 84 

with the new algorithm with NS of 6.  For this case, the new algorithm with NS of 6 

requires much fewer iterations and fugacity calculations than the conventional sequential 

algorithm.     

Unlike in Gupta et al. (1990), the RR routine embedded in the new algorithm is 

guaranteed to converge to the correct solution as shown in Okuno et al. (2010).  It is 

important to confirm the existence of the unique solution for a given multiphase RR 

problem prior to the iteration (Okuno et al. 2010).  

3.3.2 Case 3.2 

The simplicity of the formulation and algorithm developed in this research yields 

the robustness in multiphase flash by not having to obtain false solutions.  The advantage 

over the conventional sequential methods is pronounced when the correct solution in a 

multiphase calculation does not include either the L1 or V phase, which can frequently 

occur in many gas and steam injection processes with multiple partially miscible phases.   
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This case uses the binary system of C1 and H2S at 190 K and 40.53 bars to show 

several issues of the sequential method and the robustness of the new algorithm.  Table 

3.3 gives the components’ properties.  The Gibbs free energy surface in composition 

space exhibits three lobes corresponding to the L1, L2, and V phases in the order of 

increasing C1 concentration (zC1) (Figure 3.5).  The sequential method fails to find the 

correct solutions with L2 + V for zC1 from 0.968 to 0.982, as explained below.   

For 0.968 ≤ zC1 < 0.980, the sequential algorithm finds a L phase in the single-

phase stability analysis, and the subsequent two-phase flash results in a local minimum 

with L1 + V.  Then, the stability analysis for one of the two phases finds the L2 phase.  

However, three-phase PT flash is not possible for a binary mixture, for which P and T are 

interdependent (i.e., the degree of freedom is one).  Hence, the final result from the 

sequential algorithm is the L1 + V phases that have been obtained.  Table 3.4 shows the 

correct solution from the new algorithm and the incorrect solution from the sequential 

method at zC1 of 0.970 at 190 K and 40.53 bars.   

The new algorithm converges to the correct two-phase solution (L2 + V) directly 

without having to find any false solution.  Here, the convergence of the new algorithm is 

explained for the case with the initial NS of eight (NSmax = 16 and n = 1.0).  Two of them 

are distributed near the vertices of composition space, and three sampling compositions 

are evenly distributed for each side of the overall composition.  Figure 3.6 shows the 

variation of NP and NU, and the residual of equation 3.3 with respect to the number of 

iterations for this case.  The new algorithm successfully converges to the correct solution 

(Table 3.4) in 92 iterations.  The converged Gibbs free energy (GR) from the new 

algorithm, –0.53949050, is confirmed to be lower than the value, –0.53769775, from the 

sequential method.     
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In the initialization, NP of one occurs in the initialization, which increases NS by 

one as the overall composition becomes part of the sampling compositions in such a case 

(step 2 in the algorithm).  Reselection of reference composition (steps 7 and 8 of the new 

algorithm) occurs frequently from iterations one to six, in which step 8 is only used at the 

4
th

 iteration and step 7 at the other five iterations.  Merging of sampling compositions 

occurs at the 1
st
, 10

th
, and 31

st
 iterations, as shown by decreasing NS (= NP + NU) in 

Figure 3.6a.  From the 31
st
 iteration, NS becomes the total number of stationary points, 

three, on the DR function.  At the convergence, two of the three stationary points 

correspond to the two equilibrium phases (i.e., set P), and the other is a non-tangent 

stationary point (i.e., set U) with a positive DR (Table 3.4).  The residual of equation 3.3 

shown in Figure 3.6b indicates a linear convergence rate for a fixed reference 

composition, xr.  The total number of fugacity-coefficient computations is 348, out of 

which 33 computations are performed in the initialization to determine a reference 

composition.  The average number of fugacity-coefficient computations per iteration is 

approximately 3.  Appendix D also demonstrates the motion of all sampling 

compositions for selected iteration steps, in which merging and convergence of sampling 

compositions are clearly shown.  

To see the number of iterations required for robust convergence with respect to 

the initial NS used, the initial NS was controlled by changing NSmax by two with n = 1.0 

with the procedure given in Appendix C.  The initial NS required for robust convergence 

is 8 in this case.  The numbers of iterations required for convergence are 92, 86, and 76 

for the initial NS of 8, 10, and 12.  The number of stationary points detected upon 

convergence is 3 for NS ≥ 8.  The numbers of fugacity-coefficient calculations are 348, 

341, and 327 for the initial NS of 8, 10, and 12.   
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When initialized with NS of 4 (two near the edges of composition space and the 

other two at the centers of both sides of the overall composition), the algorithm does not 

converge to the global minimum of the Gibbs free energy.  To explain this, Figure 3.7 

shows the TPD in composition space at 190 K and 40.53 bars.  The correct two-phase 

solution of L2 + V is represented by the black dots on the DR function.  The hollow 

square dot is a local minimum located on DR.  Only two stationary points are located 

when the algorithm is initialized with only four sampling compositions.  These two 

stationary points correspond to the L1 and V lobes on the Gibbs free energy surface (see 

Figure 3.5), which do not yield the global minimum of the Gibbs free energy.   

For 0.980 ≤ zC1 ≤ 0.982, the sequential algorithm fails to find any phase instability 

in single-phase stability analysis.  However, the new algorithm properly converges to the 

L2 and V phases.  Table 3.5 shows the solution for zC1 of 0.980.  The Gibbs free energy 

(GR) at the solution, −0.49203424, is confirmed to be lower than the single-phase Gibbs 

free energy −0.49183831.   

Even if the degree of freedom is more than one for the sequential method, it has 

been observed in various flow-simulation cases that the sequential method initiated with 

Wilson’s K values tends to fail to find the correct solution that does not involve the L1 or 

V phase.  An example is the ternary mixture of 60% CO2, 12% C1, and 28% n-C20 at 250 

K and 38 bars.  Three phases of L1, L2, and V are present in composition space, and the 

overall composition in the L1-L2 region is located in the vicinity of the tie triangle.  The 

sequential method cannot find phase instability in the two-sided stability analysis with the 

V and L estimates from Wilson’s correlation.  Case 4 will provide another example of 

this kind.  
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3.3.3 Case 3.3 

This case uses a mixture of North Ward Estes (NWE) oil (Khan et al. 1992), H2O, 

CO2, n-C4, and n-C10.  The NWE oil has been characterized with six components; 

therefore, there are ten components altogether.  Components’ properties and the overall 

composition are given in Table 3.6.  The CEP of type V = L2 + L1 is calculated by use of 

the PR EOS at 452.80 K and 86.04 bars for this mixture.  Three equilibrium phases, V + 

L1 + L2, coexist at 459 K and 87 bars (i.e., close to the CEP).     

The new algorithm is tested with different initial numbers of sampling 

compositions (NS).  For this purpose, NS is controlled by changing NSmax from 20 to 95 

by adding 15 with n = 1.0.  The number of stationary points (minima) detected upon 

convergence is four for all initial NS tested; three tangent-stationary points (i.e., set P) and 

one non-tangent-stationary point (i.e., set U).   

To explain this case specifically, the new algorithm is initialized with NS = 20 (NC 

= 10, NSmax = 20, and n = 1.0).  In addition to ten sampling compositions placed near the 

ten composition vertices, ten sampling compositions are distributed at the central points 

of regions Ri for i = 1, 2,…, 10 in composition space around the overall composition 

(Appendix C).   

Figure 3.8 shows the convergence behavior in terms of NP, NU, NS, and the 

residual of equation 3.3 with the new algorithm.  The new algorithm converges to the 

correct solution in 823 iterations, as shown in Table 3.7, in which the compositions of V 

and L2 are close to each other.  Upon convergence, three equilibrium compositions are in 

set P, and one non-tangent stationary compositions is in set U.  The non-tangent 

stationary point is converged near 100% water with θ = 0.79.  The Gibbs free energy 

(GR) converged with the new algorithm is −2.67985726.   
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In the initialization, two sampling compositions are in set P, and the other 18 

compositions are in set U.  Merging of sampling compositions in set P and/or set U 

reduces NS during the iteration (Figure 3.8c).  Reselection of the reference composition 

occurs frequently between iterations one and eleven, iterations 21 and 62, and iterations 

148 and 206, resulting in the oscillation of NP and NU during these iterations (Figures 

3.8a and 3.8b).  Accordingly, the residuals of equation 3.3 for sets P and U also exhibit 

oscillations, as can be seen in Figures 3.8d and 3.8e.  At the 206
th

 iteration, the correct 

NP of three is identified, from which the residual of equation 3.3 for set P starts 

decreasing steadily (Figures 3.8a and 3.8d).  At the 243
rd

 iteration, NU decreases from 

two to one, which makes the residual of equation 3.3 for set U decrease discontinuously, 

as presented in Figures 3.8b and 3.8e.  From the 243
rd

 iteration on, a stable linear 

convergence rate is observed with the final number of stationary points (NP = 3 and NU = 

1).  Between the 700
th

 and the 823
rd

 iterations, the residual of equation 3.3 for set U 

exhibits oscillations around 10
-14

, which is much lower than the convergence criteria (10
-

10
 as used in this section).  This is likely because, in this particular case, the residual for 

set U is sensitive to the TPD function which is varying with varying compositions in set P 

before the final convergence (i.e., the TPD is defined with a reference composition in set 

P).   

The numbers of iterations required for convergence are 823 and 737 for the initial 

NS of 20 (NSmax = 20 with n = 1.0) and 40 (NSmax = 96 with n = 1.0), respectively.  For 

NS of 20, the total number of fugacity-coefficient computations is 3861, out of which 81 

computations are for the initialization.  Therefore, the number of fugacity calculations 

per iteration is approximately 5 for this case.   

The conventional sequential phase-stability/-split calculation is also tested for this 

case.  Figure 3.9 shows the number of iterations required for each step of the 
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conventional sequential method.  The initialization procedure for the conventional 

method was explained earlier in this section.  Single-phase stability analysis detects an 

instability with a V-like phase composition at the 96
th

 iteration.  Then, the subsequent 

two-phase split calculation converges to a false two-phase solution in 456 iterations.  

After that, two-phase stability analysis detects an instability of the two-phase solution 

using the 2
nd

 initial guess.  The first guess takes 128 iterations, but they are unable to 

identify any phase instability.  The 2
nd

 guess then takes 166 iterations until phase 

instability is detected.  A three-phase split calculation is performed with the initial K-

value estimates obtained from two-phase-stability test, and converges to a solution in 708 

iterations.  Phase instability cannot be detected for this three-phase solution using all of 

the 23 sets of initial guesses.  The number of iterations taken by this three-phase stability 

analysis is 9782.  That is, the conventional sequential method requires 11336 iterations 

for its final solution of three phases.  The total number of fugacity-coefficient 

calculations is 13234 with the sequential method.  Computations in the three-phase 

stability are counted for a fair comparison with the new algorithm because the new 

algorithm has found a non-tangent stationary point as shown in Table 3.7.  However, the 

new algorithm is shown to require fewer iterations and fugacity computations even 

without considering the three-phase stability for the sequential method.  These results 

show that the convergence of the new algorithm is more rapid than that of the sequential 

algorithm in terms of iteration and fugacity calculation for this case.     

3.3.4 Case 3.4 

Case 3.4 uses a four-component EOS fluid model based on the Bob Slaughter 

Block (BSB) oil that was originally characterized by Khan et al. (1992) with seven 

components.  This quaternary model for the BSB oil (BSB-Q) was used previously in 



 78 

Okuno et al. (2011).  Parameters for the BSB-Q oil are given in Table 3.8.  The new 

and conventional algorithms are compared for flash calculation of the BSB-Q oil at 

313.706 K and 82.737 bars.   

The new algorithm converges to two tangent stationary points (L1 and L2) in set P 

and one non-tangent stationary point (V) in set U, when 12 or more sampling 

compositions are initially distributed based on the method given in Appendix C.  Table 

3.9 summarizes the converged solution.   

For the initial NS of 12, the convergence is achieved in 161 iterations.  The 

converged GR value is −3.45251125.  The total number of fugacity-coefficient vector 

computations is 720, of which 49 computations are for the initialization.  The number of 

fugacity-coefficient vector computations is approximately 4 per iteration.  Figure 3.10 

shows the convergence behavior of the new algorithm.  It requires 42 iterations to 

identify the correct number of stationary points; i.e., NP = 2 and NU = 1 (Figures 3.10a 

and 3.10b).  Merging of sampling compositions occurs at iteration steps 8, 11, 16, 19, 

20, 21, 23, 37, and 42, resulting in reduction of NS as shown in Figure 3.10c.  

Reselection of the reference composition, xr, by use of steps 7 and 8 of the new algorithm 

occurs frequently until the 26
th

 iteration.  At the 42
nd

 iteration, NU becomes the final 

number of non-tangent stationary points through merging, resulting a significant decrease 

in the residual for set U (Figure 3.10e).     

The conventional sequential method is shown to converge to an incorrect solution 

for this case.  Figure 3.11 shows the number of iterations required for each step of the 

sequential phase-stability/-split calculations.  The single-phase stability finds an 

instability with a V-like initial composition (i.e., the first guess) in 18 iterations.  Then, 

the subsequent two-phase flash converges in 47 iterations.  After that, two-phase 

stability analysis with six different estimates finds no instability after the total of 688 
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iterations.  With the 7
th

 initial guess (i.e., the midpoint), an instability is detected in 128 

iterations.  Three-phase flash is performed with the initial K values obtained from two-

phase stability analysis and converges in 141 iterations.  This three-phase flash results in 

negative phase amounts, i.e., negative flash.  Hence, another two-phase flash is 

performed, and it converges in 49 iterations.  Then, phase stability analysis for the new 

two-phase solution with 11 different initial guesses finds no instability, taking 855 

iterations.  Finally, two phases are assumed to be stable, after the total of 1926 iterations.  

The number of fugacity-coefficient vector calculations is 2323.  However, the converged 

GR value is −3.45110691, which is higher than the GR obtained from the new algorithm 

(−3.45251125).  This indicates that the two-phase solution obtained from the 

conventional sequential method is a local minimum of Gibbs free energy.  The new 

algorithm converged to a lower Gibbs free energy with much fewer iterations and 

fugacity computations.     

The new algorithm based on successive substitution can be used to initialize a 2
nd

-

order convergent method with set P, as mentioned previously.  Here, the current case is 

used to show the convergence behavior of the new algorithm and an in-house 2
nd

-order 

algorithm (Okuno et al. 2010b) with different switching criteria.  The final convergence 

criterion used for the 2
nd

-order algorithm is 10
-10

, as in all case studies in this section.  

The switching criterion used with equation 1 for sets P and U range from 10
-2

 to 10
-6

.  

Table 3.10 summarizes the number of iterations for the new algorithm before switching 

and the 2
nd

-order algorithm after switching for each of the switching criteria used.  After 

switching to the 2
nd

-order algorithm, the correct convergence is achieved rapidly in three 

or fewer iterations for all the cases tested.  As an example, the convergence behavior 

before and after switching is shown in Figure 3.10d with the switching criterion of 10
-2

.  

The new algorithm is used until the 38
th

 iteration, and is switched to the 2
nd

-order 
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algorithm when the residual of equation 3.3 is below 10
-2

 for both sets P and U.  Then, 

the rapid convergence is achieved in three iterations, as shown by the star markers in 

Figure 3.10d.  The total number of iterations required for convergence is 41.  Use of the 

2
nd

-order algorithm after switching at 10
-2

 results in four times more rapid convergence in 

terms of number of iterations in comparison with the use of the new algorithm alone. 

Another test is conducted by using Wilson’s correlation to initialize the new 

algorithm with only two sampling compositions, one V-like and one L-like compositions. 

The new algorithm converges in 190 iterations to the same solution presented in Table 

3.9; i.e., two tangent stationary points (L1 and L2) in set P and one non-tangent stationary 

point (V-like) in set U.  The total number of fugacity-coefficient vector computations is 

582, of which 9 computations are for the initialization.  Hence, the number of fugacity-

coefficient vector computations is approximately 3 per iteration.   

Figure 3.12 shows the convergence behavior of the new algorithm.  The correct 

number of stationary points [i.e., NP = 2 and NU = 1 (Figures 3.12a and 3.12b)] is 

identified at the 55
th

 iteration.  In the initialization, NP of one occurs, which increases NS 

by one when the overall composition becomes an additional sampling composition (step 

2).  Merging of sampling compositions does not occur for this case.  Hence, NS remains 

three until the final convergence is achieved.  Reselection of reference composition, xr, 

by use of steps 7 and 8 of the new algorithm occurs at iteration steps 1, 2, 20, and 55.  In 

Figure 3.12c, a significant increase in the residual of the TPD equations occurs for set P 

at the 20
th

 iteration when NP is increased from two to three.  NU is zero between iteration 

steps 20 and 54, for which the residual of the TPD equations for set U does not exist in 

Figure 3.12d.  From the 55
th

 iteration until the convergence, NP and NU are the final 

numbers of tangent stationary points and non-tangent stationary points; i.e., two and 

three, respectively.   
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It was observed that the current algorithm could exhibit non-convergence when 

the binary interaction parameters of PC2 with C1 and PC1 were set to −0.5.  Hence, the 

current algorithm is considered to possess the inherent limitation of successive 

substitution (Heidemann and Michelsen 1995) as mentioned at the beginning of this 

section. 

3.4 SUMMARY 

This chapter presented a new algorithm for isothermal-isobaric flash for an 

arbitrary number of phases.  The unified formulation developed for simultaneous phase-

stability/split calculation is based on the classical criterion of phase equilibrium, as 

explained in Baker et al. (1982).  The correct set of equations is solved with successive 

substitution for stationary points of the tangent plane distance defined at a reference 

phase composition.  Although the main focus of this chapter was on robust solution of 

multiphase flash, the new algorithm can be used also to initialize a 2
nd

-order convergent 

method in the vicinity of a solution.  Conclusions are as follows: 

1. The number of equilibrium phases is part of the solution in the new 

algorithm, in contrast to the sequential stability/flash approach.  It is not necessary to 

find false solutions and correct them for robust multiphase flash with the new algorithm.  

The advantage of the new algorithm in terms of robustness is more pronounced for more 

complex phase behavior, in which multiple local minima of the Gibbs free energy are 

present.   

2. The new algorithm can be initialized even when no reliable information is 

available about the equilibrium phases of the fluid of interest.  In the method used for 

initializing the algorithm, NC sampling compositions are distributed near compositional 

vertices, and the others are systematically distributed around the overall composition 
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specified.  No K-value correlation is necessary to initialize the new algorithm.  This 

also yields the flexibility that the new algorithm offers in terms of robustness and 

efficiency.  For example, one can initialize the algorithm with more sampling 

compositions for enhanced robustness by capturing more information regarding the Gibbs 

free energy during the iteration.  If reasonable estimates are available for equilibrium 

phases (e.g., correlations, the solution from the previous time step in flow simulation, and 

tie-simplex tabulation), one can use them to reduce the number of equations to be solved.   

3. The new algorithm does not use the stability equations of Gupta et al. 

(1990) because they are not necessary with the formulation presented in this research.  

Consequently, there is no need to solve the augmented Jacobian matrix that must be 

solved at each iteration in the algorithm of Gupta et al. (1990).  Also, the new algorithm 

does not exhibit the convergence problems that are associated with the stability equations 

of Gupta et al. (1991). 

4. Case studies showed that the new algorithm finds more stable solutions 

(lower Gibbs free energy) for the complex cases tested, for which the conventional 

method only finds local minima.  It was shown that the new algorithm can find non-

tangent stationary points of the tangent-plane-distance function, if present, in addition to 

equilibrium phases.   

5. The iteration scheme of the new algorithm is the traditional successive 

substitution, of which convergence behavior has been studied in the literature (e.g., 

Michelsen 1982a, Mehra et al. 1983, Ammar and Renon 1987, Kaul 1992).  The new 

algorithm can be used to initialize a 2nd-order convergent method as demonstrated in 

case 4.  It is expected to be more difficult for the algorithm to converge for mixtures that 

exhibit a large negative deviation from an ideal solution, according to the analysis of 

Heidemann and Michelsen (1995).   
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Table 3.1: Properties of the components for case 3.1 

Component TC, K PC, bars Acentric factor  

H2O 647.3000 220.8900 0.3440 

C3 369.8000 42.4600 0.1520 

n-C16 717.0000 14.1900 0.7420 

Binary interaction parameters:  

 H2O C3 n-C16 

H2O 0.0000 0.6841 0.3583 

C3  0.0000 0.0000 

n-C16   0.0000 

 

 

Table 3.2: Solution for case 3.1 with the new algorithm 

Component L V 

H2O 0.32452700 0.79574966 

C3 0.09549610 0.15586062 

n-C16 0.57997690 0.04838973 

β 0.09708713 0.90291287 

θ 0.00000000 0.00000000 

GR/RT -0.96787252 

Properties of the components are given in Table 3.1.  The overall composition is 75% H2O, 

15% C3, and 10% n-C16.  The specified temperature and pressure are 560 K and 65 bars, 

respectively.  The algorithm of Gupta et al. (1990) fails for this case, due to an open feasible 

domain in the RR problem based on their initialization scheme. 

 

 

 

 

 

Table 3.3: Properties of the components for case 3.2  

Component PC, bars TC, K Acentric factor 

C1 46.0016 190.6000 0.0080 

H2S 89.3686 373.2000 0.1000 

The binary interaction parameter between C1 and H2S is 0.0800.   
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Table 3.4: Results for case 3.2 with the new and conventional algorithms 

 
New algorithm Conventional algorithm 

L1 V L2 L1 V 

C1 0.18666898 0.98270136 0.93610375 0.12587785 0.97953529 

H2S 0.81333102 0.01729864 0.06389625 0.87412215 0.02046471 

β 0.00000000 0.72742456 0.27257544 0.01116888 0.98883111 

θ 0.13266274 0. 00000000 0. 00000000 - - 

GR/RT -0.53949050 -0.53769775 

Properties of the components are given in Table 3.3.  The overall composition is 97% C1 

and 3% H2S for this table.  The specified temperature and pressure are 190 K and 40.53 

bars, respectively. 

 

 

Table 3.5: Solution for case 3.2 with the new algorithm. 

Component L1 V L2 

β 0.00000000 0.94202784 0.05797216 

θ 0.13266274 0.00000000 0.00000000 

GR/RT -0.49203424 

Properties of the components are given in Table 3.3.  The overall composition is 98% C1 and 

2% H2S.  The specified temperature and pressure are 190 K and 40.53 bars, respectively.  

The correct set of three phase compositions is identical to the one presented in Table 3.4.  The 

conventional algorithm fails to find phase instability in single-phase stability analysis for this 

flash calculation. 
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Table 3.6: Properties of the components for case 3.3  

Component Overall composition MW, g/mol PC, bars TC, K 
Acentric 

factor 

CO2 0.1200 44.0100 73.7600 304.2000 0.2250 

C1 0.0489 16.0430 46.0000 190.6000 0.0080 

n-C4 0.4400 58.1240 38.0000 425.2000 0.1930 

n-C10 0.1000 142.2850 21.0800 617.6000 0.4900 

C2-3 0.1121 38.4000 45.0500 343.6400 0.1300 

C4-6 0.1000 72.8200 33.5100 466.4100 0.2440 

C7-14 0.0300 135.8200 24.2400 603.0700 0.6000 

C15-24 0.0100 257.7500 18.0300 733.7900 0.9030 

C25+ 0.0090 479.9500 17.2600 923.2000 1.2290 

H2O 0.0300 18.0150 220.8900 647.3000 0.3440 

Binary interaction parameters: 

 CO2 C1 n-C4 n-C10 C2-3 C4-6 C7-14 C15-24 C25+ H2O 

CO2 0.000 0.120 0.120 0.114 0.120 0.120 0.090 0.090 0.090 0.667 

C1  0.000 0.000 0.042 0.000 0.000 0.000 0.000 0.000 0.732 

n-C4   0.000 0.008 0.000 0.000 0.000 0.000 0.000 0.684 

n-C10    0.000 0.000 0.000 0.000 0.000 0.000 0.357 

C2-3     0.000 0.000 0.000 0.000 0.000 0.679 

C4-6      0.000 0.000 0.000 0.000 0.605 

C7-14       0.000 0.000 0.000 0.491 

C15-24        0.000 0.000 0.327 

C25+         0.000 0.242 

H2O          0.000 
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Table 3.7: Results for case 3.3 with the new algorithm 

Component L2 L1 V  
Non-tangent 

stationary point 

CO2 0.11738916 0.07803457 0.15787879  0.00010037 

C1 0.04753232 0.02844412 0.06839099  0.00002118 

n-C4 0.44144075 0.38822000 0.43634612  0.00000002 

n-C10 0.10303175 0.13284012 0.05967230  0.00000000 

C2-3 0.11120735 0.08458583 0.12808134  0.00000070 

C4-6 0.10094542 0.09554283 0.09080736  0.00000000 

C7-14 0.03083866 0.04300449 0.01794197  0.00000000 

C15-24 0.01029303 0.02618153 0.00310814  0.00000000 

C25+ 0.00795880 0.09401603 0.00068515  0.00000000 

H2O 0.02936275 0.02913048 0.03708783  0.99987773 

β 0.89781487 0.01911965 0.08306548 0.00000000 

θ 0.00000000 0.00000000 0.00000000 0.79007647 

GR/RT -2.67985726 

 

 

Table 3.8: Properties of the components for case 3.4  

Component 
Overall 

composition 
TC, K PC, bars 

Acentric 

factor  
CO2 0.7218 304.200 73.765 0.225 

 
C1 0.0214 160.000 46.002 0.008 

 
PC1 0.1870 529.028 27.318 0.481 

 
PC2 0.0698 795.328 17.309 1.042 

 
Binary interaction parameters:  

  CO2 C1 PC1 PC2  

CO2 0.0000 0.0550 0.0810 0.1050  

C1  
0.0000 0.0000 0.0000  

PC1   0.0000 0.0000  

PC2    0.0000  
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Table 3.9: Results for case 3.4 with the new algorithm 

Component V L1 L2 

CO2 0.92939195 0.62612349 0.86182262 

C1 0.05933155 0.01782033 0.02660759 

PC1 0.01127539 0.24083442 0.10820073 

PC2 0.00000111 0.11522177 0.00336906 

β 0.00000000 0.59418965 0.40581035 

θ 0.00154683 0. 00000000 0. 00000000 

 

 

Table 3.10: Number of iterations when the new algorithm is used to initialize a  

2
nd

-order convergent method for case 3.4  

Switching criterion 10
-2

 10
-3

 10
-4

 10
-5

 10
-6

 

Number of iterations required 

for the new algorithm 
38 50 66 82 98 

Number of iterations required 

for the 2
nd

-order method 
3 2 2 2 1 

Total number of iterations 

required for final convergence 
41 52 68 84 99 
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Figure 3.1. Phase boundaries for the ternary system of H2O, C3, and n-C16 at 430 K and 

35 bars.  L, V, and W stand for the oleic, gaseous, and aqueous phases, respectively.  

Properties of the components are given in Table 3.1.  The mixing line between (0.0, 0.9, 

0.1) and (0.9, 0.0, 0.1) is used to show the variation of parameters in Figures 3.2 and 3.3. 

 

  



 89 

 
 

(a) 

 

 
(b) 
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(c) 

Figure 3.2. Gibbs free energy surface at 430 K and 35 bars, and the tangent planes 

converged for three compositions on the mixing line given in Figure 3.1.  (a) zH2O = 0.1.  

(b) zH2O = 0.75. (c) zH2O = 0.84. 
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(a) 

 

 
(b) 

Figure 3.3. Variation of parameters with the new algorithm applied along the mixing line 

given in Figure 3.1 at 430K and 35 bars.  (a) Phase mole fraction.  (b) Stability 

variable.  θL = 0 in b as the L phase is always present along the mixing line.  



 92 

 
(a) 

 

 
(b) 

Figure 3.4. Convergence behavior of the new algorithm for case 3.1 with the overall 

composition of 75% H2O, 15% C3, and 10% n-C16 at 560 K and 65 bars.  Properties of 

the components are given in Table 3.1.  (a) NP and NU.  (b) Residual of equation 3.3 

for sets P and U.   
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Figure 3.5. Gibbs free energy surface in composition space for the binary system of C1 

and H2S at 190 K and 40.53 bars.  Properties of the components are given in Table 3.3.  

The three lobes indicated correspond to the L1, L2, and V phases in the order of 

increasing C1 mole fraction in composition space.   
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(a) 

 

 
(b) 

Figure 3.6. Convergence behavior of the new algorithm for case 3.2 at 190 K and 40.53 

bars.  Properties of the components are given in Table 3.3.  (a) NP and NU.  (b) 

Residual of equation 3.3 for sets P and U.   
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Figure 3.7. Tangent plane distance in composition space for the binary system of C1 and 

H2S.  Properties of the components are given in Table 3.3.  The temperature and 

pressure are 190 K and 40.53 bars, respectively.   
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(a) 

 

 
(b) 

 

Figure 3.8. (Continued below)   
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(c) 

 

 
(d) 

Figure 3.8. (Continued below)   
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(e) 

Figure 3.8. Convergence behavior of the new algorithm for case 3.3 (Table 3.6).  The 

temperature and pressure are 459 K and 87 bars, respectively.  (a) NP, (b) NU, (c) NS, (d) 

Residual of equation 3.3 for set P, (e) Residual of equation 3.3 for set U.   

  

Figure 3.9. Number of iterations required for each step in the conventional sequential 

method of PT flash for case 3.3.  The total number of iterations required for 

convergence with the conventional sequential algorithm is 11336, if the number of 

iterations for initial guesses that cannot identify phase-instability for two and three phases 

is counted.  
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(a) 

 

 
(b) 

Figure 3.10. (Continued below) 
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(c) 

 

 
(d) 

Figure 3.10. (Continued below) 
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(e) 

Figure 3.10. Convergence behavior of the new algorithm for case 3.4.  Properties of the 

components are given in Table 3.8.  The temperature and pressure are 313.706 K and 

82.737 bars, respectively.  (a) NP, (b) NU, (c) NS, (d) Residual of equation 3.3 for set P, 

(e) Residual of equation 3.3 for set U.  Figure 3.10d also shows the convergence 

behavior of a 2
nd

-order convergent method that has been initialized by the new algorithm 

with the switching criterion of 10
-2

 for equation 3.3 for sets P and U. 
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Figure 3.11. Number of iterations required for each step in the conventional sequential 

method of PT flash for case 3.4.  The total number of iterations required for 

convergence by use of the conventional sequential algorithm is 1926, if the number of 

iterations for the initial guesses that cannot identify phase-instability for two and three 

phases is counted.  
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(a) 

 

 
 

(b) 

Figure 3.12. (Continued below) 
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(c) 

 

 
(d) 

Figure 3.12. Convergence behavior of the new algorithm for case 3.4 with Wilson’s 

correlation in initialization.  Properties of components are given in Table 3.8.  The 

temperature and pressure are 313.706 K and 82.737 bars, respectively.  (a) NP, (b) NU, 

(c) Residual of equation 3.3 for set P, (d) Residual of equation 3.3 for set U.   



 105 

CHAPTER 4: Multiphase Isenthalpic Flash Integrated with Stability 

Analysis2   

Robust isenthalpic (PH) flash is important in compositional simulation of steam 

injection, which involves at least three phases consisting of the oleic, gaseous, and 

aqueous phases.  However, multiphase PH flash is challenging for multiphase non-

isothermal flow simulation using an EOS, because the number of equilibrium phases is 

unknown in temperature and composition space, and the system of equations in PH flash 

becomes nearly degenerate for narrow-boiling fluids.  The term “narrow-boiling” is used 

in the literature to refer to enthalpy that is sensitive to temperature.     

The first objective of this chapter is to present a new analysis of narrow-boiling 

behavior by coupling energy and phase behavior equations through the temperature 

dependency of K values.  The second objective is to develop two algorithms for PH flash 

that resolves the two technical challenges mentioned above.  The first algorithm 

proposed is based on the direct substitution (DS) algorithm.  A detailed analysis is given 

for narrow-boiling behavior and its effects on the DS algorithm.  The second algorithm 

is formulated by use of the tangent plane distance function, in which phase-split 

computation is integrated with phase-stability analysis. The formulated PH flash is solved 

by the DS algorithm with an arbitrary number of sampling compositions, at which phase 

stability is measured during the iteration.  The number of equilibrium phases is not 

required to be fixed in the new simultaneous PH flash algorithm.   

                                                 
2 Parts of this chapter have been published in the following papers which were supervised by R. Okuno: 

 Zhu, D. and Okuno, R. 2014a. A Robust Algorithm for Isenthalpic Flash of Narrow-Boiling 

Fluids, Fluid Phase Equilibria 379: 26-51.  

 Zhu, D. and Okuno, R. 2015b. Robust Isenthalpic Flash for Multiphase Water/Hydrocarbon 

Mixtures. SPE Journal 20(6): 1350-1365.   

 Zhu, D. and Okuno, R. 2016. Multiphase Isenthalpic Flash Integrated with Stability Analysis, 

Fluid Phase Equilibria 423: 203-219.  
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4.1  INTRODUCTION  

Numerical solution of isothermal compositional reservoir flow has been 

extensively studied (Belkadi et al. 2013, Chang 1990, Chang et al. 1990, Iranshahr et al. 

2013, Khan 1992, Mehra et al. 1982, Mohebbinia 2013, Okuno et al. 2010, Pan and 

Tchelepi 2011, Perschke 1988, Perschke et al. 1989, Rezaveisi et al. 2014, Trangenstein 

1987, Trangenstein and Bell 1989, Wang and Stenby 1994, Wang and Baker 1995, 

Zaydullin et al. 2012).  For thermal compositional reservoir flow, however, the literature 

is relatively scarce (Brantferger 1991, Chien et al. 1989, Grabowski et al. 1979, Heidari 

et al. 2014, Iranshahr et al. 2010, Ishimoto et al. 1987, Liu et al. 2009, Rubin and 

Buchanan 1985, Siu et al. 1991, Varavei and Sepehrnoori 2009, Zaydullin et al. 2014).  

Reliable solution of the coupled equations of mass balance, energy balance, and phase 

behavior requires a detailed understanding of numerical difficulties that may occur in 

thermal compositional simulation.  This paper is concerned with two major issues in 

isenthalpic flash for thermal compositional simulation with a cubic EOS; one is narrow-

boiling behavior and the other is phase stability analysis.   

Narrow-boiling behavior refers to the total enthalpy that is sensitive to 

temperature (Agarwal et al. 1991, Gupta et al. 1990, Michelsen 1987, 1999, Zhu and 

Okuno 2014ab, 2015ab, 2016).  It is related to how the energy balance affects phase 

behavior in thermal compositional simulation.  The limiting narrow-boiling behavior 

occurs for fluid systems with one degree of freedom, for which the enthalpy exhibits a 

discontinuity in temperature space (Agarwal et al. 1991, Gupta et al. 1990, Brantferger et 

al 1991, Gernert et al. 2014, Michelsen 1993, Van Odyck et al. 2009).   

Various researchers reported convergence difficulties associated with narrow-

boiling behavior in their steam injection simulations (Brantferger 1991, Heidari et al. 
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2014, Btantferger et al. 1991, Van Odyck et al. 2009).  The difficulties may be better 

handled in flow simulation with PH flash than with PT flash, because in the former type 

of thermal simulation formulation (e.g., Brantferger 1991, Btantferger et al. 1991) 

narrow-boiling behavior is handled in local flash calculations that are decoupled from the 

global mass and energy flow equations.  Even in stand-alone flash calculations, 

however, robust PH flash for narrow-boiling fluids has been a technical challenge 

(Brantferger 1991, Heidari et al. 2014, Agarwal et al. 1991, Gupta et al. 1990, Michelsen 

1987, 1999, Zhu and Okuno 2014ab, Btantferger et al. 1991).  Various algorithms have 

been proposed for PH flash and discussed in details in chapter 2.  Also, it is not well 

understood under what thermodynamic conditions narrow-boiling behavior occurs; this 

question is addressed as one of the two main objectives in this chapter.   

Due to the various issues ranging from fundamental to implementation problems, 

no algorithm has been established for multiphase PH flash integrated with phase-stability 

analysis.  In this chapter, a detailed analysis of the enthalpy sensitivity to temperature is 

given, which explains the reason for the convergence issues that the prior DS algorithms 

can pose for narrow-boiling fluids.  Also, we will address the unanswered question 

regarding thermodynamic conditions for narrow-boiling behavior.   

Two algorithms are proposed; one is the modified DS algorithm, and the other 

one is a coupling of phase-stability and flash calculations that is reformulated on the basis 

of Brantferger’s research on phase stability with PH specification (Brantferger 1991, 

Brantferger et al. 1991).  Case studies will be given to demonstrate that the developed 

algorithms can robustly perform multiphase PH flash even for narrow-boiling fluids, 

which none of the prior PH-flash algorithms (Brantferger 1991, Heidari et al. 2014, 

Agarwal et al. 1991, Gupta et al. 1990, Michelsen 1987, 1999, Zhu and Okuno 2014ab, 

Brantferger et al. 1991) addressed in detail.    
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4.2 ANALYSIS OF NARROW-BOILING BEHAVIORS   

As explained in chapter 2, Michelsen (1987) and Agarwal et al. (1991) reported 

that their DS algorithms have convergence difficulties when narrow-boiling behavior is 

involved.  A fluid with the narrow-boiling behavior exhibits a significant sensitivity of 

enthalpy to temperature (Agarwal et al. 1991, Michelsen 1987).  This section 

investigates fundamental reasons for the narrow-boiling behavior and its effects on PH 

flash using the DS equations.   

4.2.1 Gibbs Free Energy Analysis  

Appendix A presents the analytical expression of the sensitivity of dimensionless 

total molar enthalpy (HD
t
) to dimensionless temperature (TD) in terms of ∂βV/∂TD.  βV is 

the phase mole fraction of V phase.  By definition, however, ∂βV/∂TD is zero in the 

Jacobian matrix in the DS algorithms (see Appendix A for the expressions for the 

Jacobian matrix).  This section gives another analysis of the narrow-boiling behavior 

through the Gibbs free energy in composition-temperature space.    

Phase equilibrium predictions at temperature and pressure are determined by the 

geometric properties of the single-phase Gibbs free energy (i.e., the Gibbs free energy 

assuming a single phase even in multiphase regions) in composition space.  PT flash 

calculation, or minimization of the Gibbs free energy, is to correct the non-convex 

portion of the single-phase Gibbs free energy that contains the specified overall 

composition.  The single-phase Gibbs free energy change on mixing in a dimensionless 

form (ΔmG/RT) is calculated as  

∆mG RT⁄ = ∑ xi[Inφi(T, P, x) − Inφi(T, P)]
NC
i=1 ,    (4.1) 

where φi(T, P, x) is the fugacity coefficient of component i in a mixture, and φi(T, P) is 

the fugacity coefficient of component i as a pure component.   
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If βV is sensitive to TD for a fixed overall composition and pressure, the Gibbs 

free energy should behave in such a way that at least one of the equilibrium phase 

compositions drastically changes with a small change in temperature.  This is illustrated 

in a simple example (case 4.1) given below.    

Case 4.1 uses a binary mixture of 99.00% methane (C1) and 1.00% n-butane (C4), 

for which properties are given in Table 4.1.  Figure 4.1 shows the phase envelope in P-

T space, where the critical point is calculated to be 197.57 K and 53.05 bars.  The 

contour lines for βV in Figure 4.1a indicate that the sensitivity of βV to T varies in the 

two-phase region.  The contour lines are significantly dense near the bubble-point curve.  

PH flash is challenging near the bubble-point at 50 bars since it presents narrow-boiling 

behavior and is close to the critical point.  Figure 4.1b shows the magnified P-T diagram 

near the critical point.  At 50 bars, two phases exist from 194.98 K to 228.20 K, and βV 

increases from 0.00 to more than 0.90 with a temperature increase of 2.00 K from the 

bubble-point temperature 194.98 K.  Figure 4.2 shows that H
t
 and βV at 50 bars are 

sensitive to temperature near the bubble point.  The ∂βV/∂TD can be higher than 70, 

where TD is calculated using equation A-1.1 with Tref = 300 K.   

Figure 4.3 presents the Gibbs free energy surfaces (equation 4.1) in composition 

space at two different temperatures, T1 = 195.00 K and T2 = 201.00 K, at 50.00 bars.   V 

and L represent the vapor and oleic phases, respectively.  As can be seen from Figure 

4.1, T1 and T2 are in the two-phase region, but T1 is close to the bubble-point 

temperature.  In Figure 4.3, equilibrium phases are indicated as follows: the filled circle 

for the V phase at T1, the hollow circle for the V phase at T2, the filled square for the L 

phase at T1, and the hollow square for the L phase at T2.  At T1, the two phases are 

present near the C1 edge in composition space.  Details of the Gibbs free energy surfaces 

near the C1 edge are shown in Figure 4.3b.     
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As temperature increases from T1 to T2 (T2 ‒ T1 = 6.00 K), the composition and 

the Gibbs free energy of the L phase drastically change.  However, this does not occur 

for the V phase.  At T1, the total ΔmG/RT is ‒2.065 × 10
-2

, where the C1 concentration is 

98.96% for the L phase and 99.61% for the V phase.  The Gibbs free energy values are ‒

2.141 × 10
-2

 for the L phase and ‒9.549 × 10
-3

 for the V phase.  At T2, the total ΔmG/RT 

is ‒1.435 × 10
-2

, where the C1 concentration is 80.26% for the L phase and 99.64% for 

the V phase.  The Gibbs free energy values are ‒2.209 × 10
-1

 for the L phase and ‒7.280 

× 10
-3

 for the V phase.  The L phase composition moves away from the fixed overall 

composition while the V phase composition changes only slightly.  As a result, βV 

exhibits a drastic change from 0.0644 at T1 to 0.9669 at T2.   

Figure 4.4 shows the significant non-linearity of the phase compositions with 

respect to temperature.  The derivatives of lnxC4 and lnyC4 with respect to TD are close to 

zero for temperatures above 205 K in the two-phase region.  However, they rapidly 

increase as the bubble-point temperature is approached.  A similar level of non-linearity 

is observed for the fugacity coefficients since they are thermodynamic properties 

dependent on the phase composition.   

Case 4.1 has graphically demonstrated that the sensitivity of a phase composition 

causes the sensitivity of thermodynamic quantities and their associated parameters (e.g., 

βV) to temperature for a fixed pressure and overall composition in a two-phase region.  

Then, the sensitivity of βV to temperature causes HD
t
 to be sensitive to temperature as 

discussed above with Figure 4.2.  This can be also confirmed using equation A-1.14.  

Figure 4.5 shows the values for α1, α2, and α3 in equation A-1.14 for case 4.1 between 

194.98 K and 228.20 K.  The α1 values are positive near zero.  Therefore, the first term 

of equation A-1.14, which is also positive as shown in Figure 4.6, does not adversely 

affect the sensitivity of HD
t
.  Figure 4.5 indicates that the second and third terms cause 
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HD
t
 to rapidly increase with temperature near the bubble point.  Figure 4.6 shows that the 

three terms exhibit significant non-linearity with respect to temperature.  The large 

positive values of ∂βV/∂TD are multiplied by negative α2 values for the second term of 

equation A-1.14.  The α3 values are sensitive near the bubble-point temperature, but 

∂βV/∂TD is not multiplied by α3 for the third term.  The ∂βV/∂TD value influences the 

sensitivity of HD
t
 to temperature mainly through the second term of equation A-1.14 in 

this case.  

4.2.2 Narrow-Boiling Behavior with Three Phases  

A characteristic of narrow-boiling behavior is that the amounts of phases (i.e., 

β’s) change rapidly with a small change in temperature, as indicated by its 

phenomenological name.  The amounts of phases depend on the relative location of the 

overall composition to the equilibrium phases in composition space.  This is illustrated 

below using a simple ternary example (case 4.2).    

Case 4.2 uses a ternary mixture of 75% water (w), 15% propane (C3) and 10% n-

C16 (C16), for which properties are given in Table 4.2.  Figure 4.7 shows phase 

boundaries in P-T space, where the critical endpoint of type L = V + W is calculated at 

569.35 K and 131.07 bars.  W, V and L represent the aqueous, vapor and oleic phases, 

respectively.  At 80 bars, three phases exist from 491.17 K to 549.25 K.  Three-phase 

PH flash for this mixture is challenging near the boundary between L + V + W and L + V 

since it presents narrow-boiling behavior.  Figure 4.8 shows that H
t
 at 80 bars is 

sensitive to temperature near the phase boundary.   

Figure 4.9 presents the tie triangles in composition space at 80 bars at two 

different temperatures, T1 = 530 K and T2 = 548 K.  The three equilibrium phases at T1 

and T2 are shown as solid and dashed tie triangles, respectively.  As temperature 
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increases from T1 to T2 (T2 – T1 = 18 K), the compositions of the L and V phases 

drastically change, while the W phase stays in the vicinity of the water vertex of 

composition space.  Consequently, the overall composition becomes close to the L-V 

edge of the tie triangle at T2.  This can be confirmed in Figure 4.7, where T2 is close to 

the phase boundary between L + V + W and L + V at 80 bars.     

At T1, the C3 concentration is 37.03% for the V phase and 26.22% for the L 

phase, and the C16 concentration is 3.51% for the V phase and 44.67% for the L phase.  

The phase mole fractions are 0.203, 0.261 and 0.536 for the L, V and W phases, 

respectively.  At T2, the C3 concentration is 17.17% for the V phase and 12.76% for the 

L phase, and the C16 concentration is 4.16% for the V phase and 49.21% for the L phase.  

The phase mole fractions are 0.138, 0.771, and 0.091 for the L, V and W phases, 

respectively.   

The concentrations of C3 in the V and L phases decrease rapidly during the 

temperature increase from T1 to T2 (T2 – T1 = 18 K).  This results from the variation of 

the Gibbs free energy in composition-temperature space.  Since graphical illustration of 

the Gibbs free energy in composition-temperature space is difficult for more than two 

components, it is implied by presenting ln(xij) (associated with the ideal term of the 

Gibbs free energy).  Figure 4.10 shows that the gradients of ln(xC16) and ln(xw) with 

respect to TD do not change very much in the three-phase region.  The derivatives of 

ln(xC3) decrease with increasing temperature within the three-phase region, especially for 

the L and V phases.  A similar level of non-linearity is observed for the fugacity 

coefficients (associated with the excess term of the Gibbs free energy) within the three-

phase region since they are thermodynamic properties dependent on the phase 

compositions.   



 113 

The variation of phase compositions (Figure 4.9) that is determined by the Gibbs 

free energy in composition-temperature space results in significant changes in phase mole 

fractions, β’s.  Figure 4.11 shows that βV and βW become progressively larger and 

smaller, respectively, as the phase boundary between L + V + W and L + V is 

approached.  Within the three-phase region, βV increases from 0% to 86%, and βW 

decreases from 71% to 0% with increasing temperature.  This ternary example showed 

that narrow-boiling behavior involves rapid changes in the properties and amounts of 

equilibrium phases with temperature, but the sensitivities depend on how the equilibrium 

phase compositions vary relative to the overall composition in temperature space.   

4.2.3 Near Degeneracy of the DS Equations  

The DS equations consist of two types of equations, the enthalpy and material-

balance equations, which are solved for TD and β’s.  Previous two sections showed that 

the narrow-boiling behavior occurs when at least one of the two or three phase 

compositions is sensitive to temperature, resulting in β’s to be sensitive to temperature.  

This section discusses the effects of narrow-boiling behavior on the DS Jacobian matrix, 

which significantly affects the computational robustness.   

4.2.3.1 Two-Phase Case 

The two-phase case was used in section 4.2.1 to explain the narrow-boiling 

behavior through the Gibbs free energy in composition-temperature space.  As presented 

in Appendix A, the Jacobian matrix for the DS algorithm contains ∂lnKi/∂TD; thus, the 

behavior of phase compositions affects the condition number of the Jacobian matrix.  

This is depicted in Figure 4.12 for case 4.1.   

Figure 4.12 shows that ∂lnKC4/∂TD substantially increases with increasing 

temperature near the bubble-point temperature.  This sensitive KC4 directly affects the 
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condition number of the Jacobian matrix as shown in Figure 4.13.  All calculations in 

this chapter use the double-precision floating-point numbers, and the Jacobian matrix 

with a condition number higher than 10
6
 is considered to be ill-conditioned.  The 

condition number of the Jacobian matrix is calculated using the one-norm approximation 

in this research.  lnKC4 is significantly sensitive to temperature between 194.98 K and 

204.40 K, where the Jacobian matrix is ill-conditioned.  That is, narrow-boiling 

behavior adversely affects the robustness of the DS algorithm through the Jacobian 

matrix.  K values during the DS solution are calculated as the fugacity-coefficient ratio, 

not from the definition (i.e., Ki = yi/xi for two phases), until its convergence.  However, 

the fugacity coefficients are directly related to phase compositions since they are 

thermodynamic properties dependent on the phase composition.  Therefore, the ill-

conditioned Jacobian can occur due to sensitive phase compositions during the DS 

iteration.   

The Jacobian matrix becomes even more ill-conditioned if the scaling of the total 

enthalpy and temperature (i.e., equations A-1.1 and A-1.2) are not conducted.  Figure 

4.13 shows the condition numbers with and without scaling of the variables for case 4.1.  

It is observed that the condition number of the Jacobian matrix with the dimensionless 

variables is systematically lower than that with the dimensional variables.  Higham 

(2002) described the importance of scaling Jacobian elements in solution of a system of 

equations.  Castier (2009) used scaled independent variables in his isochoric-isoenergetic 

flash algorithm.   

Although Michelsen (1987, 1993, 1999) did not fully explain how the narrow-

boiling behavior affected the robustness of the DS algorithm, he stated that the non-

linearity of the enthalpy constraint in his PH flash algorithm led to a more complex 

solution procedure.  In the DS algorithms of Michelsen (1987) and Agarwal et al. 
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(1991), strong temperature oscillations during the iteration were used as an indicator for 

the narrow-boiling behavior.  After detecting the temperature oscillations in a certain 

way, the remedy proposed was to split the oscillating single phase into two phases of 

initially equal amounts and compositions.  As explained in section 2.5.2, solutions of a 

cubic EOS in this and the subsequent iteration steps selected the lower compressibility 

factor for the L phase and the higher for the V phase.  They found, however, that this 

approach did not always improve the non-convergence issues associated with the narrow-

boiling behavior (Michelsen 1987, Agarwal et al. 1991).  For example, it is not unusual 

that there exists only one root in solution of a cubic EOS for an oscillating single-phase 

system.  For such a case, K values calculated as the fugacity-coefficient ratio become 

unity in the next iteration step, yielding a singular Jacobian matrix.   

The convergence behavior of the prior DS algorithms (Michelsen 1987, Agarwal 

et al. 1991) is shown for case 4.1 at 50 bars and Hspec of ‒6500 J/mol.  The solution 

temperature is 195.65 K, which is close to the bubble-point temperature in the two-phase 

region (see Figure 4.1).  That is, the solution exists in the region of the narrow-boiling 

behavior.  The initial temperature value is set to 190.00 K.  The oscillation testing 

procedure presented in section 2.5.2 is used with the C constant of 10
2
.   

Figure 4.14 shows the temperature variations during the iterations for the two DS 

algorithms with Michelsen (1987) and Agarwal et al. (1991).  The temperature 

oscillation is identified at the 6
th

 iteration step for the DS algorithm of Agarwal et al. 

(1991).  A similar oscillation is observed for the DS algorithm of Michelsen (1987) in 

Figure 4.14, but the oscillation testing procedure with the C value used does not identify 

it until the 22
nd

 iteration step.  Although Michelsen (1987) and Agarwal et al. (1991) did 

not explain how to detect temperature oscillation in their papers, this case indicates that 

efficient and robust identification of a temperature oscillation in their DS algorithms is 
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not an easy task and would require some heuristic approach.  The DS algorithm of 

Agarwal et al. (1991) results in a lower level of temperature oscillation than that of 

Michelsen (1987) in this case.  This is likely because of the preliminary update of K 

values in the DS algorithm of Agarwal et al. (1991), which is essentially the only 

difference between the two DS algorithms.   

Once a temperature oscillation is identified, the prior DS algorithms take the 

remedy proposed by Michelsen (1987), which was discussed in section 2.5.2 and 

Appendix B.  Figure 4.15 shows the compressibility factor in composition space at the 

22
nd

 iteration step for Michelsen’s DS algorithm (218.42 K), and at the 6
th

 iteration step 

for Agarwal et al.’s DS algorithm (202.67 K).  It is shown that only one root exists in the 

cubic equation solution when the temperature oscillations are identified.  This results in 

a singular Jacobian matrix; thus a complete failure of the calculation.  Figure 4.16 

clearly presents the non-convergence of the DS iterations in terms of the enthalpy 

constraint (i.e., g2 = 0, equation 2.50 with NP of two) for case 4.1.   

4.2.3.2 Three-Phase Case  

The three-phase case was used in section 4.2.2 to explain narrow-boiling behavior 

through rapid changes of the amounts of phases (i.e., β’s) with a small change in 

temperature.  Gaussian elimination of the column with ∂gNP
∂TD⁄  in the DS Jacobian 

matrix clearly shows that the matrix tends to be ill-conditioned for narrow-boiling fluids 

(see Appendix A for the DS Jacobian matrix).  Then, the limiting singularity of the 

Jacobian matrix can be easily understood when ∂gNP
∂TD⁄  tends to infinity.   

Figure 4.17 shows the derivatives of g1, g2, and g3 (equations 2.49 and 2.50 with 

NP of three) in the three-phase region for case 4.2 (see Figure 4.8 for phase boundaries in 

temperature).  Temperature and enthalpies are scaled with Tref = 300 K and Hsepc = 
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15000 J/mol, respectively, in case 4.2.  The derivatives of g3 (equation 2.50 with NP of 

three) are greater than those of g1 and g2 (equation 2.49 with NP of three) by a few orders 

of magnitude.  Also, the derivatives of g1 and g2 with respect to TD exhibit significant 

sensitivity in the region of narrow-boiling behavior presented in Figure 4.8 (at 

temperatures approximately higher than 534 K).   

Figure 4.18 presents the condition number of the Jacobian matrix in the three-

phase region for case 4.2.  It increases as temperature increases up to 549.25 K, where 

the W phase disappears.  All calculations in this research use the double-precision 

floating-point numbers, and the Jacobian matrix with a condition number higher than 10
6
 

is considered to be ill-conditioned.  On this basis, the Jacobian matrix is ill-conditioned 

at temperatures higher than approximately 534 K in Figure 4.18.  Figure 4.18 also 

presents that the condition number based on one-norms is close to that based on singular 

value decomposition (SVD) in this case.    

To further illustrate the degenerate equations, the Jacobian matrices for case 4.2 at 

two different temperatures, 491.83 K and 549.25 K, are factorized using SVD.  The 

higher temperature is in the narrow-boiling region.  The condition number can be 

calculated as the ratio of the maximum singular value to the minimum singular value 

given in the diagonal matrix.  Hence, the condition number is 1.36 × 10
5
 at 491.83 K and 

2.50 × 10
7
 at 549.25 K.  The corresponding one-norm approximation is 1.52 × 10

5
 at 

491.83 K and 2.50 × 10
7
 at 549.25 K.   

This example shows that it is no longer appropriate to solve the DS equations 

simultaneously, when they are nearly degenerate.  The DS algorithm presented later in 

this chapter decouples temperature from the other variables when solving degenerate DS 

equations.  A question as to under what conditions the narrow-boiling behavior occurs in 

thermal oil recovery will be present in the following section.    
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4.2.4 Conditions for Narrow-Boiling Behavior 

In this section, the thermodynamic conditions for narrow-boiling behavior are 

investigated on the basis of the PR EOS.  The term “narrow-boiling” has been used in 

the literature to indicate the enthalpy behavior that is substantially sensitive to 

temperature.  Narrow-boiling behavior occurs as a result of the significant interplay 

between the energy balance and phase behavior equations, as explained below.   

Zhu and Okuno (2014ab) concluded that narrow-boiling behavior occurs when at 

least one of the phase compositions (xij for i = 1, 2, …, NC and j = 1, 2, …, NP) drastically 

changes with a small change in temperature so that phase mole fractions (βj for j = 1, 2, 

…, NP) significantly change.  That is, it is related directly to the sensitivity of K values 

to temperature.  Therefore, narrow-boiling behavior can be effectively analyzed on the 

basis of the equation 2.49 and the dimensionless form of equation 2.50 that are coupled 

through the temperature dependency of K values as presented in Zhu and Okuno (2014a).  

The dimensionless form of equation 2.50 is formed by dividing Hspec.  Note that the 

analysis presented in this section only includes equilibrium phases; i.e., xj for j = 1, 2, 

…, NP.   

Appendix A gives the analytical expressions of each element in the NP × NP 

Jacobian matrix for a NC-component NP-phase system.  The Jacobian matrix is formed 

by dimensionless equations 2.49 and 2.50 with respect to independent βj and TD.  The 

major block of (NP ‒ 1) × (NP ‒ 1) in the Jacobian matrix comes from the RR equations 

with respect to independent β’s.  This part corresponds to the Hessian matrix of the 

convex function that was used by Okuno et al. (2010) to solve RR as a convex 

minimization problem in multiphase compositional reservoir simulation.   

Appendix A also shows that if the total enthalpy becomes sensitive to temperature 

(i.e., narrow-boiling behavior, or ∂gNP/∂TD becomes large), the Jacobian tends to be ill-
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conditioned regardless of the curvature of the RR convex function.  This is consistent 

with the cases shown in Zhu and Okuno (2014a), and also can be understood from the 

following equation; 

HD
t = ∑ βjHDj

NP
j=1 ,        (4.2) 

where HDj is the dimensionless molar phase enthalpy.  Equation 4.2 shows that the total 

enthalpy becomes sensitive to temperature if a small temperature change causes K values 

to drastically change so that the RR solution gives substantially different β’s between the 

two temperatures.   

More specific conditions for narrow-boiling behavior can be derived on the basis 

of the analysis of a convex function whose gradient vectors consist of the RR equations 

as follows.  Okuno et al. (2010) presented a non-monotonic convex function whose 

gradient vectors consist of the RR equations as 

F(𝛃) = ∑ (−ziln|ti|)
NC
i=1 ,       (4.3) 

where β is the vector of independent mole fractions [i.e., βj for j = 1, 2,…, (NP ‒ 1)].  A 

derivation of the function can be found in Okuno et al. (2010).  The convex function in 

Okuno et al. is similar to the ones presented in Michelsen (1994) and Leibovici and 

Nichita (2008).  Multiphase RR equations can be correctly solved by the following 

formulation: 

Minimize F(𝛃) = ∑ (−ziln|ti|)
NC
i=1  subject to ai

T𝛃 ≤ bi,   (4.4) 

where ai = {1 – Kij}, and bi = min{1 – zi, minj{1 – Kijzi}} for i = 1, 2, …, NC, and j = 1, 2, 

…, (NP – 1).  The feasible region was derived on the basis of the non-negativity of phase 

component mole fractions, 0 ≤ xij ≤ 1 for i = 1, 2, …, NC, and j = 1, 2, …, NP, as 

presented in Okuno et al. (2010). 

The Hessian matrix of (NP ‒ 1) × (NP ‒ 1) for the minimization is  

∇2F = {Hkj} = {YTDY},       (4.5) 
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where Hkj = ∑ [(1 − Kij)(1 − Kik)zi]/ti
2NC

i=1 , D = diag(z1, … , zNC
) ∈ ℝNC×NC , and 

Y = {Yij} = {(1 − Kij)/ti} ∈ ℝNC×(NP−1).  The D matrix is positive definite because zi (i 

= 1, 2,…, NC) are all positive (i.e., positive composition space).  The Hessian matrix is 

only positive semi-definite if Y is not of full rank; i.e., at critical points, including critical 

endpoints where two of three equilibrium phases merge in the presence of the other non-

critical phase.  In such cases, there exists a direction along which F is constant as proved 

by Okuno et al. (2010).  No solution exists in the minimization for such cases.   

If the D matrix is not positive definite (in negative composition space), the 

positive definiteness of the Hessian matrix is not guaranteed even if Y is of full rank.  

Negative zi values do not occur in practical simulations, but were considered here to 

indicate the limiting behavior of the Hessian matrix in composition space.   

In summary, the degree of positive definiteness of the Hessian matrix tends to 

become lower as the overall composition becomes closer to an edge of positive 

composition space (e.g., at least one component is of nearly-zero concentration) and/or 

the solution conditions (temperature, pressure, overall composition) become closer to a 

critical point.  The solution of the minimization for such cases tends to be sensitive to the 

K values used, because of small gradients of the convex function.  This leads to narrow-

boiling behavior.  This can be easily confirmed by plotting the RR convex function for 

two phases near a critical point or near the vertex of a component with a K value close to 

unity in positive composition space, for example.   

Appendix A shows that the system of equations are degenerate if the Hessian 

matrix is semi-positive definite.  Therefore, the following are conditions that can cause 

narrow-boiling behavior: (i) the overall composition is near an edge of positive 

composition space, and (ii) the solution conditions (temperature, pressure, and overall 

composition) are near a critical point, including a critical endpoint.   
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These conditions are qualitative unless a quantitative definition is given for 

narrow-boiling behavior.  Therefore, the degeneracy level of the system of equations is 

quantified on the basis of the condition number of the Jacobian matrix in this research, as 

in Zhu and Okuno (2014a) (see Appendix A for the Jacobian matrix).  The condition 

number of 10
6
 is used to detect narrow-boiling behavior in computations with the double-

precision floating-point numbers.   

The two conditions mentioned above are contained by the general condition for 

narrow-boiling behavior that K values are sensitive to temperature.  Although the two 

specific conditions are qualitative, the analysis of the RR convex function gives the clear 

limiting conditions towards which the tendency of narrow-boiling behavior increases.  

For instance, the RR problem is uniquely defined only for NC ≥ NP (i.e., more than one 

degree of freedom).  For one degree of freedom (e.g., three phases for a binary system), 

K values discontinuously changes at the temperature of interest, which causes the 

limiting narrow-boiling behavior as an exact discontinuity of enthalpy with respect to 

temperature.  This is a special case of the first condition mentioned previously in this 

section.   

4.3 MULTIPHASE DIRECT SUBSTITUTION WITH ADAPTIVE NEWTON-BISECTION  

This section first describes the working equations in the modified DS algorithm 

for PH flash for a general NC-component NP-phase system, where NC and NP are the 

numbers of components and equilibrium phases, respectively.  Case studies will be 

given to demonstrate the robustness of the modified DS algorithm.   

4.3.1 Modified DS Algorithm 

The isenthalpic-flash formulation is presented in section 2.5.2.  The PH flash 

calculations in this section consider mutual solubilities of water and hydrocarbons.  
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Particularly, water solubilities in the oleic phase may not be ignored at elevated 

temperatures as observed by a number of authors (e.g., Griswold and Kasch 1942, 

Tsonopoulos and Wilson 1983, Heidman et al. 1985, Glandt and Chapman 1995, 

Economou et al. 1997, Tsonopoulos 1999, Amani et al. 2013ab).  The BIPs for water 

with n-alkanes are taken from the correlation of Venkatramani and Okuno (2014).  Their 

BIP correlation was developed based on BIP values that were optimized in terms of 

three-phase predictions for water/n-alkane binaries by use of the PR EOS with the van 

der Waals mixing rules.  PH flash in this research solves for three and more equilibrium 

phases as predicted by the PR EOS, instead of assuming the complete immiscibility 

between the L and W phases.  Some equations were repeated below for complete 

readability in this chapter.   

The DS algorithm searches for K values and T that satisfy equations 2.46 through 

2.48 and the fugacity equations  

fij = ln(xijφij) − ln(xiNP
φiNP

) = 0        (4.6) 

for i = 1, 2, …, NC, and j = 1, 2, …, NP ‒ 1, where φij is the fugacity coefficient of 

component i in phase j, and xij is the mole fraction of component i in phase j.  The K 

value of component i in phase j is defined as   

Kij = xij xiNP
⁄ ,        (4.7) 

where i = 1, 2, …, NC, and j = 1, 2, …, (NP ‒ 1).  The NP
th

 phase is the reference phase in 

equations 4.6 and 4.7.   

K values are related to mole fraction of phase j (βj) and xij through the RR 

equations; that is, βj can be obtained from solution of the RR equations.  The RR 

equations are 

gj = ∑ (xij − xiNP
)

NC
i=1 = ∑ (Kij − 1)zi ti⁄NC

i=1 = 0      (4.8) 
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for j = 1, 2, …, (NP ‒ 1), where ti = 1 + ∑ (Kij − 1)βj
NP−1
j=1  for i = 1, 2, …, NC (Okuno 

2009, Okuno et al. 2010), and zi is the overall mole fraction of component i.  Then, the 

corresponding xij can be obtained from xiNP
= zi ti⁄  and equation 4.7 for j ≠ NP.   

The DS algorithm in this research uses the enthalpy constraint in a dimensionless 

form;  

gNP
= (Ht − Hspec) Hspec⁄ = HD

t − 1.0 = 0,    (4.9) 

where H
t
 is the total molar enthalpy, Hspec is the specified molar enthalpy, and HD

t
 = 

H
t
/Hspec.  The system of NP dimensionless equations (equations 4.8 and 4.9) is solved for 

dimensionless variables TD and βj (j = 1, 2, …, NP ‒ 1) based on Newton’s method for 

root-finding, where TD = T/Tref.  Tref is some reference value to make temperature better 

scaled in PH flash.  For example, Tref can be a temperature near the original reservoir 

temperature in thermal oil recovery processes (e.g., 300 K as used in this chapter).  The 

Jacobian matrix required is presented in Appendix A for a general NC-component NP-

phase system.  The W phase is considered as the reference phase throughout this section.   

The multiphase DS algorithm in this chapter is an extension of the two-phase DS 

algorithm presented in Zhu and Okuno (2014a).  The main advantage over other 

multiphase DS algorithms (Michelsen 1987, Agarwal et al. 1991) lies in how it handles 

narrow-boiling behavior.  The DS algorithm in this chapter checks for the narrow-

boiling behavior on the fly on the basis of the condition number of the Jacobian matrix.  

When near degeneracy of the system of equations is detected by a large condition number 

(e.g., greater than 10
6
), a robust bisection algorithm solves for TD based solely on the 

enthalpy constraint (equation 4.9).  This decoupling of TD from the other variables, β’s, 

is performed only if the system of equations is nearly degenerate.  Otherwise, the normal 

Newton’s iteration step is used.  That is, the algorithm adaptively switches between 

Newton’s iteration step and the bisection method.  Also, the upper and lower 
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temperature limits (TD
U
 and TD

L
) are used not to have unrealistic temperature values 

during the iterations.  A step-wise description of the three-phase modified DS algorithm 

is given below.   

 

Step 1. Specify Hspec, P, and zi, along with model parameters such as critical temperature 

TC, critical pressure PC, acentric factor ω, and NC × NC BIPs. 

Step 2. Input an initial guess for dimensionless temperature, TD
(1)

, where the number in 

the bracket represents the iteration-step number k = 1.  Calculate initial estimates 

for K values (KiL
(k)

 and KiV
(k)

).   

Step 3. Solve equation 4.8 with NP of three (g1
(k)

 and g2
(k)

) for the liquid and vapor phase 

mole fractions (βL
(k)

 and βV
(k)

) for the k
th

 iteration step so that |g1
(k)

| < εm and |g2
(k)

| 

< εm (e.g., εm = 10
-10

.  It can be a larger value for practical applications.).  

Calculate the corresponding xij
(k)

. 

Step 4. Calculate the residual of the enthalpy constraint (equation 4.9 with NP of three, 

i.e., g3
(k)

).  If |g3
(k)

| is less than the tolerance εh, stop (e.g., εh = 10
-10

.  It can be a 

larger value for practical applications.).  Otherwise, continue to step 5. 

Step 5. Calculate lnφij
(1)

 and phase heat capacities (CPj
(1)

) for j = L, V and W. 

Step 6. Calculate the residuals of the fugacity equations (equation 4.6 with NP of three, 

i.e., fiL
(k)

 and fiV
(k)

).   

Step 7. Calculate TD
(2)

 = TD
(1)

 – (Hspecg3
(1)

)/(Tref∑jβjCPj)
(1)

, and initial estimates for K 

values (equation 4.7 with NP of three, i.e., KiL
(2)

 and KiV
(2)

).   

Step 8. Solve equation 4.8 with NP of three (g1
(k)

 and g2
(k)

) for βL
(k)

 and βV
(k)

 for the k
th

 

iteration step so that |g1
(k)

| < εm and |g2
(k)

| < εm.  Calculate the corresponding xij
(k)

. 

Step 9. Calculate g3
(k)

, fiL
(k)

, and fiV
(k)

.  If |g3
(k)

| < εh, |fiL
(k)

| < εf, and |fiV
(k)

| < εf (e.g., εf = 

10
-10

) for i = 1, 2, …, NC, stop.  Otherwise, continue to step 10. 
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Step 10. Perform a QNSS step for intermediate K values, Kij
(k + 0.5)

 for j = L and V;  

InK⃗⃗ j
(k+0.5)

= InK⃗⃗ j
(k)

+
(InK⃗⃗ j

(k)
−InK⃗⃗ j

(k−1)
)
T

f j
(k−1)

(InK⃗⃗ j
(k)

−InK⃗⃗ j
(k−1)

)
T

(f j
(k)

−f j
(k−1)

)

f j
(k)

,   (4.10) 

where K⃗⃗ j  and f j  are vectors consisting of NC K values and NC fugacity 

equations for phase j, respectively.   

Step 11. Calculate xij
(k+0.5)

 based on βL
(k)

, βV
(k)

, KiL
(k+0.5)

 and KiV
(k+0.5)

. 

Step 12. Construct the 3 × 3 Jacobian matrix based on xij
(k+0.5)

. 

Step 13. Perform one Newton’s iteration step to obtain βL
(k+1)

,  βV
(k+1)

, and TD
(k+1)

. 

Step 14. Check to see if TD
L
 < TD

(k+1)
 < TD

U
.  If so, continue to step 15.  Otherwise, 

calculate TD
(k+1)

 using the Regula Falsi method.  Then, solve equations 4.8 with 

NP of three (g1
(k)

 and g2
(k)

) for βL
(k+ 1)

 and βV
(k+1)

 for the (k+1)
th

 iteration step so 

that |g1
(k+1)

| < εm and |g2
(k+1)

| < εm.  Calculate the corresponding xij
(k+1)

.  

Step 15. Calculate g3
(k+1)

, fiL
(k+1)

, and fiV
(k+1)

.  If |g3
(k+1)

| < εm, |fiL
(k+1)

| < εf, and |fiV
(k+1)

| < εf 

for i = 1, 2, …, NC, stop.  Otherwise, continue to step 16. 

Step 16. Calculate the condition number of the Jacobian matrix.  If it is greater than 10
6
, 

go to step 18.  Otherwise, continue to step 17. 

Step 17. Update K values; lnKij
(k+1)

 = lnKij
(k)

 + (∂lnKij/∂TD)
(k)

(TD
(k+1)

 ‒ TD
(k)

).  Go to step 

8 after increasing the iteration step number by one; k = k + 1.  

Step 18-1. Set tL to the highest temperature among TD
L
, TD

(k)
, and TD

(k+1)
 that gives a 

negative g3.  Set tU to the lowest temperature among TD
(k)

, TD
(k+1)

, and TD
U
 that 

gives a positive g3.   

Step 18-2. TD
(k+2)

 = 0.5(tL + tU). 

Step 18-3. Perform PT flash at TD
(k+2)

 to calculate βL
(k+2)

, βV
(k+2)

 and xij
(k+2)

 such that 

|fij
(k+2)

| < εf for i = 1, 2, …, NC and |g1
(k+2)

| < εm and |g2
(k+2)

| < εm.  
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Step 18-4. Calculate the condition number of the Jacobian matrix.  If it is greater than 

10
6
, continue to step 18-5.  Otherwise, go to step 9. 

Step 18-5. Calculate g3
(k+2)

.  If |g3
(k+2)

| is less than the tolerance εh, stop.  Otherwise, tL = 

TD
(k+2)

 for g3
(k+2)

 < 0, and tU = TD
(k+2)

 for g3
(k+2)

 > 0.  Then, go to step 18-2 after 

increasing the iteration step number by one; k = k + 1. 

 

Steps 16 and 18-4 require the condition number of the Jacobian matrix.  The 

condition numbers in these steps are calculated as ||J||1·||J
-1

||1, where ||J||1 is the one-norm 

of the Jacobian matrix J.  Later in this section, condition numbers by use of the one-

norm will be compared with more rigorous condition numbers by use of the SVD.  

Steps 2, 7, 14, and 18-3 require K-value estimates at a given temperature.  In this 

research, a simple but general method is developed for such K-value estimates for the L, 

V, and W phases on the basis of the following three assumptions: (i) Raoult’s law for the 

W-V equilibrium relation for water, and for the L-V equilibrium relation for 

hydrocarbons, (ii) the water concentration in the W phase (xwW) is nearly 100%, and (iii) 

KiL = xiL/xiW is large for hydrocarbons.  That is, 

KwL ≈ xwL,         (4.11) 

KwV = xwV/xwW ≈ Pw
vap

/P,       (4.12) 

KiL = xiL/xiW   for hydrocarbon component i,    (4.13) 

KiV = xiV/xiW ≈ (Pi
vap

/P)KiL   for hydrocarbon component i.       (4.14) 

The correlation of Eubank et al. (1994) can provide xwL for equation 4.11 as  

ln(xwL) = – 21.2632 + 5.9473 × 10
-2

T – 4.0785 × 10
-5

T
2
    (4.15) 

for T < 550 K.  For simplicity, KiL is assumed to be 10
8
 for all hydrocarbon components 

in this paper, although further improvement is possible by considering the effects of 

temperature and carbon number (CN) on KiL.  The vapor pressures of well-defined 
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components can be estimated by use of Wagner’s correlation (Wagner 1973, McGarry 

1983).  Vapor pressures of pseudocomponents are directly calculated from the PR EOS.  

This method can be also used for the V, L, and W phases in multiphase flash for four and 

more phases.  In a four-phase system consisting of the oleic (L1), solvent-rich liquid 

(L2), V, and W phases, for example, a complete set of K-value estimates is given by the 

above method and a certain K-value set for L1 and L2. 

In step 14, if TD
(k+1)

 does not lie between TD
L
 and TD

U
, a Regula Falsi iteration 

step is used to update TD
(k+1)

 as follows: 

TD
(k+1)

= TD
L − g3

(k)
(TD

L − TD
U) (g3

L − g3
U)⁄ ,      (4.16) 

where g3
L and g3

U are the dimensionless enthalpy constraints (equation 4.9 with NP of 

three) calculated at TD
L
 and TD

U
, respectively.  

4.3.2  Case Study  

Case 4.3 uses five components used in Luo and Barrufet (2005) as follows: 50% 

water (w), 15% pseudocomponent 1 (PC1), 10% pseudocomponent 2 (PC2), 10% 

pseudocomponent 3 (PC3), and 15% pseudocomponent 4 (PC4).  The properties of this 

mixture are given in Table 4.3.  Since the BIPs used by Luo and Barrufet (2005) are 

unknown, the correlation of Venkatramani and Okuno (2014) is used to assign BIPs for 

water with the pseudocomponents in this paper.  Although this will result in 

underestimation of xwL, as explained in Venkatramani and Okuno (2014), these BIP 

values are sufficient for demonstration of the robustness of the DS algorithm for narrow-

boiling fluids.     

Figure 4.19 presents the phase envelope in P-T space.  The critical point is 

calculated at 741.86 K and 70.50 bars.  Figure 4.20 shows H
t
 from 350 K to 500 K at 30 
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bars.  H
t
 is sensitive to temperature near the phase transition from L + V + W to L + V.  

Three phases are present between 402.01 K and 490.20 K at this pressure.   

Figure 4.21 shows that βV and βW are sensitive to temperature in the narrow-

boiling region.  βV increases from 0% to 54%, and βW decreases from 48% to 0% as 

temperature increases within the three-phase region.  The sensitivities of βV and βW to 

temperature are attributed to changes of phase compositions with temperature.  Figure 

4.22 presents components’ concentrations in the L and V phases.  The W phase always 

consists of more than 99.99% water within the three-phase region, and its composition is 

not shown.  The L and V phases become richer in water with increasing temperature.  

The PC1 concentration substantially decreases in the L and V phases with increasing 

temperature.  The other three components in the L and V phases change only slightly 

with temperature.  The L-V edge of the tie triangle moves predominantly in the 

direction parallel to the water-PC1 edge in composition space.   

Figure 4.23 presents the condition number within the three-phase region at 30 

bars.  Tref of 300 K and Hspec of –30,000 J/mol are used to make temperature and 

enthalpies dimensionless.  The condition number significantly increases near the 

boundary between L + V + W and L + V.  A PH flash calculation at 30 bars and –

30,000 J/mol is considered for this five-component mixture.  The solution temperature is 

483.63 K.  The initial temperature is set to 450 K.  Figure 4.24 shows the convergence 

behavior of the DS algorithm for this PH flash in terms of T and g3 (equation 4.9 with NP 

of three).   The convergence is achieved at the 26
th

 iteration.  The Jacobian condition 

number is 1.04 × 10
6
 at the 3

rd
 iteration step, and the bisection algorithm robustly solves 

for TD based solely on the enthalpy constraint after that.   

The critical point for the five-component mixture in P-H space is calculated at 

70.50 bars and –3633.99 J/mol.  The DS algorithm is tested for 350 discrete P-H 
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conditions in the three-phase region, where the initial temperature is fixed at 450 K.  All 

the calculations successfully converge to the correct solutions.  Figure 4.25 shows that 

the number of iterations required tends to increase with the condition number of the 

Jacobian matrix at the convergence.  Figure 4.25 also shows the sensitivity of the 

iteration number to ΔT = |Tsol – Tini|, where Tsol is the solution temperature and Tini is the 

initial temperature, 450 K.  The results show that the convergence behavior of the DS 

algorithm is insensitive to the initial temperature in these calculations.  

4.4 MULTIPHASE PH FLASH INTEGRATED WITH STABILITY ANALYSIS   

The new simultaneous PH flash integrated with stability analysis is formulated by 

combining the conventional PH-flash formulation with the PT stability criterion that the 

tangent plane to the Gibbs free energy surface at a stable equilibrium state cannot lie 

above the Gibbs free energy surface at any composition.  Then, a robust algorithm is 

developed for the formulated PH flash. 

4.4.1 New Simultaneous PH Flash Algorithm  

The new formulation is a simple integration of the PH-flash formulation (section 

2.5.2) with Brantferger’s analysis (1990, 1991).  As is explained in Brantferger (1991) 

and Brantferger et al. (1991), phase stability with PH specification can be analyzed at a 

given T, which defines the Gibbs free energy in composition space along with the 

specified P.  That is, the tangent plane to the Gibbs free energy surface at a stable 

equilibrium state at the solution T and specified P cannot lie above the Gibbs free energy 

surface at any composition (Baker et al. 1982, Michelsen 1982a).  This is the same as 

the stability criteria that must be satisfied in PT flash as given in chapter 3.   

In other words, the formulation of simultaneous PH flash is the extension of that 

of with PT flash as discussed in chapter 3.  Temperature is an additional variable to be 
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solved for from enthalpy constraint.  That is, the unified formulation for phase-stability 

and flash calculations in PH flash is to find a set of T and xij (i = 1, 2, …, NC, and j =1, 

2, …, NS) such that Dj = 0 subject to equations 2.35 to 2.38 for equilibrium phases j = 1, 

2, …, NP, and Dj > 0 subject to equation 2.38 for unstable stationary points j = (NP + 1), 

(NP + 2)…, NS.  In what follows, we will present the solution scheme to the formulated 

PH flash.  The main feature is the unified usage of the tangent plane distance function, 

D, for PH flash with adaptive selection of the reference composition for an arbitrary 

number of iterative compositions.  A step-wise description is presented along with key 

equations.  We duplicate some key equations that were given previously below to 

enhance readability.   

The developed algorithm uses the tangent plane distance equations  

fij =  lnxijφij − lnxirφir − θj = 0,       (4.17) 

to update all iterative compositions xij (i = 1, 2, …, NC and j = 1, 2, …, NS) through K 

values on the basis of direct substitution.  Note that θj = Dj at an equilibrium state upon 

convergence.  The NS sampling compositions converge to stationary points; i.e., NS 

becomes equal to the number of stationary points upon convergence.  A reference 

composition is expressed as xir (i = 1, 2, …, NC).  K values are defined as  

Kij = xij (eθjxir)⁄ ,        (4.18) 

for i = 1, 2, …, NC, j = 1, 2, …, NS, and j ≠ r.      

At an equilibrium state upon convergence, equation 4.17 becomes equation 3.2 

(i.e., θj = Dj), and the reference composition (xr) corresponds to one of equilibrium 

phases, which was denoted as xir in equation 3.1.  Furthermore, Dj = 0 for NP equilibrium 

phases (i.e., j = 1, 2, …, NP) and Dj > 0 for NU unstable stationary points [i.e., j = (NP + 

1), (NP + 2)…, NS] upon convergence, where NS = NP + NU.  
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During the iteration, a correct equilibrium state is searched for by updating 

temperature and NS sampling compositions.  The sampling compositions belong to either 

set P or set U.  In set P, θj = 0 and 0 < βj < 1 for j = 1, 2,…, NP.  In set U, θj > 0 and βj = 

0 for j = (NP + 1), (NP + 2)…, NS.  Equation 4.17 is solved together with the material 

balance (equations 2.46 and 2.47) and the enthalpy constraint, gNP
= HD

t − 1.0 = 0 

(equation 4.9), for K values and TD, where TD = T/TRef, and TRef is some reference value 

that makes temperature better scaled (Zhu and Okuno 2014ab).  The reference 

composition (xr) is selected from set P adaptively, as described later.  To update the 

compositions in set P and U, the approach used in chapter 3 (equations 3.4 to 3.6) is used 

here.   

The algorithm presented in this section is applicable for an arbitrary number of 

sampling compositions, which converge to stationary points of the tangent plane distance 

function at an equilibrium state upon convergence.  As will be presented later, sampling 

compositions naturally merge for a case in which NS is greater than the number of 

stationary points present upon convergence.  This is the same as what occurs in the 

simultaneous PT flash algorithm given in chapter 3.   

NS sampling compositions can be initialized by various approaches as discussed 

in chapter 3.  A random distribution and a distribution near vertices in composition 

space are useful when no reliable information is available for equilibrium phases of the 

fluid of interest.   

The algorithm requires more sampling compositions than the number of 

equilibrium phases, which, in general, is unknown prior to the calculation.  NC sampling 

compositions may be sufficient in most petroleum applications, in which a few pseudo 

components are used in addition to well-defined light components, such as methane, 

ethane, and propane.  However, at least (NC + 1) sampling compositions are required for 
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one degree of freedom for multicomponent mixtures.  In general, the iterative solution 

with this algorithm becomes more robust as NS increases, because more information 

about the Gibbs free energy is carried by more sampling compositions, unless all 

sampling compositions are distributed concentratedly.  However, use of more sampling 

compositions lowers the computational efficiency, as will be shown in the case studies.  

With NS less than NC, the algorithm may fail to find the correct number of equilibrium 

phases, unless specific information about equilibrium phases is available prior to the 

calculation.   

The fundamental structure of the current algorithm broadly follows the direct 

substitution algorithm developed by Michelsen (1987), but is newly designed for 

integrated flash-stability calculations on the basis of the PH-flash algorithm developed by 

Zhu and Okuno (2014b).  Each iteration first solves equations 3.5 and 3.6 for sets P and 

U, respectively, in sequence for a given set of K values and overall composition.  Then, 

the traditional direct substitution with equation 4.17 is used to update K values for sets P 

and U in composition space.  After that, one Newton’s iteration step is performed for 

(NP – 1) β’s and TD by use of the system of NP equations (equations 4.9 and 3.5), as in 

Michelsen (1987).  Finally, K values for sets P and U are updated in temperature space 

for the subsequent iteration.   

This fundamental structure is augmented by various important steps for 

robustness.  Firstly, it is crucial to check the feasibility for each RR solution by use of 

the method of Okuno et al. (2010).  This has been discussed in details in chapter 3.  

Also, the decoupling of TD from β’s is necessary to solve degenerate systems of 

equations (equations 4.9 and 3.5) for narrow-boiling fluids, as presented in Zhu and 

Okuno (2014ab).  A new analysis of narrow-boiling behavior will be presented in the 

next section.  Furthermore, the upper and lower temperature limits (TD
U
 and TD

L
) are 
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used not to have unrealistic temperature values during the iterations.  In this research, 

the upper and lower temperature limits are selected at 288.15 K and 675 K, respectively.  

The limits are set to cover a sufficiently wide range of temperatures for the application of 

interest.  The initial guess for temperature should be within the limits.   

The PR EOS (Peng and Robinson 1976) with the van der Waals mixing rules is 

used to calculate thermodynamic properties in this research.  Pertinent derivatives can 

be found in Appendix A.  A stepwise description of the multiphase isenthalpic flash 

algorithm integrated with stability analysis and the flow chart of the algorithm presented 

in this section is given in Appendix E.  

The algorithm presented in this paper is substantially different from that of Gupta 

et al. (1990).  As is the case in their simultaneous PT flash, stability equations were 

solved simultaneously with equation 3.5 and 4.9 in their algorithm.  However, the 

unified formulation presented earlier in this section clearly shows that the complete 

formulation does not require Gupta et al.’s stability equations.  Consequently, the 

Jacobian matrix used in our algorithm is always smaller than that of Gupta et al. which is 

of (2NP − 1) × (2NP − 1).   

A second difference is that the algorithm of Gupta et al. (1990) uses Newton’s 

iteration step even for a narrow-boiling fluid, for which the system of equations is nearly 

degenerate (Zhu and Okuno 2014ab).  This leads to non-convergence as studied in detail 

by Zhu and Okuno (2014ab).  The algorithm in this research adaptively switches 

between Newton’s iteration and bisection depending on the condition number of the 

Jacobian matrix.  A third difference lies in the stopping criteria.  In this chapter, the 

fugacity and enthalpy equations are properly satisfied upon convergence.  This is in 

contrast to the algorithm of Gupta et al. (1990), which tests only the difference between 

two consecutive iteration steps in terms of temperature and phase compositions. Other 
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differences associated with the initialization step and the selection of a reference 

composition, xr, have been discussed in chapter 3.   

4.4.2 Case Study  

In this section, the algorithm developed in this research is applied to a ternary 

mixture consisting of a single component bitumen.  Sampling compositions are 

initialized by use of a random distribution and a distribution near vertices in composition 

space, unless otherwise stated.  That is, when NS = NC, the NS compositions are placed 

near the NC vertices in composition space.  When NS > NC, NC sampling compositions 

are placed near the compositional vertices, and the other (NS – NC) sampling 

compositions are distributed by use of a random-number generator.  A sampling 

composition selected near a compositional vertex consists of 99.9% that component and 

0.1% the equimolar mixture of the other components in this section.   

Case 4.4 uses three components consisting of 2.2% water (w), 92.8% n-butane 

(C4), and 5.0% bitumen (CB).  The components’ properties are given in Table 4.4.  The 

critical properties for water were taken from (Venkatramani 2014).  They are not 

physical values, but were optimized in terms of vapor pressure and density using the PR 

EOS.  This mixture is used because it gives very complicated phase behavior and serves 

as a challenging case for the algorithm developed in this research.  Whether this phase 

behavior occurs in reality is uncertain and beyond the scope of this research.   

Figure 4.26 shows H
t
 from 375 K to 475 K at 35 bars.  At 35 bars, CB-rich phase 

(L1) + C4-rich phase (L2) + aqueous phase (W) exists from 375 K to 400.89 K, L1 + L2 

from 400.89 K to 416.24 K, L1 + L2 + vapor phase (V) from 416.24 K to 418.55 K, and 

L1 + V from 418.55 K to 475 K.  H
t
 is highly non-linear with respect to temperature near 

the phase transition between L1 + L2 and L1 + L2 + V.   
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Figure 4.27 shows the Jacobian condition number in the L1 + L2 + V region at 35 

bars.  The scaling of temperature and enthalpy is conducted with Tref of 300 K and Hspec 

of 5,000 J/mol.  The Jacobian condition number exceeds 10
6
 between 416.24 K and 

417.55 K, indicating narrow-boiling behavior.  Figure 4.27 also shows that the Hessian 

matrix of the RR convex function is reasonably well-conditioned; hence, the RR portion 

of the system of equations is not problematic in the three-phase region.  However, 

Figure 4.26 clearly shows that the total enthalpy is sensitive to temperature near the phase 

boundary between L1 + L2 and L1 + L2 + V.  In this case, therefore, the narrow-boiling 

behavior occurs because K values are sensitive to temperature.     

A PH flash calculation at 35 bars and 5,000 J/mol is considered for this ternary 

fluid.  The initial T is set to 375 K, at which L1 + L2 + W coexist.  In this calculation, 

NS is set to six, of which three sampling compositions are placed near the compositional 

vertices.  The other three sampling compositions are randomly distributed (see Table 

4.5a).  The solution temperature is 416.89 K in the narrow-boiling region (see Figure 

4.26).   

 Figure 4.28 shows the iterative solution in terms of T, residual of equation 4.9 

(gNP), and NP.  At the 30
th

 iteration when T is 417.10 K, narrow-boiling behavior is 

detected by a large condition number of the Jacobian matrix.  From this iteration on, TD 

is decoupled from β’s until it linearly converges to the correct solution at the 63
rd

 

iteration.  The iterative temperature fluctuates between different phase regions, 

indicating the complex solution (Figure 4.28a).  As shown in Figure 4.28c, NP also 

fluctuates until the correct number of phases is detected at the 33
th

 iteration.  Two 

sampling compositions merge at the 2
nd

 iteration in this case.  However, NS remains six 

during the iteration, because a new sampling point is added once the merging occurs as 

described in the algorithm section.  
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Figures 4.29 shows the six sampling compositions at different iteration steps.  In 

these ternary diagrams, solid dots represent the sampling compositions in set P, which are 

considered for material balance.  Hollow dots represent the sampling compositions in set 

U, which are excluded from material balance.  The 1
st
 iteration starts with all sampling 

compositions included in material balance in this case.  Therefore, the initial β’s are 

calculated through the conventional RR equations, and the θ’s are zero.    

At the 2
nd

 iteration, two sampling compositions merge.  Table 4.5b shows the 

compositions of sampling points at the 2
nd

 iteration before the merging.  Sampling 

compositions 2 and 4 are merged.  Sampling composition 4 is deleted.  Then, a new 

sampling composition is added in order to maintain NS of six.  The new sampling 

composition is selected from the previous iteration step, which is the one that has a 

greater difference from the deleted sampling composition.  Then, sampling composition 

4 is replaced by (0.2025, 0.6906, 0.1069).  After that, only sampling compositions 4 and 

6 are included in material balance, as shown by the two solid dots in figure 4.29b.  

Figures 4.29c and 4.29d show the sampling compositions at the 23
rd

 and 28
th

 iterations, in 

which the iterative temperatures lie in different phase regions as shown in Figure 4.28a.  

Figure 4.29e shows the sampling compositions at the 63
rd

 iteration, in which three 

equilibrium compositions are obtained.  The final set of sampling compositions is 

presented in Table 4.5c.  The three equilibrium phases are compositions 2, 4, and 6.  

The θ values at the other three compositions are positive, indicating that they are 

unstable.   

Different initialization schemes proposed in the literature are tested for case 1.  

Use of the scheme proposed by Gupta et al. (1990) results in an unbounded feasible 

region for the RR solution, which prevents the algorithm from proceeding at the 1
st
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iteration.  With the K-value correlation developed by Zhu and Okuno (2014b), the 

algorithm successfully converges in 64
 
iterations.     

The algorithm of Gupta et al. (1990) is also tested for this case.  It can be 

initialized if the K-value correlation of Zhu and Okuno (2014b) is used.  However, it 

stops from proceeding at the 9
th

 iteration due to an unbounded feasible region for the RR 

solution.  Even if the RR issue is resolved by a proper modification, it still stops from 

proceeding at the 32
nd

 iteration due to narrow-boiling behavior.  This is because narrow-

boiling behavior causes the system of equations to be nearly degenerate; thus, the 

decoupling of the variables should be performed as in this research.  Their algorithm 

may also fail to converge to the correct solution because the number of phases can only 

decrease during the iteration with their algorithm.    

One of the advantages of the new algorithm is that NS gives the flexibility in 

terms of robustness and efficiency.  It becomes more robust with increasing NS at the 

expense of computational efficiency.  As NS increases, the algorithm becomes more 

robust because the possibility of finding all stationary points of the tangent-plane distance 

function increases.  In case 4.4, the number of stationary points detected upon 

convergence is 3 with NS of 3, 4 with NS of 4 and 5, and 5 with NS of 6 and higher.  

Figure 4.30 shows the number of iterations required when starting with different NS.  

All calculations start at the same initial T at 375 K.  The three sampling points that are 

always used are near the compositional vertices.  The other sampling compositions are 

randomly distributed for NS > 3.  The proposed algorithm successfully converges to the 

correct solution as long as NS is greater than two.  The number of iterations required 

tends to increase with increasing NS because the algorithm with more sampling 

compositions may take more iterations when merging and adding some of the sampling 

compositions.  This is a common observation for all the cases tested in this research.   
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The required number of iterations is 41 with the three sampling compositions 

placed near the compositional vertices.  Interestingly, this is much lower than the 

number of iterations, 64, required when the K-value correlation by Zhu and Okuno 

(2014b) is used, although the number of sampling points is the same for the two cases.  

This indicates that a physically-derived correlation for K values does not necessarily 

result in fewer iterations than a random distribution and a distribution near vertices in 

composition space with the algorithm developed.   

4.5 SUMMARY  

This chapter presented a detailed analysis for narrow-boiling behavior and its 

effects on the DS isenthalpic flash for two and three phases.  A modified DS algorithm 

was then developed based on the analysis.  This chapter also presented a new algorithm 

for multiphase PH flash integrated with stability analysis.  The correct set of equations 

is solved for stationary points on the tangent-plane-distance function that is defined at an 

adaptively selected reference composition.  We also analyzed narrow-boiling behavior 

on the basis of the multiphase PH-flash equations, where energy and phase behavior 

equations are coupled through the temperature dependency of K values.  Cases were 

presented to demonstrate the robustness of the developed algorithms and the narrow-

boiling conditions derived.  Conclusions are as following: 

1. Narrow-boiling behavior is characterized by the enthalpy behavior that is 

substantially sensitive to temperature.  The total enthalpy for a fixed overall 

composition and pressure becomes sensitive to temperature when at least one of the 

phase compositions drastically changes with a small change in temperature so that the 

phase mole fractions significantly change.  The mechanistic understanding of the 
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narrow-boiling behavior was presented using the Gibbs free energy surfaces in binary 

composition space at different temperatures.   

2. The prior DS algorithms (e.g., Michelsen 1987, Agarwal et al. 1991) have 

convergence issues when narrow-boiling behavior is involved.  The fundamental reason 

is that the system of equations solved in the algorithms becomes degenerate for narrow-

boiling fluids.  The prior DS algorithms use temperature oscillation as an indicator for 

narrow-boiling fluids.  However, temperature oscillation in these algorithms is a 

consequence of, not the reason for, the narrow-boiling behavior.  That is, it is not a good 

indicator that improves the robustness.   

3. The modified DS algorithm developed in this chapter adaptively switches 

between Newton’s iteration step and the bisection algorithm depending on the DS 

Jacobian condition number that offers an unambiguous criterion regarding the 

computational accuracy and robustness in the DS algorithm.  The bisection algorithm 

solves for temperature based solely on the enthalpy constraint when narrow-boiling 

behavior is identified by a large condition number of the Jacobian matrix.  This 

decoupling of temperature from the other variables is plausible when the system of 

equations is degenerate.   

4. The new simultaneous PH flash algorithm can robustly solve PH flash for 

narrow-boiling fluids.  It does not require a special treatment for one degree of freedom, 

for which the total enthalpy is discontinuous in temperature.  This is because the 

algorithm does not require to fix the number of equilibrium phases in the iteration.  The 

advantage of the proposed algorithm is pronounced when the fluid of interest exhibits 

complex phase appearance/disappearance, and/or when narrow-boiling behavior is 

involved, as in thermal compositional flow simulation.   
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5. The initialization of new simultaneous PH flash algorithm is possible even 

when no reliable information is available about the equilibrium phases of the fluid of 

interest.  No K-value correlation is necessary to initialize the new algorithm.  

6. The new simultaneous PH flash algorithm offers the flexibility in terms of 

robustness and efficiency depending on the number of sampling compositions (NS) used.  

It becomes more robust with increasing NS at the expense of computational efficiency.  

As NS increases, the algorithm becomes more robust because the possibility of finding all 

stationary points of the tangent-plane distance function increases.  However, the number 

of iterations required tends to increase with increasing NS because the algorithm with 

more sampling compositions may take more iterations when merging and adding some of 

the sampling compositions.   

7. The general condition for narrow-boiling behavior is that the interplay 

between the energy and phase behavior equations is significant.  Two subsets of the 

narrow-boiling condition were derived by analyzing the convex function whose gradient 

vectors consist of the RR equations; (i) the overall composition is near an edge of 

composition space, and (ii) the solution conditions (temperature, pressure, and overall 

composition) are near a critical point, including a critical endpoint.  A special case of 

the first specific condition is the fluids with one degree of freedom, for which enthalpy is 

discontinuous in temperature space.   

8. The analysis of the RR convex function gave the clear limiting conditions 

toward which the tendency of narrow-boiling behavior increases.  Narrow-boiling 

behavior tends to occur in thermal compositional simulation likely because water is by 

far the most dominant component in the fluid systems formed in the simulation.   
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Table 4.1. Properties for the components for case 4.1 

Component 
Mole 

fraction 
TC, K PC, bar ω CP1

0
 CP2

0
  CP3

0
  CP4

0
  

C1 0.99 190.6 46.0 0.008 19.250 
5.212 × 

10
-2

 

1.197 × 

10
-5

 

-1.132 × 

10
-8

 

C4 0.01 425.2 38.0 0.193 9.487 
3.313 × 

10
-1

 

-1.108 × 

10
-4

 

-2.822 × 

10
-9

 

Binary interaction parameters are all zero. 

Critical temperature: 197.57 K 

Critical pressure: 53.05 bars  

Two-phase temperature region at P = 50.00 bars: [194.98,  228.20] K   

Units for CP1
0
, CP2

0
, CP3

0
, CP4

0
 are J/(mol·K), J/(mol·K

2
), J/(mol·K

3
), J/(mol·K

4
), respectively.                                                                                                                                               

 

 

 

 

 

 

 

Table 4.2. Properties for the components for case 4.2 

Component 
Mole 

fraction 
TC, K PC, bar ω CP1

0
 CP2

0
 CP3

0
 CP4

0
  

Water 0.75 647.3 220.89 0.344 32.200 
1.907 

× 10
-3

 

1.055 × 

10
-5

 

-3.596 × 

10
-9

 

C3 0.15 369.8 42.46 0.152 -4.220 
3.063 

× 10
-1

 

-1.586 

× 10
-4

 

3.215 × 

10
-8

 

C16 0.10 717.0 14.19 0.742 -13.000 1.529 
-8.537 

× 10
-4

 

1.850 × 

10
-7

 

Binary interaction parameters: 

 Water C3 C16      

Water 0.0000 0.6841 0.3583      

C3 0.6841 0.0000 0.0000      

C16 0.3583 0.0000 0.0000      

Units for CP1
0
, CP2

0
, CP3

0
, CP4

0
 are J/(mol·K), J/(mol·K

2
), J/(mol·K

3
), J/(mol·K

4
), respectively.                                                                                                                                               
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Table 4.4. Properties for the components for case 4.4.  The critical properties of water 

were taken from Venkatramani (2014). 

Component 
Mole 

fraction 
TC, K PC, bar ω CP1

0
 CP2

0
 CP3

0
 CP4

0
 

Water 0.022 672.48 277.15 0.2699 32.200 
1.907 × 

10
-3

 

1.055 × 

10
-5

 

-3.596 

× 10
-9

 

C4 0.928 421.56 36.01 0.2127 9.490 
3.313 × 

10
-1

 

-1.108 × 

10
-4

 

-2.822 

× 10
-9

 

CB 0.050 847.17 10.64 1.0406 -31.900 3.612 
-2.044 × 

10
-3

 

4.486 

× 10
-7

 

Binary interaction parameters: 

 Water C4 CB 

Water 0.0000 0.5602 0.1100 

C4 0.5602 0.0000 0.0750 

CB 0.1100 0.0750 0.0000 

Units for CP1
0
, CP2

0
, CP3

0
, CP4

0
 are J/(mol·K), J/(mol·K

2
), J/(mol·K

3
), J/(mol·K

4
), respectively.                                                                                                                                               

 

Table 4.3. Properties for the components for case 4.3 

Component 
Mole 

fraction 
TC , K PC, bar ω CP1

0
 CP2

0
 CP3

0
 CP4

0
 

Water 0.50 647.3 220.9 0.344 32.20 
1.907 × 

10
-3

 

1.055 × 

10
-5

 

-3.596 

× 10
-9

 

PC1 0.15 305.6 48.8 0.098 -3.50 
5.764 × 

10
-3

 

5.090 × 

10
-7

 
0.000 

PC2 0.10 638.9 19.6 0.535 -0.404  
6.572 × 

10
-4

 

5.410 × 

10
-8

 
0.000 

PC3 0.10 788.9 10.2 0.891 -6.10 
1.093 × 

10
-2

 

1.410 × 

10
-6

 
0.000 

PC4 0.15 838.9 7.7 1.085 -4.50 
8.049 × 

10
-3

 

1.040 × 

10
-6

 
0.000 

Binary interaction parameters: 

Water Water PC1 PC2 PC3 PC4 

PC1 0.00000 0.71918 0.45996 0.26773 0.24166 

PC2 0.71918 0.00000 0.00000 0.00000 0.00000 

PC3 0.45996 0.00000 0.00000 0.00000 0.00000 

PC4 0.26773 0.00000 0.00000 0.00000 0.00000 

Water 0.24166 0.00000 0.00000 0.00000 0.00000 

Units for CP1
0
, CP2

0
, CP3

0
, CP4

0
 are J/(mol·K), J/(mol·K

2
), J/(mol·K

3
), J/(mol·K

4
), respectively.                                                                                                                                               
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Table 4.5a. Six sampling compositions at the 1
st
 iteration (case 4.4) 

 
Composition 

1 

Composition 

2 

Composition 

3 

Composition 

4 

Composition 

5 

Composition 

6 

xij 

5.011728395 

× 10
-2

 

5.00000000 

× 10
-4

 

5.00000000 

× 10
-4

 

2.024691358 

× 10
-1

 

2.026337137 

× 10
-1

 

9.99000000 

× 10
-1

 

8.484938271 

× 10
-1

 

9.99000000 

× 10
-1

 

5.00000000 

× 10
-4

 

6.906419752 

× 10
-1

 

4.016934042 

× 10
-1

 

5.00000000 

× 10
-4

 

1.013883334 

× 10
-1

 

5.00000000 

× 10
-4

 

9.99000000 

× 10
-1

 

1.068888890 

× 10
-1

 

3.956728821 

× 10
-1

 

5.00000000 

× 10
-4

 

 
 

Table 4.5b. Six sampling compositions at the 2
nd

 iteration before the merging of 

compositions 2 and 4 (case 4.4) 

 
Composition 

1 

Composition 

2 

Composition 

3 

Composition 

4 

Composition 

5 

Composition 

6 

xij 

9.999996463 

× 10
-1

 

1.048995656 

× 10
-2

 

1.033333973 

× 10
-2

 

1.051640199 

× 10
-2

 

9.013291891 

× 10
-3

 

8.932510699 

× 10
-3

 

3.536746148 

× 10
-7

 

9.767356013 

× 10
-1

 

9.753538516 

× 10
-1

 

9.767748394 

× 10
-1

 

9.444418053 

× 10
-1

 

9.413768141 

× 10
-1

 

2.538515500 

× 10
-11

 

1.277444214 

× 10
-2

 

1.431284427 

× 10
-2

 

1.270875861 

× 10
-2

 

4.654490280 

× 10
-2

 

4.969067520 

× 10
-2

 

 

 

Table 4.5c. Six sampling compositions at the 63
rd

 iteration (case 4.4) 

 Composition 

1 

Composition 

2 

Composition 

3 

Composition 

4 

Composition 

5 

Composition 

6 

xij 

9.963029187 

× 10
-1

 

3.987093567 

× 10
-2

 

4.042558722 

× 10
-2

 

2.821421577 

× 10
-2

 

2.844511013 

× 10
-2

 

1.762505600 

× 10
-2

 

1.753511927 

× 10
-11

 

9.599949394 

× 10
-1

 

9.517664807 

× 10
-1

 

7.764909338 

× 10
-1

 

8.109556208 

× 10
-1

 

9.629795682 

× 10
-1

 

3.697081246 

× 10
-3

 

1.341248777 

× 10
-4

 

7.807932011 

× 10
-3

 

1.952948503 

× 10
-1

 

1.605992690 

× 10
-1

 

1.939537572 

× 10
-2
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(a) 

 

(b) 

Figure 4.1. Two-phase envelope in P-T space for a mixture of 99% C1 and 1% C4.  The 

properties used for the components are given in Table 4.1.  The critical point is 

calculated at 197.57 K and 53.05 bars with PR EOS.  (a) βV contour lines are 

significantly dense near bubble-point curve.  The solution temperature (195.65 K) for an 

example PH calculation at P = 50 bars and Hspec = −6500 J/mol exists in the vicinity of 

the bubble-point curve.  (b) Magnified PT diagram near the critical point.       
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Figure 4.2. The total molar enthalpy and the sensitivity of βV to temperature at 50 bars for 

a mixture of 99% C1 and 1% C4.  The properties used for the components are given in 

Table 4.1.  Two phases are present from 194.98 K to 228.20 K.  The total molar 

enthalpy and βV at 50 bars are sensitive to temperature near the bubble point.  The 

∂βV/∂TD can be higher than 70, where TD is calculated using equation A-1.1 with Tref of 

300 K. 
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(a) 

 

(b) 

Figure 4.3. (a) Gibbs free energy surfaces in binary composition space at 50 bars at two 

different temperatures T1 = 195 K and T2 = 201 K.  The properties used for the 

components are given in Table 4.1.  (b) Magnified Gibbs free energy surfaces near the 

C1 edge of composition space.  As temperature increases from T1 to T2, the L phase 

composition drastically changes.  βV changes from 0.0644 at T1 to 0.9669 at T2. 
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Figure 4.4. Sensitivities of the C4 concentrations in the V and L phases to temperature at 

50 bars for a mixture of 99% C1 and 1% C4.  The properties used for the components are 

given in Table 4.1.   

 

 

 

Figure 4.5. Three parameters α1, α2, and α3 of equation A-1.14 at 50 bars for a mixture of 

99% C1 and 1% C4.  The properties used for the components are given in Table 4.1.    
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Figure 4.6. Three terms of equation A-1.14 at 50 bars for a mixture of 99% C1 and 1% 

C4.  The properties used for the components are given in Table 4.1.    

 

 

Figure 4.7. Phase boundaries in P-T space for a mixture of 75% water, 15% C3, and 10% 

C16.  The properties used for the components are given in Table 4.2.  The critical 

endpoint of type L = V + W is calculated at 569.35 K and 131.07 bars with the PR EOS. 
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Figure 4.8. Total molar enthalpy at 80 bars for a mixture of 75% water, 15% C3, and 10% 

C16.  The properties used for the components are given in Table 4.2.  Three phases are 

present from 491.17 K to 549.25 K.  The total molar enthalpy at 80 bars is sensitive to 

temperature near the phase boundary between L + V + W and L + V.   

 

Figure 4.9. Tie triangles in composition space at 80 bars at two different temperatures T1 

= 530 K and T2 = 548 K.  The overall composition is 75% water, 15% C3, and 10% C16.  

The properties used for the components are given in Table 4.2.   
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(a) 

 

(b) 

Figure 4.10. (Continued below)   
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(c) 

Figure 4.10. Sensitivities of the phase compositions to temperature at 80 bars for a 

mixture of 75% water, 15% C3, and 10% C16.  (a) L phase, (b) V phase, and (c) W 

phase.  The properties used for the components are given in Table 4.2.   

 

 

Figure 4.11. Mole fractions of the L, V, and W phases in temperature space at 80 bars for 

a mixture of 75% water, 15% C3, and 10% C16.  The properties used for the components 

are given in Table 4.2.   
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Figure 4.12. The first-order derivative of lnKC4 with respect to TD, showing the 

sensitivity of KC4 to temperature at 50 bars for a mixture of 99% C1 and 1% C4.  The 

properties used for the components are given in Table 4.1. 

 

 

Figure 4.13.  The condition numbers of the Jacobian matrices with and without scaling 

of temperature and enthalpy at 50 bars for a mixture of 99% C1 and 1% C4.  The scaling 

is conducted using equations A-1.1 and A-1.2 with Hspec of −6500 J/mol and Tref of 300K.  

The properties used for the components are given in Table 4.1. 
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Figure 4.14.  Convergence behavior of the DS algorithms of Michelsen and Agarwal et 

al. in terms of temperature at P = 50 bars and Hspec = −6500 J/mol for a mixture of 99% 

C1 and 1% C4 (Table 4.1).  The solution temperature is 195.65 K.  The temperature 

oscillation is identified at the 6
th

 iteration step for the DS algorithm of Agarwal et al.  A 

similar oscillation is observed for the DS algorithm of Michelsen, but the oscillation 

testing procedure with the C value used does not identify it until the 22
nd

 iteration step 

(see section 2.5.2 and Appendix B for details of their DS algorithms).   
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Figure 4.15. Compressibility factors in composition space when temperature oscillations 

are detected at P = 50 bars and Hspec = -6500 J/mol for a mixture of 99% C1 and 1% C4.  

Temperature oscillation occurs at the 22
nd

 iteration step (218.42 K) for Michelsen’s DS 

algorithm, and at the 6
th

 iteration step (202.67 K) for Agarwal et al.’s DS algorithm.  In 

either case, only one compressibility factor exists in the cubic equation solution.  

 

Figure 4.16. Convergence behavior of the DS algorithms of Michelsen and Agarwal et al. 

in terms of the enthalpy constraint in PH flash at 50 bars and Hspec = −6500 J/mol for a 

mixture of 99% C1 and 1% C4 given in Table 4.1.   
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(a) 

 

(b) 

Figure 4.17. (Continued below)   
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(c) 

Figure 4.17. Elements of the 3×3 Jacobian matrix, at 80 bars for a mixture of 75% water, 

15% C3, and 10% C16 given in Table 4.2.  (a) Derivatives of g1, ∂g1/∂βL, ∂g1/∂βV, and 

∂g1/∂TD. (b) Derivatives of g2, ∂g2/∂βL, ∂g2/∂βV, and ∂g2/∂TD.  (c) Derivatives of g3, 

∂g3/∂βL, ∂g3/∂βV and ∂g3/∂TD.  The equations of g1 and g2 are defined in equation 2.49 

with NP of three.  The g3 equation is defined in equation 2.50 with NP of three.  

 

Figure 4.18. Condition number of the Jacobian matrix within the three-phase region at 80 

bars for a mixture of 75% water, 15% C3, and 10% C16 given in Table 4.2.   
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Figure 4.19. Phase boundaries in P-T space for the five-component mixture given in 

Table 4.3.  The critical point is calculated at 741.86 K and 70.50 bars using the PR EOS.   

 

 

Figure 4.20. Total molar enthalpy at 30 bars for the five-component mixture given in 

Table 4.3.  Three phases are present from 402.01 K to 490.20 K.  The total molar 

enthalpy at 30 bars is sensitive to temperature near the phase boundary between L + V + 

W and L + V.   
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Figure 4.21. Mole fractions of the L, V, and W phases at 30 bars for the five-component 

mixture given in Table 4.3.   
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(a) 

 

(b) 

Figure 4.22. Concentrations of the components at 30 bars for the five-component mixture 

given in Table 4.3. (a) L phase, (b) V phase.  The W phase consists of more than 

99.99% water within the three-phase region, and its composition is not shown.   
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Figure 4.23. Condition number of the Jacobian matrix within the three-phase region at 30 

bars for the five-component mixture given in Table 4.3.    
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(a) 

 

 (b) 

Figure 4.24. Convergence behavior of the DS algorithm in PH flash at P = 30 bars and 

Hspec = −30,000 J/mol for the five-component mixture given in Table 4.3.  The solution 

temperature is 483.63 K.  (a) Convergence behavior of the DS algorithm in terms of 

temperature.  A high sensitivity of enthalpy to temperature is detected at the 3
rd

 iteration 

(470.80 K) when the condition number of the Jacobian matrix is 1.04 × 10
6
.  (b) 

Convergence behavior of the DS algorithm in terms of the enthalpy constraint.   
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(a) 

 

(b) 

Figure 4.25. (a) Number of iterations required for 350 different PH flash calculations in 

the three-phase region is correlated to the condition number of the Jacobian matrix at the 

converged solution.  All the calculations converged to the correct solutions with the DS 

algorithm presented in this paper.  (b) The highest deviation of Tini from Tsol is 230 K; 

however, the convergence behavior of the DS algorithm is insensitive to the initial 

temperature in these calculations.  
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Figure 4.26. Total molar enthalpy at 35 bars for the ternary mixture given in Table 4.4.  

At 35 bars, CB-rich phase (L1) + C4-rich phase (L2) exists from 400.89 K to 416.24 K, 

L1+ L2 + vapor phase (V) from 416.24 K to 418.55 K.  H
t
 is highly non-linear with 

respect to temperature near phase transition from L1+ L2 to L1+ L2 + V.   

 

 
Figure 4.27. Dimensionless condition number of Jacobian matrix and the Hessian matrix 

of the RR convex function in L1 + L2 + V region at 35 bars for the ternary mixture given 

in Table 4.4.  The scaling of temperature and enthalpy is conducted with Tref of 300 K 

and Hspec of 5,000 J/mol.  The Hessian matrix is reasonably well-conditioned; hence, the 

RR portion of the system of equations is not problematic in the three-phase region.   
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(a) 

  

(b) 

Figure 4.28. (Continued below)   
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(c) 

Figure 4.28. Convergence behavior of the current algorithm for the ternary mixture given 

in Table 4.4 at 35 bars and 5,000 J/mol: (a) T, (b) residual of equation 4.9, and (c) NP.  

The initial T is set to 375 K, where L1 + L2 + W coexist.  In this calculation, NS is set to 

six, of which three sampling points are placed near compositional vertices.  The other 

three sampling compositions are randomly distributed (see Table 4.5a).  The solution 

temperature is 416.89 K, where narrow-boiling behavior occurs (see Figure 4.26).   
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(a) 

 

 

(b) 

Figure 4.29. (Continued below)   
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(c) 

 

(d) 

Figure 4.29. (Continued below)   
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(e) 

Figure 4.29. Ternary diagrams at 35 bars for the ternary mixture given in Table 4.4 at 

different iteration steps.  Solid dots represent the sampling compositions in set P, which 

are considered for material balance.  Hollow dots represent the sampling compositions 

in set U, which are excluded from material balance.  (a) Ternary diagram at the 1
st
 

iteration where L1, L2, and W coexist (T = 375 K). (b) Ternary diagram point at the 2
nd

 

iteration where L1 and V coexist (T = 484.86 K) after merging, adding and re-selecting 

reference. (c) Ternary diagram at the 23
rd

 iteration where L1 and L2 coexist (T = 402.74 

K). (d) Ternary diagram at the 28
th

 iteration where L1, L2, and V coexist (T = 418.35 K). 

(e) Ternary diagram at the 63
rd

 iteration where L1, L2, and V coexist (T = 416.89 K).  
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Figure 4.30. Number of iterations required for convergence increases with the number of 

sampling points used.  Properties of the ternary mixture given in Table 4.4.  Flash 

conditions are 35 bars and 5,000 J/mol.  All calculations start at the same initial T (375 

K).  The three sampling points that are always used are near the compositional vertices.  

The other sampling compositions are randomly distributed for NS > 3.  The proposed 

algorithm successfully converges to the correct solution as long as NS is greater than two.   
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CHAPTER 5: Quantification of Displacement Efficiency in Multiphase 

Oil Displacement 

Solvent injection at reservoir temperatures typically below 120°F often exhibits 

complex phase behavior, in which a solvent-rich liquid (L2) phase coexists with the oleic 

(L1) phase and gaseous (V) phase.  Oil displacement in the presence of such multiphase 

behavior is complicated by the interaction of multiphase flow and multiple partially 

miscible phases.  Understanding of interphase mass transfer upon phase transitions is 

fundamentally important to explain and utilize the solvent-rich liquid phase for efficient 

oil displacement by solvent.   

A method was proposed to estimate a minimum miscibility pressure (MMP) for 

three-hydrocarbon-phase flow by Li et al. (2015).  One of the main assumptions in their 

mixing-cell method is that phase flow does not depend on its relative permeability.  This 

is a reasonable assumption for the conventional thermodynamic MMP defined for two-

hydrocarbon-phase flow of oil and gas, above which there is only single-phase flow at a 

given point in space and time.  In low-temperature solvent injection, however, it is known 

experimentally and numerically that complete miscibility of three phases is unlikely even 

when nearly 100% efficiency of oil displacement is achieved.   

Okuno and Xu (2014ab) presented a detailed study of the mass conservation on 

multiphase transitions between two and three phases in three-hydrocarbon-phase flow.  

Their description of how components must be redistributed among phases upon phase 

transition (i.e., interphase mass transfer) yielded a new parameter, called the distance 

parameter.  The distance parameter becomes zero when multicontact miscibility between 

the displaced (e.g., L1) and displacing (e.g., L2) phases is developed in the presence of 

another immiscible phase (e.g., V).  The distance parameter was used successfully to 
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quantify the efficiency of local displacement of the L1 phase by a non-L1 phase (e.g., L2) 

(Okuno and Xu 2014ab).  In their research, however, a rigorous EOS-based 

compositional simulator, UTCOMP, was used to obtain composition path, requiring the 

mapping of the distance parameter from volume to composition.  Although UTCOMP 

properly accounted for volume change on mixing in its phase behavior calculation, the 

mapping often made the calculated distance parameters less accurate near a displacement 

front where the solvent concentration rapidly increased.  

The central hypothesis that motivated this research is that distance parameters can 

be calculated more accurately in volume space for a given composition path.  This is 

expected to be a more direct and accurate way to validate the utility of distance 

parameters to quantify displacement efficiency in three-phase flow for a given 

composition path.   

A composition path in multiphase oil displacement is obtained by numerically 

solving 1D convective compositional flow equations with no volume change on mixing 

in this chapter.  To this end, an in-house simulator has been developed by using the 

simultaneous multiphase PT phase-stability/-split algorithm presented in chapter 3.  Case 

studies use seven reservoir oils, for which fluid models are available in the literature.  

The numbers of iterations and fugacity coefficient calculations are used to quantify the 

computational efficiency of the PT flash algorithm during the simulation.   

 

5.1 INTRODUCTION 

Enhanced oil recovery (EOR) techniques involve injection of fluids which are not 

usually present in the reservoir and are used to increase oil recovery and efficiency (Lake 

et al. 2014).  Gas injection is one of the most widely used and prolific EOR techniques 
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(Oil and Gas Journal 2014), and CO2 injection is increasingly being considered also for 

the purpose of CO2 sequestration (Li et al. 2015).  The number of gas injection projects is 

expected to increase because of the applications for oil shale (Sheng 2015) or heavy oil 

(Okuno and Xu 2014a) reservoirs.  CO2 injection has been widely applied to a number of 

oil reservoirs in West Texas (Mizenko 1992, Stein et al. 1992, Tanner et al. 1992, Fulco 

1999, McGuire et al. 2001), in Canada (Malik and Islam 2000), in Alaska (McGuire et al. 

2001), and in the North Sea (Varotsis et al. 1986).  The incremental oil recovery from 

CO2 flooding is estimated to be 7 – 23% of the original oil-in-place (Jarrell et al. 2002).  

Field pilot tests were also reported for coinjection of solvent (e.g., propane, butane, and 

diluents) with steam for bitumen recovery in Canada (Gupta et al. 2005, Gupta and 

Gittins 2006, Dickson et al. 2011). 

Mixtures of reservoir oil and injection gas has been studied in the literature by use 

of numerical simulations and experimental measures, including slim-tube displacements 

and multiple-contact measurements for the complex multiphase behaviors (Shelton and 

Yarborough 1977, Metcalfe and Yarborough 1979, Gardner et al. 1981, Orr and Jessen 

1984, Shu and Hartman 1988, Sharma et al. 1989, Turek et al. 1988, Roper 1989, 

Hornbrook et al. 1991, Okuyiga 1992, Khan et al. 1992, Creek and Sheffield 1993, 

DeRuiter et al. 1994, Reid 1994, Godbole et al. 1995, Mohanty et al. 1995, Okuno 2009, 

Okuno and Xu 2014ab).  At low reservoir temperatures typically below 120°F, solvent 

injection can involve complex phase behavior, which consists of three hydrocarbon 

phases, the L1, V, and L2 phases.   

Such phase behavior has also been studied for simple binary mixtures (e.g., 

Rodrigues and Kohn 1967, Hottovy et al. 1981, Enick et al. 1985, Peters et al. 1993, 

Galindo and Blas 2002) and ternary mixtures (e.g., Horn and Kobayashi 1967, Llave et 
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al. 1987).  For example, Peters et al. (1993) studied the phase behavior of binary mixtures 

of propane with hexacontane (n-C60H122).  Their measurements cover a temperature range 

from 310 K up to 430 K with pressures up to 15 MPa.  Three-phase equilibrium of type 

L1 + L2 + V occurs in the near-critical region of propane.  Llave et al. (1987) examined 

the phase equilibrium behavior of mixtures of nitrogen, methane, and propane, for 

temperatures between approximately 116 K and 160 K.  Their results show that the 

presence of methane results in the three-phase region extending upward in temperature 

from the binary L1 + L2 + V locus.  The three-phase region is bounded from above by an 

upper critical endpoint (CEP) locus and from below by a lower critical endpoint locus, 

and these two critical endpoint loci intersect at a tri-critical point at 160 K and 62 bars.  

This finding of Llave et al. (1987) is summarized by Peters (1994).  As given by Peters 

(1994), three-phase behavior bounded by two CEPs has been observed for various n-

alkane binaries; C1 and n-C6/n-C7, C2 and n-C18 through n-C25, and C3 and n-alkanes 

heavier than n-C30.   

Mixtures of CO2 and reservoir oils have also been studied by many researchers 

for EOR.  Creek and Sheffield (1993) examined several mixtures consisting of Permian 

Basin reservoir oils with CO2, and presented experimental measurements of fluid 

properties in three-phase (L1 + L2 + V) region.  Turek et al. (1988) studied mixtures of 

CO2 and several West Texas reservoir oils from the San Andres, Grayburg, and Devonian 

Chert formations.  Their stated that a three-phase region exists within a narrow pressure 

range, in which the L2 phase vaporizes with decreasing pressure, because they observe 

that the L2-phase composition is similar to the V-phase composition in the three-phase 

region.  This indicates that the fluid they examined has a composition close to CEP.   
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Slim-tube experiments in the literature show high displacement efficiency of more 

than 90% can be achieved in oil displacement by CO2 (e.g., Yellig and Metcalfe 1980, 

Gardner et al. 1981, Orr et al. 1983, Henry and Metcalfe 1983, Khan 1992, Creek and 

Sheffield 1993) or enriched gas (e.g., Shelton and Yarborough 1977, DeRuiter et al. 

1994, Mohanty et al. 1995) involving three hydrocarbon-phases at low temperatures.  For 

example, Mohanty et al. (1995) studied the significance of three-hydrocarbon-phase flow 

in the displacement of West Sak oil by light-hydrocarbon-gas mixtures (methane through 

n-butane).  They also conducted slim-tube displacements with these hydrocarbon-gas 

mixtures.  Their results show that oil recovery at 1.2 PV injective (PVI) first decreased, 

then increased, and finally decreased again with decreasing gas enrichment.  Oil 

recoveries at 1.2 PVI were 89%, 93%, and 65% at 51-, 62-, and 70%-C1 dilution, 

respectively.  They explained that oil recovery at 1.2 PVI was higher at 62% -C1 dilution 

than at 51%-C1 dilution because the L2 phase was nearly miscible with the L1 phase at the 

three-phase displacement front; oil became less viscous at the front; and the front moved 

fast enough to exit the slim tube by 1.2 PVI.   

Various numerical simulation studies were also reported in the literature to study 

the impact of multiphase behavior on sweep efficiency in gas floods (e.g., Mohanty et al. 

1995, Guler et al. 2001).  Guler et al. (2001) evaluated the mixtures of CO2 with natural 

gas liquid (NGL) as a method to enhance viscous oil recovery from Schrader Bluff and 

other oil reservoirs at Milne Point, Alaska.  Mixtures of CO2 and NGL with the crude oil 

showed a large three-phase (L1 + L2 + V) region at the reservoir temperature.  Therefore, 

four-phase flow may occur in the reservoir when water injection is alternated with 

miscible gas injection.  They also studied how important it is to simulate four-phase flow 

rather than use a three-phase flow approximation.   
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Nghiem and Li (1986) performed one-dimensional simulations for low-

temperature oil displacements by CO2 using a 15-component EOS fluid model.  A 

recovery factor of 87% was achieved at 1.2 PVI in their simulation involving three-

hydrocarbon-phase flow.  However, the number of grid blocks used in their simulations 

was only 40.   

Chang (1990) used UTCOMP to study various reservoir flow patterns in CO2 

flooding, including viscous fingering, channeling, gravity override, and dispersive flow, 

with a wide range of endpoint mobility ratio, gravity number, effective aspect ratio, 

Péclet number, and Dykstra-Parsons coefficients.  The UTCOMP simulator is an EOS 

compositional multiphase reservoir simulator on the basis of the implicit pressure explicit 

concentration formulation developed at the University of Texas at Austin.   

Tchelepi and Orr (1994) studied the effect of channeling and gravity override on 

the displacement efficiency and concluded that they were the dominant factors, especially 

for a highly heterogeneous reservoir.  Mohanty et al. (1995) simulated the existence of 

three-hydrocarbon phases in 1D compositional simulation of West Sak oil displaced by 

enriched gas using UTCOMP.  Guler et al. (2001) studied the presence of multiple liquid 

phases in multi-dimensional simulations with Alaskan heavy oil.  Their results showed 

that gravity and dispersion affect the compositional propagation in multi-dimensional 

multiphase flow, resulting in the less obvious coexistence of multiple liquid phases.   

Okuno et al. (2011) studied the displacement efficiency for low temperature CO2 

flooding using UTCOMP.  Four-component mixtures were used in their study to perform 

systematic investigation of oil displacement involving three hydrocarbon phases.  They 

concluded that high displacement efficiency occurs when the composition path traverses 

near the UCEP (L1 + L2 = V), and the LCEP (L1 = L2 + V).  At the leading edge of three-
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phase region, the L2 phase extracts the reservoir oil due to the near-LCEP behavior.  

Then, at the trailing edge, the L2 phase efficiently merge into V phase due to the near-

UCEP behavior.  Hence, the L2 phase serves as a buffer between the immiscible L1 and V 

phases with the three-phase region.  Their conclusion was also confirmed in simulations 

of CO2 flooding for multicomponent West Texas oils (Okuno 2009).   

An important parameter to design a solvent injection process is the minimum 

miscibility pressure (MMP).  Thermodynamic MMP is theoretically defined as the 

minimum displacement pressure at which complete miscibility along a composition path 

from the injection gas to the reservoir oil is developed in absence of dispersion (i.e., 1D 

100% convective flow).  For this traditional miscibility development between oil and gas 

through two-phase flow, a thermodynamic MMP is calculated as the pressure at which 

any of the key tie lines becomes zero length.  At the MMP so defined, there is only a 

single-hydrocarbon-phase flow at a given point and time, making the “thermodynamic” 

MMP independent of fractional flow.  

Slim tube experiments are the standard laboratory technique to estimate a MMP.  

Slim tube experiments are time-consuming and expensive, and one may perform only at a 

few pressures for a given gas and oil composition (Ahmadi and Johns 2011).  Slim-tube 

experimental results may be affected by the packing material used and asphaltene 

precipitation (Elsharkawy et al. 1996).  For some oil displacements, a “knee” in the 

recovery curve is also not always evident because of a smearing miscible front by 

dispersion (Johns et al. 2002).  For three-phase displacements, the oil recovery curve can 

bend gradually or abruptly with pressure or gas enrichment (Bhambri and Mohanty 2008, 

Okuno et al. 2011, Pedersen et al. 2012).  The slim-tube MMP is usually not unique 

because there are multiple criteria for determining the MMP in the presence of dispersion 
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(Holm and Josendal 1974, Yellig and Metcalfe 1980, Creek and Sheffield 1993, 

Negahban and Kremesec 1992).   

Dispersion-free analytical methods based on the method of characteristic (MOC) 

have been used for the traditional oil displacement involving two hydrocarbon phases 

(Helfferich 1981, Dumore et al. 1984, Johns 1992, Orr 2007).  The MOC-based methods 

can give thermodynamic MMPs quickly and accurately only when the fluid 

characterization with a cubic EOS is reliable.  MOC-based analytical solution for 

injection of a mixture of gas can be complicated when multiple tie-lines satisfy the 

geometric construction for material balance (Yuan and Johns 2005, Ahmadi et al. 2011).  

For example, analytical solutions for two-phase displacements with complex phase 

behavior that bifurcates into L1-L2 and/or L1-V regions (similar to three-phase systems) 

have not yet been extended to displacements with more than three components.   

LaForce et al. (2008ab, 2009) developed analytical solutions with MOC for 

partially miscible three-phase flow in four-component systems for CO2 WAG.  They later 

confirmed the validity of their analytical solutions by comparison to experimental results 

(LaForce et al. 2010). There are no analytical solutions, however, for three-phase 

displacements with more than four components (Li et al. 2015). 

Ahmadi and Johns (2011) developed a simple and practical two-phase multiple-

mixing-cell method with an Excel spreadsheet (PennPVT Toolkit 2010) to determine the 

MMP for oil displacements with any number of components.  Their two-phase multiple 

mixing-cell method tracks the key tie lines that form in a series of mixing cells from the 

injector to the producer.  Then, a MMP is determined as the pressure at which any of the 

mixing cells gives a critical tie-line, following the definition of thermodynamic MMP.  

Egwuenu et al. (2008) showed a fluid characterization method in which the MMP 
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estimated by an EOS was adjusted to the slim tube MMP available.  Rezaveisi et al. 

(2014) used the multiple-mixing-cell method to determine tie-lines for improvement in 

computational time and robustness of two-phase flash calculations in EOS compositional 

simulation.    

One proposal was recently made by Li et al. (2015) to estimate MMP for three-

hydrocarbon-phase flow.  Their method is based on the two-phase mixing-cell method of 

Ahmadi and Johns (2011), which relies on repeated contacts of fluid phases from 

neighboring cells, and finding the minimum pressure at which one of the tie lines in any 

cell becomes zero length.  Their method starts with mixing oil and gas with a given ratio 

(e.g., 50 : 50 as used in their paper) in the first contact and flashing the resulting mixture.  

Two or three equilibrium phases may result from this first contact.  The equilibrium 

phases and the initial gas and oil compositions are then ordered from upstream to 

downstream before the next contact on the basis solely of their proximity to the initial oil 

and injection gas compositions.  After the phases are ordered, tie line lengths are 

calculated to determine if a miscibility is reached.  Zero tie line length is used as the 

criterion to identify miscibility.  If such miscibility is not achieved, a new contact at a 

new trial pressure is made and the procedure mentioned above is repeated.   

One of the key assumptions in the mixing-cell method applied for three phases by 

Li et al. (2015) is that the movement of fluids from cell to cell is independent of three-

phase relative permeability.  This made their procedure also independent of phase 

labeling (i.e., identities of phases).  The assumption has been used for the conventional 

thermodynamic MMP, which is by definition independent of fractional flow.  However, 

three-hydrocarbon-phase flow unlikely develops complete miscibility, a tri-criticality, at 

operating reservoir conditions in gas floods.   
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An MMP was calculated for the West Sak oil by use of PVTsim NOVA (version 

2.2, Calsep 2016) and a two-phase mixing-cell method.  The injection gas consists of two 

gaseous mixtures: the rich-gas mixture of 35 mol% ethane, 34 mol% propane, and 31 

mol% n-butane, and the lean-gas mixture of 84 mol% methane, 9 mol% ethane, 6 mol% 

propane, and 1 mol% n-butane.  The injection gas contains 71.43% lean-gas mixture and 

28.57% rich-gas mixture, resulting in 60% methane concentration in the injection gas.  

The reservoir temperature is 65°F.  The properties of West Sak oil and enriched gas were 

given in Okuno and Xu (2014a).   

Figure 5.1a shows the pressure-solvent-mole-fraction (P-x) diagram for the West 

Sak oil and the injection gas with 60% methane concentration at 65°F.  Three phases are 

present at high solvent concentrations.  The L1 and L2 phases become critical at 

approximately 8700 psia when solvent mole fraction is 0.94.   

Figure 5.1b shows the pressure-temperature (P-T) diagram for the West Sak oil 

and the injection gas with 60% methane concentration.  The critical point of the reservoir 

oil is calculated at 1059.55°F and 1029.6 psia by use of the PR EOS, and the critical 

point of the injection gas is calculated at 111.4°F and 1397.7 psia by use of the PR EOS.  

At the reservoir temperature of 65°F, the bubble point of the reservoir oil is 1198.5 psia.   

The pressure at which L1 and L2 phases become critical is approximately 8700 

psia (see Figure 5.1a).  The measured slim-tube MMP is 1500 psia, at which 91% oil 

recovery was achieved (DeRuiter et al. 1994).  PVTsim NOVA (version 2.2, Calsep 

2016) was not able to calculate MMP for this displacement likely because a composition 

path was not solved for three phases.  The MMP obtained by use of a two-phase mixing-

cell method is 3219 +/− 111.5 psia.  However, DeRuiter et al. (1994) observed a high 

displacement efficiency of 91% at 1500 psia in their experiment.   
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Figure 5.2 is the P-T diagram for the North Ward Estes (NWE) oil and the 

injection gas of CO2.  The reservoir temperature is 83°F.  The properties of the 

components used were given in Kumar and Okuno (2016).  Three phases coexist when 

CO2 mole fraction is high.  L1/L2 immiscibility persists at high pressures.   

The slim-tube MMP is 935 psia, at which more than 95% oil recovery was 

achieved (Winzinger et al. 1991).  PVTsim NOVA (version 2.2, Calsep 2016) was not 

able to calculate MMP for this displacement.  A two-phase mixing-cell method gave a 

MMP of 1248 +/− 0.3 psia.  The predicted tie line length at the calculated MMP, 

however, was not close to zero, which is not a thermodynamic MMP.  The two examples 

given above indicate that available existing methods tend to overestimate a pressure 

required for efficient oil displacement.  The fundamental question here is under what 

conditions three-hydrocarbon-phase flow can achieve a high displacement efficiency.  

Okuno and Xu (2014ab) investigated mass transfer on multiphase transitions 

between two and three phases for three-hydrocarbon-phase flow.  They studied the 

condition for a L1 phase to be completely displaced by a non-L1 phase in the presence of 

another immiscible phase.  For example, the condition was observed in the multicontact 

miscibility developed during CO2 WAG injection, in which L1 phase is completely 

displaced by V phase in the presence of W phase, as studied in detail by a series of 

publications by LaForce and her co-workers (LaForce and Orr 2008ab, 2009, LaForce 

and Jessen 2010, LaForce et al. 2010, and LaForce 2012).  Okuno and Xu (2014b) 

studied the MCM developed between L1 and L2 phases for the cases where L1 phase is 

completely displaced by L2 phase in the presence of V phase.   

It is important to note a difference between the MCM condition studied in Okuno 

and Xu (2014ab) and that studied in the context of thermodynamic MMP.  The former is 
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concerned with the multicontact miscibility between the L1 phase and a non-L1 phase 

(e.g., L2), which yields complete displacement of the L1 phase by the displacing non-L1 

phase in the presence/absence of other phases.  This MCM is identical with the 

conventional miscibility concept used for thermodynamic MMP, only for the traditional 

oil displacement by gas involving only two hydrocarbon phases.  The MCM defined by 

Okuno and Xu (2014ab) is more general in that it is not limited to oil displacements with 

two hydrocarbon phases as evident in its applicability to CO2 WAG (LaForce and Orr 

2008ab, 2009, LaForce and Jessen 2010, LaForce et al. 2010, and LaForce 2012) and 

three-hydrocarbon-phase flow (Okuno and Xu 2014ab).  The traditional MCM concept is 

concerned with a single-phase condition developed between the injection gas and 

reservoir oil compositions, and its limitation is that single-phase flow does not always 

occur in oil displacements, for example in CO2 WAG and low-temperature solvent 

injection.  Therefore, the term “MMP” is not used in this chapter to avoid any confusion 

associated with the difference described here.   

Okuno and Xu (2014a) derived two conditions for the multiphase transitions that 

yield high local displacement efficiency by three hydrocarbon phases.  The derivation is 

based on a mass conservation generalized for a multiphase transition in 1D gas injection.  

They concluded that two non-oleic phases can collectively achieve high displacement 

efficiency if two conditions (i.e., two distance parameters) are satisfied on phase 

transition between two and three phases.    

Their calculations of distance parameters use equations 2.9 and 2.10.  The 

parameter Γ used determines the relative location of the NP-phase tie simplex and an 

intersection involved in the phase transition.  Once the tie line and tie triangle involved in 

a phase transition are given, the intersection between them can be calculated as explained 



182 

 

in their paper.  The calculation of the intersection was necessary in their calculation of 

distance parameters because they used UTCOMP to obtain a composition path, with 

which the term vD changes in time and space because of volume change of mixing.  Their 

calculations of distance parameters by use of equations 2.9 and 2.10 are indirect and 

subject to the numerical accuracy of the located intersection between the tie line and the 

tie triangle involved in the phase transition of interest.  In particular, distance parameters 

at a leading edge of a three-hydrocarbon-phase region sometimes fluctuated for highly 

miscible displacements.  In such a case, the leading-edge distance parameter was not a 

good indicator to quantify local displacement efficiency in the presence of numerical 

dispersion, as explained in their paper.  This is likely because the intersection obtained is 

sensitive to a small concentration change when the angle between the tie line and tie 

triangle is very small, for example, at near-miscibility conditions.   

Okuno and Xu (2014a) successfully used their distance parameters to explain the 

non-monotonic oil recovery at a given throughput with respect to gas enrichment in 

quaternary displacements and the West Sak oil displacements reported in the literature 

(e.g., DeRuiter et al. 1994, Mohanty et al. 1995).  They also applied the research method 

to analyze the interphase mass transfer when MCM between the L1 phase and a non-L1 

phase is developed in the presence of another immiscible phase.  Quaternary and 

multicomponent cases demonstrated the applicability of the derived conditions.   

One way to improve the accuracy in calculation of distance parameters for a given 

composition path is to use equations 2.7 and 2.8, where vD can be fixed.  Use of 

equations 2.7 and 2.8 results in direct calculation of distance parameters, not requiring to 

find the intersection of a tie line and triangle as in Okuno and Xu (2014ab).  It is believed 

that this is a simpler and more direct validation of the utility of the distance parameters to 
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quantify displacement efficiency in three-phase flow.  Table 5.1 summarizes main 

differences among two groups of prior publications and the current research. 

Another minor advantage of the current research is that this formulation (i.e., 1D 

convective-only flow equations, equation 2.2) does not require solving the pressure 

equation; hence, it is computationally more efficient and robust, although the assumption 

of no volume change on mixing affects the composition path obtained.  Sensitivity 

analyses will be conducted in terms of the effect of relative permeability and numerical 

dispersion on the displacement efficiency quantified by distance parameters (equations 

2.7 and 2.8).   

5.2 METHODOLOGY  

Quantification of local displacement efficiency by using a characterized fluid 

model generally requires the following steps: 

Step 1. Fluid characterization using an EOS 

Step 2. Calculation of a composition path from the injection gas to the reservoir 

oil in composition space at the reservoir temperature for a given displacement pressure 

Step 3. Calculate a relevant parameter that quantifies the efficiency of local oil 

displacement.  

As summarized in Table 5.1, the main difference between this research and 

Okuno and Xu (2014ab) lies in Step 2, which has led to the difference in Step 3.  The 

main difference between this research and Li et al. (2015) lies in the parameter used in 

Step 3.  As discussed in the previous section, Li et al. (2015) determines a 

thermodynamic MMP by tracking tie line lengths.  In this research and Okuno and Xu 

(2014ab), the quantification of oil displacement efficiency is based on a mass 

conservation equation applied to multiphase transitions.  
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An in-house 1D compositional simulator was developed to obtain composition 

paths to be used in calculation of distance parameters.  The 1D convection-only flow 

equations are obtained by use of the assumption listed in section 2.3.1.  The resulting 

form is given by equation 2.2.  The simulation formulation used in this chapter follows 

chapter 2 in Orr (2007).  However, different assumptions can be used to formulate the 

procedure to obtain composition path.  For example, one can use an EOS-compositional 

simulator, such as UTCOMP, to obtain composition paths considering volume change of 

mixing as in Okuno and Xu (2014ab).   

Reliable phase behavior calculations are important in the multiphase flow 

simulation; hence, the new PT flash algorithm presented in chapter 3 has been 

implemented in the simulator for robust and accurate multiphase behavior representation.  

The thermodynamic model used in multiphase behavior calculations is the PR EOS (Peng 

and Robinson 1976) with van der Waals mixing rules, although different EOSs can be 

used as long as they yield reliable multiphase representations (e.g., critical endpoints).  

Phase viscosity in this chapter is calculated by use of the Lohrenz-Bray-Clark correlation 

(Lohrenz et al. 1964).  The three-phase relative permeability model used in the simulator 

is Corey’s model.  Different three-phase relative permeability models can also be used, 

e.g., the models of Stone I/II (1970, 1973), Delshad and Pope (1989), Jerauld (1997), and 

Yuan and Pope (2012).   

The simulator solves 1D convective flow equations (equation 2.2) with no volume 

change of mixing by use of fully explicit scheme with one-point upstream weighting for 

the flux term, as described in Johns (1992) and Orr (2007) as following:  

(Ci)k
n+1 = (Ci)k

n + (∆tD ∆xD⁄ )[(Fi)k−1
n − (Fi)k

n],     (5.1) 
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where superscript n is the time step index and subscript k is the grid block index.  ∆xD 

and ∆tD are the grid block size and time step size, respectively, which are uniform in this 

research.   

The traditional approach for phase identification given by Perschke et al. (1989) is 

used to identify phases in this research, as summarized in Xu and Okuno (2015).  In the 

method of Perschke et al. (1989), when three equilibrium phases exist, the L1 phase in a 

three-phase region of L1-V-L2 was the one with the highest concentration of the heaviest 

hydrocarbon component.  The denser phase of the two remaining phases was labeled as 

L2, and the less dense phase was V phase.  For cases with only two equilibrium phases, in 

which L1 phase was always assumed to exist, the other phase was labeled as either V or 

L2 depending on the mass density of that phase compared to that of a threshold value.  If 

the mass density of the phase was lower than a specified threshold value, it was labeled 

as V.  Otherwise, it was labeled as L2.  Throughout this chapter, a trial-and-error 

approach is used to find a proper threshold for phase mass density for consistent phase 

identification for a given oil displacement.   

A step-wise description is given below to explain how the simulator works. 

Step 1. Calculate the overall composition of the first grid block close to the 

injector by use of  

zi = Ciρi ∑ Ciρi
NC
i=1⁄ .        (5.2)   

Step 2. Perform phase equilibrium calculations by use of the new PT flash 

algorithm developed in chapter 3 for the overall composition at a given grid block and 

time step.   
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Step 3. Calculate phase properties, such as saturation, molar density, mass 

density, and viscosity, by use of the results from step 2 (i.e., number of equilibrium 

phases and their compositions and amounts).   

Step 4. Perform the phase identification of Perschke et al. (1989).   

Step 5. Calculate phase relative permeabilities using Corey’s model and phase 

fractional flow.   

Step 6. Calculate the component overall volume fraction for the next grid block 

by use of equation 5.1.   

Step 7. Calculate the overall composition for the next grid block by use of 

equation 5.2, and repeat steps 2 to 6 for all grid blocks.  Calculate component recovery.   

Step 8. Repeat steps 1 to 7 for the next time step until a specified simulation 

termination time.   

 

In step 7, component recovery is calculated as a measurement for displacement 

efficiency as given below.  Component recovery is calculated using  

Qi = Ci
initial + tDFi

injected
− ∫ CidxD

1

0
.       (5.3) 

In equation 5.3, Ci
initial is the amount of component i that initially exists in the reservoir, 

tDFi
injected

 is the amount of component i that is injected into the reservoir, and ∫ CidxD
1

0
 

is the amount of component i that is currently present in the reservoir.  Hence, Qi is the 

amount of component i that is recovered.   

The third term in equation 5.3 can be rewritten as  

∫ CidxD
1

0
= ∑ Ci

k∆xD
kNGB

k=1 ,        (5.4) 
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where NGB is for the number of grid blocks used in the simulation.  Equation 5.4 can be 

used only when all grid blocks have a uniform size, as is the case in this chapter.  Hence, 

component recovery is calculated as follows:  

 Qi = Ci
initial + tDFi

injected
−∑ Ci

k∆xD
kNGB

k=1 .       (5.5) 

Once a composition path is calculated by the finite-difference simulation, 

equations 2.7 and 2.8 derived in chapter 2 are used to calculate distance parameters 

defined on the basis of volumetric information for the trailing and leading edges of the 

three-hydrocarbon-phase region.  Three important features of distance parameters 

(equations 2.7 and 2.8) are summarized below.   

Firstly, use of weak form of the 1D convective flow equations enables to take into 

account the effect of mixing on displacement efficiency through numerical dispersion.  

Secondly, three-phase relative mobilities are properly included in distance parameters 

(equations 2.7 and 2.8) through the parameter “ γ ”. That is, the effect of relative 

permeability on oil displacement efficiency is taken into account, unlike the three-phase 

mixing-cell method of Li et al. (2015).  Thirdly, use of volumetric information to 

calculate δL and δT defined in equations 2.7 and 2.8 avoids the mapping from volume 

space to composition space, which requires finding the intersection of the downstream 

two-phase tie line and upstream three-phase tie triangle.  The intersection constructed by 

use of compositional information can be significantly affected if phase compositions 

change drastically at the phase transition, which often occurs at the leading edge of a 

three-phase region.   

In the following case studies for the six three-hydrocarbon-phase reservoir oils, 

EOS fluid models are obtained from Kumar and Okuno (2016) for accurate three-phase 

behavior representations.  Distance parameters are calculated by use of equations 2.7 and 
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2.8 at 0.4 PVI, at which saturation, concentration, and mass density profiles are given for 

a fixed pressure and a level of numerical dispersion.  The distance parameters are then 

tested as a measure for quantification of local oil displacement efficiency.  A sensitivity 

study is presented in terms of the effect of the relative permeability model used and the 

effect of numerical dispersion on oil displacement efficiency.   

5.3 CASE STUDIES  

This section gives the case studies by use of North Ward Estes (NWE) oil with 

pure CO2 injection and ethane injection for Bakken oil displacement in the presence of 

water.  Distance parameters are calculated at multiphase transition, and component 

recoveries are calculated at the breakthrough times for the leading and trailing edges of a 

three-phase region.  High displacement efficiency is quantified for multiphase 

displacements for NWE oil and other five reservoir oils.  Measured MMPs from slim 

tube experiments for all six three-hydrocarbon-phase reservoir oil displacements are 

compared with an optimal injection pressure (OIP) at which highest displacement 

efficiency is achieved.  In all simulations, the ratio of the dimensionless time step size to 

the dimensionless grid block size is 0.1.   

5.3.1 Displacement of North Ward Estes Oil by CO2  

This section presents the simulation results North Ward Estes (NWE) oil, a West 

Texas reservoir oil.  NWE oil was characterized by Kumar and Okuno (2016) with the 

PR EOS and phase behavior data given in Winzinger et al. (1991).  The properties of 

NWE oil are given in Table 5.2.  The binary interaction parameters are given in Table 

5.3.  The oil gravity is calculated to be approximately 32ºAPI.  The injection gas is pure 

CO2.   
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Table 5.4 gives the parameters used in Corey’s model for three-phase relative 

permeabilities (Khan 1992).  These parameter values are used consistently for six three-

hydrocarbon-phase oil displacements studied in this section.  The number of grid blocks 

used is 250, unless otherwise stated.   

5.3.1.1 Minimum Distance Conditions  

Two conditions are used to quantify local displacement efficiency for this case.  

One condition is associated with the relation between the distance parameter calculated at 

the three-phase trailing edge and the PC1 recovery at breakthrough (BT) of the three-

phase trailing edge.  The other is the relation between the distance parameter calculated at 

the three-phase leading edge and the PC1 recovery at BT of the three-phase leading edge.  

The measured MMP with slim tube experiments is 937 psia (Winzinger et al. 1991), 

while the optimal injection pressure (OIP) for highest displacement efficiency by use of 

volumetric distance parameters (equations 2.7 and 2.8) is 935 psia.   

Figure 5.3 shows the pressure-temperature (P-T) diagram calculated for NWE oil 

and injection gas by use of PVTsim Nova (version 2.2, Calsep 2016).  The bubble point 

pressure at the reservoir temperature of 83ºF is 868.3 psia for the initial reservoir oil.  The 

critical point of the initial oil is calculated to be 922ºF and 1534.8 psia by use PR EOS.  

Figure 5.4 gives the pressure-solvent-mole-fraction (P-x) diagram calculated for 

mixtures of NWE oil and CO2 at 83ºF by use of the new PT flash algorithm.  Two 

immiscible liquid phases (L1 and L2) are present at CO2 concentrations higher than 60% 

at the higher-pressure side of the three-phase (L1, V, and L2) region.   

Simulations are performed at five pressures, 825 psia, 850 psia, 920 psia, 935 

psia, and 1050 psia, at which three hydrocarbon phases are calculated.  Figure 5.5 

presents the PC1 recovery at BT times of the leading and trailing edges of the three-phase 
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region at the five pressures.  For NWE oil, PC1 is selected as the component to show 

component’s recovery.       

PC1 recoveries are 0.599, 0.709, 0.846, 0.877, and 0.546, at BTs of the leading 

edge of the three-phase region at 825 psia, 850 psia, 920 psia, 935 psia, and 1050 psia, 

respectively.  The BTs of leading edge of the three-phase region are 1.745 PVI, 1.643 

PVI, 1.513 PVI, 1.479 PVI, and 0.830 PVI at 825 psia, 850 psia, 920 psia, 935 psia, and 

1050 psia, respectively.    

Similarly, BTs of trailing edge of the three-phase region are 3.570 PVI, 6.072 

PVI, 5.751 PVI, 5.669 PVI, 0.908 PVI, at 825 psia, 850 psia, 920 psia, 935 psia, and 

1050 psia, respectively.  PC1 recoveries are 0.614, 0.749, 0.915, 0.932, and 0.615, at 825 

psia, 850 psia, 920 psia, 935 psia, and 1050 psia, respectively.  Highest PC1 recovery is 

observed at 935 psia at BT of trailing edge of the three-phase region, and is 34.04% more 

efficient than that at 825 psia.   

Figure 5.5 also indicates that the local displacement by three hydrocarbon phases 

becomes more efficient, and the propagation of three hydrocarbon phases becomes faster 

with increasing pressure for a pressure range between 850 psia and 935 psia.  This results 

in the highest PC1 recovery at 935 psia than that at 850 psia.   

At 1050 psia, although the BTs of the leading and trailing edges of the three-

phase region are the fastest among the five pressures, the PC1 recovery is the lowest.  

This indicates that the faster propagation of three hydrocarbon phases does not balance 

the low efficiency of local oil displacement by three hydrocarbon phases, resulting in the 

lowest PC1 recovery at 1050 psia.   

Figure 5.6 shows the distance parameters calculated at the trailing and leading 

edges of the three-phase region.  The OIP (935 psia) is defined when distance parameters 
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are lowest ( δT = 0.0041  and δL = 0.0280 ).  At the three-phase trailing edge, the 

distance parameter is lower than that of the three-phase leading edge.  It is likely because 

the concentrations’ change at the three-phase leading edge is more drastic than that at the 

three-phase trailing edge.  This makes the local level of mixing higher at the leading edge 

higher than that at the trailing edge.   

The OIP is calculated in three steps in this chapter.  Firstly, the minimum distance 

conditions are calculated for the three-phase trailing edge and the three-phase leading 

edge, respectively.  Then, a turning point is identified on the minimum distance condition 

figures.  After that, the same analyses as described above are performed for refined 

pressure conditions that bracket the turning point.  This refining in pressure is to obtain a 

more precise OIP.  Although not shown in the following analyses, this procedure to 

obtain an OIP has been applied for all six three-hydrocarbon-phase reservoir oils studied 

in this chapter.  The OIP is defined as the pressure at which the distance parameters are 

the lowest and component recovery is the highest (i.e., recovery negatively correlates 

with δT and δL).    

Figures 5.7 and 5.8 show PC1 component recoveries at BT of the three-phase 

leading edge and trailing edge with respect to the distance parameters calculated at the 

three-phase leading and trailing, respectively.  For the NWE case, PC1 recovery is 

highest at the BTs of the leading and trailing edges at calculated OIP (935 psia).   

NWE oil displacements by CO2 at 83°F were also performed using UTCOMP.  

Reservoir and fluid properties were the same as in flow simulations given in the previous 

paragraphs (Tables 5.2, 5.3, and 5.4).  Figure 5.9 shows the oil recoveries at the BT of 

three-phase leading and trailing edges at the five pressures; that is, this figure shows the 
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oil displacement efficiency by the three-hydrocarbon-phase region at each pressure.  At 

935 psia, the highest oil displacement efficiency was calculated with UTCOMP.   

Figure 5.10 shows the concentration profile at 0.4 PVI at 825 psia using the 1-D 

simulator developed in this research (Section 5.2).  Because the pressure is below the 

bubble point pressure (868.3 psia, see Figure 5.1), the initial oil is in the L1 + V region.  

At the trailing edge of the three-phase region, the compositional distances between L1 + 

L2, L1 + V, and V + L2, are 0.129, 0.328, and 0.203, respectively.  At the leading edge, 

the compositional distances between L1 + L2, L1 + V, and V + L2, are 0.074, 0.290, and 

0.219, respectively.   

Figures 5.11 and 5.12 show the profiles of phase saturation and phase mass 

densities at 0.4 PVI at 825 psia.  The amount of L1 phase does not exhibit significant 

decrease at the three-phase leading edge.  This is because the injection gas (CO2) cannot 

efficiently extract heavy components in the three-phase region (see Figure 5.10), 

resulting in low displacement efficiency.  Figure 5.12 shows that the mass densities of L1 

and L2 phases are close to each other at three-phase leading edge; however, these two 

phases are away from each other in composition space with a distance of 0.074.   

Figures 5.13 to 5.15 show the concentration, phase saturation, and phase mass 

densities profiles at 0.4 PVI at 935 psia (the OIP).  The same set of profiles at 0.4 PVI at 

1050 psia are shown in Figures 5.16 to 5.18.  The displacement of L1 phase at the three-

phase leading edge is least efficient at 1050 psia (Figure 5.17), and is the most efficient at 

935 psia (Figure 5.14).  Figures 5.15 and 5.18 also show that the miscibility level is 

highest at 935 psia.   

At the three-phase leading edge, the composition distances between L1 and L2 

phases are 0.074, 0.092, and 0.115, at 825 psia, 935 psia, and 1050 psia, respectively.  
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Although the composition distance between L1 and L2 phases is lowest at 825 psia, the 

PC1 recovery is not the highest (see Figure 5.5).  This indicates that use of composition 

distance to identify MMP for three-phase flow is not always reliable, since displacement 

efficiency is affected by involved inter-phase mass transfer in three-phase flow.   

At the OIP (935 psia), the L1 phase in the downstream two-phase region splits 

into L1 and L2 phases in the three-phase region, and the L2 and V phase in the three-phase 

region merge efficiently into L2 phase in the upstream two-phase region.  Hence, the PC1 

recovery at BT of three-phase trailing edge is highest at 935 psia.   

5.3.1.2 Effect of Numerical Péclet on OIP  

In this section, the sensitivity of the displacement efficiency to the numerical 

Péclet number is studied.  Component recovery and distance parameters are calculated by 

use of the same approaches as in the previous section.  Lantz (1970) showed that 

numerical dispersion arises in numerical solutions because of truncation errors, which is 

often described by Péclet number.  For two immiscible phases, the Péclet number for 1D 

displacements is written as  

NPe
−1 =

∆xD

2

dfg

dSg
(1 −

∆tD

∆xD

dfg

dSg
),       (5.6) 

where fg is the fractional flow of gaseous phase and Sg is the saturation of gaseous phase.  

When the dimensionless time steps are small in comparison with the grid block size and 

the fractional flow derivative is approximated as 1.0, equation 5.6 is simplified to  

NPe =
2

∆xD
.            (5.7)  

Equation 5.7 was used to represent the level of dispersion for single-point 

upstream weighting by Stalkup (1998) and Solano et al. (2001).  Equation 5.7 is used in 

this section to approximate the level of numerical dispersion in all simulations by varying 

the number of grid blocks (GBs) used.  In all simulations presented, a dimensionless time 
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step size is one-tenth of the dimensionless grid block size so that the time step little 

contributes to numerical dispersion.   

Five different numbers of grid blocks are used in flow simulations; NGB = 50, 250, 

500, 1000, and 2000.  The resulting Péclet numbers for 1D displacements are 

approximately 100, 500, 1000, 2000, and 4000.  Figure 5.19 shows the relation between 

PC1 recovery at BT of the trailing edge with respect to distance parameter at the trailing 

edge at five NPe numbers.  Figure 5.20 shows the relation between PC1 recovery at BT of 

the leading edge with respect to distance parameter at the leading edge at five NPe 

numbers.  Minimum distance conditions are used to identify the OIP as used in previous 

section.  The minimum distance condition states that at the OIP, the distance parameter is 

a minimum and the component’s recovery is a maximum.  The OIP calculated is 935 psia 

for all five pressures with five NPe for NWE oil by use of the minimum distance 

conditions defined in this research.   

Figures 5.19 and 5.20 illustrate that recoveries initially increase as the pressure 

approaches to the OIP (935 psia) for NWE oil.  A maximum in the recoveries is 

eventually reached, after which the recoveries decrease (at 1050 psia).  Both figures also 

show that recoveries at a greater level of dispersion (i.e., a smaller number of GBs) are 

smaller than those with a lower level of numerical dispersion (i.e., a larger number of 

GBs).   

The most obvious increase in displacement efficiency due to a lower level of 

dispersion is observed at 1050 psia (see Figures 5.17 and 5.21).  The L1 phase almost 

remains undisplaced by injecting CO2 in the entire three-phase region with the use of NGB 

= 250 (see Figure 5.17).  Use of NGB = 2000 shows significant L1 phase amount decrease 

in downstream side of three-phase region.  At the three-phase leading edge, L1 phase 
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amount decreases from 0.831 to as low as 0.002.  This is reflected by the distance 

parameters (see Figures 5.19 and 5.20).  When 250 GBs are used, the distance parameters 

at the three-phase trailing and leading edges are 1.082477 and 1.531852, respectively.  

Use of 2000 GBs reduces the distance parameters to 0.000935 and 0.012513, 

respectively.   

At the OIP (935 psia), Figure 5.14 (NGB = 250) shows that L1 phase saturation 

exhibits decreasing-increasing-decreasing trend near three-phase leading edge.  However, 

use of 2000 GBs clearly diminishes the unfavorable increasing of L1 phase amount at 

three-phase leading edge (see Figure 5.22).  The distance parameters at three-phase 

trailing and leading edges with 250 GBs are 0.004156 and 0.028066, respectively.  They 

are reduced to 0.000277 and 0.001650, respectively, when 2000 GBs are used.   

At 825 psia with 250 GBs, L1 phase was left behind the three-phase region with a 

saturation of 0.638 at the three-phase trailing edge, higher than that at the three-phase 

leading edge (see Figure 5.11).  This indicates that oil displacement is not efficient.  

However, increasing NGB to 2000 clearly increases displacement efficiency, especially at 

the three-phase trailing edge, as shown in Figure 5.23.  The distance parameters at the 

three-phase trailing and leading edges with 250 GBs are 0.040236 and 0.828008, 

respectively.  They are reduced to 0.003400 and 0.204596, respectively, with 2000 GBs.  

In what follows, the effect of numerical Péclet number on minimum distance 

conditions is presented.  Individual terms in distance parameter calculations at the OPI 

(935 psia) and 1.0 PVI with NGB of 250 and 1000 are calculated.   

Figure 5.24 shows the fractional flow curves with respect to dimensionless 

distance with NGB of 250 and 1000.  At the leading edge of the three-phase region, fL1 

and fV fluctuate, as can be seen from Figures 5.24a and 5.24b.   Figures 5.25, 5.26, and 



196 

 

5.27 show the compositions for L1, V, and L2 phases, respectively, with NGB of 250.  

Figures 5.28, 5.29, and 5.30 show the compositions for L1, V, and L2 phases, 

respectively, with NGB of 1000.  At the three-phase leading edge, CO2 concentrations in 

L2 phase exhibit significant increase from downstream side to upstream side.   

Figure 5.31 shows the saturation profiles with NGB of 250 and 1000.  L1 phase 

saturation is reduced from 0.7630 to 0.0377 with NGB of 250.  The decrease in L1 phase 

saturation is 0.7253.  When NGB is 1000, L1 phase saturation is reduced from 0.7646 to 

0.0249, resulting in L1 phase saturation decrease of 0.7397.  Hence, more efficient 

displacement occurs at a lower level of dispersion (i.e., larger NGB).    

In the calculations of distance parameters, the term γj (j = 1, 2, …, NP) is required 

and calculated using γj = (vDSj − fj)/(vD − 1) (equation 2.6).  Hence, the fluctuations of 

fractional flow are also reflected in γj .  Figure 5.32 shows the γj  used in distance 

parameter calculations (equation 2.6) with NGB of 250 and 1000.  The fluctuations of γj at 

the three-phase leading edge become smoother, when larger NGB is used in simulations.   

Detailed analysis of influential factors has indicated that the observed fluctuation 

with 250 grid blocks occurs because the level of mixing affects not all physical 

parameters in the current simulator.  In particular, relative permeability parameters (Table 

5.4) are assumed to be constant with phase compositions, which are affected substantially 

by the mixing near the displacement fronts.  With 1000 grid blocks, the level of mixing is 

smaller (numerical NPe is larger), and therefore, the partial impact of mixing on 

simulation results is less obvious (Figure 5.32b).     

The γj (j = 1, 2, …, NP) parameters determine the relative location of the NP-

phase tie simplex and an intersection involved in the phase transition (chapter 2).  The 

intersection is calculated for a given set of the tie line and tie triangle involved in a phase 
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transition; for example, a downstream-side tie line and a upstream-side tie triangle.  The 

location of the intersection relative to the downstream-side tie line gives the γj (j = L1 and 

V) parameters on the tie line extension.  Thus, cint = γL1
D cL1

D + γV
DcV

D, where γL1
D + γV

D =

1.0  and cint  is the intersection composition.  Similarly, the location of the same 

intersection relative to the upstream-side tie triangle gives the γj  (j = L1, L2, and V) 

parameters on the tie triangle extension.  Thus, cint = γL1
U cL1

U + γL2
U cL2

U + γV
UcV

U , where 

γL1
U + γL2

U + γV
U = 1.0.   

When NGB is 250, at the three-phase leading edge, γL1
U , γL2

U , and γV
U are −0.0190, 

0.8936, and 0.1254, respectively.  The γL1
D  and γV

D are 0.9073 and 0.0927, respectively.  

The composition calculated at the intersection is (0.0001, 0.7827, 0.0565, 0.0096, 0.0087, 

0.0089, 0.0087, 0.0076, 0.0509, 0.0358, 0.0224, 0.0083).   

At the three-phase leading edge, the composition distance between the 

intersection and upstream L1 phase is 0.1956, and the composition distance between the 

intersection and upstream L2 phase is 0.0201.  The distance parameter calculated at the 

three-phase leading edge is 0.0295.   

Similarly, at the three-phase trailing edge, γL1
D , γL2

D , and γV
D are −0.0413, 1.4440, 

and −0.4027, respectively.  The γL1
U  and γL2

U  are −0.0447 and 1.0447, respectively. The 

composition of the intersection is calculated at (0.0000, 0.9541, 0.0000, 0.0000, 0.0000, 

0.0000, 0.0000, 0.0000, 0.0055, 0.0100, 0.0135, 0.0168).  The compositions for N2, CH4, 

C2H6, C3H8, C4H10, C5H12, and C6H14 are zero at the three-phase trailing edge because the 

concentrations of these components are zero (Figures 5.25, 5.26, and 5.27).   

The composition distance between the intersection and downstream V phase is 

0.0298 at the three-phase trailing edge.  The composition distance between the 
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intersection and downstream L2 phase is 0.0178.  The distance parameter calculated at 

three-phase trailing edge is 0.0024.   

When NGB is 1000, at the three-phase leading edge, γL1
U , γL2

U , and γV
U are −0.0145, 

0.1601, and 0.8544, respectively.  The γL1
D  and γV

D are 0.1176 and 0.8824, respectively.  

The composition calculated at the intersection at the three-phase leading edge is (0.0000, 

0.8364, 0.1122, 0.0154, 0.0064, 0.0043, 0.0029, 0.0018, 0.0093, 0.0062, 0.0039, 0.0013).   

The composition distance between the intersection and upstream L1 phase is 

0.2623 at the three-phase leading edge.  The composition distance between the 

intersection and upstream L2 phase is 0.1304.  Compared to the composition distances 

between the intersection and upstream L1 and L2 phases with NGB of 250, the 

composition distances become greater with NGB of 1000.  The distance parameter 

calculated at the three-phase leading edge is reduced to 0.0109 by increasing NGB to 

1000.   

At the three-phase trailing edge, the values of γL1
D , γL2

D , and γV
D  are −0.0300, 

−0.0313, and 1.0612, respectively.  The γL1
U  and γL2

U  are −0.0302 and 1.0302, 

respectively. The intersection involved at the three-phase trailing edge is calculated at the 

composition (0.0000, 0.9729, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0031, 

0.0074, 0.0078, 0.0088).  Zero concentrations of components N2, CH4, C2H6, C3H8, 

C4H10, C5H12, and C6H14 result in zero values in the compositions of the intersection (see 

Figures 5.28, 5.29, and 5.30).   

At the three-phase trailing edge, the composition distance between the 

intersection and downstream V phase is 0.0512.  The composition distance between the 

intersection and downstream L2 phase is 0.0257.  The distance parameter calculated at the 

three-phase trailing edge is reduced to 0.0016 by increasing NGB to 1000.   
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5.3.1.3 Effect of Relative Permeability Model Used on OIP  

As explained in preceding section, three-phase relative mobilities are properly 

included in distance parameters (equations 2.7 and 2.8) through the parameter “γ”, unlike 

the three-phase mixing-cell method of Li et al. (2015).  In order to evaluate the effect of 

the relative permeability model used on the calculated OIP, a new set of parameters used 

in Corey’s model for the three-phase relative permeabilities is given in Table 5.5.   

Simulations are performed at five pressure conditions; 825 psia, 850 psia, 900 

psia, 935 pisa, and 1000 psia.  Three-phase displacements are not observed for the 

pressures below 825 psia and above 1000 psia.  The number of GBs used in this section is 

250.   

Figure 5.33 and 5.34 show the minimum distance conditions for the three-phase 

trailing and leading edges with the use of the new relative permeability model given in 

Table 5.5.  The calculated OIP is 1000 psia, at which the distance parameters are the 

minimum and the PC1 recoveries are the highest.   

With the new relative permeability parameters, the distance parameters at the 

three-phase trailing edge are 0.0565, 0.0192, 0.0059, 0.0021, and 0.0008, at 825 psia, 850 

psia, 900 psia, 935 pisa, and 1000 psia, respectively.  The distance parameters at the 

three-phase leading edge are 0.0798, 0.0872, 0.0630, 0.0282, and 0.0112, at 825 psia, 850 

psia, 900 psia, 935 pisa, and 1000 psia, respectively.  The BTs of the three-phase trailing 

and leading edges and the PC1 recoveries at BTs of the three-phase trailing and leading 

edges are also affected by the relative permeability model used in the simulation.   

To see the effect of relative permeability used on minimum distance conditions, 

individual terms used in distance parameter calculations are calculated.  Figure 5.35 

shows the γj used in distance parameter calculations with the new set of relative 
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permeability model (Table 5.5) at 935 psia.  Figure 5.32a presents the γj used in distance 

parameter calculations with the relative permeability model of Khan et al. (1992) (Table 

5.4) at 935 psia.  The fluctuations of γL1 and γV are also reflected in fractional flow curves 

(see Figure 5.36).   

In the new set of relative permeability model, the exponents used for all phases 

are doubled and the endpoint of V phase becomes significantly greater than that of L1 and 

L2 phases.  The propagation of the three-phase leading edge becomes slower with the 

new set of relative permeability model.   

Figure 5.37 shows the saturation profile with the new set of relative permeability 

model (Table 5.5) at 935 psia.  The saturation profile obtained at 935 psia with the 

relative permeability model of Khan et al. (1992) is presented in Figure 5.31a.  Because 

of the change made for the exponent and endpoint for V phase in the new relative 

permeability model, V phase travels slower.  With a slower propagation of the three-

phase leading edge, the reduction of L1 phase saturation is from 0.5565 to 0.0425.  That 

is, the decrease of L1 phase saturation is 0.5140.  Figure 5.31a shows that the reduction of 

L1 phase saturation is 0.7253.   

Figure 5.38 compares the CO2 concentration profiles obtained with two sets of 

relative permeability models (see Tables 5.4 and 5.5).  With the new set of relative 

permeability, CO2 concentrations are higher than that with the model of Khan et al. 

(1991), although three-phase leading edge propagates slower.   

The γj (j = 1, 2, .., NP) parameters involved in multiphase transitions are 

calculated.  With the new set of relative permeability model, at the three-phase leading 

edge, γL1
U , γL2

U , and γV
U are −0.0214, 0.8196, and 0.2018, respectively.  The γL1

D  and γV
D are 

0.5059 and 0.4941, respectively.  The intersection involved at the three-phase leading 
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edge is calculated at the composition (0.0000, 0.9357, 0.0048, 0.0035, 0.0036, 0.0027, 

0.0023, 0.0022, 0.0126, 0.0117, 0.0108, 0.0100).  The composition distance between the 

intersection and upstream L1 phase is 0.5325, and the composition distance between the 

intersection and upstream L2 phase is 0.0216.  The distance parameter calculated at three-

phase leading edge is 0.0282.   

Similarly, the intersection involved at three-phase trailing edge is calculated with 

γL1
D  of −0.0399, γL2

D  of −0.1035, and γV
D of 1.1434.  The composition distance between the 

intersection and downstream V phase is 0.0607 at the three-phase trailing edge.  The 

composition distance between the intersection and downstream L2 phase is 0.0638.  The 

distance parameter calculated at three-phase trailing edge is 0.0021.   

The difference in CO2 propagation owing to the relative permeability models for 

this oil displacement is clear in Figure 5.38.  Analysis of various parameters involved in 

the distance parameters may clarify what affects the in-situ propagation of the injected 

solvent in gas floods.  

5.3.1.4 Robustness of the New Simultaneous PT Flash Algorithm in Simulation  

The conventional sequential use of phase-split/-flash is also tested for NWE oil 

displacement at the calculated OIP (935 psia), for which millions of three-phase flash 

calculations are performed.  Solutions from the conventional flash at each grid block are 

found to be the same as those obtained with the new algorithm in this case.  Figure 5.39 

compares the number of iterations required for convergence with the new algorithm and 

the conventional algorithm.  In the new algorithm, the sampling compositions used 

consist of 24 compositions distributed using the systematic distribution scheme 

(Appendix C) and the compositions from the previous time step.  NSmax is set to be 24.  In 

the conventional algorithm, 27 guesses are used in phase stability tests.  With the new 
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algorithm, the maximum number of iterations required for convergence is 119; however, 

with the conventional algorithm, the maximum number of iterations required for 

convergence is 497.   

The number of fugacity-coefficient calculations is one of the many measurements 

to quantify computational efficiency.  Figure 5.40 compares the number of fugacity-

coefficient calculations with the new algorithm and that with the conventional algorithm.  

The maximum number of fugacity-coefficient calculations with the new algorithm is 436.  

It occurs when the number of iterations required for convergence is at its maximum with 

the new algorithm.  However, with conventional algorithm, the maximum number of 

fugacity-coefficient calculations is 3437, which is 7 times more than that with the new 

algorithm.  With the conventional algorithm, more than 90% of the fugacity vector 

calculations are performed in two- and three-phase stability tests.   

Figure 5.41 shows NP and NU obtained with the new algorithm with respect to 

dimensionless distance at 0.4 PVI at 935 psia.  Non-zero NU (NU = 1) is detected in the 

entire single L1 phase region.  The number of iterations required for convergence in the 

single L1-phase region is all 10.  This is because the L1-phase region at 0.4 PVI is also 

single L1-phase region at the previous time step.  Hence, at 0.4 PVI, the initial sampling 

compositions are all the same for all grid blocks in the single L1-phase region.  The 

composition in set U at 0.4 PVI is close to one of the equilibrium phase (V phase) at the 

next time step.  Hence, the new PT flash algorithm presented in chapter 3 can capture 

more information regarding the Gibbs free energy surface compared to that of with the 

conventional algorithm.   
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5.3.2 Summary of Five Other Reservoir Oils  

Many simulation runs and the same analyses were performed for other five three-

hydrocarbon-phase reservoir oils.  They are oil B (Shelton and Yarborough 1977), West 

Sak oil (DeRuiter et al. 1994), JEMA (Khan et al. 1992), oil G (Creek and Sheffield 

1993), and BSB oil (Khan et al. 1992).   

For oil B (Shelton and Yarborough 1977), the measured MMP is 1450 psia, and 

the calculated OIP is 1475 psia.  For West Sak oil (DeRuiter et al. 1994), the measured 

MMP is 1500 psia, and the calculated OIP is 1500 psia.  For JEMA (Khan et al. 1992), 

the measured MMP is 1250 psia, and the calculated OIP is 1200 psia.  For oil G (Creek 

and Sheffield 1993), the measured MMP is 1035 psia, and the calculated OIP is 1075 

psia.  For BSB oil (Khan et al. 1992), the measured MMP is 1200 psia, and the calculated 

OIP is 1250 psia.  Detailed figures for the minimum distance conditions for these five oil 

displacements are given in Appendix F.   

5.3.3 Oil Displacement in the Presence of Water at Elevated Temperature  

This section presents another case to validate the minimum distance conditions 

using a reservoir oil in the presence of water.  The characteristics of this displacement are 

different from those presented in sections 5.3.1 and 5.3.2 in that this case involves water 

phase behavior.     

Bakken shale reservoir oil is used (Nojabaei et al. 2013), along with the binary 

interaction parameters (BIPs) given in Siripatrachai et al. (2017).  The properties of 

Bakken oil are given in Tables 5.6, and the BIPs are given in Table 5.7.  The parameters 

used in Corey’s model for three-phase relative permeabilities are given in Table 5.8.  

Reservoir temperature is 536°F.  Injection gas is pure C2.  Component C22-80 is selected to 
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evaluate displacement efficiency.  Flow simulations are performed for seven pressure 

conditions with a fixed number of GBs, 250.   

Figure 5.42 shows the minimum distance condition for Bakken oil calculated at 

0.4 PVI at seven pressures; 2000 psia, 2300 psia, 2600 psia, 2750 psia, 2900 psia, 3050 

pisa, and 3200 psia.  The distance parameter is calculated for multiphase transition 

between three and two phases.  The efficiency of displacement of water by vapor is 

calculated at the BT of the multiphase transition.  The lowest displacement efficiency is 

0.9452 at 2000 psia, and the highest is 1.0 at 3050 psia and higher.  Corresponding 

distance parameters calculated are 0.0085 and 0.0036 at 2000 psia and 3200 psia, 

respectively.  The increase in the water-phase displacement efficiency is 5.8%.  The 

decrease of distance parameter is 57.13%.  This indicates that the distance parameter is 

able to capture a small increase in displacement efficiency in this case.   

Another set of relative permeability is also tested for this case.  The new set of 

relative permeability is obtained from Oak (1991) and is given in Table 5.9.  Figure 5.43 

shows the minimum distance condition for Bakken oil calculated at 0.4 PVI at five 

pressures; 1800 psia, 2000 psia, 2300 psia, 2600 psia, and 2750 psia.  The minimum 

distance parameter at multiphase transition is calculated at 1800 psia.  The corresponding 

displacement efficiency is 98.17%.  From the lowest pressure (1800 psia) to the highest 

pressure (2750 psia), distance parameter is reduced from 0.0282 to 0.0036.  The decrease 

in displacement efficiency is from 0.9817 to 0.8860.  Small increase in displacement 

efficiency can be properly captured by distance parameter calculated.   

5.4 SUMMARY 

This chapter presented the utility of the distance parameters for quantification of 

displacement efficiency for seven different displacement processes.  Simulation cases 
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also showed the robustness and efficiency of the new simultaneous PT flash algorithm 

presented in chapter 3.  Six cases are presented for displacement of L1 phase by L2 phase 

in the presence of V phase.  The other case is the displacement of W phase by V phase in 

the presence of L1 phase when the connate water evaporates as ethane is injected into an 

oil reservoir at an elevated temperature.  Conclusions are as follows:  

1. Efficient oil displacement can be achieved at substantially lower pressures 

in comparison with the MMP calculated with prior methods, as demonstrated for West 

Sak oil and North Ward Estes oil.   

2. Distance parameters are calculated in volume space by use of equations 

2.7 and 2.8 for a composition path obtained from the in-house 1D convection-only 

compositional simulator.  Unlike Okuno and Xu (2014ab), it is not necessary to solve for 

the intersection between a tie line and a tie triangle when distance parameters are 

calculated on the volume basis.  Hence, it is a simpler and more direct validation of the 

utility of the distance parameters to quantify the local displacement efficiency in three-

phase flow.   

3. Minimum distance conditions defined at a phase transition are used to 

calculate optimal injection pressure (OIP).  Negative correlations between the distance 

parameter calculated at a phase transition and component recovery at BT of a phase 

transition are observed for all cases tested.  This indicates that the highest displacement 

efficiency occurs when the distance parameters are the lowest.   

4. Use of the weak form of the 1D convective compositional flow equations 

enables to take into account the effect of mixing on displacement efficiency through 

numerical dispersion.  Use of a larger number of GBs results in lower distance 

parameters calculated at a phase transition.  The recoveries at a greater level of dispersion 
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(i.e., a smaller number of GBs) are lower than those with a lower level of numerical 

dispersion (i.e., a larger number of GBs).   

5. The effect of the relative permeability model used on displacement 

efficiency in three-phase flow is properly included in distance parameters (equations 2.7 

and 2.8) through the parameter “ γ ”.  The cases tested showed that the relative 

permeability parameters may have a limited impact on simulated oil recovery when the 

miscibility level is high at OIP.   

6. The robustness and efficiency of the new PT phase-stability/-split 

algorithm presented in chapter 3 were demonstrated in flow simulations for seven 

reservoir oil displacements.  The new PT flash algorithm converges more rapidly than the 

conventional sequential algorithm in terms of the number of iterations required for 

convergence and the number of fugacity-coefficient calculations, except for the single-

phase region.  None of the tested cases showed convergence issues in phase behavior 

calculations.    

7. The reliability of the OIP calculation in this research depends on the EOS 

fluid model used to represent multiphase behavior during the displacement process.  The 

calculated OIPs for the cases are reasonably close to experimentally determined MMPs.  

This can be because the EOS fluid models obtained from Kumar and Okuno (2016) 

properly capture the three-phase behavior of the six reservoir oil cases tested.   
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Table 5.1. Summary of prior studies on quantification of local displacement efficiency 

in three-phase flow  

 

EOS 

model 

Method to 

obtain 

composition 

path 

MCM condition Additional notes 

Li et al. 

(2015) 

PR 

EOS 

1D mixing cell 

Zero length for 

any of the key tie 

lines 

The order of phase mobility 

is determined the 

compositional distance from 

the injection gas.   

Okuno 

and Xu 

(2014ab) 

1D convective 

flow with 

UTCOMP 

(volume change 

on mixing is 

modeled) Mass conservation 

on multiphase 

transitions for  

L1-phase 

completely 

displaced by non-

L1 phase  

Indirect calculation of 

distance parameters requires 

obtaining an intersection 

between the extensions of 

upstream and downstream 

tie simplexes.  The accuracy 

of the intersection can be 

sensitive to the angle 

between two tie simplexes 

at near-miscible conditions.   

This 

research 

1D convective 

flow simulator 

with no volume 

change of 

mixing 

No volume change of 

mixing results in a 

composition path that is 

different from a more 

rigorous one from 

UTCOMP. 

Calculation of distance 

parameters in volume space 

is direct. 
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Table 5.2. Fluid properties of the NWE oil (Kumar and Okuno 2016) 

Components Oil Gas MW, 

g/mol 

TC, ºF PC, psia Acentric 

factor 

VC, 

ft
3
/lbm-mol 

N2 0.002 0.0 28.014 -232.510 492.258 0.040 1.438 

CO2 0.004 1.0 44.010 87.890 1069.798 0.225 1.506 

CH4 0.203 0.0 16.043 -116.590 667.174 0.008 1.586 

C2H6 0.059 0.0 30.070 90.050 708.364 0.098 2.371 

C3H8 0.059 0.0 44.097 205.970 615.830 0.152 3.252 

C4H10 0.056 0.0 58.124 297.644 545.342 0.189 4.085 

C5H12 0.049 0.0 72.151 377.078 490.083 0.239 4.870 

C6H14 0.044 0.0 86.000 453.650 430.617 0.296 5.927 

PC1 0.215 0.0 139.573 696.114 391.102 0.183 11.713 

PC2 0.143 0.0 209.356 892.243 316.680 0.287 17.483 

PC3 0.102 0.0 293.393 1093.827 265.882 0.407 24.908 

PC4 0.064 0.0 472.233 1473.689 212.221 0.629 32.493 

 

Table 5.3. Binary interaction parameters for the NWE oil given in Table 5.2  

(Kumar and Okuno 2016) 

 N2 CO2 CH4 C2H6 C3H8 C4H10 C5H12 C6H14 PC1 PC2 PC3 PC4 

N2 0.000 
           

CO2 0.000 0.000 
          

CH4 0.100 0.100 0.000 
         

C2H6 0.100 0.145 0.042 0.000 
        

C3H8 0.100 0.132 0.042 0.040 0.000 
       

C4H10 0.100 0.125 0.042 0.040 0.030 0.000 
      

C5H12 0.100 0.119 0.042 0.040 0.030 0.012 0.000 
     

C6H14 0.100 0.116 0.042 0.040 0.030 0.016 0.006 0.000 
    

PC1 0.130 0.042 0.052 0.042 0.033 0.042 0.027 0.000 0.000 
   

PC2 0.130 0.089 0.056 0.042 0.036 0.056 0.046 0.000 0.000 0.000 
  

PC3 0.130 0.116 0.062 0.043 0.042 0.065 0.062 0.000 0.000 0.000 0.000 
 

PC4 0.130 0.134 0.073 0.044 0.058 0.075 0.082 0.000 0.000 0.000 0.000 0.000 

 

Table 5.4. Parameters used in Corey model for three-phase relative permeabilities 

(Khan 1992) 

Residual oil saturation 0.2 Residual gas saturation  0.05 

Endpoint for L1 phase 0.48 Endpoint for V phase 0.687 

Exponent for L1 phase 2.5 Exponent for V phase 2.7 

Parameters for L2 phase are the same as used for V phase.   
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Table 5.5. New set of parameters used in Corey model for three-phase relative 

permeabilities  

Residual oil saturation 0.2 Residual gas saturation  0.05 

Endpoint for L1 phase 0.3 Endpoint for V phase 0.9 

Exponent for L1 phase 5 Exponent for V phase 5.4 

Residual L2 saturation  0.05   

Endpoint for L2 phase 0.3 Exponent for L2 phase 5.4 

 

Table 5.6. Fluid properties of the Bakken oil (Nojabaei et al. 2013) 

Components Oil Gas MW, 

g/mol 

TC, ºF PC, psia Acentric 

factor 

VC, 

ft
3
/lbm-mol 

C1 0.142 0.0 16.535 -124.334 655.020 0.010 1.580 

C2 0.057 1.0 30.433 90.299 721.990 0.103 2.340 

C3 0.036 0.0 44.097 206.300 615.760 0.152 3.250 

C4 0.022 0.0 58.124 299.538 546.460 0.189 4.110 

C5-6 0.025 0.0 78.295 415.809 461.290 0.268 5.390 

C7-12 0.061 0.0 120.562 593.580 363.340 0.429 8.810 

C13-21 0.028 0.0 220.716 872.425 249.610 0.720 15.190 

C22-80 0.014 0.0 443.518 1384.821 190.120 1.016 36.000 

Water 0.614 0.0 18.015 705.470 3203.728 0.344 0.897 

 

Table 5.7. Binary interaction parameters for the Bakken oil given in Table 5.6 

(Nojabaei et al. 2013) 

 C1 C2 C3 C4 C5-6 C7-12 C13-21 C22-80 Water 

C1 0.000         

C2 0.005 0.000        

C3 0.004 0.003 0.000       

C4 0.004 0.003 0.000 0.000      

C5-6 0.004 0.003 0.000 0.000 0.000     

C7-12 0.003 0.003 0.000 0.000 0.000 0.000    

C13-21 0.003 0.003 0.000 0.000 0.000 0.000 0.000   

C22-80 0.003 0.003 0.000 0.000 0.000 0.000 0.000 0.000  

Water 0.731 0.697 0.666 0.636 0.595 0.516 0.370 0.242 0.000 
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Table 5.8. Parameters used in Corey model for three-phase relative permeabilities 

(Siripatrachai et al. 2017) 

Residual oil saturation 0.1 Residual gas saturation  0.05 

Endpoint for L1 phase 0.95 Endpoint for V phase 0.9 

Exponent for L1 phase 2 Exponent for V phase 4 

Residual water saturation  0.2   

Endpoint for W phase 0.95 Exponent for W phase 2 

 

Table 5.9. Parameters used in Corey model for three-phase relative permeabilities 

(Oak 1991) 

Residual oil saturation 0.3 Residual gas saturation  0.08 

Endpoint for L1 phase 0.02 Endpoint for V phase 0.4 

Exponent for L1 phase 2 Exponent for V phase 3.8 

Residual water saturation  0.2   

Endpoint for W phase 0.03 Exponent for W phase 3.2 
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(a) 

 

(b) 

Figure 5.1. P-x and P-T diagrams for the West Sak oil and the injection gas with 60% 

methane concentration.  The properties of components used were given in Okuno and Xu 

(2014a).  The reservoir temperature is 65°F.  (a) P-x diagram.  (b) P-T diagram.   
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Figure 5.2. P-T diagram for the North Ward Estes (NWE) oil and the injection gas of 

CO2.  The properties of components used were given in Kumar and Okuno (2016).   

 

Figure 5.3. P-T diagram of the NWE oil and injection gas (CO2).  The properties of 

components used are given in Table 5.2.  The binary interaction parameters are given in 

Table 5.3.  The oil gravity is calculated to be approximately 32ºAPI.  The bubble point 

pressure at the reservoir temperature of 83ºF is 868.3 psia for the initial oil.  The critical 

point of the initial oil is calculated to be 922ºF and 1534.8 psia.   
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Figure 5.4. Pressure-solvent-mole-fraction (P-x) diagram calculated for mixtures of NWE 

Oil and CO2 at 83ºF by use of the new PT flash algorithm presented in chapter 3.  The 

properties of components used are given in Table 5.2.  The binary interaction parameters 

are given in Table 5.3.  Two immiscible liquid phases (L1 and L2) are present from 

60.05% CO2 concentration to 99.95% CO2 concentration.  Three phases (L1, V, and L2) 

exist between the L1 + V and L1 + L2 regions.   
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Figure 5.5. PC1 recovery at breakthrough (BT) times of the leading and trailing edges of 

the three-phase region at the five pressures at 83ºF.  The number of GBs used is 250.  

PC1 recoveries are 0.599, 0.709, 0.846, 0.877, and 0.546, at BTs of the leading edge of 

the three-phase region at 825 psia, 850 psia, 920 psia, 935 psia, and 1050 psia, 

respectively.  PC1 recoveries at BTs of the trailing edge of the three-phase region are 

0.614, 0.749, 0.915, 0.932, and 0.615, at 825 psia, 850 psia, 920 psia, 935 psia, and 1050 

psia, respectively.  Highest PC1 recovery is observed at 935 psia at BT of trailing edge of 

the three-phase region, and is 34.04% more efficient than that at 825 psia.   
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Figure 5.6. Distance parameters at the three-phase trailing and leading edges for NWE oil 

at the five different pressures at 83ºF.   The number of GBs used is 250.  The OIP (935 

psia) is defined when distance parameters are lowest (δT = 0.0041 and δL = 0.0280).  

At the three-phase trailing edge, the distance parameter is lower than that of the three-

phase leading edge.  It is likely because the concentrations’ change at the three-phase 

leading edge is more drastic than that at the three-phase trailing edge.   
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Figure 5.7. PC1 component recoveries at BT of the three-phase leading edge with respect 

to the distance parameters calculated at the three-phase leading edge for the NWE oil 

displaced by CO2 at 83°F.  The number of GBs used is 250.  PC1 recovery is highest at 

the BTs of the leading edge at calculated OIP (935 psia).   

 

Figure 5.8. PC1 component recoveries at BT of the three-phase trailing edge with respect 

to the distance parameters calculated at the three-phase trailing edge for the NWE oil 

displaced by CO2 at 83°F.  The number of GBs used is 250.  PC1 recovery is highest at 

the BTs of the trailing edge at calculated OIP (935 psia).   
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Figure 5.9. Oil recoveries at the BT of three-phase leading and trailing edges at the five 

pressures obtained by UTCOMP.   
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(a) 

 

(b) 

Figure 5.10. (Continued below) 

 



219 

 

 

(c) 

Figure 5.10. Concentration profiles at 0.4 PVI at 825 psia for NWE oil displaced by CO2 

at 83°F.  The properties of components used are given in Table 5.2.  The binary 

interaction parameters are given in Table 5.3.  The number of GBs used is 250.  Because 

the pressure is below the bubble point pressure (868.3 psia, see Figure 5.3), the initial oil 

is in the L1 + V region.  (a) Concentrations of CO2, CH4, and C2H6.  (b) Concentrations of 

C3H8, C4H10, C5H12, and C6H14.  (c) Concentrations of PC1, PC2, PC3, and PC4.   
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Figure 5.11. Phase saturation profile at 0.4 PVI at 825 psia for NWE oil displaced by CO2 

at 83°F.  The properties of components used are given in Table 5.2.  The binary 

interaction parameters are given in Table 5.3.  The number of GBs used is 250.  The 

amount of L1 phase does not exhibit significant decrease at the three-phase leading edge.   
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Figure 5.12. Phase mass densities profile at 0.4 PVI at 825 psia for NWE oil displaced by 

CO2 at 83°F.  The properties of components used are given in Table 5.2.  The binary 

interaction parameters are given in Table 5.3.  The number of GBs used is 250.  The mass 

densities of L1 and L2 phases are close to each other at three-phase leading edge; 

however, these two phases are away from each other in composition space with a 

distance of 0.074.   
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(a) 

 

(b) 

Figure 5.13. (Continued below) 
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(c) 

Figure 5.13. Concentration profiles at 0.4 PVI at 935 psia for NWE oil displaced by CO2 

at 83°F.  The properties of components used are given in Table 5.2.  The binary 

interaction parameters are given in Table 5.3.  The number of GBs used is 250.  Because 

the pressure is above the bubble point pressure (868.3 psia, see Figure 5.3), the initial oil 

is in the L1 region.  (a) Concentrations of CO2, CH4, and C2H6.  (b) Concentrations of 

C3H8, C4H10, C5H12, and C6H14.  (c) Concentrations of PC1, PC2, PC3, and PC4.   
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Figure 5.14. Phase saturation profile at 0.4 PVI at 935 psia for NWE oil displaced by CO2 

at 83°F.  The properties of components used are given in Table 5.2.  The binary 

interaction parameters are given in Table 5.3.  The number of GBs used is 250.   

 

Figure 5.15. Phase mass densities profile at 0.4 PVI at 935 psia for NWE oil displaced by 

CO2 at 83°F.  The properties of components used are given in Table 5.2.  The binary 

interaction parameters are given in Table 5.3.  The number of GBs used is 250.   
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(a) 

 

(b) 

Figure 5.16. (Continued below) 
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(c) 

Figure 5.16. Concentration profiles at 0.4 PVI at 1050 psia for NWE oil displaced by CO2 

at 83°F.  The properties of components used are given in Table 5.2.  The binary 

interaction parameters are given in Table 5.3.  The number of GBs used is 250.  (a) 

Concentrations of CO2, CH4, and C2H6.  (b) Concentrations of C3H8, C4H10, C5H12, and 

C6H14.  (c) Concentrations of PC1, PC2, PC3, and PC4.   
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Figure 5.17. Phase saturation profile at 0.4 PVI at 1050 psia for NWE oil displaced by 

CO2 at 83°F.  The properties of components used are given in Table 5.2.  The binary 

interaction parameters are given in Table 5.3.  The number of GBs used is 250.   

 

Figure 5.18. Phase mass densities profile at 0.4 PVI at 1050 psia for NWE oil displaced 

by CO2 at 83°F.  The properties of components used are given in Table 5.2.  The binary 

interaction parameters are given in Table 5.3.  The number of GBs used is 250.   



228 

 

 

(a) 

 

(b) 

Figure 5.19. (Continued below) 
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(c) 

 

(d) 

Figure 5.19. (Continued below) 
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(e) 

Figure 5.19. Minimum distance condition at the three-phase trailing edge at five NPe 

numbers for NWE oil displaced by CO2 at 0.4 PVI at 83°F.  The properties of 

components used are given in Table 5.2.  The binary interaction parameters are given in 

Table 5.3.  (a) NPe = 100.  (b) NPe = 500.  (c) NPe = 1000.  (d) NPe = 2000.  (e) NPe = 4000.  

Recoveries initially increase as the pressure approaches to the OIP (935 psia).  A 

maximum in the recoveries is eventually reached, after which the recoveries decrease (at 

1050 psia).   
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(a) 

 

(b) 

Figure 5.20. (Continued below) 
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(c) 

 

(d) 

Figure 5.20. (Continued below) 
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(e) 

Figure 5.20. Minimum distance condition at the three-phase leading edge at five NPe 

numbers for NWE oil displaced by CO2 at 0.4 PVI at 83°F.  The properties of 

components used are given in Table 5.2.  The binary interaction parameters are given in 

Table 5.3.  (a) NPe = 100.  (b) NPe = 500.  (c) NPe = 1000.  (d) NPe = 2000.  (e) NPe = 4000.  

Recoveries initially increase as the pressure approaches to the OIP (935 psia).  A 

maximum in the recoveries is eventually reached, after which the recoveries decrease (at 

1050 psia).   
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Figure 5.21. Phase saturation profile at 0.4 PVI at 1050 psia for NWE oil displaced by 

CO2 at 83°F.  The properties of components used are given in Table 5.2.  The binary 

interaction parameters are given in Table 5.3.  The number of GBs used is 2000.  Use of 

NGB = 2000 shows significant L1 phase amount decrease in downstream side of three-

phase region.  At the three-phase leading edge, L1 phase amount decreases from 0.831 to 

as low as 0.002.   
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Figure 5.22. Phase saturation profile at 0.4 PVI at 935 psia for NWE oil displaced by CO2 

at 83°F.  The properties of components used are given in Table 5.2.  The binary 

interaction parameters are given in Table 5.3.  The number of GBs used is 2000.  Use of 

2000 GBs clearly diminishes the unfavorable increasing of L1 phase amount at three-

phase leading edge.   

 

Figure 5.23. Phase saturation profile at 0.4 PVI at 825 psia for NWE oil displaced by CO2 

at 83°F.  The properties of components used are given in Table 5.2.  The binary 

interaction parameters are given in Table 5.3.  The number of GBs used is 2000.   
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(a) 

 

(b) 

Figure 5.24. Fractional flow profile at 1.0 PVI at 935 psia for NWE oil displaced by CO2 

at 83°F.  The properties of components used are given in Table 5.2.  The binary 

interaction parameters are given in Table 5.3.  (a)The number of GBs used is 250.  (b)The 

number of GBs used is 1000. 
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(a) 

 

(b) 

Figure 5.25. (Continued below) 
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(c) 

Figure 5.25. L1 phase composition profile at 1.0 PVI at 935 psia for NWE oil displaced 

by CO2 at 83°F.  The properties of components used are given in Table 5.2.  The binary 

interaction parameters are given in Table 5.3.  The number of GBs used is 250.  (a) CO2, 

CH4, and C2H6.  (b) C3H8, C4H10, C5H12, and C6H14.  (c) PC1, PC2, PC3, and PC4. 

 

 



239 

 

 

(a) 

 

(b) 

Figure 5.26. (Continued below) 
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(c) 

Figure 5.26. V phase composition profile at 1.0 PVI at 935 psia for NWE oil displaced by 

CO2 at 83°F.  The properties of components used are given in Table 5.2.  The binary 

interaction parameters are given in Table 5.3.  The number of GBs used is 250.  (a) CO2, 

CH4, and C2H6.  (b) C3H8, C4H10, C5H12, and C6H14.  (c) PC1, PC2, PC3, and PC4. 
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(a) 

 

(b) 

Figure 5.27. (Continued below) 
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(c) 

Figure 5.27. L2 phase composition profile at 1.0 PVI at 935 psia for NWE oil displaced 

by CO2 at 83°F.  The properties of components used are given in Table 5.2.  The binary 

interaction parameters are given in Table 5.3.  The number of GBs used is 250.  (a) CO2, 

CH4, and C2H6.  (b) C3H8, C4H10, C5H12, and C6H14.  (c) PC1, PC2, PC3, and PC4. 
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(a) 

 

(b) 

Figure 5.28. (Continued below) 
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(c) 

Figure 5.28. L1 phase composition profile at 1.0 PVI at 935 psia for NWE oil displaced 

by CO2 at 83°F.  The properties of components used are given in Table 5.2.  The binary 

interaction parameters are given in Table 5.3.  The number of GBs used is 1000.  (a) CO2, 

CH4, and C2H6.  (b) C3H8, C4H10, C5H12, and C6H14.  (c) PC1, PC2, PC3, and PC4. 

 

 



245 

 

 

(a) 

 

(b) 

Figure 5.29. (Continued below) 

 



246 

 

 

(c) 

Figure 5.29. V phase composition profile at 1.0 PVI at 935 psia for NWE oil displaced by 

CO2 at 83°F.  The properties of components used are given in Table 5.2.  The binary 

interaction parameters are given in Table 5.3.  The number of GBs used is 1000.  (a) CO2, 

CH4, and C2H6.  (b) C3H8, C4H10, C5H12, and C6H14.  (c) PC1, PC2, PC3, and PC4. 
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(a) 

 

(b) 

Figure 5.30. (Continued below) 
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(c) 

Figure 5.30. L2 phase composition profile at 1.0 PVI at 935 psia for NWE oil displaced 

by CO2 at 83°F.  The properties of components used are given in Table 5.2.  The binary 

interaction parameters are given in Table 5.3.  The number of GBs used is 1000.  (a) CO2, 

CH4, and C2H6.  (b) C3H8, C4H10, C5H12, and C6H14.  (c) PC1, PC2, PC3, and PC4. 
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(a) 

 

(b) 

Figure 5.31. Saturation profile at 1.0 PVI at 935 psia for NWE oil displaced by CO2 at 

83°F.  The properties of components used are given in Table 5.2.  The binary interaction 

parameters are given in Table 5.3.  (a)The number of GBs used is 250.  (b)The number of 

GBs used is 1000. 
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(a) 

 

(b) 

Figure 5.32. γ profile at 1.0 PVI at 935 psia for NWE oil displaced by CO2 at 83°F.  The 

properties of components used are given in Table 5.2.  The binary interaction parameters 

are given in Table 5.3.  (a)The number of GBs used is 250.  (b)The number of GBs used 

is 1000. 
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Figure 5.33. Minimum distance condition at the three-phase trailing edge for the NWE oil 

displaced by CO2 at 83°F.  The number of GBs used is 250.  The relative permeability 

model used is given in Table 5.5.  PC1 recovery is highest at the BTs of the trailing edge 

at calculated OIP (1000 psia).   

 

Figure 5.34. Minimum distance condition at the three-phase leading edge for the NWE 

oil displaced by CO2 at 83°F.  The number of GBs used is 250.  The relative permeability 

model used is given in Table 5.5.  PC1 recovery is highest at the BTs of the leading edge 

at calculated OIP (1000 psia).   
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Figure 5.35. γ profile at 1.0 PVI at 935 psia for NWE oil displaced by CO2 at 83°F.  The 

properties of components used are given in Table 5.2.  The relative permeability model 

used is given in Table 5.5.    

 

 

Figure 5.36. Fractional flow profile at 1.0 PVI at 935 psia for NWE oil displaced by CO2 

at 83°F.  The properties of components used are given in Table 5.2.  The relative 

permeability model used is given in Table 5.5.    
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Figure 5.37. Saturation profile at 1.0 PVI at 935 psia for NWE oil displaced by CO2 at 

83°F.  The properties of components used are given in Table 5.2.  The relative 

permeability model used is given in Table 5.5.    
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(a) 

 

(b) 

Figure 5.38. CO2 concentration profiles at 1.0 PVI at 935 psia for NWE oil displaced by 

CO2 at 83°F.  The properties of components used are given in Table 5.2.  (a) The relative 

permeability model used is given in Table 5.4.    (b) The relative permeability model used 

is given in Table 5.5.    
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(a) 

 

(b) 

Figure 5.39. Number of iterations required for convergence with respect to dimensionless 

distance for the NWE oil displaced by CO2 at 83°F at 0.4 PVI at OIP (935 psia).  (a) With 

the new algorithm.  (b) With conventional algorithm.   
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(a) 

 

(b) 

Figure 5.40. Number of fugacity-coefficient calculations with respect to dimensionless 

distance for the NWE oil displaced by CO2 at 83°F at 0.4 PVI at OIP (935 psia).  (a) With 

the new algorithm.  (b) With conventional algorithm.   
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Figure 5.41. Number of compositions in set P (NP) and number of compositions in set U 

(NU) obtained with the new algorithm upon convergence with respect to dimensionless 

distance for the NWE oil displaced by CO2 at 83°F at 0.4 PVI at OIP (935 psia).  Non-

zero NU (NU = 1) is detected in the entire single L1 phase region.  The number of 

iterations required for convergence in the single L1-phase region is all 10.  The 

composition in set U at 0.4 PVI is close to one of the equilibrium phase (V phase) at the 

next time step.   
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Figure 5.42. Minimum distance condition for Bakken oil displaced by C2 at 0.4 PVI at 

seven pressures; 2000 psia, 2300 psia, 2600 psia, 2750 psia, 2900 psia, 3050 pisa, and 

3200 psia.  The properties of Bakken oil are given in Tables 5.6, and the BIPs are given 

in Table 5.7.  The parameters used in Corey’s model for three-phase relative 

permeabilities are given in Table 5.8.  Reservoir temperature is 536°F.  The number of 

GBs used is 250.  The distance parameter is calculated for multiphase transition between 

three and two phases.  The efficiency of displacement of water by vapor is calculated at 

the BT of the multiphase transition.   
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Figure 5.43. Minimum distance condition for Bakken oil displaced by C2 at 0.4 PVI at 

five pressures; 1800 psia, 2000 psia, 2300 psia, 2600 psia, and 2750 psia.  The properties 

of Bakken oil are given in Tables 5.6, and the BIPs are given in Table 5.7.  The 

parameters used in Corey’s model for three-phase relative permeabilities are given in 

Table 5.9.  Reservoir temperature is 536°F.  The number of GBs used is 250.  The 

distance parameter is calculated for multiphase transition between three and two phases.  

The efficiency of displacement of water by vapor is calculated at the BT of the 

multiphase transition.   
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CHAPTER 6: Conclusions and Recommendations for Future Research 

In this dissertation, two main types of research questions were addressed 

regarding multiphase behavior in solvent injection: robust multiphase flash calculation 

and the efficiency of local oil displacement in multiphase flow.   

For the first topic, isobaric-isothermal multiphase flash calculation was 

reformulated by using the tangent-plane distance equations that integrate phase-split and 

phase-stability calculations in Chapter 3.  The main advantage of this new algorithm 

over the conventional algorithms is that it is not necessary to assume a certain number of 

phases prior to calculation.  The robustness of the new algorithm was demonstrated for 

complex multiphase mixtures, which tend to exhibit many local minima of the Gibbs free 

energy in composition space.  The algorithm is also expected to be useful for other 

thermodynamic specifications, in which pressure or temperature is part of the flash 

solution.  As an example, Chapter 4 presented an application of the algorithm to 

multiphase isenthalpic flash, in which temperature changes during the iteration process.   

For the second topic, local displacement efficiency in multiphase flow was 

studied on the basis of the recent research that gave a detailed explanation of the complex 

mechanism for high displacement efficiency in low-temperature solvent injection.  A 

simple condition was derived for multicontact miscibility that is developed between a 

displaced phase and a displacing phase in the presence/absence of other phases.  A 

parameter derived from a general mass conservation upon phase transition, which is 

called the distance parameter, tends to diminishes as the multicontact miscibility is 

developed for a displaced phase and a displacing phase.  Chapter 5 demonstrated the 

applicability of the distance parameter to quantify the local displacement efficiency for 

various displacement cases.  An in-house 1D compositional simulator was developed by 
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using the robust flash algorithm presented in Chapter 3, and it was successfully used to 

solve for a composition path for a given displacement.     

Conclusions are summarized in section 6.1. Recommendations for future research 

are described in section 6.2.  

 

6.1 CONCLUSIONS  

Conventional method for multiphase flash is the sequential usage of phase-

stability/-split calculations, in which multiple false solutions are obtained in phase-split 

calculations and corrected in phase-stability analysis.  Improvement of the robustness 

and efficiency of multiphase flash is important for compositional flow simulation with 

complex phase behavior.  In chapter 3, we presented a new algorithm for isothermal-

isobaric flash for an arbitrary number of phases.  The unified formulation developed for 

simultaneous phase-stability/split calculation is based on the classical criterion of phase 

equilibrium, as explained in Baker et al. (1982).  The correct set of equations is solved 

with successive substitution for stationary points of the tangent plane distance defined at 

a reference phase composition.  Although the main focus of this chapter was on robust 

solution of multiphase flash, the new algorithm can be used also to initialize a 2nd-order 

convergent method in the vicinity of a solution.  The conclusions on the new 

simultaneous PT flash calculations are as following:   

1. The number of equilibrium phases is part of the solution in the new 

algorithm, in contrast to the sequential stability/flash approach.  It is not necessary to 

find false solutions and correct them for robust multiphase flash with the new algorithm.  

The advantage of the new algorithm in terms of robustness is more pronounced for more 
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complex phase behavior, in which multiple local minima of the Gibbs free energy are 

present.   

2. The new algorithm can be initialized even when no reliable information is 

available about the equilibrium phases of the fluid of interest.  In the method used for 

initializing the algorithm, NC sampling compositions are distributed near compositional 

vertices, and the others are systematically distributed around the overall composition 

specified.  No K-value correlation is necessary to initialize the new algorithm.  This 

also yields the flexibility that the new algorithm offers in terms of robustness and 

efficiency.  For example, one can initialize the algorithm with more sampling 

compositions for enhanced robustness by capturing more information regarding the Gibbs 

free energy during the iteration.  If reasonable estimates are available for equilibrium 

phases (e.g., correlations, the solution from the previous time step in flow simulation, and 

tie-simplex tabulation), one can use them to reduce the number of equations to be solved.   

3. The new algorithm does not use the stability equations of Gupta et al. 

(1991) because they are not necessary with the formulation presented in this research.  

Consequently, there is no need to solve the augmented Jacobian matrix that must be 

solved at each iteration in the algorithm of Gupta et al. (1991).  Also, the new algorithm 

does not exhibit the convergence problems that are associated with the stability equations 

of Gupta et al. (1991). 

4. Case studies showed that the new algorithm finds more stable solutions 

(lower Gibbs free energy) for the complex cases tested, for which the conventional 

method only finds local minima.  It was shown that the new algorithm can find non-

tangent stationary points of the tangent-plane-distance function, if present, in addition to 

equilibrium phases.   
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5. The iteration scheme of the new algorithm is the traditional successive 

substitution, of which convergence behavior has been studied in the literature (e.g., 

Michelsen 1982a, Mehra et al. 1983, Ammar and Renon 1987, Kaul 1992).  The new 

algorithm can be used to initialize a 2nd-order convergent method as demonstrated in 

case 4.  It is expected to be more difficult for the algorithm to converge for mixtures that 

exhibit a large negative deviation from an ideal solution, according to the analysis of 

Heidemann and Michelsen (1995).   

In Chapter 4, we presented a detailed analysis for narrow-boiling behavior and its 

effects on the direct substitution (DS) isenthalpic flash for two and three phases.  A 

modified DS algorithm was then developed based on the analysis.  This chapter also 

presented a new algorithm for multiphase PH flash integrated with stability analysis.  

The correct set of equations is solved for stationary points on the tangent-plane-distance 

function that is defined at an adaptively selected reference composition.  We also 

analyzed narrow-boiling behavior on the basis of the multiphase PH-flash equations, 

where energy and phase behavior equations are coupled through the temperature 

dependency of K values.  Cases were presented to demonstrate the robustness of the 

developed algorithms and the narrow-boiling conditions derived.  The conclusions on 

the new PH flash calculations are as following:   

1. Narrow-boiling behavior is characterized by the enthalpy behavior that is 

substantially sensitive to temperature.  The total enthalpy for a fixed overall 

composition and pressure becomes sensitive to temperature when at least one of the 

phase compositions drastically changes with a small change in temperature so that the 

phase mole fractions significantly change.  The mechanistic understanding of the 

narrow-boiling behavior was presented using the Gibbs free energy surfaces in binary 

composition space at different temperatures.   
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2. The prior DS algorithms (e.g., Michelsen 1987, Agarwal et al. 1991) have 

convergence issues when narrow-boiling behavior is involved.  The fundamental reason 

is that the system of equations solved in the algorithms becomes degenerate for narrow-

boiling fluids.  The prior DS algorithms use temperature oscillation as an indicator for 

narrow-boiling fluids.  However, temperature oscillation in these algorithms is a 

consequence of, not the reason for, the narrow-boiling behavior.  That is, it is not a good 

indicator that improves the robustness.   

3. The modified DS algorithm developed in this chapter adaptively switches 

between Newton’s iteration step and the bisection algorithm depending on the DS 

Jacobian condition number that offers an unambiguous criterion regarding the 

computational accuracy and robustness in the DS algorithm.  The bisection algorithm 

solves for temperature based solely on the enthalpy constraint when narrow-boiling 

behavior is identified by a large condition number of the Jacobian matrix.  This 

decoupling of temperature from the other variables is plausible when the system of 

equations is degenerate.   

4. The new simultaneous PH flash algorithm can robustly solve PH flash for 

narrow-boiling fluids.  It does not require a special treatment for one degree of freedom, 

for which the total enthalpy is discontinuous in temperature.  This is because the 

algorithm does not require to fix the number of equilibrium phases in the iteration.  The 

advantage of the proposed algorithm is pronounced when the fluid of interest exhibits 

complex phase appearance/disappearance, and/or when narrow-boiling behavior is 

involved, as in thermal compositional flow simulation.   

5. The initialization of new simultaneous PH flash algorithm is possible even 

when no reliable information is available about the equilibrium phases of the fluid of 

interest.  No K-value correlation is necessary to initialize the new algorithm.  
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6. The new simultaneous PH flash algorithm offers the flexibility in terms of 

robustness and efficiency depending on the number of sampling compositions (NS) used.  

It becomes more robust with increasing NS at the expense of computational efficiency.  

As NS increases, the algorithm becomes more robust because the possibility of finding all 

stationary points of the tangent-plane distance function increases.  However, the number 

of iterations required tends to increase with increasing NS because the algorithm with 

more sampling compositions may take more iterations when merging and adding some of 

the sampling compositions.   

7. The general condition for narrow-boiling behavior is that the interplay 

between the energy and phase behavior equations is significant.  Two subsets of the 

narrow-boiling condition were derived by analyzing the convex function whose gradient 

vectors consist of the RR equations; (i) the overall composition is near an edge of 

composition space, and (ii) the solution conditions (temperature, pressure, and overall 

composition) are near a critical point, including a critical endpoint.  A special case of 

the first specific condition is the fluids with one degree of freedom, for which enthalpy is 

discontinuous in temperature space.   

8. The analysis of the RR convex function gave the clear limiting conditions 

toward which the tendency of narrow-boiling behavior increases.  Narrow-boiling 

behavior tends to occur in thermal compositional simulation likely because water is by 

far the most dominant component in the fluid systems formed in the simulation.   

In Chapter 5, we presented the utility of the distance parameters for quantification 

of displacement efficiency for seven different displacement processes.  Simulation cases 

also showed the robustness and efficiency of the new simultaneous PT flash algorithm 

presented in chapter 3.  Six cases are presented for displacement of L1 phase by L2 

phase in the presence of V phase.  The other case is the displacement of W phase by V 
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phase in the presence of L1 phase when the connate water evaporates as ethane is injected 

into an oil reservoir at an elevated temperature.  Conclusions on the quantification of 

displacement efficiency in multiphase oil displacement are as follows:  

1. Efficient oil displacement can be achieved at substantially lower pressures 

in comparison with the MMP calculated with prior methods, as demonstrated for West 

Sak oil and North Ward Estes oil.   

2. Distance parameters are calculated in volume space by use of equations 

2.7 and 2.8 for a composition path obtained from the in-house 1D convection-only 

compositional simulator.  Unlike Okuno and Xu (2014ab), it is not necessary to solve 

for the intersection between a tie line and a tie triangle when distance parameters are 

calculated on the volume basis.  Hence, it is a simpler and more direct validation of the 

utility of the distance parameters to quantify the local displacement efficiency in three-

phase flow.   

3. Minimum distance conditions defined at a phase transition are used to 

calculate optimal injection pressure (OIP).  Negative correlations between the distance 

parameter calculated at a phase transition and component recovery at BT of a phase 

transition are observed for all cases tested.  This indicates that the highest displacement 

efficiency occurs when the distance parameters are the lowest.   

4. Use of the weak form of the 1D convective compositional flow equations 

enables to take into account the effect of mixing on displacement efficiency through 

numerical dispersion.  Use of a larger number of GBs results in lower distance 

parameters calculated at a phase transition.  The recoveries at a greater level of 

dispersion (i.e., a smaller number of GBs) are lower than those with a lower level of 

numerical dispersion (i.e., a larger number of GBs).   
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5. The effect of the relative permeability model used on displacement 

efficiency in three-phase flow is properly included in distance parameters (equations 2.7 

and 2.8) through the parameter “γ”.  The cases tested showed that the relative 

permeability parameters may have a limited impact on simulated oil recovery when the 

miscibility level is high at OIP.   

6. The robustness and efficiency of the new PT phase-stability/-split 

algorithm presented in chapter 3 were demonstrated in flow simulations for seven 

reservoir oil displacements.  The new PT flash algorithm converges more rapidly than 

the conventional sequential algorithm in terms of the number of iterations required for 

convergence and the number of fugacity-coefficient calculations, except for the single-

phase region.  None of the tested cases showed convergence issues in phase behavior 

calculations.    

7. The reliability of the OIP calculation in this research depends on the EOS 

fluid model used to represent multiphase behavior during the displacement process.  The 

calculated OIPs for the cases are reasonably close to experimentally determined MMPs.  

This can be because the EOS fluid models obtained from Kumar and Okuno (2016) 

properly capture the three-phase behavior of the six reservoir oil cases tested.   

6.2 RECOMMENDATIONS FOR FUTURE RESEARCH  

Compositional reservoir simulations require accurate modeling of complex phase 

behaviors.  The advantage of the new PT flash algorithm developed in chapter 3 in 

terms of robustness is more pronounced for more complex phase behavior, in which 

multiple local minima of the Gibbs free energy are present.  The main novelty lies in the 

unified usage of the TPD equation for PT multiphase flash for an arbitrary number of 

iterative compositions.  The fundamental structure of the current algorithm broadly 
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follows the traditional SS algorithm.  Although the SS algorithm is more robust, a 2
nd

-

order convergent method should be investigated to accelerate the convergence rate in the 

vicinity of a solution based on the new formulation.   

The new PT flash algorithm developed in chapter 3 can find many, if not all, 

stationary points of the TPD function defined at one of equilibrium phases upon 

convergence.  It is recommended to conduct further research on the number of 

stationary points of complex reservoir fluids with the new PT flash algorithm.  

Preliminary studies were performed for 24 simple mixtures available in the literature, for 

which results were given in Appendix C.  If we have prior knowledge on the number of 

stationary points of reservoir fluids, it is possible that we can optimize the initial 

sampling compositions distributed (NS) to reduce the number of equations to be solved 

with the new algorithm.   

Upon convergence of the new PT flash algorithm, the sampling compositions in 

set P correspond to equilibrium phases.  Those in set U, if any, correspond to stationary 

points of the converged TPD function, at which DR values are positive.  In other words, 

the converged sampling compositions in set P are tangent stationary points, and those in 

set U, if any, are non-tangent stationary points.  Set U captures additional information 

regarding the Gibbs free energy during the iterations; however, it is currently unclear how 

useful the set U is in flow simulations with the current implementation.   

The formulation developed in chapter 3 is applicable with any EOSs, although 

only the PR EOS was used in this research.  A limitation of cubic EOSs is that they are 

not originally designed to represent complex phase behavior associated with polar 

components (e.g., water and asphaltene) that commonly exist in viscous-oil reservoirs.  

With this limitation, asphaltene precipitation, water-asphaltene emulsion, and water 

dissolution may not be accurately captured (Jia and Okuno 2017).  More sophisticated 
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EOSs, such as cubic-plus-association (CPA) EOS, can be tested to widen the application 

of the current formulation.   

The formulation used for the new PT flash algorithm was extended to non-

isothermal conditions, for which temperature is part of the solution (chapter 4).  It is 

conceivable that the formulation can be extended to model multiphase equilibrium under 

capillary pressures for tight reservoirs.  For such flash calculations, pressures of non-

wetting phases are part of the solution, and the number of phases cannot be specified 

prior to the calculation.   

Robust isenthalpic (PH) flash is important in compositional simulation of steam 

injection, which involves at least three phases consisting of the oleic, gaseous, and 

aqueous phases.  Chapter 4 addressed two long existing issues associated with 

standalone PH flash calculations.  Further investigation should be made to demonstrate 

the robustness and efficiency of the simultaneous PH flash algorithm developed in 

chapter 4.   

Robust phase identification approach should be further investigated.  The phase 

identification used in chapter 5 is the traditional method developed by Perschke et al. 

(1989).  A trial-and-error approach was used to define a threshold mass density to 

identify phases for each displacement case.  Mohanty et al. (1995), Li et al. (2014) and 

Beygi et al. (2014) reported the use of a fixed mass density threshold for phase labeling 

in a two-phase region in three-hydrocarbon-phase flow simulation.  For the cases tested 

in this dissertation, none of the cases showed computational failures associated with 

incorrect assignment of equilibrium phases identities.  It is currently unclear why such 

failures have not been observed in chapter 5.  A possible reason is that prior reports on 

phase identification problems may have come partly from convergence issues in flash 
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calculations.  The new PT flash algorithm used in this research did not show any 

convergence issue for the simulation cases tested.    

During CO2 injection and coinjection of steam and solvent for heavy-oil/bitumen 

recovery, asphaltene precipitation/deposition occurs (Gauter et al. 199, Qin et al. 2000, 

Mohebbinia et al. 2014).  For such as process, at least four phases exist; L1, L2, V and an 

asphaltene phase.  Application of the distance parameter for four-phase displacements is 

to be explored.   
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APPENDIX A: Enthalpy and Jacobian Matrix in DS Algorithm 

Appendix A presents the calculations for enthalpy and its associated derivatives 

and the Jacobian matrix used in DS algorithm for PH flash.  

 

Appendix A-1: ENTHALPY AND ASSOCIATED DERIVATIVES  

It is important to use temperature and enthalpy of a dimensionless form in PH 

flash.  Dimensionless temperature and pressure are defined as  

TD = T/Tref         (A-1.1) 

HDj = Hj/Hspec,         (A-1.2) 

where TD is the dimensionless temperature, and HDj is the dimensionless molar enthalpy 

of phase j.  Tref is some reference value to make temperature better scaled in PH flash.  

For example, Tref can be a temperature near the original reservoir temperature in thermal 

oil recovery processes (e.g., 300 K).  Note that some of the prior PH-flash algorithms in 

the literature did not use dimensionless temperature and enthalpy.   

The dimensionless total molar enthalpy (HD
t
) of NP phases is  

HD
t = ∑ βjHDj

NP
j=1 = ∑ βj (HDj

IGM + HDj
dep

)
NP
j=1 .     (A-1.3) 

The molar phase enthalpy (HDj) can be calculated as the summation of the molar ideal-

gas-mixture enthalpy (HDj
IGM

) and the molar enthalpy departure (HDj
dep

).  The 

dimensionless molar enthalpy of phase j as an ideal gas mixture, HDj
IGM

, is 

HDj
IGM = Hj

IGM Hspec⁄ = ∑ xijHi
IGNC

i=1 Hspec⁄ .     (A-1.4) 

Hi
IG

 is the molar ideal-gas enthalpy for component i and calculated using the following 

fourth-order polynomial correlation: 

Hi
IG = CP1i

0 (T − T0) + CP2i
0 (T2 − T0

2) 2⁄   

+CP3i
0 (T3 − T0

3) 3⁄ + CP4i
0 (T4 − T0

4) 4⁄ ,    (A-1.5) 
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where CP1i
0 , CP2i

0 , CP3i
0 , and CP4i

0 are coefficients for component i, and T0 is 273.15 K.   

The dimensionless molar enthalpy departure for phase j is  

HDj
dep

= {[(RT2 ∂Amj

∂T
+ RTAmj) 2√2Bmj⁄ ] ln [

Zj+(1+√2)Bmj

Zj+(1−√2)Bmj
]  

+RT(Zj − 1)} Hspec⁄        (A-1.6) 

on the basis of the PR EOS.   

Now, the sensitivity of HD
t
 to TD is analyzed using equation A-1.3,  

∂HD
t

∂TD
= ∑

∂βj

∂TD
HDj

NP
j=1 + ∑

∂HDj

∂TD
βj

NP
j=1 .      (A-1.7) 

The partial derivative of HDj with respect to TD can be calculated as follows: 
∂HDj

∂TD
= ∑

∂HDj

∂Hj

∂Hj

∂xij

∂xij

∂βj

∂βj

∂T

∂T

∂TD

NC
i=1 ,      (A-1.8) 

where ∂HDj/∂Hj = 1/Hspec and ∂T/∂TD = Tref.   

The partial derivative of Hj with respect to xij in equation A-1.8 is 
∂Hj

∂xij
=

1

2√2Bmj
2 [(RT2 ∂2Amj

∂T∂xij
+ RT

∂Amj

∂xij
) Bmj − (RT2 ∂Amj

∂T
+ RTAmj)

∂Bmj

∂xij
] ×  

ln [
Zj+(1+√2)Bmj

Zj+(1−√2)Bmj
] + [(RT2 ∂Amj

∂T
+ RTAmj) Bmj⁄ ] ×      

[Zj(∂Bmj ∂xij⁄ )−Bmj(∂Zj ∂xij⁄ )]

[Zj+(1+√2)Bmj][Zj+(1−√2)Bmj]
+ RT(

∂Zj

∂xij
− 1) +

∂Hj
IGM

∂xij
,    (A-1.9) 

where  
∂Bmj

∂xij
=

P

RT

∂bmj

∂xij
= Bi  

∂Amj

∂xij
=

P

(RT)2

∂amj

∂xij
= ∑ 2xijAik

NC
i=1   

∂Zj

∂xij
=

(∂Amj ∂xij⁄ )(Bmj−Zj)+(∂Bmj ∂xij⁄ )[Amj −2Bmj−3Bmj
2 +2(3Bmj+1)Zj−Zj

2]

3Zj
2−2Zj(1−Bmj)+(Amj −3Bmj

2 −2Bmj)
  

∂2Amj

∂T∂xij
=

P

(RT)2

∂2amj

∂T∂xij
−

2

T

∂Amj

∂xij
  

∂2amj

∂T∂xij
= ∑ 2(RT)2(1 − kii) [

∂xij

∂T
Ai + xij (

∂Ai

∂T
+

2

T
Ai)] P⁄

NC
i=1 .   

∂2ai

∂TD
2 = −0.45724

R2TCi
1.5κi

PCi
Tref

2 [
−κi√T

2TCi
2 −

1+κi[1−(T TCi⁄ )0.5]

2T1.5
]          

∂2amj

∂TD
2 = Tref

2 ∑ ∑ −xijxkj(aiak)
−1.5 (ai

∂ak

∂T
+ ak

∂ai

∂T
)
2
(1 − kik)

NC
k=1

NC
i=1   

+Tref
2 ∑ ∑

xijxkj

2
(aiak)

−0.5 ×
NC
k=1

NC
i=1      

(2
∂ak

∂T

∂ai

∂T
+ ai

∂2ak

∂T2 + ak
∂2ai

∂T2) (1 − kik)         
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∂2Amj

∂TD
2 = Tref

2 [
−2P

R2T3

∂amj

∂T
+

P

(RT)2

∂2amj

∂T2 −
2[T(∂Amj ∂T⁄ )−Amj]

T2 ]         

Phase composition xij is calculated as follows: 

xij = Kijzi/ti,             (A-1.1) 

where ti = 1 + ∑ βj(Kij − 1)
NP−1
j=1  for i = 1, 2, …, NC . The partial derivative of xij with 

respect to βj in equation A-1.8 is 
∂xij

∂βj
= −Kijzi(Kij − 1) ti

2⁄ .                 (A-1.11) 

The partial derivative of xij with respect to T in equation A-1.9 is 
∂xij

∂T
= {zi

∂Kij

∂T
ti − ziKij ∑ [

∂βj

∂T
(Kij − 1) + βj

∂Kij

∂T
]

NP−1
j=1 } ti

2⁄ .        (A-1.12) 

The partial derivative of HDj with respect to TD can be obtained by substituting equations 

A-1.9 and A-1.11 into equation A-1.8. Consequently, the sensitivity of HD
t
 to TD can be 

expressed as  

∂HD
t

∂TD
= ∑ ∑ ln [

Zj+(1+√2)Bmj

Zj+(1−√2)Bmj
]

KijziRT2

2√2Bmjti
2 ∑ (Kij − 1)

NP−1
j=1 βj

NP
j=1

NC
i=1 ×  

[∑
2ziAi(1−kii)

ti
2

NC
i=1 βj

∂Kij

∂T
]

1

Hspec
+ ∑ Hj

Tref

Hspec

NP
j=1

∂βj

∂T
  

     +∑ ∑ ln [
Zj+(1+√2)Bmj

Zj+(1−√2)Bmj
]

−KijziRT2

2√2Bmjti
2 ∑ (Kij − 1)βj

NP−1
j=1

NP
j=1

NC
i=1 ×  

[∑
2ziAi(1−kii)

ti

NC
i=1

∂Kij

∂T
+ ∑ 2xij(1 − kii) (

∂Ai

∂T
+

2Ai

T
)

NC
i=1 ]

Tref

Hspec

∂βj

∂T
  

+∑ ∑ ln [
Zj+(1+√2)Bmj

Zj+(1−√2)Bmj
]

−KijziRT

2√2Bmj
2ti

2 ∑ (Kij − 1)βj
NP−1
j=1

NP
j=1

NC
i=1 ×  

[Bmj
∂Amj

∂xij
− (T

∂Amj

∂T
+ Amj)

∂Bmj

∂xij
]

Tref

Hspec

∂βj

∂T
  

+∑ ∑ (T
∂Amj

∂T
+ Amj) (Zj

∂Bmj

∂xij
− Bmj

∂Zj

∂xij
)

NP
j=1

NC
i=1 ×  

−RTKijzi

ti
2Bmj[Zj+(1+√2)Bmj][Zj+(1−√2)Bmj]

∑ (Kij − 1)βj
NP−1
j=1

Tref

Hspec

∂βj

∂T
  

+∑ ∑
−KijziRT

ti
2 ∑ (Kij − 1)βj

NP−1
j=1 (

∂Zj

∂xij
− 1)

Tref

Hspec

∂βj

∂T

NP
j=1

NC
i=1   

+∑ ∑
−KijziHi

IG

ti
2 ∑ (Kij − 1)βj

NP−1
j=1

NP
j=1

NC
i=1

Tref

Hspec

∂βj

∂T
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+∑ ∑ ln [
Zj+(1+√2)Bmj

Zj+(1−√2)Bmj
]

KijziRT2

2√2Bmjti
2 ∑ (Kij − 1)βj

NP−1
j=1

NP
j=1

NC
i=1 ×    

[∑
2ziAi(1−kii)

ti
2

NC
i=1 (Kij − 1)]

Tref

Hspec
(
∂βj

∂T
)
2

      (A-1.13) 

In the conventional two-phase notation for oleic (L) and gaseous (V) phases, the L 

phase is the reference phase in equation A-1.13; thus, for a two-phase system, the 

sensitivity of HD
t
 to TD can be expressed as follows: 

∂HD
t

∂TD
= α1(TD) (

∂βV

∂TD
)
2

+ α2(TD)
∂βV

∂TD
+ α3(TD),        (A-1.14) 

where  α1(TD) = ∑ ln [
ZV+(1+√2)BmV

ZV+(1−√2)BmV
]

RT2Kizi(Ki−1)βV

2√2BmVti
2 [∑

2ziAi(1−kii)(Ki−1)

ti
2

NC
i=1 ]

Tref

Hspec

NC
i=1 + 

∑ ln [
ZL+(1+√2)BmL

ZL+(1−√2)BmL
]

RT2zi(Ki−1)βV

2√2BmLti
2 [∑

2ziAi(1−kii)(Ki−1)

ti
2

NC
i=1 ]

Tref

Hspec

NC
i=1   

α2(TD) = HV
Tref

Hspec
− HL

Tref

Hspec
+ ∑ ln [

ZV+(1+√2)BmV

ZV+(1−√2)BmV
]

−KiziRT2(Ki−1)βV

2√2BmVti
2

NC
i=1 ×  

[∑
2ziAi(1−kii)

ti

NC
i=1

∂Ki

∂T
+ ∑ 2yi(1 − kii) (

∂Ai

∂T
+

2Ai

T
)

NC
i=1 ]

Tref

Hspec
   

−∑ ln [
ZL+(1+√2)BmL

ZL+(1−√2)BmL
]

−ziRT2(Ki−1)βV

2√2BmLti
2 ∑ 2xi(1 − kii) ×

NC
i=1

NC
i=1   

(
∂Ai

∂T
+

2Ai

T
)

Tref

Hspec
+ ∑ ln [

ZV+(1+√2)BmV

ZV+(1−√2)BmV
]

−KiziRT(Ki−1)βV

2√2BmV
2ti

2

NC
i=1 ×   

[BmV
∂AmV

∂yi
− (T

∂AmV

∂T
+ AmV)

∂BmV

∂yi
]

Tref

Hspec
  

−∑ ln [
ZL+(1+√2)BmL

ZL+(1−√2)BmL
]

−ziRT(Ki−1)βV

2√2BmL
2ti

2

Tref

Hspec
×

NC
i=1    

[BmL
∂AmL

∂xi
− (T

∂AmL

∂T
+ AmL)

∂BmL

∂xi
]  

+∑ (T
∂AmV

∂T
+ AmV) (ZV

∂BmV

∂yi
− BmV

∂ZV

∂yi
)

NC
i=1 ×   

−RTKizi(Ki−1)βV

ti
2BmV[ZV+(1+√2)BmV][ZV+(1−√2)BmV]

Tref

Hspec
  

−∑ (T
∂AmL

∂T
+ AmL) (ZL

∂BmL

∂xi
− BmL

∂ZL

∂xi
)

Tref

Hspec

NC
i=1    

−RTzi(Ki−1)βV

ti
2BmL[ZL+(1+√2)BmL][ZL+(1−√2)BmL]

  

+∑
−KiziRT

ti
2 (Ki − 1)βV (

∂ZV

∂yi
− 1)

Tref

Hspec

NC
i=1 −  

∑
−ziRT

ti
2 (Ki − 1)βV (

∂ZL

∂xi
− 1)

Tref

Hspec

NC
i=1     

+∑
−KiVziHi

IG

ti
2 (Ki − 1)βV

NC
i=1

Tref

Hspec
− ∑

−ziHi
IG

ti
2 (Ki − 1)βV

NC
i=1

Tref

Hspec
  

α3(TD) = ∑ ln [
ZV+(1+√2)BmV

ZV+(1−√2)BmV
]

KiziRT2(Ki−1)βV

2√2BmVti
2

NC
i=1 [∑

2ziAi(1−kii)

ti
2

NC
i=1 βV

∂Ki

∂T
]

1

Hspec
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+∑ ln [
ZL+(1+√2)BmL

ZL+(1−√2)BmL
]

ziRT2(Ki−1)βV

2√2BmLti
2

NC
i=1 [∑

2ziAi(1−kii)

ti
2

NC
i=1 βV

∂Ki

∂T
]

1

Hspec
.  

In equation A-1.14, ti = 1 + (Ki ‒ 1)βV.  Particularly, ∂βV/∂TD helps understand the 

physical meaning of narrow-boiling, where the amount of the V phase (i.e., βV) rapidly 

increases with a small change in temperature (TD).  That is, a narrow-boiling system 

exhibits a large value for |∂βV/∂TD|.   

 

Appendix A-2: JACOBIAN MATRIX IN DS ALGORITHM 

The elements of the Jacobian matrix used in the DS algorithm for a NC-

component NP-phase system are 
∂gj

∂TD
= −Tref ∑

zi

ti
2 [tiKij

∂InKij

∂T
− (Kij − 1)∑ βkKik

∂InKik

∂T

NP−1
k=1 ]

NC
i=1    

for j = 1, 2, …, NP ‒ 1,    (A-2.1) 
∂gj

∂βk
= ∑

zi

ti
2 (1 − Kij)(1 − Kik)

NC
i=1    

for j, k = 1, 2, …, NP ‒ 1,    (A-2.2) 

∂gNP

∂TD
= Tref ∑ βj (∑

∂xij

∂T

Hi
IG

Hspec

NC
i=1 + ∑

xij

Hspec

∂Hi
IG

∂T

NC
i=1 +

∂HDj
dep

∂T
)

NP
j=1 ,   (A-2.3)  

∂gNP

∂βk
= (HDk

IGM + HDk
dep

) − (HDNP

IGM + HDNP

dep
)   

for k = 1, 2, …, NP ‒ 1,    (A-2.4) 

where ti = 1 − ∑ (1 − Kij)βj
NP−1
j=1  for i = 1, 2, …, NC, gj = ∑ (1 − Kij)zi ti⁄NC

i=1 = 0 for 

j = 1, 2, …, (NP ‒ 1), and gNP = (H
t
 – Hspec)/ Hspec = 0.   

The Jacobian matrix of NP × NP can be written in the matrix form as follows: 

J =

[
 
 
 
 
 
 

∂gNP

∂TD

∂gNP

∂β1
⋯

∂gNP

∂βNP−1

∂g1

∂TD

∂g1

∂β1
⋯

∂g1

∂βNP−1

⋮ ⋮ ⋱ ⋮
∂gNP−1

∂TD

∂gNP−1

∂β1
⋯

∂gNP−1

∂βNP−1]
 
 
 
 
 
 

=

[
 
 
 
J11 J12 ⋯ J1NP

J21 J22 ⋯ J2NP

⋮ ⋮ ⋱ ⋮
JNP1 JNP2 ⋯ JNPNP]

 
 
 

  

= [
J11 P1×(NP−1)

Q(NP−1)×1 R(NP−1)×(NP−1)
],        (A-2.5) 
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where J11 is equation A-2.3, Q
(N

P
 ‒ 1) × 1

 consists of equations A-2.1, P
1 × (N

P
 ‒ 1) 

consists of 

equations A-2.4, and R
(N

P
 ‒ 1) × (N

P
 ‒ 1) 

is the Hessian matrix of F consisting of equations A-

2.2.   

Gaussian elimination for Q
(N

P
 ‒ 1) × 1

 yields 

J′ = [
J11 P1×(NP−1)

0(NP−1)×1 R′(NP−1)×(NP−1)
],      (A-2.6) 

where R′ =
1

J11
[

J22J11 − J12J21 ⋯ J2NP
J11 − J1NP

J21

⋮ ⋱ ⋮
J2NP

J11 − J12JNP1 ⋯ JNPNP
J11 − J1NP

JNP1

].   (A-2.7) 

Equation A-2.6 clearly indicates that the system of equations tend to be degenerate with 

increasing J11, regardless of the curvature of the RR convex function.     

Also, matrix J is singular, when R is not of full rank.  To see this, consider matrix 

J when the p
th

 and q
th

 phases are critical (p ≠ q).  As described in Okuno et al. (2010), Jmp 

= Jmq, where m = 2, 3, …, NP, for such a case.  J1p = J1q when the compositions of the 

two phases are identical.   Therefore, the p
th

 and q
th

 columns of matrix J are identical 

when R is not of full rank.    
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APPENDIX B: DS Algorithms of Michelsen (1987) and  

Agarwal et al. (1991) 

Appendix B presents the step wise descriptions and flow charts of the DS 

algorithms for PH flash of Michelsen (1987) and Agarwal et al. (1991).  

 

Appendix B-1: DS ALGORITHM OF MICHELSEN (1987) 

This section presents a step-wise description for the two-phase DS algorithm of 

Michelsen (1987), and then gives the flow chart of his algorithm.     

Step 1. Specify Hspec, P, and zi, along with model parameters such as critical temperature 

TC, critical pressure PC, acentric factor ω, and NC × NC binary interaction 

parameters (BIPs). 

Step 2. Input an initial guess for temperature, T
(1)

, where the number in the bracket 

represents the iteration-step number k = 1.  Calculate initial guesses for K values 

based on Wilson’s correlation (1969).   

Step 3. Solve RR equations for the phase mole fraction βV
(k)

 for the k
th

 iteration step so 

that |g1
(k)

| < ε1 (e.g., ε1 = 10
-10

).  Calculate the corresponding xi
(k)

 and yi
(k)

.   

Step 4. Calculate the residual of the enthalpy constraint (g2
(k)

).  If | g2
(k)

| is less than the 

tolerance ε2, stop (e.g., ε2 = 10
-10

).  Otherwise, continue to step 5. 

Step 5. Calculate lnφij
(k)

, (∂lnφij/∂T)
(k)

, and phase heat capacities (CPj
(k)

) for j = V and L.   

Step 6. Calculate K values using one SS step (i.e., lnKi
(k)

 = (lnφiL ‒ lnφiV)
(k)

), 

(∂lnKi/∂T)
(k)

, and g1
(k)

.    

Step 7. Construct the 2 × 2 Jacobian matrix (see Appendix A). 

Step 8. Perform one Newton’s iteration step to obtain βV
(k + 1)

 and T
(k + 1)

. 
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Step 9. Calculate fO = |T
(k+1)

 – T
(i)

|, where i = 1, 2, …, k, to check for temperature 

oscillation.  Continue to step 10 if fO is greater than εO; εO = mini(|T
(i)

 – T
(i+1)

|)/C, 

where i = 1, 2, …, (k ‒ 1) and C (e.g., 10
2
) is a constant that defines the 

investigation radius around T
(k+1)

.  Otherwise, temperature is considered to be 

oscillating.  Then, go to step 4 with βV
(k)

 = 0.5 and xi
(k)

 = yi
(k)

 = zi only for the 

first time the oscillation is detected. 

Step 10. Update K values; lnKi
(k+1)

 = lnKi
(k)

 + (∂lnKi/∂T)
(k)

(T
(k+1)

 ‒ T
(k)

).  Go to step 3 

after increasing the iteration-step number by one; k = k + 1. 

The DS algorithm of Michelsen (1987) performs one Newton’s iteration step to 

obtain βV and T in step 8; however, note that its convergence behavior is linear as can be 

seen in the K-value updates in composition (step 6) and T (step 10).  Also, the only 

stopping criterion is that |g2| be less than ε2 in step 4. The other residual for gj has been 

satisfied in step 3.  These are also true for the DS algorithm of Agarwal et al. (1991).   

In step 5, phase compressibility factors are selected so that the resulting Gibbs 

free energy is minimized among the possible root selections (Evelein et al. 1976).  This 

conventional root selection, however, is not applied when step 9 detects temperature 

oscillation associated with narrow-boiling behavior.  For such a case, Michelsen (1987) 

suggested that the oscillating single-phase system be split into two phases of initially 

equal amounts and compositions (i.e., βV = 0.5 and xi = yi = zi) only for the first time the 

oscillation is detected.  Then, the maximum compressibility factor is chosen for the V 

phase and the minimum for the L phase for this iteration step and also the subsequent 

iterations.  However, this scheme does not always resolve the temperature oscillation 

issue.   

How to detect temperature oscillations was not explained in Michelsen (1987) and 

Agarwal et al. (1991).  In our implementation of their DS algorithms, it has been 
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observed that the temperature oscillations occur between two distinct temperature ranges 

in a quite regular manner.  Based on the observation, temperature oscillations are 

detected using the procedure given in step 9.  The definition of temperature oscillation 

becomes stricter if a greater value is used for the C constant.  

The flow chart of his algorithm is given below.   

 

 

 

Specify Hspec, P, zi, Tc,  Pc,  ω and  BIP  

NO

YES

YES

NO

T oscillates ?

    k=1, Input T
(1)

    Calculate initial guesses for K values based on Wilson s correlation

|g2
(k)| < ε2 ?

Construct the 2 × 2 Jacobian matrix

2. Compressibility factor selection approach:
Before detecting temperature oscillation, phase 

compressibility factors are selected so that the 

resulting Gibbs free energy is minimized among 

the possible roots selections. 

After detecting temperature oscillation, the 

oscillating single-phase system will be split into 

two phases with the assumption βV
(k)

 = 0.5 and xi
(k) 

= yi
(k) = zi, only for the first time the oscillation is 

detected.  Then, the maximum compressibility 

factor is chosen for the V phase and the minimum 

for the L phase for this iteration step and 

subsequent iterations. 

1. Details of the check of temperature oscillation:

Calculate fo = |T(k+1)-T(i)|, where i=1, 2,  , k.  If fo 

  εo = mini(|T
(i)

-T
(i+1)

|)/C, where i=1, 2,  , (k-1) 

and C (e.g., 102) is a constant that defines the 

investigation radius around T(k+1), temperature is 

considered to be oscillating.

    Solve RR equations for βV
(k)

 such that |g1
(k)

| < ε1 and calculate xi
(k)

 and yi
(k)

    Perform one Newton s iteration step to obtain βV
(k+1)

 and T
(k+1)

  Output βV
(k)

, xi
(k)

 and yi
(k)

(k = k + 1)

    Calculate lnφij
(k)

, ( lnφij/ T)
(k)

 and CPj
(k)

 for j = V and L

    Calculate lnKi
(k)

 = (lnφiL - lnφiV)
(k)

, ( lnKi/ T)
(k)

 and g1
(k)

    Calculate lnKi
(k+1)

 = lnKi
(k)

 + ( lnKi/ T)
(k)

(T
(k+1)

 - T
(k)

)

  Assume βV
(k)

 = 0.5

                xi
(k)

 = yi
(k)

 = zi
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Appendix B-2: DS ALGORITHM OF AGARWAL ET AL. (1991) 

This section presents a step-wise description for the two-phase DS algorithm of 

Agarwal et al. (1991), and then gives the flow chart of their algorithm.   

The main modification of the DS algorithm made by Agarwal et al. (1991) was 

that a quasi-Newton step was used for a preliminary update of K values before 

constructing the Jacobian matrix.  The quasi-Newton step used was based on Nghiem 

(1983) and Nghiem and Li (1984), and referred to as QNSS.  Steps 1-4 are not presented 

below as they are the same as in previous section. 

Step 5. Calculate lnφij
(1)

 and phase heat capacities (CPj
(1)

) for j = V and L. 

Step 6. Calculate the residuals of the fugacity equations (fi
(1)

).   

Step 7. T
(2)

 = T
(1)

 – g2
(1)

/(∑jβjCPj)
(1)

.  

Step 8. Solve RR equstions for the vapor phase mole fraction βV
(k)

 for the k
th

 iteration 

step so that |g1
(k)

| < ε1.  Calculate the corresponding xi
(k)

 and yi
(k)

.   

Step 9. Calculate the residual of the enthalpy constraint (g2
(k)

).  If |g2
(k)

| is less than the 

tolerance ε2, stop.  Otherwise, continue to step 10. 

Step 10. Calculate the residuals of the fugacity equations (fi
(k)

).   

Step 11. Perform a QNSS step for intermediate K values, Ki
(k + 0.5)

;  

InK⃗⃗ (k+0.5) = InK⃗⃗ (k) +
(InK⃗⃗ (k)−InK⃗⃗ (k−1))

T
f (k−1)

(InK⃗⃗ (k)−InK⃗⃗ (k−1))
T
(f (k)−f (k−1))

f (k),  

where K⃗⃗  and f  are vectors consisting of NC K values and NC residuals of the 

fugacity equations, respectively.   

Step 12. Calculate xi
(k + 0.5)

 and yi
(k + 0.5)

 based on βV
(k)

 and Ki
(k + 0.5)

. 

Step 13. Construct the 2 × 2 Jacobian matrix based on xi
(k + 0.5)

 and yi
(k + 0.5)

.  

Step 14. Perform one Newton’s iteration step to obtain βV
(k + 1)

 and T
(k + 1)

. 
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Step 15. Calculate fO = |T
(k+1)

 – T
(i)

|, where i = 1, 2, …, k, to check for temperature 

oscillation.  Continue to step 16 if fO is greater than εO; εO = mini(|T
(i)

 – T
(i+1)

|)/C, 

where i = 1, 2, …, (k ‒ 1) and C (e.g., 10
2
) is a constant that defines the 

investigation radius around T
(k+1)

.  Otherwise, temperature is considered to be 

oscillating.  Then, go to step 9 with βV
(k)

 = 0.5 and xi
(k)

 = yi
(k)

 = zi only for the 

first time the oscillation is detected.   

Step 16. Update K values; lnKi
(k+1)

 = lnKi
(k)

 + (∂lnKi/∂T)
(k)

(T
(k+1)

 ‒ T
(k)

).  Go to step 8 

after increasing the iteration-step number by one; k = k + 1. 

In steps 5 and 10, phase compressibility factors are selected so that the resulting 

Gibbs free energy is minimized among the possible root selections.  As in previous 

section, this conventional root selection is not used when step 15 detects temperature 

oscillation.  For such a case, the procedure of Michelsen (1987) described before is 

followed.  The maximum compressibility factor is chosen for the V phase and the 

minimum for the L phase in step 10 of the subsequent iterations. 

The flow chart of his algorithm is given below.   
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Specify Hspec, P, zi, Tc,  Pc,  ω and  BIP  

NO

YES

YES

NO

    k=1, Input T
(1)

    Calculate initial guesses for K values based on Wilson s correlation

|g2
(k)

| < ε2 ?

Calcuate fi
(1)

 from fugacity equations

NO

YES

Calcuate fi
(k)

 from fugacity equations

T oscillates ?

The check procedure of temperature oscillation 

and the compressibility factor selection approach 

are the same as presented in the DS algorithm by 

Michelsen.

   Calculate xi
(k+0.5)

 and yi
(k+0.5)

 based on βV
(k)

 and Ki
(k+0.5)

    Construct the 2 × 2 Jacobian matrix based on xi
(k+0.5)

 and yi
(k+0.5)

    Solve RR equations for βV
(k)

 such that |g1
(k)

| < ε1 and calculate xi
(k)

 and yi
(k)

    Output βV
(k)

, xi
(k)

 and yi
(k)

    Calculate lnφij
(1)

  and CPj
(1)

 for j = V and L

   Calculate T
(2)

 = T
(1)

 – g2
(1)

/( jβjCPj)
(1)

    Solve RR equations for βV
(k)

 such that |g1
(k)

| < ε1 and calculate xi
(k)

 and yi
(k)

    Output βV
(k)

, xi
(k)

 and yi
(k)

(k = k + 1)
    Calculate lnKi

(k+1)
 = lnKi

(k)
 + ( lnKi/ T)

(k)
(T

(k+1)
 - T

(k)
)

  Assume βV
(k)

 = 0.5

                xi
(k)

 = yi
(k)

 = zi

    Perform one Newton s iteration step to obtain βV
(k+1)

 and T
(k+1)

    Perform a QNSS step for intermediate K values

       

InK⃗⃗ (k+0.5) = InK⃗⃗ (k) +
(InK⃗⃗ (k) − InK⃗⃗ (k−1))

T
f (k−1)

(InK⃗⃗ (k) − InK⃗⃗ (k−1))
T

(f (k) − f (k−1))
f (k) 

|g2
(k)

| < ε2 ?
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APPENDIX C: Flow Chart and Initialization Scheme of the Unified 

Phase-Stability/-Split Algorithm for Multiphase PT Flash  

Appendix C presents the flow chart and initialization scheme of the unified 

phase-stability/-split algorithm for multiphase PT flash given in Chapter 3.  A sample 

input file of case 3.1 used in chapter 3 is given.  At last, a summary of the number of 

stationary points obtained with the new simultaneous PT flash algorithm for 24 cases 

available in the literature is given at last.   

 

Appendix C-1: FLOW CHART 

This section presents the flow chart of the unified phase-stability/-split algorithm 

for multiphase PT flash given in Chapter 3.   
 Specify T, P, zi, Tci,  Pci,  ωi, NC, and BIPs, set iteration number k=1 

Set Ns sampling compositions, xj
(k), for j=1, .., Ns

NO

‘NP − 1’ Feasible RR ?

Calculate DRj with z as the reference composition, and select sample 
composition with minimum DR as the initial reference composition, xr

(k) 

Calculate Kj
(k),  re-calculate DRj

 with xr
(k) , set NU as the number of sampling point with DRj

 > 0, NP = NS – NU

YES

YES

Calculate  θj
(k)  from Equation 4 

and calculate xj
(k) for set U

YES

NP = 1 ?

Perform convex minimization to solve 

Equation 3 for βj
(k), and xj

(k) for set P

||lnxj
(k)jj

(k) − lnxr
(k)jr

(k) − θj
(k)||∞ < ɛf ?

Update NS and NU. 

NP = NS − NU

θj
(k) < 0 for set U ?

βj
(k) < 0 for set P ?

||xp
(k) − xq

(k)||∞ < ɛx 

Update NP, and 

update xr
(k)  if βr

(k) < 0

Update xr
(k)  to the sampling point 

with min θj
(k) and update NP

NO

YES

NO

NO

Output θj
(k), βj

(k), xj
(k) YES NO

Exclude sampling composition from set P with the 

largest DR among the set P. Update NP. NU = NS –NP.

YESNO

YES

NO

NO

YESSet z as the reference composition.  NS is increased by one.  
Calculate Kj

(k), DRj, NP and NU.  

NP = 1 ?

NP = 1 ?

NO

YES

‘NP − 1’ Feasible RR ?

Update Kj
(k) for j = 1, 2, .., NS, j ≠ r

k = k + 1 
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Appendix C-2: INITIALIZATION SCHEME 

This section presents the initialization scheme used for the unified phase-

stability/-split algorithm for multiphase PT flash given in Chapter 3.   

The algorithm developed in this research attempts to find stationary points of TPD 

that give the global minimum of the Gibbs free energy for the fluid under consideration 

with a specified z, P, and T.  One of the most important factors that affect global 

convergence of the algorithm is how iterative sampling compositions are distributed in 

composition space.  If no reliable information is available regarding equilibrium phase 

compositions for the fluid of interest at specified conditions, sampling compositions 

should be distributed in composition space in a certain systematic manner.  Ideally, they 

are expected to find all stationary points of TPD.  Such a possibility is generally 

expected to increase as more sampling compositions are used, unless they are placed 

close to each other.   

This appendix C-2 presents the procedure used in this paper to distribute sampling 

compositions uniformly with respect to the specified z, for the initialization of the 

algorithm developed.  First, NC sampling compositions are placed near the NC vertices of 

composition space.  If more sampling compositions are desired, the composition space is 

divided into NC different regions that have the overall composition z as the common 

vertex.  Each of the NC regions is defined by this common vertex z and the other (NC – 

1) vertices among NC vertices of pure components.  Then, a systematic procedure is 

applied to distribute sampling compositions around the central point for each of the NC 

regions.  The number of sampling compositions placed in each region can be defined 

individually, or correlated with the relative size of that region to the entire composition 

space, as described later.  A stepwise description is given below.   
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Step 1. Distribute NC sampling compositions near the NC vertices of composition 

space (e.g., 99.9% that component and 0.1% the equimolar mixture of the other 

components).   

Step 2. If more sampling compositions are desired, the composition space is 

divided into NC different regions (Ri for i = 1, 2,… NC) that have the overall composition 

z as the common vertex.  Each of the NC regions is defined by z and the other (NC – 1) 

vertices among NC vertices of pure components.  Then, define the number of sampling 

compositions NSi ≥ 1 (i = 1, 2,… NC) for Ri (i = 1, 2,… NC). Set i to be 1.  

Step 3. For the i
th

 region Ri, calculate the arithmetic mean of the NC compositions, 

z and (NC – 1) pure components.  This corresponds to the central point in Ri, and 

becomes a sampling composition.  Then, connect the central point with the NC vertices 

of Ri.  This results in NC lines in Ri.   

Step 4. For Ri, evenly divide each of the NC lines obtained from step 3 into r1i 

segments (r1i ≥ 1).  This results in (r1i – 1)NC sampling compositions within Ri.   

Step 5. If r1i ≥ 2, construct (r1i – 1)NC(NC – 1)/2 lines that are parallel to edges of 

composition space by connecting sampling compositions obtained from step 4.     

Step 6. Evenly divide the (r1i – 1)NC(NC – 1)/2 lines obtained from step 5 into r2i 

segments (r2i ≥ 1).  This results in (r1i − 1)(r2i − 1)NC(NC – 1)/2 sampling compositions 

within Ri.   

Step 7. Repeat steps 3 – 6 for the next region until sampling compositions are 

distributed for all NC regions defined in step 2.  That is, increase i by one, where i ≤ NC.  

Go back to step 3. 

The first step gives NC sampling compositions.  Step 3 gives one sampling 

composition at the center for each region; hence, NC sampling compositions in the NC 

regions.  Steps 4 and 6 give (r1i – 1)NC and (r1i − 1)(r2i − 1)NC(NC – 1)/2 sampling 
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compositions, respectively, for each region.  Therefore, the total number of sampling 

compositions distributed by use of the procedure given above is NC + Σi[1 + (r1i – 1)NC + 

(r1i − 1)(r2i − 1)NC(NC – 1)/2] for NC ≥ 2.  The minimum NS is 2NC (NC ≥ 2) when r1 = 1 

for all regions; i.e., NC compositions from step 1 and NC compositions from step 3. 

In step 2, NSi (≥ 1) for Ri (i = 1, 2,… NC) can be correlated with the size of Ri 

relative to the entire composition space as follows: 

2.1. Calculate nSi = (zi
n ∑ zi

nNC
i=1⁄ )(NS max − NC), where NSmax is the maximum 

number of initial sampling compositions specified by the user.  The exponent n can be 

also specified. 

2.2. Solve nSi = (r1 – 1)NC + (r1 − 1)(r2 − 1)NC(NC – 1)/2 for r1 and r2 subject to a 

certain constraint regarding r1 and/or r2, such as r2 = r1 – 1 that is used in this paper.   

2.3.  Round down r1 and r2 to make them integers, r1i and r2i.  Calculate NSi = 1 + 

(r1i – 1)NC + (r1i − 1)(r2i − 1)NC(NC – 1)/2.  Note that NS = NC + ∑ NSi
NC
i=1  ≤ NSmax due to 

the rounding of r1 and r2. 

As an example, Figure C.1 shows the sampling compositions distributed by use 

of the above procedure for NC = 3, NSmax = 100, and n = 1 along the constraint r2 = r1 – 1.  

The resulting NS is 81, which consists of 3 compositions near the pure components, 3 at 

the centers of three regions, and 75 in the largest region defined by z and components 2 

and 3.   

This is merely one of many possible procedures to systematically distribute 

sampling compositions; it is not the purpose of this appendix to single out a procedure 

that yields rapid convergence of the algorithm.  When reasonable estimates are available 

for potential phase compositions, they can be used to initialize the algorithm.  
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Figure C.1 Sampling compositions distributed for NC = 3 by use of the procedure given 

in Appendix C.  The resulting NS is 81 with NSmax = 100, n = 1.0, and constraint r2 = r1 – 

1.  

 

Appendix C-3: SAMPLE INPUT FILE OF CASE 3.1 USED IN CHAPTER 3  

'Nc' 

3 

'Pres in bars' 

65.0D0 

'Tres in K' 

560.0D0 

'Tol' 

1.0D-10 

'maxiter' 

15000 
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'Nsmax' 

6 

'expo' 

1.0 

'Zint' 

0.75D0 

0.15D0 

0.10D0 

'Tc in K ' 

647.30D0 

369.80D0 

717.00D0 

'Pc in bars ' 

220.89D0 

42.460D0 

14.190D0 

'w' 

0.344D0 

0.152D0 

0.742D0 

'kij' 

0.0000D0 0.6841D0 0.3583D0 

0.6841D0 0.0000D0 0.0000D0 

0.3583D0 0.0000D0 0.0000D0 
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Appendix C-4: SUMMARY OF NUMBERS OF STATIONARY POINTS FOR 24 CASES   

The table below summarizes the studies on the numbers of stationary points of the 

TPD function for 24 cases taken from the literature.  All calculations are performed 

using the initialization scheme presented in Appendix C-2 for the new PT flash 

algorithm.  The number of initial sampling compositions is 2NC.  Obviously, different 

results will be obtained with different initialization methods.    

 
 Number of stationary 

points reported in the 

literature 

Number of stationary 

points obtained using 

new PT flash algorithm 

(chapter 3) 

C1 + H2S at 190 K and 40.53 bars 3 3 (NU = 1 and NP = 2) 

Reference: Nagarajan et al. (1991) 

 

N2 + C2 at 270 K 

and 76 bars 

Overall composition is 

(0.1, 0.9) 

1 1 

Overall composition is 

(0.18, 0.82) 

2 2 

Overall composition is 

(0.3, 0.7) 

2 2 

Overall composition is 

(0.44, 0.56) 

2 2 

Overall composition is 

(0.6, 0.4) 

1 1 

Reference: Hua et al. (1998), Nichita et al. (2002), Sofyan et al. (2003), Nichita and Gomez 

(2009), Ivanov et al. (2013) 

 

CO2 + C1 at 220 K 

and 60.8 bars 

Overall composition is 

(0.1, 0.9) 

1 1 

Overall composition is 

(0.2, 0.8) 

2 2 

Overall composition is 

(0.3, 0.7) 

2 2 

Overall composition is 

(0.43, 0.57) 

2 2 

Overall composition is 

(0.6, 0.4) 

1 1 

Reference: Hua et al. (1998), Sofyan et al. (2003), Ivanov et al. (2013) 
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N2 + C1 + C2 at 270 

K and 76 bars 

Overall composition is 

(0.3, 0.1, 0.6) 

2 2 

Overall composition is 

(0.15, 0.3, 0.55) 

2 2 

Overall composition is 

(0.08, 0.38, 0.54) 

1 1 

Overall composition is 

(0.05, 0.05, 0.9) 

1 1 

Reference: Hua et al. (1998), Harding and Floudas (2000), Sofyan et al. (2003), Corazza et al. 

(2007), Saber and Shaw (2008), Nichita and Gomez (2009), Ivanov et al. (2013) 

 

C1 + CO2 + H2S 

with overall 

composition of 

(0.4989, 0.0988, 

0.4023) 

T = 208.5 K and P = 

55.1 bars 

4 3 (NU = 1 and NP = 2) 

T = 210.5 K and P = 

57.5 bars 

2 3 (NU = 1 and NP = 2) 

T = 227.55 K and P = 

48.6 bars 

2 2 

Reference: Sun and Seider (1995), Sofyan et al. (2003), Corazza et al. (2007), Nichita and 

Gomez (2009) 

 

C1 + CO2 + H2S 

with overall 

composition of 

(0.48, 0.12, 0.4) 

T = 208.5 K and P = 

55.1 bars 

4 3 (NU = 1 and NP = 2) 

Reference: Sun and Seiider (1995), Sofyan et al. (2003), Corazza et al. (2007), Nichita and 

Gomez (2009) 

 

Eight-component case at 353 K and 358 bars 2 2 

Reference: Nagarajan et al. (1991), Sun and Seider (1995), Saber and Shaw (2008), Ivanov et al. 

(2013), Henderson et al. (2014)  

 

Twelve-component case at 240 K and 60 bars 2 2 

Reference: Ivanov et al. (2013), Henderson et al. (2014) 

 

C7H8 + H2O + H2 at 

473.15 K and 100 

bars 

Overall composition is 

(0.2, 0.5, 0.3) 

3 3 

Overall composition is 

(0.79, 0.2, 0.01) 

3 2 

Reference: Bünz et al. (1991), Sun and Seider (1995)  

 

C3 + CO2 + nC16 at 

294 K and 54 bars 

Overall composition is 

(0.112, 0.84, 0.048) 

4 3 (NU = 1 and NP = 2) 

Reference: Sun and Seider (1995) 
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APPENDIX D: Motions of Sampling Compositions in the Unified 

Phase-Stability/-Split Algorithm for Multiphase PT Flash  

Appendix D presents the motions of the sampling compositions in the unified 

phase-stability/-split algorithm for multiphase PT flash for cases 3.1 and 3.2 given in 

chapter 3.  The EOS parameters and solutions for these cases were discussed in the case 

studies section in chapter 3.    

 

Appendix D-1: MOTIONS OF SAMPLING COMPOSITIONS FOR CASE 3.1 IN CHAPTER 3 

Case 1 was a ternary mixture consisting of H2O, C3, and n-C16 at 560 K and 65 

bars (Tables 3.1 and 3.2).  The convergence behavior of the new algorithm was 

presented in Figure 3.4.  Figure D-1.1 shows the movement of sampling compositions 

at selected iteration steps.  In this figure, a star represents the overall composition.  

Solid squares represent the sampling compositions in set U.  The reference composition 

in set P is shown by a solid diamond, and the other sampling compositions in set P are 

hollow squares.  This symbolic notation is used throughout this appendix.  

After the initialization, six sampling compositions are distributed in composition 

space, in which three are located near compositional vertices and the other three are in the 

central points of each area, as can be seen in Figure D-1.1a.  All six sampling 

compositions are updated significantly after the 1
st
 iteration, where three sampling 

compositions are set U with positive θ values.  Figures D-1.1b and D-1.1c show that the 

six compositions do not merge (i.e., NS remains 6) during the 2
nd

 and 3
rd

 iterations, but 

the reference composition is adaptively selected on the basis of step 7 of the new 

algorithm.  That is, the composition with negative θ value is selected as the reference 

composition during the iterations.   
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After the 4
th

 iteration, a composition in set U merges into a composition in set P, 

resulting in NP of five and NU of zero (see Figure D-1.1e).  The reference composition 

used from iteration step 4 until the final convergence is located in the vicinity of the 

equilibrium L1 phase.  Two compositions merge during iteration step 5, resulting in NS 

of three.  The correct NS, two (i.e., NP of two and NU of zero), is identified at the 7
th

 

iteration.  As can be seen in Figures D-1.1g and D-1.1h, the compositions in set P at the 

7
th

 iteration are in the vicinity of the final equilibrium compositions.  The converged 

compositions in set P are connected by the tie line in Figure D-1.1h.   

Figure D-1.2 shows the motion of the sampling compositions by use of a 

triangular prism, where each horizontal cross section represents the ternary diagram at a 

certain iteration step.  The same iteration steps as Figure D-1.1 are presented.  The 

merging of sampling compositions can be seen at the 4
th

, 5
th

, and 7
th

 iteration steps.   

 

 

(a) After the initialization (NU = 4 and 

NP = 2) 

 

(b) After the 1
st
 iteration (NU = 3 and 

NP = 3) 
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(c) After the 2
nd

 iteration (NU = 2 and 

NP = 4) 

 

(d) After the 3
rd

 iteration (NU = 2 and 

NP = 4) 

 

(e) After the 4
th

 iteration (NU = 0 and NP 

= 5) 

 

(f) After the 5
th

 iteration (NU = 1 and 

NP = 2) 
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(g) After the 7
th

 iteration (NU = 0 and NP 

= 2) 

 

(h) After the 21
st
 iteration (NU = 0 and 

NP = 2) 

Figure D-1.1. Movement of sampling compositions for case 3.1 in chapter 3.  A star 

represents the overall composition.  Solid squares represent the sampling compositions 

in set U.  The reference composition in set P is shown by a solid diamond, and the other 

sampling compositions in set P are hollow squares.    

 

Figure D-1.2. Triangular prism to present sampling compositions at selected iteration 

steps for case 3.1 in chapter 3.   
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Appendix D-2: MOTIONS OF SAMPLING COMPOSITIONS FOR CASE 3.2 IN CHAPTER 3 

Figure D-2.1 presents the motion of sampling compositions for the binary 

mixture consisting of 97% C1 and 3% H2S at 190 K and 40.53 bars (Tables 3.3 and 3.4).  

The convergence behavior was presented in Figure 3.6.   

NS of five is identified after initialization.  Early in the iteration, compositions 

often switch between sets P and U, while smoothly changing their compositions.  From 

the 7
th

 iteration on, the compositions in set U move towards the L1-like composition (the 

left lobe in Figure 3.5).  The number of sampling compositions in set U, NU, reduces 

from 3 to 2 to 1 at iteration steps 7, 10, and 31, respectively.  From the 31
st
 iteration on, 

the correct NS, three (= NP of two and NU of one), is maintained until the final 

convergence at the 92
nd

 iteration.   

 

(a) Iteration steps from 1 through 23 
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(b) Iteration steps from 24 through 92  

Figure D-2.1. Movement of sampling compositions for case 3.2 in chapter 3.  The 

vertical dashed line shows the location of the overall composition.  Solid squares 

represent the sampling compositions in set U.  The reference composition in set P is 

shown by a solid diamond, and the other sampling compositions in set P are hollow 

squares.     

 

 

 

 

 

 

 

 



 297 

APPENDIX E: Stepwise Description and Flow Chart of Multiphase 

Isenthalpic Flash Integrated with Stability Analysis  

Appendix E presents the stepwise description and the flow chart of the 

multiphase PH flash integrated with stability analysis given in Chapter 4.   

 

Appendix E-1: STEPWISE DESCRIPTION  

Step 1. Specify Hspec, P, and overall composition z, along with model parameters, such as 

critical temperature TC, critical pressure PC, acentric factor ω, and NC × NC binary 

interaction parameters (BIPs).  Input an initial guess for dimensionless 

temperature, TD
(1)

, where the number in the bracket represents the iteration-step 

number k = 1.   

Step 2. Set NS sampling compositions xj
(k)

 for j = 1, 2,…, NS.   

Step 3. Calculate Dj (equation 3.1) with z as the reference composition for j = 1, 2, …,NS.  

Select the sampling composition that has the minimum D value as the reference 

composition xr
(k)

.  Calculate K values, Kj
(k)

, by use of lnKij = lnφir − lnφij for j = 

1, 2, …, NS and j ≠ r, which is derived from equations 4.17 and 4.18.  Recalculate 

Dj with the selected reference composition.  Set NU as the number of sampling 

compositions that have positive D values.  NP = NS – NU.  If NP = 1, go to step 7.  

Otherwise, go to step 4.   

Step 4. Check to see if the feasible region for the RR equations (set P) is bounded (Okuno 

et al. 2010b).  If so, go to step 6.  Otherwise, go to step 5.   

Step 5. Exclude from set P as many sampling compositions as required until the 

feasibility is satisfied for the given RR problem.  The exclusion is conducted in 

the descending order in terms of D within set P.  Then, update NP.  If NP = 1, go 

to step 7.  Otherwise, continue to step 6.   
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Step 6. Solve the RR equations (equation 3.5) for set P to obtain βj
(k)

and xj
(k)

 for j = 1, 

2,…, NP.  

Step 7. Calculate θj
(k)

 and xj
(k)

 for set U, where j = (NP + 1), (NP + 2)…, NS.   

Step 8. If θj
(k)

 > 0 for j = (NP + 1), (NP + 2)…, NS, go to step 9.  Otherwise, set θj
(k)

 = 0, 

and select the sampling composition that has the minimum θj value, as the 

reference composition.  Then, update NP and K values with the new reference 

composition.  Go to step 11.   

Step 9. If 0 < βj
(k)

 < 1 for j = 1, 2,…, NP, go to step 10.  Otherwise, set βj
(k)

 = 0 and θj
(k)

 ≠ 

0, and select the sampling composition with 0<βj<1 as the reference composition.  

Then, update NP and K values with the new reference composition.  Go to step 

11.   

Step 10. Stop, if ‖fj
(k)

‖
∞

< εf (e.g., εf = 10
−10

) and |gNP
(k)

| < εh (e.g., εh = 10
−10

) for j = 

1, 2,…, NS (r ≠ j).  Otherwise, go to step 11.   

Step 11. Check for merging compositions.  If ‖xj
(k)

− xq
(k)

‖
∞

< εx (e.g., εx = 10
−3

) for j, 

q = 1, 2,…, NS, and j ≠ q, delete the j
th

 sampling composition.  Add a new 

sampling composition, and update the reference composition.  Then, go to step 

12.  

Step 12. Update K values in composition space for sets P and U by use of lnKij = lnφir − 

lnφij for j = 1, 2, …, NS and j ≠ r.  If NP = 1, go to step 7.  Otherwise, go to step 

13. 

Step 13. Construct the NP × NP Jacobian matrix only for set P, and calculate its condition 

number.  If the condition number is greater than ξ (e.g., 10
6
), go to step 16.  

Otherwise, perform one Newton’s iteration step to obtain βj
(k + 1)

 and TD(
k + 1)

 for j 

= 1, 2,…, NP.  
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Step 14. Check to see if TD
L
 < TD

(k + 1)
 < TD

U
.  If so, continue to step 15.  Otherwise, 

update TD
(k + 1)

 using the Regula Falsi method (Zhu and Okuno 2014b).   

Step 15. Update K values in temperature space for sets P and U: lnKij
(k + 1)

 =  lnKij
(k)

 + 

[TD
(k)

(TD
(k + 1)

 ‒ TD
(k)

)/TD
(k + 1)

](∂lnKij/∂TD)
(k)

. Go to step 4 after increasing the 

iteration-step number by one: k = k + 1.  

Step 16-1. Set tL to the highest temperature between TD
L
 and TD

(k)
 that gives a negative 

gNP. Set tU to the lowest temperature between TD
U
 and TD

(k)
 that gives a positive 

gNP.   

Step 16-2. TD
(k + 1)

 = 0.5(tL + tU). 

Step 16-3. Perform PT flash at TD
(k + 1)

 to calculate βj
(k + 1)

, θj
(k + 1)

 and xj
(k+1)

 such that 

‖fj
(k+1)

‖
∞

< εf for j = 1, 2, …, NS, and r ≠ j. 

Step 16-4. Calculate the condition number of the Jacobian matrix.  If it is greater than ξ, 

continue to step 16-5.  Otherwise, go to step 4. 

Step 16-5. Calculate gNP
(k + 1)

.  If |gNP
(k + 1)

| is less than εh, stop.  Otherwise, tL = TD
(k + 1)

 

for gNP
(k + 1)

 < 0, and tU = TD
(k + 1)

 for gNP
(k + 1)

 > 0.  Then, go to step 16-2 after 

increasing the iteration-step number by one; k = k + 1.   

 

In Step 3, a reference composition is initialized to define equation 4.17.  First, 

function D with the overall composition as the reference is used to calculate Dj (equation 

3.1) at NS sampling compositions (j = 1, 2,…, NS).  Then, the initial reference 

composition is defined at which D is the minimum among the NS sampling compositions.  

This procedure is also used when a new reference composition is to be selected during 

the iterations.  Note that D values are used only for the initialization of sampling 

compositions. 
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In Step 11, the sampling composition to be added is taken from the previous 

iteration in this research.  The composition that has a greater distance from that of the 

merged sampling composition is added.  The purpose of adding a sampling composition 

in step 11 is to keep the original Ns, which should be always equal to or greater than the 

number of stationary points on the tangent plane distance function.  It has been observed 

that this step is crucial for PH flash for water/solvent/bitumen mixtures, in which the 

number and identities of phases can change frequently with temperature for a given 

overall composition and pressure.   

 

Appendix E-2: FLOW CHART 

This section presents the flow chart of the multiphase PH flash integrated with 

stability analysis given in Chapter 4.   
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 NP – 1  Feasible RR?

NP = 1?

NO

YES

NO

YES

YES

NO

Update K values in composition space for j = 1, 2,  , NS

Construct the NP × NP Jacobian matrix

Jacobian condition number < ξ ?

YES

Perform one Newton's iteration step to obtain βj
(k+1)

 and TD
(k+1)

 for j = 1, 2, ..., NP

YES

 TD
L
 < TD

(k+1)
 < TD

U
 ? NO

Calculate lnKij
(k+1)

 = lnKij
(k)

 + [TD
(k)

(TD
(k+1)

   TD
(k)

)/TD
(k+1)

]( lnKij/ TD)
(k)

 for j = 1,  , 2,  , NS
(k = k + 1)

NO

YES

Let tL = max{TD
(k)

, TD
L
} for gNP < 0, 

tU = min{TD
(k)

, TD
U
} for gNP > 0

Calculate TD
(k + 1)

 = 0.5(tL + tU)

NO

YES

NO

Let tL = TD
(k+1)

 for gNP
(k+1)

 < 0, 

and tU = TD
(k+1)

 for gNP
(k+1)

  > 0
(k = k + 1)

YES

|gNP
(k+1)

| < εh?

Jacobian condition number < ξ ?

Update TD
(k+1)

 using Regula Falsi method

NO
Set β

(k)
 = 0 and θ

(k)
   0 for the 

sampling composition that has 

maximum D value within set P

NO

NO

YES

YES

Update reference composition and K values

     Specify Hspec, P, z , Tc,  Pc,  ω, and BIPs .Set iteration number k = 1 and input TD
(k)

Set NS sampling compositions xj
(k)

 for j = 1, 2, ..., NS

Calculate Dj with z as the reference composition, and select the sampling 

composition with the minimum D value as the reference composition xr
(k)

Initialize K values, Kj
(k)

, and recalculate Dj with the selected reference composition.  

Set NU as the number of sampling compositions with positive D values.  NP = NS   NU

Output xj
(k)

, βj
(k)

, θj
(k)

 and TD
(k)

Output xj
(k+1)

, βj
(k+1)

, 

θj
(k+1)

 and TD
(k+1)

NP = 1?

NO

0 < βj
(k)

 < 1 for j = 1, 2,  , NP?NOUpdate reference composition and K valuesUpdate NP
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Update NP

NP = 1?

 NP – 1  Feasible RR?

θj
(k)

 > 0 for j = (NP + 1), (NP + 2),  , NS?Update NP
NOUpdate reference composition and K values

||xj
(k)

  xq
(k)||  < εf  for j, q = 1, 2,  , NS, j   q?

YESDelete the j
th

 sampling point if θj
(k) 

> 0

Add a new sampling point xj
(k)

 and update reference composition

 Solve RR equations to obtain βj
(k)

 and xj
(k)

 for j = 1, 2,  , NP

Calculate θj
(k)

 and        for j = (NP + 1), (NP + 2),  , NS

YES

||fj
(k)||  < εf and |gNP

(k)| < εh?

 Perform PT flash at TD
(k+1)

 to calculate βj
(k+1)

,   

θj
(k+1)

, and xj
(k+1)

, such that ||fj
(k+1)||  < εf for 

j = 1, 2,  , NS , and j   r
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APPENDIX F: Minimum Distance Conditions for Five Reservoir Oils  

Appendix F presents a summary of the minimum distance conditions for five 

other reservoir oils given in Chapter 5.  The five oils are oil B (Shelton and Yarborough 

1977), West Sak oil (DeRuiter et al. 1994), JEMA (Khan et al. 1992), oil G (Creek and 

Sheffield 1993), and BSB oil (Khan et al. 1992).   

 

Appendix F-1: Oil B (Shelton and Yarborough 1977)   

Figures F-1.1 presents the minimum distance conditions at the three-phase trailing 

edge at two NPe numbers for oil B (Shelton and Yarborough 1977) displaced by CO2 at 

0.4 PVI at 94°F.  Figure F-1.2 presents the minimum distance conditions at the three-

phase leading edge at two NPe numbers for oil B (Shelton and Yarborough 1977) 

displaced by CO2 at 0.4 PVI at 94°F.  The measured MMP is 1450 psia, and the 

calculated OIP is 1475 psia.   

 
 

(a) 
 

Figure F-1.1 (Continued below)   
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(b) 

Figure F-1.1. Minimum distance condition at the three-phase trailing edge at two NPe 

numbers for oil B displaced by CO2 at 0.4 PVI at 94°F.  The properties of components 

used can be found in Kumar (2016). (a) NPe = 100.  (b) NPe = 4000.   

 

 
(a) 

 

Figure F-1.2 (Continued below)  
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(b) 

Figure F-1.2. Minimum distance condition at the three-phase trailing edge at two NPe 

numbers for oil B displaced by CO2 at 0.4 PVI at 94°F.  The properties of components 

used can be found in Kumar (2016). (a) NPe = 100.  (b) NPe = 4000.   

 

Appendix F-2: West Sak Oil (DeRuiter et al. 1994)   

Figure F-2.1 presents the minimum distance conditions at the three-phase trailing 

edge at two NPe numbers for West Sak Oil (DeRuiter et al. 1994) displaced by enriched 

gas at 0.4 PVI at 65°F.  Figure F-2.2 presents the minimum distance conditions at the 

three-phase leading edge at two NPe numbers for West Sak Oil (DeRuiter et al. 1994) 

displaced by enriched gas at 0.4 PVI at 65°F.  The measured MMP is 1500 psia, and the 

calculated OIP is 1500 psia.   
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(a) 
 

 

(b) 

Figure F-2.1. Minimum distance condition at the three-phase trailing edge at two NPe 

numbers for West Sak Oil displaced by enriched gas at 0.4 PVI at 65°F.  The properties 

of components used can be found in Kumar (2016). (a) NPe = 100.  (b) NPe = 4000.   

 



 306 

 

(a) 
 

 

(b) 

Figure F-2.2. Minimum distance condition at the three-phase leading edge at two NPe 

numbers for West Sak Oil displaced by enriched gas at 0.4 PVI at 65°F.  The properties 

of components used can be found in Kumar (2016). (a) NPe = 100.  (b) NPe = 4000.   
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Appendix F-3: JEMA Oil (Khan et al. 1992)   

Figure F-3.1 presents the minimum distance conditions at the three-phase trailing 

edge at two NPe numbers for JEMA Oil (Khan et al. 1992) displaced by CO2 at 0.4 PVI at 

110°F.  Figure F-3.2 presents the minimum distance conditions at the three-phase 

leading edge at two NPe numbers for for JEMA Oil (Khan et al. 1992) displaced by CO2 

at 0.4 PVI at 110°F.  The measured MMP is 1250 psia, and the calculated OIP is 1200 

psia.   

 

 

(a) 

Figure F-3.1 (Continued below)  
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(b) 

Figure F-3.1. Minimum distance condition at the three-phase trailing edge at two NPe 

numbers for JEMA Oil displaced by CO2 at 0.4 PVI at 110°F.  The properties of 

components used can be found in Kumar (2016). (a) NPe = 100.  (b) NPe = 4000.   

 

 

(a) 

Figure F-3.2 (Continued below)  
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(b) 

Figure F-3.2. Minimum distance condition at the three-phase leading edge at two NPe 

numbers for JEMA Oil displaced by CO2 at 0.4 PVI at 110°F.  The properties of 

components used can be found in Kumar (2016). (a) NPe = 100.  (b) NPe = 4000.   

Appendix F-4: Oil G (Creek and Sheffield)   

Figure F-4.1 presents the minimum distance conditions at the three-phase trailing 

edge at two NPe numbers for Oil G (Creek and Sheffield) displaced by CO2 at 0.4 PVI at 

94°F.  Figure F-4.2 presents the minimum distance conditions at the three-phase leading 

edge at two NPe numbers for Oil G (Creek and Sheffield) displaced by CO2 at 0.4 PVI at 

94°F.  The measured MMP is 1035 psia, and the calculated OIP is 1075 psia.   
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(a) 

 

 

(b) 

Figure F-4.1. Minimum distance condition at the three-phase trailing edge at two NPe 

numbers for Oil G displaced by CO2 at 0.4 PVI at 94°F.  The properties of components 

used can be found in Kumar (2016). (a) NPe = 100.  (b) NPe = 4000.   
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(a) 

 

 

(b) 

Figure F-4.2. Minimum distance condition at the three-phase trailing edge at two NPe 

numbers for Oil G displaced by CO2 at 0.4 PVI at 94°F.  The properties of components 

used can be found in Kumar (2016). (a) NPe = 100.  (b) NPe = 4000.   
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Appendix F-5: BSB Oil (Khan et al. 1992)   

Figure F-5.1 presents the minimum distance conditions at the three-phase trailing 

edge at two NPe numbers for BSB oil (Khan et al. 1992) displaced by CO2 at 0.4 PVI at 

105°F.  Figure F-5.2 presents the minimum distance conditions at the three-phase 

leading edge at two NPe numbers for BSB oil (Khan et al. 1992) displaced by CO2 at 0.4 

PVI at 105°F.  The measured MMP is 1200 psia, and the calculated OIP is 1250 psia.   

 

 

 

(a) 

Figure F-5.1 (Continued below)  
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(b) 

Figure F-5.1. Minimum distance condition at the three-phase trailing edge at two NPe 

numbers for BSB oil displaced by CO2 at 0.4 PVI at 105°F.  The properties of 

components used can be found in Kumar (2016). (a) NPe = 100.  (b) NPe = 4000.   

 

 

(a) 

Figure F-5.2 (Continued below)  



 314 

 

(b) 

Figure F-5.2. Minimum distance condition at the three-phase leading edge at two NPe 

numbers for BSB oil displaced by CO2 at 0.4 PVI at 105°F.  The properties of 

components used can be found in Kumar (2016). (a) NPe = 100.  (b) NPe = 4000.   
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Glossary 

Roman Symbols 

a     Attraction parameter defined in equation 2.51  

A     Dimensionless attraction parameter for a cubic equation of state 

b     Co-volume parameter defined in equation 2.51 

B     Dimensionless co-volume parameter for a cubic equation of state 

cij   Volumetric fraction of component i in phase j 

cj  Vector consisting of cij as defined in equation 2.6 

C    Constant defined for temperature oscillation check  

Ci   Overall volume fraction of component i 

CPi
0
  Coefficients of component i defined in equation A-1.5 

CPj   Heat capacity of phase j 

D̿    Diagonal matrix defined in equation 2.12 

D    Tangent plane distance defined in equation 2.22 or Diagonal matrix  

defined in equation 4.5 

DR   Dimensionless tangent plane distance defined in equation 2.23 

fij    Fugacity of component i in phase j, or residual of fugacity equations  

defined in equation 3.3 

fj   Fractional flow of phase j 

f     Vector consisting of NC residuals of the fugacity equations 

F     Non-monotonic convex function defined in equation 4.3  

Fi   Overall fractional flow of component i 

gj    Residuals of material balance equations defined in equation 2.49 

gNP   Residual of the enthalpy constraint defined in equation 2.50  

GB   Grid block  

GR   Dimensionless Gibbs free energy defined in equation 2.40  

G    Molar Gibbs free energy 

G    Partial molar Gibbs free energy 

H     Enthalpy or the Hessian matrix defined in equation 4.5 

H    Molar enthalpy 

J     Jacobian matrix 

kij    Binary interaction parameter between components i and j 

Ki    K value of component i for a two-phase system defined in equation 2.29 

Kij   K value of component i in phase j 

Kj    Vector consisting of NC K values for phase j  

K⃗⃗ ⃗⃗ ij   Dispersion tensor for component i in phase j 

L1   Oleic phase 

L2   Solvent-rich liquid phase 

n    Exponent used in distribution in Appendix C-2 

NC   Number of components 
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NGB   Number of grid blocks used in simulations 

NP   Number of phases or Number of sampling compositions in set P 

NPe   Péclet number defined in equation 5.7 

NS   Number of sampling compositions 

NSi   Number of sampling compositions distributed in Ri defined  

 in Appendix C-2 

NSmax  Maximum number of initial sampling compositions used in distribution  

in Appendix C-2 

NU   Number of sampling compositions in set U 

P    Pressure 

PC   Critical pressure 

PR   Reduced pressure 

Qi    Recovery of component i  

r1i    Number of segments used in step 4 in Appendix C-2 

r2i    Number of segments used in step 6 in Appendix C-2 

R    Universal gas constant 

Ri    Region defined in step 2 in Appendix C-2  

Sj  Saturation of phase j 

S    Molar entropy 

tD  Dimensionless time in pore volumes 

ti     Parameter defined in equation 2.49  

T    Temperature or tangent plane defined in equation 2.21 

TC   Critical temperature 

TD   Dimensionless Temperature 

T0    273.15 K defined in equation A-1.5  

TR   Reduced temperature 

u⃗ j    Flux of phase j 

V    Vapor phase 

VC  Critical volume 

VD  Dimensionless velocity defined in equation 2.6  

V    Molar volume 

W     Aqueous phase 

xD  Dimensionless distance from the injector 

xi    Mole fraction of component i in the L phase for a L-V two-phase system  

xij  Mole fraction of component i in phase j  

xj  Vector consisting of xij 

Xi    Parameter defined in equation 2.27  

yi    Mole fraction of component i in the V phase for a L-V two-phase system 

Y     Matrix defined in equation 4.5 

zi    Overall mole fraction of component i 

Zj    Compressibility factor of phase j 
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Greek Symbols 

ρi    Molar density of component i 

α    Coefficients defined in in equation A-1.14 

β     Vector of independent mole fractions βj for j = 1, 2, …, (NP ‒ 1)   

βj     Mole fraction of phase j 

γ:   Parameter defined in equation 2.6 

δ:   Distance parameters defined in equations 2.7, 2.8, 2.9, and 2.10  

ε     Convergence or merging criterion or small values used in equations 2.7,  

2.8, 2.9, and 2.10 

εo    Constant used for temperature oscillation check 

θj     Parameter defined in equation 3.3 or Parameter for phase j calculated  

by equation 3.6 

ρj    Molar density of phase j 

ϕ    Porosity 

φij     Fugacity coefficient of component i in phase j 

ω    Acentric factor 

Γ   Parameter defined in equations 2.9, and 2.10 

 

Subscripts 

C    Critical property 

D     Dimensionless property 

f     Fugacity equations 

h     Enthalpy constraint 

i     Component index 

ini   Initial condition 

int   Intersection 

j     Phase index  

k    Grid block index  

m     Mixture or material balance 

r    Reference composition 

ref   Reference value 

sol   Solution condition 

spec  Specified value 

V     Vapor phase 

W     Aqueous phase 

w     Water component  

x    Composition 

 

Superscripts 

D   Downstream used in equation 2.5 

dep   Departure 

IG   Ideal gas 

IGM  Ideal gas mixture 
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k     Iteration step number 

L     Lower bound used in equation 4.16 or leading edge 

n    Time step index  

t     Total property 

T     Transpose or trailing edge  

U    Upper bound used in equation 4.16 

U    Upstream used in equation 2.5 

vap    Vapor pressure 

 

Abbreviations 

1D   One-dimensional  

2D   Two-dimensional  

3D   Three-dimensional  

BIP   Binary interaction parameter 

BSB  Bob Slaughter Block 

BSBQ  Quaternary model of Bob Slaughter Block oil  

BT   Breakthrough 

CB   Bitumen  

CEP  Critical endpoint 

CN   Carbon number 

CP   Critical point  

DS   Direct substitution 

EOS  Equation of state 

FCM  First-contact miscibility 

GFE    Gibbs free energy  

LCEP  Lower critical endpoint 

MCM   Multi-contact miscibility 

MMP  Minimum miscibility pressure 

MOC  Method of characteristics 

MW  Molecular weight  

NWE   North Ward Estes 

OIP  Optimal injection pressure   

PC   Pseudo-component 

PDE   partial differential equation 

PH  Isenthalpic   

PR   Peng-Robinson 

PT   Isobaric-isothermal 

P-T-x     Pressure-temperature-composition 

PVI  Pore volume injected  

PVT  pressure-volume-temperature 

P-x   Pressure-composition  

QNSS  Quasi-Newton successive substitution  

RR   Rachford-Rice 
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SA   Stability analysis  

SRK  Soave-Redlich-Kwong 

SS  Successive substitution  

SVD   Singular value decomposition 

TPD       Tangent plane distance 

UCEP  Upper critical endpoint 

UTCOMP Three-dimensional equation-of-state compositional reservoir simulator 

WAG  Water-alternating-gas 
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