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Abstract—A technique is developed for reconstructing a con-
tinuous phase time history from the noncontinuous phase bursts
of time division multiple access (TDMA) signals. A continuous
phase time history facilitates exploitation of TDMA signals as
signals of opportunity (SOPs) within an opportunistic navigation
framework. Because of their widespread use and availability
in today’s wireless communication market, TDMA signals are
attractive candidate SOPs for opportunistic navigation. The
phase reconstruction technique presented here combines an
integer least squares technique for estimating phase ambiguities
at the beginning of each TDMA phase burst with a Kalman
filter and smoother for removing these ambiguities and optimally
“stitching” the bursts together. A Monte-Carlo-type simulation
and test environment has been developed to investigate the
sensitivity of the proposed phase reconstruction technique to var-
ious system parameters, namely, carrier-to-noise ratio, receiver
clock quality, TDMA transmitter clock quality, line-of-sight
acceleration uncertainty, and TDMA burst structure. Simulation
results indicate that successful carrier phase reconstruction is
most strongly dependent on the TDMA burst period and on
the combined phase random walk effect of the receiver and
transmitter clocks, the propagation effects, and the range errors.

I. INTRODUCTION

The pervasion of ambient radio-frequency signals in today’s

urban and indoor environments has spurred research in the

area of hybrid signal navigation [1]–[9]. One hybrid navigation

technique, known as opportunistic navigation [2], calls for a

centralized estimator to ingest pseudorange and carrier phase

observables from heterogeneous wireless signals to compute

a receiver’s position, velocity, and time. TDMA signals are a

prime candidate for opportunistic navigation because they are

widely available due to their adoption into many terrestrial

and satellite wireless communication standards. However, the

intermittent signal availability and phase ambiguities resulting

from the time-multiplexed signal structure makes it challeng-

ing to incorporate raw TDMA observables into carrier-phase-

based navigation and timing algorithms.

Phase ambiguities arise in TDMA signal tracking because

the receiver cannot track the carrier phase evolution between

TDMA transmission slots (hereafter bursts) and because the

receiver’s phase discriminator is only capable of measuring

phase to within 1 cycle. As a result, there is an integer

cycle ambiguity at the beginning of each burst which must

be resolved before navigation and timing information can be

fully extracted from the TDMA signals. Some TDMA systems

introduce a further complication by randomizing the initial

phase of a burst so that for practical purposes it becomes

fractional-cycle ambiguous (i.e., the ambiguity is imposed

in increments of 1

M
cycles, where M ≥ 2 is an integer).

Fractional-cycle ambiguities are naturally more difficult to

resolve than whole-cycle ambiguities (M = 1).
To fully exploit TDMA signals in an opportunistic navi-

gation framework, a technique is needed for reconstructing a

continuous carrier phase time history from a TDMA signal’s

noncontinuous bursts. No such technique has been offered

previously in the literature, as far as the authors are aware. This

paper’s contributions are twofold: (1) An optimal technique

for TDMA phase reconstruction is developed, and (2) the

performance of the proposed technique and the technique’s

sensitivity to parameters of practical interest is analyzed.

This paper is organized as follows. Section II sets up the

system model, motivating the need for and the effects of carrier

phase reconstruction. Section III presents the reconstruction

technique. The technique addresses the two main challenges in

exploiting TDMA signals for navigation: (1) their burst struc-

ture and (2) the whole- or fractional-cycle phase ambiguities

present at the beginning of each burst. Section IV presents a

simulation and test environment designed to simulate TDMA

signals, apply the reconstruction technique, and then evaluate

its performance. Section V discusses the technique’s per-

formance by analyzing its sensitivity to different simulation

parameters. Concluding remarks are given in Section VI.

II. CARRIER PHASE MODELS

Two carrier phase models are introduced here to illustrate

the need for and the effects of carrier phase reconstruction:

(1) the residual TDMA carrier phase model, which models

the signal before the phase reconstruction technique is applied,

and (2) the smoothed reconstructed carrier phase model, which

models the signal after the reconstruction technique is applied.

A. Residual TDMA Carrier Phase Model

Let the residual carrier phase φr(t) be defined as the

measured difference between the received carrier phase and

the phase of the local signal replica, which is the receiver’s

best prediction of received carrier phase. The term “residual”
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refers to this being the phase remaining after downmixing and

correlation with the local signal replica. The residual carrier

phase in cycles can be modeled by the following adaptation

of the carrier phase measurement model given in [10]:

φr(t) = received carrier phase - predicted carrier phase

=







1

λ
re(t) +

c
λ
[δtRX(t)− δtTX(t)] + γ0 − ψ0

+ǫp(t) + vφ(t) +
1

M
η(t) for tsi ≤ t ≤ tsi + Tb

i = 0, 1, ..., Nb − 1
undefined otherwise

(1)

with the following definitions:

λ the TDMA carrier wavelength, in meters.

re the error in the predicted range between the receiver

and transmitter, in meters.

c the speed of light, in meters per second.

δtRX the receiver clock error, in seconds.

δtTX the TDMA transmitter clock error, in seconds.

γ0 the phase of the receiver’s carrier replica at the time

of first acquisition, in cycles.

ψ0 the phase of the transmitted TDMA signal at the time

of first acquisition, in cycles.

ǫp the carrier phase deviation due to atmospheric and

multipath effects, in cycles.

vφ the measurement noise induced by the receiver front-

end, in cycles.
1

M
the ambiguity factor used to depict whole-cycle

phase ambiguities (M=1) or fractional-cycle phase

ambiguities (M >1), whichever is appropriate for

the signal being modeled.

η(t) an integer constant, measured in cycles. Upon scaling

by 1

M
, it represents the offset of the signal’s mea-

sured phase from that of the unambiguous “ideal”

phase at the beginning of each burst. In particular,

η(t) = ni is constant when t is within the time

spanned by the ith burst. In this paper, η(t) will often
be referred to as the “integer ambiguity.”

tsi the start time of the ith burst, in seconds.

Tb the TDMA burst duration, in seconds.

Nb the number of bursts.

The TDMA reconstruction technique reconstructs a con-

tinuous phase time history from the burst-like structure of

φr(t). Figs. 1–4 help to build intuition about φr(t) and about

the challenges of phase reconstruction. Fig. 1 illustrates how

φr(t) can be measured only during the periodic TDMA bursts

even though the underlying transmitter and receiver clocks

maintain phase continuity between bursts. Tp represents the

burst period, i.e., the time between consecutive bursts, and

Tb represents the burst duration. The dotted lines represent

the true but unmeasurable value of φr(t) between bursts.

The illustration represents a fictitious scenario in which the

measurements of φr(t), represented by the solid black curves

within each burst, suffer from no phase ambiguity. In reality,

due to (1) the unavailability of carrier phase measurements

between bursts, (2) the insensitivity of the phase discriminator

to integer cycle offsets in phase, and, in some cases, (3)
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Fig. 1. Illustration of residual carrier phase measurements φr(t) made by
a receiver during each burst. Also shown is the underlying continuous phase
time history, which must be reconstructed between each burst. This scenario
is fictitious, however, because the phase measurements suffer from no phase
ambiguities as introduced in Figs. 2 and 3.
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Fig. 2. Illustration of the residual carrier phase measurements φr(t) made
by the receiver during each burst. In this situation, random phase offsets to
the underlying phase are imposed by the transmitter. These offsets will need
to be resolved when reconstructing the continuous phase time history.

a random 1

M
-cycle phase shift imposed by the transmitting

system on the phase at the beginning of each burst, the

actual measurements of φr(t) are quite different from what

is suggested by the solid curves in Fig. 1.

Fig. 2 introduces the random 1

M
-cycle phase shifts that are

imposed by some transmitting TDMA systems on the phase at

the beginning of each burst. In order to accurately reconstruct

the underlying continuous phase time history, these shifts will

need to be determined and accounted for during reconstruction.

In the case shown,M = 2, resulting in random 1

2
-cycle shifts.

Within the residual carrier phase model (1), these transmitter-

imposed offsets have been modeled by the 1

M
η(t) term. This

term also represents the phase aliasing effect caused by the

insensitivity in the receiver’s phase discriminator to whole-

cycle phase shifts.

Fig. 3 introduces the effect of phase aliasing caused by

the insensitivity of the receiver’s phase discriminator to

whole-cycle phase shifts. Illustrated is the combined effect

of this whole-cycle phase aliasing with the fractional-cycle

transmitter-imparted phase shifts. The phase at the start of

each burst is aliased into the region [0, 1

M
), where M = 2

in the case shown. This combined effect is referred to as a

“fractional-cycle phase ambiguity” or simply “phase ambigu-

ity” hereafter. Fig. 3 accounts for all subtleties arising from

TDMA signals and is a realistic depiction of the receiver’s

residual phase measurements φr(t).
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Fig. 3. Illustration of the residual carrier phase measurements φr(t) made by
the receiver during each burst. The solid gray curves represent the fractional-
cycle phase shifts imposed the transmitter which then become aliased between
0 and 1

M
cycles due to a combination of these shifts and the insensitivity of the

receiver’s phase detector to whole-cycle phase offsets. The final received phase
with transmitter imposed offsets and subsequent aliasing is represented by the
solid black curves and is a realistic depiction of the receiver’s measurements
of φr(t).
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Fig. 4. Possible phase trajectories, only 1 of which corresponds to the
underlying truth. It is the job of the reconstruction algorithm to select the
correct trajectory from its measurements of φr(t), which are ambiguous in
this scenario to 1 cycle.

Fig. 4 depicts the effect of phase ambiguities on phase

reconstruction. In this illustration, M = 1, corresponding to

whole-cycle ambiguities. Because the receiver only has access

to the ambiguous φr(t) as represented by the solid black

lines in Fig. 3, the reconstruction algorithm must determine

in which whole-cycle region (or fractional-cycle region if

instead M > 1) each solid black curve would reside if

φr(t) was unambiguous (as presented in Fig. 1). The solid

curved lines in each burst of Fig. 4 represent possible true

values of the phase in each burst. These ambiguities extend

infinitely in each direction. This leads to an infinite number

of phase trajectories, the 16 most probable of which are

depicted here. Only one of the possible trajectories accurately

depicts the so-called ideal phase time history φideal(t). The
ideal phase time history represents the residual carrier phase

φr(t) without the phase dropouts due to the burst structure,

without the phase aliasing effect, without the transmitter-

imposed phase shifts, and without measurement noise. It is

the task of the reconstruction algorithm to use past, present,

and future measurements of φr(t) to resolve the phase am-

biguities and attempt to accurately reconstruct φideal(t). If a

phase ambiguity is resolved incorrectly, this would lead to an

incorrect reconstructed phase trajectory, limiting the signal’s

usefulness in an opportunistic navigation framework [2], [11].

B. Smoothed Reconstructed TDMA Carrier Phase Model

Let the smoothed reconstructed carrier phase φs(t) be de-

fined as the carrier phase after applying forward-pass Kalman

filtering, optimal integer ambiguity resolution, and backward-

pass smoothing on φr(t). The smoothed reconstructed carrier

phase is the receiver’s best estimate of φideal(t), the noise-free
and ambiguity-free beat carrier phase. φs(t) can be modeled

as follows:

φs(t) =
1

λ
re(t) +

c

λ
[δtRX(t)− δtTX(t)] + γ0 − ψ0

+ ǫp(t) + vφs
(t) +

1

M
[η(t)− η̂s(t)]

(2)

with the following new definitions:

η̂s(t) the receiver’s best estimate of the time-varying inte-

ger ambiguity term η(t) after forward-pass filtering

and subsequent ambiguity resolution.

vφs
the smoothed measurement noise after forward-pass

filtering, ambiguity resolution, and backward-pass

smoothing.

III. RECONSTRUCTION TECHNIQUE

This section presents a reconstruction technique designed

to address the two main challenges in exploiting TDMA

signals for navigation: (1) their burst structure and (2) the

whole- or fractional-cycle phase ambiguities present at the

beginning of each burst. These two challenges are addressed

through the use of an integer least-squares solver integrated

with a Kalman filter and smoother. A square-root information

implementation of the filter and smoother are used to perform

the phase reconstruction of TDMA signals in an accurate

and computationally efficient manner [12], [13]. This section

discusses the structure of the filter and smoother as well as

the method used to estimate the integer phase ambiguities.

A. State Dynamics and Measurement Model

The dynamics of the noise-free residual carrier phase can

be modeled in discrete-time as a state-space system with a

mixed real and integer state. The real part of the state evolves

as a first-order Gauss-Markov process with process noise

representing the variations due to re(t), δtRX(t), δtTX(t),
and ǫp(t) in (1). The integer part of the state evolves under the

assumption that a new constant integer ambiguity is introduced

with each burst. The measurement of φr(t) is modeled in

discrete time in a way that relates the integer ambiguities

in the state to the phase ambiguities inherent in the phase

measurements obtained during each burst.

1) State: The real-valued state at time tk can be expressed

as

xk = [φk, ωk]
T (3)

with the following definitions:

φk the noise- and ambiguity-free residual carrier phase

at time tk, in cycles.

ωk the rate of change of the noise- and ambiguity-free

residual carrier phase at time tk, in Hz.

3



The integer-valued state nk at time tk can be expressed as

nk = [n1, n2, . . . , nik ]
T (4)

with the following definitions:

nk an ik–by–1 vector of integers, one for each burst that

began between time 0 and time tk.
nik the integer corresponding to the ithk burst, the most-

recent burst beginning at or before time tk.

2) Dynamics Model: The following linear model describes

the time evolution of the mixed real/integer state:

xk+1 = Φxk + Γwk, wk ∼ N (0, Q) (5)

nk+1 =







[
nk

nik+1

]
if a new burst began within the

interval (tk, tk+1]

[
nk

]
otherwise

(6)

with the following definitions:

Φ the real-valued state transition matrix.

Γ the process noise influence matrix.

wk the process noise at time tk.
Q the process noise covariance matrix.

The state transition matrix for the real-valued state models

standard Euler integration from tk to tk+1:

Φ =

[
1 T
0 1

]

(7)

Here, T = tk+1 − tk represents the time interval between

consecutive filter updates. The process noise influence matrix

is given by

Γ =

[
1 0
0 1

]

(8)

and the process noise covariance matrix by

Q =Sgω
2
0

[
T 3

3

T 2

2
T 2

2
T

]

+ Sfω
2
0

[
T 0
0 0

]

(9)

where ω0 is the TDMA signal’s nominal carrier frequency,

in cycles per second. The parameters Sf and Sg model the

combined phase instability in the transmitter and receiver

clocks and the “clock-like” phase instability caused by re(t)
and ǫp(t). They are defined as [14]

Sf =
h0
2

(10)

Sg = 2π2h−2 (11)

where h0 and h−2 are parameters characterizing the power

spectral density of the combined phase instability. These “h-
parameters” are further defined and discussed in Sec. IV-A.

3) Measurement Model: The residual phase model from (1)

is represented in discrete time and as a function of the real

and integer state components xk and nk by

φrk =







H̃xkxk + H̃nknk + vφk for tsi ≤ tk ≤ tsi + Tb
i = 0, 1, ..., Nb − 1

undefined otherwise

(12)

with the following definitions:

φrk the phase measurement in cycles at time tk made

within the ithk burst.

H̃xk the measurement sensitivity matrix for the real-

valued state at time tk.
H̃nk the measurement sensitivity matrix for the integer-

valued state at time tk.
vφk the measurement noise at time tk, modeled as a zero-

mean discrete-time Gaussian white noise process,

vφk ∼ N (0, σ2
φk)

σ2
φk the measurement noise variance at time tk.

The quantities xk and nk are as previously described. The

measurement sensitivity matrices can be expanded as

H̃xk = [1 0] (13)

H̃nk = [0, 0, . . . , 0,
1

M
] (14)

where 1

M
is the ambiguity factor defined previously. Two

features of the 1–by–ik matrix H̃nk are noteworthy. First,

the 1

M
factor in its last element allows the integer-valued

state nk to model whole-cycle phase ambiguities (M = 1)
or fractional-cycle phase ambiguities (M > 1). Second, H̃nk

has 0s in all but its last element to ensure that the measurement

at time tk is only affected by the most recent integer ambiguity

nik in nk.

B. Cost Function

Optimal estimates of the state components xk and nk

according to the maximum a posteriori criterion and based

on all measurements φrk from k = 0 to K can be found

by determining the state and process noise time histories

that minimize a certain cost function subject to the dynamics

model. For numerical robustness, a square-root-information

approach is adopted [12], [13]. Let the square-root information

equation for the a priori real-valued state estimate at k = 0
be given by

zx0 = Rxx0x0 +wx0, wx0 ∼ N (0, I). (15)

No a priori information is assumed to be available at k=0

for the integer-valued state component n0. Let the square-root

information equation for the a priori process noise estimate at

k be

zw0 = 0 = Rww0wk +wwk, wwk ∼ N (0, I). (16)

Also, let the measurement model in (12) be transformed by

multiplying both sides by σ−1

φk . The transformed measurement
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model is written as

zk = Hxkxk +Hnknk + vzk, vzk ∼ N (0, 1). (17)

Like φrk in (12), zk is undefined between bursts.

Given these transformations, the optimal phase reconstruc-

tion problem can be expressed as follows:

Find xk for k = 0, 1, . . . ,K , wk for k = 0, 1, . . . ,K − 1,
and nK = [n0, n1, . . . , niK ] to minimize

J =||Rxx0x0 − zx0||
2 +

K−1∑

k=0

||Rwwkwk||
2

+
K∑

k=0

||Hxkxk +HnknK − zk||
2 (18)

subject to the dynamics equations (5) and (6).

A solution can be readily found by breaking the problem

into three stages: forward-pass filtering, ambiguity resolution,

and backward-pass smoothing. It can be shown that in solving

the forward-pass filtering problem, the mixed integer/real cost

function presented in (18) can be cast as a series of mixed

integer/real linear least squares problems, one at each index

k. In particular, the problem can be cast as a sum of three

independent terms [15]: (1) a term involving both the real-

and integer-valued states nk and xk, (2) a term only having to

do with the integer part of the state, nk, and (3) an irreducible

residual:

Jmixed(xk,nk) = ‖Rxxkxk +Rxnknk − zxk‖
2

︸ ︷︷ ︸

Term involving the integer- and real-valued states

+ ‖Rnnknk − znk‖
2

︸ ︷︷ ︸

Term involving only the integer-valued state

+ ‖zrk‖
2

︸ ︷︷ ︸

Residual term

(19)

with the following definitions:

zxk the real-state nonhomogeneous term at time tk.
znk the integer-state nonhomogeneous term at time tk.
zrk the residual nonhomogeneous term at time tk.
Rxxk the square-root information matrix at time tk.
Rnnk the square-root ambiguity information matrix at time

tk.
Rxnk the square-root ambiguity/state information matrix at

time tk.

The above terms are in square-root information form and are

outputs of the square root information filter (SRIF) at each

time step. For details on these terms and their structure, see

[13].

To minimize (19), it is appropriate to first determine the

integer-valued vector state estimate n̂k that minimizes the

second term, that is, the term involving only the integer-valued

state. This estimate can be determined efficiently using integer

least-squares techniques. It can then be inserted into the first

term, that is, the one involving both the integer- and real-

valued states. At this point, it is possible to determine the

real-valued state estimate x̂k that minimizes this first term.

C. Forward-Pass Filtering

Intermediate equations of the form in (19) are produced by

processing the measurements zk for k = 0, 1, . . . ,K through

a forward-pass SRIF. The SRIF also stores up information

regarding the value of the integer ambiguities.

D. Ambiguity Resolution

The real- and integer-valued state vectors xk and nk that

minimize (19) can be found by first finding the vector of

integer ambiguities nk that minimizes the second term of (19):

Jn(nk) = ‖Rnnknk − znk‖
2

(20)

To resolve the integer ambiguities, the least-squares am-

biguity decorrelation adjustment method (LAMBDA) is used

[16], [17]. This algorithm accepts the integer-state information

matrix RnnK and the integer-state nonhomogeneous term znK

from the forward-pass SRIF after the last measurement K has

been ingested at time tK and selects the vector of integer

ambiguities n̂K that minimizes (20). It is important to note

here that there exist many techniques for minimizing (20),

including a brute-force search among all remotely possible

nk. The LAMBDA method is just an efficient way of doing

this.

E. Backward-Pass Smoothing

Backward-pass smoothing is the third step in the phase

reconstruction process. The smoothed state estimates x
⋆
k for

k = 0, 1, . . . ,K can be expressed in square-root information

form as

x
⋆
k = (R⋆

xxk)
−1

z
⋆
xk (21)

with the following definitions:

R⋆
xxk the smoothed square-root information matrix at time

tk.
z⋆xk the smoothed nonhomogeneous term at time tk.

To initialize the smoother, the integer ambiguity vector

estimate n̂K at time tK is determined as described above and

then incorporated into the smoother’s initial nonhomogeneous

term z
⋆
xK and initial square-root information matrix R⋆

xnK by

z
⋆
xK = zxK −RxnKnK (22)

R⋆
xnK = RxnK (23)

where

K is the last time index processed by the forward-pass

filter,

zxK is the filter’s nonhomogeneous term at time tK , and

RxnK is the filter’s square-root information matrix at time

tK .

At time tK the smoother begins its backwards-pass processing,

working backward to smooth the filtered state estimate at each

time step until it reaches k = 0.

5



2.7 2.8 2.9 3 3.1 3.2 3.3 3.4
0.5

1

1.5

Time (s)

P
h

a
s
e

 (
c
y
c
le

s
)

 

 

Unambiguous Phase Bursts
Ideal Phase
Filter Esimate
Smoother Estimate

Fig. 5. Illustration of the abrupt dynamics possible in the filter’s phase
estimates as compared to the smoothed dynamics in the smoother’s phase
estimates.

F. Discussion on Smoothing

Given that backward-pass smoothing is noncausal and so

prevents real-time implementation, one may wonder whether

smoothing is necessary for phase reconstruction. There are, in

fact, scenarios for which smoothing is useful. For example,

if the reconstruction technique is used in an opportunistic

navigation application that seeks to estimate the underlying

noise-free and ambiguity-free continuous carrier phase φk with

sufficient fidelity to enable extended coherent integration of

weak SOPs, it may be necessary to use smoothed as opposed

to filtered estimates of φk . This is because the innovations

introduced during forward-pass filtering cause discontinuities

in {φ̂k, k = 0, 1, . . . ,K} that degrade its coherence, which

can be expressed by the discrete-time coherence function

Ccoh(K) =

∣
∣
∣
∣
∣

1

K

K−1∑

k=0

ejφ̃k

∣
∣
∣
∣
∣

0 ≤ Ccoh(K) ≤ 1 (24)

where φ̃k = φk − φ̂k. The so-called coherence time, which

is the duration over which phasors of the form ejφ̃k can

be coherently summed, can be defined as τcoh = T · Kcoh,

where T is the update interval and Kcoh is the value of K
at which E[C2

coh(K)] drops below 0.5 [18]. If instead the

smoothed estimates of φk are used so that φ̃k = φk − φ⋆k,
then the coherence time τcoh is increased because the effect

of backward smoothing is to force the sequence of estimates

{φ⋆k, k = 0, 1, . . . ,K} to conform to the dynamics model (5),

thereby smoothing the discontinuities introduced by measure-

ment innovations in forward-pass filtering.

Fig. 5 illustrates the benefits of smoothing. As shown by

the thick dashed trace, new measurements at the beginning

of each burst introduce innovations within the SRIF that

create sharp phase corrections when the phase estimates drift

significantly between bursts. These corrections lead to abrupt

phase dynamics that may not conform to the filter’s state

dynamics model, even when the filter’s assumed dynamics and

measurement models are an accurate reflection of reality. As

shown by the thinner dash-dotted trace, the smoother, because

it has knowledge of future measurements, is able to remove

these unrealistic dynamics introduced by innovations in the

SRIF. In other words, smoothing more accurately recreates

the actual signal dynamics, causing the state variations to

conform more closely to the a priori dynamics model, and,

consequently, to the true state, thereby increasing coherence

time.

IV. SIMULATION AND TEST ENVIRONMENT

To test the performance of the reconstruction technique, a

Monte-Carlo-type simulation and test environment has been

designed in MATLAB. The environment performs two tasks.

First, using models of the error sources, it simulates the

residual carrier phase φr(t) of TDMA signals, a model for

which was introduced in Sec. II-A. Parameters accurately

modeling the the line-of-sight acceleration uncertainty, re-

ceiver clock quality, transmitter clock quality, propagation-

induced effects, and carrier-to-noise ratio can be input into

the simulator. TDMA burst structure parameters, such as the

burst duration, the time between bursts, and the 1

M
ambiguity

factor corresponding to the whole- or fractional-cycle phase

ambiguities, can also be set. The simulator generates random

realizations of φr(t) based on these input parameters.

Second, the simulation and test environment applies the

reconstruction technique and evaluates the performance of

this technique on the simulated signal. The performance of

the technique is evaluated by two metrics: (1) the percentage

of ambiguities it is able to resolve correctly, and (2) the

coherence time τcoh of the difference between the smoothed

reconstructed phase time history φs(t) and the ideal phase

time history φideal(t). Because it simulates the TDMA signals,

the simulation and test environment has access to φideal(t).
The environment allows a user to vary the input parameters to

explore the sensitivity of the reconstruction technique to each

parameter in terms of these two metrics.

Sensitivity tests are used to determine the parameter space

within which successful phase reconstruction is possible.

Results for input parameters modeling a TDMA satellite

communication system and the insight behind them are given

in Sec. V.

A. Error Source Modeling

The magnitude of the error variations in the residual carrier

phase φr(t) directly affects the performance of the recon-

struction technique, which leads to errors in the smoothed

reconstructed phase φs(t). The magnitude of error variations

in φs(t) directly affects the usefulness of the TDMA signals

for opportunistic navigation. Consequently, it is important to

simulate TDMA signals such that they accurately reflect real-

world systems. To correctly simulate the residual carrier phase,

the simulator must have accurate models for the phase varia-

tions caused by each error component of φr(t) as outlined in

(1). Recall that variations in φr(t) are caused by a combination

of variations in the independent signal error components, in

6



particular, those brought on the by the transmitter and receiver

clocks, the propagation environment, and the receiver’s front-

end.

Modeling the various error sources can be greatly simplified

by exploiting two key facts: (1) the sources are, for practical

purposes, statistically independent, and (2) the error compo-

nents re(t), δtRX , δtTX , and ǫp(t) in (1) can all be realisti-

cally modeled as second-order Gauss-Markov processes. More

precisely, their individual contribution to the overall residual

phase can be represented by a combination of random-walk-

phase and random-walk-frequency noise. But these are nothing

more than the basic components of a simple clock error model.

Therefore, one can develop a unified noise model that treats

the phase errors due to clocks, c
λ
δtRX(t) and c

λ
δtTX(t), and

the phase errors due to range and propagation effects, 1

λ
re(t)

and ǫp(t), as instances of the same two-parameter noise model

as is commonly used to model clock errors [14].

Let Sφ(f) be the single-sided power spectral density (PSD)

of some statistically stationary phase error process φ(t). Sφ(f)
can be expressed as

Sφ(f ) = 4

∫
∞

0

Rφ(τ) cos(2πf τ)dτ (25)

where Rφ(τ) = E[φ(t)φ(t+τ)] is the autocorrelation function
of φ(t). A common clock error model approximates Sφ(f)
by a frequency-weighted summation of power-law parameters,

called h-parameters hα [18]:

Sφ(f ) =
ν20
f 2

2∑

α=−2

hαf
α 0 < f < fh (26)

where

ν0 is the nominal center frequency of the phase data, in

Hertz, and

fh is the maximum frequency at which Sφ(f) is evalu-
ated, typically corresponding to the Nyquist rate of

the sampled phase error process φ(t).

When only h−2 (corresponding to frequency random walk)

and h0 (corresponding to phase random walk) are nonzero,

the five-parameter model in (26) reduces to the two-parameter

(second-order Gauss-Markov) clock error model often invoked

in Kalman filtering [14].

The components of φr(t) and of φs(t) that can be accurately
captured by a PSD model of the form in (26) are discussed in

more detail subsequently. Those components that are instead

better modeled via alternative methods are discussed in Sec.

IV-C.

B. Processes Modeled by their Power Spectra

The following components of the residual phase φr(t) can

be approximated by a power-law PSD model of the form in

(26):

1) δtTX and δtRX , the transmitter and receiver clock phase

error terms. These terms are well characterized by their

Allan variance [19] which can be readily transformed

into a power-spectral density that can be modeled by

the two-parameter clock error model discussed above.

2) re(t), the range error term. This term includes line-of-

sight errors in the modeled receiver motion and transmit-

ter motion. For stationary transmitters and receivers, this

term is constant. For moving transmitters such as satel-

lites, this term captures errors in the satellite ephemeris.

For moving receivers, this term additionally accounts

for errors in the receiver’s prediction of its motion, e.g.,

errors in inertial measurement unit (IMU) outputs. The

model in (26) serves as a reasonable approximation for

the PSD of these effects.

3) ǫp, the signal propagation-induced phase errors. These

errors are typically induced by the atmosphere, e.g.,

the ionosphere and troposphere, and by multipath. The

model in (26) serves as a reasonable approximation for

the PSD of these effects.

The above error processes, arising from unrelated sources,

are statistically independent. As a result, their individual

power-law PSD models of the form in (26) can be combined

by summation to form an aggregate PSD:

Sφtotal
= Sφ1

+ Sφ2
+ · · ·+ SφN

. (27)

C. Processes Modeled by Alternative Methods

For the following components of φr(t) or φs(t) a power-law
PSD model is not appropriate:

1) γ0 and ψ0, the initial transmitter and receiver carrier

phase offsets. These terms do not need to be modeled

because they are constant and so do not cause variations

in φr(t) or φs(t).
2) vφ, the measurement noise term. This term is better

characterized by the more-commonly-known carrier-to-

noise ratio C/N0 than by a power spectra model. There

is a direct relationship between a signal’s C/N0 and the

phase measurement noise. However, due to nonlinearity

in the phase discriminator, there is not a direct functional

relationship between the C/N0 and the h-parameters,

in particular, the h2 parameter (corresponding to white

phase noise), except in the limit as C/N0 is large

(phase errors small). Thus, within the simulator, the

characterization and simulation of measurement noise

is kept in terms of C/N0.

3) vφs
, the smoothed measurement noise term. This

term represents the measurement noise remaining after

smoothing. This is neither Gaussian nor white noise.

The effect of this term has only been analyzed through

simulation and has not been characterized in terms of h-
parameters. However, within an opportunistic framework

and for a relatively high C/N0, this term has little effect

on the achievable coherent integration time.

4) 1

M
[η(t) − η̂s(t)], the ambiguity resolution error term.

This term is a measure of how well the fractional-

cycle ambiguities were resolved from burst to burst.

The errors in this term are dependent on how well

the reconstruction technique performs under the various

7



TABLE I
SENSITIVITY TESTING TRANSMITTER AND RECEIVER CLOCK STABILITY

Type Quality h
−2 h0

TX Clock High-quality OCXO 5.5e-26 3e-22

RX Clock 1 High-quality TCXO 2.9e-21 3.4e-21

RX Clock 2 Medium-quality TCXO 2.9e-21 2.5e-20

RX Clock 3 Low-quality TCXO 2.9e-21 5e-19

errors contributed by the terms in φr(t). Consequently,
even though phase variations due to this ambiguity error

term can be expressed in terms of its power spectrum,

a functional relationship would need to be built up

between its h-parameters and the noise characterizations

(h-parameter PSD models, C/N0, etc.) of the terms in

φr(t). Given the authors’ current knowledge, it does

not appear possible to develop an analytical relationship

between the statistics of 1

M
[η(t) − η̂s(t)] and those of

the error processes.

V. MONTE-CARLO SENSITIVITY TESTING

This section presents simulation input parameter bounds

beyond which the reconstruction technique will fail. Suc-

cessful reconstruction is measured by two metrics: (1) by

the percentage of phase ambiguities the technique is able

to resolve correctly, and (2) by the coherence time of the

reconstruction error defined by the difference φs(t)−φideal(t).
Sensitivity testing was done by varying the input parameters

around a set of parameters that represent signals transmitted

by a satellite-based TDMA communication system.

A. Sensitivity to Receiver Clock Quality

Figs. 6–8 show the results for a successful phase reconstruc-

tion attempt, a moderately successful attempt, and a failed

attempt. A 10-second signal was simulated having a burst

duration Tb of 8 milliseconds, a burst period Tp of 90 mil-

liseconds, a reasonably high carrier-to-noise ratio at 63-dB, an

oven-controlled crystal oscillator (OCXO)-quality transmitter

clock, and three different temperature-compensated crystal

oscillator (TCXO)-quality receiver clocks. These parameters

are characteristic of those from a satellite-based TDMA com-

munication system. The stability of the transmitter clock and

the three receiver clocks is outlined in Table I and is described

using the two-parameter clock model discussed in Sec. IV-A.

The range- and propagation-induced phase errors modeled by

re(t) and ǫp(t) were assumed negligible in comparison to the

receiver clock errors and so were modeled through small, but

inconsequential increases to the receiver clock h−2 and h0
values listed in Table I.

It can be deduced from the figures that the quality of the

receiver clock has an important impact on the performance of

the reconstruction technique. The intuition here is that because

the receiver clock errors δtRX(t) are part of the system process

noise as described in Sec. III-A2, these errors, if too large,

will reduce the smoother’s ability to trust phase and phase-rate

information extracted from past and future burst measurements

when attempting to resolve phase ambiguities. As a result, as
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Fig. 6. A successful reconstruction of a simulated TDMA communication
signal when using a high-quality TCXO as a receiver clock.

0 2 4 6 8 10
−1

0

1

2

3

4

5

6

Time (s)

P
h
a
s
e
 (

c
y
c
le

s
)

 

 

Residual Phase Bursts, φ
r
(t)

Unambiguous Phase Bursts
Ideal Phase, φ

ideal
(t)

Smoothed Reconstructed Phase, φ
s
(t)

Fig. 7. A moderately successful reconstruction of a simulated TDMA
communication signal when using a medium-quality TCXO as a receiver
clock.
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Fig. 8. A failed reconstruction of a simulated TDMA communication signal
when using a low-quality TCXO as a receiver clock.
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TABLE II
RECONSTRUCTION PERFORMANCE RESULTS

Quality of TCXO Burst Error % Coherence Time (s)

High 0% > 10
Medium 7% > 10
Low 69% 0.16

process noise grows large, it becomes increasingly difficult to

resolve these ambiguities.

Table II shows a summary of the performance results for the

three receiver TCXOs. The table designates the performance

of the technique in terms of the two metrics discussed above:

the burst error percentage and the coherence time of the

reconstruction error. It is important to note that although

Fig. 7 shows that the phase was not reconstructed perfectly

for the medium-quality TCXO, the error in the reconstructed

phase time history still maintains a coherence time greater

than 10 seconds, as shown in Table II. This is because the

ambiguities were resolved correctly over 93% of the time.

The 7% of ambiguities resolved incorrectly were not enough to

drastically disrupt the reconstruction technique and cause large

reconstruction errors. Contrast this with the performance of the

algorithm when a low-quality TCXO was used as the receiver

clock (Fig. 8). In this scenario, the ambiguities were resolved

incorrectly 69% of the time and the resulting phase error

coherence time is 0.16 seconds, indicating a drastic breakdown

in reconstruction.

B. Sensitivity to the Combined h0 Parameter and to the Burst

Period Tp

This section illustrates the sensitivity of the reconstruction

technique to two parameters: (1) the combined random walk

phase noise present within the residual carrier phase φr(t), and
(2) the burst period Tp. Random walk phase noise is modeled

by the h0 power-law parameter presented in Sec. IV-A. It was

found that the reconstruction algorithm is sensitive to the h0
parameter and less sensitive to the other h-parameters. Thus

only the h0 parameter was varied during sensitivity testing

while the others were held constant.

Figs. 9 and 10 illustrate the results of these tests. In Fig.

9, the coherence time of the reconstruction error is plotted

as a function of increasing h0. Different colored traces are

used to represent different burst periods. The dotted traces

represent the coherence time of the reconstructed phase time

history with filtering but without smoothing whereas the solid

traces depict the coherence time of the reconstructed phase

with both filtering and smoothing. The waterfall structure of

each trace indicates a breakdown point in the reconstruction

technique. Around this point, the reconstruction algorithm

begins to incorrectly resolve the phase ambiguities, leading

to large errors in the reconstructed phase time history and,

consequently, a drastic reduction in the coherence time.

Two features of Fig. 9 are worth noting. First, despite the

justification for smoothing in Sec. III-F, the smoothing of

the phase time history does not seem to drastically impact

the overall error coherence time when compared against the
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Fig. 9. Illustration of the coherence time of the error in the reconstructed
signal as a function of the burst period Tp and the h0 power-law parameter
representing the combined random walk phase noise present in the residual
carrier phase φr(t).
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Fig. 10. Illustration of the percentage of ambiguity errors as a function of the
burst period Tp and the h0 power-law parameter representing the combined
random walk phase noise present in the residual carrier phase φr(t).

filtered phase time history. The filter-based traces largely over-

lap their filter-and-smoother-based counterparts. Therefore, for

this particular setup, smoothing could be forgone in favor

of a real-time reconstruction technique employing only the

forward filter and the ambiguity resolution algorithm with little

effect on the reconstruction performance. Second, attempts to

reconstruct signals with a smaller burst period Tp can sustain

larger phase random walk errors, i.e., a larger combined h0
value, before a breakdown occurs. This result is as would

be expected because given a fixed h0 value, a smaller Tp
makes it easier for the reconstruction algorithm to accurately

estimate the phase trajectory between bursts and thus resolve

the ambiguities at the beginning of each burst. This is best

visualized in Fig. 4 where a smaller Tp would leave less

opportunity for the phase to drift unpredictably between bursts,
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Fig. 11. Illustration of the coherence time of the error in the reconstructed
signal as a function of the 1

M
ambiguity factor and the h0 power-law

parameter representing the combined random walk phase noise present in
the residual carrier phase φr(t).
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Fig. 12. Illustration of the percentage of ambiguity errors as a function
of the 1

M
ambiguity factor and the h0 power-law parameter representing

the combined random walk phase noise present in the residual carrier phase
φr(t).

making it easier for the reconstruction technique to resolve the

ambiguity.

Fig. 10 shows the percentage of ambiguity errors made over

the entire reconstruction interval. Similar to the coherence

time metric, each trace begins to rise quickly after a specific

breakdown point in the reconstruction technique.

C. Sensitivity to the Ambiguity Factor 1

M

Recall from Sec. II-A that the ambiguity factor 1

M
is used to

model the whole- or fractional-cycle phase ambiguities present

at the beginning of each burst. Figs. 11 and 12 illustrate that a

lower M value leads to a higher h0 breakdown point in both

the coherence time and error probability performance metrics.

Consequently, whole-cycle ambiguities (M=1) are easier to

10
−22

10
−21

10
−20

10
−19

10
−18

0

2

4

6

8

10

12

Combined Random Walk Phase Noise, h
0
 (Hz

−1
)

C
o
h
e
re

n
c
e
 T

im
e
 (

s
)

 

 

CN0=40 dB−Hz
CN0=63 dB−Hz
CN0=80 dB−Hz

Fig. 13. Illustration of the coherence time of the error in the reconstructed
signal as a function of C/N0 and the h0 power-law parameter representing
the combined random walk phase noise present in the residual carrier phase
φr(t).
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Fig. 14. Illustration of the percentage of ambiguity errors as a function of the
C/N0 and the h0 power-law parameter representing the combined random
walk phase noise present in the residual carrier phase φr(t).

resolve than half-cycle ambiguities (M=2) which are easier to

resolve than quarter-cycle ambiguities (M=4), which was to

be expected.

D. Sensitivity to the Carrier-to-Noise Ratio C/N0

Figs. 13 and 14 illustrate the effect of C/N0 on phase

reconstruction. Somewhat surprisingly, C/N0 was shown to

have little effect on the breakdown point of the reconstruction

technique. As described in Sec. IV-C, C/N0 is related to

white phase noise, i.e., the h2 power-spectra parameter. It can

be concluded that white phase noise in the received residual

carrier phase φr(t) has little impact on the breakdown point

of the reconstruction algorithm, within a range of reasonable

carrier-to-noise ratios.
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Fig. 15. Illustration of the coherence time of the error in the reconstructed
signal as a function of the burst duration Tb and the h0 power-law parameter
representing the combined random walk phase noise present in the residual
carrier phase φr(t).
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Fig. 16. Illustration of the percentage of ambiguity errors as a function of the
burst duration Tb and the h0 power-law parameter representing the combined
random walk phase noise present in the residual carrier phase φr(t).

E. Sensitivity to the Burst Duration Tb

Figs. 15 and 16 illustrate that although a longer burst

duration does have some impact on the accuracy of the recon-

struction technique, this impact is marginal. One explanation

is that while a longer burst duration certainly improves the

state estimates, particularly the estimate of phase-rate, during

each burst, the ambiguity resolution algorithm does not derive

much benefit from this phase-rate information. It is likely that

for the range of parameters studied, the process noise arising

from the error sources outlined in Sec. IV-B is substantial

enough to cause large variations in the phase-rate from burst

to burst. Consequently, when resolving the ambiguity for a

given burst, exploiting the phase-rate information from the

most recent past and future bursts is of little help.

TABLE III
STRUCTURAL PARAMETERS FOR THREE WIDESPREAD COMMUNICATION

SYSTEMS [20], [21]

System Burst Duration, Tb Burst Period, Tp Ambiguity Factor, M

SATCOM 8ms 90-180ms > 1
GSM 101µs 577µs 1

LTE 83µs 5ms 1

F. Real-world Signal Parameters

The sensitivity tests above were done using simulation

input parameters characteristic of those from a satellite-

based TDMA communication system. Receivers designed to

incorporate signals from two other communication systems

used today, (1) the Global System for Mobile (GSM) and

(2) the 4G Long Term Evolution (LTE) system, could also

employ this technique to reconstruct a continuous phase time

history. GSM is a TDMA system. LTE, on the other hand,

is an orthogonal frequency-division multiplexing (OFDM)

system, where frequency division (rather than time division)

is used to communicate with mobile receivers [20]. However,

because LTE contains a known synchronization channel that

is periodically transmitted over all frequencies for a small

fraction of a subframe, this transmission of known bits can

be thought of as a burst, during which the receiver can gain

access to the underlying carrier phase. The reconstruction

technique could be used to stitch together a complete phase

time history between each synchronization channel. Table III

outlines signal structural parameters for these two terrestrial

communication systems as well as for the satellite-based

communication system.

VI. CONCLUSION

A technique to reconstruct a continuous phase time history

from the noncontinuous phase bursts of time division multiple

access (TDMA) signals has been developed. The technique

combines an integer least squares method for estimating phase

ambiguities at the beginning of each burst with a Kalman filter

and smoother that correct for these ambiguities and optimally

“stitch” the bursts together.

A Monte-Carlo-type simulation and test environment has

been built in MATLAB to simulate TDMA signals, implement

the reconstruction technique, and analyze the sensitivity of

the technique to determine the parameter space within which

successful reconstruction is possible. In this paper, sensitivity

tests were performed through varying a set of simulation input

parameters characterizing a satellite-based TDMA commu-

nication system. Simulation results indicate that successful

carrier phase reconstruction is most strongly dependent on the

burst period, the burst ambiguity factor, and on the combined

phase random walk errors in the system. Results also indicate,

somewhat counter-intuitively, that successful reconstruction is

only weakly dependent on the signal burst duration and the

carrier-to-noise ratio.
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