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Abstract 

 

Controlling Work in Process During Semiconductor Assembly and Test 

Operations 

 

 

Chuwen Zhang, M.S.E 

The University of Texas at Austin, 2017 

 

Supervisor:  Jonathan F. Bard 

 

In the semiconductor industry, products go through a series of steps over a three- to four-

month period that begins with the fabrication of chips and ends with assembly and test 

(AT) and shipment.  This paper introduces a mid-term planning model for scheduling AT 

operations aimed at minimizing the difference between customer demand and product 

completions each day.  A secondary objective is to maximize daily throughput. Typically, 

semiconductor companies have 1000s of products or devices in their catalog that can be 

organized into unique groups of up to 100 devices each. This simplifies the planning 

process because it is only necessary to consider the groups as a whole rather than the 

individual devices when constructing schedules.   

In all, we developed and tested three related models.  Each provides daily run rates 

at each processing step or logpoint for each device group for up to one month at a time.  

The models are distinguished by how cycle time is treated. The first takes a steady-state 

approach and uses Little’s Law to formulate a WIP target constraint based on the average 
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cycle time at each processing step. The second and third include integer and fractional 

cycle times in the variable definitions. To find solutions, raw production data are analyzed 

in a preprocessing step and then converted to input files in a standard format.  FlopC++ 

from the COIN-OR open source software project is used to write and solve the model.  

Testing was done using three datasets from the Taiwan AT facility of a global 

semiconductor firm.  By comparing model output with historical data for 6 device groups 

and 33 logpoints, we were able to realize decreases in shortages of up to 40% per month.  
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† Zhang, C., Bard, J. F., & Chacon, R. (2017). Controlling work in process during semiconductor assembly and test 

operations. International Journal of Production Research, 1-25.  In this previous work, I was responsible for modeling, 

programming, data analysis, and testing.  

Chapter 1: Introduction 

Semiconductor devices are manufactured in a predefined sequence of operations that are 

spread across a global supply chain. † Compared to other types of manufacturing, wafer fabrication 

is perhaps the most technologically complex and capital intensive due to long cycle times and the 

need to carry out a precise sequence of processing steps in a particle-free clean-room (Leachman 

2002; Uzsoy et al. 1992).  After the wafers are fabricated their electrical circuits are tested using 

a set of microscopic contacts or probes. Next, they are sent to an assembly and test (AT) facility 

where they are cut into chips, packaged, and further tested in what are called back-end operations.  

During assembly, the chips are protected from environmental contamination by encasing them in 

plastic or ceramic material.   

The major manufacturing steps are depicted in Figure 1.  Each step can be viewed as a 

reentrant flow shop in which a variety of machines must be carefully set up with tooling to carry 

out the associated processes.  Front-end operations, consisting of fabrication and probe, can take 

up to two months and require more than 60 process steps.  Back-end operations are slightly less 

protracted, taking up to 20 days and requiring between 25 and 30 steps (Van Zant 2000).  AT 

facilities, the focus of this paper, are particularly sensitive to market demand since finished 

products are shipped either directly to customers or placed in regional distribution centers to satisfy 

forecasted demand.  The goals of scheduling for AT facilities, therefore, are to achieve high 

throughput, high utilization and stable inventory to ensure high levels of customer satisfaction. 

 

Figure 1: Basic steps in semiconductor manufacturing (Uszoy et al. 1992) 

 

• Testing 

• Brand 

• Burn-in 

• Quality 

assurance 

Wafer fabrication Wafer probe Assembly Final testing 

Wafer Die Packaged circuit Finished product 
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In previous work, we investigated the machine setup-lot assignment problem over a 

planning horizon of a few days, and developed a mixed-integer programming (MIP) model with 

the primary objectives of minimizing the weighted sum of shortages and maximizing the weighted 

sum of lots processed (Deng et al. 2010).  Solutions were obtained with a reactive greedy 

randomized adaptive search procedure (GRASP) that evaluates many combinations of machine-

tooling and lot assignments as it iterates (Feo et al. 1991). In subsequent work, several limiting 

assumptions were relaxed. The expanded code now allows us to take into account initial machine 

setups, lot processing through multiple operations, and setups that require more than one tooling 

piece (Bard et al. 2013).  To accommodate multiple passes (i.e., reentrant flow), a three-step 

heuristic was designed around the GRASP and was seen to provide higher machine utilization and 

improved schedules.  More recently, Bard et al. (2015) used discrete event simulation to model 

AT facilities with AutoSched AP (ASAP).  Inputs for the simulation were derived from the 

GRASP results which were used to set up and change over machines in near-real time.  In a 

follow-on study, Jia et al. (2015) developed five new dispatch rules that were evaluated to 

determine their relative performance in meeting the hierarchical objectives.  The findings are 

being used by Texas Instruments (TI), the company that sponsored this project, to provide 

guidance to shop floor supervisors.  

Much of the aforementioned research has been aimed at short-term lot scheduling with 

machine setup considerations.  The purpose of this paper is to show how mid-term production 

schedules can be developed, for up to a month at a time, to minimize expected shortages while 

fully utilizing the machine capacity at AT facilities.  On any given day, these facilities may have 

thousands of lots in WIP (work in process) that consist of hundreds of different devices or products.  

At the TI Taiwan facility, a device typically goes through 27 operations, or what are referred to as 

logpoints, over 10 days before testing is complete and the final product is shipped to distribution 

centers.  Daily demand is an input provided by the planning group and can vary widely over the 

month.  The problem faced by shop floor supervisors is to determine which devices to run each 

day at each logpoint to best meet demand.  In addition, since more than half of the orders are 
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forecast without firm customer commitments, the facilities operate in a built-to-stock environment. 

As a secondary objective then, it is desirable to process as many lots as possible rather than 

allowing machines to be idle.  What further complicates the problem is capacity limits at each 

logpoint and the competition for machine time among all products.   

In this paper, we provide a model that can be used to help planners determine production 

and WIP levels each day at each logpoint for each product.  To control the size of real instances, 

end products are aggregated into device groups and scheduled in the aggregate.  The model is 

less detailed than our models used for lot scheduling (Deng et al. 2010; Bard et al. 2013) because 

we are not interested in individual machine setups at the mid-term planning stage.  We assume 

that once the plans have been transmitted to the floor, the GRASP and ASAP codes will be used 

to select the “optimal” machine-tooling combinations and lot assignments.   

In addition to our planning model, the primary contributions of this paper are (1) a 

methodology for determining optimal levels of WIP and daily run rates by operation at AT 

facilities, and (2) a comprehensive analytic study based on data provided by TI.  In the next 

section, we present some of the more recent literature related to short-term and mid-term 

production scheduling.  In Section 3, the AT monthly scheduling problem is defined along with 

our input data files.  In Section 4, we present the basic mathematical model that drives the 

computations, as well as two modified versions that offer a more accurate representation of process 

cycle times.  The logic and data structures used in the implementation are described in Section 5.  

In Section 6, the models are tested and the results compared with actual production runs at TI’s 

Taiwan facility (the input data has been modified slightly to conceal the faculty’s production 

capacity and device characteristics). We also comment on the advantages and disadvantages of the 

different versions of the model.  Additional observations and insights are provided in Section 7 

along with several suggestions for future work. 
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operations. International Journal of Production Research, 1-25.  In this previous work, I was responsible for modeling, 

programming, data analysis, and testing.  

Chapter 2: Literature Review 

Over the past several decades there have been significant advances in the modeling and 

analysis of discrete parts manufacturing systems (Gershwin 2000; Monkman et al. 2008), with 

slightly less emphasis on the semiconductor industry (Montoya-Torres 2006). † Simulation has 

been widely used to study scheduling and dispatch rules during fabrication as well as during 

assembly and test (e.g., see Bard et al. 2015; Pfund et al. 2006; Sivakumar and Gupta 2002; Zhang 

et al. 2009).  A general framework for production planning models in the semiconductor industry 

is provided by Hackman and Leachman (1989).  An important component of their work is the 

derivation of procedures for dealing with fractional cycle times. 

In semiconductor manufacturing, factors such as throughput, cycle time, utilization, and 

WIP are of primary importance. In the current market environment, manufacturers try to interact 

more closely with customers, and hence are more sensitive to due date performance.  This is 

especially true for back-end operations, which are closer to the customer.  The overwhelming 

factors faced by AT planners are the large number of machine-tooling combinations that must be 

considered when constructing schedules, along with the need to process the same lot multiple 

times.  Allahverdi et al. (1999) undertook a comprehensive review of research aimed at solving 

static scheduling problems involving setup decisions.  Lin and Lee (2011) updated the latter’s 

findings by highlighting models, solution methods, and applications appearing in the literature 

through 2009. 

An additional factor in managing semiconductor facilities is machine qualification, which 

affects capacity allocation and subsequently, daily production schedules.  Fu et al. (2015) 

investigated this issue at Intel’s back-end facilities.  To deal with uncertain demand, they 

developed a stochastic optimization model whose solution balances the tradeoff between current 

machine qualification costs and future potential backorder costs due to insufficient capacity.  

Solutions for a range of instances were obtained with the L-shaped method. 
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Short-term scheduling problems are mainly aimed at machine setups, tooling changeovers, 

and lot assignments.  Uzsoy et al. (1992) provide a comprehensive review of semiconductor 

production planning and scheduling models.  In our previous research, we developed a general 

model for setting up machines with tooling to run at specific temperatures, and for assigning lots 

to machines over a planning horizon of up to five days.  Four objective functions hierarchically 

guided the analysis: (1) minimize demand shortages, (2) maximize weighted throughput, (3) 

minimize the number of machines used, and (4) minimize the makespan.  Solutions were 

obtained with a reactive GRASP designed to exhaustively explore the feasible region.  The 

algorithm is now running at TI’s Clark AT facility in the Philippines. 

In a follow-on study, Gao et al. (2015) developed a three-phase methodology based on 

optimization techniques that was competitive with the GRASP.  In the first phase, an extended 

assignment model is solved to simultaneously assign tooling and lots to the machines.  In the 

second phase, lots are optimally sequenced on their assigned machines using the four hierarchical 

objectives.  Due to the precedent relations induced by the multiple pass requirements, some lots 

have to be delayed or removed from the assignment model solution to ensure that no machine runs 

beyond the planning horizon.  In the third phase, machines are reset to allow additional lots to be 

processed when tooling is available.  Comparative testing with the GRASP showed cost 

reduction across all objectives averaging 62% in the aggregate. 

At a higher level of planning, Zhang et al. (2007) provide a hierarchical framework for 

allocating capacity for back-end operations.  They focused on the reconfiguration of kit 

components during mid-term planning at AT facilities and proposed a MIP with the objective of 

reducing resource usage.  Their methodology was successfully applied at one of Intel’s AT sites 

resulting in an annual $10 million saving in the purchase of kit components.  With respect to 

simulation, Zhou (1998) presented a tutorial on Petri net approaches for modeling and analyzing 

semiconductor manufacturing systems.  He introduced the various properties of Petri nets and 

discussed their implications for model validation and system evaluation.   
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For flow balancing and tighter WIP control, techniques such as Kanban and CONWIP 

(constant work-in-process) have been widely proposed (Hopp and Spearman 2007).  In a tutorial 

for simulating such systems, Marek et al. (2001) offer an overview centered around the products 

software ARENA/SIMAN 3.5/4.0.  They also describe a heuristic for adjusting card levels in 

Kanban systems.  Wang and Prabhu (2006) presented a parallel algorithm for CONWIP systems 

to reduce the computation times that grow exponentially with multiple products.  Their algorithm 

searches over neighborhoods with high WIP levels to improve balance, and was shown to 

accelerate runtimes by a factor of five when implemented with ten parallel processors.   

For complex systems, heuristics are routinely used for production planning.  For example, 

Disney et al. (2000) proposed a genetic algorithm for managing various inventory systems.  They 

studied three classic control policies that make use of sales, inventory, and pipeline information to 

set the order rate to achieve a desired stock level.  Our problem falls into this category but without 

CONWIP assumptions. 

For multistage, reentrant systems like those found in the semiconductor industry, modeling 

strategies are needed for planning purposes.  Hung and Leachman (1996), for example, propose 

a methodology that iterates between simulation and linear programming.  They focus on front-

end operations characterized by “epoch-based” flow cycle times, i.e., fractional cycle times rather 

than discrete cycle times. In a groundbreaking paper, Leachman et al. (1996) describe their 

optimization-based production planning system developed for Harris Corporation, which 

integrates front-end and back-end operations to provide a complete solution.  At a high level, 

their system includes requirements for binning and substitutable products, for representing 

dynamic capacity consumption within a reentrant flow environment, and for accommodating 

market priorities over time. A critical output was realistic delivery quotes that markedly increased 

customer satisfaction and market share. 
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† Zhang, C., Bard, J. F., & Chacon, R. (2017). Controlling work in process during semiconductor assembly and test 

operations. International Journal of Production Research, 1-25.  In this previous work, I was responsible for modeling, 

programming, data analysis, and testing.  

Chapter 3: Problem Statement 

When wafers arrive at back-end facilities they are cut into chips (devices), packaged, 

tested, and shipped to either customers or regional distribution centers. Each device undergoes 25 

to 30 steps over a two-week period before it leaves the facility. † Companies like Texas Instruments 

have thousands of individual part numbers and dozens of customers, all of which greatly 

complicates production planning. To ensure on-time performance and continued customer 

satisfaction the highest priority must be given to daily scheduling. 

To make the problem more manageable, similar devices are grouped and scheduled 

together.  The problem starts with the demand for each device group, which is transmitted to the 

shop floor through TI’s hierarchical planning system (see Figure 2).  Demand is specified by 

group as the daily output quantity required (DOQR), and accompanied by “starts.”  At the 

beginning of each day, supervisors are given instructions on how many devices to feed into the 

system.  In Figure 2, Manufacturing Planning is responsible for day-to-day activities, scheduling 

starts over the month, setting targets by operation for each product being manufactured, and 

deciding when to move WIP between operations.  Decisions at this level are made by shop floor 

managers and line supervisors.  Dispatch and Execution is the recipient of daily target data and 

is responsible for ensuring that the scheduled work is carried out. 
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Figure 2: Hierarchical planning and scheduling at Texas Instruments 
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different operations and device groups. In monitoring performance, supervisors track the daily run 

rate (DRR) and WIP of each device group at each logpoint.  WIP levels are observed at the end 
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the capacity limits of the facility.  Capacity is specified either for each operation each day or for 

each operation by device group each day.  An additional constraint is to stay within a certain 

percentage of WIP targets at each logpoint.  These targets are established within the model and 

are used to hedge against uncertain demand.  The two objective function terms are treated 

hierarchically as in weighted goal programming.  Minimizing shortages is the more important of 

the two. 

The planning horizon is typically four weeks, which is approximately twice the lead time 

of any device.  When computing solutions, we assume that capacity is shared amongst device 

groups at each logpoint and that a day is divided into a fixed number of periods.  In fact, many 

of the machines are flexible enough to perform several different operations as long as they have 

been previously qualified, so our results may be somewhat conservative. Note that in real-time 

scheduling, each machine must be set up with the appropriate tooling and then assigned lots.  That 

problem requires much greater detail than the one we are considering here since we are not 

modeling individual machines, tooling and lots; see Bard et al. (2013) for a discussion of the short-

term scheduling problem. 

The input data for our problem are contained in four “csv” files that are created from a 

master file downloaded from the company’s Oracle database system at the start of the planning 

horizon.  Table 1 contains a portion of the “WIPBegin.csv” file.  The first column lists the 

device, followed respectively by the four parameters “Prod line,” “Pin,” “Tester,” and “Strip test” 

which define the device group.  Next we have the logpoint, its description, its sequential order, 

its planned cycle time (in days), and the initial WIP level on the first day of the planning horizon.  

Note that there may be several devices within one group but they all follow the same sequence of 

operations given in the columns “LPT” and “LPT order.”  The order differs by device group.  

The cycle time of a route is the sum of the cycle times of the individual operations.  

 To illustrate, from Table 1 we see that “DFDRG4” is in device group “76-48-ZABC-Y.”  

Its first operation is “5100” and its initial WIP is naturally 0 since there is never any carryover.  

After 0.09 days (130 min) it moves to logpoint “5105,” and then to “5110” and so on.  One 
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interesting observation is that the variation in initial WIP over all logpoints is extremely high.  To 

some extent this is due to limited capacity at each operation as well as widely varying individual 

cycle times. 

Table 2 gives a sample of the “WIPPlanStart.csv” file.  The columns no previously 

identify list the dates of the planning horizon, the planned starts for each day (“Plan start”), and 

demand for each device (“Plan ship out”).  If included, “Capacity” indicates the upper bound of 

production on that day; otherwise, it is defined in the user configuration file (see Section 5).  Note 

that the date in Table 1 for begin WIP levels is August 11, 2016, which corresponds to the first 

day in Table 2.  

 
Device Prod line Pin Tester Strip test LPT LPT Desc LPT order Plan CT Begin WIP 

DFDRG4 76 48 ZABC Y 5100 LOT START 1 0.09 0 

DFDRG4 76 48 ZABC Y 5105 BACKGRIND 2 0.67 298193 

DFDRG4 76 48 ZABC Y 5110 SAW 3 0.73 0 

DFDRG4 76 48 ZABC Y 5200 MOUNT 4 1.77 94001 

DFDRG4 76 48 ZABC Y 5250 MOUNT CURE 5 0.23 35952 

DFDRG4 76 48 ZABC Y 5300 MOUNT PMI L/A 6 0.14 0 

DFDRG4 76 48 ZABC Y 5500 BOND 7 1.98 127764 

DFDRG4 76 48 ZABC Y 4800 PMI L/A 8 0.03 6636 

DFDRG4 76 48 ZABC Y 5700 MOLD 9 0.16 6468 

DFDRG4 76 48 ZABC Y 5720 MOLD PMI 10 0.01 0 

DFDRG4 76 48 ZABC Y 5750 MOLD CURE 11 0.27 13440 

DFDRG4 76 48 ZABC Y 6050 SYMBOL 2 12 0.13 53760 

DFDRG4 76 48 ZABC Y 6100 TRIM/FORM 13 0.19 13272 

DFDRG4 76 48 ZABC Y 6901 ASSY STAGING 14 0.09 0 

DFDRG4 76 48 ZABC Y 7100 FINAL TEST 1 15 1.53 483672 

DFDRG4 76 48 ZABC Y 7777 OUTLIER REQUIREMENTS 16 0.02 0 

DFDRG4 76 48 ZABC Y 6110 SYMBOL 3 17 0.39 294658 

Table 1: Sample of WIPBegin.csv 
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Device Prod line Pin Tester Strip test Date Plan starts Plan ship out Capacity 

DFDRG4 76 48 ZABC Y 8/11/2016 35071 55552 645105 

32PWR 76 23 ZABC Y 8/11/2016 264980 138584 617419 

47PHPR 21 48 ZABC N 8/11/2016 359808 178664 595514 

6PWRG4 76 27 ZADR Y 8/11/2016 115576 14523 626145 

6QDRCM 61 27 ZABC Y 8/11/2016 57794 24969 624012 

25PWPR 76 23 ZADR Y 8/11/2016 141507 48926 757320 

DFDRG4 76 48 ZABC Y 8/12/2016 175355 55552 610369 

32PWR 76 23 ZABC Y 8/12/2016 198735 138584 728215 

47PHPR 21 48 ZABC N 8/12/2016 359808 178664 660960 

6PWRG4 76 27 ZADR Y 8/12/2016 115589 14523 592934 

6QDRCM 61 27 ZABC Y 8/12/2016 86691 24969 632810 

25PWPR 76 23 ZADR Y 8/12/2016 113205 48926 679675 

DFDRG4 76 48 ZABC Y 8/13/2016 113981 55552 645846 

32PWR 76 23 ZABC Y 8/13/2016 0 138584 641662 

47PHPR 21 48 ZABC N 8/13/2016 359808 178664 631590 

6PWRG4 76 27 ZADR Y 8/13/2016 101140 14523 718785 

6QDRCM 61 27 ZABC Y 8/13/2016 0 24969 676163 

25PWPR 76 23 ZADR Y 8/13/2016 56603 48926 614624 

Table 2: Sample of WIPPlanStart.csv 

The data in the “WIPBegin.csv” and “WIPPlanStart.csv” files are mostly sufficient to run 

our planning model, which provides guidance for daily run rates for the upcoming two to four 

weeks.  To compare our solutions with actual production levels, an additional dataset contained 

in the “WIPActual.csv” file is needed.  Table 3 identifies the elements in this file.  The new data 

include actual DRRs for each device and operation, as well as WIP levels at the beginning of each 

day.  Note that “Actual begin WIP” is exactly the end WIP of the previous day. 

  



12 

 
Device Prod line Pin Tester Strip test Dates LPT LPT order Actual begin WIP Actual DRR 

DFDRG4 76 48 ZABC Y 8/11/2016 5100 1 0 223176 

DFDRG4 76 48 ZABC Y 8/11/2016 5105 2 298193 53896 

DFDRG4 76 48 ZABC Y 8/11/2016 5110 3 0 53896 

DFDRG4 76 48 ZABC Y 8/11/2016 5200 4 94001 93996 

DFDRG4 76 48 ZABC Y 8/11/2016 5250 5 35952 129948 

DFDRG4 76 48 ZABC Y 8/11/2016 5300 6 0 129948 

DFDRG4 76 48 ZABC Y 8/11/2016 5500 7 127764 72240 

DFDRG4 76 48 ZABC Y 8/11/2016 4800 8 6636 72240 

DFDRG4 76 48 ZABC Y 8/11/2016 5700 9 6468 71976 

DFDRG4 76 48 ZABC Y 8/11/2016 5720 10 0 71976 

DFDRG4 76 48 ZABC Y 8/11/2016 5750 11 13440 46776 

Table 3: Sample of WIPActual.csv 

To account for the cycle time of each operation at the beginning of the planning horizon, 

it is necessary to know the daily run rates on several days prior.  These data are contained in the 

“DRRInitial.csv” file, as illustrated in Table 4.  The number of days of data in this file is 

determined by the maximum cycle time over all logpoints.  For example, if the maximum cycle 

time is 2.6 days, then three days of data are required. 

 

 
Device Prod line Pin Tester Strip test Dates LPT LPT order Actual DRR 

DFDRG4 76 48 ZABC Y 8/8/2016 5100 1 167777 

DFDRG4 76 48 ZABC Y 8/8/2016 5105 2 107732 

DFDRG4 76 48 ZABC Y 8/8/2016 5110 3 0 

DFDRG4 76 48 ZABC Y 8/8/2016 5200 4 87360 

DFDRG4 76 48 ZABC Y 8/8/2016 5250 5 136920 

DFDRG4 76 48 ZABC Y 8/8/2016 5300 6 136920 

DFDRG4 76 48 ZABC Y 8/8/2016 5500 7 249228 

DFDRG4 76 48 ZABC Y 8/8/2016 5600 8 249228 

DFDRG4 76 48 ZABC Y 8/8/2016 5700 9 260820 

DFDRG4 76 48 ZABC Y 8/8/2016 5720 10 267372 

Table 4: Sample of DRRInitial.csv 
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† Zhang, C., Bard, J. F., & Chacon, R. (2017). Controlling work in process during semiconductor assembly and test 

operations. International Journal of Production Research, 1-25.  In this previous work, I was responsible for modeling, 

programming, data analysis, and testing.  

Chapter 4: Mathematical Models 

Our first formulation, denoted by Model-I, is a simplification of the actual AT process 

because it assumes a 1-period delay between successive logpoints. † This means that if device i 

undergoes operation j in period p, then the device will be available for processing at operation j + 

1 (logpoint j + 1) at the beginning of period p + 1.  This assumption proved too optimistic because 

it ignores the individual cycle times.  Our second and third formulations, denoted by Model-II 

and Model-III, allow for multiple period and fractional period delays, respectively, and proved 

much more accurate.  

4.1 SINGLE PERIOD DELAY MODEL WITH AVERAGE CYCLE TIME: MODEL-I 

Model-I is a series of equalities and constraints that track WIP at each logpoint from one 

day to the next and impose limits on their maximum levels.  It also bounds daily throughput based 

on installed capacity.  This is done in part by ensuring flow balance for each device group at each 

operation.  Although the ultimate goal of the system is to meet daily output targets for each device 

group, this may not be possible if the targets are treated as hard constraints.  To avoid infeasible 

instances, we introduce a set of shortage and surplus variables for the corresponding constraints 

and minimize the weighted sum of their values over the planning horizon.   

In the development of the three models, we make use of the following notation.  

Indices and sets 

I set of device groups; i  I 

D set of days in planning horizon; d  D 

J set of operations (logpoints), j  J 

J(i) set of operations for device group i; j  J(i) 

End

iJ    index for last operation in J(i); that is, last operation in route of device group i 

P set of periods in a day, p  P 
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Data and parameters 

ACT_WIPi,j,0  actual WIP levels of device group i at operation j at end of day 0 (beginning of 

day 1) 

CT_TGTj cycle time target for operation j (average value of cycle time over planning horizon 

of devices in a group at operation j) 

Cap_Limjd capacity limit for operation j on day d 

STARTSid number of starts for device group i on day d at operation 1 

DOQRid daily output quantity required for device group i on day d 

WIP
j  upper bound on percentage by which daily WIP can exceed its target at operation j 

(e.g., WIP
j  5%) 

ij 1 if j is the first logpoint in J(i), 0 otherwise  

 objective function penalty weight for shortages 

 objective function penalty weight for surpluses 

Initial conditions 

, ,0

Daily

i jWIP  WIP level for device group i at operation j at the start of the analysis, that is, for d = 0 

Decision variables 

Daily

ijdRR  daily run rate for device group i at operation j on day d (to meet demand and 

minimize daily WIP variation) 

Period

ijpdRR  period run rate for device group i at operation j in period p on day d 

Daily

ijdWIP   WIP level for device group i at operation j on day d (measured at end of day d or 

beginning of d+1) 

Period

ijpdWIP   WIP level for device group i at operation j at end of period p on day d 

WIP_TGTjd WIP target for operation j on day d 

Penalty variables 

TP
ids 

 shortage for device group i at its final operation  on day d with respect to the 

target value DOQRid 

ji

END
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TP
ids 

 surplus of device group i at its final operation on day d with respect to the target 

value DOQRid  

Model-I 

Minimize   TP TP
id id

i I d D

s s  

 

     (1a) 

Subject to 

Period flow balance for each operation and device group (p = 1) 

ij  STARTSid  + 
, ,| |, 1

Period

i j P dWIP 
+ , 1,| |, 1

Period
i j P dRR   – , ,1,

Period

i j dRR  = , ,1,

Period

i j dWIP ,   i  I, j  J(i), d  D (1b) 

Period flow balance for each operation and device group (p ≠ 1) 

, , 1,

Period

i j p dWIP   + , 1, 1,

Period

i j p dRR    – 
Period

ijpdRR  = 
Period

ijpdWIP ,    i  I, j  J(i), p  P\{1}, d  D (1c) 

Calculation of daily run rate 

, , ,, ,
EndEnd
ii

Daily Period

i J p di J d
p P

RR RR


 ,  i  I, d  D (1d) 

Final operation in route for each device group 

, ,End
i

Daily

i J d
RR  + 

TP
ids 

  – TP
ids  = DOQRid,  i  I, d  D (1e) 

Capacity limit per day for each operation  

_Period
ijpd jd

i I p P

RR Cap Lim
 

 ,  j  J, d  D (1f) 

Calculation of WIP at end of day 

,| |, ,
Daily Period

ijd i P j dWIP WIP ,   i  I, j  J(i), d  D (1g) 

WIP target per day for each operation 

_ _ Daily
jd j ijd

i I

WIP TGT CT TGT RR


  ,   d  D, j  J (1h) 

WIP limits per day for each operation 

 1 /100 _Daily WIP
ijd j jd

i I

WIP WIP TGT


   ,   d  D, j  J (1i) 

Initial WIP conditions on day 0 and production rates on day d for operation “0”  

, ,| |,0

Period

i j PWIP  = ACT_WIPi,j,0 ,   i  I, j  J(i),  ,0, ,

Period

i p dRR = 0,  i  I, p  P (1j) 

Variable definitions 

Daily

ijdWIP  0, 
Period

ijpdWIP  0,  WIP_TGTjd  0, 
Daily

ijdRR  0, 
Period

ijpdRR ≥ 0,  

 
TP
ids 

 0, 
 
s

id

TP-  0  i  I, d  D, j  J(i) {0},  p  P {0} (1k) 

ji

END
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The objective function (1a) minimizes the weighted sum of the total shortage and surplus 

associated with daily WIP output targets.  The variable 
TP
ids 

 will be positive for the pair (i,d) in 

any solution when it is not possible to satisfy the demand for device group i on day d.  The 

variable 
TP
ids 

 will be positive for the pair (i,d) in any solution in which there is more output than 

required.  Because shortages are more critical than surpluses, the penalty weights must be set 

such that  >> .    

Constraints (1b) conserve flow of WIP for the first operation in the first period of the day. 

The first term on the left-hand side represents the number of starts for device group i on day d.  

Starts only occur in period 1 and at operation 1.  The second term, 
,1,| |, 1

Period

i P dWIP 
, is the calculated 

WIP for device group i at operation 1 at the end of the last period of the previous day (that is, the 

end of day d1).  The third term, , 1,| |, 1
Period
i j P dRR   , is the upstream run rate for operation j–1 of the 

previous day.  The fourth term, 
, ,1,

Period

i j dRR , is the quantity run for device group i on day d at 

operation j.  This represents the throughput in period 1 for that device group on the current day.  

The right-hand side of the constraint is the WIP level; that is, the amount of WIP for device group 

i at operation j at the end of period 1. 

Constraints (1c) represent general flow balance for the remaining periods and operations. 

The assumption is that all devices processed in the current period are transferred to their next 

operation and are available for processing in the following period.   The daily run rate 

(throughput) is calculated in (1d) by summing the period run rate, 
, , ,End

i

Period

i J p d
RR , over all periods on 

day d at the last operation End

iJ .  

Constraints (1e) embed the output requirements for each device group i on day d.  The 

two penalty variables, which are minimized in (1a), are needed to ensure a feasible solution is 

obtainable.  On some days, there may be insufficient WIP in the system to meet the output 

requirements.  Constraints (1f) limit the throughput at operation j to the capacity of the facility 

on day d.  On some days, machines may be down for maintenance so it is necessary to consider 

each day separately although capacity is likely to be constant over the planning horizon. 
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Constraints (1g) are for accounting purposes and set the WIP for operation j at the end of 

day d to the WIP at the end of period |P| on that day. Constraints (1h) compute daily WIP targets 

for each operation.  This equation is based on Little’s law which says that the queue length is 

equal to the product of the processing rate and the cycle time. Constraints (1i) limit WIP levels at 

operation j on day d to a given percentage WIP
j  above the WIP target for that operation.  

Although we would like to maintain constant WIP levels, fluctuations in demand may require 

increased levels at some operations if shortages are to be avoided.   

Equations (1j) set the initial conditions for WIP on day” 0,” or equivalently, the first day 

of the planning horizon, to the actual WIP in the system.  We also set ,0, ,

Period

i p dRR  = 0 for operation 

“0” and all device groups, periods and days. Variable definitions are given in (1k). 

4.2 MODEL WITH INTEGER CYCLE TIME: MODEL-II 

Model-I is based on the assumption that all devices processed in the current period are 

available for the next operation in the following period.  In reality, the cycle time of device i at 

operation j, call it Ci,j, determines when processing is finished and the device can be transferred to 

the next operation.  The way we considered this delay behavior in Model-I was to assume steady-

state conditions, and rather than explicitly include transfer delays based on actual values, we 

simply used the average cycle time CT_TGTj  to compute WIP targets, as indicated by constraints 

(1e) and (1f).  However, the cycle time may have large variance among device groups, which 

may lead constraints (1e) and (1f) to enforce inaccurate restrictions on production and WIP levels.  

To avoid this situation, Model-II includes the individual cycle times for each device group and 

embeds them in the flow balance constraints (1c). 

In the formulation, cycle time Ci,j is considered to be an integral number of periods (it can 

be fractional in terms of days). To achieve integrality, we replace Ci,j with its ceiling, call it Ui,j .  

Thus, devices processed at the current logpoint are will be available after Ui,j  periods.  For 

example, if the cycle time is 2.41 days and the period length is 0.1, i.e., 10 periods per day, we 
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have ,i jC  = 24.1 and 
, ,i ji jU C    = 25. With this adjustment, cycle time can now be accounted for 

in the flow balance equations so the stead-state constraints (1g) and (1h) can be removed.   

 

Model-II 

Minimize   TP TP
id id

i I d D

s s  

 

    (2a) 

Subject to (1d), (1g) – (1k) 

Period flow balance for each operation and device group (p = 1) 

ij  STARTSid  + , ,| |, 1

Period

i j P dWIP   +
, 1, 1,1 ,i j

Period

i j U dRR
 

– , ,1,

Period

i j dRR  = , ,1,

Period

i j dWIP ,   i  I, j  J(i), d  D

 (2b) 

Period flow balance for each operation and device group (p ≠ 1) 

, , 1,

Period

i j p dWIP    + 
, 1, 1, ,i j

Period

i j p U dRR
 

 – 
Period

ijpdRR  = 
Period

ijpdWIP ,   i  I, j  J(i), p  P \ {1}, d  D (2c) 

Final operation in route for each device group 

, ,End
i

Daily

i J d
RR  + 

TP
ids 

  – TP
ids  = DOQRid,  i  I, d  D (2e) 

Constraints (2b) embed cycle time into the third term
, 1, 1,1 ,i j

Period

i j U dRR
 

which represents the 

upstream run rate from the previous logpoint for p = 1.  Constraints (2c) are the general cases for 

p  P \ {1}.   

Notice that whenever , 0i jp U  , 
, 1, 1, ,i j

Period

i j p U dRR
 

 must be replaced by the run rate from an 

earlier day; that is, we need to replace the index ,i jp U  with ,| |  i jp P U   and the index d with 

d – n in 
, 1, 1, ,i j

Period

i j p U dRR
 

 to get  
, 1, 1, | | ,i j

Period

i j p n P U d nRR
   

, where 

,min { : | |  0, }i jp P U dn    
     .  This value of n assures that devices processed at 

operation j on day d – n are available in the current period.  It could be possible that no such n 

exists, especially for the first several days in the planning interval.  In that case, the upstream 

devices come from production that took place prior to the starting date (d = 1) listed in 

DRRInitial.csv (see Table 4).  In constraints (2e), which duplicate (1e), consider the same case 

for day d such that 
,

| | 0End
ii j

d P U   .  Here, the output for device group i for day d is obtained 

from the last operation End
iJ  in the column labeled “Actual DRR” in DRRInitial.csv.  See 

Appendix A for more discussion of this issue. 
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4.3 MODEL WITH FRACTIONAL CYCLE TIME: MODEL-III 

In practice, the cycle time for an operation can be any real number rather than an integer 

or a multiple of a fixed period. The datasets provided by Texas Instruments, for example, specify 

cycle time in days to 2 decimal places.  If a day is divided into, say, 100 periods, then every ,i jC

will be integral, i.e., , ,i j i jU C .  Devices processed at the most recent logpoint will arrive at the 

current logpoint after exactly ,i jC  periods.  However, taking the ceiling of ,i jC introduces an 

inappropriate delay in material transfer, especially when the number of periods is small.  For 

example, if the day is divided into 10 periods and the cycle time for a particular logpoint is 0.62 

(days), then ,i jC = 6.2 periods.  Devices processed in the current period will be available after 6.2 

periods.  When Model-II is used, we have ,i jU  = 
,i jC    = 7 so there will be an additional delay 

of 0.8 periods at this logpoint.  In reality, this delay does not occur. 

A natural way to model fractional cycle times is to treat them as continuous.  If we assume 

that processing is uniformly distributed over each period, then any production from a sub-interval 

l of a period can be calculated by the length of l denoted by | l |.  This idea is motivated by the 

work of Leachman et al. (1996).  

Figure 3 depicts an example of material transfer from an upstream station to a downstream 

station for a cycle time of 2.4 periods.  Considering Model-II, suppose we are in period 1 and 

,i jC = 2.4 and ,i jU  = 3 for operation j.  The implication is that all devices processed in period 1 

will be transferred uniformly to their next operation j + 1 in period 4 (upper portion of Figure 3).  

However, because the cycle time is really fractional, operation j will be finished 0.6 periods earlier 

than assumed in the model.  What really happens under the uniform transfer assumption is that 

devices processed in the first 60% of period 1 are available in period 3 while the remaining 40% 

are transferred to period 4 as upstream inflows (bottom diagram in Figure 3).  
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42

3 51 42

31 2 3 5

Cycle time, 2.4 periods

 

Figure 3: Integer cycle time transfer (above) vs. fractional cycle time transfer (below). 

 

To account for fractional cycle times as suggested by this analysis it is necessary to modify 

constraints (2c).  Run rates form upstream logpoints are now divided into two terms 

corresponding to the two fractional components of the cycle time.  Letting , , 1i j i jL U  , we 

have: 

Period flow balance for each operation and device group (p ≠ 1) 

, , 1,

Period

i j p dWIP   + 
, 1, 1, ,, ,)(

i j

Period

i j p L di j i j RRU C
   + 

, 1, 1, ,, ,)(
i j

Period

i j p U di j i j RRC L
   – 

Period

ijpdRR  = 
Period

ijpdWIP  

                                                                                

 i  I, j  J(i), p  P\{1}, d  D (3c) 

Model-III is equivalent to Model-II but with Eqs. (2c) replaced with (3c), which leads to 

the following. 

Proposition 1. When the cycle time of every logpoint is an integer multiple of the period 

length, Model-II and Model-II are identical. 

Proof. When the cycle time at every logpoint is an integer multiple of period length, we 

have , ,i j i jU C = 0. Thus, the left-hand side of Eq. (3c) reduces to 

, , 1,

Period

i j p dWIP   + 
, 1, 1, ,i j

Period

i j p U dRR
 

 – 
Period

ijpdRR =
Period

ijpdWIP  

which demonstrates the equivalence of the models.        
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Remark.  When period length satisfies Proposition 1, Model-II and Model-III are 

guaranteed to provide identical objective function values; however, the corresponding decision 

variables (DRR, WIP, and so on) may differ due to the presence of multiple optimal solutions.   

For the TI datasets in which the cycle time is given to 2 decimals, dividing the day into 100 

periods (0.01 day per period) will satisfy Proposition 1.  This observation is empirically 

demonstrated in Section 6.  
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operations. International Journal of Production Research, 1-25.  In this previous work, I was responsible for modeling, 

programming, data analysis, and testing.  

Chapter 5:  Implementation 

The sequence of steps associated with the implementation of our model is depicted in 

Figure 4 and includes preprocessing, data input, model generation, solution, and output 

tabularization. †  The first step is to preprocess the raw data as discussed in Section 3 to establish 

the device groups, logpoints associated with each, and the number of days in the planning horizon.  

The size of the model is determined by | |I , | |J , | |D , the number of device groups, operations, 

and days, respectively.  Next we build a distinct logpoint sequence for each device group and 

save the data needed to construct the model, such as demand, initial WIP levels for each device 

group, logpoints, and dates.  At this point, the solver is called and the results are formatted and 

written to several files. 

Input files.  Table 5 lists the four datasets created in the preprocessing step along with a 

fifth file called “input.txt” that specifies a set of parameter values required to build and run the 

model.  These include the number of periods in the model, how capacity is to be treated (a single 

value for all operations or individual values), a capacity multiplier factor, and objective function 

weights  and .  Table 6 presents the input.txt file used in our analysis.  
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1.Preprocessing

Planned starts and 

demand

(WIPPlanStart.csv)

Input file

 (config.txt)

3.Modeling

Mappings 

(map.csv)Begin WIP levels

(WIPBegin.csv)

Historical data: 

actual DRR and 

WIP

(WIPActual.csv)

Solver 

performance,

details,

comparisons

 (summary.csv)

Solution for next 

month (result.csv)

Simple analysis of 

solution,

comparisons 

(avg, max) 

2. Read data

4.Output

Actual DRR 

prior to 

beginning

(DRRIntial.csv)

Configuration

(input.txt)

Single period delay

Model-I

Integer cycle time

Model-II

Fractional cycle time

Model-III

Choose a model

Figure 4: Design of implementation  
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File name Description 

WIPPlanStart.csv Specifies device group, LPT, date, STARTS, and DOQR 

WIPBegin.csv Specifies device group, LPT, date, CTTGT and begin WIP 

WIPActual.csv Specifies device group, LPT, date, Actual DRR and Actual Begin WIP 

DRRIniitial.csv Specifies device group, LPT, date, Actual DRR for previous days. 

input.txt Configuration file that specifies model control parameter values 

Table 5: Input data files 

 

Value Description 

100 Number of periods per day 

1 Use planned starts; 1-use, 0-otherwise 

1 Use constant capacity; 1-use, 0-otherwise 

690000 Capacity size when using constant capacity; must be positive   

1.1 Capacity multiplier factor; model capacity = (factor)*(capacity)  

10 Objective function weight parameter  for shortage; 0-no penalty 

1 Objective function weight parameter  for surplus; 0-no penalty 

1 Comparison parameter; 1-compare solution to historical data, 0-forecast 

only 

Table 6: Sample of “input.txt” file 

5.1 PREPROCESSING AND DATA INPUT 

The first step is to read the first two data files in Table 5 and construct individual sets 

containing device groups, days, and operations. The cardinality of each of these sets is also 

determined.  Because it is more convenient to model by the natural order of days and operations, 

D and J are sorted in ascending order.  Then sets I, D and J are written to the file “map.csv,” and 

saved along with the size of each in “config.txt.”  Pseudocode for the preprocessing procedure is 

given in Figure 5; pseudocode for data input is presented in Appendix B.  
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5.2 MODEL CONSTRUCTION AND SOLUTION PROCESS 

The mathematical model is implemented in C++ using an open source library FlopC++ 

(Formulation of Linear Optimization Problems in C++) provided by the Coin-OR open-source 

project.  The three models mentioned in Section 4 are written as three separate functions but the 

basic components are reused as much as possible.  All datasets created during preprocessing are 

translated into the appropriate format within the modeling procedure. 

Procedure_Preprocessing 

Description:  Preprocess data files and determines model size 

Subprocedures:  DateSort, LPTSort  

Input:  WIPPlanStart.csv: device group, LPT, date, STARTS, and DOQR  

WIPBegin.csv: device group, LPT, date, CTTGT and begin WIP 

Output: config.txt: size of the model 

map.csv: relationships between device group, date, LPT and their indices in sets I, D, J 

Begin 

Initialize three empty sets for device group, LPT, and date, respectively. 

Define output file directory and name. 

Process WIPPlanStart.csv 

While (not EOF) { 

Get current row: 

row l = row_to_vector(current row) 

Add device group of this row to set I. 

Add date of this row d to set D. 

  }  

Process WIPBegin.csv 

While (not EOF) { 

Get current row: 

row l = row_to_vector(current row) 

Add LPT of this row j to set J. 

  }  

Determine size of I, J, D and save to config.txt. 

Close data files WIPPlanStart.csv and WIPBegin.csv. 

Sort date set D in ascending order using a subroutine DateSort 

(comment: translate date format “mm/dd/yyyy” to a numeric, then sort in ascending order) 

Sort LPT in set J in ascending order using a subroutine LPTSort 

(comment: sort in ascending order) 

End 

 

Figure 5: Preprocessing pseudocode 
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5.2.1 Anomalies in the constraints 

Nonincreasing logpoint sequence.  It is not uncommon for the numerical designation of 

operations for a device group to be non-sequential.  For example, one sequence we found was: 

5100              

9900, where 5100 represents “Starts” and 9900 represents “Ship out.”  Notice that after logpoint 

5400 we have 5250, a decrease.  This creates a problem because the elements of the logpoint set 

J are sorted in ascending order.  In constraints (1b), inflow from a previous operation, denoted 

by DRRi,d–1,j–1, would be incorrect for logpoint 5250 if the nature order were followed.  To deal 

with this situation we developed a map denoted by seq such that seq: I N´ a J, where 

{1,2,3,...,| |}N J=  and ( , )seq i k j=  if j is the kth logpoint of device group i and 0 otherwise.  

This formulation allows us to manage the contstruction of the flow balance equations with a matrix 

of size I J´ .   

As an example, in the sequence listed above, ( ,1) 5100,seq i = ( ,2) 5105,seq i = and so on.  

The flow balance constraints (2c) for device group i with the index k replacing j is as follows.  

, ( , ), 1,

Period

i seq i k p dWIP    + 
, 1, ( , 1), ,i j

Period

i seq i k p U dRR
 

 – , ( , ), ,

Period

i seq i k p dRR  = , ( , ), ,

Period

i seq i k p dWIP ,   i  I, k  N, p  

P \ {1}, d  D. 

Since the daily run rate DRR is summed over j, we can set the upper bounds to zero for 

those operations that are not in the logpoint sequence of i.  This can be done by searching for j 

over k  N. If there doesn’t exist a k such that ( , ) ,seq i k j= then the upper bound for , ( , ), ,

Period

i seq i k p dRR  

is set to be zero. See Appendix A for more discussion of this issue. 

Initialization for flow constraints. Model-II and Model-III use cycle time in the indices of the 

flow constraints, so it is necessary to make an adjustment to 
, 1, 1, ,i j

Period

i j p U dRR
 

 for first few days when

, 0i jp U  .  In such cases, these variables must be initialized with data provided in “DRRInitial.csv” 

corresponding to the actual DRRs coming from one or more days prior to the starting date.  See Appendix 

A for more discussion. 
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5.3 OUTPUT 

Results from the solver are saved as vectors or arrays in the three files referenced in Table 

7 in a suitable form for analysis.  Aggregate results are given in the “results.csv” file which 

contains the values of the variables for each device group at each logpoint for each day of the 

planning horizon.  The “summary.csv” highlights the input parameter values and computational 

statistics, and presents the average and maximum values for DRR and WIP by device group.  The 

most detail is given in the “periodreslts.csv” file which contains all the output for each period in 

the planning horizon.  

 

 
File name Description 

results.csv Daily solutions for each device group and logpoint 

summary.csv Information related to parameter values and computations, e.g., objective function, CPU time 

periodresults.csv Solutions for each device and logpoint for each period 

Table 7: Output files 

Table 8 is an example of the “summary.csv” file.  The first few rows specify the run date 

and time, the number of device groups, the number of days in the planning horizon, CPU time, and 

so on.  “SOLVER_STATUS” tells if the model is optimal, infeasible or unbounded.  The rows 

that follow compare model results with actual values (“ACT” prefix) with respect to the objective 

function, total device output, shortages, and surpluses.  Note that the objective function value is 

the weighted sum of shortage and surplus with weights  and “CAP_PERCENT” is a multiplier 

for “DAILY_CAPACITY” that reflects the parameter values listed in input.txt. 

The lower part of the table presents the actual average DRR, the average DRR and 

Maximum DRR obtained from the model, the actual average WIP, and the average WIP obtained 

from the model over the planning horizon for each device group.  These results are intended to 

provide guidelines for shop floor supervisors.  The computed production rates and WIP should 

be viewed as targets and not as actual plans.  Given the dynamics of the system and the 

inevitability of real-time disruptions, it may not be practical or even possible to implement the 
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period by period results contained in the “periodreslt.csv” file.  In fact, these results represent 

aspirational levels, achievable if all goes well.  However, unforeseen disruptions such as transfer 

delays, machine breakdowns, WIP shortages along a route, and changing priorities can undermine 

any finely tuned plan.  When it is not possible to achieve production targets on some days for one 

device group, though, it may be possible to boost production up to the maximum value 

(MAX_DRR) of another group to compensate.  Finally, by examining the two columns labeled 

“ACT_AVG_DRR” and “AVG_DRR,” we can see the high level relationship between increased 

production and a decrease shortages.  

 
DATE & TIME = Thursday, September  1, 2016; 10:39:35 

  

DEVICE_GROUPS = 6 DAYS = 14 
  

START_DATE = 8/11/2016 END_DATE = 8/24/2016 
  

PERIODS = 100 TIME_UNIT (hr) = 0.24 
  

SOLVER_STATUS = OPTIMAL CPU_TIME (sec) = 295 
  

OBJECTIVE = 1.17E+07 ACT_OBJECTIVE = 2.11E+07 
  

OUTPUT = 7.90E+06 ACT_OUTPUT = 7.35E+06 
  

SHORTAGE = 1.46E+06 ACT_SHORTAGE = 1.84E+06 
  

SURPLUS = 2.90E+06 ACT_SURPLUS = 2.74E+06 
  

CAP_PERCENT = 1.1 
    

DAILY_CAPACITY =  690,000 
    

      

DEVICE_GROUP ACT_AVG_DRR AVG_DRR MAX_DRR ACT_AVG_WIP AVG_WIP 

21-48-ZABC-N 158632 254788 354672 94080.4 13605.2 

61-27-ZABC-Y 33038.9 33750.7 50547.7 11401 7994.67 

76-23-ZADR-Y 29948.7 53361 84837.5 12248.2 7182.8 

76-23-ZABC-Y 158830 141091 162894 75749.5 27607.7 

76-27-ZADR-Y 32645.8 32011 55763.1 11973.3 6804.04 

76-48-ZABC-Y 80116.2 104509 156568 41666.8 2103.58 

Table 8: An example of “summary.csv” 

Table 9 (given two parts) is an example of the “results.csv” file.  Statistics listed include 

DRR values, end-of-day WIP levels, actual DRR, actual WIP, demand for each device, operation, 

and date.  Shortage and surplus values for each day are calculated at the last logpoint in the route 

for each device group and compared to the actual values (when known).  Actual shortage and 
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surplus values are calculated as the difference between daily demand DOQR and DRR also at the 

last operation in a route.
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Table 9: An example of result.csv 

DG_index_i DEVICE_GROUP Day_index_d DATE LPT_index_j LPT STARTS(i,d,j) CT(i,j) DOQR(i,d) DRR(i,d,j) 

1 [21-48-ZABC-N] 1 8/11/2016 1 5100 359808 0.09 
 

276194 

1 [21-48-ZABC-N] 1 8/11/2016 2 5105 0 1.11 
 

137844 

1 [21-48-ZABC-N] 1 8/11/2016 3 5110 0 0.77 
 

58321 

1 [21-48-ZABC-N] 1 8/11/2016 4 5200 0 2.75 
 

159116 

1 [21-48-ZABC-N] 1 8/11/2016 5 5400 0 0.7 
 

141433 

1 [21-48-ZABC-N] 1 8/11/2016 6 5250 0 0.23 
 

217033 

1 [21-48-ZABC-N] 1 8/11/2016 7 5300 0 0.1 
 

105754 

1 [21-48-ZABC-N] 1 8/11/2016 8 5500 0 1.89 
 

164652 

1 [21-48-ZABC-N] 1 8/11/2016 9 5501 0 1.98 
 

213503 

1 [21-48-ZABC-N] 1 8/11/2016 10 5600 0 0.01 
 

315 

1 [21-48-ZABC-N] 1 8/11/2016 11 5700 0 0.33 
 

25515 

1 [21-48-ZABC-N] 1 8/11/2016 12 5720 0 0.03 
 

25515 

1 [21-48-ZABC-N] 1 8/11/2016 13 5750 0 0.25 
 

84132 

1 [21-48-ZABC-N] 1 8/11/2016 14 6000 0 0.17 
 

84132 

1 [21-48-ZABC-N] 1 8/11/2016 15 6010 0 0.15 
 

0 

1 [21-48-ZABC-N] 1 8/11/2016 16 6901 0 0.09 
 

0 

1 [21-48-ZABC-N] 1 8/11/2016 17 7100 0 3.74 
 

176495 

1 [21-48-ZABC-N] 1 8/11/2016 18 7777 0 0.02 
 

196771 

1 [21-48-ZABC-N] 1 8/11/2016 19 9050 0 0.01 
 

196772 

1 [21-48-ZABC-N] 1 8/11/2016 20 9060 0 0.54 
 

99434 

1 [21-48-ZABC-N] 1 8/11/2016 21 9070 0 2.12 
 

246901 

1 [21-48-ZABC-N] 1 8/11/2016 22 9080 0 0.03 
 

263901 

1 [21-48-ZABC-N] 1 8/11/2016 23 9085 0 0.04 
 

284901 

1 [21-48-ZABC-N] 1 8/11/2016 24 9900 0 0.01 178664 231309 

          

WIPTARGET(d,j) WIPLEVEL(d,j) WIP(i,d,j) SURPLUS(i,d) SHORTAGE(i,d) ACTUALDRR(i,d,j) 

ACTUALBEGIN

WIP(i,d,j) 

ACTUALEND

WIP(i,d,j) ACTUALSURPLUS(i,d) 

ACTUALSHORT

AGE(i,d) 

37593 557046 83613 
  

199125 0 0 
  

450485 132486 0 
  

183845 359953 375233 
  

256967 578710 0 
  

108721 58321 133445 
  

954146 366555 0 
  

210000 327781 226502 
  

99003 0 0 
  

192568 141433 157665 
  

94249 100776 0 
  

242968 75600 25200 
  

90849 0 0 
  

242968 30154 30154 
  

968008 105754 105754 
  

184168 109200 168000 
  

422735 187922 187922 
  

185134 201934 200968 
  

3451 247514 209896 
  

185134 315 315 
  

30901 0 0 
  

168334 25200 42000 
  

1674 0 0 
  

168312 0 0 
  

42062 0 0 
  

193343 58617 33586 
  

14302 0 0 
  

176544 0 16799 
  

0 0 0 
  

176521 0 0 
  

7242 0 0 
  

176521 0 0 
  

824360 197464 94532 
  

156459 826723 844806 
  

10628 0 0 
  

164736 8277 0 
  

6496 0 0 
  

164736 0 0 
  

85393 0 0 
  

149958 91157 105935 
  

599059 0 0 
  

123316 17768 55208 
  

8987 0 0 
  

124000 17000 5000 
  

12823 0 0 
  

145000 21000 0 
  

2597 0 0 52645 0 145000 0 0 0 33664 
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Chapter 6: Computational Results 

Testing was done on three datasets provided by Texas Instrument from calendar year 2016.  

Dataset 1 spans 27 days from June 8th to July 4th, with three extra days prior to June 8th used to 

initialize DRR values.  Dataset 2 spans 33 days from July 5th to Aug 6th, with three extra days 

prior to July 5th used for initialization purposes, and dataset 3 covers the 14 days from Aug 11th to 

Aug 24th again with three extra days from Aug 8th to Aug 10th.  All datasets have 6 device groups 

with the maximum number of logpoints being 27 for any group. In all, there are 32 unique 

logpoints in each dataset. 

6.1 COMPARISON BASED ON HISTORICAL DATA 

6.1.1 Summary of results 

For the day divided into 20 periods and 100 periods, Tables 10(a) and 10(b) respectively 

present a comparison of objective function values, total output, shortage, and surplus values 

between the solutions obtained with the three models and the actual results in dataset 1.  Tables 

10(c) and 10(d) provide the same comparisons for dataset 2 while Tables 10(e) and 10(f) present 

comparisons for dataset 3. All computations were handled in a Linux environment. 

 
 

Performance Model-I Model-II Model-III Actual data 

Objective 8850930 33080100 29475600 59034800 

Output 18129600 14635500 15274500 12582500 

Shortage 1367570 3671470 3341960 5556790 

Surplus 4824720 3634580 3944010 3466870 

Table 10(a): Results for dataset 1, 20 periods 
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Performance Model-I Model-II Model-III Actual data 

Objective 5704470 27338420 27337800 59034800 

Output 18578300 15570800 15570800 12582500 

Shortage 1067820 3138460 3137360 5556790 

Surplus 4973690 4046180 4035780 3466870 

Table 10(b): Results for dataset 1, 100 periods 

Performance Model-I Model-II Model-III Actual data 

Objective 13825300 29900000 28637500 58860000 

Output 17949600 14500000 14492800 13576000 

Shortage 1851960 3250000 3113670 5490120 

Surplus 4694300 2630000 2499190 3958850 

Table 10(c): Results for dataset 2, 20 periods 

Performance Model-I Model-II Model-III Actual data 

Objective 12086100 28000000 28000000 58860000 

Output 18554600 14600000 14600000 13576000 

Shortage 1725940 3060000 3060000 5490120 

Surplus 5173280 2530000 2530000 3958850 

Table 10(d): Results for dataset 2, 100 periods 

 

 

 

Table 10(e): Results for dataset 3, 20 periods 

 

 

 

 

 

Table 10(f): Results for dataset 2, 100 periods 

In the case of 20 periods (0.05 days per period), Model-III provides more accurate results 

than Model-II, which is not surprising.  This advantage decreases as the number of periods 

Performance Model-I Model-II Model-III Actual data 

Objective -2775300 15301300 12777600 21125700 

Output 9660000 7255420 7693690 7354500 

Shortage 47517 1788850 1557140 1838930 

Surplus 3250470 2587210 2793780 2736380 

Performance Model-I Model-II Model-III Actual data 

Objective -3202950 11702200 11702200 21125700 

Output 9660000 7900190 7900190 7354500 

Shortage 0 1460590 1460590 1838930 

Surplus 3202950 2903720 2903730 2736380 
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increases to 100. Idle time included in Model-II is eliminated when cycle times are integer 

multiples of the period length (see Proposition 1).  In all three cases, the results from the models 

dominate actual performance.  Model-I yielded the best results with respect to shortages, 

eliminating them altogether for dataset 3.  However, since Model-I has only a single-period delay 

which ignores the cycle times that are mostly longer than 1 period, it is fair to say that the model 

is too optimistic.   

Model-II and Model-III provide relatively more realistic results in the comparisons with 

the historical data.  Both models show an increase in total output and a reduction in shortages, 

but not necessarily an increase in the surplus.  For both models and the case with 100 periods, for 

example, the total output increased for dataset 1 by 3 million (23.7%) compared to actual output; 

for dataset 2, the increase is nearly 1 million (7.5%); and for dataset 3, it is 545,690 (7.4%).  

Moreover, a slight increase in output may have a noticeable effect on shortage and surplus values.  

Shortages decreased by 20% for dataset 3, and 44% for datasets 1 and 2. Because dataset 3 spans 

two weeks only, 40% is a reasonable estimate of the month’s decrease in shortages. 

6.1.2 Interpretation of solution 

Improvements over current performance are only achievable if production closely adheres 

to the period run rate each day. It is unrealistic, however, to expect shop supervisors to convert 

model outcomes to an hour by hour plan without experiencing occasional disruptions. It is far more 

likely that they will be able to adopt daily averages rather than period values as production targets.  

Accordingly, we provide average DRR values for the planning horizon by device group and 

operation (e.g., see Table 8).  These are intended to serve as a guide. The corresponding average 

WIP levels are also calculated for each device group and operation. 

Based on the results from Model-II with datasets 2, let ActualAvgDrr and ModelAvgDrr 

be the average DRR from the historical data and the model, respectively. The average WIP levels 

are defined as ActualAvgWIP and ModelAvgWIP.  Figure 6 plots these four values in different 

subgraphs for each device group across all logpoints.     
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Figure 6(a): Average DRR and WIP for device group 1 Figure 6(b): Average DRR and WIP for device group 2 

Figure 6(c): Average DRR and WIP for device group 3 Figure 6(d): Average DRR and WIP for device group 4 

Figure 6(e): Average DRR and WIP for device group 5   Figure 6(f): Average DRR and WIP for device group 6   
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For example, Figure 6(a) depicts the values for device group 1.  The left subgraph shows 

the average DRR over the month at each logpoint for the actual and model results (lines are in 

different colors in the PDF), where the dashed lines represent the average over the logpoints.  The 

right subgraph presents the average WIP at each logpoint over the month.  For all plots in Figure 

6, it can be seen that the model results slightly improve the actual DRRs while eliminating large 

variations in WIP levels. For planning purposes, then, the recommended strategy is for shop floor 

supervisors to aim for the grand average DRR values as represented by the dotted lines.  

6.2 COMPARISON OF MODEL-II AND MODEL-III 

6.2.1 Convergence 

In this section, we present results for Model-II and Model-III for different numbers of 

periods to determine how granularity affects solution quality.  As mentioned, Model-II is 

expected to be less accurate due to idle time induced in the flow balance constraints (2c).  Taking 

into account, however, that the cycle time lengths Ci,j  are specified to two decimal places in the 

real datasets, as the number of periods in Model-II approaches 100, the results should become 

increasingly more accurate. 

In the testing, we ran Model-II and Model-III with 10 to 100 periods using dataset 2. The 

results are presented in Table 11 and Figure 7 where it can be seen that shortages and surpluses 

converge to the same values.  The same observation was made when we examined the bottom 

two lines in each portion of Table 11.  This follows since Eq. (2c) corresponds to Eq. (3c) when 

the number of periods equals 100.  Generally, Model-III is more accurate when a small number 

of periods is used, and convergence faster than Model-II.  
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Table 11: Comparison of Model-II and Model-III  

 

Figure 7: Comparison of Model-II and Model-III 

6.2.2 Computation speed 

One advantage that Model-II has over Model-III is that it usually runs much faster.  Table 

12 presents runtime comparisons on a 64-bit Linux PC, which confirms the above statement for 

any number of periods.  The performance of Model-III was observed to be somewhat erratic, 

however, as indicated by the non-monotonic increase in CPU time.  For 30 periods, for example, 

Model-III took 611 sec or 15.9% longer than for 50 periods, even though the latter instances have 

many more variables and constraints.  We found this to be true when the number of periods was 

Periods per 

day 

Model-II 

shortage 

Model-II 

surplus 

Model-III 

shortage 

Model-III 

surplus 

Actual 

shortage 

Actual 

surplus 

10 3683210 2294130 3346770 2380760 5490120 3958850 

20 3250000 2630000 3113670 2499190 5490120 3958850 

30 3124270 2507420 3056380 2530320 5490120 3958850 

50 3055280 2530280 3055770 2527780 5490120 3958850 

70 3055280 2530280 3055280 2530280 5490120 3958850 

100 3055280 2530280 3055280 2530280 5490120 3958850 
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less than 50 and did not divide evenly into 100.  No theoretical justification for this observation 

is evident, though. 
 

 

 

 

 

Table 12: Runtime Comparison of Model-II and Model-III 

Sparsity and integrality.  It is generally known that network-type models like ours have 

sparse A-matrices. Looking at the equations in Sections 4.2 and 4.3, if we rearrange the terms by 

placing all the variables on left-hand side of their respective (in)equality signs, the constraints can 

be put in the form Ax () = b.  Here, the x-vector represents the decision variables RR, WIP and 

so on, and the A-matrix holds the corresponding parameter values.   

Further examination of Model-II reveals that every entry of A is 0, –1, or 1, that is, 

{0, 1,1}ija   .  Also from Eq. (2c), A can be decomposed into and a banded block for 
Period

ijpdRR  

and a bi-diagonal block for variables 
Period

ijpdWIP  (see Figure 8).  Moreover, there are only 2 

nonzero entries in one row of the banded block for
Period

ijpdRR .  This translates into an extremely 

sparse structure for Model-II.  In Model-III, the diagonal portion for 
, 1, 1, ,i j

Period

i j p U dRR
 

 in Eq. (3c) is 

replaced with a bi-diagonal block for 
, 1, 1, ,i j

Period

i j p L dRR
 

and
, 1, 1, ,i j

Period

i j p U dRR
 

that have fractional entries 

, ,i j i jU C and , ,i j i jC L .  The sparsity and absence of fractional entries in the A-matrix has much 

to do with the speed advantage of Model-II over Model-III. 
 

Periods Model-II, CPU time (sec) Model-III, CPU time (sec) 

10 11 100 

20 36 154 

30 58 611 

50 144 527 

70 439 727 

100 648 1530 
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…     …        …               

                            

                   `        

                            

  RR block for same i and  j     WIP block for same i and  j 

Figure 8: Matrix illustration for sparsity of Model II 

 

For any choice of periods, Model-II rounds all cycle times to integers thus preserving the 

sparse structure.  In contrast, Model-III is less robust due to fractional entries in the A-matrix 

which increase the computational effort, especially when the fractional portion of Ci,j is small. 
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Chapter 7: Summary and Conclusion 

In this paper, we first present a single period delay model (Model-I) that assumes any WIP 

being processed in the current period will be finished at the end of the period and immediately 

transferred to the next downstream operation in its route.  Cycle times were accounted for by 

imposing steady-state conditions with the use of a constraint derived from Little’s Law.  The 

results proved to be inaccurate so two additional models were developed that incorporated cycle 

times directly into the WIP flow constraints.  Model-II assumed that cycle times are integral 

multiples of the number of periods defined for a day, while Model-III allowed for fractional cycle 

times and was hence the most robust. Implementation consisted of five major steps including, raw 

data preprocessing, data input, model construction, model execution, and output of results.  

Using real factory data from Texas Instrument, we conducted two sets of test.  In the first 

set, we compared the results of our models to historical data and found measurable improvement 

in all instances.  Model-I had the best improvement but was deemed too optimistic since it uses 

a single period delay, which is unrealistic.  Model-II and Model-III were designed to more 

accurately represent the true system and provided reasonable increases in total output and 

reductions in shortages.  The latter ranging from 7.5% to 40% monthly. In the second set of tests, 

the computations showed that a grid of 50 periods per day was sufficient for Model-II and Model-

III to converge to the optimal solutions for all data sets.  Model-III was slightly more accurate, 

while Model-II was seen to have a significant runtime advantage due to the sparsity of its constraint 

matrix.  

With respect to the objective function of our models, one of the difficulties with linear 

penalty terms is that they can lead to unbalanced solutions.  In our case, this means that they don’t 

necessarily distribute the shortages and surpluses evenly over the device groups when insufficient 

capacity exists over the planning horizon.  One remedy is to square the 
TP
ids 

 and 
TP
ids 

 variables 

so that shortages and surpluses are penalized at an increasing rate for each device group each day. 
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At the current time, Model-III is being tested by the planners at TI’s Taiwan AT facility.  

Rather than trying to implement the period-by-period DRR results at each logpoint, they have 

adopted our suggestion and are using the average DRR results provided in the “summary.csv” file 

highlighted in Table 8. 
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Appendix A: Implementation of Initial Conditions  

Table 13 enumerates a portion of the “WIPBegin.csv” file for device group “76-48-ZABC-

Y.”  There are 25 logpoints in the route for this group of which the maximum cycle time is 2.12 

days.  Thus, it is necessary for DRRInitial.csv (see Table 14) to contain 3 days of data prior to 

the start of the planning horizon (July 5th in this example).   
 

PROD_LINE PIN TESTER STRIP_TEST LPT PLAN_CT BEGIN_WIP 

76 48 ZABC Y 5100 0.09 0 

76 48 ZABC Y 5105 0.5 0 
76 48 ZABC Y 5110 0.72 0 

76 48 ZABC Y 5200 1.8 8977 

76 48 ZABC Y 5250 0.23 0 

76 48 ZABC Y 5300 0.17 0 
76 48 ZABC Y 5500 2.03 0 

76 48 ZABC Y 5600 0.04 0 

76 48 ZABC Y 5700 0.16 0 

76 48 ZABC Y 5720 0.01 0 

76 48 ZABC Y 5750 0.26 0 
76 48 ZABC Y 6050 0.13 0 

76 48 ZABC Y 6100 0.2 26760 

76 48 ZABC Y 6901 0.09 0 

76 48 ZABC Y 7100 1.56 0 
76 48 ZABC Y 7777 0.02 0 

76 48 ZABC Y 6110 0.35 0 

76 48 ZABC Y 6120 0.35 0 

76 48 ZABC Y 7660 0.12 0 
76 48 ZABC Y 9050 0.01 0 

76 48 ZABC Y 9060 0.54 0 

76 48 ZABC Y 9070 2.12 1759 

76 48 ZABC Y 9080 0.03 0 

76 48 ZABC Y 9085 0.05 0 
76 48 ZABC Y 9900 0.01 0 

Table 13: Sample of WIPBegin.csv 

 

PROD_LINE PIN TESTER STRIP_TEST DATES LPT LPT_DESC ACTUAL_DRR 

         

76 48 ZABC Y 7/3/2016 7660 OUTLIER VERIFY 0 

76 48 ZABC Y 7/3/2016 9050 PACKING STAGE 0 

76 48 ZABC Y 7/3/2016 9060 DRY BAKE 0 

76 48 ZABC Y 7/3/2016 9070 INSPECTION 4997 

76 48 ZABC Y 7/3/2016 9080 COMBINE/LBL/PACK  10000 

76 48 ZABC Y 7/3/2016 9085 TAG VERIFY 10000 

76 48 ZABC Y 7/3/2016 9900 PACK/UTS 10000 

Table 14: Sample of DRRInitial.csv 
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The historical data doesn’t record the specific hour in which production took place, so we 

assume it happened at the beginning of the day, i.e., during the first period.  If an operation ends 

after the start of the planning horizon, its actual DRR replaces , , ,1

Period

i jRR   in the period, call it  , in 

which it will finish.  For example, in Table 14 the DRR for logpoint 9070 is 4997 and its cycle 

time is 2.12 days.  This amount (4997 units) flows to the next operation 9080 after 2.12 days, 

which corresponds to the  th period on July 5th, where 0.12 )( P     .  For |P| = 100, for 

example, production finishes in period = 12 on July 5th and is transferred to the next operation.  

In this case, we use the DRR listed (4997) in place of , , ,1

Period

i jRR   in period   in Eq. (2c). 

Consequently, the solution will include the run rate in DRRInitial.csv.  For the last operation, 

logpoint 9900, the cycle time is 0.01 days so the corresponding DRR listed in DRRInitial.csv will 

finish production on that date and will not affect shortage and surplus values during the planning 

horizon.  Generally, if the cycle time for operation End

ij is greater than 1 (for example, 1.2 days), 

then any production on July 3rd will be available on July 4th.  In this case, the Actual DRR in 

Table 4 will replace 
, ,End

i

Daily

i J d
RR in Eq. (2e). 
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Appendix B: Pseudocode for data input 

 

 
  

Procedure_Data_Input 

Description: Determine model size and read data files  

Input:  WIPPlanStart.csv: device group, LPT, date, STARTS, and DOQR  

WIPBegin.csv: device group, LPT, date, CTTGT and begin WIP 

WIPActual.csv: actual DRR, WIP levels throughout the month (when these data are available) 

config.txt: size of the model 

input.txt: model parameter values, such as number of periods, weight parameter for shortages 

Output: result.csv: daily result of the model, such as DRR of device group i, day d, LPT j 

summary.csv: summary of the solution, such as CPU time, total amount of shortages, 

surpluses 

analysis.csv: basic analysis of result.csv, such as average DRR of the month, maximum DRR, 

average WIP level and so on.   

Begin 

Process input.txt, save weight parameters  and capacity parameters and so on. 

Allocate arrays for input data ACT_WIPi,j,0 (begin WIP), CT_TGTj, Cap_Limjd, STARTSid, DOQRid,  

Allocate arrays for model solutions DRRi,d,j, WIPi,d,j, 
TP
ids 

,
TP
ids 

 

Allocate arrays for actual solutions ACT_DRRi,d,j, ACT_WIPi,d,j 

Read each row and convert to corresponding parameter 

Process WIPBegin.csv 

While (not EOF) { 

Get current row, 

row l = row_to_vector() 

find index of device group i, in set I  

find index of date d in set D 

find index of LPT j in set J 

(comment: Use C++ standard library std::find() method, compare elements until a match is found) 

Read ACT_WIPi,j,0, CT_TGTj, Cap_Limjd 

  }  
Process WIPPlanStart.csv 

While (not EOF) { 

Get current row, 

row l = row_to_vector() 

find index of device group i, in set I  

find index of date d in set D 

Read STARTSid, DOQRid 

  }  

Process WIPActual.csv, if any 

While (not EOF) { 

Get current row, 

row l = row_to_vector() 

find index of device group i in set I  

find index of date d in set D 

find index of LPT j in set J 

Read ACT_DRRi,d,j, ACT_WIPi,d,j 

  } 

End 
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