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Instability criteria for steady flows of a perfect fluid 
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(Received 17 March 1992; accepted for publication 15 July 1992) 

An instability criterion based on the positivity of a Lyapunov-type exponent is used to study 
the stability of the Euler equations governing the motion of an inviscid incompressible 
fluid. It is proved that any flow with exponential stretching of the fluid particles is unstable. 
In the case of an arbitrary axisymmetric steady integrable flow, a sufficient condition 
for instability is exhibited in terms of the curvature and the geodesic torsion of a stream line 
and the helicity iif the flow. 

I. INTRODUCTION 

The problem of hydrodynamic stability is a classical 
problem. In this paper we will discuss. conditions under 
which general flows of an inviscid incompressible fluid in 
3D are unstable. We employ an instability criterion derived 
in a previous paper (see Vishik and Friedlander!) based on 
a Lyapunov-type exponent associated with a system of 
ODEs. The use of ODEs to obtain instability criteria for 
PDEs appears to be a powerful technique where it can 
appropriately be applied. An important paper which intro
duced a geometric approach to the problem of hydrodyw 
namic stability is that of Arnold. 2 Arnold states that "there 
appears to be an infinitely great number of unstable con
figurations." This present paper bears out this observation 
and illustrates the fapt that large classes of flows are un· 
stable. 

We briefly mention some of the more recent work 
whose techniques are related to those that we employ. Eck
hoff and Storesletten' and Eckhoff' showed that local in· 
stabilities for hyperbolic systems can essentially be reduced 
to a local analysis involving ODEs. Bayly' studied the sta
bility of quasi-2D steady flows via an analysis of a system 
of ODEs with the Floquet exponent giving the growth rate 
of the instability. Lifschitz and Hameiri6•7 used methodS of 
geometrical optics to examine localized instabilities and to 
obtain effective stability conditions for general vortex rings 
via an analysis of the appropriate transport equations. 

We now formulate the instability criteria on which the 
results proved in Secs. II-IV are based. Let u(x) be a 
steady solution of Euler's equations governing the motion 
in 3D of an inviscid, constant density fluid: 

(u'V)u=-VP, 

V·u=O. 

(1.1 ) 

( 1.2) 

The 3D vector field u(x) denotes the velocity and the sca
lar field P(x) denotes the pressure in the fluid. Using 
WKB-type asymptotic methods, Vishik and Friedlander! 
prove that the growth rate a of a small perturbation of an 
equilibrium solution of Eqs. (1.1) and (1.2) is bounded 
from below by the following universal quantity of a geo· 
metric nature: 

lim (lIt)log sup I b("o,50,t) I <a. (1.3) 
t_ ~ "".;o.bo 

lbol = lSol = l.bo·;o=O 

The vector b("o,50,t) is the first term in an expansion of the 
amplitude of a high frequency wavelet localized at "0. The 
vector 5 is the spatial wave number vector for the wavelet. 
The vectors b and 5 satisfy the following system of ODE: 

x=u(x), (1.4 ) 

( 1.5) 

( 1.6) 

with initial values x(O) ="0, 5(0) =50' b(O) =bo, where 
bo·50=0. 

The sufficient condition for linear instability (i.e., pos
itivity of the growth rate a) given by Eq. (1.3) is a precise 
mathematical fomiulation of the concept of local instabil
ity for fluid motion. We note that the Ihs of Eq. (1.3) 
involves the supremum; hence any Lagrangian trajectory 
of the flow could provide a positive value on the bound 
from below on a and hence imply instability. In several 
papers,8-1O Friedlander and Vishik have demonstrated the 
effectiveness of this instability criterion; for example, it is 
shown that any flow with a hyperbolic stagnation point is 
unstable. 

In the present paper we will complete our study of the 
types of flows for which the criterion (1.3} is effective. In 
Sec. II we prove that the existence of a positive Lyapunov 
exponent at any point "0 implies that the flow is unstable, 
i.e., the existence of exponential stretching in the flow im
plies instability. As was first pointed out by Arnold,2 all 
numerical evidence indicates that so-called "ABC" flows 
possess exponential stretching in the volume (although it 
may be only a small part of the volume when the flow is 
close to integrable). [See, for example, Arnold2.11 Henon,I2 
and Dombre et al. "] ABC flows are important in dynamo 
theory and of relevance to the topic of "chaos." A flow 
with exponential stretching in the volume is an example of 
a nonintegrable flow. For those values of the parameters 
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456 S. Friedlander and M. M. Vishik: Instability criteria for flows 

for which there is a stagnation point in the flow (e.g., 
A=B=C= I), instability follows immediately from Fried
lander and Vishik." In contrast, in Sec. III we examine 
integrable flows. We show that b(t) would grow at most 
algebraically when s(t) is chosen to be an unbounded so
lution to the cotangent equation (1.5). Hence we seek the 
possibility of a positive value for the lhs of Eq. (1.3) by 
examining Eq. (1.6) under the condition that sU) is a 
bounded solution to Eq. (1.5). A study of the monodromy 
operator for Eq. (1.6) leads to an explicit condiiion under 
which there exists a growing solution b(t), thus implying 
instability by criterion (1.3). We remark that an important 
feature of our results is the fact that the instability criterion 
involves only calculating averages rather than solving an 
ODE. In Sec. IV we give a geometric interpretation of a 
sufficient condition for instability in terms of an average of 
the curvature and the geodesic torsion of a streamline. 

II. EXPONENTIAL STRETCHING 

The idea that exponential stretching of fluid particles 
could imply instability for the Euler equations is originally 
due to Arnold? In this seminal paper he examined an ex
ample of a model flow on a compact manifold M with a 
Riemannian metric. A vector field v is defined on M such 
that v may be taken to be the velocity field of an irrota
tional perfect fluid. Every particle of fluid moving in that 
field stretches in one direction and contracts in another 
direction. We will now use the inequality (1.3) to prove 
that, in fact, every flow with exponential stretching some
where in the flow is linearly unstable. 

Proposition 2.1: Let b, and II, be two linearly indepen
dent solutions ofEq. (1.6) with both b, (0) = b,o and b2(0) 
=b20 being perpendicular to So. Then Area(b,(t), b2(t» 
=Area(b,O'~) ISol/ls(t) I· (The same observation has 
been made by B. Bayly, personal communication.) 

Proof.' 

d 
dt Vol(b,(t),b2(t),S(t» 

=det(b"b2,S) +det(b,b2,S) +det(b,b2,g). (2.1) 

WesubstituteEqs. (1.5) and (1.6) intoEq. (2.1) to obtain 

d 
dt Vol(b"b2,S) 

=det( - (:)b"b"s) +det( b,,- (:)b2,s) 

+det( b"b2,-(:rS) 

= -Tr(:)det(b"b2,s) +det(b"b2,(VXu) Xs)· 

(2.2) 

Since V'u=O, it follows that Tr(aul&':) =0. Furthermore 
(V Xu) X s is perpendicular to S and hence this vector 
is a linear combination of b, and b2; thus 
det(b"b,,(VXu) XS) =0. Hence 

d 
dt Vol(b"b2,s) =0 (2.3) 

which implies that 

Area(b,(t),b2(t»ls(t) I =Area(b'o,b2o) Isol· (2.4) 

• 
Theorem 2.1: Let the flow x=u(x) have a positive 

Lyapunov exponent at some point Xo. Then the flow u(x) 
is linearly unstable as a steady state solution of the Euler 
equations. 

. . Proof: Let 1/(t) be a solution to the system 

x=u(x), x(O) =xo, 

>i= (:)1/, 1/(0) =1/0 

(2.5) 

such that 

(2.6) 

[i.e., 1/(t,) is exponentially growing for t,~ co]. We define a 
matrix At = g~g. where g* is the Jacobi matrix g* 
= (&':/&.:0). From Eq. (2.6) it follows that 

(2.7) 

and hence the maximal eigenvalue of A,.(xo) is greater , 
than or equal to e2St

,. From the definition of g*, it follows 
that 

I s(t,) I 2= «g:;") TSO' (g:; ")so)= (At-:-'(xo)so'so), (2.8) , 
The volume preserving property of the flow implies that 
I A/xo) I = I; hence there exists an eigenvalue of 
A;:-'(xo) which is less than or equal to e-2St,. For So being , 
the corresponding eigenvector we have, from Eq. (2.8), 

(2.9) 

Let b,o and b20 be vectors perpendicular to So with I b,o I 
= Ib201 =1. From Proposition 2.1, it follows that 

IArea(b,(t,),b,(t,» l>eSt
,. (2.10) 

Hence at least one of the vectors b, (t,) and b2(t,) has nOrm 
greater than or equal to e8t/ 2. Thus the Ihs of Eq. (1.3) is 
greater than or equal to 812, hence implying instability in 
the flow. • 

III. INTEGRABLE FLOWS 

We now turn to the case of integrable flows with 
smooth velocity fields u. We write the Euler equations 
( 1.1) and (1.2) in the form 

uX(VXu)=VH, (3.1) 

V'u=D, (3.2) 

where the Bernouilli function H(x(t» is given by 

H=P+u2/2. (3.3 ) 

We will use the system of ODEs (1.4)-( 1.6) and the con
dition (1.3) to obtain explicit criteria for instability of gen-
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s. Friedlander and M. M. Vishik: Instability criteria for flows 457 

eral axisymmetric integrable flows with V H=I=O. We con
sider a compact noncritical level surface H=Ho which, 
from Eq. (3.1), is necessarily diffeomorphic to the 2D 
torus (Arnold 14,2). 

Proposition 3.1: Let x(t) be the solution to Eq. (1.4) 
with initial condition x(O) =Xo. Then S(t) = V H(x(t» sat
isfies Eq. (1.5). 

Proof We use Eq. (3.1) to express (dldt)VH in terms 
ofu: 

d du d 
dt VH= dtX (Vxu)+uXd/VXu). (3.4) 

Now 

~~=(!:)u. (3.5) 

The curl of Eq. (3.1) gives 

- (u'V)(VXu) + (VXu·V)u=O. 

i.e., we have the steady form of "Kelvins vorticity theo
rem," 

d (au) dt (VXu) = ax (Vxu). (3.6) 

Substituting Eqs. (3.5) and (3.6) into Eq. (3.4) gives 

:t VH=(:)UX (VXu)+uX (!:)(VXU) 

(
au)T 

=- ax VH, (3.7) 

i.e .• VHis a solution to Eq. (1.5). • 
Proposition 3.2: Let bo be perpendicular to V H(Xo) and 

let S(t)=VH(x(t». t:;,O. Then the solution b(t) to Eq. 
(1.6). with initial condition bo, is bounded. 

Proof Proposition 3.1. together with Eqs. (1.4)-( 1.6) 
implies-

~(b'u) = _ (8u)b'U+b.(au)U 
dt ax ax 

=b'((:)-(:)} 

=b·(VXu) XU= -b'5'=O (3.8) 

and 

~(b'V'Xu) = - (8u)b'(VXU) +b'(8u) (VXu) dt ax ax 

=b·(VXu) x (VXu) =0. (3.9) 

Since the trajectory lies on a noncritical compact level sur
face. Eq. (3.1) together with Eqs. (3.8) and (3.9) imply 
that b is bounded. • 

Proposition 3.3: In 2D the vector b satisfying Eq. (1.6) 
is bounded along any-closed streamline lying on a noncrit
ical level set of H. 

Proof Let So be perpendicular to boo We use Eqs. (1.5) 
and (1.6) to write 

:t det(b.S) =det( - (::)b,S) +det(b,- (:r5') 

= - Tr(:)det(b.5') -det«VXu) Xb.S). 

(3.10) 

Now in 2D the vector (Vxu) Xb is parallel to 5'. Also 
V'u=O implies that Tr(8ulax) is zero. hence Eq. (3.10) 
gives the result 

d 
dt det(b.S) =0. (3.11) 

Therefore I b 1'1 S I is a constant along any streamline and b 
is bounded provided S·u=l=O. In the case where S'u=O, the 
vector S must be parallel to V H and hence by Proposition 
3.2. we again conclude that b is bounded. • 

Remark: Proposition 3.3 shows that in 2D the lhs of 
Eq. (1.3) is zero on any nondegenerate streamline. How
ever the degenerate streamlines (i.e .• the separatrix) could 
easily provide a positive lower bound for a. In fact. Fried
lander and Vishik,9 Lifschitz and Hameiri6 prove the in
stability of any flow in 2D or 3D with a hyperbolic stag
nation point. 

Proposition 3.4: Let 5'(t). with S(O) =5'0' be an un
bounded solution to Eq. (1.5). Let b(t). with b(O) 
= bol So. be the solution to Eq. (1.6). Then 

-1 
lim -loglb(t) I =0. 
t-+ ~ t 

Proof' Let 1/(t). with 1/(0) =1/0, be a solution to the 
tangent equation iJ= (8ulax)1/. According to a theorem of 
Arnold.2•

11
•
14 we conld introdnce a coordinate system 

(a,{3,z) in the neighborhood of the torus H = Ho such that 
z is a smooth function of H. and 

(3,12) 

(3.13) 

a,{3 mod 21T. In this notation the evolution of the tangent 
vector 1/ is given by 

a a a 
1/=1/a aa +rf 8{3+1/' 8z 

a a a 
>--+(1/a+t<OI1/') aa + (rf+t<021/') 8{3+1/' az' (3.14) 

The evolution of the 1 -form 5' is given by 

S=Sa da+S/3 d{3+S, dz 

>--+Sa da+S/3 d{3+ (S,-t<oISa-t<o2S/3)dz. (3.15) 

From Eq. (3.15) it follows that lsi is either bounded 
(when <015a+<025/3=0) or growing linearly with t. Under 
the assumption of the proposition, we consider the situa
tion where I S I grows linearly with t. 

Using Eq. (1.6) we write 
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458 S. Friedlander and M. M. Vishik: Instability criteria for flows 

We use Eq. (3.1) and the fact that 

( (:)-(:n~~(VXU)XU 
to rewrite Eq. (3.16) in the form 

d 
dt (b'u) = -b'(VH- VH's)s/lsI2) 

+2[ (:)b:s ] (s·u)/lsI
2
. 

Similarly, 

:t (b'VXU)=2[ (:)b'S](S'VXU)/lsI
2
, 

and trivially· 

d 
dt(b's/IW =0. 

(3.17) 

(3.18) 

(3.19) 

It follows from Eqs. (1.5), (3.5), and (3.6) that 
(dldt) (S'u) and (dldt)(S'VXu) are zero. Therefore it 
follows that as t ~ co the direction of S approaches the 
direction of V H. Hence we can apply Gronwall's Lemma 
to the system (3.17)-(3.19) to obtain the result that 

-I 
. lim -Ioglb(t) I =0. 

(-00 t • 
Remarks: The proof given above shows that b(t) could 

grow at most algebraically when set) is unbounded. Fur
thermore, Eq. (3.15) shows that S(t) is bounded if and 
only if 

S(t) ="'{x(t)), (3.20) 

where ",(x) is a smooth covector field (i.e., I-form) on the 
torusH=Ho· 

We now restrict our attention to axisymmetric toroidal 
equilibria. Let u and H be axisymmetric with respect to 
rotations about the axis of the nested toroidal surfaces H 
=Ho constant. From Proposition 3.4 it follows that only a 
bounded vector field S is a possible choice for S that will 
lead to an exponentially growing solution b to Eq. (1.6). 
We will consider in more detail the construction of a 
smooth axisymmetric field "'(x) such that set) ="'{x(t)) is 
a bounded solution to Eq. (1.5) for any trajectory x(t) 
lying on the torus H=Ho. We write 

",(x) =c, (x)u+c2 (x)VXu+c,(x)V H, (3.21) 

c,(x)luI 2+C2(X)U'VXu=d, I 
c,(x)u'VXU+C2(X) IVXuI 2=d2 . 

(3.23 ) 

The functions c, (x) and C2(X) are determined from Eq. 
(3.23) and the function c,(x) satisfies 

",'VHII VHI 2=c,(x(t)). (3.24) 

Hence, 

:t c,(x(t»= - (:) T ",. VHI I VHI2 

-",.( :) \ HI I V HI2 

(
au)T 

+2(",'VH) ax VH'VHIIVHI 4 

(3.25) 

Therefore a single-valued function c,{x(t» can be uniquely 
determined by the condition (c,) =0, where the mean 
value is taken over the torus with respect to the normalized 
invariant measure proportional to d(area)/IVHI. Such a 
value for c,(x(r)) exists if and only if the mean value of the 
rhs of Eq. (3.25) is zero, i.e., 

(( (::) + (:) }C\u+c2VXU)'VHIIVHI
2

) =0. 
(3.26) 

According to the Birkhoff-Khinchin ergodic theorem, for 
any axisymmetric function! on the torus H=Ho 

1 rT 
(I> =7' J

o 
f(x(t))dt, (3.27) 

where T is the period of the helical curve x(t). 
Let 1{1, (x) be constructed by determining c, (x), C2(X), 

and c,(x) from Eqs. (3.23) and (3.26) with the condition 
(c3(x»=0. The general",(x) is m,,,,,(x)+m2VH, where 
m, and m2 are constants. We consider a choice for Set) of 
the form 

(3.28) 

where E is a small parameter. We seek the solution b(t) to 
Eq. (1.6) in the form of an expansion in powers of €: 

(3.29) 

We will study the monodromy operator for Eq. (1.6). The 
condition (S·b)=0 implies 

where c" C2' C3 are axisymmetric functions of x. As we (B' V H) =0 (3.30) 

have previously noted, s'u and s·VXu are constants. We and 
write 

"'{x (t ))·u(x (t)) = d, I 
"'(x(t))·VXu(x(t))=d2 ' 

(3.22) 

where d, and d2 are constants. Substituting Eq. (3.21) into 
Eq. (3.22) gives 

(B,,,,,) + (B,' V H) =0. 

Let B(O)=bo and 

. B= - (:)B+2( (:)B'VH)VHlIVHI
2
. 

CHAOS, Vol. 2, No.3, 1992 
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We choose 

(3.33 ) 

We substitute the expansions in powers of E for band S 
into Eqs. (3.17) and (3.18) and use Eq. (3.31) to obtain 

~ (BI'u) = (B''''1)+2( (:)B'VH )DI/I VHI' (3.34 ) 

, and 

(3.35) 

where the constants DI and D2 equal ("'I'U) and 
('" I'VXU), respectively. Hence, 

BI(T)·u(Xo)= fo
T 

(B''''1+2( (:)B'VH)D1/ IVHI2]dt 

(3.36) 

and 

From Proposition 2.1 and the fact that 

(V H +E"'I)(X( T»= (V H +E"'l)(X(O», 

we observe that the determinant of the monodromy matrix 
is identically 1. In terms of the expansion in powers of E the 
monodromy matrix has the form 

I+fJ1+E'J2+ .. ·· 

Hence, 

1 = I +E Tr J, +E'(Tr J2+detJ,) + .... (3.40) 

It follows from Eq. (3.40) that 

and 

(3.4! ) 

Thus the equation for the Floquet exponents A. associated 
with the monodromy operator for Eq. (1.6) is 

A,2-A.(2+E' TrJ2+",) +1=0. (3.42) 

Hence it follows from Eqs. (3.41) and (3.42) that a suffi
cient condition to have one Floquet exponent with modu
lus greater than unity is 

(3.43) 

B1(T)'VXU(xo)= faT (2( (:)B'VH)D2/ IVHI2]dt. 
(3.37) 

Let (v, w,vHIIVHI 2) be the dual basis to (u,VXu, 
V H). The basis for the 2D space perpendicular to S = V H 
+E"'I could be written in the form, 

V,=V-E(V''''I)VHII VHI 2 

+E'(v"PI) ('PI 'VH)VH/! VH!'+"', 

W,=W-E(W''''I)VHII VHI2 

+f2(W''''1) ("'I'VH)VHII VHI2+ .... 

We have the following monodromy operator: 

where 

(3.38) 

(3.39) 

by Eq. (3.39), we may write the sufficient condition for 
instability in the form 

D2[ fo
T 

v'""dt fo
T 

w'(VHi IIVHI 2dt 

- fo
T 

W''''ldt fo
T 

v'(VHi IIVHI 2dt]>O. (3.44) 

We note that in terms of the "action-angle" coordinates 
introduced in the proof of Proposition 3.4, the I-form "'I 
can be written as 

(3.45) 

hence from Eq. (3.13) and the definition of D2 as ",,' Vxu 
we have 

(3.46) 

Thus a sufficient condition for instability for a general axi- . 
symmetric steady integrable flow is 

I (T __ • _7. 

where 

J 0 V·1{I\ aI, 

rT 
Vdt, Jo . 

(T , 7.1 J 0 w·t{J, ar 

faT Wdt 
(3.47) 

Thus Eq. (3.43) gives a sufficient condition for the Ihs of V=v'(VHi IIVHI2 
Eq. (1.3) to be positive, hence implying instability for fluid 
flow. Using Proposition (3.1) in the expression for J I given and 
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IV. A GEOMETRICAL INTERPRETATION OF THE 
INSTABILITY CRITERION 

From the definition of v and w as the dual vectors to u 
and VXu it follows that 

tfi,.=C,U+C2VXU+C3VH=D,v+D2W+C3VH. (4.1) 

The boundedness condition on S given by Eq. (3.26) can 
be written in the form 

2 foT 

(c,u+c2VXu)'(VHll/VH/2dt- foT 

c,dt=O. 

(4.2) 

We substitute for .p, from Eq. (4.1) and use the definition 
of V and W given in Eq. (3.48) to write Eq. (4.2) in the 
form 

D, f: (V-v2/2)dt+D2 f: (W-v·w/2)dt=O. (4.3) 

We substitute for .p,·V and .p,·w using Eq. (4.1) and elim
inate D, from Eq. (4.3) to write the instability condition 
(3.44) in the form 

(-u,/ (2V-v
2
)dt)[2 ((W (Vdt 

-v ( W dtfdt- (( V dt) 

X [foT v2 dt foT w2 dt- (foT V'W dtn 1 >0. (4.4) 

A sufficient condition for Eq. (4.4) to hold is 

foT 

Vdt<,O. (4.5) 

In order to give a geometric interpretation of the terms 
in the above sufficient criterion for instability we introduce 
notation from differential geometry. It follows from the 
definition of V and W in Eq. (3.48) that 

(vm I/VH/ 2= Vu+ WVXu 

. -((:r VH'VH)VHI/VH/
4 

(4.6) 

and 

V=(/VXU/ 2U·(vm 

-u'VXu(VXu)-(Vm )1/VH/ 2, (4.7) 

W=( /u/ 2 (VXu) '(VH) 

- (u'Vxu)u' (VHj )1/VH/ 2. (4.8) 

We eliminate the (VXu)'(VH) fromEq. (4.7) usingEq. 
( 4. 8) to obtain 

V=u'(VH) /u/ 2_(u·Vxu)WI/u/ 2. (4.9) 

In terms of elementary concepts from differential geometry 
(see, for example, HSiung15

) the quantities Wand 
u'(VH) l/u/ 2 may be written as 

( 4.10) 

and 

(4.11 ) 

where K is the curvature of the streamline, Tg is the geodesic 
torsion of the streamline and n is the principal normal to 
the streamline. Thus from Eq. (4.9) the instability crite
rion (4.5) may be written in terms of geometric quantities 
as the condition 

f: Kn·VH-Tg(U·VXu)I/VHI 2 dt>O. ( 4.12) 

The condition (4.12) can be viewed as a generalized 
Rayleigh criterion for the instability of an arbitrary steady 
integrable flow. We note that for particular flows where 
either the helicity u' V X U is zero or the geodesic torsion Tg 

is zero, the criterion (4.12) reduces to the simple condition 
on the curvature 

(4.13 ) 

We remark that this condition is in agreement with the 
condition derived by Lifscbitz and Hameiri7 for the insta-
bility of a vortex ring witbout swirl. . 
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