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Abstract 

 

Modeling of Pore Pressure Propagation and Dissipation in Compressible 

Porous Media 

Hussein A. Hachem, M.S.E 

The University of Texas at Austin, 2017 

 

Supervisors:  Chadi El Mohtar and Robert Gilbert 

 

 This research is a study of the different phenomena associated with the propagation of pore 

water pressure in high plasticity clays. Specifically, it addresses the pore pressure response in areas 

subjected to sudden increases in pore water pressure at their top boundary. The main applications 

of this research would be the study of pore pressure responses in grouted piezometers and the pore 

pressure buildup in areas with rainfall-induced landslides failures. This phenomenon of pore 

pressure diffusion is coupled with Terzaghi’s theory of consolidation. For that purpose, an analysis 

of pulse tests (consisting of measuring pore pressure response with time due to increases in pore 

water pressure boundary conditions) conducted by previous researchers is performed. In 

conjunction with the pulse tests, modified consolidation tests are also executed. The coefficients 

of diffusion affecting the pore pressure response in each of these cases are then evaluated. 

In addition, an analytical model is developed to mathematically describe the pore pressure 

response in clays under pressure pulses. The derivation of the differential equation describing this 

response makes use of Darcy’s theory of flow in porous media, where a difference in gradients 

causes a difference in flow patterns. The derived equation is then compared to Terzaghi’s equation 

of consolidation. This couples model shows that a sudden pulse of pressure causes a slower pore 

pressure response than the one caused by an increase of total stress. 

The role that pore pressure diffusion and consolidation simultaneously contribute are 

studied in a modified CRS consolidation setup. The mathematical modeling of these processes 

together is compared to the experimental results. Due to these two processes working together, at 
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no particular point in time is there an increase of pressure at any depth in the soil that matches the 

initial increase of pressure application. 

The research also mentions the limitations of applying the derived equations. These 

limitations are inherently related to the simplifying assumptions presented in the theory, as well as 

to the complexity of porous media. Future follow-up research is also suggested. 
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1 INTRODUCTION 

The most agreed upon definition of a porous medium is one that has interstitial pores whose 

size allows other smaller molecules to penetrate though a diffusion mechanism. It should have a 

specific permeability, the value of which is a function of the properties of the pore geometry, not 

of the properties of the diffused fluid. 

The role that flow in porous media plays has been studied in numerous fields. In petroleum 

engineering, the processes of well drilling and extraction of oil depend on the properties of porous 

media. In chemical engineering, the study of heterogeneous catalysis, where reactants (usually 

gases) diffuse to the catalyst surface and adsorb onto it, depends on the properties of the porous 

structure. In geotechnical engineering, water flowing through porous media in the vicinity of 

engineered structures results in changes in pore pressures. These pressures, coupled with 

deformation, cause changes in the effects of mechanical loading and therefore can influence the 

stability of the structure through its interaction with the soil. The study of these coupled effects 

has been driven by the need to understand the “consolidation” processes happening due to applied 

pressures on soils (Terzaghi and Biot). The role of pore fluid has since been expanded to several 

other applications, such as failure induced  by pressurization of a borehole, hydraulic fracturing 

and propagation of fractures in earthquake mechanics, to name a few. 

This thesis focuses on better understanding the pore pressure diffusion processes happening 

in high plasticity clays. The real-life application that it intends to address is pore water pressure 

monitoring in areas prone to landslides, in particular landslides triggered by brief and intense 

rainfall. These happen due to locally elevated pressures along the failure surface. Infiltration of 

water is due to multi-dimensional pressure diffusion problem best estimated by a non-linear form 

of Richard’s equation, where variations in pressure head are a function of changes in hydraulic 

conductivity and volumetric water content (Reid, 1994). This paper takes a look at this process in 

saturated soil, which is a good assumption to make in areas where rainfall is intense and over a 

short period of time. Baum and Reid (1995) discovered that surface infiltration in these conditions 

can saturate a body of soil in just a few days. The problem can be simplified by looking at one-

dimensional linear diffusion models to get a transient fluctuation response of pressure with depth. 

In this thesis, results from modified 1-D consolidation tests were analyzed to better understand 

pore pressure propagation though soils. The modified consolidation tests included measuring the 
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pore pressure buildup and dissipation at the base of a specimen while the total stress or pore 

pressure at the surface were changed. The volumetric changes were recorded over time as well to 

provide an independent measure of consolidation. 

Following this introductory Chapter 1, the thesis is composed of the following six chapters: 

 Chapter 2 provides a literature review of porous media and the pore pressure diffusion 

happening in these media. These processes are examined in conjunction with their 

dependency on soil properties. The background theory on pressure diffusion (outlined in 

Biot’s and Terzaghi’s research) is also presented, along with simple linear diffusion model 

and possible applications in real life. 

 Chapter 3 presents an analytical model of pore pressure propagation that best simulates the 

pore pressure response in clays due to a pulse of water at its top boundary. The analysis 

discusses the gradients associated with the boundary conditions adopted and the derivation 

of the differential equation of the flow caused by the difference in gradients with depth. 

 Chapter 4 is an outline of the experimental procedure used by previous researchers to 

obtain the data that is analyzed in this study. The tests used in the analysis consist of 

consolidation tests and “pulse” tests, the difference between which is associated with 

different sets of boundary conditions.  

 Chapter 5 outlines the analysis and modeling of the experimental results. The consolidation 

and pulse tests results are compared in terms of time response due to change in pore 

pressure, as well as the difference in the corresponding diffusion coefficients. 

 Chapter 6 highlights the main conclusions from this research and lists future follow up 

research to continue this work. 
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2 LITERATURE REVIEW 

2.1 Introduction to porous media 

This section of the literature review presents a brief overview of the basic concepts that are 

relevant to understanding behavior of porous media and the flow and water propagation through 

it. 

2.1.1 Definition of a porous medium 

A porous medium is defined as a solid with uniformly distributed voids throughout the 

bulk. The “matrix” is the skeletal portion of the medium, which refers to the solid phase. The pores 

are filled with a fluid (gas and/or liquid). Many natural materials (soil and rock) and man-made 

substances (concrete, ceramics) can be considered to be porous media. The pores in the matrix can 

either be continuous or non-continuous. A visualization of a porous medium is presented in Figure 

1. 

 

Figure 1 Digitalized porous medium built from overlapping randomly placed spheres 

(https://ciks.cbt.nist.gov/~garbocz/reldiff/node4.html) 

Porous materials have different mechanical behaviors from non-porous ones, so their 

identification is usually done by performing experiments on a sample, such as density and yield 

strength. Such sets of experimental procedures are important characterization tools in a numbers 

of scientific and engineering branches. (Dullien, 1991). 

Two approaches can be adopted in the study of porous media: (Lancellotta, 2002) 
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- The microscopic approach: each phase constituting the porous medium is studied on its 

own as a single body using a micromechanical approach. The interaction mechanisms at 

the interfaces of these individual bodies also have to be taken into account to get a complete 

understanding of the multiphasic medium. 

- The macroscopic approach: it uses a homogenization method, where the different phases 

are distributed through the body using an averaging process. 

The two approaches have an ultimate goal of identifying macroscopic properties of the 

medium. Both approaches have been studied in the literature (Dullien, 1991 and Ehlers, 2002) and 

have their own advantages and merits in different areas of research. The microscopic approach is 

used in atomic and molecular physics for studying the atomic or molecular structure of the different 

phases and their interaction. This method has an advantage of describing the individual elements 

of the body based on their own motion, considering the well-studied separate characteristics of 

each phase. However, one major difficulty arises from determining the coupling mechanisms of 

the phases at their interface. One other difficulty is the fact that the detailed geometry and 

distribution of pores on the microscopic level is almost impossible to characterize. In addition, no 

two similar specimens will have the same pore distribution.  For this reason, in most other areas 

of engineering, the macroscopic approach presents a more practical approach. It is easier and more 

practical to focus on the macroscopic analysis of features that are assumed to be independent of 

the pore configuration. Making this assumption has the advantage of making the description 

repeatable and predictable. 

In the following discussions, a macroscopic approach based on the theory of mixtures and the 

concept of volume fraction is going to be used. 

2.1.2 Porosity 

Porosity is one the basic characteristics of a porous medium. By definition, porosity is the 

fraction of the volume of the medium that is occupied by void space, or “pores”. Equation 1 

represents this relationship: 

𝜑 =
𝑉𝑣

𝑉𝑡
= 1 −

𝑉𝑠

𝑉𝑡
 

(Equation 1) 

Where φ is the porosity (a number from 0 to 1) 
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           Vv is the volume of the voids [L3] 

           Vs is the volume of solids [L3] 

           Vt is the bulk volume, or total volume of the material [L3] 

Over the course of sediment deposition, some void spaces become isolated from each other 

due to excess cementation. This geologic occurrence makes it important to differentiate between 

“interconnected” and “isolated” pore spaces. Figure 2 shows the difference between those two 

different types. 

 

Figure 2 Illustration of pores and effective pores in a sand porous medium (Reservoir Engineering Online, 2014) 

This leads to two different values of porosity: 

- Absolute porosity, which indicates the total volume of voids in the medium as a function 

of the total volume. This includes both interconnected and isolated pores. 

- Effective porosity, where the fraction of only interconnected pores is of interest. 

From the point of view of flow in porous media, the effective porosity is the one that is more 

important. In fact, a material can have a high absolute porosity, yet may not conduct much fluid 

due to a lack of interconnected pores. For granular materials and poorly to moderately cemented 

soils, the effective porosity is close to the absolute porosity. For heavily cemented clays, there can 

be a significant difference between the two (Katsube, 2010). 
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2.1.3 Hydraulic conductivity 

Hydraulic conductivity is another very important parameters that affects the pore water 

pressure response in a porous medium. Also known as “permeability”, it is defined as the capability 

of the soil to transmit water when subjected to a hydraulic gradient. 

Hydraulic conductivity is defined according to Darcy’s law, which relates the fluid flux to 

the change in gradient: 

𝑞 = −𝑘𝑖 (Equation 2) 

where q is flux [L/T] 

           k is hydraulic conductivity [L/T] 

           i is gradient [L/L] 

Hydraulic conductivity depends on several factors in the soil, including pore size 

distribution, fluid viscosity, grain size distribution, void ratio, specific area of solids and degree of 

saturation. The last two factors make the most difference as to how high k would be: the higher 

the surface area, the lower the value of k (as is the case in clays); the higher the degree of saturation, 

the higher the value of k. In fact, k assumes a maximum value when the soil is fully saturated. 

The estimation of k can be determined by two different ways: 

 Experimentally, by performing a constant head test or a falling head test. Both techniques 

consist of confining the ends of a sample in a hydraulic conductivity ring with plates that 

contain porous stones. This ensures constant volume throughout the test procedure. A 

better control over the stress in the cell can be achieved by placing the specimen in a 

consolidation cell with a suitable loading frame. In any case, the sample is hooked up with 

an inflow valve and an outflow valve. A change in gradient happens due to water inflow 

and the time needed for the water to get out of the specimen through the outflow valve is 

measured. 

In the constant head test, the hydraulic gradient is kept constant and the hydraulic 

conductivity is calculated as follows: 

𝑘 =
𝑄𝐿

𝐻𝑙𝐴𝑡
 (Equation 3) 
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Where Q is the flow of fluid (L3) 

            L the length of the specimen 

            Hl the head loss across the specimen 

            A the cross-sectional area of the sample 

            t the time over which Q is measured 

In the falling head test, the hydraulic head decreases with time. If the head loss at a time t1 

is H1, and at time t2 is H2, and if the cross-sectional area of the burette where the water is 

falling is a, then 

𝑘 =
𝑎𝐿

𝐴(𝑡2 − 𝑡1)
ln(

𝐻1

𝐻2
) (Equation 4) 

 By using analytical correlations. For example, if a consolidation test is being conducted, 

then the hydraulic conductivity can be back-calculated from the coefficient of 

consolidation: 

𝑘 = 𝑐𝑣𝑚𝑣𝛾 (Equation 5) 

 Where mv is the coefficient of compressibility 

                 cv the coefficient of consolidation 

                 γ the unit weight of the fluid  

 More information on consolidation is presented in later sections. 

2.1.4 Biot’s theory of poroelasticity 

The presence of water in a poroeslastic medium changes its mechanical properties, a theory 

that has been adopted and analyzed by several researchers in different fields. This change in 

behavior is summarized by two observations (Detournay & H.-D. Cheng, 1993): 

 An increase in pore pressure dilates the medium 

 If fluid is prevented from escaping, a compression causes a rise in pore water pressure 

The coupling of deformation-diffusion mechanisms has been addressed by several theories, 

including Terzaghi’s theory of one-dimensional consolidation. However, it was Biot in 1941 who 

developed a linear theory of poroelasticity that described both mechanisms mentioned above. Biot 
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later expanded his own theory to include wave propagation of diffusion waves in porous media. 

The importance of providing a brief discussion of Biot’s theory in this paper lies with the fact that 

the definitions of compressibility provided by it are applicable to the pore pressure diffusion 

problem.  

Biot introduced a quantity that he named “the increment of fluid content” ζ, which describes 

the “volume of the water exchanged by flow into or out of the control volume”. To put it in another 

way, it represents the amount of water stored in the system. The keys concepts in Biot’s theory are 

represented by two main constitutive equations: 

𝜖 = 𝑎11𝜎 + 𝑎12𝑝 (Equation 6) 

휁 = 𝑎21𝜎 + 𝑎22𝑝 (Equation 7) 

where ε is the volumetric strain, positive in expansion, negative in contraction 

           σ is the applied stress, positive in tension, negative in compression 

           p is the pore pressure 

The terms a11, a12, a21 and a22 are poroelastic constants which can best be described as the 

change in a dependent variable relative to a change in an independent variable. They are defined 

as follows: 

 

 

(Equation 8) 

 

(Equation 9) 

 

(Equation 10) 

 

(Equation 11) 

where K is the drained bulk modulus 

           1/H = 1/H1 is the poroelastic expansion coefficient 

            R is a poroelastic constant, 1/R is called specific storage coefficient 
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The term 1/K is called drained compressibility, and it accounts for both the fluid and the 

solid matrix. It is therefore related to the change in porosity. 

Other constants, such as Skempton’s coefficient, can also be derived from the three originally 

defined parameters. The definition of Biot’s compressibility is important to the solution of the 

diffusion problem, as it was the first one that related the bulk modulus to the variation of water 

content in the soil, and therefore the pore pressure response due to applied pressure. In addition, 

Biot’s theory made other derivations regarding drained and undrained response possible in 

diffusion problems. 

2.2 Fluid diffusion 

The phenomenon of pore pressure diffusion occurs due to the behavior of flowing water. Water 

molecules that traverse a solid mass of clay adheres onto the interlayer of clay minerals, forming 

a film. This process is called “adsorption” and water can be classified into two categories of 

adsorption (Tang, Chen, & Song, 2016): 

 Strongly adsorbed water: has a solid-like structure and can therefore be considered a part 

of the solid phase. Cannot participate in the process of diffusion 

 Loosely adsorbed water: is not fixed and therefore can participate in laminar flow. As long 

as there is loosely adsorbed water, the propagation of water from a point to another in ac 

clay sample can happen. 

These definitions apply only to clay minerals, as they have a large surface area and a negative 

charge on their interface, which permit the water molecules to get adsorbed. For this reason, water 

propagation in granular materials follows a very different scheme that in clays. 

A parameter called “loosely adsorbed index” Ilo defines the content of loosely adsorbed water 

present in a clay material. If Ilo > 1, loosely adsorbed water practically behaves like free water. 

When Ilo → 0, the properties of the water change to a more strongly adsorbed state. 

When an excess pressure is applied, the amount of free water and loosely adsorbed water 

decrease. Ilo decreases in the process, producing a slower response rate. This causes a “time-lag 

effect” that gives the pore pressure distribution its known asymptotic shape. Tang et al. (2016) 

conducted a series of laboratory tests where samples of clay were subjected to water pressure 

increases at the top after isotropic consolidation and the pore pressure response at the bottom of 



10 

 

the specimens was measured with time. They found that if the only parameter that is changing 

between different sets of tests is the water pressure input, the pressure response due to diffusion is 

very consistent over time. As seen in Figure 3, as the consolidation pressure decreases, there is 

more free water in the clay, which allows for the diffusion to propagate at a faster rate. 

 

Figure 3 Pore pressure responses in diffusion tests in consolidated clay, with a consolidation pressure between 60 and 1200 kPa 

2.2.1 Diffusivity 

The diffusion coefficient D (or diffusivity) is a parameter indicative of the diffusion 

mobility. The definition of the diffusion coefficient arises from Fick’s law of diffusion. This law 

relates the diffusive flux to concentration in steady-state conditions. The postulation behind this 

theory is that flux goes from regions of high concentration to regions of low concentration. This 

can be applied to a series of experimental observations, from solids to liquids to gases. In 

particular, Fick’s second law of diffusion describes how the change in concentration occurs with 

time. 

For diffusion of liquids through porous media, D is referred to as hydraulic diffusivity. 

Equation 12 is the definition of D, derived from Richard’s equation combined with Darcy’s law 

(Berti & Simoni, 2010). 

𝐷 =
𝑘(𝛹)

𝐶(𝛹)
=

𝑘(𝛹)

𝑑𝜃
𝑑𝛹

 
(Equation 12) 

where k(Ψ) is the hydraulic conductivity [L/T] 
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           C(Ψ) is the specific moisture capacity 

𝜃 is the volumetric water content 

            Ψ is the pressure head 

K and C heavily depend on the degree of saturation of the medium. In case of complete 

saturation, the equation for D becomes: 

𝐷𝑠𝑎𝑡 =
𝑘𝑠𝑎𝑡

𝐶0
 (Equation 13) 

where Ksat is the saturated hydraulic conductivity 

           C0 is the specific moisture content at saturation 

The value of Ksat can be obtained by performing a constant head or falling head test on a 

clay specimen that has been back-pressured to saturation. The specific moisture content at 

saturation C0 can be obtained by performing a series of odometer tests. The odometer modulus 

(∆σ’v/∆εv) relates the vertical deformation ∆εv (compression) with a change in stress ∆σ’v. Specific 

moisture content is itself connected to the compressibility of the soil, and therefore the relationship 

between vertical deformation and volumetric water content can lead to the determination of C0. 

Treating D as a constant during saturation makes the diffusion model linear, and therefore 

easier to solve. The use of Dsat is reasonable enough when dealing with mechanisms that trigger a 

significant increase in pore water pressure such as rainstorms, especially ones that trigger failure 

(Reid, 1994). Scenarios of unsaturated media are discussed later in this section. 

Through correlations, Equation 13 for D can be expressed as follows (Yang, Li, & Zhang, 

2015): 

𝐷 =
𝐾

𝜑𝛽𝜇
 (Equation 14) 

where K is the permeability [L2] 

            φ is the porosity 

            β is the compressibility [psi-1] 

            μ is the fluid viscosity [psi.sec] 

The permeability K is related to the hydraulic conductivity k by the following relation: 
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𝐾 = 𝑘
𝜇

𝛾
 (Equation 15) 

 

2.2.2 Simple linear diffusion model 

Pore pressure diffusion waves happen when a classical diffusion equation is paired with an 

oscillatory function. For simplicity, the pressure diffusion wave propagation will be analyzed in a 

one-dimensional, homogeneous, isotropic and saturated medium.  

The pressure (P) as a function of distance x and time t, diffusion equation is given: 

𝜕𝑢(𝑥, 𝑡)

𝜕𝑡
= 𝐷

𝜕2𝑢(𝑥, 𝑡)

𝜕𝑥2
 (Equation 16) 

The boundary conditions adopted to solve this equation are: 

t = 0, x > 0, u = 0 

t > 0, x = 0, u(0,t) = u0 

t > 0, x = ∞, u(∞,t) = 0 

 

The solution is presented in the form of a Laplace transform harmonic wave equation. By 

applying a Fourier transform, the equation can be solved with this form of solution 

𝑢 = �̅� [1 − erf(
𝑧

2√𝐷𝑡
)] (Equation 17) 

where u is the pressure at depth z and time t 

    and D is the coefficient of diffusivity as defined in Section 2.2.1. 

The pressure gradient is therefore: 

𝛿𝑢

𝛿𝑧
= �̅� [−

1

√𝜋√𝐷𝑡
𝑒−

𝑧2

4𝐷𝑡] (Equation 18) 

The function is asymptotic with time (note the decrease in 𝛿𝑢 𝛿𝑧⁄  with time). 

Yang and Li have studied the effect of the change of the water properties and the frequency 

of diffusion waves on the equation parameters. The paper discusses the effect of frequency on all 

the above parameters, for specific values of permeability. 
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The behavior of pressure waves can be summarized as below: 

 When permeability decreases, wave velocity peaks occurs at higher frequencies. 

 As frequency increases, wavelength and penetration depth of the pressure wave decrease. 

 When permeability decreases, the peak wavelength and the peak penetration depth both 

shift toward low frequencies. 

 When frequency is low, there is enough time for the wave to come to equilibrium 

 

Figures 4 through 6 show spatial-temporal distribution of pressure diffusion waves in porous 

media. 

 

Figure 4 Pressure diffusion versus distance for different travel times 

 

Figure 5 Pressure as a function of travel time for various propagation 

distances 

 

 

Figure 6 Spatial and temporal distribution of pressure 
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Figure 6 shows the variation of the pressure with distance for several travel times. For a 

given time, pressure decreases as distance increases. Figure 7 shows the pressure profile vs time 

for several depths of reach, and Figure 6 shows both the space and time dependencies of the 

pressure. As seen in Figure 5 and Figure 6, there is a time lag until any pressure change is detectable 

at a specific distance. The speed of propagation of the diffusion waves is very high, but the 

amplitude of the waves decreases with distances, which is the reason for the time lag and the 

decreasing pressure values.  

 

Although not discussed in this document in any further detail, it is worth to mention that 

when travelling through heterogeneously varying soils in terms of diffusivity, the pressure 

diffusion waves are accelerated and amplified when crossing through an interface leading to a 

higher diffusivity soil.  

2.3 Terzaghi’s theory of consolidation 

Terzaghi’s theory of consolidation is a specific case of pore pressure propagation where a 

saturated clay is loaded externally. The water is squeezed out of the soil over a period of time. This 

leads to vertical deformations (settlements), which could range from instantaneously for granular 

materials to over several years for clays. The deformation of saturated soil occurs by reduction in 

pore space. 

If a surcharge q is subjected to the top of a clay specimen, there is an instantaneous increase 

in stresses across the soil, equal to q. These stresses are first acquired by the water: the pore water 

pressure Δu increases initially by q. As the water gets expelled through one or two boundaries, this 

increase in pressure gets transferred from the water to the solid particles, resulting in an increase 

in effective stress over time, as can be seen in Figure 7. 
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Figure 7 Change in excess pore pressure and effective pressure during consolidation 

Terzaghi’s consolidation is isotropic and one-dimensional, which means that drainage and 

deformations are vertical (which is a reasonable simplification if the surcharge is of a large extent). 

The diffusion coefficient in Terzaghi’s formulation is called “coefficient of consolidation” 

and the propagation of water is represented by the following differential equation (Equation 19): 

𝜕�̅�

𝜕𝑡
= 𝑐𝑣

𝜕2𝑢

𝜕𝑧2
 (Equation 19) 

Where �̅� is the excess pore water pressure 

            t is time 

            z is depth 

The solution to this equation is 

�̅� = ∑
2𝑢�̅�

𝑀

∞

𝑚=0

sin(
𝑀𝑧

𝐻
) 𝑒−𝑀2𝑇 (Equation 20) 

Where 

𝑀 =
𝜋

2
(2𝑚 + 1) (Equation 21) 

and 

𝑇𝑣 =
𝑐𝑣𝑡

𝐻𝑑𝑟
2  (Equation 22) 

Δu 

Δσ’ 
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The term Hdr is the longest drainage path of the escaping water. In one-way drainage 

situations, it is equal to the entire length of the soil block. 

An average degree of consolidation U can be derived from this expression: 

𝑈 = 1 − ∑
2

𝑀2

∞

𝑚=0

𝑒−𝑀2𝑇 (Equation 23) 

Hansen (1961) derived a good approximation for U as a function of Tv: 

𝑈 = (
𝑇𝑣

3

𝑇𝑣
3 + 0.5

)

1 6⁄

 (Equation 24) 

2.4 Current empirical literature about pressure propagation in porous media 

Several studies have looked into the application of pore pressure diffusion theory into real-

life situations. Two of the most notable examples of such applications are the study of pore 

pressure propagation in landslide prone areas, and in liquefaction situations. 

Berti et al. (2010) looked at the processes related to pore pressure diffusion in areas prone 

to landlsiding and proposed a simple linear diffusion model that would predict the groundwater 

response in a flow body subjected to rainfall. Assumptions that are deemed reasonable were made 

in the process. For example, the soil was considered to be saturated. In fact, this can be considered 

true in particular situations. Baum and Reid (2005) discovered that surface infiltration can saturate 

the landslide body in just a few days, and that the saturated soil responds rapidly to heavy rainfall. 

In a sloping area, the response of a semi-infinite slope to rainfall is theoretically given by: 

𝜕𝛹

𝜕𝑡
= 𝐷0𝑐𝑜𝑠2𝛼

𝜕2𝛹

𝜕𝑍2
 (Equation 25) 

where Z is the vertical depth from the ground surface and  is the slope angle. 

This theoretical model was compared to actual collected data using piezometers installed at 

several locations underneath the surface. The recorded measurements (Ψobs) were compared with 

the simulated data (Ψobs) using the following procedure: 

 Choosing a trial value of D0 
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 Computing the pressure heads with the above equation, with the recorded rainfall as the 

upper boundary and a constant saturated hydraulic conductivity 

 Evaluating how the calculated numbers Ψsim fit to the data Ψobs using the Nash‐Sutcliffe 

efficiency coefficient: 

𝐸𝑓 = 1 −
∑ (𝛹𝑛

𝑜𝑏𝑠 − 𝛹𝑛
𝑠𝑖𝑚)

2𝑁
𝑛=1

∑ (𝛹𝑛
𝑜𝑏𝑠 − 𝛹𝑜𝑏𝑠̅̅ ̅̅ ̅̅ )

2𝑁
𝑛=1

 (Equation 26) 

A value of Ef of - is the worst match, and 1 is a perfect match. 

 Evaluating the calibrated value of D0 using an algorithm to converge the value of Ef to a 

maximum. 

The theoretical model and the observed data agreed well with one another, as long as the 

assumptions used in the model are not violated. Results can be seen in Figure 8. 
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Figure 8 Comparison of observed (pbs) and simulated (sim) pore pressure response to rainfall 

The increase in pressure head and the time lag to peak are also similar to what is observed 

in the field, as seen in Figure 9. 

 

 

Figure 9 Comparison between observed and computed increase of (a) pore pressure at peak and (b) time lag to peak 

 

Possible examples of violation happen: 

 in the wet season, when ponding happens to high precipitation (the soil is at saturation). In 

such case, the infiltration rate becomes less than the rainfall intensity. 

 if the surface soil is unsaturated: the model works best in saturated conditions 

An important note to make about the basal boundary condition is that the measurements of 

hydraulic conductivity K of the bedrock show that it is less than the overlying clay cover. This 

(a) (b) 
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means that there should have been a ponding at the top of the bedrock. However, measurements 

show that pore pressure data can be reproduced with a constant basal boundary condition. To 

investigate this, 3 hydrologic models were proposed: 

 One with a homogenous slope (Kbedrock = Kcover) 

 One where the hydraulic conductivity of the bedrock is much less than that of the clay 

 One intermediate state with a partially leaking bedrock (Kbedrock ≈ 0.1 Kcover) 

The results of these models at a distance in the cover and at the bedrock are shown in Figure 10. 
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Figure 10 Comparison of observed and computed pore pressure response to rainfall for 3 different hydrologic models 

The best model that fits observed data is the 3rd one: partially leaking bedrock. The 2nd 

model predicts accumulation of water at the bottom of the cover, which wasn’t observed in the 

field. One reason for this may be the existence of a fissure network which allows water to reach 

the bedrock. 

The observations regarding hydraulic conductivity show that the use of a linear diffusion 

model is limited by the uncertainty that affects the hydraulic parameters. For landslide 

susceptibility analysis, it is not recommended to use a theoretical model without proper support 

from data in the field. 
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3 ANALYTICAL MODEL OF PORE PRESSURE PROPAGATION 

3.1 Assumptions 

The assumptions used in formulating this theoretical model as very similar to those proposed 

by Terzaghi in his consolidation theory. 

1. The soil is homogeneous and isotropic. 

2. The soil is saturated. 

3. The solid and water elements are incompressible. 

4. Darcy’s law is valid 

5. Flow and compression are one-dimensional (vertical) 

6. All strains are relatively small 

7. Soil properties are constant 

3.2 Pulse test model 

The propagation of water in a clay specimen caused by a pulse of water at the top can be 

reproduced in the laboratory by conducting a series of “pulse” tests. A pulse test is performed by 

increasing the pore water pressure at the top of a clay specimen in a consolidation cell. Then, the 

pressure equalization vs. time is measured at the bottom of the specimen under one-way drainage 

conditions. The difference between the pore pressure changes with time in a pulse test versus in a 

typical consolidation test is due to the initial and boundary conditions involved in the two tests. 

In a consolidation test, the total load is increased at time 0; it is assumed that this change 

will result in an increase in pore water pressure across the clay height right after application of the 

load. Due to the expulsion of water that occurs over time, the pore water pressure decreases and 

the effective stress increases. In a pulse test, the pore water pressure is increased at the top only. 

At time 0, there is no increase in pore pressure at any other point in the clay, as opposed to what 

supposedly happens in a consolidation test. 

The boundary and initial conditions in each of these two scenarios are displayed in Figure 

11. 
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𝑢�̅�is the increase in pore water pressure at time 0. 

The previous discussion implies that pore pressure pulses migrate in a specimen under 

different gradients than in consolidation. Assuming Darcian flow, a different gradient will result 

in a different flow pattern and therefore a different propagation scheme. Darcy’s law states that: 

                                                                    𝑄 = −𝑘𝑖𝐴 (Equation 27) 

where Q is the discharge (in units on [L/T3]), k is the hydraulic conductivity [L/T], i is the gradient 

[L/L] and A the area [L2]. 

The unit discharge q (discharge/unit area) is therefore defined as in Equation 2 presented in Section 

2.1.3: 

𝑞 = −𝑘𝑖 

By definition, the gradient i, which drives the flow, is the rate of head change over the 

distance that the fluid travels. For a strip of clay with height dz, an annotated schematic of which 

is shown in Figure 12, the gradient i is determined following Equation 28. 

 

 

 

 

 

 

u
 
(0,t) = 0 

u
 
(z,0) = 𝑢�̅� 

u (H,t) = 0 

Top (point 1) 

Top + dz (point 2) 

dz 

u
 
(0,t) = 𝑢�̅� 

u
 
(z,0) = 0 

u
 
(H,0) = 0 

(a) (b) 

Figure 11 Initial and boundary conditions for (a) a typical consolidation test with double drainage (b) 
a pulse test shown on a clay sample of height H 

Figure 12 Infinitesimal element of soil under study 
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𝑖 =
𝜕ℎ

𝜕𝑧
=

𝜕 (𝑧 + [
𝑢ℎ𝑦𝑑 + 𝑢𝑒

𝛾 ])

𝜕𝑧
 

(Equation 28) 

where h is the total head 

           uhyd is the hydrostatic pore water pressure 

           𝑢𝑒 is the excess pore water pressure at the time of application 

           γw is the unit weight of water 

The excess pore water pressure is the one that drives the water flow. Equation 28 reduces to: 

𝑖 =
1

𝛾

𝜕�̅�

𝜕𝑧
 

(Equation 29) 

The head gradient at point 1 is:  

𝑖1 =
1

𝛾𝑤

𝜕�̅�

𝜕𝑧
 

(Equation 30) 

The head gradient at point 2 is: 

𝑖2 =
1

𝛾𝑤

𝜕

𝜕𝑧
(𝟎 +

𝜕�̅�

𝜕𝑧
𝑑𝑧) =

1

𝛾𝑤

𝜕2�̅�

𝜕𝑧2
𝑑𝑧 

(Equation 31) 

Note the addition of 0 in Equation 31. In a typical Terzaghi’s consolidation model, this 

term is �̅�, indicating an instantaneous application of excess pressure across the whole length of the 

clay. The change in unit discharge is therefore: 

∆𝑞 = 𝑞2 − 𝑞1 = −𝑘(𝑖2 − 𝑖1) =
−𝑘

𝛾𝑤
(
𝜕2�̅�

𝜕𝑧2
𝑑𝑧 −

𝜕�̅�

𝜕𝑧
) 

(Equation 32) 

The change in discharge with time is the same as the water volume loss with respect to 

time, which in itself is equal to the change of void volume with time (since the solid matrix is 

assumed to be incompressible). Nothing that the problem is one-dimensional, it’s also equal to the 

change of vertical strain with time. This can be translated with Equation 33. 

∆𝑞 =
𝜕휀𝑧

𝜕𝑡
𝑑𝑧 

(Equation 33) 
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where εz is the axial strain 

The coefficient of compressibility mv, defined as the ratio of in volumetric strain to change 

of effective stress, can be introduced at this point. It can be written in terms of the parameters of 

interest as follows: 

𝑚𝑣 =
휀𝑧

∆𝜎′
=

휀𝑧

−∆𝑢𝑒
=

휀𝑧

�̅� − 𝑢�̅�
 

(Equation 34) 

where εz is the axial strain 

            Δσ’ is the change in effective stress 

𝑢�̅� is the initial increase in pore water pressure 

Combining Equations 32, 33 and 34 yields 

𝜕[𝑚𝑣(�̅� − 𝑢�̅�)]

𝜕𝑡
𝑑𝑧 =

𝑘

𝛾𝑤
(
𝜕2�̅�

𝜕𝑧2
𝑑𝑧 −

𝜕�̅�

𝜕𝑧
) 

(Equation 35) 

Further simplifying, the following differential equation describing the flow of water is: 

𝜕�̅�

𝜕𝑡
=

𝑘

𝑚𝑣𝛾𝑤

𝜕2�̅�

𝜕𝑧2
−

𝑘

𝑚𝑣𝛾𝑤

1

𝑑𝑧

𝜕�̅�

𝜕𝑧
 (Equation 36) 

Equation 36, which describes the theoretical model of the change in excess pore water 

pressure in a pulse test, can be compared to the consolidation equation proposed by Terzaghi. The 

left hand side and the first term on the right-hand side is Terzaghi’s differential equation, where 

𝑘

𝑚𝑣𝛾𝑤
 is replaced by the coefficient of consolidation term, cv. 

Equation 36 is applied to describe the pore pressure response in the clay shown in Figure 

13(a). However, to solve this equation, 2 boundary conditions are needed. The lower boundary 

condition is not well defined in the schematic of Figure 13(a). To solve this problem, the 

observation that the specimen can be mirrored about its lower boundary can be made. The model 

can be equivalently represented as in Figure 13(b) below. 
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The superposition of the pore pressure diffusion of an excess pressure 𝑢�̅� from the top and 

the bottom over a length of H (as shown in Figure 13(b)) is the same as the diffusion of that same 

pressure increase from the top travelling a length of 2H. 

The model on which the equation will be applied being the one in Figure 13(b), the term 

1/dz in Equation 36 can be replaced by 1/(L/2) = 2/L. 

The analytical solution to Equation 36 is: 

�̅�(𝑧, 𝑡) = 𝑢�̅� + ∑ 𝑐𝑛𝑒
−

𝑏
2𝑎

𝑧

∞

𝑛=0

sin(
𝑛𝜋𝑧

𝐿
) 𝑒

(−
𝑎𝑛2𝜋2

𝐿2 −
𝑏2

4𝑎)𝑡
 (Equation 37) 

With 

𝑐𝑛 =
4𝑎𝑢�̅� [2𝜋𝑎𝑛 + 𝑏𝑒

𝑏𝐿
2𝑎 sin(𝜋𝐿𝑛) − 2𝜋𝑎𝑛𝑒

𝑏𝐿
2𝑎cos(𝜋𝐿𝑛)]

(𝑏2 + 4𝜋2𝑎2𝑛2)𝐿
 

𝑎 =
𝑘

𝑚𝑣𝛾𝑤
 

𝑏 = −
𝑘

𝑚𝑣𝛾𝑤

1

𝑑𝑧
 

The derivation of the solution can be found in the Appendix. This derived equation will be 

compared with laboratory data to verify its validity. It will also help determine the diffusivity factor 

that controls the pore pressure response due to pressure pulses at the top. Since this factor has the 

same definition as the coefficient of consolidation derived in Terzaghi’s theory, it will be referred 

u
 
(0,t) = 𝑢�̅� 

u
 
(z,0) = 0 

u
 
(H,t) = 0 

L = 2H 

H 

H 
u

 
(0,t) = 𝑢�̅� 

u
 
(z,0) = 0 

u
 
(2H,t) = 𝑢�̅� 

Figure 13 (a) Original soil model (b) Modified soil model 

(b) 

(a) 
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to by the same notation, cv. To differentiate between this factor and Terzaghi’s cv, it will be 

necessary at some points in this paper to add the suffix “pulse” or “cons”. 

One of the main applications of this model is the prediction and the description of the 

groundwater response in a body subjected to a change in pore pressure (such as rainfall, excess 

pore pressure at a shearing plane,…). 
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4 EXPERIMENTAL PROCEDURES 

The experimental procedures listed in this chapter includes those of the new consolidation 

tests performed in this study along with those from Brewster (2015) for the pulse tests. The pulse 

tests analyzed in the following Chapter were reported by Brewster (2015) and the new proposed 

model was applied to these data in this thesis.  

4.1 Introduction 

The purpose of the experimental program is to examine the factors that affect the pore pressure 

diffusion process in a high plasticity clay. It is divided into 3 major areas of focus: 

1. Test out the pore pressure diffusion model presented in Section 3 on saturated and 

consolidated samples of clay. To perform this comparison, a series of “pulse” tests are run 

after primary consolidation for different consolidation pressures.  

2. Observe the difference between coefficients of diffusion controlling typical consolidation 

tests (where change in total stress is experienced at every point in a clay specimen) and 

pulse tests. Based on the model that has been presented in Section 3, the diffusion 

coefficient that is to be found in a pulse test has the same definition as Terzaghi’s 

coefficient of consolidation in a typical consolidation test. This analysis will help determine 

the reasons behind the discrepancies between that same defined parameter in the two 

different types of testing. 

3. Measure the pore water pressure response of a sample of clay under consolidation due to 

simultaneous effects of diffusion and one-dimensional consolidation in a CRS setup. 

The procedure for each of these points is described below. 

4.2 Brewster (2015) Specimen Preparation and Testing 

Pore pressure pulse tests were conducted by Brewster (2015). The following description is 

a list of experimental details that are summarized to simplify the reader’s access to the information. 

4.2.1 Preparation of the clay specimen 

The clay in use in these experiments is fire clay of a moisture content of 50%, molded into 

a cylinder with a diameter of 2.5 in. The moisture content is chosen such that the clay specimen 

becomes plastic enough to retain its shape during the process of molding and transfer to a 
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consolidation cell. The cell is equipped with a top and bottom drainage line and a loading frame 

with a load cell. The clay sample is placed between 2 filter papers and 2 porous stones. The filter 

papers are and the porous stones are soaked beforehand, and the bottom of the consolidation cell 

is flushed to ensure saturation. 

Initial calculations are made to the specimen’s initial bulk and void ratio. 

4.2.2 Back pressure saturation 

Back pressure saturation is performed by increasing cell and back pressure by increments 

of 10 kPa, with the top and bottom drainage line open. After every increase, inflow and outflow 

valves of the consolidation cell are closed to perform a B-value check. A B-value of 0.95 is an 

acceptable value to confirm that the clay specimen is saturated. 

4.2.3 Hydraulic conductivity 

Hydraulic conductivity tests using the falling head, rising tail procedure outlined in ASTM 

5084 were performed.  

4.2.4 Consolidation 

A pressure increment is applied on the clay specimen while both the inflow and outflow 

valves are closed. Afterward, the inflow valve is opened. With the specimen constrained at its 

sides, this creates a one-dimensional, one-way drainage consolidation environment, where water 

is expelled from the top. Readings of pressure are recorded at the bottom of the clay sample with 

a pore pressure transducer (that has also been flushed), and LVDT measurements monitor the 

change in height with time. 

4.2.5 Pulse test setup 

After saturating the specimen, a pulse test is performed on it. This test consists of applying 

an increment of pressure in the inflow burette of the clay sample, while both inflow and outflow 

valves are closed. Then, the inflow valve is opened and pressure equalization is measured at the 

bottom of the sample. A plot of pressure vs time can be obtained at the lower boundary. 

Increments of pressure used for consolidation and pulse tests were 100 kPa, 150 kPa and 

200 kPa. Two sets of experiments are performed on the same clay. They will be referred to as FC-

CRS1 and FC-CRS2. 
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4.3 Modified CRS Consolidation tests 

For point 3 in the experimental objectives, a fire clay specimen has been reconstituted under 

a 20 psi vertical stress. The specimen is then removed and placed in a CRS setup under a vertical 

stress of 2 psi. The cell is equipped with top and bottom drainage lines, one pressure transducer 

and is loaded using a GeoJack loading frame with a load cell and an LVDT. The specimen is 

backpressure saturated using the flow pump with both top and bottom drainage lines open. The 

vertical stress was then increased to 10 psi, 20 psi, 30 psi and 40 psi and the specimen was allowed 

to consolidate at each of these stress levels while the pore pressures at the base and the vertical 

surface displacements were recorded. The initial water content of the clay is calculated to be 

34.21%. 
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5 RESULTS AND ANALYSIS 

5.1 Introduction 

This chapter presents the experimental data collected with the pulse tests and the modified 

CRS consolidation tests in tabular form and graphical methods. It also compares the numerical 

pulse model with the laboratory data, compares the factors that control pore pressure propagation 

in each case. 

A comprehensive set of data is presented below. The variables used in these tables is listed 

as follows: 

k Hydraulic conductivity 

K Permeability 

cv (cons) Coefficient of consolidation 

cv (pulse) Pulse diffusion coefficient 

tEOP Time at end of primary consolidation 

ε Strain 

σ’ Effective stress 

e0 Initial void ratio 

H0 Initial height of specimen 

φ Porosity 

β Compressibility coefficient 
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Table 1 Results from consolidation and pulse tests for the FC-CRS1 data set 

100 kPa consolidation   100 kPa pulse 

k 2.95×10-9 cm/s   k 2.95×10-9 cm/s 

cv (cons) 3.36×10-5 cm2/s   cv (pulse) 2.30×10-4 cm2/s 

tEOP 19600 s   dε/dσ' 1.31×10-4 KPa-1 

Strain at EOP 1.05%    ∆σ' 2 kPa 

dε/dσ' (experimentally) 2.10×10-4 KPa-1   dε 0.03%  

    

150 kPa consolidation   150 kPa pulse 

k 2.95×10-9 cm/s   k 2.95×10-9 cm/s 

cv (cons) 2.27×10-5 cm2/s   cv (pulse) 2.31×10-4 cm2/s 

tEOP 4096 s   dε/dσ' 1.30×10-4 KPa-1 

Strain at EOP 0.41%    ∆σ' 2 kPa 

dε/dσ' (experimentally) 8.20×10-5 KPa-1   dε 0.03%  

    

200 kPa consolidation   200 kPa pulse 

k 2.55×10-9 cm/s   k 2.55×10-9 cm/s 

cv (cons) 2.05×10-5 cm2/s   cv (pulse) 2.30×10-4 cm2/s 

tEOP 6084 s   dε/dσ' 1.13×10-4 KPa-1 

Strain at EOP 0.36%    ∆σ' 2 kPa 

dε/dσ' 7.28×10-5 KPa-1   dε 0.02%  

Table 2 Results from consolidation and pulse tests for the FC-CRS2 data set 

100 kPa consolidation   100 kPa pulse 

k 3.09×10-9 cm/s   k 3.09×10-9 cm/s 

cv (cons) 4.45×10-5 cm2/s   cv (pulse) 1.00×10-4 cm2/s 

tEOP 3600 s   dε/dσ' 3.15×10-4 KPa-1 

Strain at EOP 0.63%    ∆σ' 2.2 kPa 

dε/dσ' (experimentally) 1.27×10-4    dε 0.07%  

        

150 kPa consolidation   150 kPa pulse 

k 2.9×10-9 cm/s   k 2.90×10-9 cm/s 

cv (cons) 4.02×10-5 cm2/s   cv (pulse) 1.17×10-4 cm2/s 

tEOP 3364 s   dε/dσ' 2.53×10-4 KPa-1 

Strain at EOP 0.43%    ∆σ' 2.2 kPa 

dε/dσ' (experimentally) 8.57×10-5    dε 0.06%  

        

200 kPa consolidation   200 kPa pulse 

k 2.34×10-9 cm/s   k 2.34×10-9 cm/s 

cv (cons) 6.35×10-5 cm2/s   cv (pulse) 1.74×10-4 cm2/s 

tEOP 14400 s   dε/dσ' 1.37×10-9 KPa-1 

Strain at EOP 0.42%    ∆σ' 2.2 kPa 

dε/dσ' (experimentally) 8.45×10-5    dε 0.03%  
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Table 3 Parameters and results for the CRS tests 

Consolidation pressure (psi) 10 30 40 

e0 0.866 0.772 0.695 

H0 (in) 0.865 0.821 0.786 

cv (in/sec) 4.50 × 10-5 1.27 × 10-5 1.41 × 10-5 

k (cm/sec) 4.54 × 10-9 4.50 × 10-9 3.70 × 10-9 

K (in2) 6.39 × 10-15 6.33 × 10-15 5.21 × 10-15 

φ 0.464 0.435 0.410 

β (psi-1) 3.69 × 10-6 3.00 × 10-6 4.78 × 10-6 

5.2 cv results from consolidation tests 

Coefficient of consolidation results for the consolidation tests are obtained graphically from 

the displacement vs. time graph. The square root of time method was adopted for that purpose. 

This method is an indicator of the time at which 90% consolidation occurs. The end of primary 

consolidation can be deduced accordingly. Figure 14 is the displacement vs time plot for the 

sample of clay under 150 kPa consolidation pressure in the FC-CRS1 set of test. It is an illustration 

of the first step taken in this method. The two red lines are the first tangent, and that tangent shifted 

by a multiplication factor of 1.15, respectively. The intersection of those lines with the y-axis is 

taken as the displacement at time 0. Note that the first tangential is hard to pinpoint in this graph 

(which was also the case for almost all similar consolidation graphs for different confining 

pressures). The first few 1/1000ths of an inch of displacement are considered to be immediate 

settlement under the applied increment of pressure. Values of cv(cons) for each set of experiments 

(FC-CRS1 and FC-CRS2) are recorded in Table 1 and Table 2 
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Figure 14 Square root of method to identify cv for the FC-CRS1 clay sample under 150 kPa consolidation pressure 

 

5.3 cv results of pulse tests 

The theoretical model for pore pressure diffusion presented by Equation 37 (Section 3.2) 

was applied to the pulse tests performed on the clay sample in the modified CRS setup. The 

calculations were first run with a value for cv obtained from consolidation tests. Then, the RMS 

error between the experimental pore water pressures vs time recorded at the bottom of the clay and 

the analytical values was calculated for that particular value of cv. This value was then optimized 

using the “Solver” function in Microsoft Excel to its minimum. This minimum provided a set of 

theoretical values that best matched the laboratory data.  

Figure 15 to Figure 17 show the graphical results of the pore pressure measurements for the 

pressure increments of 100, 150 and 200 kPa in the CRS setup. In blue is the analytical curve using 

the optimized value of cv(pulse). The analytical model provides a very good fit to the experimental 

data. The optimized cv(pulse) results for each pressure pulse increase and for each set of 

experiments (FC-CRS1 and FC-CRS2) are recorded in Table 1 and Table 2. 
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Figure 15 FC-CRS1 100 kPa 

 

Figure 16 FC-CRS1 150 kPa 
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Figure 17 FC-CRS1 200 kPa 

5.4 Comparison between cv (pulse) and cv (cons) 

The cv values obtained by conducting pulse tests are compared with the cv obtained with 

conventional consolidation tests. The parameter cv is defined the same way in both cases, being 

equal to: 

𝑐𝑣 =
𝑘

𝑚𝑣𝛾𝑤
 

The values of cv obtained using both tests are expected to be different because of the 

different boundary conditions in each of the procedures, which result in different gradients across 

a sample of clay. The comparison will help identify the factors that affect how pore pressure 

propagates in each case. 

Due to the difference in the nature of the applied pressure in each type of situation, it may 

be beneficial to look at how the direction of the pressure change creates a different pattern of 

pressure response. In typical consolidation tests, pressure decreases with time. In pulse tests, the 

opposite happens: the diffusion waves reaching a specific depth in a clay body increase the 

pressure at the depth (followed by an eventual decrease due to drainage). This difference in 

pressure change must be accompanied by different stiffnesses in each kind of test. 
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To investigate the effect of this difference on the value of cv, it is helpful to look at 

processes that are equivalent when it comes to the direction of pressure change. Since pressure 

increases with time in pulse tests, the equivalent process would be an unloading sequence of 

consolidation. Therefore, looking at stiffness differences in loading vs unloading consolidation 

situations may help explain the difference between cv(cons) and cv(pulse). 

The author was able to access loading and unloading incremental consolidation tests, 

performed on a fire clay sample with an initial void ration of 0.873. The confining pressure is 4000 

psf (about 200 kPa). The ratio of strain between loading and unloading will be compared to the 

ratio of cv(cons) ad cv(pulse). 

Stiffness in a consolidation test is defined as dε/dσ', dε being the change in strain at the end 

of primary consolidation and dσ' being the increment of pressure that is added before consolidation 

happens. dε can be obtained graphically by looking at the log of time vs displacement graph and 

detecting the displacement at which the slope of the curve shifts slopes. 

For the incremental loading test at 4000 psf, dε/dσ' = 8.67×10-4 KPa-1
.
 

For the incremental unloading test at 4000 psf, dε/dσ' = 2.18×10-3 KPa-1
. 

Thus, (dε/dσ')unloading / (dε/dσ')loading = 2.5. 

This value can be compared to cv(pulse)/cv(cons) obtained at 200 KPa (which is about 4000 

psf). That value is about 11 for the FC-CRS1 data and 2.74 for the FC-CRS2 data (refer to summary 

Table 1 and Table 2). Other ratios from similar tests in the past (Brewster, 2015) have resulted in 

ratios of cv’s ranging anywhere from 0.2 to 2 orders of magnitude. 

Obviously, the available data for comparison is very limited, and while these ratios are not 

conclusive in any way, it shows that the effect of “unloading” in a pulse test affects the propagation 

of water in the clay. 

 

5.5 Comparison between pulse equation and Terzaghi’s consolidation 

equation 

An interesting comparison to perform is the effect that the different mechanisms caused by the 

pulse model and a typical consolidation model have on the variation of pressure over time in a 
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clay. The comparison can be made by studying how different the results of the equations 

representing these two processes are when taking the same coefficient of diffusion in each case. 

This is illustrated in Figure 18, where three curves are superimposed: 

 The curve called “Actual data” is the experimental plot of pore pressure at the bottom of a 

clay specimen vs time during a pulse test 

 The curve called “Analytical diffusion for pore pressure propagation” represents the 

analytical solution to the pulse equation derived in Section 3. This curve was obtained 

using a coefficient of diffusion cv(pulse). 

 The curve called “Terzaghi’s consolidation equation” represents the analytical solution to 

Terzaghi’s model, while using the same cv(pulse). 

 

Figure 18 Comparison between pulse curve and Terzaghi's consolidation curve 

Both analytical curves use the same coefficient cv. What can be concluded from this 

comparison is that applying the pulse model shifts Terzaghi’s consolidation results with time. 

This difference can be observed by comparing the differential equations of both models. 

Terzaghi’s differential equation of consolidation is: 

𝜕�̅�

𝜕𝑡
=

𝑘

𝑚𝑣𝛾𝑤

𝜕2�̅�

𝜕𝑧2
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The pulse model for pore pressure diffusion, on the other hand, has the differential equation 

derived earlier in Section 3: 

𝜕�̅�

𝜕𝑡
=

𝑘

𝑚𝑣𝛾𝑤

𝜕2�̅�

𝜕𝑧2
−

𝑘

𝑚𝑣𝛾𝑤

1

𝑑𝑧

𝜕�̅�

𝜕𝑧
 

The term -
𝑘

𝑚𝑣𝛾𝑤

1

𝑑𝑧

𝜕𝑢

𝜕𝑧
 in the pulse model is the one that is responsible for the shifting observed 

in the graph above. This term makes the slope of the line more negative, which means that the 

pressure is diffusing faster with time. 
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6 MODELING PORE PRESSURE DIFFUSION AND CONSOLIDATION 

SIMULTANEOUSLY 

Looking at pore pressure diffusion and consolidation processes, the best way to describe their 

interaction together is to analyze them acting simultaneously on a clay specimen. For that purpose, 

a CRS test was conducted on a specimen of fire clay to monitor its consolidation process. The two 

interconnected processes are taking place in the clay sample and they affect the pore water pressure 

recorded at the bottom as follows. 

6.1 Pore pressure diffusion 

The first process is pore pressure diffusion. When an incremental load is applied, an 

incremental stress (load divided by area of contact) is exerted on top of the specimen. Together 

with the initial stress before the time of application, this constitutes the stress at time 0. Due to the 

time lag effect of the pore pressure diffusion discussed in Section 2.2.2, it will take time for the 

applied pressure to be felt at the bottom of the specimen. The pressure diffusion-induced strain is 

function of how compressible the solid skeleton and the water filling the voids are (Berti & Simoni, 

Field evidence of pore pressure diffusion in clayey soils prone to landsliding, 2009). 

The diffusion coefficient D is calculated by applying Equation 14, relating it to the 

permeability K, the porosity φ, the compressibility β and the viscosity of the water μ. The following 

steps state how each of these parameters is obtained for each stage of the experimental procedure: 

 The viscosity of the water is taken to be μ = 1.29 × 10-7 psi.sec 

 To calculate the porosity φ, the following steps were taken: 

o The initial void ratio, e0, at the beginning of the test, is calculated using the phase 

relation 

𝐺𝑤0 = 𝑆𝑒0 (Equation 38) 

Where G is the specific gravity of the soil, taken to be 2.72 

              w0 is the initial water content, obtained to be 34.21% 

              S is the degree of saturation, assumed to be 1. 

  The initial void ratio is therefore 𝑒0 = 0.93 
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o The vertical deformation due to the change in applied pressure of each loading 

sequence, ΔHi, is obtained from the experimental data. For purposes of this 

calculation, we will also calculate ΔHcum,i , which is the cumulative change in height 

at the beginning of a loading sequence, due to all past vertical stress increases:  

∆𝐻𝑐𝑢𝑚,𝑖 = ∑∆𝐻𝑖

𝑖

 (Equation 39) 

 Where i is the each past loading sequence 

 

o ∆𝐻𝑐𝑢𝑚,𝑖 is related to ∆𝑒𝑐𝑢𝑚,𝑖, which is the cumulative change in void ration at the 

beginning of a loading sequence via the relationship between vertical deformation 

and void ratio: 

∆𝑒𝑐𝑢𝑚,𝑖 =
∆𝐻𝑐𝑢𝑚,𝑖

𝐻0

(1 + 𝑒0) (Equation 40) 

o The void ratio at the beginning of each loading sequence, eini, is then deduced from 

e0 and Δecum,i. 

𝑒𝑖𝑛𝑖 = 𝑒0 − ∆𝑒𝑐𝑢𝑚,𝑖 (Equation 41) 

o Finally, the porosity φ is obtained using this relationship: 

𝑒𝑖𝑛𝑖𝜑 =
𝑒𝑖𝑛𝑖

1 + 𝑒𝑖𝑛𝑖
= 𝑒0 − ∆𝑒𝑐𝑢𝑚,𝑖 (Equation 42) 

 The hydraulic conductivity k was not measured experimentally, so it was back-calculated 

using the definition of the coefficient of consolidation:  

𝑐𝑣 =
𝑘∆𝜎

𝜖𝛾𝑤
⇔ 𝑘 =

𝑐𝑣𝜖𝛾𝑤

∆𝜎
 (Equation 43) 

 Where cv is the coefficient of consolidation 

                       Δσ is the increase in vertical stress 

                       ε is the change in strain at the end of primary consolidation 

 The compressibility β is a property of the material that is being tested.  By referring to 

Biot’s theory of poroelasticity (refer to Section 2.1.4), it is related to the bulk modulus of 
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the pore system and the solid particles. Due to lack of numerical values, the best that can 

be done is to approximate β from values of bulk moduli in the literature, which was not 

opted here. Instead, β will be optimized at the end of the analysis process, so that the 

theoretical model fits the experimental data. 

The values of ΔH, Δe, φ, cv, ε and optimized values of β are shown in Table 3. 

The pore pressure propagation will be modeled using Equation 17, which for convenience is 

repeated below: 

𝑢 = �̅� [1 − erf(
𝑧

2√𝐷𝑡
)] 

Since measuring the pore pressure at the bottom of the specimen is of interest, assign z = H. 

6.2 Consolidation 

The second process is consolidation. An increase in total stress causes an increase in pore 

water pressure in a low permeability soil. Over time, the load carried by the water is transferred to 

the solid particles. Water is expelled and the effective stress of the soil increases. The rate of water 

drainage out of the soil dictates the rate of settlement. 

The coefficient of consolidation cv is found for every incremental pressure using the log of 

time method. Figure 19 shows an example of the procedure needed to get cv for the clay specimen 

subjected to the vertical stress of 30 psi. 

 

 

 

 

 

 

 

 

t2 500 sec 

s2 0.0771 in 

t1 125 sec 

s1 0.0756 in 

Δs 0.0015 in 

s0 0.0741 in 

s100 0.1066 in 

s50 0.09035 in 

t50 10000 sec 

cv 1.33 × 10-5 in2/sec 

Figure 19 Log of time method for the clay specimen under 30 psi vertical stress 
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The values of cv for all CRS tests are compiled in Table 3. 

6.3 Modeling the pore pressure 

The pore pressure diffusion and the consolidation happen simultaneously. As soon as 

pressure diffuses to a certain depth in the soil, this pressure begins to decrease due to the expulsion 

of the water. Terzaghi’s consolidation theory considers that the increase in total stress Δσ (and 

therefore the increase in pore water pressure �̅�) occurs instantaneously and uniformly across the 

soil. However, this does not consider the fact that the pressure difference has to diffuse from the 

top to the bottom first. Therefore, the pressure difference experienced at the bottom (and at any 

depth for that matter) increases from 0 to �̅� over a certain period of time after the load application. 

A way to visualize the interaction of these two processes together is by changing the term �̅�, 

which refers to applied pressure at the top, in Equation 17 to �̅�(t). �̅�(t) is defined as follows: 

�̅�(𝑡) = 𝑢�̅� × [1 − 𝑈(𝑡)] (Equation 44) 

where U is the degree of consolidation described in Equation 24. 

Equation 17 therefore becomes 

𝑢 = �̅�(𝑡) × [1 − erf(
𝐻

2√𝐷𝑡
)] (Equation 45) 

What the above equation indicates is that the pressure difference 𝑢�̅�, applied at the top of 

the specimen, is diffused to the depth H at time t, but this pressure difference is itself dissipating 

with time due to consolidation. 

In Equation 38, 𝑢�̅� is theoretically equal to the increase in total stress (the increase of pore 

pressure at the top). Realistically, in the laboratory setting, it takes a few seconds for the 

incremental stress to apply. To increase accuracy of the analysis, instead of taking a constant �̅� at 

every point in time, the difference in applied stress ∆�̅� will be adopted, as indicated in Equation 

46. 

∆�̅�(𝑡) = �̅�𝑡 − �̅�0 (Equation 46) 
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where �̅�𝑡 and �̅�0 are the increments of pressures at time t and 0, respectively. 

∆�̅� increases from 0 to 𝑢�̅� in a matter of seconds. 

Combining Equations 17, 44, 45 and 46, Equation 47 below is what describes the change 

in pore water pressure in the clay specimen: 

𝑢(𝑡) = (�̅�𝑡 − �̅�0)

[
 
 
 

1 − [
(
𝑐𝑣𝑡
𝐻2)

3

(
𝑐𝑣𝑡
𝐻2)

3

+ 0.5

]

1/6

]
 
 
 

× [1 − erf(
𝐻

2√𝐷𝑡
)] (Equation 47) 

An additional observation to make is the fact that the distance traveled by the front of the 

propagation wave is not always H; it rather decreases with decreasing time. It starts from H and 

then decreases at a rate equal to the rate of decrease in the degree of consolidation. 

Figure 20 to Figure 22 display the experimental pore water pressure at the bottom of the 

clay vs the analytical solution to the diffusion problem, for the three different consolidation 

pressures: 10, 30 and 40 psi. 

 

 

Figure 20 Experimental pore pressure results and analytical solutions for the specimen under a vertical stress of 10 psi 
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Figure 21 Experimental pore pressure results and analytical solutions for the specimen under a vertical stress of 30 psi 

 

Figure 22 Experimental pore pressure results and analytical solutions for the specimen under a vertical stress of 40 psi 

6.4 Finite difference analysis 

A more precise approach to tackle the problem is numerically, using a finite difference 

methodology. The reason behind this choice is to make sure that the problem is not oversimplified 
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by the assumptions that are considered, which may lead to less accuracy. Solving the problem 

numerically, although needing more computational effort, leads to increased accuracy. 

6.4.1 Reinstating the problem 

For the sake of this particular section, the differential equation under study will be repeated: 

𝜕𝑢

𝜕𝑡
= 𝐷

𝜕2𝑢

𝜕𝑧2
 (Equation 48) 

 Boundary conditions: 

𝑢(0, 𝑡) = 𝑢�̅� (1 − [
(𝑇𝑣)

3

(𝑇𝑣)3 + 0.5
]

1/6

) 

𝑢(∞, 𝑡) = 0 

 Initial condition: 

𝑢(𝑧, 0) = 0 

Finite differences are discretization methods that deal with approximating differential 

equations with difference equations over smaller increments. These equations are derived from 

Taylor’s polynomial approximations, and therefore can increase in accuracy if the degree of the 

truncation error increases. The choice of finite differences can be between forward, backward and 

central differences. The selection of any of these (or a combination of them) depends of the 

accuracy needed to solve the problem, as well as the need of obtaining a stable solution to the 

differential equation. There are two approaches to using finite difference: 

 The explicit method: by using this method, all the unknowns at all the nodes can be 

calculated at time t+1 by knowing the values of those same unknowns at time t.  

 The implicit method: at each time increment t, the needs arises to solve a system of 

equations to simultaneously solve for the unknowns at the different nodes at a specific time 

t. 

A particular advantage of using the implicit method over the explicit method is that the explicit 

method can sometimes result in unstable solutions, a problem that is not found in the implicit one. 

Another benefit with the implicit method is that the time increments Δt do not have to be equal. 

These advantages are at the expense of a greater computational effort, but ensure a better accuracy. 

The specimen is divided into 10 elements of equal length, giving a total of N = 11 nodes. The 

length of each node is H/10 = 0.82 in / 10 = 0.082 in. The first node is at the upper boundary. Each 
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u1 (z = 0, t = t0) u1 (z = 0, t = t1) u1 (z = 0, t = t2) 

dz 

    Time t=0            Time t1             Time t2             

subsequent node will be the numerical measure of the pore water pressure at the bottom of each 

element. To obtain an even better approximation, the time increments have also been reduced from 

1 sec to 0.1 sec. 

The first step is to set the initial condition: every node is the system has an initial pressure of 

0. Then the upper and boundary conditions are assigned. The upper boundary condition changes 

with time as a function of Tv. The lower boundary condition in the differential equation is indicated 

as infinity. What the lower boundary condition basically means is that at great depths, the pore 

pressure increase would not be felt. Since an actual boundary condition is needed to numerically 

solve the problem, this problem can be fixed by creating imaginary nodes that tend to approach a 

reasonable infinity depth, relative to the problem at hand. For this reason, instead of opting for 11 

nodes (10 elements) only, the number of these nodes can be increased to a big number. N is chosen 

to be 100, and the incremental depth is still equal to 0.082 in. This initial procedure is shown in 

the schematic of Figure 23. 

 

      

      

      

      

…
 

 …
 

 …
 

… 

      

      

      

 

 

Figure 23 Numerical formulation of the pore pressure diffusion problem 

6.4.2 Crank-Nicolson method 

The Crank-Nicholson method is chosen as an implicit method to solve the differential 

equation.  The forward difference approximation is used for 𝜕𝑢/𝜕𝑡, to estimate the approximate 

average value for the time period ti to ti+1. 
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𝜕𝑢

𝜕𝑡
=

𝑢𝑖,𝑡+1 − 𝑢𝑖,𝑡

∆𝑡
 (Equation 49) 

𝜕2𝑢/𝜕𝑧2 should also be approximated as the average of ti to ti+1. For that purpose, the central 

difference is taken at these two times and averaged. 

𝜕2𝑢

𝜕𝑧2
=

1

2
[
𝑢𝑖−1,𝑡 − 2𝑢𝑖,𝑡 + 𝑢𝑖+1,𝑡

(∆𝑧)2
+

𝑢𝑖−1,𝑡+1 − 2𝑢𝑖,𝑡+1 + 𝑢𝑖+1,𝑡+1

(∆𝑧)2
] (Equation 50) 

Substituting Equations 49 and 50 into Equation 48, and taking 

𝛼 =
𝐷∆𝑡

(∆𝑧)2
 (Equation 51) 

The implicit formulation of the equation becomes 

−𝑢𝑖−1,𝑡+1 +
2(1 + 𝛼)

𝛼
𝑢𝑖,𝑡+1 − 𝑢𝑖+1,𝑡+1 = 𝑢𝑖−1,𝑡 +

2(1 − 𝛼)

𝛼
𝑢𝑖,𝑡 + 𝑢𝑖+1,𝑡 (Equation 52) 

A system of equations of 99 equations with 98 unknowns (u2 to u99) is solved at every time 

increment t+1 based on the values of u at time t. Each system can be written in the form of a matrix 

Au=b. This matrix is shown below, with the following terms used for compactness 

𝛽 =
2(1+𝛼)

𝛼
 and 𝛽′ =

2(1−𝛼)

𝛼
 for compactness 

β -1      u2,t  u1,t-1 + u1,t + β’u2,t-1 + u3,t-1 

-1 β -1       u2,t-1 + β’u2,t-1 + u3,t-1 

 -1 β     ⋮ = ⋮ 

   ⋱       

   -1 β -1    u97,t-1 + β’u98,t-1 + u99,t-1 

    -1 β  u99,t  u98,t-1 + β’u99,t-1 
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Figure 24 Experimental pore pressure results, analytical and numerical solutions for the specimen under a vertical stress of 10 

psi 

 

Figure 25 Experimental pore pressure results, analytical and numerical solutions for the specimen under a vertical stress of 30 

psi 
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Figure 26 Experimental pore pressure results, analytical and numerical solutions for the specimen under a vertical stress of 40 

psi 

Figure 27 shows the pore pressure diffusion at the bottom of each one of the 10 elements 

of the clay specimen under a pressure of 30 psi. It serves as a display to the evolution of the pore 

pressure propagation across the specimen. 

 

Figure 27 Pore pressure at bottom of each of the 10 elements for the specimen under a 30 psi pressure 

As can be seen in Figure 24 to Figure 26, in the first few seconds of each experiment, the 

different curves do not overlap. The reasoning behind this discrepancy can be related to the nature 
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of the diffusion equation and what actually happens in the first few seconds experimentally. 

Specifically, it can be associated with the limitations of applying Biot’s theory of poroelasticity 

under the assumptions that it presents. 

Biot described his equations in the context of the Hamiltonian principle of Least Action 

(Silin & Korneev, 2003). This principle states that the trajectory of a system between an initial and 

final configuration is found by imagining all the trajectories that can be taken, calculating the 

action of each trajectory and selecting one that makes the trajectory locally stationary (making the 

action performed by this trajectory the “least action”). However, using this principle in elastic 

porous media can be problematic because of the nature of the material in question and Darcy’s law 

that is being implemented. In soils, water flows through a very complex system of geometrically 

and spatially heterogeneous pore channels. Due to this complex geometry, individual fluid 

particles accelerate and slow down very abruptly when any sudden changes in the geometry occur. 

The best speculation that can be thought of in the first few seconds of loading is the fact that the 

system collapses very instantaneously due to immediate settlement under the load, which disturbs 

the flow of water. 

Another observation that Haneberg (1991) made is that in the case of a shallow impervious 

substrate (just like the 1” specimen in the lab), high frequency fluctuations propagating downward 

are amplified at shallow depths, which can lead to an overestimation of the linear-diffusion 

equations (Haneberg, 1991). 
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7 CONCLUSION 

This thesis discussed the subject of pore water pressure propagation in clays. While pertinent 

knowledge of the subject of pore pressure diffusion in porous media is abundant in the literature, 

this research focused on a very specific scenario of pore pressure propagation, where the driving 

factor is a sudden increase of pore water pressure at the top boundary of a clay layer. This process 

was compared to the pore pressure propagation encountered during typical consolidation 

scenarios. 

The work discussed in this document is a product of two areas of focus: the analysis of 

experimental data of pore pressure monitoring of clay specimens under specific drainage and 

boundary conditions; and the creation of an analytical model, the purpose of which is to describe 

the theoretical diffusion equation that would best mimic the results obtained in the laboratory. The 

laboratory tests consisted of a series of pulse tests (where an increase of pore water pressure is 

applied at the top of a clay) and modified CRS consolidation tests (where the specimens were 

subjected to increases in total vertical stresses). These two works provided the following findings 

and conclusions. These conclusions also highlight the research significance and contributions, as 

well as any future follow-up research: 

 A mathematical model was created to describe the pore pressure response in a specimen of 

clay under an increase of pressure at its top (a pulse setting). This was performed by 

adopting a Darcian flow with well identified gradient differences. The differential equation 

describing this process was compared to the equation obtained by Terzaghi in a typical 

consolidation setting. The difference lies in an additional negative term in the pulse 

equation, resulting in a time shift in the pore response in a pulse test. 

 Pore pressure pulses and consolidation are controlled by diffusion coefficients that are 

different due to the difference of stiffness (dε/dσ’) in each case. The coefficients cv(pulse) 

for pulse tests are higher than cv(cons) for consolidation tests by orders of magnitude 

ranging from 0.5 to 1. Meanwhile, the stiffness experienced in a pulse test is higher than 

that in a consolidation setting by around the same magnitude factors. Future research can 

further verify this theory, by conducting further pulse and consolidation tests, with both 

pore pressure and settlement measurements. 



52 

 

 In a CRS consolidation setting, the processes of pore pressure diffusion and consolidation 

happen simultaneously. As a result of this, any increase of stress Δσ applied to a clay 

specimen will not be completely detected at any depth of the clay. As soon as pressure 

diffuses to a certain depth in the soil, this pressure begins to decrease due to the expulsion 

of the water. This observation is different from a typical consolidation (or pulse) model 

where any increase in pressure occurs simultaneously and uniformly at any depth. This 

highlights the significance of considering time lag effects in consolidation analyses. One 

very important parameter to consider in this case is the compressibility of the soil under a 

certain loading. Compressibility has been defined in this text in relation to Biot’s theory of 

poroelasticity, the analysis of which requires looking at the compressibility β of both the 

solid and the pore matrix. The analysis presented in this document falls short of going 

deeply into separating the interaction of the solid and the pore phases, and therefore β was 

best found by optimization so that mathematical models best match the experimental data. 

It is important to note that all the models that have been created and applied to experimental 

data are inherently limited by the nature of Biot’s theory of poroelasticity and Darcy’s theory of 

flow. Porous media are intricate systems of heterogeneous pores, varying in both size and 

distribution, and so the study of flow is very much affected by how complicated this system is. A 

more meaningful analysis to conduct would consist of a micromechanical approach that considers 

both the solid and the water phases, an approach that is difficult, time-consuming and impractical 

for engineering applications anyway. 

A future research follow up can consist of further understanding pore pressure diffusion 

processes in unsaturated media. The presence of air pockets can significantly change the response 

to pressure changes due to variations in hydraulic conductivity and compressibility. With that in 

mind, the results of this research are very significant in situations where the medium can be 

considered very close to saturation, such as in situations of high rainfall over a short period of 

time. In fact, it is very easy to convert rainfall intensity into pore pressure pulses at the top of a 

soil surface. The knowledge of pore pressure response in these particular applications is very 

important in order to predict the pressure needed to cause a landslide failure.  
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8 APPENDIX 

The following is a derivation of the analytical solution to the differential equation (Equation 36) 

presented in Section 3.2. This equation models the pore pressure in a clay sample as a function of 

depth and time, as a response to a pulse of pore water pressure at the top of that sample. 

The equation to solve is: 

𝜕�̅�

𝜕𝑡
=

𝑘

𝑚𝑣𝛾𝑤

𝜕2�̅�

𝜕𝑧2
−

𝑘

𝑚𝑣𝛾𝑤

1

𝑑𝑧

𝜕�̅�

𝜕𝑧
 

Where k, mv and γw are constants 

           dz is the length of the soil profile, taken as L. 

To simplify, the equation can be rewritten as: 

𝜕�̅�

𝜕𝑡
= 𝑎

𝜕2�̅�

𝜕𝑧2
+ 𝑏

𝜕�̅�

𝜕𝑧
 

with 

𝑎 =
𝑘

𝑚𝑣𝛾𝑤
 

𝑏 = −
𝑘

𝑚𝑣𝛾𝑤

1

𝑑𝑧
 

The boundary conditions are: �̅� (0,t) = 𝑢�̅� and �̅� (L,t) = 𝑢�̅� 

The initial condition is: �̅� (z,0) = 0, 

The equation can be easier to solve if the boundary conditions are taken to be 0. To satisfy this 

requirement, the dependent variable �̅� can be replaced with v such as: 

𝑣 = �̅� − 𝑢�̅� 

𝜕𝑣

𝜕𝑡
=

𝜕�̅�

𝜕𝑡
 

𝜕𝑣

𝜕𝑧
=

𝜕�̅�

𝜕𝑧
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The equation becomes: 

𝜕𝑣

𝜕𝑡
= 𝑎

𝜕2𝑣

𝜕𝑧2
+ 𝑏

𝜕𝑣

𝜕𝑧
 

The new boundary conditions are: v (0,t) = v (L,t) = 0. The initial condition is v (z,0) = -𝑢�̅�. 

The equation is solved by separation of variables, by taking v (z,t) = Z(z) × T(t). 

𝑍𝑇′ = 𝑎𝑍′′𝑇 + 𝑏𝑍′𝑇 

𝑇′

𝑇
= 𝑎

𝑍′′

𝑍
+ 𝑏

𝑍′

𝑍
= 𝑐 

𝑎𝑍′′ + 𝑏𝑍′ − 𝑐𝑍 = 0 

𝑇′ − 𝑐𝑇 = 0 

(1) 

(2) 

Solving Equation (1) 

The characteristics equation for Equation (1) is ar2 + br – c = 0. 

The roots of this equation are: 

𝑚1 =
−𝑏 + √𝑏2 + 4𝑎𝑐

2𝑎
 

𝑚1 =
−𝑏 − √𝑏2 + 4𝑎𝑐

2𝑎
 

The complex conjugate roots are: 

𝑚1 = −
𝑏

2𝑎
+

√−𝑏2 − 4𝑎𝑐

2𝑎
𝑖 

𝑚1 = −
𝑏

2𝑎
−

√−𝑏2 − 4𝑎𝑐

2𝑎
𝑖 

The general solution is: 

𝑍(𝑧) = 𝑒−
𝑏
2𝑎

𝑧 [𝑐1 cos (
√−𝑏2 − 4𝑎𝑐

2𝑎
𝑧) + 𝑐2sin(

√−𝑏2 − 4𝑎𝑐

2𝑎
𝑧)] 

(c1 and c2 are constants) 
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Solving Equation (2) 

The general solution to Equation (2) is: 

𝑇 = 𝑐3𝑒
𝑐𝑡 

(c3 is a constant) 

Combining both solutions, the general solution to the partial differential equation is: 

𝑣(𝑧, 𝑡) = 𝑒−
𝑏
2𝑎

𝑧 [𝑐4 cos (
√−𝑏2 − 4𝑎𝑐

2𝑎
𝑧) + 𝑐5sin(

√−𝑏2 − 4𝑎𝑐

2𝑎
𝑧)] × 𝑒𝑐𝑡 

(c4 and c5 are constants) 

Constants c, c4 and c5 are determined by applying the boundary conditions on the general solution. 

𝑣(0, 𝑡) = 𝑒−
𝑏
2𝑎

𝑧(𝑐4) = 0 

𝑐4 = 0 

𝑣(𝐿, 𝑡) = 𝑒−
𝑏
2𝑎

𝐿(𝑐5) sin (
√−𝑏2 − 4𝑎𝑐

2𝑎
𝐿) 𝑒𝑐𝑡 = 0 

This boundary condition is satisfied when the sin factor is equal to 0. The argument can have 

values nπ. c5 is therefore: 

𝑐 = −
𝑎𝑛2𝜋2

𝐿2
−

𝑏2

4𝑎
 

Plugging c and c4 into the solution v(z,t), 

𝑣(𝑧, 𝑡) = 𝑐5𝑒
−

𝑏
2𝑎

𝑧sin(
𝑛𝜋𝑧

𝐿
) 𝑒

(−
𝑎𝑛2𝜋2

𝐿2 −
𝑏2

4𝑎
)𝑡

 

If the solution above yields v (L,t) = 0 for each and every value f n, then we can sum terms for all 

values of n and still satisfy the boundary conditions. 

𝑣(𝑧, 𝑡) = ∑ 𝑐𝑛𝑒−
𝑏
2𝑎

𝑧sin(
𝑛𝜋𝑧

𝐿
) 𝑒

(−
𝑎𝑛2𝜋2

𝐿2 −
𝑏2

4𝑎
)𝑡

∞

𝑛=0
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Constant cn is determined by accounting for the initial condition: v (z,0) = -𝑢�̅�.  

∑ 𝑐𝑛𝑒−
𝑏
2𝑎

𝑧 sin (
𝑛𝜋𝑧

𝐿
) = −𝑢�̅�

∞

𝑛=0

 

∑ 𝑐𝑛 sin (
𝑛𝜋𝑧

𝐿
) = −𝑢�̅�

∞

𝑛=0

𝑒
𝑏
2𝑎

𝑧
 

The equation above is recognized as a Fourier sine series. The Fourier coefficients are given by: 

𝑐𝑛 =
2

𝐿
∫ 𝑢�̅�

𝐿

0

𝑒
𝑏
2𝑎

𝑧 sin (
𝑛𝜋𝑧

𝐿
) 𝑑𝑧 

𝑐𝑛 =
4𝑎𝑢�̅� [2𝜋𝑎𝑛 + 𝑏𝑒

𝑏𝐿
2𝑎 sin(𝜋𝐿𝑛) − 2𝜋𝑎𝑛𝑒

𝑏𝐿
2𝑎cos(𝜋𝐿𝑛)]

(𝑏2 + 4𝜋2𝑎2𝑛2)𝐿
 

The final solution to the equation is therefore: 

𝑣(𝑧, 𝑡) = ∑ 𝑐𝑛𝑒
−

𝑏
2𝑎

𝑧

∞

𝑛=0

sin(
𝑛𝜋𝑧

𝐿
)𝑒

(−
𝑎𝑛2𝜋2

𝐿2 −
𝑏2

4𝑎)𝑡
 

�̅� = 𝑣(𝑧, 𝑡) + 𝑢�̅� 

With a, b and cn are defined previously. 
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