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Apoptosis is an evolutionarily conserved process, carried out through proteolytic 

cascades that lead to activation of cysteinyl aspartate-specific proteases (caspases), which 

in turn cause cell self-destruction. While caspases are activated upon various death 

stimuli or developmental cues, inhibitor of apoptosis (IAPs) can prevent caspase-

mediated cell death, not only through direct binding and inhibition, but also by directly 

ubiquitinating caspases, which inactivates them or targets them for degradation.  In flies 

and mammals, cell death is facilitated or enhanced by the accumulation of “IAP 

antagonists”, which promote cell death by utilizing their N-terminal IAP binding motifs 

(IBMs) to interact with IAPs, to displace caspases from IAP-binding, and to promote 

IAPs autoubiquitination.  Herein, we demonstrate that a Drosophila IAP antagonist, 

Grim, induces cell death through divergent mechanisms: an IBM-dependent pathway, 

requiring a crosstalk with Drosophila IAP1 (DIAP1), and an IBM-independent manner, 
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involving Grim’s C-terminus for translational repression.  We discovered that Grim is a 

target for caspase-mediated cleavage at Grim’s C-terminus (Asp132).  Grim loses its only 

lysine (Lys 136) after cleavage, but acquires a longer half-life due to inability of DIAP1 

to ubiquitinate it, which in turn leads to greater cell death. This novel regulation allows 

increased levels of Grim to efficiently kill through an IBM-dependent mechanism that 

derepresses caspase inhibition.  However, in addition to IBM-dependent cell death, Grim 

is able to induce caspase activation independent of its IBM.  In our studies, we have 

demonstrated that IBM-independent cell death requires Grim’s C-terminal domain as 

well as the characteristic Grim Helix 3 (GH3) domain.  Importantly, Grim’s C-terminus 

localizes Grim to distinct cytoplasmic granules, i.e. P-bodies, where translation is 

repressed due to the accumulation of protein components that regulate mRNA translation 

or stability.  Knockdown of a P-body-localized translational repressor, Me31B, largely 

reduced IBM-independent cell death.  Taken together, IBM-independent cell death 

occurs, at least in part, through Me31B-mediated translational repression, requiring the 

localization of Grim to P-bodies via Grim’s C-terminus.  Overall, we have discovered 

that the interplay between caspases and the proteasome system creates an intricate 

regulatory system for maintaining Grim at low levels in the cell under normal conditions.  

Once needed, Grim levels accumulate rapidly and induce cell death efficiently through 

IBM-dependent destruction of DIAP1 and derepression of caspases as well as through 

IBM-independent translational repression.  
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CHAPTER 1 

Introduction 

 

1.1 Programmed cell death 

Apoptosis, or programmed cell death, is a highly regulated process involving 

proteolytic cascades that lead to cell self-destruction characterized with well-defined 

morphology, such as DNA fragmentation, chromatin condensation, cell membrane 

blebbing, cytoskeletal collapse, and the formation of apoptotic bodies (Kerr et al., 1972).  

This evolutionarily conserved process is required during the development and 

morphogenesis of metazoans, from C. elegans to Drosophila to mammals.  In addition to 

apoptosis, there are other forms of cell death, including necrosis, autophagic death, and 

necroptosis.  Necrosis is unprogrammed and uncontrolled cell lysis, which can cause the 

massive release of cytokines and a strong proinflammatory response.  Necroptosis has 

implications in ischemia reperfusion injury and systemic inflammatory response 

syndrome and involves the activation of unique signaling cascades in cells that result in 

necrosis, although the detailed mechanisms remain unclear (Kaczmarek et al., 2013; 

Linkermann and Green, 2014).  Autophagy can act as a tumor suppressor or cause 

chemoresistance depending the stage of cancer development and is still under 

investigation (Guo et al., 2013; White, 2012). 

Conversely, apoptosis has been widely studied because of its implications in 

many human diseases, such as cancer, neuron degeneration, autoimmune disorders, and 

viral infection.  Several biomarkers have been utilized to characterize apoptotic cell death, 

including for example, caspase activation, redistribution of phosphoytidylserine (PS) 
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from inner-to-outer plasma membrane, changes in mitochondrial membrane permeability, 

and caspase-dependent activation of DNases (Enari et al., 1998; Fadok et al., 1992; 

Kroemer and Reed, 2000; Naito et al., 1997).  Dismantling of structural and functional 

proteins during apoptosis is usually carried out by cysteine proteases, known as caspases.  

Cells can fight for their survival through expression of inhibitor of apoptosis (IAP) 

proteins, which diminish caspase activity inside the cell and inhibit apoptosis.  However, 

when cells are under stress, are treated with chemotherapeutic agents, or are destined to 

die during development, IAP antagonists can be released from specific organelles or can 

be upregulated to inhibit the function of IAPs (Fig. 1.1).  Alterations in the balance 

among caspases, IAPs, and IAP antagonists can effectively enhance or reduce cell death, 

and thus, are often viewed as targets for drug design.  Structures are available for many 

caspases, IAPs, and IAP antagonists, but the detailed mechanisms through which they are 

regulated are not fully understood.  This study will investigate the function of IAP 

antagonists and how they regulate cell death in both traditional and unconventional ways.  

Understanding the regulatory pathways of apoptosis may reveal more targets for future 

drug design in order to overcome human diseases, such as cancer or neurodegeneration.  

1.1.1 The apoptotic pathway in mammals  

Two well-defined apoptotic signaling cascades are present in mammals: the 

intrinsic (mitochondrial) and the extrinsic (death receptor) pathways.  The two pathways 

are activated by different cellular insults, and ultimately death signals are amplified and 

executed through the activation of caspases.  Developmental cues, UV irradiation, DNA 

damaging agents, and reactive oxygen species can activate the intrinsic pathway through 

perturbation of mitochondria.  Loss of mitochondrial outer membrane potential and 
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release of cytochrome c from the intermembrane space into the cytoplasm leads to the 

formation of a large protein complex, known as the apoptosome.  Apoptotic protease-

activating factor-1 (Apf-1) undergoes oligomerization, in a cytochrome c and 

ATP/dATP-dependent manner, into a heptameric complex that recruits and activates 

caspase-9 (Acehan et al., 2002; Cain et al., 1999).  Caspase-9 acquires proteolytic activity 

once bound to the apoptosome complex and can then directly activate the downstream 

effector caspases-3 and -7, which are responsible for the execution of apoptosis (Malladi 

et al., 2009).  In addition to cytochrome c, Smac/DIABLO (Second mitochondria-derived 

activator of caspase/direct IAP binding protein with low pI) and Omi/HtrA2 (High 

temperature requirement A2) are also released from mitochondria and potentiate cell 

death by antagonizing the IAPs (Fig. 1.1) (Du et al., 2000; Hegde et al., 2002; Martins et 

al., 2002; Suzuki et al., 2001; Verhagen et al., 2000; Wu et al., 2000).  The extrinsic 

pathway, on the other hand, utilizes death ligands to activate death receptors resulting in 

the formation of a multimeric death inducing signaling complex (DISC) that recruits and 

activates caspase-8, which in turn activates the downstream effector caspases-3 and -7.  

In some cells, caspase-8-dependent cleavage of the BH3 only protein Bid helps induce 

cell death but also engages the intrinsic pathway.  
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Figure 1.1 The conserved intrinsic apoptosis pathway. Many of the core proteins 
involved in regulating cell death share functional or structural similarities in Drosophila 
and mammals.  In mammals, pro-apoptotic Bax and/or Bak permeabilize mitochondria, 
which result in the release of cytochrome c (cyt. c) and mitochondrial IAP antagonists, 
Smac/DIABLO and Omi.  Cyt. c triggers the assembly of the apoptosome complex, 
which activates caspase-9 and its downstream effectors, caspase-3 and caspase-7.  Even 
though active caspases can be inhibited by XIAP, IAP antagonists compromise XIAP, 
which leads to caspase reactivation and apoptosis.  In the case of D. melanogaster, once 
mitochondria are damaged, dOmi is released to antagonize DIAP1 function so that active 
DRONC, DrICE, Dcp-1 can execute cell death.  Other than dOmi, IAP antagonists, such 
as Reaper, Grim, and Hid are also upregulated upon stress.  (Modified from Parrish et al., 
2013) 
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1.1.2 The apoptotic pathway in flies 

The intrinsic pathway shares strong similarity between flies and mammals, but it 

also appears to have significant differences (Fig. 1.1).  Drosophila contains BCL2 family 

members, but the role of mitochondrial damage in cell death remains highly controversial 

(Abdelwahid et al., 2007; Arama et al., 2003; Arama et al., 2006; Challa et al., 2007; 

Dorstyn et al., 2004; Galindo et al., 2009; Means et al., 2006; Varkey et al., 1999).  

Drosophila Nedd-2-like caspase (DRONC), the mammalian caspase-9 homologue, 

requires Drosophila Apaf-1-related killer (DARK) for its activation, even though 

cytochrome c is not released from mitochondria or required to form the apoptosome 

complex (Dorstyn et al., 2004; Dorstyn et al., 2002; Means et al., 2006; Yuan et al., 2011; 

Zimmermann et al., 2002). Nevertheless, once DRONC acquires catalytic activity, it 

cleaves and activates effector caspases, Drosophila Interleukin-1β-converting enzyme 

(DrICE) and death caspase-1 (Dcp-1) (Fig. 1.1). 

On the other hand, the Drosophila Omi homologue, dOmi, can be released from 

mitochondria to antagonize Drosophila IAP1 (DIAP1) as well as to use its serine 

protease activity to cleave it (Challa et al., 2007).  Besides the mitochondria-localized 

dOmi, other IAP antagonists (e.g., Reaper, Grim, and Hid) in Drosophila are upregulated 

when they are needed during embryo development or when cells are damaged (Chen et 

al., 1996; White et al., 1994) (Fig. 1.1).  They inhibit IAPs and therefore facilitate 

caspase-mediated cell death.  Despite some of the differences between mammals and flies, 

the strong functional and structural similarities in their apoptotic pathways, as well as the 

strength of genetic screening in Drosophila make it a good model system to study cell 

death.  What is needed are more biochemical studies in flies to carefully dissect the 
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differences between flies and mammals, which may provide new insights into how cell 

death is executed.  Apparent differences in flies may well point to previously unidentified 

but important nuances to existing pathways in humans. 

1.2 Regulators in apoptotic pathways 

1.2.1 Caspases 

The first member identified in the cysteinyl aspartate-specific protease (caspase) 

family was the human interleukin-1β-converting enzyme (ICE), which plays a role in 

inflammation.  Based on sequence and functional homology, 11 caspases were identified 

in the human genome and designated as caspases-1 to -10 and caspase-14.  They can be 

grouped into pro-inflammatory (caspases-1, -4, -5, -14) and pro-apoptotic caspases 

(caspases-2, -3, -6, -7, -8, -9, -10), but it is worth noting that some of these caspases are 

also involved in differentiation or migration (Fernando et al., 2002; Helfer et al., 2006; Li 

and Yuan, 2008; Miura et al., 2004).  In terms of structure and domain organization, 

proapoptotic caspases are divided into initiator caspases (caspases-2, -8, -9, -10) and 

effector caspases (caspases-3, -6, -7) (Fig. 1.2).  All caspases consist of a prodomain (3- 

23 kDa), followed by a large subunit (20 kDa) and a small subunit (10 kDa) (Fig. 1.2).  

Initiators possess long prodomains with the ability to interact with adaptor proteins to 

form large multimeric complexes and therefore acquire catalytic activities.  Active 

effector caspases are heterotetramers. Two single chain zymogens are processed into two 

large and two small subunits, with the large subunits bearing the catalytic cysteines. 

Cleavage of the intersubunit linker between the large and small subunits is usually carried 

out by initiator caspases, resulting in conformational changes that form the substrate-
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binding pocket (Chai et al., 2001; Pop and Salvesen, 2009).  Most caspases recognize 

tetrapeptide sequences in substrates, classified as P4-P3-P2-P1 upstream of the scissile 

bond (Pop and Salvesen, 2009).  Caspases cleave after the P1 Aspartate, and DXXD 

sequences are usually preferred by effector caspases-3/-7.  In the P2 position, caspases-

3/-7 prefer small hydrophobic residues (Ala, Val), while in the P3 position, favor the 

formation of hydrogen bonds (Glu).  A small uncharged amino acid is usually preferred 

for the P1’ position (the first amino acid after the cleavage site).  The DEVD sequence 

present in poly(ADP-ribose) polymerase (PARP) serves as a great example of a caspase-

3/-7 substrate (Lazebnik et al., 1994).  As a result, fluorescence substrates DEVD-AMC 

or DEVD-AFC are often used to measure the enzymatic activity of caspases-3 and -7 in 

vitro (Stennicke et al., 2000; Tewari et al., 1995).  

Drosophila caspases are also very similar to mammalian caspases structurally and 

functionally.  DRONC acts upstream of DRICE and Dcp-1 (Fig. 1.1) and is activated 

through a DARK-dependent manner, but it also has a different regulation from caspase-9. 

The mechanism of DRONC activation is still controversial. DRONC is activated by the 

DARK apoptosome complex through induced dimerization (Snipas et al., 2008) or 

autoprocessing between the large and small subunit (Muro et al., 2004).  During 

apoptosis, cytochrome c did not release from mitochondria and addition of cytochrome c 

to fly cell lysate failed to activate DRONC, which indicates cytochrome c is not required 

for the assembly of fly apoptosome complex (Dorstyn et al., 2004; Dorstyn et al., 2002; 

Means et al., 2006; Zimmermann et al., 2002).  However, in vitro reconstituted fly 

apoptosome failed to activate DRONC unless cell extracts were added, indicating that 

additional molecules are required for DARK-mediated DRONC activation (Dorstyn and 
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Kumar, 2008).  DRONC is a unique caspase that prefers to cleave after either a glutamic 

acid or an aspartic acid, whereas most caspases catalyze cleavage only after an aspartic 

acid (Hawkins et al., 2000; Snipas et al., 2008).  It has been suggested that DRONC 

exists in the cell as a constitutively active form and is constantly bound to and 

ubiquitinated by DIAP1 (Muro et al., 2002).  Hormone ecdysone induces metamorphosis 

and upregulation of DRONC transcripts to remove obsolete tissues (Waldhuber et al., 

2005).  Homozygous dronc mutants exhibit a growth delay during the larval stage and die 

at early pupariation (Waldhuber et al., 2005).  

Drosophila also has a caspase-8 homologue, Dredd, but its role appears to be 

more important in regulating innate immunity, especially through the NF-κB pathway.  

DIAP2-dependent ubiquitination of Dredd allows Dredd to be fully activated, which 

finally leads to Relish/NF-κB cleavage and activation (Meinander et al., 2012).  The 

functions of the remaining fly caspases (Damm, Strica, and Decay) are less clear, but 

Strica and Decay appear to play an important role in Hid-mediated death (Leulier et al., 

2006).  

Two main effectors, DrICE and Dcp-1 are very similar to caspases-3 and -7 (Fig. 

1.2), and their activities can also be measured using the substrate DEVD-AMC. They are 

both cleaved and activated by DRONC and can be inhibited by the viral anti-apoptotic 

protein p35 (Lannan et al., 2007; Snipas et al., 2008).  DRICE and Dcp-1 share functional 

redundancy during fly embryo development, but they also have specific roles (Muro et al., 

2006).  Animals lacking drice show less cell death in the embryonic nervous system but 

still survive at the larval stage; the majority (80%) of null mutants, however, die before 

the end of the pupal stage (Muro et al., 2006).  The viable adults are fertile, even though 
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there is a partial failure to undergo sperm individualization, indicating that DrICE 

participates in this non-apoptotic process (Muro et al., 2006).  Although dcp-1 mutant 

flies are viable and fertile (Laundrie et al., 2003), the loss of drice and dcp-1 is lethal 

(Muro et al., 2006).   

Effectors are responsible for cleaving the majority of cellular protein substrates, 

including structural proteins, adhesion molecules, cell cycle regulators, transcription 

factors, signal transduction players, and cell death modulators (Luthi and Martin, 2007).  

After cleavage, some proteins are inactivated, some exhibit an altered function due to the 

loss of a regulatory or binding domain, and some are rendered more active due to the 

removal of an inhibitory domain (Cheng et al., 1997; Emoto et al., 1995; Plesca et al., 

2008; Semple et al., 2007).  Many of these proteins also become susceptible to complete 

degradation, as in the case of the caspase inhibitor and E3 ubiquitin ligase, Drosophila 

inhibitor of apoptosis 1 (DIAP1), which is degraded via the N-end rule following removal 

of its N-terminus by caspases (Ditzel et al., 2003).  
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Figure 1.2 Initiator and effector caspases in Drosophila and mammals.  Caspases are 
composed of a prodomain (represented as light gray), followed by a large (white color) 
and a small (dark gray) subunit with the active cysteine (represented as an asterisk) 
located near the C-terminus of the large subunit (not drawn to scale).  Initiator caspases 
have a longer prodomain to interact with adaptor proteins, while the prodomains in the 
effectors are relatively short and their functions are largely unknown.  DrICE and Dcp-1 
are caspase-3 or caspase-7-like proteins in Drosophila, while DRONC is a caspase-2 or 
caspase-9-like protein in Drosophila. (Modified from Riedl and Shi 2004) 
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1.2.2 Inhibitor of apoptosis (IAP) proteins 

The first IAP was cloned two decades ago from virus-infected insect cells (Crook 

et al., 1993).  It was found to suppress apoptosis when expressed in cells due to the 

presence of characteristic zinc-finger like motifs, named Baculoviral IAP repeat (BIR) 

domains, which mediates protein-protein interactions (Crook et al., 1993).  IAPs were 

later found not only in viruses, but also in flies, and mammals (Salvesen and Duckett, 

2002) (Fig. 1.3).  One IAP molecule can contain multiple BIR domains through which it 

interacts with specific proteins. Many IAPs, however, also possess a Really Interesting 

New Gene (RING) domain (Fig. 1.3), which allows them to post-translationally modify 

themselves or their binding partners through ubiquitination or neddylation (Broemer et al., 

2010; Zhuang et al., 2013). 

The BIR domain contains ~70 amino acids with a consensus sequence of 

CX2C…W…16HX6C (C, cysteine; W, tryptophan; H, histidine, and X, any amino acid).  

It forms an unusual hydrophobic pocket that often only allows a conserved N-terminal 

sequence in its substrates, known as the IAP binding motif (IBM), to bind into the pocket.  

An internal IBM in caspase-9 is rendered following cleavage between its large subunit 

and small subunit. Exposure of the IBM with an amino terminus of the small subunit 

targets caspase-9 for inhibition by X-linked IAP (XIAP) (Srinivasula et al., 2001).  XIAP 

interacts with active caspases-3 and -7 through its BIR2 domain and an adjacent linker 

region (Huang et al., 2001; Riedl et al., 2001; Scott et al., 2005).  For our studies, we 

have mainly focused on Drosophila IAP1 (DIAP1), as it has important roles in 

preventing cell death and, in many aspects, acts like XIAP. DIAP1 similarly interacts 

with active DrICE through the BIR1 domain and with DRONC through its BIR2 domain.  
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IAP antagonists are another IBM-containing family of proteins that potentiate cell 

death by interacting with BIR domains and antagonizing inhibition of caspases by IAPs 

(Fig 1.4A).  Structural analyses reveal that mutation of key tryptophan or histidine 

residues in the BIR domains of IAPs disrupt their ability to interact with their substrates. 

We utilized mutagenesis in our studies to investigate the functions of different BIR 

domains in DIAP1.  Conversely, simply blocking the N-terminal alanine in the IBM of 

IAP antagonists, or replacing it with a glycine, can destroy the IBM (Wright and Clem, 

2002). We have used this approach to study the IBM-independent functions of Grim.  

Drosophila IAP2 (DIAP2) and mammalian cellular IAP1 (c-IAP1) and c-IAP2 

can participate in regulating cell death, but are more important for modulating immune 

signaling (Gyrd-Hansen and Meier, 2010).  An in vitro study showed that c-IAP1 and c-

IAP2 interact with caspases-3 and -7, but do not inhibit caspase activity (Eckelman and 

Salvesen, 2006). In fact, c-IAPs protect cells from apoptosis probably through a 

mechanism depending upon their E3 ligase activities (Choi et al., 2009; Samuel et al., 

2006).  c-IAP1 can ubiquitinate caspases-3 and -7, which may promote caspase 

degradation and facilitate cell death (Choi et al., 2009).  Indeed, while DIAP2 is 

dispensable for fly development, it is required for NF-κB signaling and in defending 

against Gram-negative bacteria (Huh et al., 2007; Paquette et al., 2010).  Although 

downregulation of DIAP2 sensitizes cells to apoptosis, downregulation of DIAP1 directly 

activates caspases and induces apoptosis (Zimmermann et al., 2002). 
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Figure 1.3 Comparison of Drosophila and mammalian IAPs. There are at least eight 
IAPs in mammals, and four in flies, but only functional homologues are listed in this 
figure (not drawn to scale).  All IAPs have at least one BIR domain, and some have 
RING or UBC domains that are related to post-translational modifications.  DIAP1 is the 
functional homologue of XIAP, and its BIR1 domain is equivalent to the BIR2 of XIAP, 
while its BIR2 domain is functionally similar to the BIR3 of XIAP.  DIAP2 plays 
important roles in innate immunity and is more similar to c-IAP1 and c-IAP2.  BRUCE 
participates in cell death regulation requiring a functional UBC domain. (Modified from 
Srinivasula and Ashwell, 2008) 
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1.2.3 DIAP1 

DIAP1 is encoded by thread (th) and is absolutely required for embryo 

development in Drosophila.  Inhibition of cell death occurs through physical interaction 

with caspases and requires ubiquitination of DIAP1 binding substrates through its E3 

ubiquitin ligase activity.  Indeed, physical interaction alone is insufficient to account for 

all of DIAP1’s function, as mutation of its RING domain alters its anti-apoptotic activity 

(Lisi et al., 2000; Yokokura et al., 2004).  Loss of DIAP1 in fly eyes causes rapid cell 

death because DIAP1 normally inhibits a constantly processed active form of DRONC by 

binding to its prodomain, ubiquitinating it, and keeping its levels low in healthy cells 

(Meier et al., 2000; Muro et al., 2002).  Even though DRONC lacks a classic IBM 

sequence, its prodomain contains a specific sequence that is nevertheless able to interact 

with the BIR2 domain in DIAP1 (Chai et al., 2003).  It is unclear what type of ubiquitin 

chains are conjugated to DRONC, but ubiquitinated DRONC is not degraded, implying 

that DIAP1 may catalyze a K63-based ubiquitination (Lee et al., 2011).  In contrast, 

DIAP1 does not interact with proDrICE.  DIAP1 inhibits active DrICE through its BIR1 

domain, and reportedly reduces DrICE activity through nondegradative 

polyubiquitination, although DIAP-BIR1 has been shown to inhibit DRICE independent 

of ubiquitination (Challa et al., 2007; Ditzel et al., 2008; Yan et al., 2004).  The N-

terminal 10 amino acid fragments in Reaper, Grim, or Hid have higher affinity toward the 

BIR domains than DrICE or DRONC, so that DrICE and DRONC are displaced from the 

BIR binding pocket in vitro (Chai et al., 2003; Yan et al., 2004).  In fact, these three 

proteins show differential binding toward two BIR domains when the full-length protein 

was used.  Reaper and Grim interact with both BIR1 and BIR2, whereas Hid 
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preferentially binds to the BIR2 domain (Zachariou et al., 2003). In vivo studies also 

confirmed that Reaper, Grim, or Hid were capable of interacting with DIAP1 and 

efficiently promote cell death (Goyal et al., 2000; Lisi et al., 2000).  

As already noted, Reaper, Grim, or Hid promotes cell death through mechanisms 

unrelated to the displacement of DrICE or DRONC from BIR domains.  The three 

proteins also directly regulate DIAP1 levels by stimulating RING-dependent DIAP1 

autoubiquitination (Ryoo et al., 2002; Yoo, 2005; Yoo et al., 2002).  Autoubiquitination 

of DIAP1 requires two ubiquitin-conjugating enzymes (E2), Morgue and UbcD1 (Hays et 

al., 2002; Ryoo et al., 2002; Wing et al., 2002).  DIAP1 stability is also regulated through 

other post-translational modifications.  Drosophila IKK-related kinase (DmIKKε) and 

Hippo kinase phosphorylate DIAP1 and promote DIAP1 degradation, but the 

phosphorylation sites and detailed mechanism remains unknown (Harvey et al., 2003; 

Kuranaga et al., 2006).   

Other than caspases and DIAP itself, DIAP1 also promotes the ubiquitination of 

Reaper, Grim, and Hid (Olson et al., 2003b; Yeh and Bratton, 2013), but the fate of these 

ubiquitinated proteins is not always clear. Whether Grim is ubiquitinated through a non-

lysine residue like Reaper is unknown (Domingues and Ryoo, 2012). Besides, the E2 

ubiquitin-conjugating enzyme that facilitates ubiquitination is also unclear. In our studies, 

we will focus on DIAP1-dependent Grim ubiquitination.  
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Table 1.1 Differences in Reaper, Grim, and Hid 

 Reaper Grim Hid 

IBM + + + 

Interaction with DIAP1 
BIR1 and BIR2 

domains 

BIR1 and BIR2 

domains 
BIR2 domain 

Cell death prevented by DIAP1 

overexpression 
+ - + 

Cell death prevented by DIAP2 

overexpression 
+ - + 

Cell death prevented by zVAD-

fmk 
+ + + 

GH3 domain + + - 

IBM-independent cell death + + Not reported 

Inducer-Wingless + + + 

Inducer-UV, irradiation + Not tested Not tested 

Inducer-ecdysone + Not tested + 
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1.2.4 IAP antagonists  

The first IAP antagonists were discovered through a genetic screen in Drosophila. 

Loss of about 300 kb of DNA on the third chromosome, the H99 locus, completely 

prevented embryonic apoptosis, resulting in the accumulation of excess cells in the 

central nervous system and a failure of embryos to hatch (White et al., 1994).  However, 

H99 embryos were still capable of undergoing apoptosis even though death was not 

activated spontaneously during the development, which suggests that genes in the H99 

locus are likely to be activators but not executors of apoptosis (White et al., 1994).  

Reaper was identified first in this screen, but hid and grim were later shown to be present 

in the same H99 locus and functions in similar ways as apoptosis inducers during 

Drosophila development.  Each gene, reaper, grim, or hid, alone was capable of inducing 

apoptosis when expressed in cultured cells, but was insufficient to rescue loss of the 

entire H99 locus (Chen et al., 1996; Grether et al., 1995; White et al., 1994).  It was 

suggested that the protein products encoded by the three genes share functional 

redundancy, especially during early embryo development but also have unique roles later 

in development during metamorphosis.  Table 1 summarizes the main similarities and 

differences among the three proteins.  Yet another IAP antagonist, sickle, is located near 

reaper, and antagonizes DIAP1 (Srinivasula et al., 2002).  

A major feature of IAP antagonists is their ability to inhibit IAPs and potentiate 

cell death by utilizing their IBM domain.  Fig. 1.4A lists the IBM sequences in mammals 

and Drosophila.  The IBM in IAP antagonists usually has a higher affinity for the BIR 

domain than do the caspases, such that they can efficiently compete with caspases and 

release them from the IAPs (Chai et al., 2003; Yan et al., 2004).  The first four amino 
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acids in the IBM are highly conserved, especially the first amino acid, alanine (Fig. 1.4A).  

For some IAP antagonists, such as Omi (which is conserved in Drosophila) and 

Smac/DIABLO, removal of the mitochondrial targeting sequence, following import into 

mitochondria, exposes their N-terminal IBM (Hegde et al., 2002; Martins et al., 2002; 

Suzuki et al., 2001).  Following MOMP, the IAP antagonists are released into the 

cytoplasm where they interact with IAPs, displace active caspases and enhance the 

autoubiquitination of IAPs (Martins et al., 2002; Suzuki et al., 2001).  Other IAP 

antagonists, like Reaper, Grim, and Hid, have an IBM at the N-terminus, immediately 

following the initiator methionine.  This methionine is usually removed by 

aminopeptidase so that the IBM is exposed to perform its function (Cutforth and Gaul, 

1999; Wright and Clem, 2002).  These IAP antagonists are generally upregulated through 

transcriptional control after receiving key developmental cues or cellular stress.  

Interestingly, the strict IBM region covers only four amino acids of the protein, 

raising questions as to the function of the remaining portion of the protein.  Indeed, even 

though an IBM is an important feature for IAP antagonists, many of these proteins have 

other non-IBM-related functions that appear to be required for maximum killing. 

Drosophila Omi is a serine protease capable of degrading DIAP1 without its IBM (Challa 

et al., 2007).  Reaper can induce cell death through an IBM-independent, but C-terminus- 

dependent manner with the several proposed mechanisms (Chen et al., 2004; Freel et al., 

2008). 

The C-terminus of Reaper comprises a characteristic amphipathic  α-helix (Grim 

Helix 3, or GH3 domain), shared homology with Grim (Fig. 1.4B).  The function of GH3 

domain is under intensive investigation, but the detailed mechanisms remain 
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controversial.  Domingues and Ryoo (2012) found that Reaper uses its GH3 and IBM to 

interact with the Drosophila IAP, dBruce, which leads to the turnover of Reaper through 

a non-lysine-dependent ubiquitination by dBruce.  Reaper was reported to localize to 

mitochondria through the GH3 domain that allowed it to insert into the mitochondrial 

outer membrane through a protein-lipid interaction that did not require any other protein 

component (Olson et al., 2003b).  The same group later found that Reaper interacts with a 

dMFN on the outer mitochondrial membrane and inhibits mitochondrial fusion 

(Thomenius et al., 2011).  

However, Steller and colleagues showed that Reaper does not associate with 

mitochondria directly.  Rather, it is the interaction between Hid and Reaper that brings 

Reaper to the mitochondrial outer membrane, as Hid possesses a mitochondrial targeting 

sequence (Sandu et al., 2010).  They proposed that the real function of the GH3 domain 

in Reaper is to interact with proteins, such as Hid.  Similarly, Chen and co-workers (2004) 

found that Reaper induces cell death through two distinct mechanisms: IBM-mediated 

caspase activation, and C-terminal fragment-dependent killing.  Interestingly, the GH3 

domain alone did not kill the cell nor colocalize with mitochondria (Chen et al., 2004).  

Even though the localization of Reaper remains controversial, it nevertheless ultimately 

induces mitochondrial damage and cell death without the IBM.  It also associates with a 

ribosomal small subunit to inhibit protein translation, which eventually results in cell 

death.  Interestingly, Bunyaviral nonstructural proteins (NSsSa and NSsLac) share 

sequence similarities with the GH3 region, but not the IBM, and they induce apoptosis 

and translational repression in a fashion that is very similar to the GH3 domain in Reaper 

(Colon-Ramos et al., 2003).  It has been suggested that the bi-functional Repear protein 
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might have evolved into two separate proteins, but, if so, the mammalian GH3-like 

proteins have not yet been identified (Colon-Ramos et al., 2003).  Thus, the IBM-

independent activities of IAP antagonists are important but unclear.  To understand their 

functions and regulation is therefore a goal of the laboratory, and the mammalian 

homologues of these proteins and their overall functions may be revealed through the 

study of IBM-less versions of Reaper, and Grim.    
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Figure 1.4 The IAP-binding motif (IBM) and the GH3 domain. (A) Flies have several 
IAP antagonists with N-terminal IBMs (highlighted in gray), the IBMs are exposed 
following removal of the initiator methionine by amino methylpeptidases.  Drosophila 
Omi, human Omi, and Smac have internal IBMs that are exposed by the removal of 
mitochondrial targeting sequences.  Human caspase-9 has the IBM on the N-terminus of 
the p12 small subunit that is exposed after a caspase-mediated cleavage event.  (B) The 
GH3 domain shares sequence similarities among Grim, Reaper, and Sickle. Identical 
sequences are indicated in dark gray, while residues with some similarity are represented 
in light gray. (The lower panel is adapted from Claveria et al., 2002)  
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Figure 1.5 The expression of grim in Drosophila life cycle.  (A) Flies have four main 
stages of the life cycle: embryo, larva, pupa, and adult.  Grim mRNA transcripts were 
found mainly in embryo and pupa stage, where massive apoptosis is required for 
development.  Sensory organ precursors start to divide 17-19 hr after puparium formation.  
(B) For the sensory organ precursor at the microchaete lineage, a glial cell is generated 
after asymmetric cell division.  The glial cell will later be eliminated by the expression of 
Grim.  At posterior wing margin, the pIIb cell undergoes Grim-dependent apoptosis, 
which gives rise to non-innervated mechanoreceptors. (The lower panel is adapted from 
Gho et al., 1999)      
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1.2.5 Grim 

Three proapoptotic genes, located within the H99 locus, were identified: reaper, 

grim, and hid (Chen et al., 1996; Grether et al., 1995; White et al., 1994).  There is a 

general lack of evidence regarding the specific inducers of grim, but Wingless reportedly 

activates reaper, grim, and hid (Lin et al., 2004), and the microRNA miR6 and miR11 

inhibit the expression of reaper, grim and hid through their 3’ UTR (Ge et al., 2012).  UV 

or irradiation stimulates the expression of Reaper, but whether it increases the expression 

of Grim is unknown (Brodsky et al., 2000; Nordstrom et al., 1996).  Similarly, it is 

unclear whether the hormone ecdysone upregulates grim, although it upregulates reaper 

and hid (Jiang et al., 2000).  Due to the lack of a known specific inducer of Grim, we will 

utilize over-expressed Grim in Drosophila cells to study Grim-specific induced death.  A 

metallothionein promoter under the control of copper will also be used to manipulate 

grim expression levels.  

The mRNA transcripts of grim are observed during embryonic development with 

expression peaking at stage 13-15 (10-12h) (Fig. 1.5), and the expression is mainly 

located in the ventral nerve cord and in some macrophages (Chen et al., 1996).  Loss of 

grim prevents neuroblast cell death during late embryogenesis, whereas loss of reaper 

has no such effect, indicating that Grim functions as a major cell death inducer in 

neuroblast cell death (Tan et al., 2011).  To sculpt the adult central nervous system, 

programmed cell death is required to remove specific neurons that are no longer needed.  

Transcripts of grim are also observed in late 3rd instar larvae and during pupation, when 

massive apoptosis is required to shape the larva into the adult form (Fig. 1.5).  During 

metamorphosis, grim is the main proapoptotic gene required for removing corazonin-
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expressing peptidergic neurons in the ventral nerve cord, while reaper and sickle are less 

important during this process (Lee et al., 2013).  During mid-pupal development, the 

sensory organ progenitor (SOP) cell undergoes asymmetric cell division and gives rise to 

five distinct cells (shaft, socket, sheath, neuron and glial cells) (Fig. 1.5) (Fichelson and 

Gho, 2003).  In the thoracic microchaete bristle, a specialized sensory organ, the glial cell, 

will soon be eliminated by the existence of endogenous Grim (Wu et al., 2010).  In the 

non-innervated bristle at the posterior wing margin, Grim and the dREAM/Myb-MuvB 

complex are responsible for apoptosis of the neuron and sheath cell precursor (Rovani et 

al., 2012) (Fig. 1.5).    

With only 138 amino acids, Grim is predicted structurally to possess three alpha 

helices, named GH1, GH2, and GH3.  GH1 begins immediately after the IBM; GH2 

expands on the polyglutamine (polyQ)-rich region; and GH3 shares similarity with the 

GH3 domain of Reaper (Claveria et al., 2002) (Fig. 1.6).  Grim is also able to induce cell 

death without its IBM, but the mechanism is still unclear.  Immunocytochemistry data 

reveal that Grim is distributed in the cytoplasm but also forms punctae or ring structures 

(Claveria et al., 2002).  Claveria and co-workers (2002) reported that the punctae 

colocalized with redistributed cytochrome c and caused mitochondria damage mainly 

through the GH3 domain even though the punctae did not colocalize with MitoTracker®.  

It remains unstudied whether the GH3 domain of Reaper and Grim share the same 

function or localization, and even if they do, the function of the GH3 domain of Reaper is 

still controversial.  Interestingly, Grim also contains this polyglutamine expansion 

amongst all of the sequenced Drosophila species, but its function remains understudied.  

Notably, proteins with extensive polyQ repeats tend to aggregate and cause toxicity 
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(Shao and Diamond, 2007).  Whether the polyQ repeats in Grim is under physiological or 

pathological range was never addressed, but to resolve this issue, we will use deletion 

mutants to test whether loss of the polyQ region will have effects on Grim-induced death.  

 
 
 
 

 
 
 
Fig. 1.6 The protein sequence of Grim in D. melanogaster.  Grim contains 138 amino 
acids, and based on the structure prediction by Claveria et al (2002), it contains three 
alpha helices, named Grim Helix (GH) domains (highlighted in gray).  The GH1 domain 
begins immediately after the IBM (amino acid 2-5); GH2 comprises a polyglutamine 
region; and GH3 contains a conserved sequence (amino acids 86-100). The C-terminus of 
Grim remains uncharacterized.   
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1.3 RNA granules, processing (P)-bodies, and translational repression 

In response to different developmental stages or environmental cues, embryos and 

cells have different ways to regulate or reprogram the protein composition of a cell.  One 

way is through translational control.  Actively translated mRNA is circularized through 

an interaction between poly(A) binding protein (PABP) and the cap structure and is 

decorated with many ribosomes on a single mRNA (polyribosome, or polysome) (Fig. 

1.7) (Besse and Ephrussi, 2008).  Untranslated mRNA, along with different protein 

components, assembles into various mRNA granules in order to regulate the fate of the 

target mRNA.  Such mRNA granules can be found in yeast, C. elegans, Drosophila, 

Xenopus, and mammals.  They can be observed in the cytosol as nonmembranous 

punctae, including processing (P)-bodies, stress granules, neuronal granules, and germ 

cell granules (Buchan and Parker, 2009) (Fig. 1.7).  Germ cell granules usually suppress 

maternal mRNA translation until mRNAs travel to the right position at right 

developmental stage.  Neuronal granules contain mRNAs that need to be transported to 

dendrites for translation.  Stress granules are enriched with stalled mRNAs and ribosomes 

due to environmental stress, such as heat shock.  P-bodies are cytoplasmic mRNP 

granules of ~300-500 nm in diameter, where mRNA decay and translational repression 

occurs (Ernoult-Lange et al., 2012).  The proteins found in P-bodies vary depending upon 

the cellular context and can be classified into several categories according to their 

functions, such as mRNA decapping (DCPs), enhancers of decapping (EDC3, EDC4), 

miRNA or siRNA function (Argonaute proteins), translational repression (Me31B, 

dFMR1, and GW182), and 5’ to 3’ degradation (Xrn1) (Garneau et al., 2007; Parker and 

Sheth, 2007).  Depending upon the protein composition, mRNAs in a P-body can be 
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repressed, stored, degraded, or sent back to the translational machinery when needed.  

The proteins in P-bodies and stress granules can also shuttle back to the cytosol (Eulalio 

et al., 2007a).  

Different mRNA granules share some common as well as unique protein 

components. Tia-1 (or Rox-8 in Drosophila) is an RNA-binding protein that localizes to 

stress granules in response to heat shock when translational initiation factor eIF2α is 

phosphorylated and translational initiation is halted (Kedersha et al., 2000).  It is 

therefore used as a stress granule marker.  Fragile X mental retardation protein (FMRP) is 

a dynamic RNA-binding protein and, depending upon cell types or conditions, it interacts 

with the cargo mRNA in the nucleus, binds to the coding region of mRNA, and stalls 

ribosomes (Kim et al., 2009). It also coordinates with the P-body component Me31B to 

negatively regulate dendritic growth in sensory neurons (Barbee et al., 2006; Darnell et 

al., 2011).  Decapping enzymes, such as DCP2 and DCP1, are found mainly in P-bodies, 

while ribosomal proteins and initiation factor 4E (eIF4E) are usually absent in P-bodies 

(Buchan and Parker, 2009; Eulalio et al., 2007a; Parker and Sheth, 2007).  P-bodies can 

be dynamic as well as stationary granules, and the size of which varies depending upon 

the untranslated mRNA pool (Aizer and Shav-Tal, 2008; Teixeira et al., 2005). The 

translational repressor cycloheximide traps mRNAs in polysomes leading to a decrease in 

the visible cytoplasmic pools of P-bodies in the cell. Puromycin induces the premature 

release of mRNA to the cytosol, such that it increases both P-body size and number. It is 

believed that these mRNA granules are important sites for mRNA storage, miRNA 

function, mRNA decay, and translational repression, but whether P-bodies are a 



 28 

consequence or a cause of accumulated of untranslated mRNA remains controversial 

(Eulalio et al., 2007b).  

Recent studies have found that 50 to 70% of P-bodies dynamically associate with 

mitochondria, and that while disruption of mitochondria does not affect the size or 

localization of the P-bodies, it does affect miRNA-mediated RNA interference (Huang et 

al., 2011).  It is currently unclear whether stress granules also associate with 

mitochondria; due to their larger size (1-2 µm), it is difficult to determine whether they 

are randomly distributed in the cytosol or around the mitochondria (Ernoult-Lange et al., 

2012).  
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Fig. 1.7 The mRNA cycle. After mature mRNA is exported to the cytosol, eIF4E binds 
the cap of mRNA and the translational initiation complex is recruited.  Translation is 
facilitated by mRNA circularization through the interaction between PABP and eIF4G, 
allowing many ribosomes to translate one mRNA molecule at the same time (polysome).  
Stress granules assemble during cellular stress causing accumulation of stalled mRNA 
and TIA-1/TIAR complexes.  The P-body is a storage site in the cytosol for untranslated 
mRNA transcripts. Decapping enzymes, enhancers of decapping proteins, or 
exonucleases (LSM complexes) are enriched in P-bodies to regulate mRNA stability. 
(Modified from Parker and Sheth, 2007; Besse and Ephrussi, 2008) 
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1.3.1 Decapping enzymes   

A eukaryotic mature mRNA contains a cap structure at its 5’-end and a 

polyadenylated tail at its 3’-end, which facilitates its translation and also protects it from 

degradation by 3’ à5’ exonucleases.  Decapping is a critical step in eukaryotic mRNA 

decay, after which, 5’ à3’ exonucleases can degrade mRNA.  An mRNA molecule can 

also be degraded from the 3’-end after deadenylase removes the poly(A) tail (Garneau et 

al., 2007).  DCP2 is the main decapping enzyme, while DCP1 and EDC3 are enhancers 

of decapping.  DCP2 has closed and open conformations, and when interacting with 

DCP1, the closed form is stabilized, resulting in higher decapping activity (She et al., 

2008).  The crystal structure of the yeast DCP2-DCP1 complex reveals that the 

interaction interface is not highly conserved in higher organisms (She et al., 2008), which 

explains why extra molecules, such as EDC3, RCK/p54 (Me31B homolog in human), 

and EDC4/Ge-1/Hedls, are required to stimulate decapping activity in higher organisms 

(Bail and Kiledjian, 2006; Chang et al., 2014).  The C-terminus of DCP1 has a unique 

asymmetric trimerization domain that forms a kink that is structurally required for the 

assembly of active decapping complexes through interactions with DCP2 and EDC4 

(Tritschler et al., 2009) (Fig. 1.8).  
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Fig. 1.8 The functional and domain analysis of Me31B and DCP1. Me31B belongs to 
the DEAD-helicase protein family, which contains several characteristic motifs: the 
ATPase A motif, the DEAD box, and the HRIGRXXR region.  They assemble into two 
important domains (N and C domains) that are important for ATP binding, ATP 
hydrolysis, RNA binding, or RNA unwinding. DCP1 interacts with and stabilizes DCP2 
through its unique C-terminal trimerization domain (TD).  It also has motif 1 that is 
required for interaction with enhancer of decapping (EDC3) and Me31B. The N-terminal 
EVH1 domain directly interacts with XRN-1, which is important for exonuclease activity. 
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1.3.2 The maternal expression at 31B (Me31B) 

In the process of Drosophila oogenesis, a large amount of mRNA and proteins are 

synthesized by nurse cells and transported to the oocyte for establishing the polarity of 

the future embryo.  During the transport, mRNA transcripts are translationally repressed 

by protein complexes that include maternal expression at 31B (Me31B), so named 

because the gene is located on the chromosome 31B region and has high expression 

levels in oocytes (de Valoir et al., 1991; Nakamura et al., 2001).  Even though Me31B is 

not required for transporting mRNA, it is important for silencing mRNA translation 

during oocyte development (Nakamura et al., 2001).  Me31B draws a lot of attention 

because it belongs to a highly conserved protein family of ATP-dependent DEAD-box 

helicase proteins that regulates biological function through modifying RNA-protein 

complexes (Fig. 1.8).  Me31B and all its homologs, Dhh1p (Saccharomyces cerevisiae), 

CGH-1 (Caenorhabditis elegans), Xp54/DXX6 (Xenopus laevis), and RCK/p54 (mouse 

and human) are translational repressors, and many of them are important during 

oogenesis, early embryo development, and in regulating mRNA expression in cells or 

dendrites (Akao et al., 1995; Coller et al., 2001; Navarro et al., 2001; Smillie and 

Sommerville, 2002).  

Other than translational repression, Me31B and its homologs interact with 

decapping proteins to enhance mRNA decapping.  They also associate with subunits in 

the deadenylase complex (Coller et al., 2001), and RCK/p54 interacts with Argonaute 

(Ago) proteins in vivo. Depletion of RCK/p54 affects Ago2 localization, but not Ago2 

function (Chu and Rana, 2006).  Interestingly, RCK/p54 expresses at high levels in many 

malignant cancer cell lines and human colorectal adenocarcinoma patient samples.  RCK 
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promotes cell proliferation when overexpressed and is downregulated during 

differentiation through uncharacterized mechanisms (Akao et al., 2006; Nakagawa et al., 

1999).  

How translation is inhibited by Me31B is not fully understood, but mutation in the 

DEAD-box or HRIGR domains activate translation in reporter assays (Minshall and 

Standart, 2004).  The crystal structure of Dhh1p reveals that the protein contains two 

domains, an N-domain and a C-domain, which interact with each other to form a large 

channel.  The N-domain is important for ATP binding and hydrolysis, and the C-domain 

is important for RNA binding.  ATP binding is not required for RNA binding, but it is 

important for conformational changes and the function of Dhh1p (Cheng et al., 2005).  It 

is difficult to demonstrate the helicase activity of Me31B or its homolog in vitro due to 

technical issues or a lack of necessary cofactors; so most studies have examined the 

function of whole Me31B complexes.  Me31B interacts with Drosophila fragile X mental 

retardation protein (dFMR1) and forms a complex with Staufen to regulate dendrite 

morphogenesis in sensory neurons (Barbee et al., 2006; Hillebrand et al., 2007).  Me31B 

overexpression reduces dendritic complexity, while loss of Me31B increases dendritic 

spine number and length (Hillebrand et al., 2010).  Its interaction with Tral or EDC3 is 

mutually exclusive, and it forms complexes with DCP1 and CUP when interacting with 

Tral. A different complex is formed with DCP1 and DCP2 when associating with EDC3 

(Tritschler et al., 2008).  It is possible that Me31B performs different functions through 

the recruitment of different protein components, but confirmation of this will require 

future studies.  
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1.4 Dissertation objectives 

Apoptosis is a highly regulated process involving proteolytic cascades that lead to 

activation of caspases, which in turn cause cell self-destruction.  This evolutionarily 

conserved pathway is required during development and morphogenesis of metazoans, and 

deregulation of apoptosis can result in human diseases, such as cancer, neurodegeneration 

and autoimmune disorders.  Drosophila has been an excellent model system in which to 

study apoptosis due to its conservation and similarities with mammalian intrinsic 

pathways. In flies and mammals, cell death can be regulated by altering the balance 

among caspases, IAPs, and IAP antagonists.  IAPs prevent caspase-mediated cell death 

not only through direct binding and inhibition, but also by directly ubiquitinating 

caspases, which inactivates them or targets them for degradation (Ditzel et al., 2008; Lee 

et al., 2011; Li et al., 2011; Muro et al., 2002; Wilson et al., 2002; Yan et al., 2004).  IAP 

antagonists promote cell death by displacing IAP-bound caspases as well as by promoting 

IAP autoubiquitination (Holley et al., 2002; Ryoo et al., 2002; Yoo et al., 2002).  While 

the roles of caspases in mediating cell death in multicellular organisms have been studied 

for the past two decades, it is still unclear how cell death activators/enhancers, such as 

IAP antagonists, are regulated at the molecular level.  Our goal was to study the 

regulation of IAP antagonist-induced cell death.  We used the Drosophila IAP antagonist 

Grim as an example to investigate IBM-dependent and IBM-independent cell death, since 

some IAP antagonists are known to induce cell death with a second mechanism.  We 

discovered that Grim is a target for caspase-mediated cleavage at Grim’s C-terminus, but 

the detailed regulation and significance was not clear.  In chapter 3, we hypothesized 

that cleavage of Grim results in a truncated form of Grim that cannot be turned 
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over and thus results in a feed-forward caspase amplification loop. We showed a 

novel regulation between caspases and the proteasome system in that Grim is turned over 

through DIAP1-mediated ubiquitination and cleavage of Grim at its C-terminus rescued it 

from degradation, markedly increasing Grim-induced cell death.  

 In addition to IBM-dependent cell death, Grim can induce cell death in an IBM-

independent manner, but the mechanism remains unclear, particularly with regard to 

where in the cell that Grim mediates this effect (Chen et al., 2004; Claveria et al., 2002).  

Previous studies suggest Grim partially colocalizes with mitochondria (Claveria et al., 

2002), but we discovered that it instead localizes to P-bodies.  In Chapter 4, we 

hypothesized that Grim mediated cell death, at least in part, through its association 

with P-bodies and the induction of translational repression. We demonstrated that the 

C-terminus of Grim was required for both its localization to P-bodies and its killing 

activity. Knockdown of Me31b, a translational repressor, can significantly reduced IBM-

independent cell death. Overall, we aim to understand at a cellular level how Grim-

induced cell death is executed and regulated through both IBM-dependent and –

independent mechanisms. 
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CHAPTER 2 

Materials and methods 

 

2.1 Reagents and antibodies 

MaxfectTM (#TR-1000) transfection reagent was purchased from KD Medical 

(Columbia, MD). MG-132, cycloheximide, zVAD-fmk, and Ac-DEVD-AMC were 

obtained from Biomol-Enzo Life Sciences.  MitoTracker® Red CM-H2Xros (M-7513) 

was purchased from Life Technologies.  Antibody against GFP (CS-2956), HA (CS-

2367), myc (CS-2276), ubiquitin (CS-3936), K48-specific ubiquitin chains (CS-8081), 

and K63-specific ubiquitin chains (CS-5621) were purchased from Cell Signaling 

Technology.  HSV antibody was obtained from both Novagen (69171) and Novus 

(NB120-9533), while Grim antibody (sc-1573) was purchased from Santa Cruz 

Biotechnology.  Tubulin antibody (E7) was obtained from the Developmental Studies 

Hybridoma Bank, and Flag antibody (F1804 and F2555) was purchased from Sigma-

Aldrich.  DIAP1 antibody was a gift from Dr. Kristin White (Massachusetts General 

Hospital/Harvard Medical School, Charlestown, MA). Antibodies to DrICE and DRONC 

were raised in house.  

2.2 Cell culture and transfection 

Drosophila S2 cells were grown and maintained in HyClone SFX-Insect medium 

(Thermo Scientific, Logan, UT) at 25ºC.  For transfection, cells were plated (1x106 

cells/well) overnight in a 12 well plate.  Then, 1 µg of total DNA and 4 µl MaxfectTM 
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reagent were diluted in separate tubes with 100 µl of insect medium resting at room 

temperature for 10 mins.  Diluted DNA was then added into the transfection reagent tube 

and incubated at room temperature for another 10 mins.  The final mixture was applied 

onto cells gently.  

2.3 Bacterial and fly expression constructs 

C-terminal His6-tagged inactive DrICE (C211A) was cloned into pET21 vector 

(Novagen) with NcoI-XhoI sites.  N-terminal His6-tagged inactive Dronc (C318A) was 

cloned into pET28 vector (Novagen) with BamHI-NotI sites.  Grim constructs were 

cloned into a pIE vector (Novagen) with an N-terminal Flag tag by using SacII-NotI sites 

or into a pRmHa3 vector with a C-terminal HSV-His6 tag by using EcoRI-NotI site.  

DIAP1 and DIAP2 constructs were cloned into a pIE vector with an N-terminal HA or 

GFP tag by using SacII-NotI sites.  Specific point mutation was introduced into plasmid 

DNA using site-directed mutagenesis.  Ubiquitin was cloned into a pMT vector 

(Invitrogen) using KpnI-NotI sites with an N-terminal Flag tag.  UbcD1 and Morgue 

constructs were cloned into a pIE vector with an N-terminal myc tag using SacII-NotI 

sites. pCasper-mitoGFP and pAGW-dMFN constructs were gifts from Dr. Kristen White 

(Abdelwahid et al., 2007) and Dr. Sally Kornbluth (Thomenius et al., 2011) respectively.  

For various GFP-Grim or Grm fragments, GFP was first cloned into SacII and 

NotI sites into a pIE vector (pIE-GFP). BamHI and XhoI site were introduced by using a 

downstream primer.  Grim and its mutants were then cloned separately into BamHI-XhoI 

sites.  pIE-mCherry construct was made by cloning mCherry into SacII and BamHI site 

in a pIE-GFP vector.  For various mCherry-Me31B or its deletion mutants, Me31B or its 



 38 

deletion mutants was cloned into XhoI-ApaI sites.  DCP1 construct was cloned into a pIE 

vector with an N-terminal DsRed by using SacII-ApaI sites.  Rox8 construct was cloned 

into BamHI-XhoI sites of a pIE-GFP construct.  dFMR1 was cloned into a pIE-mCherry 

construct using BamHI-XhoI sites. 

2.4 Cell lysate preparation 

After transfection or treatments, cells were spun down at 1,000 × g for 5 mins.  

Cells were lysed in NP40 lysis buffer (20 mM Tris HCl, pH 8.0, 137 mM NaCl, 10% 

glycerol, 1% NP-40, 2 mM EDTA, 10 mg/mL leupeptin, 10 mg/mL pepstatin, 10 mg/mL 

aprotinin, 200 mM PMSF) on ice for 10 min and spun at 18,000 × g for 10 min at 4ºC.  

For whole cell lysate preparation, 2X loading buffer (100 mM Tris-HCl, pH 6.8, 4% 

SDS, 0.2% bromophenol blue, 20% glycerol, 200 mM DTT) was added to the cell pellet 

and incubated at 95ºC for 5 min.  Genomic DNA was sheared by sonication, and samples 

were subjected to SDS-PAGE/immunoblotting. 

2.5 Immunoprecipitation and immunoblotting 

Cells were lysed in NP40 lysis buffer on ice for 10 min and supernatant was 

collected after 10 min spin at 18,000 × g.  Protein concentration was determined using 

Bradford assay (Bio-Rad), and 1 mg of lysate was used for immunoprecipitation.  Lysates 

were incubated with 1 µl rabbit anti-HSV antibody and 30 µl protein agarose G beads 

(GE Healthcare Life Sciences, Piscataway, NJ) for 2 h at 4ºC.  Beads were then washed 

(4X) with lysis buffer and analyzed by SDS-PAGE/immunoblotting.   
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2.6 Immunostaining  

Drosophila S2 cells were transfected with pRmHa3-Grim(D132A)-HSV in the 

presence of zVAD-fmk.  After 8h induction, cells were incubated with MitoTracker® 

Red prior to 4% paraformaldehyde fixation, and washed with PBS three times.  Cells 

were then permeabilized with 0.1% Triton-X 100 and blocked with 1% (w/v) bovine 

serum albumin for 1h, followed by incubating with anti-HSV antibody (1:1000 dilution).  

After washing with PBS three times, cells were incubated with fluorophore-conjugated 

secondary antibody (1:1500 dilution) for 1hr at room temp.  DNA was stained using 

Hoechst 33342 (1 µg/ml).  Images were taken using Nikon microscopy system (TE2000) 

and NIS-Elements Ar Micorscope Imaging Software.  

2.7 Ubiquitination assay 

Drosophila S2 cells were transfected with the indicated Grim and DIAP1 

constructs (500 ng each).  Following transfection for 24 h, cells were induced with 

CuSO4 for 8 h and lysed under denaturing conditions (6 M guanidine-HCl, 0.1 M 

NaH2PO4, 20 mM Tris-HCl, pH 8.0, 10 mM N-ethylmaleimide and protease inhibitors). 

His-tagged proteins were pulled down after incubating the samples with Ni-NTA beads 

(Qiagen) for 2 hr under denaturing conditions.  Beads were then washed with 25 mM 

imidazole buffer (0.5 M NaCl, 50 mM Tris-HCl, pH 8.0, 25 mM imidazole) and heated 

for 5 min at 95ºC after adding a loading dye (2X).  Samples were analyzed by SDS-

PAGE/western blotting.  

To examine ubiquitination of Grim in the absence of ectopically expressed DIAP1 

or DIAP2, cells were transfected with pRmHa3-Grim (1µg) and pMT-Flag-ubiquitin (0.2 
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µg).  After 24h transfection, cells were induced with CuSO4 for 8h in the presence of 

zVAD-fmk and MG132.  Cells were then lysed in 1% SDS and boiled at 95 °C for 10 

min and centrifuged to remove any pellet.  The supernatant was then diluted with NP-40 

lysis buffer and incubated with Flag antibody and protein G sepharose beads at 4 °C for 

2h. Finally, beads were washed with lysis buffer and analyzed by SDS-

PAGE/immunoblotting.  

2.8 RNAi in S2 cells 

Double-stranded (ds) RNA was synthesized using MEGAscript T7 in vitro 

transcription kit (Life Technologies) and annealed at 65ºC for 10 min. S2 cells were then 

treated with 40 nM dsRNA for 24 h.  Sequence-specific primers with the T7 promoter 

sequence (GAATTAATACGACTCACTATAGGGAGA) and indicated gene-specific 

sequences were used (Table 2.1).  

Table 2.1 RNAi primers used in this study 

drice 
Forward primer (F): GTACAACATGCGCCACAAG 

Reverse primer (R): CAGGAACCGTCGAGTAGG 

dronc 
F:GACAATGGTGACCTCCTCGT 

R:GCCATCACTTGGCAAAACTT 

ubcd1 
F: GGCGTTAAAAAGAATCAATAAGGA 

R: CATAGCATACTTTCTAGTCCACT 

morgue 
F: TTCATATACTTCCCGGAGCGA 

R: TCACTAGCGCGGTGCAATTAG 

gfp 
(control) 

F: GAGTGAGCAAGGGCGAGGAGC 

R: GATTGTACAGCTCGTCCATGCC 
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Table 2.1 (cont.) 

tnf 
(control) 

F: CCCAGGGACCTCTCTCTAATCAGC 

R: GCAATGATCCCAAAGTAGACCTGC 

diap1 
F: GTTGTGCAAGATCTGCTACGG 

R: TAACTGGCAGGCTTTGTGATCT 

diap1 
3’UTR 

F: TAACCCCAATGCGCACCCAA 

R: TTTTCGGTAATATATTAGTTTTATT 

me31b 
F: GCCACTCCCGGACGAATATTA 

R: AGATTGCGACAGAGTCCTTGG 

dcp1 
F: TGGCCGACGAGAGCATCACGC 

R: TCCCTGATCCTTGGACTTGAG 

dcp2 
F: GAGACCGGGTTCGATATCAC 

R: CGATCCCGCTCCCGTTCCA 

gawky 
(GW182) 

F: CGGGAGGTATAGGAATAGCCG 

R: ATTGCTTGCTTTGCTTAATGATCT 

 

2.9 qPCR (real-time PCR) and RT-PCR 

Total RNA was isolated and treated with DNase to prevent any possible 

contamination from plasmid DNA and cleaned up using RNeasy Mini kit (Qiagen).  

cDNA template was synthesized by using random primers.  Real-time PCR was 

performed on Applied Biosystems 7900HT.  Gene specific primers were used to detect 

each gene (Table 2.2).  The resulting Ct values were applied to standard curves generated 

for both diap1 and grim.  Results are presented as the number of mRNA copies present in 

40 ng of total RNA. 
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Table 2.2 RT-PCR and qPCR primers 

grim 
F: TTCCGTGCCAATATTTCCGTG 

R: GTC CTCATCGTTGTTCTGACC 

diap1 
F: AGAGCTCTTCGATTGGAGGG 

R: GTATGGAGGTGGAGCCGCT 

gapdh 
F: GCAAGCAAGCCGATAGATAAAC 

R: CAACGGTGCCCTTAAAACGTC 

dcp1 
F: GGCAGGGACAATCACGAGAG 

R: CAGGTAGGCCTTGTGCAGCT 

dcp2 
F: TCCAACACATTCCCTTCCTGAA 

R: GGAACCAGTCGCAGCACTTG 

me31b 
F: CCGATATGTCGCATTGCAGAAT 

R: TAATAGCAATACCCAAATGACCG 

gw182 
F: TGTCCTTTCCTCATAATAACCTTA 

R: CCTGGAGATGCTTAATATTGCTA 

 

2.10 Pulse-chase experiment 

After a 24 h transfection, Grim expression was initially induced in S2 cells with 

CuSO4 for 2 h.  Cells were then washed once with PBS and incubated with 

cycloheximide (10 µg/ml) for 0-8 h.  All pulse-chase experiments were performed in the 

presence of zVAD-fmk (50 µM) in order to prevent cell death.  Whole cell lysates were 

collected and analyzed by SDS-PAGE/western blotting. 
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2.11 DEVDase activity assay 

Cells were lysed in buffer (10 mM Tri-HCl, 10 mM NaH2PO4/NaHPO4, pH 7.5, 

130 mM NaCl, 1% Triton-X 100) for 10 min on ice and spun at 18,000 × g for 10 min. 

Supernatant was normalized to equal protein concentration (4-5 mg/mL) and 80 µL of 

lysates were incubated with an equal volume of assay buffer (20 mM HEPES, pH 7.5, 

10% glycerol, 2 mM DTT) containing the fluorescent substrate, Ac-DEVD-AMC (final 

concentration = 25 µM).  DEVDase activities were immediately measured (Ex: 354 nm, 

Em: 442nm) in a 96-well pate using a SpectraMax M5 plate reader (Molecular Devices, 

Sunnyvale, CA).   

2.12 Caspase cleavage assay 

S2 cells were cotransfected with HA-DIAP1 and either wild-type Grim, Grim 

(D132A), or Grim (K136R).  After 24 h, cells were incubated with CuSO4 (0.7 mM) for 

an additional 8 h in the presence of zVAD-fmk (50 µM) and MG132 (10 µM) to prevent 

caspase activity and proteasomal-dependent turnover of proteins.  After washing the 

cells, lysates were prepared and incubated for 30 min at 37ºC, with or without 

recombinant DrICE (10 µg), in a total volume of 100 µL.  Protein loading buffer (5X) 

was then added to terminate the reaction, and the samples were analyzed by SDS-

PAGE/immunoblotting.  

2.13 Recombinant protein expression and antibody generation 

All recombinant proteins were expressed in E. coli strain BL21(DE)pLysS with 

N-terminal or C-terminal His6 tag.  Bacteria were grown in 400 ml LB culture till O.D. 

600 reaches about 0.4-0.6.  Protein expression was then induced with 1 mM IPTG at 28ºC 
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for 4h.  Bacteria were collected by centrifugation and resuspened in 40 ml of lysis buffer 

with protease inhibitors (50mM NaH2PO4, 300mM NaCl, 10mM imidazole, 1mM PMSF, 

2 µg/ml aprotonin, 2 µg/ml pepstin, 2 µg/ml leupeptin, 1mM DTT, pH8.0).  After DNA 

was sheared by sonication, lysates were centrifuged at 20,000 × g for 30mins.  

Recombinant protein was purified on an FPLC (GE Healthcare Life Sciences, 

Piscataway, NJ) coupled to a column packed with Ni2+-NTA beads (Qiagen Sciences, 

Germantown, MD).  For antibody generation, protein was further dialyzed with PBS and 

used to immunize rabbits (Washington Biotechnology, Inc., Baltimore, MD).  Affinity 

purified antibodies were diluted 1:500,000 prior to immunoblotting. 

2.14 DIC microscope for tracking dead cells 

S2 cells were transfected with various Grim mutant constructs and GFP-DIAP1.  

After 24h transfection, cells were replated on Lab-Tek II chamber slides, incubated with 

CuSO4, and imaged every hour for 16 h by time-lapse DIC microscopy (Nikon TE2000).  

Only GFP positive cells were counted.  Dead cells were tracked and quantified based on 

cell membrane blebbing.  The cell death percentage was calculated by dividing the dead 

cells by the GFP positive cells. 

2.15 Loss of GFP assay 

S2 cells were transfected with 800ng pRmHa3-Grim-HSV or control vector along 

with 100ng pAc-GFP.  After 16 h, cells were split in half; one portion was induced with 

CuSO4, while the other was not.  GFP positive cells were counted after 6 h or 24 h 

induction by flow cytometry (BD AccuriTM C6 flow cytometer).  The percent of GFP 
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positive cells was used to represent cell survival rate, and was calculated by 100% x 

(GFP+ cells in the copper-treated sample) / (GFP+ cells in the non copper-treated sample). 

 

 



 

 46 

CHAPTER3 

Caspase-dependent regulation of the ubiquitin-proteasome system 

through direct substrate targeting 

 

The data described in this chapter have been published in The Proceedings of the 

National Academy of Sciences under Dr. Bratton’s supervision (PMID: 23940367).  

 

3.1  Summary 

Drosophila inhibitor of apoptosis (IAP) 1 (DIAP1) is an E3 ubiquitin ligase that 

regulates apoptosis in flies, in large part through direct inhibition and/or ubiquitination of 

caspases.  IAP antagonists, such as Reaper, Hid, and Grim, are thought to induce cell 

death by displacing active caspases from baculovirus IAP repeat domains in DIAP1, but 

can themselves become targets of DIAP1-mediated ubiquitination.  Herein, we 

demonstrate that Grim self-associates in cells and is ubiquitinated by DIAP1 at Lys136 in 

an UbcD1-dependent manner, resulting in its rapid turnover.  K48-linked ubiquitin chains 

are added almost exclusively to BIR2-bound Grim as a result of its structural proximity to 

DIAP1’s RING domain.  However, active caspases can simultaneously cleave Grim at 

Asp132, removing the lysine necessary for ubiquitination as well as any existing 

ubiquitin conjugates.  Cleavage therefore enhances the stability of Grim and initiates a 

feed-forward caspase amplification loop, resulting in greater cell death.  In summary, 
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Grim is a caspase substrate whose cleavage promotes apoptosis by limiting, in a target-

specific fashion, its ubiquitination and turnover by the proteasome. 

3.2 Introduction 

Apoptosis, or programmed cell death, is broadly conserved throughout nature, 

from flies to humans (Kornbluth and White, 2005).  In most instances, the execution of 

apoptosis is carried out by cysteinyl aspartate-specific proteases (i.e., caspases) through 

proteolytic-based signal transduction pathways (Fuentes-Prior and Salvesen, 2004).  

Upstream initiator caspases, such as caspase-9 in humans and its homologue Drosophila 

Nedd2-like caspase (DRONC) in flies, are first activated via their interactions with 

adapter proteins and in turn activate the downstream effector caspases, caspase-3 and 

Drosophila interleukin-1β–converting enzyme (DrICE), respectively (Fuentes-Prior and 

Salvesen, 2004; Kumar, 2007).  Once activated, effector caspases are responsible for 

dismantling the cell through cleavage of literally hundreds of structural and regulatory 

proteins (Luthi and Martin, 2007).  Caspase cleavage can inactivate proteins or generate 

dominant-negative inhibitors, as in the case of gelsolin, RIP1, and eIF4E-BP1 (Luthi and 

Martin, 2007).  Moreover, caspase cleavage of numerous substrates, including IRF-3, 

ErbB2, cyclin E, claspin, SSRP1, and Twist, can enhance their turnover by the 

proteasome (Demontis et al., 2006; Landais et al., 2006; Plesca et al., 2008; Sears et al., 

2011; Semple et al., 2007; Tikhomirov and Carpenter, 2001).  Conversely, caspases can 

also constitutively activate proteins, particularly kinases such as PKC and Mst1 (Emoto 

et al., 1995; Graves et al., 1998), or change the function of a protein altogether, as seen in 

the conversion of antiapoptotic BCL-2 proteins into proapoptotic BAX-like proteins 

(Cheng et al., 1997). 



 

 48 

Notably, even following the activation of caspases, inhibitor of apoptosis (IAP) 

proteins, such as X-linked IAP (XIAP) in mammals and DIAP1 in flies, can suppress 

apoptosis through inhibition of caspases (Chai et al., 2003; Deveraux et al., 1997; Meier 

et al., 2000; Riedl et al., 2001; Shiozaki et al., 2003; Yan et al., 2004).  All IAPs contain 

baculovirus IAP repeat (BIR) domains and many possess RING and UBA domains, 

imparting them with E3 ubiquitin and NEDD8 ligase activity and the ability to bind 

polyubiquitin chains (Gyrd-Hansen and Meier, 2010; Salvesen and Duckett, 2002).  

Thus, XIAP and DIAP1 directly bind and inhibit, ubiquitinate, and/or neddylate initiator 

and effector caspases through distinct BIR domains (Broemer et al., 2010; Deveraux et 

al., 1999; Riedl et al., 2001; Shiozaki et al., 2003; Wilson et al., 2002; Yan et al., 2004).  

In some circumstances, ubiquitination marks these enzymes for proteasomal degradation, 

whereas, in other cases, K63-based ubiquitination or neddylation fail to increase protein 

turnover but nevertheless inhibit protease activity through as yet ill-defined mechanisms 

(Broemer et al., 2010; Ditzel et al., 2008; Lee et al., 2011; Tenev et al., 2005). 

Finally, a further level of regulation exists in the form of endogenous inhibitors of 

IAPs.  These so-called “IAP antagonists” possess an IAP binding motif (IBM) through 

which they bind to IAPs and disrupt their interactions with caspases (Wu et al., 2001).  

Reaper, Hid, and Grim were the first IAP antagonists to be discovered in flies and were 

shown to regulate cell death during development, at least in part, by binding to DIAP1, 

displacing caspases, and inducing autoubiquitination and turnover of DIAP1 (Chai et al., 

2003; Goyal et al., 2000; Holley et al., 2002; Lisi et al., 2000; Ryoo et al., 2002; Wang et 

al., 1999; Wing et al., 2002; Yan et al., 2004; Yokokura et al., 2004).  In the present 

study, we have discovered that DIAP1, in conjunction with the E2 ubiquitin-conjugating 
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enzyme UbcD1, polyubiquitinates Grim through K48- but not K63-based linkages, 

resulting in increased Grim turnover.  Grim self-associates in cells and binds to both the 

BIR1 and BIR2 domains in DIAP1, but only the BIR2-bound Grim is significantly 

ubiquitinated by DIAP1 in a RING-dependent manner.  More surprisingly, Grim is also 

cleaved by caspases at its C-terminus, removing the only lysine residue present in this 

IAP antagonist.  Following caspase cleavage, Grim still binds to DIAP1 but is no longer 

ubiquitinated and therefore persists in cells, propagating the death signal through 

increased activation of caspases. 

3.3 Results 

3.3.1 Grim is cleaved by caspases at Asp132 during apoptosis  

In an experiment designed to characterize the putative IBM-independent effects of 

Grim, Grim was cloned with an N-terminal Flag tag to block access to its IBM (Claveria 

et al., 2002).  The tag however was initially cloned in-frame with the normal initiator 

methionine in Grim (i.e., Flag-MAIAY-Grim), and when expressed, two bands were 

unexpectedly observed (Fig. 3.1A, lane 3).  Importantly, the lower band disappeared in 

cells pretreated with the polycaspase inhibitor zVAD-fmk, so that only the upper band 

was observed (Fig. 3.1A, lane 4).  As we immunoblotted for Grim by using antibodies to 

the N-terminal Flag tag, this strongly suggested that Grim was cleaved at its C-terminus 

by a caspase, and, indeed, endogenous DrICE was activated by Flag-MAIAY-Grim and 

inhibited by zVAD-fmk (Fig. 3.1A, lanes 3 and 4). 

Given that Grim requires its exposed IBM to displace active caspases from 

DIAP1, we questioned whether the Flag-MAIAY-Grim construct might have undergone 
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alternative translation from two different start sites, so that untagged MAIAY-Grim was 

produced in addition to Flag-MAIAY-Grim (Fig. 3.1B).  We reasoned that if IBM-

competent AIAY-Grim activated caspases, they might in turn cleave the C-terminus of 

Flag-MAIAY-Grim, yielding two Flag-tagged products (Fig. 3.1B).  To test this 

prediction, we first removed the internal methionine from our Flag-MAIAY-Grim 

construct and transfected cells with Flag-AIAY-Grim.  As anticipated, expression of 

Flag-AIAY-Grim resulted in a single translated product that failed to activate caspases or 

undergo cleavage (Fig. 3.1A, compare lanes 1 and 3).  Second, we transfected cells with 

Flag-AIAY-Grim and exposed them to the translation inhibitor cycloheximide (CHX), a 

known inducer of apoptosis in S2 cells (Fraser et al., 1997).  As expected, CHX induced 

(and zVAD-fmk inhibited) the activation of DrICE and the subsequent cleavage of Flag-

AIAY-Grim at its C-terminus (Fig. 3.1C, lanes 3 and 4). 

Having demonstrated that Grim is cleaved by caspases, we next sought to identify 

the caspases responsible for cleavage.  Grim is thought to promote DARK-DRONC 

apoptosome-mediated activation of effector caspases, such as DrICE, by antagonizing 

DIAP1-dependent turnover of DRONC.  Therefore, we knocked down the expression of 

DRONC or DrICE in S2 cells by RNAi and found that depletion of either caspase 

inhibited the cleavage of Flag-MAIAY-Grim (Fig. 3.1D).  Notably, whereas knockdowns 

of DrICE and particularly DRONC appeared to be near-complete, zVAD-fmk inhibited 

Grim cleavage more efficiently than knockdown of either caspase. Thus, we cannot 

formally exclude the possibility that other caspases are involved in the cleavage of Grim. 

Finally, to map the caspase cleavage site(s) in Grim, we examined its C-terminus 

and noted the presence of two potential DXXD motifs, DEDD129 and DVTD132, both 
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of which were followed by small uncharged amino acids (valine and alanine, 

respectively) in the P1′ position (Fig. 3.1B).  We suspected the cleavage site was 

DVTD132↓A because of the more preferable P2 amino acid, but feared that mutation of 

Asp132 to alanine might redirect some cleavage to Asp129.  Therefore, we incorporated 

a single D132A or a compound D129A/D132A mutation into the Flag-MAIAY-Grim 

construct and expressed the mutants in S2 cells.  As shown in Fig. 3.1E, mutation of 

Asp132 alone inhibited the C-terminal cleavage of Grim (Fig. 3.1E, compare lane 3 with 

lanes 1 and 2).  Thus, Grim (via its IBM) antagonizes DIAP1 and activates caspases, 

which in turn cleave Grim at Asp132 to liberate its C-terminus (Fig. 3.1B). 
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Figure 3.1 Grim is cleaved by caspases at C-terminus.  (A) pIE-Flag-AIAY-Grim and 
pIE-Flag-MAIAY-Grim were expressed in S2 cells with or without the poly-caspase 
inhibitor, zVAD-fmk (50 µM).  Cell lysates were then immunoblotted for Flag and 
DrICE. The AIAY sequence (orange) is the natural IBM in Grim and the Methionine 
(green) in Flag-M-AIAY served as an alternative translational start site when fused 
downstratem of the Flag tag.  (B) Proposed scheme to explain the C-terminal processing 
of Flag-MAIAY-Grim by caspases at Asp132.  (C) S2 cells were transfected with pIE-
Flag-AIAY-Grim and treated with CHX (10 µM) with our without zVAD-fmk.  In the 
absence of zVAD-fmk, CHX induces caspase activation and apoptosis.  Following 
treatment, cell lysates were prepared and immunoblotted for Flag-tagged Grim or 
endogenous DrICE.  (D) S2 cells were treated with dsRNA to human TNF (control), 
DrICE or DRONC for 24h, followed by transfection with pIE-Flag-MAIAY-Grim.  As a 
positive control, cells were also treated with zVAD-fmk to inhibit caspases and prevent 
Grim cleavage.  (E) pIE-Flag-MAIAY-Grim was mutated at Asp132 or Asp129/132 and 
transfected into S2 cells.  pIE-Flag-AIAY-Grim was used as a positive control, as it does 
not undergo alternative translation and C-terminal cleavage.  After 24h, cell lysates were 
prepared and immunoblotted for Flag-tagged Grim and endogenous DrICE.  
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3.3.2 DIAP1 ubiquitinates Grim at a single lysine residue that is removed by 

caspases. 

As previously noted, IAP antagonists can be ubiquitinated by IAPs (Hao et al., 

2004; Hu and Yang, 2003; MacFarlane et al., 2002; Olson et al., 2003b), and, while 

mapping the caspase cleavage site for Grim, we noted the presence of a single lysine, 

located downstream of the caspase cleavage site (Fig. 3.2A).  This led us to question 

whether DIAP1 ubiquitinated Grim at Lys136 in cells and ultimately whether removal of 

its C-terminus could protect Grim from proteasomal-mediated degradation (Fig. 3.2A).  

Although the usefulness of our Flag-MAIAY-Grim construct was immeasurable in 

initially revealing Grim cleavage (Fig. 3.1), its processing was somewhat complicated in 

that Flag-MAIAY-Grim could not interact with DIAP1, and AIAY-Grim could not be 

detected with an anti-Flag antibody.  Therefore, moving forward, we chose instead to use 

a Grim-HSV-His6 construct, as it contained a fully functional IBM, capable of binding 

DIAP1 (as detailed later), and, unlike Flag, the HSV-His6 tag did not contain a lysine 

residue to interfere with our ubiquitination studies.  Of course, Grim cleavage prevented 

us from visualizing HSV tag with an anti-HSV antibody, but this could be easily 

overcome by mutating Asp132 to alanine. 

We first examined whether Grim is ubiquitinated endogenously.  We did 

ubiquitination assay in cells that only express Grim and Flag-ubiquitin in the presence of 

proteasome inhibitor MG132 and caspase inhibitor, zVAD-fmk. Even though Grim 

(D132A) was weakly ubiquitinated, the lysine mutant, Grim (D132A/K136R) [henceforth 

known as Grim (DA/KR)] was not modified at all (Fig. 3.2B).  We also did the 

ubiquitination assay by pulling down His-tagged Grim using Ni2+-NTA beads, and the 
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amount of Grim ubiquitination was little but still detectable (Fig. 3.2D, lane 1).  We 

suspected it is due to the robust regulation of the copper promoter upstream of Grim 

constructs, so there were not enough E3 to ubiquitinate Grim.  To overcome the lack of 

E3, we overexpressed proportional amount of DIAP1 and Grim in cells and found DIAP1 

coexpression improved our detection of Grim-ubiquitin conjugates (Fig. 3.2C and Fig. 

3.3A).  

Notably, when we knocked down DIAP1 in cells, there is no obvious reduction in 

Grim ubiquitination (Fig. 3.2D, lanes 3 and 4), which is likely due to the functional 

redundancy of DIAP2 or other BIR domain containing E3. Indeed, when coexpressed 

with DIAP1 or DIAP2, Grim (D132A) underwent time-dependent ubiquitination that was 

not observed with Grim (DA/KR; Fig. 3.2C and 3.3B).  Consistent with these data, in 

pulse-chase experiments, Grim (D132A) was rapidly degraded (t1/2 < 2 h) in cells, 

whereas Grim (DA/KR) was resistant to turnover (t1/2 > 8 h; Fig. 3.4A and B).  

Treatment with the proteasome inhibitor MG132 also resulted in the accumulation of 

Grim (D132A) and its ubiquitinated species in the presence and absence of ectopically 

expressed DIAP1 (Fig. 3.3C, lanes 1 and 3 and Fig. 3.3D, lanes 1 and 2).  Loss of Grim 

was not caused simply by increased cell death, as ubiquitination and degradation of Grim 

(D132A) occurred even in the presence of zVAD-fmk (Fig. 3.3D, lanes 5 and 6, and Fig. 

3.4A).  Finally, because caspase cleavage generates a large N-terminal fragment of Grim, 

we examined the fate of Grim (1-131) and found that it persisted in cells and retained its 

ability to bind DIAP1 (Fig. 3.4C, and Fig. 3.5, lanes 2 and 3).  Thus, DIAP1 mediates the 

turnover of Grim by ubiquitinating it on Lys136, but turnover can be suppressed by 

caspase cleavage at Asp132 without disrupting its interaction with DIAP1. 
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Figure 3.2 Grim is ubiquitinated at Lys136. (A) Proposed relationship between DIAP1-
mediated ubiquitination of Grim at Lys136 (Red) and caspase cleavage of Grim at 
Asp132 (blue).  (B and D) Grim ubiquitination with E3 ligases at endogenous levels. S2 
cells were transfected with either the cleavage mutant pRmHa3-Grim (D132A)-HSV-His 
or the double mutant Grim (DA/KR)-HSV-His along with pMT-Flag-ubiquitin (B) or 
dsRNA (D).  Grim-ubiquitin conjugates were isolated by an anti-Flag antibody (B) or 
Ni2+-NTA beads (D).  The precipitates were immunoblotted for indicated antibodies. (C) 
S2 cells were cotransfected with pIE-HA-DIAP1 or HA-DIAP2 and pRmHa3-Grim 
(D132A)-HSV or Grim (DA/KR)-HSV.  After 24h, cells were incubated with CuSO4 (0.7 
mM) for an additional 8 h to induce Grim expression, and lysates were prepared and 
immunoblotted for HSV and HA.  
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Figure 3.3 Grim is ubiquitinated by DIAP1 at Lys136 in a time-dependent manner. 
(A) Proportional expression of DIAP1 and Grim in S2 cells.  Cells were transfected with 
HA-DIAP1 and/or Grim-HSV-His6 and total RNA was isolated for quantitative PCR 
analysis.  The Ct values were applied to standard curves generated for diap1 and grim. 
Results are presented was the number of mRNA copies present in 40ng of total RNA.  (B) 
S2 cells were cotransfected with pIE-HADIAP1 and either the cleavage mutant pRmHa3-
Grim (D132A)-HSV-His or the double mutant Grim (DA/KR)-HSV-His.  After 24 h, 
Grim expression was induced by CuSO4, and samples were collected at indicated time 
points for Western blot analysis.  (C and D) S2 cells were transfected with either 
Grim(D132A) or Grim (DA/KR) alone (C) or along with DIAP1 (D).  After transfection, 
cells were treated with DMSO, MG132, or/and zVAD-fmk for 8 h. Lysates were 
analyzed by Western blotting.   
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Figure 3.4 The half-life of Grim and its mutants.  S2 cells were transfected with Grim 
(D132A), Grim (DA/KR), or Grim (1-131) along with pIE-HA-DIAP1.  Cells were then 
induced with CuSO4 for 2h, washed with PBS solution, and incubated in normal medium 
containing zVAD-fmk and CHX (10 µg/ml).  At various time points (0-8 h), lysates were 
prepared an analyzed with immunoblotting.  
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Figure 3.5 Co-immunoprecipitation of Grim-HSV and HA-DIAP1.  S2 cells were 
transfected with Grim, Grim (1-131), or the IBM mutant Grim (A2G/I3G), which is 
unable to interact with DIAP1.  Grim and Grim mutants were then immunoprecipitated 
by an anti-HSV antibody, and the precipitates were immunoblotted for HA-DIAP1. 

 

 

 



 

 59 

3.3.3 Grim self-associates and is ubiquitinated by DIAP1 in a BIR2 and RING-

dependent manner. 

 To further characterize the mechanisms of Grim ubiquitination, we next 

examined several DIAP1 mutants and did so in the presence of zVAD-fmk to prevent cell 

death without interfering with Grim ubiquitination (Fig. 3.3D, lanes 2 and 6).  As 

expected, removal of the RING domain from DIAP1—or introduction of a RING 

mutation into full-length DIAP1—prevented Grim ubiquitination entirely (Fig. 3.6A, 

lanes 5 and 6, and Fig. 3.6B, lanes 3 and 4).  Surprisingly, however, a BIR2-RING 

fragment was approximately equal to full-length DIAP1 at ubiquitinating Grim (Fig. 

3.6A, compare lanes 3, 4, 7, and 8), and a BIR2 mutation (H283Y) in full-length DIAP1 

or the BIR2-RING fragment diminished or abolished Grim ubiquitination altogether (Fig. 

3.6B, lanes 7 and 8, and Fig. 3.6C, lanes 3 and 4).  A BIR1 mutation (W90A), on the 

contrary, had no significant impact on Grim ubiquitination (Fig. 3.6B, compare lanes 1, 2, 

5, and 6), but, when combined with the BIR2 mutation, DIAP1 (W90A/H283Y) was 

largely defective in its ability to bind and ubiquitinate Grim (Fig. 3.7A, lanes 2 and 7, and 

Fig. 3.6C, lanes 7 and 8). 

The fact that a BIR2 mutant negatively impacted Grim ubiquitination more than a 

BIR1 mutant, even though Grim binds to BIR1 with higher affinity (Wu et al., 2001; Yan 

et al., 2004), suggested that the proximity of Grim to the RING domain affected Grim 

ubiquitination more so than differences in binding affinity.  To test this hypothesis, we 

generated a ∆BIR2 fragment and found that this internal BIR2 deletion mutant 

ubiquitinated Grim almost as efficiently as the BIR2-RING fragment (Fig. 3.6C, lanes 1, 

2, 5, and 6).  Interestingly, we also noted that incorporation of the H283Y mutation into 



 

 60 

full-length DIAP1 dramatically enhanced DIAP1 autoubiquitination, regardless of the 

BIR1 mutation (Fig. 3.6B, lanes 7 and 8, and Fig. 3.6C, lanes 7 and 8), but had little 

effect on the BIR2-RING fragment, which failed to undergo significant 

autoubiquitination (Fig. 3.6C, lanes 3 and 4).  Thus, DIAP1 preferentially ubiquitinates 

BIR2-bound Grim, but in the absence of a BIR2-bound substrate, DIAP1 appears to 

ubiquitinate itself somewhere in or around the BIR1 domain (Fig. 3.7C). 

Finally, we noted that, whereas ∆BIR2 (W90A) and BIR2-RING (H283Y) were 

fully defective in Grim binding, full-length DIAP1 (W90A/H283Y) retained a weakened 

but persistent interaction with Grim (Fig. 3.7A, lanes 2, 4, 6, and 7).  Recent studies 

suggest that some IAPs and IAP antagonists can homo- and heterodimerize (Chai et al., 

2000; Dueber et al., 2011; Feltham et al., 2011; Sandu et al., 2010; Silke et al., 2005), 

leading us to speculate that a Grim dimer might form a more stable interaction with 

DIAP1 (W90A/H283Y) by forming simultaneous low-affinity interactions with BIR1 and 

BIR2.  To determine if Grim could self-associate in cells, we coexpressed and 

immunoprecipitated differentially tagged IBM mutants of Grim [i.e., Grim (A2G/I3G)-

HSV and Grim (A2G/I3G)-myc] and discovered that indeed Grim could self-associate 

(Fig. 3.7B, lane 3), independently of its interaction with DIAP1 (Fig. 3.5, compare lanes 

2 and 4).  Thus, we propose that Grim dimerizes and engages DIAP1 through interactions 

with its BIR1 and BIR2 domains, similar to the manner in which dimerized Smac 

interacts with XIAP, but only BIR2-bound Grim undergoes significant RING-dependent 

ubiquitination (Fig. 3.7C). 
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Figure 3.6 DIAP1-BIR2 preferentially ubiquitinates Grim in a RING-dependent 
manner.  DIAP1 truncation and point mutants; BIR1 (green), BIR2 (dark bule), or RING 
(red) domains were deleted or mutated (gray) as indicated. (A-C) S2 cells were 
transfected with pRmHa3-Grim-HSV along with indicated DIAP1 construct.  Cell lysates 
were collected at 4 and 8 h post induction and analyzed by Western blotting.  
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Figure 3.7 DIAP1-BIR2 preferentially ubiquitinates dimerized Grim in a RING-
dependent manner. DIAP1 truncation and point mutants; BIR1 (green), BIR2 (dark 
blue), or RING (red) domains were deleted or mutated (gray) as indicated.  (A) S2 cells 
were transfected with pRmHa3-Grim-HSV along with indicated DIAP1 construct.  
Afterward, immunoprecipitations were performed by using an anti-HSV antibody, and 
Grim complexes were analyzed with immunoblotting.  Input control blots for each 
protein were also performed (lower).  (B) S2 cells were cotransfected with Grim IBM 
mutants, pRmHa3-Grim (A2G/I3G)-HSV and/or pRmHa3-Grim (A2G/I3G)-myc.  
Afterwards, immunoprecipitations were performed by using an anti-HSV antibody, and 
Grim (A2G/I3G) complexes were analyzed by Western blotting. (C) Cartoon illustrates 
that (a) DIAP1 preferentially ubiquitinates BIR2-bound Grim in a RING-dependent 
manner, (b) in the absence of BIR2 binding (as a result of a loss-of-function mutation), 
DIAP1 ubiquitinates itself.  
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3.3.4 Grim is polyubiquitinated by DIAP1 and the E2 ubiquitin-conjugating 

enzyme UbcD1, primarily through K48-linked chains 

Previous studies have suggested that Reaper and Grim-induced autoubiquitination 

of DIAP1 is mediated by the E2 ubiquitin-conjugating enzymes, Morgue and UbcD1, and 

that Grim catalyzes this process through direct binding to UbcD1 (Hays et al., 2002; 

Ryoo et al., 2002; Wing et al., 2002; Yoo, 2005).  Therefore, to determine the roles of 

Morgue and UbcD1 in DIAP1-mediated ubiquitination of Grim, we performed knock 

down experiments in S2 cells and found that depletion of UbcD1, but not Morgue, 

significantly reduced polyubiquitination of Grim (Fig. 3.8A).  Because DIAP1 can 

catalyze both K48 and K63 ubiquitin linkages (Ditzel et al., 2008), we next sought to 

establish the type of linkages present in ubiquitinated Grim.  S2 cells were transfected 

with DIAP1, along with either Grim (D132A) or Grim (DA/KR), and, after 24 h, Grim 

proteins were isolated and immunoblotted with antibodies specific for endogenous K48 

or K63-linked ubiquitin chains.  Importantly, Grim (D132A), but not Grim (DA/KR), 

underwent DIAP1-dependent K48-linked ubiquitination (Fig. 3.8B, lanes 2 and 4), 

consistent with the observed turnover of Grim (Fig. 3.4) and the accumulation of Grim-

ubiquitin conjugates following treatment with MG132 (Fig. 3.3D, lanes 1, 2, 5, and 6). 
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Figure 3.8 DIAP1 catalyzes UbcD1-dependent K48 based ubiquitination of Grim.  
(A) S2 cells were transfected with dsRNA to gfp (control), ubcd1, or morgue for 24 h, 
after which the cells were cotransfected with Grim-HSV and HA-DIAP1 for an additional 
24 h. Alternatively, cells were cotransfected with myc-UbcD1 or myc-Morgue expression 
constructs to determine the effectiveness of the RNAi (left).  Lysates were prepared and 
immunoblotted with indicated antibodies. (B) S2 cells were cotransfected with HA-
DIAP1 and Grim (D132A)-HSV-His6 or the DA/KR mutant. Lysates were prepared 
under denaturing conditions, and Grim was precipitated by using Ni2+-NTA beads and 
immunoblotted with antibodies specific for K48- or K63-based ubiquitin linkages, as well 
as the C-terminal HSV tag.  
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3.3.5 DrICE removes the C-terminus from Grim-ubiquitin conjugates and inhibits 

Grim turnover. 

K48-linked ubiquitin chains of four or more were once thought to be essential for 

proteasome-mediated degradation of a substrate (Thrower et al., 2000).  A more recent 

study, however, indicates that chain length requirements depend upon the size of the 

substrate, with smaller substrates requiring shorter chains (Shabek et al., 2012).  In our 

experiments, we primarily observed Grim-ubiquitin chains of two to four ubiquitins in 

length (Grim-ubiquitin2–4).  This was not a result of interference of the ubiquitin chains 

with the C-terminal tag, as extending the C-terminus (3×HSV) failed to significantly 

improve our capture of higher-order Grim-ubiquitinn > 5 conjugates (Fig. 3.9).  Thus, the 

addition of four or fewer ubiquitins to Grim appears to be sufficient to mediate its 

turnover.  We similarly questioned whether polyubiquitination of Grim at Lys136 might 

interfere with its caspase cleavage at Asp132.  Therefore, we expressed Grim in S2 cells 

in the presence of zVAD-fmk, washed the cells, prepared lysates, and incubated them 

with or without recombinant DrICE in vitro. As expected, Grim (D132A) was 

ubiquitinated, but neither the conjugated nor unconjugated forms were susceptible to 

DrICE cleavage (Fig. 3.10, lanes 5 and 6). Grim, Grim-ubiquitin conjugates, and Grim 

(K136R), on the contrary, underwent robust cleavage by DrICE (Fig. 3.10, lanes 2 and 4).  

Moreover, by using a recently available polyclonal antibody to Grim, we observed the 

appearance of a single N-terminal fragment of Grim (1-132), indicating that Grim and its 

ubiquitinated species were cleaved by DrICE (Fig. 3.10, Middle panel, lanes 2 and 4). 

Thus, DrICE can prevent proteasomal-mediated turnover of Grim and extend its half-life 

in cells by removing its C-terminus before or after ubiquitination. 
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Figure 3.9 Grim-ubiquitin chains are composed primarily of four or fewer 
ubiquitins. S2 cells were cotransfected with HA-DIAP1 and Grim (D132A)-HSV-His6, 
Grim (D132A)-3xHSV-His6, Grim (DA/KR)-HSV-His6, or Grim (DA/KR)-3xHSV-His6.  
Lysates were prepared under denaturing conditions, and Grim was precipitated by using 
Ni2+-NTA beads and immunoblotted with antibodies specific for ubiquitin, K48-based 
ubiquitin linkages, and the C-terminal HSV tag. 
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Figure 3.10 DrICE can remove Grim’s C-terminus and covalently linked ubiquitin 
chains. S2 cells were cotransfected with HA-DIAP1 and WT Grim, Grim (D132A), or 
Grim (K136R). After 24h, cells were incubated with CuSO4 (0.7 mM) for an additional 8 
h in the presence of zVAD-fmk (50 µM) and MG132 (10 µM) to prevent caspase activity 
and proteasomal-dependent turnover of proteins.  After washing the cells, lysates were 
prepared and incubated with or without recombinant DrICE for 30 min at 37ºC, followed 
by SDS/PAGE/immunoblotting. 
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3.3.6 Grim cleavage and ubiquitination impact the kinetics of caspase activation 

and cell Death. 

Finally, to determine the impact of caspase cleavage on Grim-induced caspase 

activation and cell death, we expressed Grim in S2 cells, measured DEVDase activity at 6 

h, and used time-lapse DIC and fluorescence microscopy to quantify apoptosis.  As 

expected, Grim (D132A) produced less caspase activity and cell death over time, 

compared with WT Grim, in agreement with the fact that noncleavable Grim is 

ubiquitinated and degraded regardless of caspase activity (Fig. 3.11).  Conversely, Grim 

(K136R), Grim (DA/KR), and the N-terminal cleavage fragment Grim (1-131) could not 

be ubiquitinated and therefore supported greater levels of caspase activation and cell 

death, particularly compared with noncleavable Grim (Fig. 3.11).  Thus, cleavage of 

Grim sustained its presence in the cell and facilitated a feed-forward caspase 

amplification loop, wherein cleaved Grim was allowed to continue its antagonism of 

DIAP1, thereby enhancing caspase activation and cell death. 
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Figure 3.11 Grim cleavage and lysine mutants exhibit opposite effects on caspase 
activation and cell death. S2 cells were cotransfected with GFP-DIAP1 and Grim or one 
of its mutants. (A) Lysates were then prepared at 6h and assayed for effector caspase 
DEVDase activity, or (B) cells were monitored by using time-lapse DIC and fluorescence 
microscopy to determine the cumulative amount of cell death over time, as determined by 
cellular blebbing and formation of apoptotic bodies. [*P < 0.05, Grim (D132A) is 
significantly different from WT Grim; #P < 0.05, Grim (K136R), Grim (DA/KR), and 
Grim (1-131) are significantly different from Grim (D132A) and WT Grim. ] 
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3.4 Discussion 

Caspases play an undeniable role in the progression of apoptosis, mediating the 

cleavage of numerous substrates (>800 in mammals) and the eventual dismantling of the 

cell (Luthi and Martin, 2007).  For certain substrates removal of a regulatory domain 

results in their constitutive activation, as in the case of various kinases (Emoto et al., 

1995; Graves et al., 1998).  For others, cleavage results in a loss of function, and the 

resulting fragments are frequently degraded by the 26S proteasome (Demontis et al., 

2006; Landais et al., 2006; Plesca et al., 2008; Sears et al., 2011; Semple et al., 2007; 

Tikhomirov and Carpenter, 2001).  In this study, we found an interaction between 

caspases and the ubiquitin-proteasome system.  Caspase cleavage of the IAP antagonist 

Grim, at its C-terminus, removes a critical lysine before or following its ubiquitination by 

DIAP1.  In doing so, caspases sustain the presence of Grim in the cell and allow it to 

further activate caspases by antagonizing additional DIAP1 (Fig. 5.1).  Thus, in effect, 

caspases compete with the proteasome to determine the fate of Grim and, by extension, 

the fate of the cell. 

Most of the previous studies on Grim have focused on its acute cell death effects, 

with little consideration as to how this IAP antagonist is regulated at the 

posttranscriptional level.  Grim plays a selective role in the death of glial cells in the 

microchaete of flies and in regulating the number of neuroblasts during development of 

the ventral nerve cord (Tan et al., 2011; Wu et al., 2010).  Loss of Grim did not cause 

dramatic developmental defects, but Grim is the only IAP antagonist that induces embryo 

midline cell death when ectopically expressed.  It is possible that Grim levels are 

constantly suppressed transcriptionally or post-translationally so that Grim is only 
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available for specific or limited cells to eliminate themselves during development or 

metamorphosis.  It’s worth noting that the C-terminal sequence of Grim is conserved 

among almost all the sequenced Drosophila species (Fig. 3.12), so this regulation 

between caspase activity and the proteosomal system might be important regulation for 

proper caspase activity at a specific developmental timeframe.  There are examples in 

which spatiotemporal control of caspase activity is required to induce differentiation 

while preventing cell death.  For example, caspases play important roles in spermatid 

individualization (Arama et al., 2003; Huh et al., 2003), and Grim is expressed in 

Malpighian tubules during metamorphosis, implying that it plays a role in the formation 

of these tubules, but its expression is largely restricted to the nucleus (Shukla and 

Tapadia, 2011; Tapadia and Gautam, 2011).  Thus, the interplay among DIAP1, caspases, 

Grim, and the proteasome may constitute a unique form of rheostatic control, such that, at 

relatively low levels of Grim, DIAP1 may allow for some caspase activity while limiting 

through ubiquitination the overall levels of Grim and active caspases.  In this model, as 

Grim expression reaches a threshold, the level of caspase activity becomes sufficient to 

liberate Grim’s C-terminus, thereby preserving its presence in the cell and further 

enhancing caspase activation.  

The wider prevalence of an interaction between caspases and the ubiquitin-

proteasome system will require further investigation in the future.  However, a cursory 

examination of the UniProt/Swiss-Prot database indicates that 197 proteins (including 

splice variants) contain a single lysine in their coding sequences, and a number of these 

proteins contain a predicted caspase cleavage site(s) that, if genuine, would liberate the 

lysine from the N-or C-terminus of the protein.  Moreover, proteins with multiple lysines 
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need not be excluded from this list, as there are examples in which a particular lysine still 

represents the primary target for ubiquitination (Bornstein et al., 2012).  Although 

caspase cleavage of Grim enhances cell death, the preservation of other caspase 

substrates, such as transcription factors, could mediate nonapoptotic events, including 

differentiation.  Finally, this type of regulation may not be restricted to caspases, as 

proteolytic removal of a key lysine could be performed by other proteases, including 

calpains and cathepsins, revealing novel interactions between these proteases and the 

ubiquitin-proteasome system. 
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 Figure 3.12 The C-terminal domain of Grim among different Drosophila species. 
The caspase cleavage site was highlighted as gray color and the lysine residue was 
labeled in dark gray. Almost all the sequenced species (except for D. mojavensis) have 
the conserved regulation of Grim levels by utilizing caspases and the proteasome system.  
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CHAPTER4 

Characterization of Grim-induced cell death through an unconventional 

mechanism 

 

4.1 Summary 

Drosophila inhibitor of apoptosis 1 (DIAP1) prevents cell death in flies by 

interacting with and ubiquitinating caspases, leading to their inhibition or degradation. As 

an endogenous inhibitor of DIAP1, Grim utilizes its N-terminal IAP binding motif (IBM) 

to promote cell death through displacement of caspases and by inducing 

autoubiquitination and degradation of DIAP1.  When cells are under stress, Grim 

expression is upregulated to liberate caspases from DIAP1 inhibition, leading to cell 

death.  Herein, we demonstrate that in addition to its IBM, Grim can induce cell death 

through an IBM-independent pathway involving its Grim Helix 3 (GH3) domain and its 

C-terminus.  Based on deletion analysis, both the GH3 and C-terminus are required and 

either region alone is insufficient to cause cell death.  By using fluorescence-tagged 

proteins, we have determined that amino acids 110-124 are important for directing Grim 

to processing (P)-bodies (or DCP1-containing granules), where untranslated mRNA 

accumulates.  Since the GH3 or C-terminal domains alone do not induce death, it appears 

that Grim needs to localize to the right spot in the cell to induce IBM-independent cell 

death.  Loss of a P-body-localized translational repressor, Me31B, reduced Grim-induced 

cell death, suggesting that IBM-independent cell death occurs at least in part, through 

Me31B-mediated translational repression.  In summary, Grim localizes to P-bodies 
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through amino acids 110-124, where it forms a complex with DCP1 and Me31B to 

induce IBM-independent cell death.  

4.2 Introduction 

Apoptosis is usually catalyzed by a series of evolutionarily-conserved pathways, 

involving the activation of caspases in order to execute cell death.  Caspase activities can 

be suppressed by IAPs through direct IAP binding or sometimes through its E3-ligase- 

activity.  IAPs are regulated by their endogenous inhibitors, IAP antagonists, which 

contain IBM domains that are capable of interacting with IAPs and promoting their 

inactivation or autoubiquitination (Dueber et al., 2011; Silke et al., 2004; Yoo, 2005).  In 

flies, DIAP1 prevents cell death through caspase inhibition, but it can be compromised by 

IAP antagonists such as Grim, Reaper, or Hid.  Some IAP antagonists, however, are bi-

functional and possess proapoptotic activity outside of their IBMs (Chen et al., 2004; 

Claveria et al., 2002; Olson et al., 2003a).  For example, dOmi degrades DIAP1 via its 

serine protease activity in an IBM-independent manner following its release from the 

mitochondrial intermembrane space (Challa et al., 2007).  IBM-less versions of Reaper 

induce cell death by several proposed mechanisms: direct or indirect targeting of 

mitochondria resulting in GH3-dependent mitochondrial rupture (Freel et al., 2008; Olson 

et al., 2003a; Sandu et al., 2010), or alternatively, general translational repression 

resulting in downregulation of DIAP1 (Colon-Ramos et al., 2006; Holley et al., 2002; 

Tait et al., 2004).  A third as of yet undefined mechanism involves neither mitochondria 

nor translational repression (Chen et al., 2004).  Similarly, Grim can also induce 

apoptosis through an unconventional pathway, but the mechanism remains unclear.  Grim 

can induce general translational repression in vitro, which may result in the 
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downregulation of short lived proteins, such as DIAP1 (Yoo et al., 2002), but whether 

Grim inhibits translation in vivo remains unclear.  The GH3 region of Grim might 

contribute to some of its proapoptotic activity through mitochondrial targeting (Claveria 

et al., 2002), but the majority of Grim seems not to colocalize with mitochondria (Chen et 

al., 2004).  

In the present study, we have discovered that instead of localizing to mitochondria, 

Grim localizes to the mRNP granule, P-bodes, where untranslated mRNA and proteins 

that regulate mRNA stabilities (such as DCP1 and Me31B) accumulate.  Removing the 

C-terminus of Grim not only disrupts Grim localization to P-bodies (DCP1-containing 

granules), it impairs Grim-induced cell death.  Strikingly, knockdown of a P-body-

localized translational modulator, Me31B, reduced Grim-induced cell death, indicating 

that IBM-independent cell death requires Grim to associate with P-bodies or its 

components.  Overall, we demonstrate that Grim localizes to P-bodies through its C-

terminus, and it forms a complex with DCP1 and Me31B to induce IBM-independent cell 

death.    
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4.3 Results 

4.3.1 Grim and its IBM mutant cause loss of GFP 

In order to access the effect of IBM-independent activity at cellular levels, we set 

up the cell death assay in Drosophila Schneider’s line 2 (S2) cells, a commonly used 

Drosophila embryonic cell line. The traditional Annexin V staining for examining 

apoptotic cells in mammals (Vermes et al., 1995) is not ideal for S2 cells due to a 

dramatic increase in cell fragmentation.  Additionally, S2 cells do not have a clear 

Annexin V-positive population, which makes staining difficult. The cell death assay in 

Drosophila cells is usually performed by coexpression of a reporter construct (GFP or 

beta-galactosidase) along with the construct with genes of interest (Claveria et al., 2002; 

Olson et al., 2003a). The “cell death percentage” is calculated by measuring the loss of 

the reporter. To reduce the amount of singularly transfected cells, we used a 1:8 ratio of 

reporter to gene of interest.  This ensures cells that express the reporter construct also 

express the gene of interest.  We used GFP as our reporter and utilized flow cytometry to 

quantify GFP positive cells (Olson et al., 2003a).  Since upregulation of Grim causes cell 

death, we cloned Grim downstream of the inducible metallothionein promoter, which can 

be stimulated by the addition of CuSO4.  Fig. 4.1A shows that wild-type Grim kills cells 

efficiently by 6 h after induction with copper.  Similarly, the IBM mutant (GG-Grim), in 

which the first two amino acids in the IBM are replaced as Gly-Gly, also kills S2 cells but 

with slower kinetics.  At each time point, cell survival was calculated as the relative 

percentage of GFP positive cells following copper induction compared to the uninduced 

sample.  The pan-caspase inhibitor zVAD-fmk treatment prevented loss of GFP, 

indicating that caspases are responsible for Grim-induced cell death (Fig. 4.1A).  When 
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effector caspase activity was measured by an effector caspase substrate, DEVD-AMC, 

we found that both Grim and GG-Grim stimulated DEVDase activity (Fig. 4.1B).  

DEVDase activities were higher at 6 h than 24 h, most likely because cells had begun to 

disintegrate at the later time point (Fig. 4.1B).  Overall, our data demonstrate that Grim is 

a bi-functional killer and that while its N-terminal IBM enhance the speed of killing, the 

remainder is sufficient to kill through a slower and as yet uncharacterized mechanism.  

Moreover, the fact that the zVAD-fmk prevents both the IBM-dependent and –

independent loss of GFP (Fig. 4.1A) indicates that caspase activities are also involved in 

IBM-independent cell death.  
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Fig. 4.1 Both Grim and GG-Grim induced zVAD-inhibitable cell death. S2 cells were 
transfected with 800 ng pRmHa3 plasmid DNA, pRmHa3-Grim-HSV, or GG-Grim-HSV 
along with 100 ng pAc-GFP.  (A) After 16 h, cells were split and exposed to DMSO or 
zVAD-fmk in the presence or absence of CuSO4.  GFP positive cells were counted after 6 
h or 24 h induction by flow cytometry.  The percent of GFP positive cells was used to 
represent cell survival rate, and was calculated by 100% x (GFP+ cells in the copper-
treated sample) / (GFP+ cells in the non copper-treated sample). The data were collected 
from four individual experiments. [∗P < 0.05, the two groups indicated are significantly 
different.]  (B) DEVDase activity assays were performed at 6 h or 24 h post-induction. 
Activity was calculated as the relative fluorescence units (RFU)/mg lysate/min. The data 
were collected from three individual experiments. [∗P < 0.05, Grim or GG-Grim is 
significantly different from vector.] 
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4.3.2 The C-terminus of Grim is critical for its activity 

To investigate the mechanism of Grim-IBM-independent cell death, we examined 

various Grim deletion mutants.  When comparing GG-Grim with Grim Δ78, GG-Grim is 

a better killer at 6 h, suggesting that polyglutamine (polyQ) region might enhance killing 

at shorter time point (Fig. 4.2).  Grim Δ78, however, kills as well as GG-Grim at 24 h, 

whereas Grim (79-105; GH3 region) or Grim (106-138; CTD) failed to kill (Fig. 4.2).  

When comparing GG-Grim with GG-Grim (1-105), or Grim Δ78 with Grim (79-105), it 

is obvious that the presence of the C-terminus is required for cell killing at least in the 

absence of Grim’s IBM (Fig. 4.2).  The IBM-independent cell death has always been 

correlated with Grim’s localization (Claveria et al., 2002; Olson et al., 2003a); we 

therefore decided to investigate the localization of Grim, specifically the C-terminal 

domain.  
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Fig. 4.2 Lethality of GG-Grim deletion mutants. S2 cells were transfected with 800 ng 
pRmHa3 plasmid (vector control, GG-Grim or indicated Grim deletion mutants) along 
with 100 ng pAc-GFP.  After 16 h, cells were split in half and one portion was induced 
with CuSO4, while the other was not.  GFP positive cells were counted after 6 h or 24 h 
induction by flow cytometry. The ratio of GFP positive cells was used to calculate the 
cell survival rate. The data were collected from three individual experiments. [∗P < 0.05, 
GG-Grim is significantly different from all the other group; #P < 0.05, GG-Grim and 
Grim Δ78 are significantly different from vector, GG-Grim (1-105), Grim (79-105), and 
Grim (106-138).] 
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4.3.3 Grim localization in S2 cells by fluorescence imaging 

Claveria et al (2002) showed that Grim’s localization is independent of its IBM 

and more related to the GH3 domain; however, the localization of the GH3 domain has 

remained controversial despite several follow-up studies (Chen et al., 2004; Freel et al., 

2008; Olson et al., 2003a; Sandu et al., 2010; Thomenius et al., 2011).  Claveria and co-

workers (2002) reported that Grim localize to mitochondria due to its GH3 domain, while 

Chen and colleagues (2004) reported that the GH3 domain localizes to yet unidentified 

subcellular compartments.  We decided to examine the localization of Grim, especially its 

C-terminus, by using immunofluorescence.  We studied Grim’s localization of Grim 

against the fluorescent mitochondrial marker MitoTracker®. We observed that Grim 

formed distinct punctae distributed throughout the cytosol, similar to what was previously 

reported (Claveria et al., 2002).  Our data also revealed that the majority of Grim punctae 

did not colocalize with MitoTracker® (Fig. 4.3A).  All of our experiments were 

performed in the presence of zVAD-fmk, in order to prevent cell death and cell 

detachment.  MitoTracker® staining usually retains in cells after fixation even though 

this dye is somewhat dependent on mitochondrial potential (Chazotte, 2011).  We also 

used a well-defined mitochondrial protein, dOmi, localized at mitochondrial 

intermembrane space, as a control to demonstrate our mitochondrial staining (Fig. 4.3A) 

(Challa et al., 2007).  Indeed, the majority of Grim did not colocalize with mitochondria 

and the distribution was markedly different from dOmi-myc (Fig. 4.3A).   

To visualize the localization of Grim in live cells, we expressed Grim as a GFP 

fusion protein.  Notably, when GFP was placed at the N-terminus of Grim, it did not alter 

Grim’s localization (Fig. 4.3B) or colocalize with MitoTracker®.  We also observed that 
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the GH3 domain of Grim, while it had the ability to form punctae, also failed to 

colocalize with mitochondria (Fig. 4.3B).  In addition to MitoTracker®, we also used 

other mitochondrial markers, such as mito-GFP, which contains the mitochondrial 

targeting sequence from cytochrome c oxidase, and dMFN, a mitochondrial fusion 

protein controlling mitochondrial dynamics. Similar to MitoTracker® staining, Grim 

failed to colocalize with either mitochondrial marker (Fig. 4.3C).   
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Fig. 4.3 The localization of Grim and dOmi in S2 cells.  (A) S2 cells were transfected with pRmHa3-
Grim-HSV or pRmHa3-dOmi-myc in the presence of zVAD-fmk (50 µM). Cells were then incubated 
with MitoTracker® Red prior to paraformaldehyde fixation, and stained with rabbit anti-HSV or anti-
myc antibody.  DNA was stained with Hoechst 33342, and a rabbit secondary antibody conjugated with 
FITC was used to detect Grim or dOmi expression.  (B) S2 cells were transfected with pIE-GFP-Grim or 
pIE-GFP-Grim GH3 (amino acid 79-109), and cells were incubated with MitoTracker® Red prior to live 
cell imaging. (C) S2 cells were cotransfected with pIE-Grim-mCherry and an mitochondrial marker, 
mito-GFP or GFP-dMFN. Scale bar: 10 µm.  



 

 85 

4.3.4 Grim forms cytosolic punctae  

Upon discovery of the cytosolic Grim punctae, we searched the literature and 

discovered some interesting reports showing that mitochondria are associated with 

mRNA processing (P)-bodies and have the ability to modulate miRNA function 

(Bandiera et al., 2011; Huang et al., 2011).  The fact that Grim is capable of inducing 

translational repression in vitro (Yoo et al., 2002) and that it does not colocalize with 

mitochondria, but remains proximal to mitochondria led us to speculate that Grim might 

in fact associate with P-body granules.  We examined whether Grim colocalized with a 

variety of mRNA-protein (mRNP) complexes, including P-bodies and stress granules 

(Fig. 4.4).  Decapping proteins, such as DCP1, localize to P-bodies, often near 

mitochondria and are commonly used as P-body markers (Huang et al., 2011).  As 

speculated, we found that florescence-tagged Grim colocalized with P-body components, 

DCP1 and Me31B, but not with a common mRNP granule component, dFMR1, or stress 

granule components, Rox-8 (TIA-1 homolog in Drosophila) and eIF4E, which binds the 

cap of mRNA and accumulates in granules when cells are stressed (Fig. 4.4).  Our data 

also revealed that the both N- and C- terminal tagged Grim colocalize with DCP1, 

indicating that Grim localizes to P-bodies in an IBM-independent manner (Fig. 4.4).  We 

decided to use N-terminal tagged Grim for the following colocalization study in order to 

investigate IBM-independent cell death without the possible interaction from DIAP1.   
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Fig. 4.4 Grim colocalizes with DCP1 and Me31B, but not dFMR1 or stress granule 
markers. S2 cells were cotransfected with fluorescent-tagged Grim along with a 
fluorescent-tagged P-body component or stress granule component in the presence of 
zVAD-fmk (50 µM). Scale bar: 10 µm.  
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The colocalization of Grim and DCP1 was dramatic; therefore, we next utilized 

deletion analysis to identify the minimum region(s) of Grim necessary for the 

colocalization.  Grim possess a polyQ region, and glutamines are account for 21% of the 

protein (29 glutamines in total 138 amino acids).  Depending upon the length of the 

polyQ tract, PolyQ repeat expansion prone to aggregate and cause toxicity to cells 

(Scherzinger et al., 1997; Shao and Diamond, 2007). N-terminal fragments of Grim 

comprising 1-85 , however, exhibited a cytosolic distribution, despite containing the 

polyglutamine expansion (aa 38-62).  Surprisingly, we found that a C-terminal region 

(110-124), just downstream of the GH3, was responsible for the colocalization of Grim 

with DCP1 (Fig. 4.5; compare 1-109 with 1-124).  Interestingly, the sequence from 

amino acid 110-118 (TVIQISFEI) is 100% identical among all twelve sequenced 

Drosophila species.  We therefore expressed this C-terminal fragment (GFP-Grim 110-

124) to further study its function.  While this fragment did not form distinct punctae when 

expressed alone, it was readily recruited to DCP1 granules when coexpressed with DCP1 

(Fig. 4.6).  Importantly, GFP-Grim (79-109), which encompasses the GH3 domain, did 

not colocalize with DCP1, but this region still forms punctae independent of DCP1 or P-

bodies.  Moreover, GFP-Grim (79-109) exhibited more cytosolic distribution than GFP-

Grim (1-109), indicating that the first 78 amino acids enhanced formation of the Grim 

punctae (Fig. 4.5 and Fig. 4.6).  GFP-Grim (125-138) was not affected by DCP1 

coexpression, and effectively served as a negative control.  Collectively, the data 

indicated that the GH3 domain in Grim was responsible for punctae formation and a C-

terminal (and previously uncharacterized) domain was responsible for recruiting Grim to 

DCP-1 granules.  Immunoprecipitation experiments were also performed to verify the 
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interaction between Grim and DCP1, and the results confirmed that Grim (110-124) 

fragment was sufficient to interact with DCP1 (Fig. 4.7). However, the binding of Grim 

(110-124) was clearly weaker than that of full-length Grim (Fig. 4.7, lane 2 and 3). This 

result is consistent with the fact that Grim dimerizes in cells (Fig. 3.7B) and that a 

tripartite interaction between dimerized Grim and DCP1-containing P-bodies is likely to 

be much stronger than a single Grim-DCP1 interaction alone. Finally, to our surprise, the 

C-terminus of Grim is important for both its localization to P-bodies (Fig. 4.5 and 4.6) 

and its killing activity (Fig. 4.2); therefore, we concluded that localization to P-bodies is 

required for IBM-independent cell killing, perhaps due to increased translational 

repression. 
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Fig. 4.5 Grim and Grim (1-124) colocalize with DCP1.  S2 cells were cotransfected 
with pIE-DsRed-DCP1 and GFP-tagged Grim or one of its deletion mutants in the 
presence of zVAD-fmk (50 µM). Scale bar: 10 µm.  
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Fig. 4.6 Grim forms punctae via its GH3 domain and colocalizes with DCP1 via a C-
terminal (110-124) fragment.  S2 cells were cotransfected with pIE-DsRed-DCP1 and 
GFP-tagged Grim or one of its deletion mutants in the presence of zVAD-fmk (50 µM). 
Scale bar: 10 µm.  
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Fig. 4.7 Grim and Grim (110-124) interact with DCP1.  S2 cells were cotransfected 
with pIE-Flag-DCP1 and GFP-tagged Grim or one of its deletion mutants in the presence 
of zVAD-fmk (50 µM). Immunopreicipitation was performed with an anti-GFP antibody. 
Grim complexes were analyzed by Western blotting. Note: the antibody light chain 
largely overlapped with GFP (110-124) and GFP (125-138).   
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4.3.5 The P-body component Me31B is important for Grim’s activity 

We performed RNAi on several P-body components to investigate whether any of 

them participated in Grim-mediated cell death.  The data revealed that Me31B 

knockdown reduced Grim-induced cell death, but almost completely prevent GG-Grim-

induced cell death (Fig. 4.8A).  Knockdown of other P-body components, GW-182, or 

combined DCP1 and DCP2, had no impacts on Grim’s activity (Fig. 4.8B). Overall, our 

data indicates that IBM-independent cell death occurs in an Me31B-dependent manner, 

most likely through translational repression because Me31B was often reported to inhibit 

translation in flies (Barbee et al., 2006; Hillebrand et al., 2010; Nakamura et al., 2001).  
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Fig. 4.8 The effect of P-body components on Grim-induced cell death.  (A) S2 cells were 
pretreated with no dsRNA or dsMe31B for 48 h. S2 cells were then transfected with 800 ng 
pRmHa3-HSV, pRmHa3-Grim-HSV, or GG-Grim along with 100ng pAc-GFP. After induction, 
cells were collected at 24 h by flow cytometry.  (B) S2 cells were treated with no dsRNA, dsTNF 
(control), dsDCP1 and DCP2, or dsGW182 for 48h. S2 cells were then transfected with 800ng 
pRmHa3-HSV or pRmHa3-Grim-HSV along with 100ng pAc-GFP.  GFP positive cells were 
counted after 24 h induction by flow cytometry. The ratio of GFP positive cells was used to 
calculate cell survival rate. RT-PCR was performed to verify the knockdown efficiency of 
Me31B, DCPs, or GW182.  The data were collected from three individual experiments.
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4.3.6 Me31B interacts with Grim independent of RNA  

Due to the fact that Me31B is involved in IBM-independent cell death and that 

Me31B in fact colocalizes with Grim (Fig. 4.4), we aim to verify whether Me31B and 

Grim form a functional complex. P-body components form complexes with one another 

usually in a direct, indirect or RNA-dependent manner (Parker and Sheth, 2007).  We 

examined the interaction between Grim and Me31B and found that it did not require 

RNA, since the addition of RNase did not disrupt binding (Fig. 4.9, lane 2 and 4).  

Overall, we have demonstrated that IBM-independent cell death requires Grim’s C-

terminus to localize to DCP1-containing granules (P-bodies) (Fig. 4.5, 4.6. and 4.7) as 

well as a P-body localized translational regulator, Me31B (Fig. 4.8 and 4.9). 

 



 

 95 

 

 

 

Fig. 4.9 The interaction between Grim and Me31B is RNA-independent. S2 cells 
were transfected with 500 ng pRmHa3 plasmid DNA, pRmHa3-Grim-myc, or GG-Grim-
myc along with 500 ng pIE-mCherry-Me31B.  After induction, lysates were prepared in 
buffers with or without RNase. Immunoprecipitation was performed using an anti-myc 
antibody, and Grim complexes were analyzed by immunoblotting.  
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4.4 Discussion 

In this chapter, we have demonstrated that Grim has a bi-functional killing effect 

through the IBM region (N-terminus) as well as the C-terminus.  As previously reported, 

we observed that Grim formed distinct punctae distributed throughout cytosol, but the 

actual identity of the punctae was controversial (Chen et al., 2004; Claveria et al., 2002).  

We cannot completely rule out the possibility that some Grim localizes to mitochondria 

and induces mitochondria insult, but it is clear that the majority of Grim does not localize 

to mitochondria.  The fact both Grim and Reaper have IBM-independent killing effects 

and both proteins contain the GH3 domain had drawn a lot of attention from various 

groups (Chen et al., 2004; Claveria et al., 2002; Freel et al., 2008; Olson et al., 2003a; 

Sandu et al., 2010; Thomenius et al., 2011). Indeed, the GH3 domain has the ability to 

form large distinct punctae, and deletion or mutation of GH3 impairs IBM-independent 

killing, but the functions of the remainder of both proteins in uncharacterized (Claveria et 

al., 2002; Olson et al., 2003a).  Chen and co-workers (2004) partially characterized the 

IBM-independent activity of Reaper, but were unable to identify the nature of the punctae.  

Interestingly, we identified that the C-terminus of Grim, especially amino acids 110-124 

was important for directing Grim to P bodies.  Even though this fragment does not in 

Reaper, it is conserved within Grim in all sequenced Drosophila species.  We are still 

unclear what causes the punctae formation in the GH3 domain, but without the C-

terminus, Grim fails to localize to P-bodies or to induce cell death.  We have provided 

evidence to demonstrate that C-terminus and the GH3 domain are equally important for 

IBM-independent cell death, but neither domain alone is sufficient to kill, implying that 

Grim needs to localize to the right spot to induce IBM-independent cell death.  
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We used an overexpression system to visualize P-bodies or stress granules, but 

were aware that the size or distribution of these granules might be affected. Even so, the 

colocalization of Grim was selective for P-body components, such as DCP1 and Me31B, 

but not dFMR1, or the stress granule components, eIF4E and ROX8. Furthermore, in loss 

of function experiments, we clearly demonstrated that loss of Me31B reduced Grim-

induced cell death, confirming genetic interaction between grim and me31b at 

endogenous levels.  

Yoo et al. (2002) showed that recombinant Grim is capable of inducing general 

translational inhibition in vitro, but the mechanism is not defined.  We found knockdown 

of Me31B reduced Grim-induced cell death, suggesting that Grim might involve in 

Me31B function as a translational suppressor.  It is unclear whether Grim-induced 

translational inhibition is a general or transcript-specific effect, or whether Grim 

participates in miRNA-dependent inhibition.  It is possible that Grim suppresses the 

translation of an anti-apoptotic mRNA transcript, such as diap1 or activates the 

translation of a proapoptotic protein.  Alternatively, Grim might act as a general 

translational repressor, similar to Reaper, by interacting with ribosomal small subunits to 

disrupt cap-dependent translation (Colon-Ramos et al., 2006).  In the latter scenario, once 

cap-dependent translation is compromised, short live proteins, such as DIAP1, will 

reduce in cells (Yoo et al., 2002).  Cell death occurs once DIAP1 protein drops below a 

certain threshold, so that it is no longer able to inhibit caspase activation.  

DCP2 is the main enzyme for catalyzing decapping, but it requires DCP1 and 

other proteins to stabilize the decapping enzyme complex (Bail and Kiledjian, 2006; 

Chang et al., 2014; She et al., 2008). Even though knockdown of DCP1 was marginal 
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(Fig. 4.8), reduction in the main decapping enzyme (DCP2) should still impair decapping 

activity.  However, reduction in decapping enzymes had limited effect on Grim-induced 

cell death, suggesting that Grim does not kill by enhancing decapping activity, but we 

cannot rule out that Grim might inhibit decapping activities (if it stabilizes the mRNA of 

a proapoptotic gene).  The effect of DCP1 knockdown needs to be further characterized 

due to the insufficient efficiency in this study.  The fact that P-body component Me31B 

forms a complex with Grim to participate in IBM-independent killing (Fig 4.4, 4.8 and 

4.9) and that the killing requires Grim’s C-terminus, which also directs Grim to localize 

to DCP1-containing granules (Fig. 4.5, 4.6. and 4.7), strongly suggested that Grim might 

form a complex with DCP1 and Me31B to perform its function.  In fact, Dhh1 (yeast 

Me31B) has been reported to interact with decapping as well as deadenylase complexes 

(Coller et al., 2001). Due to the complexity in P-bodies, we cannot rule out that other 

protein components, such as mRNA binding proteins, the LSM exonuclease complexes 

(which interacts with DCP1), or deadenylase complexes might also participate in IBM-

independent cell death (Braun et al., 2012; Chang et al., 2014; Coller et al., 2001; Jinek et 

al., 2008; Tritschler et al., 2009; Tritschler et al., 2008). 

dFMR1 is a common RNA granule component and can shuttle between the 

cytosol and nucleus, as well as the polysome and P-bodies (Darnell et al., 2011).  It is an 

RNA-binding protein particularly important in repressing differentiation in neurons 

(Bassell and Warren, 2008; Darnell et al., 2011; Kim et al., 2009).  The fact that Grim 

colocalizes with Me31B and DCP1, but not with dFMR1, indicates that 

Grim/DCP1/Me31B form unique granules to selectively associate with certain P-body 

components.  EDC3 and Tral have mutually exclusive interactions with Me31B 
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(Tritschler et al., 2008), but it is unclear whether this is also the case for Grim and 

dFMR1.  Further experiments are needed to decipher the components of 

Grim/DCP1/Me31B granules, and how they work together to induce cell death through 

translational regulation.  
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CHAPTER 5 

Concluding remarks and future directions 

 

Programmed cell death has been studied extensively in many organisms and is 

highly conserved from C. elegans to human.  In flies and mammals, cell death can be 

regulated by altering the balance among caspases, IAPs, and IAP antagonists.  IAPs 

prevent caspase-mediated cell death not only through direct binding and inhibition, but 

also by directly ubiquitinating caspases, which inactivates them or targets them for 

degradation (Ditzel et al., 2008; Lee et al., 2011; Li et al., 2011; Muro et al., 2002; 

Wilson et al., 2002; Yan et al., 2004).  IAP antagonists promote cell death by displacing 

IAP-bound caspases as well as by promoting IAP autoubiquitination (Holley et al., 2002; 

Ryoo et al., 2002; Yoo et al., 2002).  While the role of caspases in mediating cell death in 

multicellular organisms has been studied for the past two decades, it is still unclear how 

cell death activators/enhancers, such as IAP antagonists, are regulated at the molecular 

level.   

We used Grim to study the regulation of IAP antagonists-induced cell death, and 

we identified that Grim induces cell death through two distinct mechanisms. We 

discovered that IBM-dependent cell death induced by Grim was regulated by a novel 

regulation between both caspases and the proteasome system, while IBM-independent 

cell death was achieved by Grim’s distinct cellular localization, which leads to 

translational repression.  In both cases, caspases are activated, but DIAP1 physically 

interacts with Grim only in the former case, the IBM-dependent manner.  In our studies, 
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Grim activates caspase activity by utilizing its IBM to displacing active DRONC and 

DrICE from DIAP1, but is itself susceptible to both caspase cleavage and DIAP1-

mediated ubiquitination, with the former subverting the latter (Fig. 5.1) (Yeh and Bratton, 

2014). DIAP1 utilized UbcD1 to ubiquitinate Grim at Lys136 at its C-terminus.  We 

discovered that Grim dimerizes, engages the BIR1 and BIR2 domains in DIAP1, and thus 

forms a tripartite complex.  Remarkably, however, DIAP1-UbcD1 ubiquitinates only the 

BIR2-bound Grim, demonstrating unique structural selectivity and raising the possibility 

that BIR1-bound Grim may be degraded through an alternative mechanism.  Regardless, 

Grim is also cleaved by DrICE at Asp132, which removes the lysine necessary for 

DIAP1-dependent ubiquitination of Grim (Fig. 5.1) (Yeh and Bratton, 2014).  DrICE 

cleaves Grim, either prior to or following ubiquitination, resulting in a form of Grim that 

is no longer ubiquitinated or degraded.  The accumulation of Grim in cells then displaces 

even more active caspases from DIAP1, initiating a caspase amplification loop that 

results in greater caspase activity and increased cell death.   
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Figure 5.1 Regulation of Grim by DIAP1 and caspases. Grim interacts with DIAP1 
through its BIR1 and BIR2 domains. BIR2-bound Grim is ubiquitinated on Lys136, so 
that when Grim levels are relatively low, most Grim is ubiquitinated and degraded by the 
proteasome (prosurvival). However, at higher Grim levels, DrICE is activated and 
cleaves Grim at Asp132, liberating its C-terminus (and any ubiquitin chains) and 
facilitating a caspase amplification loop. (Adapted from Yeh and Bratton, 2014) 
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Our findings demonstrate that an important crosstalk exists at the substrate level 

between caspases and the proteasomal system.  In fact, any protein with a single lysine 

(or a critical lysine responsible for its stability) could undergo a similar type of regulation 

as described here, if flanked by a caspase cleavage site.  Moreover, this dual regulation of 

a protein substrate by a protease and E3 ligase need not be limited to caspases or even 

cell death regulation.  In our hands, we have identified that one mammalian IAP 

antagonist, ARTS, might be regulated through a similar way as Grim.  ARTS inhibits 

XIAP function and is required for hair follicle stem cell apoptosis (Fuchs et al., 2013).  It 

interacts with XIAP through an unconventional IBM located at its C-terminus (Larisch et 

al., 2000).  XIAP is able to ubiquitinate ARTS at its N-terminal lysine (K3) (Bornstein et 

al., 2012). We have noticed that there is a potential caspase cleavage site (FLED) 

downstream of the lysine (Fig. 5.2).  When recombinant caspase-3 was added into the 

HEK293T cells lysates with ARTS or ARTS mutants ectopically overexpressed, we 

observed a band shift on wild-type ARTS, and the lysine mutant K3R, but not the 

cleavage site mutant D8A (Fig. 5.2).  The result was promising, and we are still 

investigating the function and regulation of ARTS cleavage.  

We have successfully demonstrated a unique interplay between caspases and the 

proteasome system using Grim and the IBM-dependent recruitment of DIAP1 as an 

example.  However, in addition to IBM-dependent cell death, some IAP antagonists 

possess a second mechanism to induce cell death, but this mechanism is often neglected 

or unclear (Challa et al., 2007; Chen et al., 2004; Claveria et al., 2002; Olson et al., 

2003a).  How Grim induces cell death without its IBM has always been controversial, 

and several possibilities were proposed (Chen et al., 2004; Claveria et al., 2002; Claveria 



 

 104 

et al., 2004).  The GH3 domain seems to partially contribute to IBM-independent cell 

death in a mitochondria-dependent manner (Claveria et al., 2002; Claveria et al., 2004), 

even though there is discrepancy about whether Grim localizes to mitochondria (Chen et 

al., 2004).  Grim was also reported to induce translational repression in vitro (Yoo et al., 

2002), but mechanistically how Grim might induce translational repression in vivo was 

never investigated.  In this study, we have demonstrated that both GH3 and the C-

terminus are required for this activity.  Given that the Grim (110-124) region directs 

Grim to P-bodies and that knockdown of Me31B reduced Grim-induced cell death, it 

suggests that IBM-independent cell death occurs, at least in part, through Me31B-

mediated translational repression.   

There are still unanswered questions to unveil the IBM-independent mechanism 

of Grim on translational repression.  We are still uncertain whether IBM-independent cell 

death is carried out by inhibiting (or enhancing) specific mRNA transcripts or by general 

translational repression.  If Grim-induced death is transcript-specific, identifying the 

mRNA transcript(s) and the mechanism by which it is recruited to the 

Grim/DCP1/Me31B complex will be an important task in the future.  If Grim-induced 

translational repression is a general effect, Grim would target common factors regulating 

protein translation, such as initiation factors, elongation factors, or proteins regulating 

termination.  In addition, whether other P-body components participate in IBM-

independent cell death remains unclear. RNA granules usually suppress mRNA 

translation or regulate mRNA stability through intricate protein complexes.  Decapping 

machinery is usually coupled with exonuclease complex as well as deadenylase 

complexes in P-bodies (Aizer and Shav-Tal, 2008; Braun et al., 2012; Chang et al., 2014; 
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Eulalio et al., 2007a; Tritschler et al., 2008).  Since none of the Grim/DCP1/Me31B 

granule components contain RNA-binding motifs, it is very likely that at least an mRNA-

binding protein is involved in the translational repression process. 

Notably, we hypothesized that the translational repression activity of Grim is IAP-

independent, since the IBM region of Grim is neither required for its localization within 

P-bodies nor its interaction with DCP1 and Me31B within the P-body.  However, we 

cannot rule out that IAPs might participate in P-body-related functions.  It is possible that 

after Grim is recruited to P-bodies, IAPs might also be recruited and brought into the 

complex in order to ubiquitinate Grim or other components in the P-bodies.  Strikingly, 

we have discovered that when Grim is coexpressed with DIAP1, it increases the size of 

Grim punctae and induces formation of enlarged ring-like structures, but they still do not 

colocalize with mitochondria (Fig. 5.3).  Further study will be required to understand 

whether the ring-like structures are due to ubiquitination, and if so, whether specific 

ubiquitin chains are generated.  These studies would open a brand new field if IAPs are 

recruited to P-bodies and modify P-body function. 

Our results are consistent with a model that Grim induces caspase activation 

through two distinct mechanisms:  one requires the N-terminus of Grim (IBM-dependent) 

and the other requires its C-terminus (IBM-independent).  An obvious question is 

whether should such dual mechanisms exist on the same protein molecule?  Such an 

arrangement could ensure that maximum caspase activity is achieved at a particular point 

in time during development. Alternatively, these two mechanisms might be regulated 

coordinately to establish finer control over the degrees of caspase activity required for 

different biological needs.  IBM-dependent cell death may occur when massive cell death 
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is required in short period of time, while at different stages of development, C-terminal-

dependent caspase activation may be preferred to maintain low levels of caspase activity 

for a given biological function.  In fact, Dronc is required for mediating both cell death 

(in dying cells) and apoptosis-induced proliferation (in undead cells), in which 

compensatory cell outgrowth occurs after inhibition of downstream effector caspases 

(Kondo et al., 2006). 

The second question that comes to mind is whether there exists a crosstalk 

between the two caspase-activating mechanisms? Under which circumstances would 

Grim favor one mechanism over the other?  In our study, we isolated IBM-independent 

cell death using GG-Grim or an N-terminally-tagged Grim in order to avoid interference 

from DIAP1, even though an isoform of Grim, devoid of its IBM domain, has not been 

detected in vivo.  However, the IBM function may be covered through the following 

model.  In our lab, we have identified that the chaperone protein HSC70 interacts with 

Grim (data not shown), and it has been reported that the E3 ligase, C-terminal Hsc70-

interacting protein (CHIP), forms a complex with HSC70 to ubiquitinate its client 

proteins (Ahmed et al., 2012; Gao et al., 2010; Smith et al., 2013).  According to a 

previous report, proteins with polyglutamine expansion have a tendency to recruit the 

HSC70/CHIP complex (Jana et al., 2005). If Grim recruits the HSC70/CHIP complex 

through the polyglutamine domain in Grim, it is possible that Grim can be ubiquitinated 

by the HSC70/CHIP complex.  Importantly, the polyglutamine region resides in the 

internal portion of Grim, so Grim would be subject to two potential ubiquitination sites, 

the N-terminus and the lysine at its C-terminus.  An IBM mutant of Grim can therefore 

be generated if ubiquitination occurs at its N-terminus (Ub-Grim).  If the speculated 



 

 107 

model is true, the existence of Ub-Grim may act as a switch to selectively foster the IBM-

independent pathway.  

The sophisticated regulation of Grim through multiple mechanisms suggests that 

Grim has different functions other than promoting cell death.  As a precedent, the 

mammalian IAP antagonist Omi has a biological role in regulating autophagy through its 

IBM-independent serine protease activity (Li et al., 2010). Indeed, Grim is present, and 

caspases are activated during the development of Malpighian tubules in the fly embryo, 

but they do not cause significant cell death (Tapadia and Gautam, 2011).  During 

metamorphosis, sensory organ progenitors undergo asymmetric division and give rise to 

different organs, such as thoracic microchaete bristle and non-innervated bristle at the 

posterior wing margin.  Grim is required to eliminate different descendants from the 

sensory precursor (Fig. 1.5), but it is unclear how Grim accurately kills the specific 

daughter cell (a glial cell, or a pIIb cell) without affecting the other daughter cell.  One 

explanation is that Grim is only expressed in the “meant to be dead” cell, but not the 

other cell.  Alternatively, Grim may be present in all of the daughter cells (to perform its 

physiological function), but is regulated differently after asymmetric cell division, so that 

only specific cells reach an apoptotic threshold.  In the other live cell (or undead cells), 

Grim levels are kept low to perform specific functions or be eliminated through the 

regulatory system between caspases and the proteasome machinery.  

It is worth noting that Grim is also ubiquitinated by another Drosophila IAP, 

DIAP2, through the interaction between Grim’s IBM and the BIR domains in DIAP2.  

Unlike DIAP1, DIAP2 plays a major role in innate immunity and nuclear factor kappa B 

(NF-κB) signaling in flies.  It often mediates K63-based ubiquitination of substrates, such 
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as IMD (Paquette et al., 2010), and K63-linked ubiquitin chains generally prevent protein 

turnover, mediate the recruitment of other proteins, and/or alter subcellular localization.  

Whether Grim undergoes K63-based ubiquitination by DIAP2 or functions as a signaling 

molecule is currently unknown.  However, Grim exhibits a distinct subcellular 

localization, and removal of K63-linked chains by caspases could alter its function in 

cells, perhaps converting it from a signaling molecule to a killer. 

The study of IBM-dependent cell death is important, because humans also possess 

IAP antagonists, such as Smac and Omi, sharing a conserved four amino acid sequence 

that enhances cell death.  Based on the IBM region, Smac mimetics have been designed 

and are currently in use in clinical trials (Hennessy et al., 2013; Pluta et al., 2010).  It is 

yet unclear whether the non-IBM region of Grim also induces a conserved cell death 

pathway, but most of the P-body components (and IAPs) are conserved from flies to 

mammals.  With a better understanding of IBM-independent cell death, new insights 

maybe made into how cell death is executed.  Apparent differences in flies may well 

point to previously unidentified but important nuances in existing pathways in humans.  

At this point, we appreciate the complexity of Grim-induced cell death, which might 

explain why Grim seems to be more potent than Reaper or Hid at inducing midline 

neuronal cell death in Drosophila embryos when ectopically expressed (Wing et al., 

1998).  With its regulation by caspases and the proteasome system, as well as its 

bifunctional killing activity, Grim is an intriguingly efficient, yet highly regulated, 

apoptosis inducer.  
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Figure 5.2 ARTS is cleaved by caspase-3 at Asp8. Mammalian IAP antagonist ARTS 
interacts with XIAP through its C-terminus, and is ubiquitinated by XIAP at lysine 3 
(indicated in gray).  ARTS possess FLED (underlined) sequence, which could serve as a 
caspase cleavage site.  Recombinant caspase-3 was added into HEK293T cell lysates 
transfected with N-terminally AU5-tagged ARTS (pEF-AU5-ARTS), pEF-AU5-ARTS 
K3R (K3R), or pEF-AU5-ARTS D8A (D8A) for 30 mins at 37 °C.  Lysates were then 
analyzed with Western blot. 
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Figure 5.3 The localization of Grim in S2 cells. S2 cells were cotransfected with 
pRmHa3-Grim-HSV along with vector or pIE-HADIAP1 in the presence of zVAD-fmk. 
Cells were fixed with paraformaldehyde and stained with an anti-rabbit-HSV antibody. 
DNA was visualized with Hoechst 33342. Scale bar: 10 µm.  
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