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Abstract 

 
Predicting the condition of a degrading dynamic system is critical for 

implementing successful control and designing the optimal operation and maintenance 

strategies throughout the lifetime of the system. In many situations, especially in 

manufacturing, systems experience multiple degradation cycles, failures, and 

maintenance events throughout their lifetimes. In such cases, historical records of sensor 

readings observed during the lifecycle of a machine can yield vital information about 

degradation patterns of the monitored machine, which can be used to formulate dynamic 

models for predicting its future performance. Besides the ability to predict equipment 

failures, another major component of cost effective and high-throughput manufacturing is 

tight control of product quality. Quality control is assured by taking periodic 

measurements of the products at various stages of production. Nevertheless, quality 

measurements of the product require time and are often executed on costly measurement 

equipment, which increases the cost of manufacturing and slows down production.  One 
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possible way to remedy this situation is to utilize the inherent link between the 

manufacturing equipment condition, mirrored in the readings of sensors mounted on that 

machine, and the quality of products coming out of it. The concept of Virtual Metrology 

(VM) addresses the quality control problem by using data-driven models that relate the 

product quality to the equipment sensors, enabling continuous estimation of the quality 

characteristics of the product, even when physical measurements of product quality are 

not available. VM can thus bring significant production benefits, including improved 

process control, reduced quality losses and higher productivity. In this dissertation, new 

methods are formulated that will combine long-term performance prediction of sensory 

signatures from a degrading manufacturing machine with VM quality estimation, which 

enables integration of predictive condition monitoring (prediction of sensory signatures) 

with predictive manufacturing process control (predictive VM model). The recently 

developed algorithm for prediction of sensory signatures is capable of predicting the 

system condition by comparing the similarity of the most recent performance signatures 

with the known degradation patterns available in the historical records. The method 

accomplishes the prediction of non-Gaussian and non-stationary time-series of relevant 

performance signatures with analytical tractability, which enables calculations of 

predicted signature distributions with significantly greater speeds than what can be found 

in literature. VM quality estimation is implemented using the recently introduced 

growing structure multiple model system paradigm (GSMMS), based on the use of local 

linear dynamic models. The concept of local models enables representation of complex, 

non-linear dependencies with non-Gaussian and non-stationary noise characteristics, 

using a locally tractable model representation. Localized modeling enables a VM that can 
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detect situations when the VM model is not adequate and needs to be improved, which is 

one of the main challenges in VM. Finally, uncertainty propagation with Monte Carlo 

simulation is pursued in order to propagate the predicted distributions of equipment 

signatures through the VM model to enable prediction of distributions of the quality 

variables using the readily available sensor readings streaming from the monitored 

manufacturing machine. The newly developed methods are applied to long-term 

production data coming from an industrial plasma-enhanced chemical vapor deposition 

(PECVD) tool operating in a major semiconductor manufacturing fab.  
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Chapter 1 

Introduction 
 

1.1 Motivation and Background 

Degradation and failure of machines and products occur in many settings every 

day, leading to significant cost, wasted material, and hazardous environments to 

workplaces and consumers. In 1981, maintenance costs in the United States economy 

were estimated at $600 billion, a figure that doubled in the subsequent 20 years, with an 

estimated 30-50% of these costs wasted through ineffective maintenance and unexpected 

failures [1], [2].  Additionally, disasters from major industries (transportation, 

manufacturing, chemical, etc.) lead to wasted energy/materials, process shutdowns, 

environmental contaminations, and most importantly, loss of human lives [3]- [6]. These 

losses are key motivating factors driving condition-based and predictive maintenance 

research efforts aimed at pursuing maintenance policies based on the current and 

predicted system conditions, as assessed from the readings of the sensors mounted on the 

monitored system. Such information about the actual condition of the equipment can be 

used to make maintenance decisions that are optimally synchronized with human and 

material resources in the system, and the least intrusive on the overall operations. 

Generally speaking, engineered systems properly accomplish their functions 

according to design specifications, until degradation and component failures lead to 

undesired performance. System condition is commonly monitored using the difference in 

sensor features taken when the system operates currently in the field with features taken 
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during normal, or desired operations (these differences are often referred to as residuals 

[7]). Visualizing in three dimensions, Figure 1.1 shows a hypothetical system designed to 

follow a specified path in its feature space.  The desired operation and two known faults 

are shown in the feature and residual spaces. By looking at the residual space, the normal 

operation of the system is centered around the origin, while the long term degradation is 

detected via trends of residuals deviating from this region in various directions, 

depending on the type of the underlying fault that causes the degradation. Proper 

maintenance brings the system back into its desired condition and brings the residuals 

back toward the origin. Systems exhibiting variable or unforeseen operating conditions 

should expect different normal operation residuals for the different regimes in the feature 

space and during transitioning periods. However, during normal operation the residuals 

should be as close to zero mean with as minimal variance as possible, with limits set 

based on the physics of the system to define what is “normal” for all operating paths. 

 

 

Figure 1.1: Three dimensional system experiencing long-term degrading performance 

shown in the feature and residual spaces. 
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The prediction accuracy of degrading performance, particularly in the long-term, 

is an essential part of postulating cost effective maintenance policies [8] - [10]. Predictive 

performance information about the monitored system allows one to predict its future 

degradation state, failure modes, and remaining useful life (RUL), thus enabling one to 

avoid sudden unexpected failures and allow optimal maintenance strategies[11], [12]. In 

particular, accurate predictions of the long-term performance of degrading equipment are 

necessary in order to have sufficient time to prepare maintenance operations [13], [14].  

Hence, long-term prediction accuracy of the time-series’ of sensory signatures indicative 

of the condition of the monitored process plays an important role for implementing 

predictive maintenance in many industries. 

In addition to predicting the long-term performance of the sensed regions of 

degrading systems, the ability to maintain high throughput and fault tolerance in modern 

manufacturing systems depends on the ability to predict the quality characteristics of the 

products output by the system [15]-[17]. Commonly, quality measurements are 

performed with additional and often costly equipment and resources [17], which in most 

cases makes it economically, or sometimes physically impossible to obtain measurements 

of every product leaving the system. Instead, only some products end up being measured 

(sampling of products) and if unacceptable behavior occurs in-between samples, 

significant losses occur and failures may go undetected for prolonged periods of time.  

These issues are highly impactful, especially in modern high tech manufacturing. 

This led to significant research in mathematical models that estimate quality variables 

using the continuously collected equipment signatures, without physically having to take 

the quality measurements. This is the well-known paradigm of Virtual Metrology (VM) 
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in manufacturing [17]-[20], utilized for quality control in many industries. Outside the 

scope of manufacturing, similar methods have been implemented for estimating un-

measureable quantities under the concept of Virtual Sensing (VS) [21]-[23], with the 

main difference being the fact that VS does not take into account periodic measurements 

of the quantities being estimated and thus equivalence between the two concepts is not 

complete. Therefore, VS is outside the scope of this dissertation.  

Since all major manufacturing industries deal with degrading systems 

continuously, investigating ways to predict future performance and estimate quality 

variables online is valuable to saving much energy and materials in the future. Advancing 

and integrating predictive condition monitoring methods into the VM concept in order to 

enable an integrated performance prediction and quality control methodology for modern 

manufacturing systems is the focus of this doctoral thesis. 

   

1.2 Research Objectives and Challenges 

The main objective of this research is to develop an integrated performance 

prediction and quality control methodology for manufacturing systems that can 

concurrently forecast, with high accuracy and computational speed, the behavior of 

distributions of the sensory signatures characteristic of the system condition, as well the 

quality of the products output by that system.  Incorporated into this work are the 

following contributions: 

1. A fast, analytically tractable algorithm for predicting long-term behavior of 

signatures describing the performance of a degrading dynamic system. 
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2. An accurate, dynamic VM model for estimating quality variables of the products 

output by the degrading manufacturing system.  

3. Analytical approach for characterizing the propagation of uncertainty of sensory 

signature predictions through the dynamic VM model.  

4. Application of the performance prediction and quality control methods to a real 

semiconductor fabrication process.  

Figure 1.2 illustrates the concept and the objectives of this dissertation. The 

diagram shows a manufacturing system with its outputs continuously being monitored via 

residuals obtained through comparison of the current system behavior with the model of 

normal/desired operation. If designed correctly, the system will emit residuals that cluster 

around the origin and remain within some physically inspired or statistically determined 

tolerances when operating normally. It is assumed that the designed system has observed 

residual trajectories for the known degradation patterns either from physical models, 

experimentation, or field testing. If the system is recently built, the residual sets for 

common faults can be gathered during the initial operating periods between 

maintenances. 
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Figure 1.2: Flowchart demonstrating integrated performance prediction and quality 

estimation methodology developed in this work. 
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the estimation of quality measurements using a novel data driven model [25]. Objective 

Model of Normal/Desired 
Operation of the Monitored 

Manufacturing System

Monitored 
Manufacturing

System

Similarity-Based 
Performance 

Predictor

(GMM Weighted 
Likelihood)

Virtual Metrology (VM) 
Quality Estimator

(GSMMS model)

Statistical Process Control 
(SPC)

Maintenance Decision 
Making

(Beyond Scope)

Feedback Control

(Beyond Scope)

-Inputs

Known Past
Performances

Residuals

Periodic Quality 
Measurements

Estimations of the distributions of future 
sensor readings’ degradations.

Estimations of the distributions of future 
quality characteristics of the product.

Normal 
Sensor Readings

Sensor Readings



 

 
 

7 
 

three is accomplished through the pursuit of analytical methods for estimating future 

distributions of quality variables by propagating the performance prediction uncertainties 

through the data driven VM model.  

There are many challenges with the integrated VM modeling and prediction 

concept outlined in this thesis. The first challenge is to develop a suitable prediction 

method for non-stationary, non-Gaussian time-series, which can give accurate long-term 

predictions of the sensor signatures of the degrading manufacturing system in a 

computationally efficient way. In order to achieve this, one should take advantage of 

sensory time-series corresponding to various degradations and maintenances observed 

throughout the life of the manufacturing system. The second challenge is to formulate a 

VM model suitable for non-linear dependencies and non-stationary noise characteristics 

of the underlying relationship between equipment signatures and quality measurements, 

which is at the same time computationally feasible for online application in the 

manufacturing process. Furthermore, the method should be able to determine when the 

predictions coming from the model are not accurate, by recognizing previously unseen 

input patterns from the degrading system. Finally, the challenge of integrating the 

performance prediction methodology with the VM methodology is met by the 

development of a tractable method that does not compromise predictions though its 

assumptions on the uncertainty evolution and is still computationally feasible. This 

integration allows one to concurrently predict equipment signatures and quality 

measurements into the long-term using analytically tractable techniques that enable 

online and adaptive evaluations and predictions of equipment conditions and outgoing 

product quality.  



 

 
 

8 
 

1.3 Outline of the Dissertation  

The rest of this dissertation is organized as follows. Chapter 2 presents a review 

of the relevant literature on prediction of time-series, quality estimation, and uncertainty 

propagation in dynamic systems. In Chapter 3, the methodology for similarity-based 

performance prediction is shown in detail along with results of applying this new 

methodology to an actual manufacturing process. Chapter 4 discusses the VM quality 

estimation methodology and results based on a locally tractable modeling framework 

applied to the same manufacturing process, while Chapter 5 describes the methodology 

and results for the integration of performance prediction and quality estimation using 

Monte Carlo uncertainty propagation. Finally, Chapter 6 details the scientific 

contributions of the doctoral research, and possible future work. 
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Chapter 2 

Review of Time-series Prediction, Quality Estimation, 

and Uncertainty Propagation in Dynamic Models 
 

 As mentioned in Chapter 1, this doctoral dissertation focuses on integrating 

methodologies for predicting the long-term performance of degrading systems and 

estimating the quality characteristics of the products being produced by that system. As in 

the majority of the existing CBM literature, the system condition will be associated with 

signals emitted by the monitored system, in which case the performance prediction 

amounts to the problem of prediction of time-series of the relevant sensor readings.  

Hence, it is necessary to review the state of the art in time-series prediction. This review 

is given in Section 2.1. Also, tight control of quality is essential to ensure the desired 

performance of advanced manufacturing systems. Predicting quality measurements in 

manufacturing via the Virtual Metrology (VM) paradigm is one of the crucial 

methodologies facilitating advanced process control and an extensive review of the state 

of the art VM is given in Section 2.2. Finally, due to the stochastic nature of real world 

systems, uncertainty will inherently exist in the performance predictions and propagation 

of these uncertainties through the VM model is essential for accurate prediction of the 

quality variables using predicted equipment signatures. Hence, Section 2.3 gives a review 

of uncertainty propagation methods in stochastic dynamic models. 
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2.1 Time-series Prediction Methodology 

Under the framework of condition-based monitoring (CBM) of dynamic systems 

which are degrading from their desired or designed performance, the condition of a 

monitored system needs to be deduced from the available sensor readings [14]. For 

example, small cracks in pipes and vessels of a chemical plant cannot be directly 

measured and their presence and severity need to be inferred from the strategically 

distributed sensing of flows and pressures across the system [7]. Generally, the CBM 

paradigm relies on relating the degradation process in a dynamic system with a set of 

features that can be extracted from the available sensor readings. In that context, 

degradation prediction boils down to prediction of the time-series of sensory features 

indicative of the system condition, such as vibration levels, forces, thermodynamic states, 

electrical states etc… [7]. Prediction of the time-series of features then allows one to 

predict future degradation patterns, fault modes, remaining useful life (RUL), or 

probabilities of unacceptable behavior of the system over time.  

Numerous techniques for time-series prediction exist, involving various levels of 

assumptions, accuracy and computation complexity. One can separate these techniques 

into three general types: physics-based models, linear data-driven models and non-linear 

data-driven models.  

Physical models predict the future behavior of a system by utilizing first-principle 

theories based on the fundamentals of physics and scientific theory [26]. However, 

identification of constituent equations and model parameters is not a trivial task for any 

real world system. In addition, for manufacturing equipment and other complex systems, 

there are sometimes thousands of interacting components with highly variable geometries 
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and uncertain forces affecting the system [7]. These conditions and requirements bring 

inherent problems to physical models, such as long computation times due to a large 

number of states, numerical instability, and inaccuracies due to a large number of 

estimated parameters and geometries. One can, however, still use a detailed physical 

model to see how certain parameters shift over time or how disturbances affect the 

system, and then simplify the model for predictive maintenance purposes [26]. Even 

though an accurate underlying physical model that captures relevant degradation 

phenomena is always the preferred option, various linear and non-linear data-driven 

models must be used in cases where the underlying performance is uncertain and/or 

requires too much computation to obtain accurate predictions from high fidelity physics-

based models (which is the most frequent situation).  

Linear data-driven prediction techniques include multiple-linear regression [27], 

least-squares regression [27], auto-regressive moving average (ARMA) models [28], and 

Kalman filters [29]. These methods work well for short-term predictions due to the 

assumptions that the data is generated from a linear system in the presence of stationary 

noise processes. Unfortunately, any real process with non-stationarities or non-linearities 

in the time-series will cause the prediction errors obtained using linear data-driven 

methods to increase drastically. 

Non-linear parametric time-series prediction techniques also include numerous 

methods, such as non-linear regression [30], fuzzy ARMA modeling [31], [32], Bayesian 

curve fitting [33], wavelet methods [34], support vector machine[35], [36], probability 

density functions [33], [36],[37] and neural networks based techniques [38]-[40]. These 

methods have been shown to give better results in terms of modeling and predicting non-
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stationary and non-linear time-series. However, compared to linear methods, they usually 

require much more computational effort in order to identify the time-series model, as well 

as to obtain prediction results from that model.  

For both linear and non-linear data-driven approaches, selection of an appropriate 

model form is an important and difficult task. As an example, predictions of probability 

density functions (pdf) of future signatures can be accomplished by parameterizing them 

using Gaussian mixture models [37] or kernel density estimation [33], [36]. Zivkovic 

followed that approach in [36], offering a recursive finite mixture model algorithm for 

predicting multidimensional features that automatically selects the number of 

components in the mixture model. Bayesian curve fitting (Gaussian process) gets around 

this by allowing a distribution of solutions to be generated around the data structure [33], 

[41]. Yan et. al. [42] used a Markov model framework with a discrete number of states in 

order to predict remaining useful life of a car rotor. Sun et. al [43] used a non-linear state 

space model driven by output data and sequential Monte Carlo (SMC) for demonstrating 

performance prediction with a gas turbine simulation. Each one of these methods has 

their own advantages and drawbacks for particular problems.  

Neural network based prediction methods represent an established family of non-

linear data-driven time-series prediction approaches, with applicability to modeling and 

prediction of non-linear and non-stationary time-series [38]. The topology of 

interconnections among neurons, number of layers in the network, the number of neurons 

in each layer, and the type of transfer functions between neurons define the structure of 

these essentially non-linear parametric models, and commonly this structure is 

determined via ad hoc selection by the user. In this framework, each neuron has a transfer 
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function (linear, Gaussian, sigmoidal, tangential, etc. [38]), with parameters of the neural 

function and inter-neural weights usually determined via a gradient descent based 

algorithm [39].  

Recurrent Neural Networks (RNNs) are the most common non-linear time-series 

prediction techniques in manufacturing due to their ability to model a variety of systems 

that cannot be modeled with first principles and their incorporation of internal dynamics 

into the model [44]. RNNs use internal delayed feedback links to take into account 

temporal dependencies in the data, which enables them to approximate a wide class of 

non-linear dynamic systems [40].  The gradient descent based training algorithms of 

these networks however have certain problems when dealing with long-term time 

dependencies, which can limit their accuracy.  Also, choosing the number of layers, 

number of neurons, and feedback structure is still an active area of research [38].  

Ferriera [44] gives a review of various neural networks leading up to the RNN, as 

well as the different learning algorithms for the RNN. He shows that with respect to a 

semiconductor deposition process, an RNN with a nonlinear ARMA structure performed 

better than an output error structured RNN. Furthermore, it was shown that training using 

an extended Kalman filter methodology works better than dynamic back propagation. 

The possibility of using a Kohonen self-organizing map (SOM)
1
 neural network and local 

linear models within the SOM to identify areas of validity are mentioned for future 

comparison to RNNs. Bushman et. al. [45] showed that RNNs are more accurate than 

least squares linear models when applied to plasma etch semiconductor equipment, while 

additionally being fast enough for the manufacturing process and as for long-term 

                                                           
1
 A type of neural network that directly quantizes the observation space in an optimal manner. 
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predictions, Wen et. al. [46] demonstrated that RNNs are more accurate than feed 

forward neural networks on simulated non-linear time-series and rotating machinery in 

manufacturing environments. Xu et. al. [47] showed that RNNs train much faster than 

feed forward neural networks, while giving comparable accuracy when applied to 

predicting the cutting force of milling operations. Yu et. al. [48] develops confidence 

bounds on an Elman RNN for prediction of boring process signatures and showed its 

advantages over other models in maintenance decision making.  

As for modifications to the basic RNN structure, Tian et. al. [49], [50] 

demonstrated that modifying the RNN with an additional context layer using self-

feedback of delayed network outputs and output errors can increase accuracy over a fully 

connected RNN in the prediction of gear conditions. Finally, Yang et. al. [51] showed 

that an RNN does not work well for a non-stationary thermo-elastic system and that an 

integrated RNN (IRNN) approach should be used to eliminate any first-order differences 

between the current and previous input/output time-series.  

All of these works demonstrate the universal applicability of RNNs over linear 

and other neural network methods. However extensive training is almost always needed, 

long-term forecasting can be inaccurate, and extrapolation outside of the known training 

data can be inaccurate [52].  It is commonly known that quality of the data and model 

training has a high impact on discriminating the performance accuracy between non-

linear models, such as RNNs. Therefore, having a more tractable way of incorporating 

the historical knowledge into the model is desired. 

Similarity-based methods for time-series prediction represent another powerful 

family of non-linear data-driven time-series prediction methods. These methods make 
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forecasts using a similarity metric of the currently observed time-series realizations with 

historical records of prior realizations of those time-series. In terms of performance 

prediction in condition-based maintenance, these approaches predict the future 

degradation states of the monitored system using time-series corresponding to past 

degradation patterns and fault modes of the monitored system. Mahalanobis and 

Euclidean distances [27] have been used extensively for finding the similarity between 

vector trajectories in the multidimensional space in which the time-series resides [14], 

[53]-[57]. Similarity based approaches are of particular importance in manufacturing 

applications. Namely, in manufacturing environments, systems experience multiple 

degradation cycles, failures, and maintenance events in their lifetimes [14], [58]. 

Signatures extracted from sensor readings over the life of a monitored system yield vital 

historical databases that can be used to predict the performance of the upcoming 

operations based on the similarity of prior operations [14], [58]. 

Liu et al. [14] used similarity measures of past time-series trajectories and 

heuristically inspired methods to weight the forecasts toward the most similar time-series 

trajectories observed in the past. This method was shown to have much lower long-term 

mean prediction errors than ARMA and RNN models. Wang et al. [56] offer another 

example of similarity-based time-series prediction methods. The authors accomplish 

time-series prediction using Euclidean distance measures and optimized alignment of the 

currently observed signature patterns with the past patterns of the time-series. The 

method was demonstrated in RUL prediction based on signatures emitted by turbo fans 

and was shown to improve the long-term predictions over an existing exponential curve 

fitting procedure. Yu [59] demonstrated a similarity-based technique on bearing 
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monitoring using overlaps of Gaussian mixture models, which greatly simplified the 

computation efforts. You et. al. [60] developed a proportional hazards model based on 

Weibull distributions for similarity comparisons in a simulated degradation process. 

While the aforementioned methods achieve long-term accuracy and mathematical 

transparency, it is obtained at the cost of longer computation times, which hampers 

prediction in very highly dimensional spaces, and the prediction of fast degradation 

processes.   

The review of available literature implies that long-term prediction of time-series 

with complex dynamics and noise characteristics can be accomplished utilizing some 

similarity measure between the current and past time-series behavior, even though the 

benefits of such approaches come with a prohibitively high computation cost. The goal of 

the method pursued in this research is to achieve long-term prediction accuracy of 

performance signatures by incorporating the similarity of historical degradation 

processes, while at the same time achieving a level of analytical tractability that 

accelerates the process of postulating and updating such similarity based predictions. 

Specific details of the methodology for similarity based performance prediction pursued 

in this work are given in Chapter 3. One should note that the work reported in Chapter 3 

is based on a recently published journal paper [24].  

 

2.2 Quality Estimation using Virtual Metrology 

The quality characteristics of a degrading manufacturing machine are commonly 

estimated online with models that estimate the quality measurements taken during 

inspection using only the equipment process data taken during operation, which bypasses 
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the need for physical measurements of the product quality variables. As mentioned in 

Chapter 1, this paradigm in manufacturing is commonly referred to as VM (Virtual 

Metrology), due to its ability to predict metrology outputs using statistical and/or 

dynamic models based on the easily obtainable equipment sensor readings. Implementing 

a proper VM system allows manufacturing process control with fewer investments in the 

physical measurement equipment and less time necessary for inspection. This enables 

higher equipment availability, more effective maintenance, higher productivity, and 

improved quality.  

Figure 2.1, which is adapted from [20], illustrates the VM concept, where the 

upper part depicts the monitor measurement scheme adopted by many designs. The 

quality measurements are replaced by the VM model estimates based on the equipment 

sensor readings emitted during operation. VM quality predictions are occasionally 

compared with the actual measurements in order to ensure the VM model accuracy. The 

models are usually trained either using data corresponding to the normal system 

operation, specially designed experiments, or using a physical model, if available [17]. 
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Figure 2.1: Concept of replacing quality measurements with statistical models utilizing 

equipment data (Virtual Metrology) (modified from [20]). 

 

Various statistical approaches for VM have been proposed in the literature. As in 

the case of time-series prediction, data driven models represent the majority 

methodology. VM has been applied to broad areas such as machine coordinate 

predictions [61], [62], predictions of the distribution of agricultural products [63], and 

estimations of material properties [64], [65]. For example, Hughes et. al. [61] utilized a 

virtual metrology metal frame for coordinate measurements where relative displacements 

of reference features were determined periodically and used to self-calibrate the frame. 

Also, Chanal et. al. [62] was able to optimize kinematics machine tools by taking into 

account surface defects without looking at the entire tool positioning errors as in the case 

of most coordinate positioning techniques.  Albiero et. al. [63] was able to estimate the 
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longitudinal distribution of seeds being distributed with a central ring seeder in order to 

ensure quality of agricultural products. Suh et. al. [64] identified optimal process 

parameters in order to estimate solar array material properties and performance 

characteristics, while Yang et. al. [65] was able to estimate the friction coefficient of Cr-

Al-C thin films using regression networks find optimal process parameters. In addition to 

VM, as mentioned in the introduction, vast applications are found under the term Virtual 

Sensing (VS) [66]-[79], which utilize similar techniques without accepting periodic 

measurements of the estimated variables.  

Due to the potential economic and safety benefits to be gained from measurement 

costs and faulty production throughput, most of the current VM applications are 

concentrated in semiconductor manufacturing [80], [81]. The processes utilized in the 

manufacture of microprocessors are highly complex, uncertain, and energy intensive, 

bringing about many incentives to implement data-driven VM models into the 

semiconductor manufacturing facilities [82]. Measuring the physical wafer metrology 

parameters is performed on monitor wafers that are periodically selected by sampling in 

the production equipment for each lot (usually 1 wafer per 25 or more wafer lot) [80], 

[81]. When the equipment has faults and the abnormality is not detected in time, many 

defective wafers could have been produced before the next measurement, resulting in 

large amounts of wafer scrap and cascading errors. In addition, work by Khan et. al. [17], 

[18] and Kang et. al. [83], [84] has shown the benefits that VM can bring to process 

control in semiconductor manufacturing. The available VM literature is focused on the 

common processes used in the semiconductor manufacturing industry - mostly chemical 

vapor deposition (CVD) and etch processes [82]. In the realm of VM for CVD, relevant 
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metrology variables, such as film thickness, film uniformity, particle counts, and 

reflectivity are estimated using the process data obtained during the deposition process, 

such as temperatures, pressures, flow rates, radio-frequency (RF) power in the plasma 

generation system, etc. As for etch processes, metrology variables, such as etch rate, 

particle count, surface resistance, critical dimensions, and endpoint are estimated using 

similar process sensors as CVD, along with additional optical emission information for 

plasma tools. 

The vast majority of work in VM focuses on increasing prediction accuracy using 

so-called global models
2
, which can be classified either as linear models, such as 

multivariate linear regression (MLR) [33], and partial least squares (PLS) regression [87], 

or non-linear models, such as back propagation (feed-forward) neural networks (BPNN) 

[33],[88], radial basis neural networks (RBNN) [33],[88], Gaussian process regression 

(GPR) [33],[106], and support vector regression (SVR) [33],[103],[104].  

Linear models, such as MLR and PLS, are the most commonly used VM models 

due to their tractability, and ease of implementation and adaptation to variable operating 

regimes of the underlying machine. These types of models predict well the dynamics of 

systems that behave linearly within the region in which they are trained, but extrapolation 

beyond the training set can certainly hurt predictions, if the underlying dependencies are 

non-linear. In the area of CVD, Olsen et. al. [102] describe updating PLS models with a 

moving window to predict wafer thicknesses in six chambers, which yielded better 

accuracy than what was achieved without windowing and updating the model. More 

recently, Bernard et. al [101] compared PLS with a decision tree method and showed 

                                                           
2
 Models for which the regression from tool signatures (VM inputs) to metrology variables (VM outputs) is 

expressed via a single model valid throughout the input space. 



 

 
 

21 
 

comparable accuracy in film thickness VM on a plasma enhanced CVD (PECVD) 

process. As for VM on etch tools, Lee et.al. [85] compared three linear regression models 

against a BPNN, showing that a PLS type model can be just as accurate as BPNN when 

predicting etch rates on an experimental dataset. Work by Lynn et. al. [107] examined a 

weighted PLS implemented within a moving window, determining that updating a 

weighted PLS was slightly more accurate than global PLS or using a moving window 

alone.  

Besides linear regression models, neural networks are also very commonly used 

models in VM, primarily due to their well-known ability to approximate non-linear 

dependencies. Generally speaking, neural networks comprise numerous interconnected 

computational nodes representing non-linear functions of relevant inputs, and weighted 

sums of the output of those nodes are used to obtain a functional relationship for 

modeling the desired output. Within VM, two types of neural networks have been 

studied: BPNN, and RBNN.  BPNNs are trained by back propagating prediction errors 

until the network parameters converge, while RBNNs use a specific form of the node 

activation functions, which enables their training using relatively tractable and fast matrix 

manipulations. In CVD processes, Cheng et. al. [90] developed a dual phase VM scheme 

that uses one model to estimate the quality of the current lot of wafers, while at the same 

time using another model to predict the quality of the next lot using the available 

historical quality measurements. A BPNN was used as the conjecture model, while an 

exponentially weighted moving average (EWMA) time-series model was used to predict 

the quality of the next lot, facilitating significant improvements in VM estimates. In [93], 

Su et al. introduce a reliance index for a BPNN based dual phase VM. This index was 
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used to determine situations when an abnormal set of inputs (equipment signatures) is 

observed and was calculated using the distance of the currently observed inputs away 

from the Gaussian distribution modeling “normal” tool operation. When these distances 

were unusually high (reliance index was unusually low), the VM model could not be 

trusted anymore and new physical measurements would have to be taken. A similar index 

can be found in Cheng et. al. [91] and was used for the same purpose. More recently, 

Hung et. al. [96] also adopt the dual phase VM scheme and report that a RBNN with 

adaptable weights is faster and more accurate than BPNN.  As for neural networks being 

used in etch processes, Zeng et. al. [105] report that BPNN is more accurate than PLS for 

a variety of moving window updating implementations. 

An obvious weakness of all linear regression based VM methods is their inability 

to deal with nonlinear dependencies between equipment signatures and metrology 

variables. In addition, the major issues related with neural networks for modeling of 

general non-linear dependencies, such as the choice of the network topology
3
, selection 

of the type of the activation function, initialization of network parameters, as well as 

problems associated with extrapolation
4
, and over fitting

5
, are inherited in the realm of 

NN based VM. The abovementioned drawbacks of linear regression models and neural 

networks motivated further research and recent introduction of GPR [106], SVR [103] 

and Kalman filter [109] [110] based models into VM. GPR and SVR methods provide a 

non-linear modeling frameworks with more tractability and transparency than neural 

                                                           
3
 Number of nodes, their allocation into layers and connections between the nodes and layers. 

4
 Utilizing and believing neural network outputs for inputs significantly different from those observed 

during the training process. 
5
 Understanding when the neural network captured the underlying system dynamics and when further 

training is not needed. 
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networks, while still capturing non-linear relationships with excellent accuracy [104]. On 

the other hand, the Kalman filter brings measurement feedback into the model, which can 

provide better estimation than static models. 

The work by Lynn et. al. [106] can be seen as the earliest example of GPR based 

VM. They report that GPR gives better accuracy than PLS and BPNN, while at the same 

time yielding a global estimate of model uncertainty. As for SVR, Chou et. al. [103] 

combine a genetic algorithm (GA) with the SVR to search for the best number of inputs 

and model parameters. They show better accuracy than both BPNN and RBNN on a 

CVD process, though it is acknowledged that retraining the SVR model can be slower in 

the VM context. Additionally, Purwins et. al. [104] compare SVR with different linear 

regression models and show that SVR is more accurate and is more robust in adapting to 

process changes than all the models they benchmarked against. Finally, Gill et. al. [110] 

implement a multivariate Kalman filter based VM, predicting etch rate and resistance in 

an etch process. On a dataset consisting of a few hundred wafers, their method yielded 

more accurate VM results than VM based on MLR, PLS, recursive PLS and time-series 

moving average models [28]. It should be noted that though it is dynamic in nature, a 

major drawback of the Kalman filter based approach to VM remains the fact that the 

underlying model does not take into account non-linear dependencies, or non-stationary 

noise characteristics in the underlying VM dependency.  

Besides the obvious emphasis in the relevant literature on achieving highest 

possible accuracy of VM models, another major focus of the research is enabling VM 

models to detect new (unforeseen) operating conditions and adapt to them. Namely, new 

operating conditions occur as the underlying machine degrades and/or process parameters 
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drift over time. This could lead to changes in the dependencies between equipment 

signatures and the corresponding metrology (VM inputs and outputs), necessitating new 

physical measurements of the relevant quality variables, as well as VM model updates. In 

order to accomplish this, various forms of moving window based adaptations [102], [94], 

[108] or on-line adaptations [110] were implemented within the framework of global 

regression or dynamic models, where a single functional relationship is used to represent 

the VM dependency over the entire input space. The main complication with this type of 

models is that all of its model parameters are potentially affected whenever the system 

enters a regime outside of where the model is trained, thus potentially disturbing the 

model parameters even for inputs for which the model was already established. Such a 

global adaptation approach that potentially affects all model parameters hampers the 

adaptation process by requiring significant amounts of data and measurements for a new 

operating regime to be modeled well. Furthermore, and perhaps even more importantly, 

as the process drifts back into the previously visited (“normal”) regimes, which could 

happen due to process control or maintenance interventions, the disturbed VM model 

needs to readjust to this condition, even though before the excursion that led to initial 

model adaptations, the VM model may have already been trained for such inputs. This 

obviously lowers VM accuracy and requires more physical measurements to be taken.  

An alternative approach to model adaptations can be sought within the so-called 

divide and conquer modeling paradigm, in which a set of interconnected, locally valid 

models is used to approximate an input-output dependency [150],[161]. Such a VM 

modeling paradigm enables localized model adaptations, only in areas near the inputs that 

are deemed unusual, without perturbations of model parameters far away from those 
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unusual inputs. Though divide and conquer models received significant attention 

recently, the only example of such an approach in the VM context can be found in [95]. 

In this paper, authors offer a VM method for critical dimensions of a photo-lithography 

process, using a combination of an MLR and a BPNN model. During model building 

process, an MLR and a BPNN VM model are built to model the entire training dataset 

and then for any given input vector, the model that yielded better VM prediction at that 

point was deemed valid for that input. VM predictions for new inputs were obtained by 

either selecting a model corresponding to the nearest input vector from the training set 

(either an MLR or a BPNN), or as a weighted sum of MLR and BPNN VM predictions, 

with weights determined using Mahalanobis distances from the inputs observed in the 

training set. This is indeed a VM modeling framework consisting of 2 distinct models, 

combined either in the piecewise manner, or as a sum of weighted contributions from the 

two models, similar to what is seen in recent advances in dynamic systems modeling 

literature [143]. For both processes they analyzed, the authors report accuracy 

improvements for the multiple model scheme over sole use of either of the constituent 

VM methods. 

Nevertheless, the number of models in the divide and conquer scheme reported in 

[95] was obviously limited to 2 and no adaptation scheme for the resulting VM scheme 

was discussed. One difficulty that could be foreseen if model adaptations were indeed 

pursued in [95] is that adaptation of a BPNN model is in no way trivial, since its form is 

inherently complex and nonlinear. A more common situation when divide and conquer 

models are used in the general modeling literature is the use of simpler, analytically 

tractable constituent models. A degree of tractability in local models is important in order 
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to facilitate easy local adaptation of model parameters in situations when the model 

validity is poor, while model adaptations should not perturb VM performance for inputs 

for which a model was already established. These problems will be addressed in Chapter 

4 of this doctoral dissertation using the recently introduced growing structure multiple 

model system (GSMMS) paradigm [143]. This divide and conquer modeling approach 

solves the problem of describing complex non-linear dynamic dependencies by 

employing a set of simple (linear) models, each of which is responsible for approximating 

the target dynamics only within a limited domain of inputs. As will be seen in Chapter 4, 

the locally tractable character of GSMMS models will enable overcoming the problems 

mentioned above when GSMMS is used as the foundation for VM modeling.  

  

2.3 Uncertainty Propagation Methods for Dynamic Systems  

Even though much work has been done in these two separate areas, a natural link 

between performance prediction and VM quality estimation has never been established. 

Let us elaborate on the benefits of that link in some detail. Namely, changes in equipment 

signatures indeed are related to the condition of the tool, but that relation is not direct, 

which means that time-series prediction as is done in a large portion of predictive 

monitoring research alone does not address the need of predictive CBM. On the other 

hand, the condition of the monitored system is directly visible in the quality 

measurements in the sense that for highly sophisticated systems, like semiconductor 

manufacturing machines, equipment faults show up as non-conforming products, while 

producing good quality products implies a good condition of the tool. Hence, a VM that 

realizes the link between equipment signatures and its condition can be used again as the 
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link between predicted equipment signatures and the predicted equipment condition. In 

essence, the opportunity is to feed predicted equipment signatures through a VM model 

to obtain predicted distributions of quality characteristics of the product and thus predict 

likelihoods of unacceptable tool behavior in the future. The main challenge is that both 

the prediction of future equipment signatures and the VM model bring their own 

uncertainty into the prediction of the quality measurements. Characterizing the 

uncertainty obtained from the predictions of the future equipment performance and 

understanding how that uncertainty is propagated through the VM model, which itself is 

uncertain, represents the main problem that needs to be solved to realize this potentially 

very lucrative vision of predictive VM.  

Predicting the evolving behavior of uncertain inputs through dynamic systems is 

an extensive area of research [111]-[118].  In almost any modeling situation, including 

the predictive VM scheme proposed in this paper, there will be uncertainty in the inputs, 

initial conditions, and parameters of the model.  When the inputs or initial conditions of 

the system are probability density functions (pdfs), the system becomes stochastic and the 

state of a stochastic dynamic system, x, must be characterized by its time dependent pdf, 

p(t, x) [111]. Knowing the time evolution of this pdf is important for quantifying the 

uncertainty of the underlying dynamic system in a future state.  

Numerous fields have dealt with the problem of pdf evolution through nonlinear 

dynamic systems with stochastic excitation or uncertain initial conditions. Applications 

include determining of the response of engineering structures under random excitation 

[119], fluid dynamics [120], [121], gas dispersion estimation [122], [123], and 3D visual 

tracking [124].  
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For general nonlinear systems, the exact description of the transition pdf is 

provided by the Fokker Planck Kolmogorov Equation (FPKE) [125]-[127]. Analytical 

solutions exists only for stationary pdfs and are restricted to a limited class of dynamic 

systems [126]. Thus, researchers are looking actively at numerical approximations to 

solve the FPKE, for more general problems [117] , [126]. The Finite Difference Method 

(FDM) and the Finite Element Method (FEM) have only proved practical for two and 

more recently three dimensional systems due to the exponentially growing computational 

load induced by meshing in a multidimensional space..  

Several other numerical techniques exist in the literature to approximate the 

evolution of a pdf through a dynamic model, including Monte Carlo (MC) simulation 

based methods [119], [128]-[130], particle filtering [123], [124], [131], [132], Gaussian 

closure [118], [113], [133], polynomial chaos [116], [120], [121], linearization  [111], 

[116], [134],  and stochastic averaging[135],[136]. MC simulation based estimates are 

used often to deal with analytically intractable stochastic problems, but they require 

extensive computational resources and effort, and become increasingly infeasible for 

estimating high-dimensional outputs involving a large number of samples. As for the 

other methods listed above, they are similar in several respects, and are suitable only for 

linear or moderately nonlinear systems, because the effect of higher order dynamics can 

lead to significant errors. Furthermore, all these approaches provide only an approximate 

description of the uncertainty propagation problem by restricting the solution to a small 

number of parameters - for instance, the lowest-order moments of the sought pdf. 

Several analytical methods can be found in literature, using fairly strong 

assumptions on the underlying model and distribution being propagated. Terejanu et. al. 



 

 
 

29 
 

[117], [118], [123] have done novel work in the field of uncertainty propagation through 

high fidelity dynamic models. The work is concerned with improving the approximation 

to the forecast density function using a finite Gaussian mixture and a parameter updating 

scheme. The methods give analytical tractability, efficient computation, and enough 

complexity to handle large scale non-linear systems. However, the mathematics behind 

propagating the Gaussian mixture weights remains a challenge. Besides Gaussian 

mixtures, Terejanu et. al. [117], [118], [123] have tried polynomial chaos, particle filters, 

and extended Kalman filter [29] to model propagation of uncertainties through dynamic 

models. 

Based on the review of the relevant literature, a need for an integrated approach 

that can predict the performance of complex manufacturing systems and at the same time 

estimate future quality characteristics of the system has been seen and will be developed 

in this doctoral research. In this work, the VM model will have a single output to be 

predicted. Therefore, the Monte Carlo method will be appropriate to obtain estimates of 

the propagated uncertainty in a timely manner.  If this is not feasible for reality, possible 

future avenues will be to apply the appropriate assumptions to the pdf based on the model 

and pursue an analytical method. Chapter 5 will discuss the results obtained in predictive 

VM using Monte Carlo simulation of the predicted tool signatures. 
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Chapter 3 

Analytical Approach to Similarity-Based Performance 

Prediction of Monitored Systems 

 

3.1 Methodology Overview 

As mentioned in Section 2.1, similarity-based time-series prediction methods are 

capable of modeling non-linear, non-stationary, and multi-dimensional time-series more 

accurately than traditional neural network, or regression models. Therefore, a similarity-

based methodology will be pursued in this work in order to achieve the goal of accurate 

long-term prediction of performance signatures of degradation processes, while at the 

same time achieving a level of analytical tractability that accelerates the process of 

postulating and updating such similarity based predictions. 

Let us first introduce the following terminology that will be used throughout the 

work: 

 The term feature vector is used to indicate the signatures extracted from the raw 

sensors mounted on the monitored system that are known to characterize the 

condition of that system. Evolution of these signatures is then indicative of system 

degradation and their behavior needs to be predicted. 

 The term cycle is used to indicate a single operation by the system, emitting a 

single feature vector. This can be any manufacturing operation or single use of a 
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product. Repeated cycles degrade the system, causing the signatures to evolve and 

ultimately lead to maintenance events. 

 The term run is used to indicate the time interval between two consecutive 

maintenance events. These maintenance events can be component replacements, 

repairs, cleaning, etc. Thus, a time-series of feature vectors in a past run 

represents a particular degradation trajectory known from historical data. 

The method described in this Chapter is relevant for any dynamic system that has 

existing records of signal feature trajectories corresponding to the degradation 

patterns/failure modes observed in the past or physical models of degradation dynamics. 

It is assumed that the degradation process is described by a time-series of feature vectors 

extracted from the sensors relevant to the behavior of the dynamic system. For example, 

Figure 3.1 illustrates a multitude of possible degradation trajectories using features from 

a simulation of a hypothetical non-linear two-output system [7].  The complexity of the 

degradation and failure modes of a system, such as wear, aging, pitting, cracking, 

corrosion and other mechanisms [7], often makes the resulting time-series of features 

indicative of system degradation non-stationary and non-linear in their dynamics. As 

mentioned in Chapter 2, similarity-based methods with an underlying non-linear 

parametric model can be effectively utilized to account for non-linear, non-stationary 

degradation dynamics and thus result in high long-term prediction accuracy. This 

involves the comparison of the large number of historical runs and combining that 

information into a dynamic model that can predict the current run’s degradation process. 
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Figure 3.1: Conceptual illustration of degradation dynamics for a system with different 

fault modes, monitored using two features (residuals). 

   

 The method described in this work follows the aforementioned paradigm and uses 

pdf-s representing feature vectors from the previous runs as the models for evaluating 

similarities between the newly observed trajectory of signatures and those observed in the 

past. The pdf-s are approximated using Gaussian mixture models (GMM) due to their 

ability to model any distribution within a desired accuracy, given enough Gaussian 

components [37].  Figure 3.2 conceptually describes the newly proposed time-series 

prediction algorithm. Right after a maintenance operation (i.e. just before a new run 

starts), the only information known about the run that is about to start are feature vector 

realizations observed during the previous runs of the monitored system. At each cycle, 

GMMs of feature vectors corresponding to that cycle in the previous runs can be 

formulated. As the current run progresses, feature vectors from more and more cycles are 
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observed and similarity measures between those feature vectors and all feature vectors 

corresponding to that cycle in past runs can be evaluated. Consequently, at cycle number 

i, we can observe the set of vectors *
cs


 ;  ic ,...2,1,0 , composed of similarities between 

feature vectors observed at cycle number c, with feature vectors observed at cycle c in all 

previous runs 
6
. These similarity measures can then be used to skew the GMMs of feature 

vectors corresponding to future cycles of the current run (cycles i+1, i+2 …) towards 

feature vectors from previous runs that in the past cycles showed more similarity with the 

current run. Thus, as time progresses and more and more signatures are collected during 

the current run, the feature models shift toward the most similar runs observed in the past. 

When the current run is completed, it can be incorporated into the library of previous 

runs, thus enabling continuous learning as the system progresses through its lifetime. 

 

 

 

 

 

 

 

                                                           
6
 Each vector *

cs


 
will have as many elements as there are past runs that performed c cycles. 
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Figure 3.2: Steps for the similarity-based prediction algorithm described in this work. 
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 Details of the prediction method conceptually described above will be given in the 

remainder of this Chapter, which is organized as follows. Section 3.2 discusses the 

calculation of the similarity measures used in updating of the GMMs. Sections 3.3 and 

3.4 review the method of modifying the log-likelihood function of a pdf in order to 

handle weighted data points and also discusses the modifications to the well-known 

Expectation-Maximization (EM) algorithm [138] used to fit a GMM to the library of past 

feature vectors, while incorporating the similarity measures. The following is based on 

the recently submitted journal paper [24]. 

 

3.2 Concept of Similarity Vectors 

Let us assume that the monitored system has just performed cycle i of the current 

run and let currentix ,


denote the corresponding feature vector consisting of D components 

(i.e., feature vectors are of dimensionality D). Given K previous runs in the historical 

database, one can compute distance measures, ikd , between the current feature vector and 

the i
th 

feature vectors ikx


from all previous runs k,  Kk ...3,2,1 . Following Liu et al. [14], 

in this work the Mahalanobis distance is used 

                                    
)()( ,

1

, currentiik

T

currentiikik xxxxd





  
(3.1)  

where the scaling covariance matrix   is characteristic of the normal operation of the 

monitored system, i.e. estimated from feature vectors observed soon after maintenance 

operations [10]. Depending on the application and topology of the feature space, other 
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distance measures could be used [30]. The similarity *

iks  of the i
th

 cycle of the current run 

with the k
th

 previous run can be expressed as 

                                                  
)exp(*

ikik ds 
 (3.2) 

which gives values close to one when the Mahalanobis distance between the two feature 

vectors is small, and approaches zero as the distance grows large.  

 The K similarities can be combined into a vector  Tikiii ssss **
2

*
1

* ...


, containing 

similarities for cycle i in the current run. Observations from Liu et al. [14] and our own 

experiments showed that the similarity vectors *
is


 tend to be rather noisy and a filtering 

step is needed before those similarities can be used for updating of predictions. In this 

work, an exponentially weighted moving average (EWMA) [139] with smoothing factor 

  was used as a simple way to combine all of the similarity vectors *
0s


…
*
is


into an 

overall similarity vector, is


 , that can be used in predicting future cycles of the current 

run (i.e. feature vectors for cycles i+1, i+2, …). The overall similarity vector is


 contains 

filtered information about similarities between all the past cycles of the current run and 

corresponding cycles in the past runs of the monitored system, with similarities 

corresponding to the most recent cycles being more emphasized by the EWMA filter. 

Based on the aforementioned concepts of feature comparison between the past and 

current degradation trajectories (runs) of the monitored system, we can now describe the 

use of the similarity vectors is


 for prediction of future feature vectors for the current run.  
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3.3 Weighted Likelihood Estimation of Mixture Gaussians with 

Similarity Vectors 

Once again, let us assume that the monitored system just completed cycle i of the 

current run and that a filtered vector of similarities, is


, has been obtained using methods 

described in Section 2.2. At any future cycle (i.e. cycle, i+1, i+2, …), a multi-

dimensional GMM, )(xf


, of feature vectors will be pursued in the form [37] 

                                              

),|()(
1

mm

M

m

m xNwxf 





 (3.3) 

where M is the total number of Gaussian components in the GMM, mw  is the mixture 

weight corresponding to the m
th

 component of the GMM and  
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 (3.4)

 

denotes the m
th

 Gaussian component with mean m


 and covariance matrix m . The 

reader should be reminded that D is the dimensionality of the feature vectors and thus 

represents the dimensionality of the GMMs describing feature distributions at each cycle.  

 Let us assume we need to fit a GMM to the observed feature vectors kx


 ; 

 Kk ,...2,1 . It is easy to show that the log-likelihood )|Pr(ln X  of  KxxX


...1  is 
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K

k

kxfX
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)(ln)|Pr(ln
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 (3.5)
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In order to fit a GMM, this function is commonly maximized by a gradient ascent 

algorithm that seeks parameters  mmm w 


  , m = 1…M, that maximize the 

likelihood (3.5) for the given data X  [33], [37].  

The log-likelihood function of a pdf can always be modified with a prior 

distribution if one has information about the system behavior. Since we have prior 

information about system behavior from the previous runs, we will use this opportunity to 

skew the GMMs of future cycles of the current run towards the corresponding cycles of 

the previous runs that resemble the current run the most.  

Weighted Likelihood Estimation (WLE) is a Bayesian estimation methodology 

based on modifying the likelihood function of a pdf with some weighting distribution, 

vector, or observation-dependent function that is a priori known [140], [141]. Various 

applications in statistical analysis, machine learning, medicine, and gambling have used 

these techniques to obtain better prediction accuracy from numerous probabilistic model 

forms[140]-[142]. One of the most common formulations of WLE is to assign each 

feature vector a unique weight k  based on the prior information about the data (higher

k  meaning higher prior probability for a given observation).  The log-likelihood 

function of the data X for this type of a WLE takes the following form  

          

    
 










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
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K

k
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M
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K

k

kWLE xNwxfX k
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),|(ln)(ln)|Pr(ln 
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           (3.6)  

In our context, the weight k  is the k
th 

component of the overall similarity vector is


at 

cycle i.  In such a way, the similarities with previous runs can be used to modify the log-

likelihood function in a way that emphasizes the most similar previous runs and vice 
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versa, thus increasing the prediction accuracy. Based on the definitions of the WLE of a 

GMM, one can now state the necessary modifications for the gradient-based EM 

algorithm used for fitting the GMM parameters.  

 

3.4 Expectation-Maximization Algorithm Modifications for the 

Weighted Likelihood Estimation of Mixture Gaussians with 

Similarity Vectors 

 The so-called Expectation Maximization (EM) algorithm is commonly utilized for 

fitting GMM parameters to a data set [37], [138]. The EM algorithm is an iterative 

method for estimating the maximum likelihood solution for a set of parameters in a 

statistical model. In this subsection, a modification of this algorithm is introduced, which 

will enable the inclusion of similarities of the current run with the previous runs into the 

estimation process. 

Let us assume that a feature distribution for any given cycle in the current run is 

composed of M Gaussians
7
 and that we have the corresponding initial guesses for the M 

mean vectors m


, and M covariance matrices m [37]. The procedure for finding the 

GMM components  mmm w 


  , m = 1…M consists of two steps. In the first step, 

referred to as the Expectation calculation, the likelihood that a given feature vector in the 

dataset X belongs to each GMM component is evaluated. The next step, referred to as 

Maximization, updates the GMM parameters in order to maximize the likelihood function 

                                                           
7  Literature has shown works that find optimal numbers of components in mixture models in an 

unsupervised manner, and therefore this assumption is not particularly restrictive [33], [36]. 
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of the data, given the probabilities from the Expectation step [138]. The algorithm repeats 

the Expectation and Maximization steps until convergence, with possible convergence 

criteria being the number of Expectation-Maximization iterations, bounds on the change 

in the log-likelihood function, or the change in GMM parameters [138].  

In this work, the WLE log-likelihood function (3.6) replaces the standard 

formulation and the EM process will be consequently modified by maximizing (3.6) with 

respect to  mmm w 


  , m = 1…M. For a given set of GMM parameters, the 

Expectation step can be performed for a GMM in standard fashion, by taking the 

weighted sum of the different Gaussian component contributions to each feature vector 
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where ),|Pr( kxm


 is the probability that feature vector k is produced by the Gaussian 

component m. In order to obtain the maximum likelihood parameters, ML̂ , one must 

maximize the log-likelihood function with respect to the model parameters:  
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Based on the procedure proposed in [37] for the EM based identification of GMM 

parameters, the EM algorithm for the modified likelihood function (3.6) yields the 

following iterative procedure for finding GMM parameters: 
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At each iteration l, the current solution for the GMM parameters 

  Mmwl
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where 
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The Expectation and Maximization steps are repeated until a convergence criteria 

is met [138]. Possible convergence criteria are bounds on changes in the likelihood 

function or bounds on changes in the model parameters. The modified EM algorithm for 



 

 
 

42 
 

estimating GMM parameters based on the WLE formulation (3.6) is summarized in the 

pseudo code shown in Figure 3.3. 

In this work, at any cycle i, the WLE-modified EM algorithm is used to rapidly 

estimate GMM parameters for feature vectors corresponding to cycles i +1, i +2, … . 

When the feature for cycle i in the current run is observed, the similarity vector is


is 

updated using the procedure described in Section 3.2 and the modified EM algorithm 

described in this section is invoked to rapidly update the GMMs for the cycles i +1, i +2, 

… 
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Figure 3.3: Pseudo-code for the modified EM algorithm utilized in this work for GMM 

fitting. 
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3.5 Results of Similarity-Based Performance Prediction  

3.5.1 Experimental System Description 

The experimental system to be utilized in this work is a Plasma Enhanced 

Chemical Vapor Deposition (PECVD) tool commonly found in the semiconductor 

manufacturing industry. PECVD tools are used for depositing thin films onto silicon 

wafer substrates, which is one of the crucial steps in manufacturing of microelectronic 

circuits and solar cells. It is the most common method for producing conductors and 

dielectrics with excellent film growth properties necessary for small chip components 

[82].  Inside a PECVD tool chamber, reactive gases pass over silicon wafers and are 

absorbed onto the surfaces to form a thin layer.  The gases are excited through radio 

frequency (RF) electrical power that creates energetic plasma used to deposit the film on 

the wafers.  The plasma state allows the reaction to take place at lower temperatures, 

more suitable for large silicon wafers. Ultimately, many stacked layers of conducting and 

insulating films with etched patterns between them (forming thousands of microscopic 

electrical components) form an integrated circuit [82]. 

 

3.5.2 PECVD Tool Subsystems and Sensors 

A general PECVD tool is composed of a reaction chamber, radio frequency (RF) 

plasma generation system, gas delivery system, wafer load locks, and a robotic arm to 

carry wafers to and from the tool.  Figure 3.4 shows a diagram of the main components of 

a PECVD tool.  The RF matching network for generating plasma is shown on the top-left 

of the diagram.  The high frequency energy is sent through two matching network 

capacitors (load and tune capacitors) that control the power delivered to the chamber. By 
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varying their capacitances, the capacitors try to tune the impedance of the circuit to the 

load impedance of the chamber and thus deliver maximum RF power to the gases in the 

chamber [82]. The RF energy excites the flowing gas into the plasma state necessary for 

lower temperature depositions  [82].  The gas delivery system is depicted on the right of 

Figure 3.4.  It consists of mass flow controllers (MFCs) for each gas used in various 

depositions. Gas flows over precise time intervals to ensure processing of specific thin-

film recipes. A control valve (bottom of Figure 3.4) controls the chamber pressure and 

evacuates deposition gases from the chamber.  Temperature controlled top and lower 

chamber plates enclose the chamber and the walls are heated to minimize on-wall 

deposition, as well as to speed up the reaction during the automatic cleaning process.   

 

 

Figure 3.4: Diagram representing the various components that make up the PECVD tool.   
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The PECVD tool used in this study was a standard 300mm wafer tool with 

numerous in-place sensors measuring the physics of the process (to ensure real-life 

applicability of our study, only the standard on-board sensors were analyzed and no 

additional sensors were considered). The signals used in this study were the RF power 

characteristics (forward, load, and reflected power), voltages for the capacitors of the RF 

matching network, MFC flow rates, top plate temperature, chamber temperature, pedestal 

temperatures, chamber pressure, and the pendulum valve angle totaling 14 sensors.  RF 

power, flow rate, chamber temperature, and chamber pressure are all controlled at desired 

recipe set points during deposition. All sensor readings were concurrently collected using 

a 10Hz sampling rate, which is an order of magnitude higher than the prevalent 300mm 

fab standards.  

 

3.5.3 Tool Operation and Maintenance Schedule 

Various chemical compounds can be deposited using PECVD tools. Silicon 

Nitride (Si-N) and Silicon Dioxide (Si-O2) are some of the most common thin films 

deposited in these tools, even though other compounds can be used, depending on the 

conductivity, mechanical and reliability requirements on the film [82]. Silane (SiH4) and 

Tetraethyl Orthosilicate (TEOS) are common reactants used to produce these films. 

In addition to the deposition cycles that contribute to the process of chip-making, 

PECVD tools in semiconductor manufacturing facilities also perform automatic in-situ 

cleaning programs after a predetermined total film accumulation limit (corresponding to 

approximately 25-100 wafers, depending on the film thickness).  The usual way of 

performing the in-situ cleans is by flowing plasma-excited Fluorine (F
-
) into the chamber 
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to eat away films deposited on the tool surfaces. These cleans are performed periodically 

in order to bring the tool back into a lower state of degradation. Unfortunately, this tool-

cleaning procedure is imperfect since residual films can be left in parts of the chamber 

and at the same time, some tool surfaces can also be etched away during the process. This 

results in a long-term degradation of the tool, which over time leads to the production of 

wafers with noticeable defects, unless preventive maintenance (PM) actions are 

undertaken. Thus, besides the short-term accumulation drifts caused by successive wafer 

depositions and remedied via in-situ cleans, one can also observe a long-term drift of the 

tool condition as numerous in-situ clean cycles are executed.  

Figure 3.5 illustrates the scheduling for different levels of PECVD tool cleaning 

and maintenance. An automatic in-situ clean program is performed after depositions on a 

predetermined number of wafers (approximately, every 25-100 wafers). The tool loops 

through these programs using different chemistries and physical parameters until the 

fixed-time maintenance schedule requires a long-term PM intervention (approximately, 

every 25,000-100,000 wafers). This long-term PM action usually consists of a physical 

wipe down of the chamber as well as repairs and replacements of various critical tool 

components. 
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Figure 3.5: Production cycle of the PECVD tool.   

 

The proposed similarity based performance prediction algorithm was recently 

demonstrated using a PECVD tool dataset coming from a major semiconductor 

manufacturing fab. The details of feature extraction and algorithm demonstration are 

described in the next few sections. 

 

3.5.4 Results from Experimental Study   

Extraction of signal features that are the most descriptive of machine performance 

is one of the key elements of CBM [10]. Useful information can be gathered from 

extracting dynamic features by utilizing them in prediction models for capturing the 

features’ time-series performance. Predictions of system degradation, remaining useful 

life, and sudden developing failures are all examples of critical information that are found 

through dynamic features extracted from raw data. In previous work, numerous features 

from multiple sensor readings were extracted, including dynamic features such as rise-

time, overshoot, and steady state values, along with statistical features, such as mean 

value, variance and range [33].  These features were chosen due to their commonplace 
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use in dynamic systems and stochastic process theory. The 40 features extracted from 

PECVD tool sensor readings in this study are summarized in Table 3.1.  

 

Table 3.1: Features extracted from the data analyzed in this study. 

Signal Signal Features       

Top Plate Temperature Mean Minimum Amplitude   

Chamber Temperature Mean Minimum Amplitude   

Pedestal 1 Temperature Mean Minimum Amplitude   

LF Forward Power Steady State Error Tune Time         

LF Load Power Steady State Error Tune Time     

LF Reflected Power Steady State Error     Tune Time Maximum   

HF Forward Power Steady State Error Tune Time     

HF Load Power Steady State Error Tune Time     

HF Reflected Power Steady State Error Tune Time Maximum   

Load Capacitor Voltage Steady State Tune Time Overshoot High     Overshoot Low     

Tune Capacitor Voltage Steady State Tune Time Overshoot High Overshoot Low 

Pendulum Valve Angle Steady State Maximum     

Process Chamber Pressure Steady State Error Rise Time Overshoot Minimum 

Liquid Flow Rate TEOS   Steady State Error Rise Time Overshoot   

 

Each feature is calculated from its corresponding sensor monitoring the tool, 

while these sensors were selected by the manufacturer to monitor the physics relevant to 

the processes. The features chosen in this study are extracted from signals corresponding 

to consistent processes (for example, depositions, pre-coats, in-situ clean, etc), by 

comparing the features of the same process throughout the tool operation. Signal features 

that are the most descriptive of tool condition and degradation were sought within this 

comprehensive feature set.  

In order to perform the multivariate analysis of the numerous features extracted, 

the features were standardized to eliminate the physical units and thus make them 
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dimensionally homogeneous. Standardization of each feature was accomplished by 

subtracting its mean and dividing that difference by the standard deviation of that feature, 

where the mean and standard deviation were calculated from the data set considered to be 

representative of normal operation. Features with zero standard deviation during normal 

conditions were ignored.  

The data utilized for the analysis corresponds to about 80 wafer batches (40 

wafers per batch), with in-situ cleans performed between each batch. In this relatively 

short period, corresponding to a few weeks of production
8
, long-term feature drifts or 

sudden changes were not detected, and the analysis can be considered to address only the 

short-term accumulation drifts between in-situ cleans.  

 Sensitivity analysis to degradation between in-situ cleans was performed by 

applying linear discriminant analysis (LDA) to classes formed with the feature set 

obtained just prior to the in-situ cleans (the last 5 depositions just before each of the 

cleans in the training set) and depositions just after the in-situ cleans (the first 5 

depositions just after each of the cleans in the training set).  In total, there were 400 

deposition cycles composing each of the classes which come from the beginning of the 

entire dataset. Table 3.2 lists the top 10 sensitive features along with the unit principal 

vector that points in the direction of most sensitive features obtained from the LDA. 

 

 

 

                                                           
8
 Due to the proprietary nature of this information, we cannot be more specific. 
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Table 3.2: Results of the sensitivity analysis between pre and post In-situ clean features.  

Principal Vector (w) Feature Name 

0.60 Load Capacitor Overshoot Low 

0.41 Load Capacitor Overshoot High 

0.40 Load Capacitor Steady State 

0.27 HF Load Power Steady State Error 

0.26 Top Plate Temperature Mean 

0.25 Top Plate Temperature Minimum 

0.22 Pedestal 1 Temperature Minimum 

0.21 Pedestal 1 Temperature Mean 

0.13 LF Reflected Power Tune Time 

0.06 Process Pressure Minimum 

 

 Table 3.2 indicates that the Load Capacitor features make up the top sensitive 

features. This is plausible because the load capacitor signal sees a different chamber 

impedance before and after the in-situ cleaning, and hence its tuning characteristics 

change in order to match the impedance of the chamber and deliver the maximum RF 

power to the plasma. Several temperature related features also appear to be sensitive to 

degradation between in-situ cleans. This also matches the engineering intuition since 

progressive depositions leave increasingly thicker films on the pedestal, showerhead, and 

chamber walls of the tool, thus gradually changing their thermal emissivity, which is 

mirrored in the corresponding temperature features.  
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Figure 3.6 shows three distinct evolution trajectories (runs) of two of the top 

sensitive features listed in Table 3.2 (the Load Capacitor Steady State Voltage and the 

Top Plate Temperature mean). From this figure, one can see that the trajectories through 

feature space can show vastly different behavior as the runs progress. In addition, Figure 

3.6 also shows obvious recoveries at the beginning of the runs, which all begin in similar 

areas of the feature space before progressing into different directions, indicating that 

various degradation patterns occurred during the course of many inter in-situ clean runs 

observed in this data set. Thus, Figure 3.6 illustrates that this dataset is a typical situation 

that necessitates the use of similarity based prediction methods. 

                                               

Figure 3.6: Various degradation paths for three select runs of the PECVD tool using two 

sensitive dynamic features.  
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The newly introduced similarity-based time-series prediction methodology was 

used to predict the behavior of the features listed in Table 3.2.  The new method is 

compared against two other time-series prediction models - the standard Auto-Regressive 

Moving-Average model based prediction [28] and a recently introduced prediction 

method also based on the use of similarity matrices [14]. Mean squared errors and 

computation times associated with each method are used as comparison metrics. 

Signatures corresponding to wafer depositions from initial 30 runs were used to form the 

historical database of past runs, while signatures from another 40 runs were used for 

testing of the prediction methods. Within each test run, predictions of feature vectors 

were made up to 35 cycles (wafers) ahead, after which the squared prediction errors and 

times associated with the computation of all the predictions were averaged over the 40 

test runs.  Figure 3.7 shows the results for mean square errors (averaged over the scaled 

10 dimensional feature space) and computation times for each of the three algorithms for 

the case when predictions were made starting at cycle (wafer) 11 in each of the test runs. 

Figure 3.8 presents the same metrics for the case when predictions were made starting at 

cycle 20 in each of the test runs.  
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Figure 3.7: Mean squared errors and computation time for the three prediction 

algorithms, starting at cycle 11 in each of the 40 test runs and predicting 25 cycles 

(wafers) ahead. Results were averaged over 40 test runs. 

  

Figure 3.8: Mean squared errors and computation time for the three prediction 

algorithms, starting at cycle 21 in each of the 40 test runs and predicting 15 cycles 

(wafers) ahead. Results were averaged over 40 test runs. 
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One can clearly see that ARMA prediction errors grow rapidly as the prediction 

horizon increases in Figure 3.7.  The reason is that ARMA prediction uses only dynamics 

of the features observed in one specific run and does not fully exploit the rich information 

available in the previous run history. The newly developed method and the similarity 

matrix based approach from [14] both have much smaller errors and are comparable with 

each other in terms of prediction accuracy and confidence. However, the weighted GMM 

based algorithm introduced in this doctoral research takes an order of magnitude less time 

to compute the results than the other two methods (minutes instead of hours necessary to 

obtain prediction results for all 40 test runs). When predictions start from further ahead in 

the run, the prediction errors are comparable for all three methods, even though one can 

observe that the ARMA prediction errors start slightly drifting after predicting more than 

10 cycles ahead.  Once again, the ARMA and similarity matrix methods take an order of 

magnitude longer to compute the prediction results for all 40 test runs than the new 

algorithm. The computational advantage comes from the analytical character of the 

GMM based estimation of future feature distributions used in the new similarity based 

prediction method, which bypasses the need for Monte-Carlo sampling utilized in Liu et 

al. [14]. Thus, the new method incorporates the rich information from the past runs, but, 

unlike what is seen in [14], it does not do that at the expense of tremendous 

computational effort and sacrificing analytical tractability. 

 

3.5.5 Conclusions of Similarity Based Prediction Results 

In this Chapter, a novel time-series prediction algorithm capable of dealing with a 

long-term prediction of non-stationary multivariate time-series was presented. The 
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method is based on the concept of similarity-weighted Gaussian mixture models (GMMs) 

obtained via comparisons of signatures describing the current degradation process with 

those observed on the same machine/process in the past. It provides one with a natural 

way to derive the predicted feature distributions over time, which could be used to obtain 

information about the remaining useful life, predicted probabilities of failure, or 

unacceptable behavior. The new method was tested in predicting signatures extracted 

during the operation of an industrial Plasma Enhanced Chemical Vapor Deposition 

(PECVD) tool. The results showed that the newly developed prediction method yields 

noticeably smaller mean squared errors, compared with ARMA based prediction and 

comparable mean squared errors to another recently introduced similarity-based time-

series prediction model. However, the analytical structure of the method computes the 

prediction distributions an order of magnitude faster. 

An avenue for possible future work is potential grouping of similar degradation 

trajectories (runs) having similar evolutions of the time-series of sensory features, which 

will enable one to reduce the number of degradation trajectories that need to be kept in 

the historical database and used for predictions. In that context, a new run would be 

added to the library of past runs only after a degradation trajectory is observed that is 

“sufficiently different” from the ones seen in the past. Another avenue is to incorporate 

maintenances that do not bring the system back to a consistent state. A longer-term drift 

will be present if this occurs and will have to be taken into account. These problems are 

outside the scope of this research, but carry significant potential benefits. 
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Chapter 4 

Virtual Metrology (VM) Quality Estimation using Local 

Dynamic Model Paradigm 
 

 

4.1 Overview and Motivation 
 

As discussed in Section 2.2, literature shows that various linear and non-linear 

models have been utilized in VM, including neural networks [65], regression models 

[104], Gaussian processes [106], time-series [100], and Kalman filter implementations 

[109]. In general, any model that can accurately and in a timely manner predict physical 

metrology measurements from the easily available equipment data will be a good 

candidate for VM. However, VM model characteristics such as model robustness to 

process variations, sensitivity to process variations in the presence of faults and 

assessment of the model confidence and validity, become increasingly important for the 

implementation of VM systems.  

It can be concluded from the literature review that most of the published work 

utilizes models that do not incorporate process dynamics or metrology measurement 

feedback into the VM framework, as well as that the main focus is placed on prediction 

accuracy, which is evaluated on relatively small datasets. The current state of the art in 

VM is in need of models that can efficiently incorporate non-linear dynamic 

dependencies with non-stationary noise characteristics, as well as having the ability to 

know when the model is invalid because the underlying machine signatures show unusual 
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patterns for which the VM model was not trained. Most models mentioned previously do 

not have the ability to quantify the model validity over the entire operating space 

accurately, and a localized modeling approach will be pursued in this doctoral research to 

tackle this problem.  

Since the increasing complexity of system dynamics often prevents one from 

building an accurate model based on first principles, data-driven approaches have been 

extensively employed for the modeling of complex dynamic systems [143]-[147]. As 

mentioned in Chapter 2, neural networks, such as multilayer perceptron (MLP) networks, 

radial basis function (RBF) networks, and recurrent neural networks (RNN), are probably 

the most extensively applied among techniques for the modeling of complex nonlinear 

systems due to their universal functional approximating capabilities [148]- [149]. Unlike 

feed-forward networks, such as RBF and MLP, which have limitations of identifying 

temporal dynamics in a time-series, RNNs take into account temporal dependencies 

through local or global internal feedback connections in the network, which enables a 

good approximation of a wide class of nonlinear dynamical systems [40]. However, the 

commonly used gradient descent algorithms used to train RNNs exhibit problems during 

training, such as having difficulty dealing with long-term temporal dependencies and 

over-fitting [148]- [150]. In addition, finding a suitable number of hidden neurons and 

appropriate RNN structure remains a challenging problem. Furthermore, even after a 

model is obtained, the residual errors between the model and the actual system still have 

to be properly interpreted for the purpose of anomaly detection and fault diagnosis. To 

achieve the sufficient detection and identification accuracy, one may need even more 
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sophisticated decision making algorithms to cope with modeling uncertainties, time 

varying process noise, etc… [151].  

An alternative for modeling nonlinear dynamic system is to divide the whole 

system operation space into sub-regions, with a different dynamic model being valid in 

each of these sub-regions. In general, if the operation space is divided into the right 

number of properly placed and properly shaped sub-regions, local linear models in each 

region can approximate the underlying function to an arbitrary accuracy [143],[144].  In 

addition, local tractability of linear models is a highly alluring proposition for condition 

monitoring and control of systems modeled using such an approach. Nevertheless, it is 

obvious that proper partitioning of the operating space is crucial for success of this 

modeling paradigm and is one of the major challenges in the area of piecewise dynamic 

models. 

A variety of method based on the multiple model systems framework have been 

proposed in the past for modeling of general nonlinear dynamic systems. Takagi and 

Sugeno [152] describe a model consisting of a number of implications that form a fuzzy 

partition [153] of the input space. The fuzzy partitions are often identified off-line or by 

trial and error, and consequently only a limited number of algorithms exist that can deal 

with both on-line structure and parameter learning. Johansen and Foss [154], [155] also 

adopted the multiple local model strategy using smooth interpolation functions between 

the local models. This work is based on the decomposition of the system’s operating 

range into a number of smaller operating regimes, coupled with the use of simple local 

models to describe the system dynamics within each regime. However, the 

decomposition is not done in a structured manner. 
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 Instead of dividing the operating space or input variables into fixed regions 

determined by the designer, vector quantization techniques, such as SOMs [156], have 

been proposed to directly partition the operation space through the Voronoi tessellation
9
 

[143], [150], [157], [158]. However, in [150] and [157] the network topology and number 

of regions still have to be fixed in advance. 

 

Figure 4.1: Partition of input-output space using self-organizing network; a) Voronoi 

tessellation and b) self-organizing network. 

 

 Recent developments in growing SOMs, such as growing neural gas [159] and 

growing cell structures [160], [161], impose fewer constraints on the network structure by 

incorporating growth and deletion  mechanisms for SOM nodes and connections. Such 

networks can automatically determine the number of nodes once a stopping criterion, 

such as the maximum tolerable quantization error, is provided. Thus, growing SOMs are 

able to reflect the inherent structures of the data with fewer underlying assumptions than 

what is seen with conventional fixed structure SOMs. 

                                                           
9 Figure 4.1a illustrates an example of partitioning the input-output space into a set of SOM-induced 

Voronoi regions with disjoint interiors. The corresponding SOM is also shown in Figure 4.1b, where each 

node in the network is associated with a weight vector. 
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 In this work, growing SOMs will be used for partitioning of the operation space 

into smaller regions and a least square algorithm will be used for estimation of local 

model parameters within each region. This effectively yields the GSMMS framework as 

the foundation of the VM model in which equipment and process signatures are used as 

GSMMS inputs to predict the corresponding metrology variables as GSMMS outputs. By 

taking advantage of the local modeling framework of GSMMS, one can accurately 

represent non-linear dynamic VM dependencies. Furthermore and perhaps more 

importantly, the local modeling character of the GSMMS will allow detection of 

abnormal equipment inputs or quality measurements that have not been observed in the 

training data, in which case the corresponding VM outputs should not be trusted. Finally, 

local model tractability and SOM growth can be used to efficiently update the GSMMS 

based VM model, as new equipment signatures and physical metrology measurements 

become available. 

 Figure 4.2 illustrates the analysis of local model residuals which can be used for 

discerning validity of the GSMMS VM model over the entire operating space. If the input 

vector for the VM model lands in a region in which confidence in the local linear model 

is low (variance of the estimated parameters is high), or it lands in one of the open 

regions far away from any input vectors observed during training, then the VM model 

outputs should not be trusted.  

In the VM literature, only Gaussian process regression can provide this kind of 

model validity assessment. However, this method is not suitable for high-dimensional 

modeling (large number of input variables) and does not model dynamic dependencies 

[106], [107].  
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Figure 4.2: Illustration of localized model residuals for help in discerning model validity 

over the entire operating space. 

 

The remainder of this Chapter is organized as follows. Section 4.2 describes the 

GSMMS methodology. Section 4.3 describes the results found from preliminary research 

conducted in VM and details scenarios of how a GSMMS-based VM methodology will 

be tested in this doctoral research. 
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4.2 Growing Structure Multiple Model System (GSMMS) 

Methodology 
  

Following the multiple model strategy of Johansen et. al. [154], [155], let us 

describe the output of the system (estimate of the quality variable)  ky  as  

                  ksFksky m

M

m

m






1



   (4.1) 

 

where 

                                           Tb

TT nkukuks 


...,,   (4.2) 

is a vector consisting of  input vectors
10

       Tp kukuku ...1


 at consecutive time samples k, 

while   ksm


  describes the validity of a local model   ksFm


 for the operating regime 

defined by the input vectors contained in  ks


.
11

 

A variety of model structures can be utilized to describe local dynamics   ksFm



. Notably, if the linear local model form, 

                                                                    sabsF T
mmm


   (4.3) 

is used, where vectors mb


 and ma


 are model parameters, then the model parameters can 

be efficiently estimated by minimizing in the least square sense the modeling errors in the 

training set.  

As for the validity function   ksm


 , when it satisfies 

                                                           
10

  Signatures extracted from sensors sensing the equipment and process parameters. 
11

 Current and previous inputs, as well as previous outputs are usually used in the GSMMS framework 

[143]. However, in the context of VM, outputs (physical product measurements) are only measured 

sporadically, at a much lower rate than inputs, which is why vectors  ks


contain only the current and past 

inputs (equipment signatures from the current and past products). 
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                                                            
 



 


otherwise

Vksif
ks

m
m

0

1



   (4.4)  

where mV  m = 1,2,…M describes a disjoint partition of the operating space in which 

vectors  ks


 reside, that is, when each model   ksFm


 is valid in only one region mV  and 

not contributing to model outputs in other regions, then, the model (4.1) can be seen as a 

set of local linear approximations of the system dynamics in each operational region mV . 

This simple piecewise modeling strategy is encountered in most of the GSMMS literature 

and is employed in this work. 

In addition, in the context of GSMMS models, sets mV ,  m = 1,2,…M are defined 

as: 

  MmmisssV imm ...,,1,1,...,1,:  


,  (4.5) 

where  Mmm ,...,1, 


 are weight vectors of a growing SOM used to partition the 

operating space of the model. An illustration of GSMMS with two inputs, one output and 

five local regression models is given in Figure 4.3, schematically showing how a non-

linear dependency is approximated by a set of local linear models. 
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Figure 4.3: Divide and conquer approximation of non-linear behavior using GSMMS 

with two inputs, one output, and five local regression models. 

 

For the purpose of identification, one has to determine the following parameters 

using the input-output data:  

1. Structural parameters, which include the number of regions M and weight vectors 

 Mmm ,...,1, 


 in the network. 

2. Parameters of local models.  

 

Following [143], in this thesis, the structural parameters of the GSMMS model 

are found by soft competitive learning with modifications to the learning rate needed for 

balancing between the local modeling errors and the number of activations each model 

receives. The learning rates affecting the movement of SOM nodes are made dependent 
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on the local modeling errors, encouraging movements of the SOM weight vectors 

towards regions with high local modeling errors. Growth of the underlying SOM 

(addition of new local models) followed the well-known growing SOM mechanism from 

Alahakoon et. al. [161], while local model parameters are found by minimizing the 

weighted squared output errors of the model in its region of validity. For more details on 

the process of identification of GSMMS models (growth and movement of SOM nodes, 

as well as identification of local model parameters), please refer to [143] and references 

therein. 

 

4.2.1 Structural Model Parameters 

Given a fixed number of regions M, locations of those regions need to be adjusted 

in an appropriate way. The standard sequential updating equation for the weight vector 

m


at training step k for a SOM is typically  

           kscmdiskhkkk mmm 


 ,,1   (4.6) 

 where  k  is the learning rate, which is a non-increasing function of k, and h(· , ·) is the 

neighborhood function [156].  For soft competitive learning, a common choice for h(· , ·) 

is of the Gaussian-like form: 

                                             
 
  












 


k

cmdis
cmdiskh

2

2

2

,
exp,,


         (4.7) 

where     m
m

kskc 


 minarg is the best matching unit (BMU) of the training vector s


, 

 k2 is a non-increasing function of time that defines the width of the effective range of 

the neighborhood function, and  cmdis , denotes the shortest path between node m and 



 

 
 

67 
 

 kc on the SOM graph, as illustrated in Figure 4.4. The shortest distance between the 

neighboring nodes and the BMU can be calculated efficiently using the Breath-first 

algorithm [156] from the adjacency matrix of the graph that encodes the neighborhood 

relation of the SOM. 

 

 

Figure 4.4: Illustration of the training procedure for the GSMMS model and the breadth-

first algorithm for calculating the shortest distance between the BMU and its neighboring 

nodes on the SOM. 

 

Most of the local modeling techniques utilizing SOM in the literature separate the 

modeling procedure into two independent stages: regionalization and local model fitting. 

The conventional SOM utilized for unsupervised clustering is normally aimed at 

minimizing the expected square of the quantization error. However, non-uniformity in the 

distribution of the input vectors in the training data set may lead to more weight vectors 

being associated with the regions visited frequently during training rather than where 

modeling errors are large. This may result in regions, which are highly nonlinear, but not 
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frequently visited, being poorly approximated by fewer local models. Therefore, it is 

clear that in order to achieve a better dynamic modeling performance, one needs to 

balance between the visiting frequencies and modeling errors across different regions. 

This can be realized by adding a penalty term to the learning rate of the weight vector 

                                 kscmdiskhkkkk mmmm 


 ,,~1    (4.8) 

where  km is the penalty term penalizing the modeling error in a given region. 

Following [143], the normalized modeling errors will be used in this work to from 

the penalty term: 

                                      
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ke
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                                  kekswkekswke mm
EWMA
mm

EWMA
m 


 11   (4.10) 

 

where      kykyke mm  ˆ  is the output error for the m
th

 local model at training step k 

and   kswm


  is the forgetting factor. Such a penalty term will encourage movements of 

the weight vectors towards regions with high modeling errors. One should note that 

including the term   kswm

  into this formulation makes the updating rate for EWMA

me  

become less significant when the corresponding node gets farther away from the BMU on 

the SOM
12

. 

In the case of batch training, the updating equation at each training epoch k for the 

weight vector m


 in the m
th

 region can be simplified as follows: 

                                                           
12

 Superscript “EWMA” means exponentially weighted moving average. 
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                                         kscmdiskhkkk mmmmm 


 ,,1    (4.11)
 

where ms  is the sample mean of the training vectors that fall in the m
th

 region. Compared 

with the online GSMMS training, no learning rate is involved in the weight vectors m


. 

In addition, the normalized modeling error  km at training epoch k can be calculated as 

                                                           
 
 ke

ke
k

ii

m

m
max

     (4.12)
 

which is similar to the normalized modeling error in the case sequential training with 

EWMA

me  being replaced by me , the sample mean of me  in the m
th

 region. 

 

4.2.2 Local Model Parameters 

A widely accepted method for local model identification is to find the model 

parameters that minimize the sum of the weighted squared output errors in each operation 

region.  

                                                  
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               (4.13) 

where m


 denotes the model parameters that need to be estimated for the m
th

 region,  iy  

is the corresponding model output,   is the forgetting factor that emphasizes the most 

recently observed signals, and   iswm


is the weight describing how the i

th
 observation 

affects the model parameters in the m
th

 region. Without loss of generality, for notation 

convenience it is assumed that the dimension of the output is one. It is straight forward to 

extend the method to the case of multiple outputs. 
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It should be noted that coefficients   iswm


 facilitate model building in which a 

new training pair (  is


→  iy  ) affects not only the local model in the region to which 

the training sample belongs, but also the local models in the neighborhood regions. A 

similar procedure has been employed by Martinetz et al. [163] to achieve significantly 

faster convergence of the model learning process. The coefficients   iswm


should 

emphasize models near the BMU of the training input  is


 and de-emphasized models 

that are far away from in, with notions of “near” and “far” being based on the 

connectivity of the underlying SOM [143]-[145]. A common selection of coefficients 

  iswm


 facilitating such “cooperative learning” is: 

                                              
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iswm 2

2

2

,
exp




    (4.14) 

where 2  defines the effective range of the weighting function, and  cmdis , denotes the 

SOM graph distance between local model m and the BMU c of the input vector  is


.  

In the case of batch training, where all the training samples are assumed to be 

available at the beginning of the training process, the local model parameters can be 

estimated using conventional weighted linear least square method. During each training 

epoch (passage through the training set), the estimates of the local model parameters m
̂

in the m
th

 region can be updated using all the training observations  is


, weighted 

properly by weights   iswm


which are determined in the same way as in sequential 

training.  



 

 
 

71 
 

Besides location of the regions of validity of local models (SOM Voronoi-sets, 

which also determines their shape), one also has to determine an appropriate number of 

regions (appropriate number of SOM nodes). Too coarse a partition may result in poor 

approximations in the region where system dynamics are difficult to model, while too 

fine a partition may result in partitions that have few or no training samples, which leads 

to poor local models in those regions. One strategy is to start with a small number of 

regions and then let the model grow by adding more regions, if necessary. This will be 

realized in this doctoral research by inheriting the growing mechanism from growing 

SOMs [143], and exploring necessary modifications.  

 

4.2.3 Updating Methodology for VM Model 

In a realistic production environment, it is highly desirable to have VM models 

that autonomously recognize unusual situations and automatically adapt the relationships 

between equipment signatures and metrology variables. The most common approach for 

VM model updating one can encounter in the industry is updating based on periodically 

scheduled measurements of the quality variables [94], [108]. One disadvantage to using 

this approach is that most of the time, the underlying manufacturing process is in control 

and the newly acquired measurements do not offer any new information to the VM model 

(i.e. those physical measurements are unnecessary). In addition, products whose 

measurements could potentially yield new information are likely to be missed if they are 

processed in between the scheduled measurements. 

An alternative approach to updating VM models could be to seek and use physical 

measurements of only those products that could potentially provide new information to 
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the model. One way to do this is to monitor the sensory features coming from the 

manufacturing tool (VM inputs), and determine if these inputs are unusually far away 

from what was seen in the past. In the context of GSMMS based VM, this corresponds to 

a situation when VM inputs happen to be unusually far away (above some threshold) 

from the best matching unit (BMU) in the GSMMS model, implying a potential for a 

poor model output due to the VM inputs being too far from the data on which the VM 

model is trained. 

Consequently, in this work it is proposed that whenever such an input pattern is 

observed, corresponding physical measurements should be taken and the resulting input-

output pair can be added to the VM training set in order to adapt the underlying GSMMS 

model. The advantage to this updating approach is that only equipment signatures and 

metrology measurements with potentially new information in the input space are acquired 

and used for model updating. Furthermore, the GSMMS modeling paradigm naturally 

supports this process because of its ability to efficiently repartition the input space of the 

VM model (rebuild the underlying SOM), fit new local linear models corresponding to 

this new partition and potentially add another local model (SOM node) if sufficiently 

many novel input-output pairs are presented to it (following the growing SOM method 

from [161] and implemented within the GSMMS framework in [143],[146]). All these 

adaptations take place near the newly observed data and taper off with the distance away 

from them, leading to localized model adaptations that do not disturb previously trained 

areas of the model. This is in stark contrast compared to the often computationally 

cumbersome and potentially detrimental global updating involved with the traditional 

VM methods based on global modeling approaches. Figure 4.5 depicts the localized 
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updating strategy for GSMMS based on unusual inputs.  It illustrates how the SOM 

grows to incorporate a new operating regime when a set of input patterns (equipment 

signatures) that are too far outside the original training set appears. 
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Figure 4.5: Illustration of updating GSMMS based on unusual input patterns. The original 

GSMMS model in plot (a) estimates the quality variable based on the equipment 

signatures available at that moment. When a number of equipment signatures appear 

outside any previously seen local region as shown in plot (b), the original map can grow 

following the growing method from [159] (plot (c-d)) to incorporate the new operating 

regime and refit the model for better quality estimation in the new regime (plot (e)). 
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4.3 Results in VM Quality Estimation using Local Dynamic 

Model Paradigm  
 

As mentioned in Chapter 3, an extensive dataset was collected from a well-known 

semiconductor manufacturer, allowing the release of almost a year of PECVD process 

data from a single tool working in a 300mm wafer fab. It contains equipment signatures 

corresponding to more than 112,000 processed wafers, which is an order of magnitude 

larger than any dataset seen in the VM literature thus far
13

.  In addition, metrology 

information (film thickness mean and range) was collected for a significant portion of 

those wafers. E.g., for the thickest film depositions, 100% metrology information was 

available (thickness and uniformity were collected after every deposition corresponding 

to that thickness). Therefore, a deep and comprehensive (perhaps most comprehensive) 

VM study can be performed with this dataset on one of these complex manufacturing 

tools. For a more in depth description of the PECVD tool and semiconductor 

manufacturing process, see [82].  

In this study, several months of production was focused on, which yielded data 

corresponding to about 30,000 wafers undergoing the same TEOS film deposition.  In 

addition, metrology information in the form of mean film thickness was available for 

each wafer (100% metrology information), allowing a deep and comprehensive VM 

study
14

.  

                                                           
13

 This can perhaps be blamed on the proprietary nature of semiconductor manufacturing data. 
14

 One should remark that this is an order of magnitude larger dataset than any dataset seen in the VM 

literature thus far, which can perhaps be blamed on the often highly proprietary nature of semiconductor 

manufacturing data. 



 

 
 

76 
 

From this tool, RF power characteristics (forward, load, and reflected power), 

voltages of RF matching network capacitors, flow rates in the Liquid Flow Controllers 

(LFC), top plate temperature, chamber temperature, pedestal temperature, chamber 

pressure and the pendulum valve angle were concurrently collected at a 10Hz sampling 

rate. From these sensor readings, 49 features were extracted using expert knowledge and 

are listed in Table 4.1. Thus, a film deposition onto each wafer could be characterized by 

49 sensory features obtained from the mounted sensors on the PECVD tool, along with 

the post-process metrology measurements of mean film thickness. For more information 

about the feature extraction see [24], [168]. 

 

Table 4.1: Features extracted from the sensor readings to be used as inputs for the VM 

model. 

 

 

Additionally, we wanted to explore if the current wafer characteristics depend not 

only on the equipment signatures observed during its production, but also on the 

equipment signatures observed during the production of several recent wafers. In order to 

include such dynamic dependencies into the VM modeling, the aforementioned features 

Sensor                                                                       Feature Extracted from Sensor Trace

Chamber Temp 1 Mean Range

Chamber Temp 2 Mean Range

Pedestal Temp 1 Mean Range

Pedestal Temp 2 Mean Range

HF Power Mean Reflected Dep 1 Mean Reflected Dep 2 Range Reflected Dep 1 Range Reflected Dep 2 Timing Dep 1 Timing Dep 2

LF Power Mean Reflected Dep 1 Mean Reflected Dep 2 Range Reflected Dep 1 Range Reflected Dep 2 Timing Dep 1 Timing Dep 2

Load Capacitor Voltage Mean Dep 1 Range Dep 1 Max Dep 2 Range Dep 2

Tune Capacitor Voltage Mean Dep 1 Range Dep 1 Max Dep 2 Range Dep 2

LFC Flow Rate Mean Range Overshoot Rise Time

Chamber Pressure Timing Pump Up Timing Pump Down Peak Pump Up Mean Dep 1 Range Dep 1 Timing Dep 2 Mean Dep 2 Range Dep 2 Min

Pendulum Valve Angle Timing Pump Up Max Pump Up Mean Pump Up Range Pump Up Mean Dep 2 Range Dep 2 Max Pump Down Mean End
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obtained from wafers up to 25 cycles before the wafer whose metrology variables are 

estimated by VM (26 wafers, including the current wafer) were included into the set of 

potential inputs for the VM model, yielding 1274 possible VM inputs
15

.  

Due to the large number of inputs, a variable reduction technique was used to 

reduce the input feature set and thus improve modeling accuracy and speed. In this work, 

a baseline PLS regression model within a forward selection wrapper in a 10 fold cross 

validation [33] was used for selecting the most relevant inputs for the model. Akaike 

Information Criteria (AIC) [33] was utilized to stop the forward selection, yielding a 

feature subset that achieves a tradeoff between the prediction accuracy and complexity of 

the resulting VM model. Table 4.2 lists the features yielded by the aforementioned 

procedure as the VM inputs. One can see that as many as 7 out of these top 10 features 

come from equipment signatures corresponding to previously manufactured wafers, 

which shows that there are indeed strong wafer to wafer dependencies contributing to the 

film thickness quality of a wafer. These are the features used as inputs to the VM models 

built on the PECVD dataset and analyzed in the next section. 

 

 

 

 

 

 

                                                           
15

 There are 49 features times 26 wafers, yielding the total of 1274 features. This is obviously a large input 

vector containing current and past equipment signatures 
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Table 4.2: The features obtained using forward selection applied to the original set of 

1274 features and used as inputs for the VM study. 

 

 

 

  

 

 

 

 

4.3.1 Description and Results of VM Comparison Between PLS, T-PLS and 

GSMMS 

Ability of the GSMMS based framework to improve predictions of mean film 

thickness measurements and to adapt to variable operating conditions was evaluated on 

the abovementioned PECVD tool dataset. The newly developed GSMMS based VM 

method was compared to the traditional PLS regression, as well as a recently introduced 

VM method using PLS regression and process monitoring based on the total projection 

onto latent structures (T-PLS) method [108],[169]. This VM approach reported in [108], 

which can be referred to as T-PLS based VM, can be seen as a variation of the well-

known PLS regression that uses T-PLS based process monitoring to eliminate outliers 

from the training dataset, before fitting a PLS model to the remaining data. As reported in 

[108], the T-PLS based process monitoring can also be used to identify situations when 

the VM model should be adapted, since its outputs could not be trusted any more, though 

Top Features: 

1. HF Reflected Timing Dep One @ (t-4) 

2. Tune Capacitor Volt Max Dep Two @ (t) 

3. Load Capacitor Volt Mean Dep One @ (t-10) 

4. Tune Capacitor Volt Max Dep Two @ (t-6) 

5. LF Reflected Timing Dep Two @ (t) 

6. LFC Flow Mean @ (t-17) 

7. Tune Capacitor Volt Mean Dep One @ (t) 

8. Tune Capacitor Volt Mean Dep One @ (t-20) 

9. PValve Angle Max Pump Up @ (t-1) 

10. LF Reflected Mean Dep One @ (t-15) 
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details as to how that can be done were not discussed in [108]. The comparison between 

these three models was made on the basis of mean squared error (MSE) of predicted 

mean wafer thickness, number of physical measurements necessary for obtaining a 

particular MSE, and percentage of wafers for which the VM predictions had relative 

errors
16

 below 3%, and below 1%. 

The first set of analysis results was obtained using unusual inputs as the only way 

of calling for physical wafer measurements and triggering model updates.  Specifically, 

the original models were built using the first 100 wafers and the models were simulated 

such that only wafers associated with abnormal equipment signatures (VM inputs) are 

physically measured, added to the training set and used for updating. The PLS based VM 

model updating is triggered when an unusual input is detected based on the traditional T-

squared statistic [87]. T-PLS used the same criterion to identify unusual VM inputs, 

except that T-PLS process monitoring method was used for rejection of outliers in the 

training dataset before an updated model was fit to the data [108].  Figure 4.6 shows the 

results of comparison of the GSMS, PLS and T-PLS based VM, using the above-

described updating strategy. The plots detail the actual mean wafer thickness data along 

with the model predictions for all 30,000 wafers.  The MSE is scaled to the worst case 

model. One can see that GSMMS gives around 5% lower MSE than PLS, while T-PLS-

based VM yielded MSE that was even lower than that of the GSMMS based VM (by 

about 3%). The reason for this slight increase can be seen in the fact that T-PLS process 

monitoring rejects outliers from the model-training dataset, thus enabling improved 

modeling of the in-control data, which naturally dominate the dataset and this pushes the 

                                                           
16

 Absolute value of the difference between VM prediction and actual metrology measurement, divided by 

the actual metrology measurement. 
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MSE further down. However, the number of physical measurements required to achieve 

these MSE levels went from 576 for PLS-based VM, to 133 for T-PLS based VM, to just 

24 for GSMMS. Another benefit that can be noticed for the GSMMS based VM is that 

physical measurements are called for less and less frequently as more wafers pass by
17

, 

with no wafers being called for measurement in the last 1/3 of the data, while PLS based 

VM schemes continue to call for measurements throughout the dataset. 

 

 

 

                                                           
17

 Because more regions are built into the GSMMS model as it learns new operating regimes for the VM 

model. 



 

 
 

81 
 

 

Figure 4.6: VM results of comparing PLS, T-PLS and GSMMS for prediction of mean 

film thickness using VM updating based on unusual inputs
18

.  

 

Next, the performance of these three VM models was compared for the situation 

when physical measurements of film thicknesses were conducted at a fixed schedule of 1 

every 25 wafers. Once again, original models were built using the first 100 wafers and 

the models were updated if the relative VM prediction error on a scheduled measurement 

was above 1%. Figure 4.7 shows the mean wafer thickness prediction results of 

comparing the PLS, T-PLS and GSMMS based VM using this updating strategy. One can 

                                                           
18

 Unscheduled measurements shown in the figure refer to times when unusual inputs are detected, 

triggering a wafer measurement and a model update consecutively. 
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see that due to many more physical wafer measurements, the MSE is about 15% lower 

than what was obtained using the unusual inputs based updating alone and the three 

models have comparable accuracies in terms of MSE. One disadvantage of this updating 

method is that only around one sixth of the physical measurements were actually used for 

model updating for each of the modeling schemes considered, since many times the 

measurements were taken, the VM model did well predicting them (relative perdition 

error was less than 1%). This weakness is common to all three models and must be 

attributed to the updating scheme, which was based on a fixed schedule of measurements, 

rather than potential novelty a physical measurement could bring to the VM model. 
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Figure 4.7: VM results of comparing PLS, T-PLS and GSMMS for prediction of mean 

film thickness using VM updating based on fixed schedule measurements. Please note 

that “Model Updates” counts only the updates from the scheduled measurements 

(triggered from the 1% prediction error threshold). 

 

In order to combine the benefits of the two aforementioned updating schemes for 

VM models, performance of the two VM methods was evaluated using an updating 

scheme that combines them both.  As before, the original models were built using the 

first 100 wafers, while the physical measurement were assumed to be taken when unusual 

inputs are observed, as well as at a fixed schedule of 1 out of every 25 wafers being 

physically measured. The VM models were updated when an unusual input was flagged, 
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as well as when the relative VM prediction error of a scheduled measurement was above 

1%. Figure 4.8 shows VM predictions of the mean wafer thickness using PLS, T-PLS and 

GSMMS based VM, with the combined updating strategy. 

One can see that in terms of MSE, the GSMMS based VM is about 7% more 

accurate than PLS-based VM, and 4% more accurate than T-PLS based VM. What is 

particularly interesting is that when unusual inputs are included as a criterion for VM 

model updates, the MSE of the PLS model increased by 4%, the MSE of T-PLS based 

VM remained virtually unchanged, while the MSE of the GSMMS-based VM decreased 

about 2%. 

This can be explained by the way the 3 models handle unusual inputs. When the 

inputs that are far outside the training regime are included to update the PLS and T-PLS 

models, the entire model has to be refit and these unusual VM inputs may spoil the way 

the model fits the rest of the data, giving higher errors in those regions. By contrast, 

whenever unusual inputs are detected, the GSMMS model retrains the underlying SOM 

using the expanded training set and refits the local linear models, potentially adding 

another model, following the growth mechanism from [159]. These adaptations are the 

most intense close to the newly added input-output pairs and taper off further away from 

them, thus preserving to a large degree the previously learnt model regimes. This 

localized adaptation mechanism accommodates the new information in the least intrusive 

way, thus keeping the MSE lower than PLS or T-PLS based method. Localized 

adaptations enabled the GSMMS-based VM to call for only 18 physical measurements 

beyond the initial 100 wafers. In the same time, the PLS called for 598 and T-PLS called 
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for 168 additional measurements, and yet the PLS based VM schemes showed noticeably 

higher MSE. 

 

 

Figure 4.8: VM results of comparing PLS, T-PLS and GSMMS based VM for prediction 

of mean film thickness, using concurrent model updating based on fixed schedule 

measurements and based on unusual inputs. Please note that “Model Updates” counts 

only the updates from the scheduled measurements (triggered from the 1% prediction 

error threshold). Also, the unscheduled measurements bring their own model updates 

which should be added to this number to find the total model updates.  
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The results shown in the previous three pictures just show a snapshot of different 

updating policies between the PLS, T-PLS and GSMMS based. A full comparison of 

these methods was conducted to see how the accuracy of each model changes as the 

number of scheduled physical wafer measurements is decreased from 1 out of every 8 

wafers, to 1 out of every 200 wafers. All models were initially built using the first 100 

wafers, while updating was done using only scheduled measurements, as well as using 

the combination of measurement acquired at a fixed, as well as whenever unusual VM 

inputs (equipment signatures) were observed. Figure 4.9 shows the MSE of PLS, T-PLS, 

and GSMMS as a function of the number of wafers between the scheduled physical 

measurements. The red solid line with star markers shows the MSE of the PLS based VM 

updated based on scheduled physical measurements only, while the dashed red line 

shows MSE of the same VM method, but with updating based on a combination of 

scheduled measurements and triggering off unusual VM inputs. In a similar way, the 

green solid line with triangle markers shows the MSE of the T-PLS based VM updated 

based on the scheduled physical measurements only, while the dashed green line shows 

MSE of the T-PLS based VM method, with combined updating using fixed scheduled 

measurements and unusual VM inputs. Finally, the blue solid line with star markers 

shows the MSE of the GSMMS based VM with updating based on the scheduled physical 

measurements only, while the dashed green line shows MSE of the same VM method, but 

with updating based on a combination of scheduled measurements and triggering off 

unusual VM inputs. For more precise numerical analysis, one can refer to Table A1 in the 

Appendix, which tabulates the results shown in Figure 4.9.   
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One can see that in all but 3 situations, GSMMS based VM gave better accuracy 

than PLS and T-PLS, regardless of the updating scheme. Furthermore, one can see that 

the GSMMS based VM with the combined updating strategy consistently outperforms all 

other VM models and updating strategies. As a comparison to having a zero order model 

(i.e. predicting every wafer to be at the mean value) the MSE would be at 122, meaning 

these models are making a difference in prediction accuracy. Effectively, results from 

Figure 4.9 (Table A1) illustrate that GSMMS based VM requires often significantly less 

measurements than PLS type models in order to achieve the same levels of accuracy.  

 

 

Figure 4.9: Mean squared error for predicting mean wafer thickness of PLS, T-PLS and 

GSMMS models as the time between scheduled physical wafer measurements increases 

from 1/8 wafers to 1/200 wafers. GSMMS using both types of updating outperforms the 

other methods, providing equal accuracy with significantly fewer measurements. 
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As mentioned in Section 4.1.1, moving windows have been recently used in VM 

to obtain better accuracy when conditions suddenly change in the system [94], [108].  In 

our work, the previous analysis was also performed with moving windows of various 

sizes ranging from 25 to 300 wafers with the PLS and T-PLS models in order to 

investigate the benefits of using simple moving windows with  this dataset. A 100 wafer 

window size was found to give the best results for both PLS and T-PLS based VM and 

Figure 4.10 shows MSE results for the windowed PLS and T-PLS based VM methods, 

along with the MSE results of the GSMMS based VM approach. As visible in Figure 4.9, 

GSMMS based VM with the combined updating strategy still outperforms the windowed 

PLS-based VM methods, regardless of how measurements were acquired for model 

updating. Table A3 in the appendix lists the data for this analysis. 
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Figure 4.10: Mean squared error results similar to the previous figure using a 100 wafer 

moving window for updating the PLS and T-PLS VM models. MSE curve for the 

GSMMS based VM method with the combined measurement acquisition strategy is 

superimposed to illustrate its superiority over the PLS based methods. 

 

Another standard and convenient way to evaluate a VM model is to tabulate 

percentages of products for which relative VM errors fall below certain levels. For both 

updating schemes considered in Figures 4.9 and 4.10, Figures 4.11 and 4.12 show 

percentages of wafers for which PLS, T-PLS, and GSMMS based VM had relative errors 

below 1% (plot a) and below 3% (plot b), while plot c of the same figure shows maximal 

relative errors. One can see that GSMMS based VM with concurrent updating based on 

fixed schedule measurements and unusual equipment signatures consistently outperforms 
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all other VM methods, regardless of the updating scheme. Furthermore, unlike the PLS 

based VM methods, it consistently benefited from added consideration of unusual 

equipment signatures (VM inputs) as a criterion for model updating
19

. This is yet another 

proof that it effectively uses the divide and conquer paradigm to enable localized model 

adaptations to newly observed VM inputs, while similar adaptations in the global-style 

PLS models sometimes deteriorated the resulting VM performance. As a comparison to 

having a zero order model (i.e. predicting every wafer to be at the mean value) the 

percentage of wafers with relative errors smaller than 1% and 3% are 63.1% and 99,.8% 

respectively, which is much smaller on the 1% accuracy metric meaning these models are 

making a difference in how many wafers are predicted within specifications. A maximum 

error of 3.57% was found for a zero order model, which is higher than using the dual 

updating strategy. Table A2 and A4 in the Appendix tabulates the results shown in Figure 

4.11 and 4.12 respectively.  

 

                                                           
19

 In plots a and b of Figure 8, this is evident in blue solid curves being always above the dashed blue 

curves, while in plot c, this is evident in the dashed blue like being above the solid blue line. Such pattern 

could not be observed with curves corresponding to the PLS based VM methods. 
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Figure 4.11: Plot (a) shows percentages of wafers for which PLS, T-PLS, and GSMMS 

based VM had relative errors below 1%, for various frequencies of fixed schedule 

physical measurements and for both VM updating strategies considered in this paper. Plot 

(b) gives analogous results to those form plot (a), except that we see percentages of 

wafers with relative errors of VM below 3%. Plot (c) shows maximal relative errors 

corresponding to the PLS, T-PLS, and GSMMS based VM methods, for various 

frequencies of fixed schedule physical measurements and for both VM updating 

strategies considered in this paper. Please note that a 1% difference in the number of 

wafers in this dataset is around 300 wafers. 
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Figure 4.12: Plot (a) shows percentages of wafers for which windowed PLS, windowed 

T-PLS, and GSMMS based VM had relative errors below 1%, for various frequencies of 

fixed schedule physical measurements and for both VM updating strategies considered in 

this paper. Plot (b) gives analogous results to those form plot (a), except that we see 

percentages of wafers with relative errors of VM below 3%. Plot (c) shows maximal 

relative errors corresponding to the windowed PLS, windowed T-PLS, and GSMMS 

based VM methods, for various frequencies of fixed schedule physical measurements and 

for both VM updating strategies considered in this paper. Please note that a 1% difference 

in the number of wafers in this dataset is around 300 wafers. 

 

For a final test on the adaptability of VM models, using the fully trained models of 

PLS, T-PLS and GSMMS after applying the dual updating scheme throughout the entire 

30,000 wafer dataset were simulated through the dataset for a second time. Figure 4.13 
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shows the results of applying the dual updating scheme (using a 1 out of 25 wafer 

updating schedule and unusual input updating) to each of the three models on the second 

round of data beginning with the fully trained models at the end of Figure 4.8. One can 

see that the GSMMS updates much less on the second run through the dataset and only 

one time due to unusual inputs.  As for PLS and T-PLS, the models both update in a 

similar fashion as the first time going through the data because of their inability to grow 

and adapt without compromising predictions in other operating regimes.  This 

demonstrates that GSMMS learned the behavior of the PECVD tool and was able to take 

this learned model into predicting similar operation, which was not shown to occur in the 

global PLS and T-PLS style models. 
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Figure 4.13: VM results of comparing PLS, T-PLS and GSMMS based VM for 

prediction of mean film thickness, by demonstrating how much updating must be needed 

when simulating the entire dataset for a second time around. Updating here uses 

concurrent model updating based on fixed schedule measurements and based on unusual 

inputs exactly as Figure 4.8. 

 

4.3.2 Conclusions for Comparison of PLS, T-PLS and GSMMS VM Models  

This Chapter introduced the concept of growing, locally linear dynamic models 

for VM applications. The newly developed VM method was evaluated on a uniquely 

large dataset with equipment signatures and mean film thickness measurements obtained 

from over 30,000 wafers processed on a single PECVD tool in a major semiconductor 
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manufacturing fab. This dataset was used to build and evaluate the GSMMS based VM 

methodology, as well as to compare it against the more traditional PLS-based approaches. 

The results show that in terms of modeling errors and amount of necessary physical wafer 

measurements, the newly introduced GSMMS-based VM models outperform PLS and T-

PLS regression based VM. Furthermore, when GSMMS based VM model was updated 

using scheduled measurements and whenever unusual VM inputs appeared, it 

consistently outperformed PLS-based VM methods, regardless of the metric used to 

describe model accuracy and regardless of the updating scheme of the VM model. 

The main reason why GSMMS outperformed the PLS based VM approaches and 

is likely to outperform all VM approaches that use global modeling paradigm is in the 

specific way its adaptations occur. When inputs that are far outside the training set and 

the corresponding metrology measurements are used to update a model, global models 

such as PLS and T-PLS, have to refit the entire model, often disturbing model fits 

corresponding to the rest of the data and thus leading to higher prediction errors. 

GSMMS, by contrast, adapts only local model parameters near the input-output pairs 

newly added to the training set (i.e. input-output pairs that triggered model adaptations), 

with adaptations tapering away with the distance from those input-output pairs. In effect, 

new information is accommodated via localized model adaptations and growth of new 

modeling regimes, without disturbing the previously learnt model structures, which keeps 

the modeling errors and number of necessary physical measurements lower than what is 

seen with global modeling strategies. 
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Chapter 5 

Integration of Performance Prediction and Quality 

Estimation of Monitored Systems using Uncertainty 

Propagation Techniques 
 

 

5.1 Uncertainty Propagation through Virtual Metrology 

Model Methodology 
 

When it comes to uncertainty propagation for the purpose of predictive VM 

pursued in this doctoral research, the underlying manufacturing systems are inherently 

non-linear with non-stationary and non-Gaussian noise, which means that analytical 

uncertainty propagation techniques with their strong mathematical assumptions necessary 

for their implementation cannot be met in reality. In addition, the VM model pursued in 

this dissertation, and used as the foundation of the predictive VM sought, just like most 

VM models encountered in the literature, is used to predict a single output, meaning that 

the problems associated with multiple outputs of the dynamic model, which plague MC 

simulation based methods, do not exist. Therefore, the MC simulation based method will 

be employed to obtain the estimates of the pdf-s of future metrology variables using 

predicted pdf-s of the equipment signatures, as obtained using methods from Chapter 3 

and feeding those pdf-s into the VM model developed in Chapter 4. The remainder of this 

Chapter will present the methodology behind this approach and results applied to a 

semiconductor manufacturing process.  
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In prior work by Bleakie et. al. [24], we derived a novel similarity-based time-

series prediction method in order to predict the performance of features extracted from 

sensor readings obtained from the monitored machine. This method was demonstrated to 

be effective for modeling multivariate time-series with non-linear dynamics, and non-

stationary, non-Gaussian noise characteristics and enabled highly accurate long term 

time-series prediction with an order of magnitude faster computation time than the other 

comparable models. Therefore, a similarity-based methodology will be pursued in this 

work in order to achieve the goal of accurate long-term prediction of performance 

signatures of degradation processes as the first step in achieving a predictive VM 

framework.  

As for the VM modeling framework to be pursued in this Chapter, we will focus 

on the divide and conquer modeling strategy introduced in the previous Chapter and in 

Bleakie et. al. [25]. In this work, a growing self-organizing map (SOM) is utilized for 

partitioning of the VM input space, while inside each partition a local linear dynamic 

model is used for predicting the metrology outputs.  This model referred to as the 

Growing Structure Multiple Model System (GSMMS) allows the underlying SOM to 

grow and thus to adapt to new operating regimes that the system under study may 

experience over time. Our previous work demonstrated that these favorable properties of 

the GSMMS based VM lead to better VM accuracy with fewer physical metrology 

measurements compared to the traditional VM global models.  

As mentioned in the introduction, the fully integrated VM quality estimation 

scheme will involve accurate prediction of sensor readings being emitted from the 

manufacturing systems, while also feeding these sensor predictions through an accurate, 
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adaptable VM model in order to obtain long term predictions of the hard to measure 

metrology characteristics of the system. Figure 5.1 schematically illustrates the predictive 

VM scheme pursued in this Chapter.    

 

 

Figure 5.1: Demonstration of the predictive VM framework developed in this Chapter. 

 

The Similarity Based Performance Predictor uses past historical performances in 

order to predict the remaining performance of the current operations based on the 

similarity of the currently forming operation to the past performances. Previously defined 

in Chapter 3, the following terms must be known in order to place this predictive VM 
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analysis into context. The term feature vector is used to indicate the signatures extracted 

from the raw sensors mounted on the monitored system that are known to characterize the 

condition of that system. Evolution of these signatures is then indicative of system 

degradation and their behavior needs to be predicted. The term cycle is used to indicate a 

single operation by the system, emitting a single feature vector. This can be any 

manufacturing operation or single use of a product. Repeated cycles degrade the system, 

causing the signatures to evolve and ultimately lead to maintenance events. The term run 

is used to indicate the time interval between two consecutive maintenance events. These 

maintenance events can be component replacements, repairs, cleaning, etc. Thus, a time-

series of feature vectors in a past run represents a particular degradation trajectory known 

from historical data.  

Condensing the methodology of Chapter 3, the Similarity Based Performance 

Predictor uses probability density functions (pdf-s) representing feature vectors from the 

previous runs as the models for evaluating similarities between the newly observed 

trajectory of signatures and those observed in the past. The pdf-s are approximated using 

Gaussian mixture models (GMM) due to their ability to model any distribution within a 

desired accuracy, given enough Gaussian components [37].  Figure 3.2 previously 

described the newly proposed time-series prediction algorithm from [24]. Right after a 

maintenance operation (i.e. just before a new run of operations begins), the only 

information known about the run that is about to start are feature vector realizations 

observed during the previous runs of the monitored system. At each cycle, GMMs of 

feature vectors corresponding to that cycle in the previous runs can be formulated. As the 

current run progresses, feature vectors from more and more cycles are observed and 
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similarity measures between those feature vectors and all feature vectors corresponding 

to that cycle in past runs can be evaluated. Consequently, at cycle number i, we can 

observe the set of vectors *
cs


 ;  ic ,...2,1,0 , composed of similarities between feature 

vectors observed at cycle number c, with feature vectors observed at cycle c in all 

previous runs. These similarity measures can then be used to skew the GMMs of feature 

vectors corresponding to future cycles of the current run (cycles i+1, i+2 …) towards 

feature vectors from previous runs that in the past cycles showed more similarity with the 

current run. Thus, as time progresses and more and more signatures are collected during 

the current run, the feature models shift toward the most similar runs observed in the past. 

When the current run is completed, it can be incorporated into the library of previous 

runs, thus enabling continuous learning as the system progresses through its lifetime. For 

more details of this method, refer to [24]. 

GSMMS based estimates of quality variables introduced in the previous Chapter 

is pursued in this work due to its ability to adapt and grow in the data, while modeling 

non-linear dynamic systems with high levels of accuracy and significant levels of local 

model tractability. GSMMS uses a growing Self-Organizing Map (SOM) [145] to 

adaptively partition the operating space of the system into regions of behavior that can be 

locally described using analytically tractable, linear dynamic models. Essentially, it 

“tiles” a nonlinear surface with flat (linear) tiles, whose number, size, position and shape 

are determined through the growth and adaptation of the SOM. The evolution mechanism 

of the growing SOM introduced in [144] ensures that highly curved surface areas receive 

more tiles of smaller size, while linear areas are approximated by fewer tiles of larger 

size. In the context of VM, the signatures extracted from the sensors mounted on the 
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manufacturing equipment whose VM model is being built are used as VM model inputs, 

based on which the SOM partitions the operating space of the model into regions within 

which local linear models are built to relate those equipment signatures (VM inputs) with 

the metrology variables (VM outputs).  Such piecewise modeling approach enables 

accurate modeling of non-linear dynamic dependencies, noise characteristics being 

possibly different in different operating regions of the model (i.e. with noise being non-

stationary) and understanding of local model confidence due to local model tractability. 

That in turn enables one to recognize situations when the GSMMS based VM model 

cannot be trusted anymore because one operates in a regime where a reliable local model 

does not exist (when equipment signatures inputs lead us to a region where the local 

model is not identified with high enough confidence). Figure 4.3 schematically illustrates 

a GSMMS model with 2 inputs, one output and 5 local linear regression models 

approximating a nonlinear dependency, while Figure 4.5 illustrates the growth of this 

model when novel VM input signatures are observed. More details about the GSMMS 

based VM can be found in Chapter 4 of this dissertation, as well as in [25]. 

In this Chapter, the novel time-series prediction method and the newly introduced 

GSMMS based VM approach are combined into an integrated, predictive VM framework 

illustrated in Figure 5.2. The predicted distributions of equipment signatures are 

propagated through the GSMMS VM model to obtain the predicted quality distributions, 

which enables one to continuously understand and track the behavior of quality variables. 

Such capability could in term lead to greatly improved run-to-run control of the 

underlying process, though such work is outside the scope of this doctoral research.  
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Figure 5.2: The process of using the GSMMS VM model directly to predict the quality 

measurements, while using uncertainty propagation through the GSMMS to obtain and 

update long-term prediction distributions of the quality measurements. 

  

As mentioned in the introduction, due to the complexity of manufacturing systems 

and the single output VM model being pursued in this work, a Monte Carlo sampling 

based approach is chosen as an appropriate way to obtain the predicted metrology 

distributions from the predicted equipment feature distributions. Figure 5.3 below 

illustrates the method for calculating the predicted metrology distributions. First, after the 
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similarity based prediction algorithm yields the predicted distributions of sensor readings, 

each distribution is sampled randomly using the MC method. Next, all of these samples 

are fed through the GSMMS VM model in order to obtain the predicted metrology 

samples. Finally, each local GSMMS model is associated with region specific noise 

characteristics, which must be accounted for in order to obtain the proper predicted 

output distribution. This region specific noise is added to the corresponding samples 

produced by the GSMMS model via MC sampling from the region specific noise 

distribution. This process is repeated each time a new equipment signature is extracted 

from the system and distributions of predicted equipment signatures are updated 

following the methodology from Chapter 3. 

 

Figure 5.3: Flowchart of the methodology realizing the newly derived predictive VM 

concept. It uses Monte Carlo random sampling from the predicted tool signature 

distributions which are then fed through the GSMMS based VM model. To each VM 

sample, region-specific noise samples are added to produce samples for the predicted 

quality variables. These steps are performed consecutively each time a new set of 
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equipment signatures arrives and the predicted tool signatures are updated following the 

methodology from Chapter 3. 

 

5.2 Results on Applying Integrated Performance Prediction 

and Quality Estimation to Semiconductor Manufacturing 
 

The analysis presented in this Chapter focuses on implementation of the 

predictive VM methodology, a study of its ability to predict in the long-term, mean wafer 

thicknesses throughout maintenance periods, and testing the ability to become more 

accurate as the current operations progress.  As mentioned in the previous section, a run 

is defined a period of time between two consecutive maintenances which consists of 

many products being processed.  Each time a product is processed on the system under 

study, we refer to that as a cycle.  When it comes to the PECVD dataset used throughout 

this dissertation, around 25-50 wafers are processed in between automatic in-situ cleans 

which are referred to as the cycles and run periods respectively. This terminology may be 

different from what is established within the semiconductor industry.  

The focus on the study presented here was on predicting the mean wafer 

thicknesses of the approximately 30,000 wafers of the same PECVD recipe, which is the 

same dataset studied in Chapter 4. The previous Section presented the methodology of 

using MC simulation to sample the predictive equipment signature distributions and to 

feed these samples through the GSMMS model while taking into account the local 

modeling uncertainty in order to obtain the final predicted quality distributions. First, the 

dataset was organized into the corresponding runs and the first 25 runs were used as 

training data for GSMMS and for historical trajectories for the similarity based prediction 
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method. Next, each new run is predicted, simulating the operation of the system as it 

progresses through the run while at the same time utilizing the dual updating strategy for 

GSMMS from Chapter 4.   

Figure 5.4 shows the behavior of the ideal predictions for a single run that would 

result from this methodology if everything behaved linearly with zero noise.  On the left, 

the multiple step ahead prediction errors are shown for predicting a single run as if the 

current cycle is beginning at 1, 10 and 20 respectively. On the right, the same is shown 

but with the 95% confidence limits on the predictive distributions. From these plots, one 

can see that the prediction at each future time is worse and has larger confidence intervals 

as the future time increases.  However, as the run progresses, the predictions get better 

and have higher confidence (smaller 95% confidence limits), along with having better 

one step ahead predictions.  Also, looking at a single cycle being predicted within the run, 

the prediction of that cycle becomes more accurate as the current run progresses towards 

it.  Obtaining a results along these lines will demonstrate that the predictive VM 

methodology works and will open the door for future investigation.  
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Figure 5.4: Illustration of the ideal linear behavior of the prediction error and range of the 

prediction distribution as the current run progresses. One can see, at a particular current 

cycle within the run, as it predicts further, the absolute error and range of the prediction 

become larger. Also, as the current run progresses from cycle 1 to 10 to 20, the absolute 

error and range both become smaller, demonstrating the capability of similarity based 

predictions along with an accurate VM model.   

 

Beginning with the prediction of a single run, Figure 5.5 below shows the 

predictions of the mean wafer thicknesses coming from the PECVD dataset.  On the left, 

there are three plots showing the predictions starting at cycles 1, 10 and 20 within the run 

respectively.  On the right, is a plot of the one step ahead predictions of this run.  One can 

see the predictions get slightly better as the run progresses and the confidence intervals 

drop.  Also, notice that the majority of the actual metrology lies within the 95% 

confidence limits of the one step ahead predictions, which is good for applying process 

control on a wafer to wafer process.  Figure 5.6 shows the absolute errors and 95% 

confidence limits for the predictions in this run in two ways.  The top two plots are 

comparable to Figure 5.4. In reality, however there are only slight increases in the 
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accuracy of the predictions as the run progresses from cycle 1 to 10 to 20.  The bottom 

two plots show the absolute prediction errors and 95% confidence limits by singling out 

particular cycles within the run as a function of what cycle the current run has progressed 

to. These plots show that for the cycles shown, there are consistent drops in the error and 

confidence limits as the system progresses toward these cycles.  These results have a lot 

of noise but there is a consistent trend. 

 

Figure 5.5: Predictions with 95% confidence limits of the mean wafer thicknesses for an 

entire run based on the integrated predictive VM approach. On the left are the multiple 

step ahead predictions starting from cycle 1, 10 and 20 respectively. On the right are the 

one step ahead predictions for the entire run, which is useful in wafer-to-wafer control. 
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Figure 5.6:  Absolute prediction error and 95% confidence limits of prediction 

distributions as the run in Figure 5.5 progresses.  The top two plots show multistep ahead 

errors and ranges at various snapshots corresponding to Figure 5.5 and comparable to the 

ideal situation in Figure 5.4. These errors should ideally grow as one predicts forward, 

but drop as one gathers more information about the current run. The bottom two plots 

show the predictions and confidence limits as a function of the current cycle, for 

predicting select cycles within the run. These ideally should drop for every cycle as the 

run progresses. 
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Next, around 1000 runs were analyzed for prediction errors and averaged together 

to determine the overall behavior of the predictive model.  Figure 5.7 shows the average 

predictions over all of the runs, along with the 95% confidence limits for various selected 

current cycles (starting at 1, 10, 20, and 30).  One can see that the actual metrology and 

the predictions are very close on average and all are within the confidence limits of the 

predictions. Also, the confidence limits become narrower as the current cycle progresses 

forward, indicating an average increase in confidence when progressing. Figure 5.8 

shows the range of the 95% confidence limits corresponding to Figure 5.7 for the same 

selected current cycles as before. This Figure clearly shows that the 95% confidence 

limits drop as the current cycle progresses through the run and the predictions become 

more confident. 
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Figure 5.7: Averaged predictions and 95% confidence limits for multi-step ahead 

predictions starting at current cycle 1, 10, 20, and 30.  One can see that on average, the 

predictions are close to the actual and there is increasing confidence as the run 

progresses. 

 

Figure 5.8: Ranges of the 95% confidence limits of multi-step ahead predictions starting 

from cycle 1, 10, 20 and 30 respectively of the averaged run.  One can see the range 

dropping, indicating a more confidence prediction as the current run progresses. 
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As another result, we wanted to make sure that on average, the predictions of each 

cycle within the run should become more accurate as the current cycle moves toward the 

predicted cycle.  This is equivalent to taking a slice out of Figure 5.4 at any predicted 

cycle and seeing that the prediction error consistently drops as the current cycle move 

forward.  For the average run performed on the PECVD tool, Figure 5.9 below shows that 

if one is predicting cycles 11, 21, and 30 within the current run, then the prediction error 

drops as the current cycle moves toward these future cycles.  The slopes of these lines are 

how much accuracy is gained as each new piece of information is gathered from the 

equipment signatures.  One strange occurrence was the predicting cycle 11 was always 

less accurate than predicting cycle 21, which must have to do with a certain run having 

bad predictions around cycle 11 which could have been caused by a shift in metrology 

that GSMMS did not adapt to as of yet. As for all of the cycles being predicted within the 

run, Figure 5.10 shows the slopes of the prediction errors for every cycle.  One can see 

that after cycle 7, almost every cycle has a negative slope of prediction error versus the 

current cycle. This indicates that there are consistent downward trends for almost every 

predicted cycle and that each one of the cycles on average becomes more accurate as the 

current run progresses towards it. Before cycle 7, there are not enough data points and too 

much noise to see any consistent trends in the prediction error. All of these results point 

to the predictive VM methodology seems to be working, even with the large amount of 

noise within the wafer thicknesses.  Finally, Figure 5.11 shows what percentage of the 

wafers had the actual metrology fall within the predicted metrology 95% confidence 

limits. One can see that on average over 83% of wafers are falling within these limits, 
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which is slightly less than 95% and can be contributed to parameter uncertainty within 

the GSMMS model.  Also, this percentage grows as one predicts further due to limited 

runs actually being that long.   

 

Figure 5.9: Averaged prediction errors of select cycles as a function of the current cycle. 

One can see the downward slopes, indicating better prediction of these cycles as the 

current cycle moves forward, on average.  
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Figure 5.10:  Slopes of the averaged prediction errors for all cycles being predicted 

within a run.  The majority of the cycles being predicted have negative slopes, meaning 

most cycles being predicted within the run have increasing accuracy as the current run 

progresses on average. 

 

 

Figure 5.11:  Percentage of actual metrology falling within the predicted metrology 95% 

confidence limits for each cycle being predicted within current runs.  83% of the wafers 

on average are predicted within the limits. 
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5.3.1 Conclusions for Integrated Performance Prediction and Quality Estimation in 

Manufacturing Systems 

Chapter 5 presented the integrated predictive VM approach that combines the 

methodology of Chapters 3 and 4. Monte Carlo simulation was used to estimate 

predictive distributions of wafer thickness metrology given predictive equipment 

signature distributions. Results showed that prediction accuracy of the metrology gets 

better as the current operations progress forward in time. For certain runs, one step ahead 

predictions were falling within range of the actual metrology, giving good preliminary 

findings for a wafer to wafer control study.  Also, it is shown that the predictive 

distributions become narrower as the operation progresses while most of the actual 

metrology on average fall within the prediction bounds.  On average, it was finally shown 

that the predictions for most of the cycles within the run become more accurate as the run 

progresses forward. 
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Chapter 6 

Summary and Future Work 
 

This Chapter summarizes the specifics that were developed in each of Chapters 3-

5 in the context of time-series prediction for predictive condition monitoring, Virtual 

Metrology (VM) and predictive VM using a combination of novel time series prediction 

and dynamic VM modeling methods. In Chapter 3, a novel time-series prediction 

algorithm capable of dealing with a long-term prediction of non-stationary multivariate 

time-series was presented. The method is based on the concept of similarity-weighted 

Gaussian mixture models (GMMs) obtained via comparisons of signatures describing the 

current degradation process with those observed on the same machine/process in the past. 

The new method was tested in predicting signatures extracted during the operation of an 

industrial Plasma Enhanced Chemical Vapor Deposition (PECVD) tool. The results 

showed that the newly developed prediction method yields noticeably smaller mean 

squared errors (MSE), compared with ARMA based prediction and comparable MSE to 

another recently introduced similarity-based matrix prediction model. However, its 

analytical character allows the new prediction method to compute the prediction 

distributions an order of magnitude faster. Chapter 4 introduced the concept of growing, 

locally linear dynamic models for VM applications. The newly developed VM method 

was evaluated for estimating the average wafer thicknesses of over 30,000 wafers from 

the same PECVD system. The results show that in terms of modeling errors and amount 

of necessary physical wafer measurements, the newly introduced GSMMS-based VM 

model outperforms the PLS and T-PLS regression based VM. Furthermore, when 



 

 
 

118 
 

GSMMS based VM model was updated using scheduled measurements and whenever 

unusual VM inputs appeared, it consistently outperformed PLS-based VM methods, 

regardless of the metric used to describe model accuracy and regardless of the updating 

scheme of the VM model. Chapter 5 presented the integrated predictive VM approach 

that combines the methodologies introduced in Chapters 3 and 4 to enable the prediction 

of quality characteristics of future products. Monte Carlo simulation was used to estimate 

predicted distributions of mean wafer thicknesses, given predicted equipment signature 

distributions. Results showed that prediction accuracy of the metrology gets better as the 

current operations progress forward in time with most of the actual metrology falling 

within the prediction confidence bounds.  

An avenue for possible future work in time series prediction using similarity 

based methods is the potential for grouping of degradation trajectories (runs) that have 

similar evolution dynamics of the time-series of sensory features, in order to reduce the 

number of degradation trajectories that need to be kept in the historical database and used 

for predictions. In that context, a new run would be added to the library of past runs only 

after a degradation trajectory is observed that is “sufficiently different” from the ones 

seen in the past. Another avenue is to incorporate maintenances that do not bring the 

system back to a consistent state necessitating a proper alignment of the historical 

trajectories to accomplish prediction. Namely, if an operation does not come back to a 

normal condition, the condition drift must be modeled for proper alignment.  

As for the GSMMS based VM framework, it can also be adapted in many ways in 

the future. One can experiment with different local models, such as local PLS with 

different components in each region. Another approach can be non-linear local models 
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that can be either derived from known physics within each region or can be a set of 

trained feed-forward type neural networks. In addition, there can be many modifications 

to the growth and deletion mechanisms for the SOM underlying the GSMMS VM model. 

Fuzzy boundaries can also be added to reduce the frequency of model switching, with the 

output becoming a weighted combination of local models within a neighborhood around 

the input.  

VM model updating is another realm needing investigation within the local 

modeling framework in future work. For example, the number of instances of unusual 

inputs that are necessary for requiring a new local model can be optimized or made more 

sophisticated that what was done in this thesis.   

As for the general dynamic modeling and data collection/experimentation within 

semiconductor manufacturing equipment or any other complex system, it is of highest 

importance that one captures the proper dynamic features to link the system performance 

to the quality of the products coming out of the system.  This is the most challenging 

aspect, especially when dealing with such complex physics with many subsystems 

influencing each other, which can be thermo-fluidic and are not strictly well known 

physically as of the current state of technology. It is important to extract features from 

sensors that measure physical quantities that are as closely related to the condition 

surrounding the product and impacting its quality variables as possible.  Therefore, in 

modern complex systems future work must be done in making these models more 

accurate in general through a combination of physical knowledge, engineering work, and 

machine learning.  
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In the realm of the integrated predictive VM approach demonstrated in Chapter 5, 

much work must still be done in comparing the methodology to other predictive models. 

The various types of uncertainty coming from the VM modeling parameters, VM model, 

and time-series prediction must all be taken into account and estimated correctly for this 

methodology to work.  Another possible avenue for future work is to investigate 

analytical uncertainty propagation techniques through the GSMMS model rather than the 

MC based one, which was pursued in this thesis. This would greatly accelerate the 

computations and potentially improve their accuracy.  Gaussian mixtures have a rich 

analytical background and it could be possible to obtain analytical results for propagating 

Gaussian mixtures through the local linear GSMMS model. Finally, the predictive VM 

methodology should be tested for one step ahead predictions and determined its 

feasibility for implementing run-to-run control (wafer to wafer control).  Robust control 

methods can quantify performance within the predicted bounds of control and seem as a 

plausible way to attach this problem. 

6.1 Scientific Contributions 

First, the similarity based performance prediction methodology has the ability to 

increase the accuracy of any long-term prediction scheme for any system that can be 

placed into the similarity-based paradigm. Systems that undergo repeated and frequent 

maintenance between which production operations take place are obvious candidates for 

this methodology (e.g. thin film depositions with repeated in-situ cleaning, metal cutting 

operations with repeated tool replacements, etc…). Additionally, the newly introduced 

WLE approach to modifying the GMM likelihood function with the similarity weights, 
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which was adapted from  [140] led to tremendous gains in terms of computation times for 

predicted distributions.  

Second, the GSMMS VM model provides significant scientific contributions to 

the widely utilized quality estimation and virtual sensing literature. It simultaneously 

enables model validity checking and high model accuracy, while keeping a 

mathematically tractable and accurate framework. The result showing its advantages over 

global type modeling can potentially change the way VVM models are pursued in the 

future. 

Finally, the integration of performance prediction and quality estimation provides 

many scientific contributions to manufacturing research and practice. Performance 

prediction and VM quality estimation have never been integrated before in literature, and 

their integration in this work enables long-term system performance predictions in 

manufacturing.  

 

6.2 Publications 

The publications already produced or anticipated to be produced based on this doctoral research 

are as follows: 

• Bleakie, A., Djurdjanovic, D., 2011, “Dynamic Feature Monitoring Technique 

Applied to Thin Film Deposition Processes in an Industrial PECVD Tool,” 

Proceedings of the ASME 2011 International Manufacturing Science and 

Engineering Conference, June 13-17. 

• Bleakie, A., Djurdjanovic, D., 2013, “Feature Extraction, Condition Monitoring, 

and Fault Modeling in Semiconductor Manufacturing Systems,” Computers in 

Industry, 64(3), pp. 203-213. 

• Bleakie, A., Djurdjanovic, D., 2013, “Analytical Approach to Similarity Based 

Prediction of Manufacturing System Performance," Computers in Industry, 64(6), 

pp. 625-633. 
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• Bleakie, A., Djurdjanovic, D., 2014, “Growing Structure Multiple Model System 

for Quality Estimation in Manufacturing Processes," submitted to IEEE 

Transactions on Semiconductor Manufacturing.  

• Bleakie, A., Djurdjanovic, D., 2014, “Integrated Performance Prediction and 

Quality Control of Manufacturing Systems," to be submitted to IEEE 

Transactions on Semiconductor Manufacturing.  
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Appendix 

The following tables show the results of the analysis described in this thesis and 

shown in Figures 4.9- 4.11.   

 

Table A1: Results of entire analysis of PLS, T-PLS and GSMMS showing the frequency 

of scheduled measurements, total number of scheduled measurements, MSE, number of 

model updates based on unusual inputs, and number of model updates for both updating 

schemes analyzed in this thesis.   

Schedule 

Frequency 

Total Scheduled 

Measurements 

PLS Output 

Updating Only 

  

PLS Both 

Updating 

  

  

MSE 

# Input 

Updates 

# Output 

Updates MSE 

# Input 

Updates 

# Output 

Updates 

1/8 3985 81.0 0 630 85.7 648 704 

1/25 1275 85.2 0 204 89.7 598 212 

1/50 638 87.9 0 107 92.0 582 107 

1/75 425 87.0 0 87 93.5 583 103 

1/100 319 90.4 0 53 94.9 576 59 

1/125 255 94.8 0 41 95.5 575 45 

1/150 213 89.4 0 40 95.6 576 52 

1/175 182 92.5 0 28 97.8 573 33 

1/200 159 91.9 0 25 97.4 574 29 
 

Schedule Frequency 

Total Scheduled 

Measurements 

T-PLS Output 

Updating Only 

  

T-PLS Both 

Updating 

  

  

MSE 

# Input 

Updates 

# Output 

Updates MSE 

# Input 

Updates 

# Output 

Updates 

1/8 3985 83.0 0 667 84.6 187 693 

1/25 1275 86.9 0 211 86.7 168 208 

1/50 638 89.5 0 105 87.9 153 102 

1/75 425 89.0 0 91 88.3 139 91 

1/100 319 92.0 0 53 89.4 150 54 

1/125 255 95.8 0 44 90.7 138 40 

1/150 213 89.5 0 41 89.7 137 45 

1/175 182 93.0 0 28 91.3 136 31 

1/200 159 92.5 0 27 94.7 139 29 
 

Schedule Frequency 

Total Scheduled 

Measurements 

GSMMS Output 

Updating Only   

GSMMS Both 

Updating   

  

MSE 

# Input 

Updates 

# Output 

Updates MSE 

# Input 

Updates 

# Output 

Updates 
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1/8 3985 80.3 0 618 79.8 21 618 

1/25 1275 84.0 0 193 82.9 23 184 

1/50 638 86.7 0 101 83.5 23 100 

1/75 425 87.4 0 87 84.6 21 82 

1/100 319 90.0 0 50 86.7 23 52 

1/125 255 93.3 0 42 88.0 22 42 

1/150 213 89.1 0 41 87.9 24 42 

1/175 182 93.2 0 28 90.1 20 30 

1/200 159 91.9 0 24 88.3 23 21 

 

Table A2: Percentage of wafers that had relative VM errors less than 1% and less than 

3%, along with the maximal relative error. 

PLS 

   

  

   

  

   

 

Scheduled  Updating Only   Abnormal Input Updating Only   Both Updating Types 

Period 

Less than 

1% 

Less than 

3% 

Max 

Error 

 

Less than 

1% 

Less than 

3% 

Max 

Error 

 

Less than 

1% 

Less than 

3% 

Max 

Error 

1/8 84.90 100.00 2.98   75.50 99.99 3.70 

 

83.10 99.99 3.21 

1/25 83.60 99.98 4.76   75.50 99.99 3.70 

 

81.50 99.99 3.31 

1/50 82.50 99.93 4.75   75.50 99.99 3.70 

 

80.30 99.99 3.43 

1/75 82.90 99.92 4.17   75.50 99.99 3.70 

 

79.50 99.99 3.45 

1/100 81.70 99.81 6.39   75.50 99.99 3.70 
 

78.66 99.99 3.51 

1/125 79.70 99.81 6.10   75.50 99.99 3.70 
 

78.15 99.99 3.52 

1/150 82.30 99.79 5.56   75.50 99.99 3.70 

 

78.20 99.99 3.59 

1/175 81.30 99.73 5.87   75.50 99.99 3.70 

 

76.95 99.99 3.66 

1/200 81.40 99.80 6.40   75.50 99.99 3.70 

 

77.20 99.99 3.61 
                        

T-PLS 

   

  

   

  

   

 

Scheduled  Updating Only 

 

Abnormal Input Updating Only 

 

Both Updating Types 

Period 

Less than 

1% 

Less than 

3% 

Max 

Error 

 

Less than 

1% 

Less than 

3% 

Max 

Error 

 

Less than 

1% 

Less than 

3% 

Max 

Error 

1/8 84.20 99.99 3.14 

 

80.22 99.99 3.59 

 

83.35 99.99 3.27 

1/25 82.80 99.98 4.83 

 

80.22 99.99 3.59 

 

82.66 99.99 3.29 

1/50 81.52 99.93 4.69 

 

80.22 99.99 3.59 

 

82.18 99.98 3.24 

1/75 82.14 99.91 4.31 
 

80.22 99.99 3.59 
 

81.77 99.99 3.24 

1/100 81.18 99.82 6.37 

 

80.22 99.99 3.59 

 

81.64 99.99 3.44 

1/125 79.12 99.81 6.09 

 

80.22 99.99 3.59 

 

80.88 99.99 3.45 

1/150 82.18 99.80 5.41 

 

80.22 99.99 3.59 

 

81.12 99.99 3.48 

1/175 81.10 99.71 5.86 

 

80.22 99.99 3.59 

 

80.52 99.98 3.75 

1/200 81.00 99.81 6.41 
 

80.22 99.99 3.59 
 

79.19 99.92 3.84 
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Divide and Conquer (GSMMS) 

 
  

   
  

   

 

Scheduled  Updating Only   Abnormal Input Updating Only   Both Updating Types 

Period 

Less than 

1% 

Less than 

3% 

Max 

Error 

 

Less than 

1% 

Less than 

3% 

Max 

Error 

 

Less than 

1% 

Less than 

3% 

Max 

Error 

1/8 85.40 100.00 2.94 

 

74.90 99.99 3.53 

 

85.30 100.00 2.97 

1/25 84.10 99.98 4.76 

 

74.90 99.99 3.53 

 

84.30 100.00 2.86 

1/50 82.90 99.94 4.71 
 

74.90 99.99 3.53 
 

83.80 99.99 3.01 

1/75 83.00 99.93 4.16 
 

74.90 99.99 3.53 
 

83.50 100.00 2.99 

1/100 81.20 99.82 6.42 

 

74.90 99.99 3.53 

 

82.70 99.99 3.16 

1/125 80.70 99.82 6.09 

 

74.90 99.99 3.53 

 

81.90 99.99 3.19 

1/150 82.50 99.80 5.56 

 

74.90 99.99 3.53 

 

82.90 99.99 3.26 

1/175 81.20 99.69 5.86 

 

74.90 99.99 3.53 

 

81.98 99.99 3.39 

1/200 81.10 99.81 6.40 
 

74.90 99.99 3.53 
 

82.40 99.99 3.23 

 

Table A3: Results of entire analysis of PLS, T-PLS and GSMMS showing the frequency 

of scheduled measurements, total number of scheduled measurements, MSE, number of 

model updates based on unusual inputs, and number of model updates for both updating 

schemes analyzed in this thesis.  This is for the 100 Wafer Moving window result. 

 

Schedule 
Freq 

Total Scheduled 
Measurements 

PLS 
Output 
Only 

   

PLS Mixed 
Updating 

 

   
MSE 

# Input 
Updates 

# Output 
Updates MSE 

# Input 
Updates 

# Output 
Updates 

8 3985 
 

83.56 0 671 
 

83.93 329 674 

25 1275 
 

86.66 0 217 
 

86.88 343 211 

50 638 
 

92.29 0 110 
 

88.53 375 100 

75 425 
 

88.96 0 95 
 

90.80 383 80 

100 319 
 

93.48 0 52 
 

90.07 395 54 

125 255 
 

97.04 0 43 
 

89.73 395 45 

150 213 
 

92.74 0 46 
 

91.67 400 42 

175 182 
 

96.76 0 30 
 

91.36 409 27 

200 159 
 

95.81 0 31 
 

91.77 409 25 

          

          Schedule Total Scheduled TPLS Output Only 
  

TPLS Mixed 
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Freq Measurements Updating 

   
MSE 

# Input 
Updates 

# Output 
Updates MSE 

# Input 
Updates 

# Output 
Updates 

8 3985 
 

84.09 0 679 
 

83.28 204 661 

25 1275 
 

89.00 0 214 
 

87.56 145 219 

50 638 
 

92.39 0 114 
 

90.49 110 107 

75 425 
 

91.97 0 95 
 

92.19 130 104 

100 319 
 

94.09 0 51 
 

88.09 90 55 

125 255 
 

96.60 0 43 
 

91.81 92 37 

150 213 
 

91.97 0 45 
 

91.04 87 47 

175 182 
 

95.65 0 30 
 

90.19 86 30 

200 159 
 

95.28 0 29 
 

89.61 89 23 

          

          Schedule 
Freq 

Total Scheduled 
Measurements 

GSMMS Output 
Only 

  

GSMMS Mixed 
Updating 

 

   
MSE 

# Input 
Updates 

# Output 
Updates MSE 

# Input 
Updates 

# Output 
Updates 

8 3985 
 

80.33 0 618 
 

79.89 21 618 

25 1275 
 

84.05 0 193 
 

83.00 23 184 

50 638 
 

86.70 0 101 
 

83.58 23 100 

75 425 
 

87.48 0 87 
 

84.65 21 82 

100 319 
 

90.09 0 50 
 

86.72 23 52 

125 255 
 

93.32 0 42 
 

88.05 22 42 

150 213 
 

89.16 0 41 
 

87.93 24 42 

175 182 
 

93.24 0 28 
 

90.11 20 30 

200 159 
 

91.97 0 24 
 

88.39 23 21 

          

          Schedule 
Freq 

Total Scheduled 
Measurements 

RBNN Output 
Only 

  

RBNN Mixed 
Updating 

 

   
MSE 

# Input 
Updates 

# Output 
Updates MSE 

# Input 
Updates 

# Output 
Updates 

8 3985 
 

87.06 0 760 
 

85.97 311 760 

25 1275 
 

89.12 0 231 
 

92.57 344 253 

50 638 
 

89.91 0 107 
 

95.97 368 126 

75 425 
 

90.35 0 93 
 

95.40 377 110 

100 319 
 

92.60 0 58 
 

98.74 383 81 

125 255 
 

94.96 0 47 
 

95.52 399 56 

150 213 
 

98.19 0 52 
 

97.38 397 56 

175 182 
 

99.71 0 41 
 

99.87 398 39 
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200 159 
 

99.51 0 33 
 

103.5
3 402 37 

 

 

Table A4: Percentage of wafers that had relative VM errors less than 1% and less than 

3%, along with the maximal relative error for the 100 Wafer Moving Window results. 

 

PLS            

            

 Scheduled  Updating Only  Abnormal Input Updating Only Both Updating Types 

Period Percent 
Over 1% 

Percent 
Over 3% 

Max 
Error 

Percent 
Over 1% 

Percent 
Over 3% 

Max 
Error 

Percent 
Over 1% 

Percent 
Over 3% 

Max 
Error 

8 84.21 99.99 3.27  79.52 99.99 3.19  84.02 100.00 2.89 

25 82.79 99.96 5.07  79.52 99.99 3.19  82.20 99.99 3.13 

50 80.45 99.88 5.58  79.52 99.99 3.19  81.60 99.99 3.21 

75 82.09 99.94 3.91  79.52 99.99 3.19  80.35 99.99 3.18 

100 80.34 99.80 6.68  79.52 99.99 3.19  80.81 99.99 3.24 

125 78.57 99.84 5.30  79.52 99.99 3.19  81.03 99.99 3.02 

150 80.66 99.78 5.60  79.52 99.99 3.19  80.18 99.99 3.16 

175 79.45 99.73 5.48  79.52 99.99 3.19  80.58 99.99 3.10 

200 79.15 99.86 5.96  79.52 99.99 3.19  80.34 99.99 3.33 

            

Average: 80.86 99.86 5.21  79.52 99.99 3.19  80.89 99.99 3.17 

            

                        

TPLS            

            

 Scheduled  Updating Only  Abnormal Input Updating Only Both Updating Types 

Period Percent 
Over 1% 

Percent 
Over 3% 

Max 
Error 

Percent 
Over 1% 

Percent 
Over 3% 

Max 
Error 

Percent 
Over 1% 

Percent 
Over 3% 

Max 
Error 

8 83.79 99.99 3.28  79.86 99.99 3.47  84.25 99.99 3.83 

25 81.62 99.96 5.10  79.86 99.99 3.47  81.58 99.99 3.46 

50 80.40 99.89 5.43  79.86 99.99 3.47  80.54 100.00 2.98 

75 80.72 99.89 4.08  79.86 99.99 3.47  79.34 99.99 3.52 

100 80.35 99.78 6.71  79.86 99.99 3.47  81.77 99.98 3.34 

125 78.77 99.85 5.34  79.86 99.99 3.47  80.17 99.98 3.20 

150 80.81 99.86 5.08  79.86 99.99 3.47  80.37 99.98 3.56 
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175 79.52 99.77 5.05  79.86 99.99 3.47  80.96 99.98 3.54 

200 79.29 99.86 5.91  79.86 99.99 3.47  81.56 99.97 3.44 

            

Average: 80.59 99.87 5.11  79.86 99.99 3.47  81.17 99.98 3.43 

            

                        

Divide and Conquer (GSMMS)          

            

 Scheduled  Updating Only  Abnormal Input Updating Only Both Updating Types 

Period Percent 
Over 1% 

Percent 
Over 3% 

Max 
Error 

Percent 
Over 1% 

Percent 
Over 3% 

Max 
Error 

Percent 
Over 1% 

Percent 
Over 3% 

Max 
Error 

8 85.40 100.00 2.94  74.90 99.99 3.53  85.30 100.00 2.97 

25 84.10 99.98 4.76  74.90 99.99 3.53  84.30 100.00 2.86 

50 82.90 99.94 4.71  74.90 99.99 3.53  83.80 99.99 3.01 

75 83.00 99.93 4.16  74.90 99.99 3.53  83.50 100.00 2.99 

100 81.20 99.82 6.42  74.90 99.99 3.53  82.70 99.99 3.16 

125 80.70 99.82 6.09  74.90 99.99 3.53  81.90 99.99 3.19 

150 82.50 99.80 5.56  74.90 99.99 3.53  82.90 99.99 3.26 

175 81.20 99.69 5.86  74.90 99.99 3.53  81.98 99.99 3.39 

200 81.10 99.81 6.40  74.90 99.99 3.53  82.40 99.99 3.23 

            

Average: 82.46 99.87 5.21  74.90 99.99 3.53  83.20 99.99 3.12 

            

                        

RBNN            

            

 Scheduled  Updating Only  Abnormal Input Updating Only Both Updating Types 

Period Percent 
Over 1% 

Percent 
Over 3% 

Max 
Error 

Percent 
Over 1% 

Percent 
Over 3% 

Max 
Error 

Percent 
Over 1% 

Percent 
Over 3% 

Max 
Error 

8 83.43 99.97 3.57  75.39 100.00 2.97  84.10 99.98 3.45 

25 81.99 99.98 5.26  75.39 100.00 2.97  80.00 99.99 3.53 

50 81.60 99.98 4.45  75.39 100.00 2.97  78.44 99.97 3.48 

75 81.67 99.86 5.24  75.39 100.00 2.97  78.28 99.97 3.48 

100 80.65 99.91 4.20  75.39 100.00 2.97  76.99 99.97 3.48 

125 80.40 99.80 5.37  75.39 100.00 2.97  78.26 99.99 3.45 

150 78.03 99.82 4.55  75.39 100.00 2.97  77.09 99.98 3.17 

175 77.59 99.84 4.68  75.39 100.00 2.97  75.97 99.96 3.47 

200 77.73 99.88 4.07  75.39 100.00 2.97  75.44 99.88 3.45 

            

Average: 80.34 99.89 4.60  75.39 100.00 2.97  78.29 99.97 3.44 
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